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ABSTRACT

Network Functions Virtualization (NFV) offers several benefits for Service Providers

(SPs), such as mitigating equipment cost and increasing business agility. In NFV-enabled

networks, inadequate placement of Virtualized Network Functions (VNFs) creates bot-

tlenecks, impacting negatively on performance. Therefore, network operators must es-

tablish affinity and anti-affinity rules to avoid network and processing bottlenecks, and

thus comply with Service Level Agreement (SLA) requirements of tenants. Affinity and

anti-affinity rules in NFV must be broad and carefully elaborated to maintain service per-

formance. Network operators must consider further than simply resource allocation when

identifying affinity among VNFs. The criteria for VNFs affinity varies for different for-

warding graphs. Geolocation, latency, packet loss, and bandwidth usage are some exam-

ples of criteria that can be considered as indicators of bottlenecks in high traffic networks.

In this document, we propose a solution to measure affinity between pairs of VNFs, based

on a weighted set of affinity criteria considered relevant by a network operator. To evalu-

ate the feasibility of our affinity model, we developed AMNESiA, an implementation of

our affinity measurement solution. We then use AMNESiA to analyze three case studies

over an experimental NFV scenario. We conclude that our affinity model can help net-

work operators identify the cause of issues in NFV-enabled networks, as well as it may

be used by NFV orchestrators to aid on VNFs migration and placement.

Keywords: Network Functions Virtualization. Affinity. Virtualization. Networks. 5G.



Medição de Afinidade para Redes com Suporte a NFV: Uma Abordagem baseada

em Critérios

RESUMO

Network Functions Virtualization (NFV) oferece diversos benefícios para Provedores de

Serviço, como mitigar o custo de equipamentos e aumentar a agilidade do negócio. Em re-

des com suporte a NFV, a alocação inadequada de Virtualized Network Functions (VNFs)

pode criar gargalos, impactando negativamente no desempenho. Portanto, operadores de

rede devem estabelecer regras de afinidade e anti-afinidade para evitar gargalos de rede e

processamento, e assim respeitar os requisitos de Service Level Agreement (SLA) estabe-

lecidos com o usuário. Regras de afinidade e anti-afinidade em NFV devem ser abragen-

tes e cuidadosamente elaboradas para manter o desempenho dos serviços. Operadores de

rede devem considerar mais que apenas a alocação de recursos ao identificar afinidades

entre VNFs. Os critérios para afinidade de VNFs variam para grafos de encaminhamento

diferentes. Geolocalização, latência, perda de pacotes, e largura de banda são alguns

exemplos de critérios que podem ser considerados como indicadores de gargalos em re-

des de alto tráfego. Neste trabalho, é proposta uma solução para medir a afinidade entre

pares de VNFs, baseando-se em um conjuntos de critérios de afinidade, com pesos asso-

ciados, considerados relevantes por um operador de rede. Para avaliar a viabilidade do

modelo de afinidade, foi desenvolvida a solução AMNESiA, uma implementação do mo-

delo proposto de medição de afinidade. AMNESiA foi então utilizado para analizar três

casos de estudo em um cenário NFV experimental. Conclui-se que o modelo de afinidade

pode ajudar operadores de redes identificar causas de problemas em redes com suporte a

NFV, bem como pode ser utilizado por orquestradores NFV para auxiliar na alocação e

migração de VNFs.

Palavras-chave: Network Functions Virtualization, Afinidade, Virtualização, Redes, 5G.
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1 INTRODUCTION

Network Functions Virtualization (NFV) offers several benefits for Service Providers

(SPs), such as mitigating equipment cost and increasing business agility [ISG 2012]. NFV

migrates network functions from dedicated hardware to software running on general-

purpose servers, often referred to as Virtualized Network Functions (VNFs). Virtual Ma-

chines (VMs) are used to host VNFs, which can then be created, migrated, and destroyed

on-the-fly. In the end of the day, VNFs provide flexibility and scalability, avoiding ossifi-

cation and introducing innovation in the network core [Santos et al. 2015].

In NFV-enabled networks, inadequate placement of VNFs creates bottlenecks, im-

pacting negatively on performance [Mijumbi et al. 2015]. Network operators establish

affinity and anti-affinity rules to avoid network and processing bottlenecks [Oechsner and

Ripke 2015], and thus comply with Service Level Agreement (SLA) requirements of

tenants. These rules help operators improve service execution and minimize resources

waste [Sudevalayam and Kulkarni 2011]. Affinity relates to the ability, or inability, of

different entities to perform when combined in a certain way. Hence, affinity and anti-

affinity rules can be based on several different aspects, such as VNFs minimum resource

requirements, latency, number of processed packets, or even network operators needs for

the service [Alcatel-Lucent 2013]. Although affinity is a critical issue, to the best of

our knowledge, efforts to determine affinity among VNFs have been scarce [Chen et al.

2013] [Sonnek et al. 2010]. Besides, these efforts focus solely on resource allocation,

disregarding the service being provided.

Affinity and anti-affinity rules in NFV must be broad and carefully elaborated to

maintain service performance. VNFs are chained in a Forwarding Graph (FG) to provide a

service (i.e., service chaining), increasing substantially management complexity. Network

operators must consider further than simply resource allocation when identifying affinity

among VNFs. The criteria for VNFs affinity varies widely for different forwarding graphs.

For instance, geolocation can be taken into account to minimize latency and propagation

delay among chained VNFs located far from each other, while packet loss and bandwidth

usage can be considered as an indicator of bottlenecks in high traffic networks. All this

backs up the argument that network operators must be able to select what criteria are

relevant when establishing VNFs affinities.

In this document, we introduce an extensible solution to measure affinity between

pairs of VNFs, given a weighted set of affinity criteria considered relevant by a network
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operator. First, we provide a definition of affinity between a pair of VNFs, to specify the

semantics of our affinity measurement. Second, we specify an extensible set of affinity cri-

teria for an NFV-enabled network, which an operator may provide weights to, according

to the relevance of each criterion. Third, we propose a mathematical solution to measure

affinity between two VNFs, based on the criteria and weights provided by the operator.

Fourth, we present a prototype implementation of the proposed affinity measurement,

used to evaluate the feasibility of our model. Thus, our solution can help network oper-

ators identify the root cause of problems in NFV-enabled networks by analyzing affinity

measures between VNFs. In addition, an affinity measure supports the creation of more

concise and improved affinity rules, avoiding performance degradation of services. Fi-

nally, affinity measures may be used by NFV orchestrators — in addition to network

operators — to aid on VNFs migration and placement.

The remaining of this document is organized as follows. In Chapter 2, we present

the background regarding affinity in NFV and network virtualization. In Chapter 3, we

define a set of admissible affinity criteria and introduce our solution for affinity measure.

In Chapter 4, we present our implementation of the described affinity measurement. In

Chapter 5, we evaluate our solution by analyzing experimental scenarios. In Chapter 6,

we conclude this document and present future work.
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2 BACKGROUND AND RELATED WORK

In this Chapter, we introduce the the background knowledge pertinent to this doc-

ument, required to fully comprehend our solution. We also present the related work re-

garding affinity in NFV-enabled environments, as well as in Cloud-based environments.

Traditionally, service provisioning in the telecommunications industry has relied

on network operators deploying each network function as proprietary physical devices.

This increasing variety of proprietary devices required an ever growing amount of space

and energy, and specialized knowledge to integrate and operate these functions. In addi-

tion, hardware-based appliances have a very short life-span, as technology advances and

innovation accelerates, demanding new investments to improve service quality. More-

over, the usage of physical network functions to provide services results on a slow-paced

innovation cycle and longer Time-to-Market.

NFV was proposed by the European Telecommunications Standards Institute (ETSI)

[ISG 2012], aiming to address the challenges derived from using physical appliances.

NFV focuses on decoupling the Network Functions (NFs) from their hardware equip-

ment, allowing these functions to be deployed on a general-purpose rack of servers, re-

ferred to as VNFs. Using VMs to host these VNFs enables network operators to quickly

and dynamically create, deploy, migrate and destroy functions. Hence, coupling network-

ing functions with virtualization technology provides telecommunications companies re-

duced Capital and Operational Expenditure (CAPEX and OPEX, respectively), increased

flexibility, scalability and availability, and reduced Time-to-Market by decreasing the op-

erator’s cycle of innovation.

With the advent of NFV, the ETSI provided several use-cases in which NFV may

be applied [ISG 2013]. Among these use cases, some have been especially target by

the industry, such as the virtualization of the Evolved Packet Core (EPC). The EPC is

the core of Long Term Evolution (LTE) networks, providing essential features, including

subscriber tracking, mobility and session management. Virtualizing the EPC increases

flexibility and scaling, allowing for the advances of 5G networks [Hawilo et al. 2014].

Nonetheless, use cases for NFV include many other promising scenarios, from virtualiz-

ing the home environment to virtualized Content Delivery Networks (CDN).
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2.1 Forwarding Graphs

Considering the ever-growing complexity of communication networks, migrating

NFs from hardware appliances to software does not suffice for SPs to implement Network

Services (NSs). To address these issues, the ETSI introduced the VNF FG use case. An

FG defines a sequence of VNFs that packets must traverse, through point-to-point links.

In this way, VNF FGs are the equivalent of connecting physical NFs through network

cables. Ultimately, an FG provides a logical connectivity between VNFs.

An abstract definition of an NS based on an FG includes the types of the involved

VNFs, the relationships between these VNFs, as well as the connection topology they

compose, and the dependencies among each of them. Since SPs might choose to main-

tain certain NFs as hardware appliances, VNF FGs also have to allow interconnections

between virtualized and physical appliances.

A VNF FG provides several benefits when compared to hardware-based NF FG,

including efficiency, flexibility and deployability. A better efficiency is derived from hav-

ing functions and network capacity sized to the current load, instead of having a dedi-

cated hardware and network capacity sized to handle peak loads. A VNF FG provides

augmented flexibility due to shorter deployment intervals for upgrades and new features,

since functions are software-based. As for deployability, improvement is achieved by tak-

ing advantage of virtualization, accounting that it reduces configuration complexity and

eliminates the need of physical boxes and interfaces to connect end-users.

Figure 2.1 provides an example scenario of multiple VNFs chained in different

FGs. The example scenario depicts four different VNFs — a Deep Packet Inspection

(DPI), a Network Address Translation (NAT) server, a packet sniffer and a firewall —

being shared by three distinct tenants. Notice that the same VNFs can be chained in more

than one FG, providing different NSs for different tenants.

2.2 NFV Architecture

The intrinsic advantages and innovation granted by the NFV concept also intro-

duce a multitude of challenges and issues regarding management and infrastructure. Since

NFs are virtualized in NFV, they need to be deployed on an agnostic NFV Infrastructure

(NFVI), with carrier-grade servers, data centers and network, alongside virtualization en-

ablers, such as hypervisors and VMs to host VNFs. As these entities are exposed by the
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Figure 2.1: NFV FGs example scenario.

Source: Author

advent of NFV, the new set of relationships between those entities requires new manage-

ment solutions. To address these challenges, the ETSI proposed the Management and

Orchestration architectural framework (MANO) [ISG 2014], which aims to manage the

NFVI and orchestrate the resource allocation for VNFs and NSs.

The overall architecture proposed by the ETSI can be seen in Figure 2.2. The

NFVI corresponds to the underlying compute, storage and network infrastructure of the

architecture. The VNFs, and services provided by FGs, are deployed on top of the NFVI.

Finally, both the NFVI resource provisioning and orchestration of VNFs and FGs are

performed by the NFV-MANO. Below, we describe in detail each different aspect of the

architecture.

NFV Infrastructure

The NFVI includes all the necessary infrastructure, physical and virtual, needed

for a VNF to be deployed, managed and executed [ISG 2013]. As shown in Figure 2.2,
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Figure 2.2: NFV architecture overview.

Source: Author

the NFVI requires generic hardware resources, such as compute, storage and networking.

On top of the physical resources, there is a virtualization layer, typically composed of hy-

pervisors. With the addition of the virtualization, the NFVI then requires virtual resources

(i.e., compute, storage and networking) in which the VNFs shall be deployed. The com-

puting and storage virtual resources may be represented as one or more VMs, while the

network virtual resource are composed of Virtual Links (VLs) and nodes. A virtual node

is a software component that provides either hosting or routing capabilities, while a VL

represents a logical connection between virtual nodes.

The NFVI may also include partially virtualized NFs. In this scenario, an specific

part or feature of the NF is virtualized, and is managed by the NFV-MANO, while other

parts are comprised of physical components, due to physical constraints, for example.

The management of physical appliances is not covered by the NFV-MANO. However, to

ensure operational transparency, the operation of the VNF should be independent of its

deployment scenario.

VNFs and Services

According to the ETSI, an NF is a functional block within a network infras-

tructure that has well-defined external interfaces and well-defined functional behavior



17

[ISG 2014]. Some common examples of NFs are Dynamic Host Configuration Protocol

(DHCP) servers, firewalls and NAT servers, often used in home environments. In turn, a

VNF is an NF that can be deployed on the NFVI [ISG 2014]. A VNF may consist of mul-

tiple components, and therefore may need to be deployed over multiple VMs, in which

each VM hosts one single component of the VNF. However, the entire VNF may also be

deployed on a single VM as well [ISG 2013].

A service is an offering composed of NFs, and defined by its functional and be-

havioral specification. On the NFV context, these NFs that compose a service are vir-

tualized and deployed on the NFVI. Nonetheless, this virtualization abstraction should

be transparent to users and tenants, having no performance shortages when compared to

hardware-based services. The number and ordering of VNFs that constitute a service is

determined by the corresponding FG of the service.

NFV Management and Orchestration

The NFV-MANO is responsible for providing end-to-end service to end-to-end

NFV network mapping, instantiating and provisioning VNFs at appropriate locations to

realize intended services, among other tasks. In addition, the NFV-MANO defines inter-

faces for the components to communicate among themselves, as well as with traditional

management systems, as to allow for management of both VNFs and legacy equipment.

Aiming to address such issues, the NFV-MANO was architected with three distinct func-

tional blocks: the NFV Orchestrator (NFVO), the VNF Manager (VNFM); and the Virtu-

alized Infrastructure Manager (VIM). It is important to point out that an NFV environment

might have multiple instances of the same functional block, leveraging resources on the

same infrastructure. Below, we describe in detail the responsibilities of each component.

NFVO The NFVO functional block has two main responsibilities: orchestration of NFVI

resources across multiple VIMs, and the lifecycle management of NSs. To accom-

plish the former, the NFVO must be able to handle both virtualized and partially

virtualized NFs, allocate and release resources in the NFVI dynamically; as well

as support the management of the relationships between VNFs and NFVI, accord-

ing to the information received from VIMs, among other capabilities. To fulfill the

latter, the NFVO ought to be able to instantiate NSs and manage their lifecycles

(e.g., update, query, scaling, collecting measurements, termination, etc.), in coordi-

nation with VNFMs, manage the FGs of each NS; and validate and authorize NFVI
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resource requests from VNFMs, preventing performance impacts on NSs, amidst

other functions.

VNFM The VNFM is responsible for the lifecycle management of VNF instances. One

VNFM is responsible for many VNFs, and therefore, each VNF is assumed to have

an associated VNFM. For a VNFM to operate, it must be able to instantiate and

configure VNFs, according to a VNF deployment template, upgrade/update VNF

instances, modify VNFs, scale up or down VNF instances; and terminate VNFs,

among other features. In addition, a VNFM has access to a repository of available

VNFs and different versions of them, which it uses for lifecycle management. This

repository may be maintained by the NFVO or an external entity.

VIM The VIM functional block is in charge of controlling the NFVI resources within one

infrastructure domain. A VIM might be specialized on managing on single type of

resource (i.e., compute, network, storage) or able to manage multiple resources.

The capabilities of a VIM include supporting the management of VNF FGs, by

creating VLs and networks, for example, orchestrating the allocation, upgrading,

release and reclamation of NFVI resources; and provisioning virtualized resources

on physical hardware resources.

2.3 Network Service Descriptor

An NS describes the relationships between VNFs, and possible physical NFs, links

needed to connect them, and the resources required to fulfill an FG. To provide all this

information for the NFV-MANO to operate, a Network Service Descriptor (NSD) was

introduced by the ETSI [ISG 2014]. The NSD is structured as a tree of information

elements. An information element may contain a single value, in which case the element

is a leaf; it may contain a reference to another information element; or it main contain a

sub-element, which is an information element itself that specifies another level in the tree.

Each information element has an unique name among the branches of the tree.

Each information element clause contains a table with four columns: (i) the name

of the element, (ii) the type of the element, (iii) the cardinality of the element, which

may be a positive integer or a range; and (iv) the content description of the information

element. If the element is a sub-element, its content can be found on a subsequent clause.

An NSD is a top level information element, used as a deployment template, that
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references all other descriptors that compose an NS, such as the VNF Descriptor (VNFD),

the VNF FG Descriptor (VNFFGD) and the VL Descriptor (VLD). The VNFD is a de-

ployment template describing the operational and instantiation requirements of a VNF.

A VNFD is used primarily by the VNFM to instantiate and manage VNFs. A VNFFGD

describes the topology of the NS, referencing VNFs and physical NFs, as well as VLs

connecting them. Finally, a VLD constitutes of a deployment template describing the

requirements of VLs between NFs, such as minimum bandwidth. Table 2.1 contains the

an overview of the NSD base element. Further information on other descriptors may be

checked on [ISG 2014].

The NFVO stores all descriptors into catalogues, which can be accessed anytime

by each functional block of the NFV-MANO. Multiple versions of a descriptor may exist

in a catalogue, so the NFVO may be required to keep the network configuration updated

to match the latest descriptors.

2.4 Related Work

Affinity and anti-affinity have been discussed in the context of Cloud-based envi-

ronments. However, most of current affinity solutions disregard the nature of functions

being executed by each VM, focusing primarily on resource allocation. Most commonly,

solutions propose affinity relations based on CPU [Sudevalayam and Kulkarni 2011],

bandwidth [Sonnek et al. 2010], or even memory page sharing [Wood et al. 2009]. Next,

we discuss the relevant affinity related solutions for both Cloud and NFV environments.

Chen et al. [Chen et al. 2013] proposed a method to identify affinity relations

based on resource demands and dependency among VMs, alongside an algorithm to group

these affine VMs. By grouping affine VMs as a unit, they aim to co-locate them on the

same hardware to improve system performance. Despite their solution showing positive

results for multi-VM applications, the authors only consider communication patterns to

identify affinity, disregarding other criteria relevant in the NFV context, such as latency

and FGs.

Oechsner and Ripke [Oechsner and Ripke 2015] propose a flexible placement

mechanism for VNFs based on an adapted zone concept, using OpenStack. This solution

focuses on ensuring a high availability and performance without unnecessary operator

actions. Although this work does not strictly propose a way to identify affinity relations,

they aim to minimize delays and maximize availability by using a zone tree mechanism



20

to properly place VNFs across multiple data centers. Further, that paper does not account

for the services provided.

Yoshida et al. [Yoshida et al. 2014] propose a Multi-objective Resource Schedul-

ing Algorithm (MORSA) for NFV. They use genetic algorithms to obtain the best possi-

ble placement over multiple data centers for VNFs, considering a dynamic set of criteria.

These criteria are determined by several plugins inserted in their solutions. They present

plugins for common issues in the NFV context, such as minimizing physical machine

load, intra-datacenter traffic and protocol requirements for linked VNFs. Although their

solution takes into account many affinity related matters intrinsic to NFV environments,

it does not present any kind of affinity metric. In addition, that paper also disregards the

services being provided by each VNF.

Franco et al. [Franco et al. 2016] present VISION, a visualization platform with

multiple interactive and selective techniques for NFV-enabled networks. Network opera-

tors may take advantage of VISION to identify problems on the network that impact on

the VNFs performances. Also, their solution provide unique perspectives on NFV-enabled

networks that assist in recognizing behavioral patterns, allowing a better service for ten-

ants. Although this study allows network operators to identify affinity and anti-affinity

relations through visualizations, they do not propose a distinct visualization technique to

achieve this objective. Thus, the result from the model we propose can improve their

visualizations to identify performance issues.

Yousaf and T. Taleb [Yousaf and Taleb 2016] propose a fine-grained resource-

aware VM management solution for NFV-enabled networks, based on a Reference Re-

source Affinity Score (RRAS). The authors consider affinity as a correlation between dif-

ferent entities, which for their specific case is the correlation between different Resource

Units (RUs) of a VM running a VNF, such as processing, memory, I/O module and stor-

age. Their affinity calculation results on a vector quantity representing the impact of one

reference RU (e.g., memory) on other RUs (e.g., processing, storage, and I/O module).

This affinity score is calculated for each VM, from time to time, and stored for further

analysis. This data can then be used to trace behavioral patterns for each VNF, which can

be used by the NFV-MANO [Yousaf and Taleb 2016] for short-term and long-term deci-

sion making regarding VM deployment and migration, for instance. Although the authors

provide an affinity calculation for NFV environments, their solution only provides affinity

values for RUs of a single VM, requiring extra work to determine patterns among VMs.

Even though affinity and affinity-related issues have been discussed by several au-
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thors, their approaches have focused mainly on computational resources awareness. Con-

sequently, these solutions fall short for NFV-enabled networks, which requires further

considerations when defining affinity. In addition to computational resources, require-

ments such as geolocation, FGs, and service performance, must be taken into account.

Furthermore, most current solutions lack in dynamicity, since they do not consider any

interaction with operators. In the following Chapter, we present our affinity measurement

solution, which tackles these issues.
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Table 2.1: NSD overview.

Identifier Type Cardinality Description

Id Leaf 1 Identification of this NSD.

vendor Leaf 1 Provider or vendor of the NS.

version Leaf 1 Version of this NSD.

vnfd Reference 1...N VNF constituent of this NS.

vnffgd Reference 0...N VNF FG constituent of this NS.

vld Reference 0...N VL constituent of this NS.

lifecycle_event Leaf 0...N
Defines NS functional

scripts/workflows for lifecycle
events.

vnf_dependency Leaf 0...N

Describes dependencies between
VNFs, in terms of source and

target. If a target VNF depends on
a source VNF, the source VNF

shall be deployed and connected
to the NS before the target VNF is

instantiated.

monitoring_parameter Leaf 0...N

Represents a monitoring
paramenter, such as

call-per-second, to monitored for
this NS.

service_deployment_flavour Element 1...N
Represents the parameters and its
requirements for each deployment

flavours of this NS.

auto_scale_policy Leaf 0...N
Represents the policy meta data,
which may include the criteria

parameter and action-type.

connection_point Element 1...N
This element describes a

connection point which acts as an
endpoint of this NS.

pnfd Reference 0...N
Physical NFs constituent of this

NS.

nsd_security Leaf 0...1

This is a signature of NSD to
prevent tampering. The hash

algorithm used to compute this
signature, and corresponding
cryptographic certificate to

validate the signature should be
included.
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3 SOLUTION

In this Chapter, we present our solution to measure the affinity between a pair of

VNFs. To measure that, we must primarily establish the semantics of an affinity relation-

ship. The concept of affinity refers to the correlation of different entities, representing

their ability, or inability, to perform when combined in a certain way. The proposed solu-

tion considers affinity as an indicative of how well two VNFs operate, either when placed

on the same Physical Machine (PM), or when chained on the same FG. Bearing this con-

cept in mind, our solution provides a numerical value that represents the affinity between

a pair of VNFs, for each FG both VNFs are chained. This affinity value can be used to

help either a network operator to rearrange the VNFs, or an orchestrator better solve VNF

placement problems.

The proposed solution receives as input a list of weights for each affinity criterion

(see Section 3.1) and a pair of VNFs, returning a normalized value between 0 and 1, which

represents the affinity value based on the input criteria. The input criteria are chosen by

a network operator among a set of pre-established criteria. Additionally, one can extend

this initial set to include other criteria not considered yet.

We define two sets of admissible criteria: static and dynamic. The former refers to

data that can be collected without the need of VNFs deployment (e.g., CPU requirements,

and VNFs conflicts). The latter relates to information of running VNFs (e.g., memory

usage, and latency). Dynamic VNF data can be collected using a monitoring solution for

NFV-enabled networks, such as the one proposed by DReAM [Pfitscher et al. 2016]. It

is important to distinguish these two types of criterion, due to the nature of the criteria in

each set. Static criteria can be used to measure affinity regardless whether the target VNFs

are running or not, whereas dynamic criteria can only be used when VNFs are running.

The complete set of pre-established criteria is presented below.

3.1 Criteria

In our affinity model, each dynamic and static criterion is labeled regarding their

scope: PM or FG. All static criteria are used when calculating affinity, according to the

operator’s input weights, no matter the scope of the selected criteria. However, dynamic

criteria usage depends, in addition to the operator’s input, on their scope. If two VNFs are

running on the same PM, then the dynamic PM criteria will be considered on the result.
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If two VNFs are chained on the same FG, then the dynamic FG will be considered on

the result. It is important to point out that a VNF may fit in both scopes presented, and

therefore, all dynamic criteria will be used.

Table 3.1: Overview of set of criteria.
Type Scope Criterion

Static
PM

Minimum CPU requirements
Minimum memory requirements
Minimum storage requirements

FG NFV conflicts

Dynamic

PM
CPU usage
Memory usage
Storage usage

FG
Bandwidth usage
Packet loss
Latency

Table 3.1 presents an overview of the set of criteria considered by our solution,

alongside the type and scope of each criterion. Below, we give a detailed description

of each criterion, coupled with its affinity calculation equation. All affinity measures in

Subsections below follow the same principle: if two VNFs are performing well together,

and respect all resource requirements, the resulting affinity will be closer to 1; further, if

there is any performance or resource allocation problem related to those two VNFs, the

resulting affinity measure will be closer to 0.001. Hence, the affinity of each criterion

must be a normalized value between 0.001 and 1 for the overall affinity calculation to

work.

3.1.1 Static criteria

This Subsection presents all static criteria considered by our solution. The static

type relates to all criteria which data can be fetched when the VNFs are not running. The

affinity calculation for these criteria normally fetches information from static sources,

such as the NSD or previously stored database info.
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Physical Machine Criteria

Below, we introduce the static PM criteria considered in our solution. This scope

relates to criteria that consider static PM resources, such as memory and CPU require-

ments. These criteria will only be calculated when the two VNFs being evaluated are

hosted by the same PM.

Minimum CPU requirements This criterion is declared on the NSD, in MHz, and should

be used when instantiating VNFs for an NS. Notice that if a VNF is instantiated

disregarding these requirements, then it could have a negative impact on the service

due to lack of resources. If these requirements are not met for the VNF being

evaluated, these VNFs will have a lower affinity. Equation 3.1 presents the affinity

calculation for this criterion.

α =





1 i f (cpuvn fa >= cpuNSD)∧ (cpuvn fb >= cpuNSD),

(1+max(0.001,
cpuvn fb

cpuNSD
))×0.5 i f (cpuvn fa >= cpuNSD)∧ (cpuvn fb < cpuNSD),

(max(0.001,
cpuvn fa

cpuNSD
)+1)×0.5 i f (cpuvn fa < cpuNSD)∧ (cpuvn fb >= cpuNSD),

(max(0.001,
cpuvn fa

cpuNSD
)+max(0.001,

cpuvn fb

cpuNSD
))×0.5 otherwise.

(3.1)

Where:

cpuvn fa is the available CPU, in MHz, for V NFa.

cpuvn fb is the available CPU, in MHz, for V NFb.

cpuNSD is the CPU requirements, in MHz, specified on the NSD for each

VNF.

Minimum memory requirements This criterion is also declared on the NSD, in MB, and

should be used when instantiating VNFs for an NS. If these requirements are not

met for the VNF being evaluated, these VNFs will have a lower affinity. Equation
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3.2 presents the affinity calculation for this criterion.

α =





1 i f (memvn fa >= memNSD)∧ (memvn fb >= memNSD),

(1+max(0.001,
memvn fb

memNSD
))×0.5 i f (memvn fa >= memNSD)∧ (memvn fb < memNSD),

(max(0.001,
memvn fa

memNSD
)+1)×0.5 i f (memvn fa < memNSD)∧ (memvn fb >= memNSD),

(max(0.001,
memvn fa

memNSD
)+max(0.001,

memvn fb

memNSD
))×0.5 otherwise.

(3.2)

Where:

memvn fa is the available memory, in MB, for V NFa.

memvn fb is the available memory, in MB, for V NFb.

memNSD is the memory requirements, in MB, specified on the NSD for each

VNF.

Minimum storage requirements This criterion is declared on the NSD, in IOPS, and should

be used when instantiating VNFs for an NS. If these requirements are not met for the

VNF being evaluated, these VNFs will have a lower affinity. Equation 3.3 presents

the affinity calculation for this criterion.

α =





1 i f (stovn fa >= stoNSD)∧ (stovn fb >= stoNSD),

(1+max(0.001,
stovn fb

stoNSD
))×0.5 i f (stovn fa >= stoNSD)∧ (stovn fb < stoNSD),

(max(0.001,
stovn fa

stoNSD
)+1)×0.5 i f (stovn fa < stoNSD)∧ (stovn fb >= stoNSD),

(max(0.001,
stovn fa

stoNSD
)+max(0.001,

stovn fb

stoNSD
))×0.5 otherwise.

(3.3)

Where:

stovn fa is the available storage, in IOPS, for V NFa.
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stovn fb is the available storage in IOPS, for V NFb.

stoNSD is the storage requirements, in IOPS, specified on the NSD for each

VNF.

Forwarding Graph Criteria

Below, we introduce the static FG criteria considered in our solution. This scope

relates to criteria that consider static FG resources, such as known VNFs conflicts or

policies. These criteria will only be calculated when the two VNFs being evaluated are

chained in the same FG.

NFV Conflicts Check if the two VNFs are placed correctly according to a list of known

VNF conflicts. VNFs with known conflicts should not be chained on the same FG.

This criterion’s calculation will return 1 if the conflicts are respected and 0.001 if

not. For example, if a known conflict between a DPI and a Firewall exists, stating

a DPI should not be chained before a Firewall, an an operator mistakenly performs

that chaining, this criterion will yield 0.001 as result. Equation 3.4 presents the

affinity calculation for this criterion.

α =





1 if the two VNFs respect conflicts,

0.001 otherwise.
(3.4)

3.1.2 Dynamic criteria

This Subsection presents all dynamic criteria considered by our solution. The

dynamic type relates to all criteria which data can only be fetched when the VNFs are

deployed and running. The affinity calculation for these criteria fetches information from

monitoring solutions running over the environment, such as memory consumption or la-

tency between VNFs.

Physical Machine Criteria

In this subsection, we introduce the dynamic PM criteria considered in our solu-

tion. This scope relates to criteria that consider dynamic PM resources, such as memory

and CPU consumption. These criteria shall only be calculated when the two VNFs being
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evaluated are hosted by the same PM.

CPU usage This criterion is an important metric to monitor the stress on PMs, specially

because communication between VNFs hosted by the same PM is made through

memory sharing, which causes great stress to the CPU. If two VNFs were respon-

sible for a large percentage of the PM CPU usage, then these VNFs would have a

low affinity. Equation 3.5 presents the affinity calculation for this criterion.

α = max(0.001,1− (
%cpuvn fa +%cpuvn fb

100
)) (3.5)

Where:

%cpuvn fa is the PM CPU usage percentage V NFa is responsible for.

%cpuvn fb is the PM CPU usage percentage V NFb is responsible for.

Memory usage Just as CPU usage, this criterion indicates stress levels on PMs. If two

VNFs were responsible for a large percentage of the PM memory usage, then these

VNFs would have a low affinity. Equation 3.6 presents the affinity calculation for

this criterion.

α = max(0.001,1− (
%memvn fa +%memvn fb

100
)) (3.6)

Where:

%memvn fa is the PM memory usage percentage V NFa is responsible for.

%memvn fb is the PM memory usage percentage V NFb is responsible for.

Storage usage This criterion is also an indicator of stress levels on PMs. A higher per-

centage of storage usage of two VNFs would impact negatively on these VNFs

affinity. Equation 3.7 presents the affinity calculation for this criterion.

α = max(0.001,1− (
%stovn fa +%stovn fb

100
)) (3.7)

Where:

%memvn fa is the PM storage usage percentage V NFa is responsible for.

%memvn fb is the PM storage usage percentage V NFb is responsible for.
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Forwarding Graph Criteria

Below, we introduce the dynamic FG criteria considered in our solution. This

scope relates to criteria that consider dynamic PM resources, such as latency and band-

width consumption. These criteria shall only be calculated when the two VNFs being

evaluated are chained in the same FG.

Bandwidth usage This criterion is an indicator of how much two VNFs are stressing

the links connecting them. If these VNFs were responsible for a large percent-

age of bandwidth consumption, then they would have a lower affinity. Equation 3.8

presents the affinity calculation for this criterion.

α = max(0.001,1− (
%bnd(vn fa,vn fb)

100
)) (3.8)

Where:

%bnd(vn fa,vn fb) is the bandwidth usage percentage of the link between V NFa

and V NFb.

Packet loss This criterion, just as latency and bandwidth usage, is an indicator of issues

in the network. A higher packet loss percentage between two VNFs would cause

these VNFs to have a lower affinity. Equation 3.9 presents the affinity calculation

for this criterion.

α = max(0.001,1− (
%pkt_loss(vn fa,vn fb)

100
)) (3.9)

Where:

%pkt_loss(vn fa,vn fb) is the packet loss percentage of the link between V NFa

and V NFb.

Latency This criterion is an indicator of several issues in the network, including large

distances between VNFs and bottlenecks in the service. How much latency — and

all the other FG graph criteria above — influence the service performance, and

therefore affinity, depends on the amount of traffic between the VNFs. If latency

is very high and traffic is also high between two VNFs, then these VNFs would

have a very low affinity. If latency is very low and traffic is high, then these two

VNFs would have a very high affinity. However, if traffic is low between two VNFs,

latency, either high or low, would not influence the service much, and therefore, the
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VNFs would have a somewhat medium affinity. Equation 3.10 presents the affinity

calculation for this criterion.

α =





1 i f 2× lat(vn fa,vn fb) <= latSLA,

max(0.001,1−
2× lat(vn fa,vn fb)− latSLA

latSLA
) otherwise.

(3.10)

Where:

lat(vn fa,vn fb) is the latency, in ms, of the link between V NFa and V NFb.

latSLA is the latency, in ms, specified as SLA in the NSD.

The proposed initial set of criteria can be easily extended without changing the

overall affinity measurement solution. For example, if a network operator wants to con-

sider other criteria not presented in our solution, he/she can provide the necessary infor-

mation in the criteria Section (i.e., criterion’s type, scope and affinity equation) to define

a new criterion. Thus, we allow the affinity measure to be customized according to the

operator’s need.

3.2 Affinity measurement

Our affinity measurement solution combines several equations into one. The affin-

ity measure calculation between two VNFs, presented in Equation 3.11, is a harmonic

mean of the static affinity (Equation 3.13) and dynamic affinity (Equation 3.14). How-

ever, whether or not dynamic affinity is considered in the mean depends on both VNFs

being running. This behavior is represented by p (Equation 3.12). If both VNFs are run-

ning, p will be 1 and the dynamic affinity will be considered in the final result. If any

of the two VNFs is not running, p will be 0 and the result will be the same as the static

affinity. In addition, since two VNFs may be chained in more than one FG, which could

imply on different values for FG criteria such as latency, our affinity measure is calculated

for each FG both VNFs belong to. If the two VNFs are not directly chained in any FG,

the affinity measure will be only calculated once, taking into account solely PM criteria.

Using a harmonic mean to combine bottom-level calculations keeps the final result

value high in case the bottom-level results are high, and decreases the result value as

bottom-level results decrease. Also, by using a harmonic mean to combine affinities

ensures that low measures are not masked by a higher measure, since any low affinity
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value will decrease the final result significantly. However, because of the harmonic mean

behavior, it is crucial that no bottom-level calculation results on zero, since any zeros in

the mean would simply yield a zero result, possibly masking any other higher values in

the mean.

α(vn fa,vn fb) =
1+ p

1
αs

+
p

αd

, ∀ f g ∈ {vn fa∩ vn fb} (3.11)

p =





1 if the two VNFs are running,

0 otherwise.
(3.12)

The static affinity calculation (Equation 3.13) is a harmonic mean of the static PM

affinity and the static FG affinity. The input for this measure is the constant information

from all static criteria, such as resource requirements and historical data. In this way, the

static affinity measure can be used before VNFs deployment, to aid on the embedding

process.

αs =
2

1
αspm

+
1

αs f g

(3.13)

The dynamic affinity calculation (Equation 3.14) is a harmonic mean of the dy-

namic PM affinity and the network affinity. However, whether or not PM and network

affinities are taken into account depends on a couple of parameters: x (Equation 3.15) and

y (Equation 3.16). If both VNFs being evaluated are hosted by the same PM, then x will

be 1, and therefore, PM affinity will be considered in the harmonic mean. Likewise, if

both VNFs are directly chained on the FG being evaluated, according to the NSD, y will

be 1 and network affinity will be considered on the harmonic mean. If those conditions

are not met, then x or y will be zero, disregarding either PM or network affinity from the

equation.

αd =
x+ y

x
αdpm

+
y

αnet

(3.14)

x =





1 if the two VNFs are hosted by the same PM,

0 otherwise.
(3.15)
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y =





1 if the two VNFs are directly chained on the FG,

0 otherwise.
(3.16)

The network affinity (Equation 3.17) is used to adjust the dynamic FG affinity. To

do so, a specific parameter is used to drive the result: traffic affinity. This formula follows

the following behavior: if two VNFs have a high traffic affinity, that is, there is a relatively

large amount of traffic flowing between them, the dynamic FG affinity will have a large

influence on the overall dynamic affinity result; if two VNFs have a low traffic affinity,

the dynamic FG will not have as much influence on the overall dynamic affinity. Thus, as

there is a low amount of traffic flowing through the VNFs, the dynamic FG criteria will

not impact the service provided by the FG.

αnet = 0.5+((αtr f /2)× (αd f g− (1−αd f g))) (3.17)

Figure 3.1 depicts a heat map demonstrating the network affinity behavior. As

the traffic affinity increases, the dynamic FG affinity determines whether the resulting

network affinity will be high or low. For example, considering a fixed value of traffic

affinity measure of 0.9, if the dynamic FG affinity is 0.2, the network affinity will be

0.23, whereas if the dynamic is 0.9, the network affinity will be 0.85. As traffic affinity

decreases, such as 0.2, the dynamic FG affinity has a lower impact on the resulting value

of network affinity, which tends to stay around 0.5.

The traffic affinity measure (Equation 3.18) is a proportion of how much traffic

is passing through the virtual links between the two VNFs being evaluated. Since this

value is only calculated if the VNFs are directly chained, we consider the traffic value

going through a single virtual link as the traffic between the two VNFs. This value is

proportioned relative to the highest single virtual link traffic rate between any two VNFs

in the FG.

αtr f =
tr f(vn fa,vn fb)

hgst_tr f f g
(3.18)

Finally, the static FG and PM affinity, as well as the dynamic FG and PM affinity,

are presented in Equation 3.19. All four affinity measures are calculated in the same way,

a weighted harmonic mean of the affinity measures of each criterion, differing only by the

criteria it takes into account. Each criterion has an associated weight provided as input by

the network operator. If a network operator wants to disregard any criterion, he/she needs
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Figure 3.1: Network affinity values by dynamic FG affinity and traffic affinity.
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0.20 0.42 0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60

0.10 0.46 0.47 0.48 0.49 0.50 0.51 0.52 0.53 0.54 0.55

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
𝛼𝑡𝑟𝑓  

𝛼𝑑𝑓𝑔 

Source: Author

to provide zero as the criterion’s weight.

αx =
∑

nx
i=1 wi

∑
nx
i=1

wi
αCi

, ∀x ∈
{

spm,s f g,dpm,d f g
}

nx, number of criteria of x.

wi ∈ N, weight for criterion i.

αCi, affinity measure for criterion i.

(3.19)
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4 IMPLEMENTATION

In this Chapter, we present AMNESiA, a Proof of Concept (PoC) implementa-

tion of the proposed affinity measurement, demonstrating a scenario in which our affinity

model may be used with an operators’ input. Nevertheless, as aforementioned, our affin-

ity solution may be used without user intervention — coupled with an orchestrator, for

example. We developed the affinity measurement solution as an affinity branch under

App2Net [Santos et al. 2015], aiming to provide existing contexts and network environ-

ments to enhance the application.

App2Net is a platform to enable transferring and configuring Network Applica-

tions (NetApps) in Programmable Virtual Networks (PVNs) that use heterogeneous ex-

ecution environments. A PVN is the denomination given to networks that support vir-

tualization and programmability, such as NFV-enabled networks [Feamster, Rexford and

Zegura 2014]. App2Net has several branches, such as visualization, policy and moni-

toring. Each branch has several associated NetApps. Hence, we developed our affinity

solution as an App2Net branch, with three distinct NetApps, providing us with existing

environment set-up to quickly deploy and install our application on NFV-environments. In

addition, App2Net’s existing system infrastructure already supported authentication and

permission management, allowing us to focus on developing solely the proposed affinity

measurement. Figure 4.1 displays the login page for App2Net.

Figure 4.1: App2Net login page.

Source: Author
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4.1 AMNESiA

As we developed AMNESiA as an App2Net affinity branch, we had to use the

same technologies as App2Net. Being so, we implemented the affinity solution as a Web

application, using Python 2.7.6, the Django Web Framework 1.8.2 to provide back-end

features, such as provisioning of views and database access, and HTML, Javascript and

CSS for front-end capabilities. We also used a PostgreSQL Database 9.1.6 as storage.

The prototype implementation was hosted and executed on a computer with four Intel

Core i7-4217HQ CPUs with 2.30GHz clock speed, 8GB of RAM, and 200GB of storage,

running Linux Mint 17.2 Cinnamon 64-bit.

In view of AMNESiA’s as a affinity measurement solution only, we assume the

data for VNFs, FGs and PMs have already been collected by any App2Net network mon-

itoring solution, having stored such data on App2Net’s database. Figure 4.2 presents

the Entity-Relationship (ER) model that AMNESiA uses to retrieve data from an NFV-

enabled network, as well as store the set of affinity criteria. It is important to point out

that, since AMNESiA is developed in Python, the affinity equation for each criterion is

also a Python function. However, we do not store the entire affinity equation function

in the database, only the function’s name. The body of the affinity function is stored on

a specific Python file, which is imported by the platform as a module when measuring

affinity.

AMNESiA consists of three different NetApps: (i) Affinity Measurement; (ii)

Affinity Report, and (iii) Criteria Manager. Each NetApp of the affinity measurement

prototype is describe below, alongside execution instructions.

4.1.1 Affinity Measurement

The Affinity Measurement NetApp is a simple three-steps wizard to measure affin-

ity between any two selected VNFs. On step one, the user — a network operator in this

case — has to select two VNFs from a table list. We display on that table all the in-

formation stored in the database regarding each VNF: name; CPU, memory and storage

specifications of the VM hosting the VNF; PM on which the VNF is hosted on; CPU,

memory and storage usage percentage the VNF is responsible from the PM; flavor; and a

list of FGs the VNF belong to.

Figure 4.3 presents the AMNESiA screen of the first step from the Affinity Mea-
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Figure 4.2: AMNESiA ER model.
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packet_loss double precision

FK destination_id integer

FK source_id integer

amnesia_forwarding_graph

PK id integer

label character varying(50)

amnesia_physical_machine

PK id integer

label character varying(50)

cpu double precision

memory double precision

storage double precision

amnesia_vnf

PK id integer

label character varying(50)

vm_cpu double precision

vm_memory double precision

vm_storage double precision

cpu_usage double precision

memory_usage double precision

storage_usage double precision

FK flavor_id integer

FK physical_machine_id integer

amnesia_criterion

PK id integer

AK name character varying(50)

type character varying(50)

scope character varying(50)

weight integer

default_weight integer

formula character varying(100)

label character varying(100)

Belongs to

Has

Has

Source: Author

surement NetApp. It is important to point out that we only display minimal information

about flavor, PM and FGS of the VNF, as we assume that flavor, PM and FG management

are responsibilities of other NetApps inside App2Net. It is important to mention that the

affinity measurement only works if exactly two VNFs are selected.

After selecting the VNFs on step one, the user is taken to step two: providing

weights to each criterion. A network operator might give whatever weight he sees fit for

each criterion. However, the weight of a criterion must be an integer larger or equal to

zero. If an user wants to disregard any criterion, he/she has to provide a weight value of

zero to that criterion. Just as VNFs on step one, we display the criteria on a table, coupled

with the following criterion information: type, scope, label, affinity equation name; and

a weight input column. We only display the affinity function name for the criterion, as

that is the only information regarding the function we store on the database. Figure 4.4

presents the AMNESiA screen of the second step from the Affinity Measurement menu

item.

Step three of the Affinity Measurement NetApp is simply a display of the affinity
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Figure 4.3: First step of AMNESiA’s Affinity Measurement NetApp.

Source: Author

Figure 4.4: Second step of AMNESiA’s Affinity Measurement NetApp.

Source: Author

results. In this screen we present the affinity values for the pair of selected VNFs, with

the given criteria weights. As described on Section 3.2, if the selected VNFs share more

than one FG, the affinity measurement is calculated for each FG, since they may have

different flows. In turn, if the VNFs do not share any FG, the affinity measurement is only

calculated regarding PM criteria. Figures 4.5 and 4.6 present the affinity result screen

when VNFs share multiple FGs.
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Figure 4.5: Third step of AMNESiA’s Affinity Measurement NetApp.

Source: Author

Figure 4.6: Third step of AMNESiA’s Affinity Measurement NetApp.

Source: Author

4.1.2 Affinity Report

The Affinity Report NetApp is also a three-step wizard, likewise the Affinity Mea-

surement NetApp. However, instead of selecting a pair of VNFs, the user must select an

FG. This feature’s purpose is to measure the affinity of every two VNFs combination of

an FG, aiming to provide an overview of the overall state of the service’s affinity. We
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do understand this approach would not scale on a real-life NFV environment, with hun-

dreds of VNFs, since finding every combination of pairs has a computational complexity

of O(n2). This issue shall be considered on future work, possibly being addressed using

graph search algorithms, which normally have a polynomial complexity of O(n+m), pro-

portional to number of vertices and edges of the graph. Nonetheless, for the scope of this

prototype, the current binomial combination approach suffices. In addition, this feature

only works if a single FG is selected.

Figure 4.7 display the AMNESiA screen of the first step from the Affinity Report

NetApp. In this screen, we do not present information regarding VNFs. Instead, we

provide usage metrics regarding every flow of each FG, such as latency, bandwidth usage,

packet loss and traffic in every link (either virtual or physical). After selecting an FG, the

user is taken to the same second step as in the Affinity Measurement NetApp, to provide

weights for each criterion.

Figure 4.7: First step of AMNESiA’s Affinity Report NetApp.

Source: Author

After stipulating the weights of the criteria, the user is then brought to the third and

final step of the Affinity Report NetApp: the affinity results. In this screen, we display a

table containing all the two VNFs combination of the selected FG, alongside the affinity

result for that pair. Since in this feature the user already provides an FG to measure

affinity with, we only consider connections between VNFs regarding the selected FG.

Once again, if two VNFs are not directly connected in the FG, then solely the PM criteria

are considered by the measurement. Figure 4.8 displays the affinity results of the Affinity
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Report NetApp.

Figure 4.8: Third step of AMNESiA’s Affinity Report NetApp.

Source: Author

4.1.3 Criteria Manager

Finally, the last NetApp in the AMNESiA branch is the Criteria Manager. This

feature is designed to enable network operators to add or remove criteria as they wish.

With that purpose in mind, we present the user a table containing list of all the criteria in

the application, as shown in Figure 4.9. Every row of the table has a delete action, which

the operator might use to remove the criterion from the system.

To add a new criterion, the user must press the green button with a plus icon, on

the top-right corner of the screen. This button opens up a new view, containing a form

to fill the new criterion’s information, as shown in Figure 4.10. The form’s information

include: criterion’s name (which must be a unique identifier, containing no spaces), label

(name that is actually presented on screen), type and scope, the default weight (value

is initially displayed to the user when providing weights to criteria), and the criterion’s

affinity equation.

The criterion’s affinity equation must be a Python function, receiving as input the

objects of both VNFs being evaluated, the FG object to consider, and the NSD object; and

returning a numerical value between 0.001 and 1. The text area for the affinity equation
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Figure 4.9: AMNESiA’s Criteria Manager NetApp.

Source: Author

Figure 4.10: AMNESiA’s screen to add new criterion.

Source: Author

has an initial value of a function skeleton, providing some guidance for the user to fill the

form. A clear shortcoming of this approach is that, for a network operator to include a new

criterion, internal knowledge of the application’s development is required, not to mention

Python skills. This issue might be addressed by developing a graphical interface to build

equations. However, that type of user interaction is out of the scope of the implementation,

as AMNESiA is a prototype application. Further information on the implementation, such
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as objects description and usage, is provided on Appendix A.

After filling out the criterion inclusion form, and clicking on the button to save,

the system parses the affinity equation, to fetch the function’s name, and then stores the

new criterion in the database. The body of affinity function is appended on the equations

Python file, alongside the other criteria affinity functions. The included criterion can now

be selected among existing criteria when measuring affinity.
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5 CASE STUDIES

To evaluate our affinity model, we analyze a VNF as a Service [Xilouris et al.

2015] (VNFaaS) scenario with multiple tenants sharing the same infrastructure and VNFs.

To facilitate the affinity measurement of VNFs, we rely on features provided by AMNE-

SiA, specially on the Affinity Report. Further, we provide case studies to demonstrate

how our solution helps a network operator to identify three distinct issues: physical ma-

chine resources contention; latency on NFV-enabled networks, and VNFs dependency

issues.

Figure 5.1 illustrates our evaluation scenario, built inside AMNESiA, which con-

tains seven VNFs running over three PMs and three distinct tenants with their respective

FGs. PM 1 hosts three VNFs — a load balancer, a firewall, and an Intrusion Detection

System (IDS); PM 2 hosts three VNFs as well — a Deep Packet Inspection (DPI), another

firewall, and an Intrusion Prevention System (IPS); PM 3 hosts a single VNF — a packet

sniffer. FG 1, contracted by an university, includes a load balancer, two firewalls and an

IDS; FG 2 provides to a bank a DPI, a firewall and an IPS; and FG 3, contracted by an In-

formation Technology (IT) company, consists of a load balancer, two firewalls, a DPI and

a packet sniffer. Figure 5.1 also includes the resource capacities of each PM, described by:

number of CPUs and clock frequency, amount of memory; and I/O operations per second

(IOPS). In addition, Figure 5.1 includes the bandwidth capacity of physical links between

PMs, PMs to the Internet, and PMs to tenants. In AMNESiA, FGs 1, 2 and 3 have been

given the names [university_service], [bank_service] and [it_company_service], respec-

tively.

Table 5.1 shows a snapshot of the current resource usage for each PM: CPU, mem-

ory and IOPS. In addition, Table 5.1 also informs how much of the usage percentage each

VNF hosted on one particular PM is responsible for. For instance, in this scenario, PM

1 has a 80% of CPU usage, from which the load balancer is responsible for 40%. Mean-

while, Table 5.2 presents the usage data relevant for each FG, divided by each flow: traffic,

bandwidth usage, packet loss, and latency. It is important to point out that FG 1 and FG

2 share a physical link, since they both have the same flow from the Internet to the load

balancer. For all case studies, consider an empty conflicts lists and a 30 ms SLA for la-

tency. Also, consider that all VNFs fulfill their resource requirements, resulting on a static

affinity value of 1.
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Figure 5.1: NFV example scenario.

Source: Author

5.1 Case Study #1

Consider the three VNFs running on PM 1. The load balancer receives traffic

from two different FGs; as a result, it consumes 40% of PM 1 CPU capacity. IDS is a

CPU bound network function, being responsible for 35% of the CPU usage. The firewall

only performs rules matching, thus, its consumption is low (10%) in comparison with

the other two VNFs. This CPU usage behavior can lead to resource contention in PM 1,

which incurs in performance degradation. Figure 5.2 presents the resulting affinities of

AMNESiA’s Affinity Report on FG 1, which includes all VNFs hosted in PM 1, given

that all the criteria have the same weight 1.

The provided values show that the IDS and the load balancer have a lower affinity

when compared to the affinities they have with the firewall. The model results in an

affinity close to 0.75 between the firewall and the other two VNFs, and 0.55 for the relation

between the load balancer and IDS. However, it is important to notice that the static

affinity for this calculation was at its maximum value, which increases the total affinity.

If a network operator wants to ignore the static criteria, to produce an affinity result
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Table 5.1: PMs resources usage of example scenario.

PM CPU
Usage

Memory
Usage

Storage
Usage

VNF
VNF’s
CPU

Usage

VNF’s
Memory
Usage

VNF’s
Storage
Usage

Load Balancer 40% 20% 30%

1 85% 65% 60% Firewall A 10% 20% 10%

IDS 35% 25% 20%

DPI 60% 30% 20%

2 90% 60% 45% Firewall B 10% 20% 10%

IPS 20% 10% 15%

3 20% 15% 20% Packet Sniffer 20% 15% 20%

more focused on execution stats, he/she can provide input weights with zero value for the

static criteria. Figure 5.3 produces the affinity results directed to the dynamic behavior in

this scenario. Therefore, all static criteria receive zero as input weights.

The results without the static criteria reduces the overall affinity among all the

VNFs. However, it provides a significant result for identifying the root cause of the prob-

lem. The change in criteria incur in a conceptual shift for the relation between the load

balancer and the IDS. By considering only dynamic criteria, they expose an anti-affinity

behavior, which is not true for the relationships that include the firewall. In this sce-

nario, the network operator, noticing the anti-affinity relation, could move either the load

balancer or the IDS to a separate hardware, with less stress on physical resources.

5.2 Case Study #2

In the second case study we assess how FG dynamic criteria impact the affinity

measure. For this analysis, consider the four VNFs chained on FG 3, in which VNFs are

placed on different PMs. In addition, as we are focusing on FG 3, affinities from other

FG that may apply to any VNF will not be analyzed in this case study. Most VNFs on

FG 3 run on distinct hardware, so the dynamic PM criteria will not interfere in the affinity

measurement. Thus, let us focus on the network behavior exhibited in the FG. All VNFs

in FG 3 have low values for bandwidth usage and packet loss, and there is a high input

traffic in the load balancer. However, as the function distributes traffic among FGs, it



46

Table 5.2: FGs resources usage of example scenario.

FG Flow Traffic Bandwidth
Usage

Packet
Loss

Latency

Internet→ Load Balancer 500 Mbit/s 50% 1% 10 ms

Load Balancer→ FirewallA 200 Mbit/s 25% 1% 1 ms

1 Load Balancer→ FirewallB 200 Mbit/s 37% 1% 5 ms

FirewallA→ IDS 100 Mbit/s 10% 1% 1 ms

FirewallB→ IDS 100 Mbit/s 37% 1% 5 ms

IDS→University 200 Mbit/s 20% 1% 10 ms

Internet→ DPI 200 Mbit/s 20% 1% 10 ms

2 DPI→ FirewallB 200 Mbit/s 22% 1% 35 ms

FirewallB→ IPS 40 Mbit/s 4% 1% 1 ms

IPS→ Bank 40 Mbit/s 4% 1% 10 ms

Internet→ Load Balancer 500 Mbit/s 50% 1% 10 ms

Load Balancer→ FirewallA 50 Mbit/s 25% 1% 1 ms

Load Balancer→ FirewallB 50 Mbit/s 37% 1% 5 ms

3 FirewallA→ DPI 20 Mbit/s 37% 1% 5 ms

FirewallB→ DPI 20 Mbit/s 22% 1% 1 ms

DPI→ Packet Sni f f er 40 Mbit/s 4% 1% 28 ms

Packet Sni f f er→ IT Company 40 Mbit/s 4% 1% 10 ms

causes a decrease in the amount of traffic reaching both firewalls. In the case of latency,

the values are below the 30 ms established in SLA for all VNFs relations, except for the

one between the DPI and the packet sniffer, which is close to the SLA. This high value

indicates that PM 3 is physically distant from PMs 1 and 2.

With these values exposed, a network operator might identify this abnormal la-

tency as a problem. However, taking a closer look, the amount of traffic that is being

transmitted in this flow is low, when compared to the highest value in the FG. Hence,

even though latency is high, it compromises just a bit of the service being provided, re-

ducing its overall impact. Figure 5.4 exposes the affinity measure from our model in this

case.

These values reveal an affinity relationship between any pair of VNFs in the FG.
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Figure 5.2: AMNESiA Affinity Report for FG 1, considering all criteria.

Source: Author

Figure 5.3: AMNESiA Affinity Report for FG 1, considering only dynamic affinity.

Source: Author

This occur because the combination of small traffic and high latency reduces the network

affinity in Equation 3.17. Thus, since the static criteria affinity equals to 1, the total affinity

results in a measure larger than 0.5. In summary, the analysis of theses values can prevent

the operator from misplacing VNFs based only on latency observations.
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Figure 5.4: AMNESiA Affinity Report for FG 3, considering all affinity.

Source: Author

5.3 Case Study #3

Finally, consider the VNFs chained on FG 2. Analyzing the FG criteria, it is

possible to notice a high discrepancy on the latency values. The normal latency value for

links between PM 1 and 2 is 5 ms, but the latency between the DPI and the firewall on

FG 3 is 35 ms, higher than the 30 ms SLA. In addition, evaluating the PM criteria, it is

clear that the DPI is consuming a great portion of the PM resources, stressing the CPU

and memory.

Considering the amount of traffic that gets blocked by the firewall, decreasing

from 2 Mbit/s to 0.4 Mbit/s, it is safe to assume that it was mistakenly chained after the

DPI on FG 2, causing the identified issues. To confirm this insight, we apply our affinity

measure model considering a higher weight for the suspect resources, CPU usage and

latency. Figure 5.5 presents the resultant affinities for the VNFs on FG 2.

The resulting affinities show an anti-affinity relation between the DPI and the fire-

wall, due to the high latency in the flow and the high CPU usage of the DPI. The DPI

and the IPS also present a low affinity, since the IPS is a CPU-bound VNF and the DPI

is consuming 60% of PM 2 CPU. Notice that the DPI and the firewall belong to both FG

2 and FG 3. For such case, we measure the affinity for each FG that the VNFs are part

of. For instance, FG 2 and FG 3 have distinct values of latency, which further implies

that the DPI is mistakenly chained before the firewall on FG 2. Figure 5.6 presents the
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Figure 5.5: AMNESiA Affinity Report for FG 2, with given input weights.

Source: Author

affinity measure for the DPI and the firewall B for both FG 2 and FG 3, considering the

same weights as in Figure 5.5. The resulting affinity for FG 2 is low due to PM resource

contention, but since the FG criteria are normalized for FG 3, the measure is much higher.

Figure 5.6: AMNESiA affinity results for Firewall B and DPI, with given input weights.

Source: Author

To solve the stated issues, and the results provided by the affinity model, an oper-

ator can change the dependencies in FG 2, so that the DPI is chained after the firewall. In

this way, the traffic load processed by the DPI decreases, as the firewall blocks packets.
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By changing the dependencies in FG 3, the DPI and firewall will have the same flow as in

FG 2, in which the affinity measure is higher.
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6 CONCLUSION AND FUTURE WORK

In this document, we introduced a measure to estimate affinity between pairs of

VNFs, based on a weighted set of criteria. This measure helps network operators identify

issues on NFV-enabled networks. In addition, this measure can be used to aid NFV or-

chestrators — and network operators — on VNFs placement and migration. In summary,

we (i) provided an affinity relationship definition, (ii) defined an extendable set of affinity

criteria, (iii) described a mathematical model to measure the affinity between any pair

of VNFs; and (iv) presented AMNESiA, a PoC implementation of the proposed affinity

model.

AMNESiA was developed in Python, using the Django Web Framework, and in-

corporated as an affinity branch inside App2Net [Santos et al. 2015]. AMNESiA serves

the purpose of demonstrating that the implementation of the proposed affinity model is

feasible, helping us identify several issues on the experimental scenario. In addition, be-

cause of the complexity of the proposed affinity measurement, with many distinct equa-

tions, AMNESiA helped us evaluate the affinity measurement on the experimental sce-

nario much easier and efficiently than evaluating those equations manually.

We analyzed our affinity measure, relying on AMNESiA, over an NFVaaS sce-

nario, with multiple tenants sharing infrastructure and VNFs. We provided three distinct

case studies, demonstrating how our affinity measure helps the network operator identify

different issues on the network. In case study #1, we use our affinity model to expose

PM resource contention, derived from two resource consuming VNFs on the same PM.

In case study #2, we analyze latency among VNFs, and how our affinity measure might

prevent network operators from misplacing VNFs simply on latency observations. Fi-

nally, in case study #3, we use our affinity model to highlight dependency issues on the

network, in which a DPI is mistakenly placed before a firewall, causing high latency and

CPU consumption. All these case studies reveal that the proposed affinity measure pro-

vides insight on NFV-enabled network issues. In addition, instead of having to analyze

dozens of different metrics, our model combine all those metrics into a single value that

expresses how well two VNFs run together, simplifying management and scalability.

Developing the proposed affinity model was an insightful experience. Taking a

grasp of the problem we intended to solve required extensive research, on both the NFV

and affinity concepts, as these topics are not covered in undergraduation courses. More-

over, making this affinity measurement solution both well-rounded and flexible at the
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same time was very challenging, since the requirements for affinity may vary on a case to

case basis. Nevertheless, using mathematical concepts learned throughout the undergrad-

uation course, we were able to combine several criteria to provide an extensible solution

that fits distinct scenarios. Still, the carried-out research allowed us to have insights on

many different real-world scenarios and related issues, which are imperative to achieve

innovative technologies such as 5G, that relies heavily on NFV.

As future work, we intend to add different criteria, to improve the affinity mea-

sure, such as considering the function being provided by each VNF (e.g., which rules

are running on a firewall, and what kind of inspection is being provided by an IPS). An-

other foreseeable improvement to the affinity measure is to extend it to consider more

than one pair of VNFs, possibly relying on set theory concepts. In addition, we plan to

store every affinity measurement made on AMNESiA, aiming to provide historical data

for each pair of VNFs, and use it as input to retroactively improve the affinity measures.

Moreover, AMNESiA’s Affinity Report feature might be extended to include such his-

torical data on VNFs, as well as improved to achieve a computational complexity fit for

real-world scenarios. Finally, we aim to integrate AMNESiA with VISION [Franco et al.

2016], incorporating the affinity measurements on a forwarding graphs visualizations to

aid network operators on having insights about the network.
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APPENDIX A — AMNESIA REFERENCE

In this Appendix, we present AMNESiA implementation details, providing model

references for all objects in the system. Relying on this reference, any user with Python

skills would be able to include a new criterion in the system, properly using the affinity

formula function input variables.

All object classes in AMNESiA are Django models, which are responsible for

creating and managing related database tables and entries, in addition to memory ob-

jects. To facilitate and standardize model definitions, we first create a base model, named

BaseModel, which all other models extend. Hence, before presenting any other AM-

NESiA models, we introduce below the class definition of the Base model.

from django.db import models

class BaseModel(models.Model):

class Meta:

abstract = True

app_label = 'amnesia'

Having defined the Base model, we now able to extend it to create other model

classes. Below, we present classes for the VNF model, the PhysicalMachine model,

the Flavormodel, the ForwardingGraph and Flowmodels, the Descriptor and

Conflicts models, and the Criterion model.

A.1 VNF

The VNF model contains the most information, as it is a main point of reference

of the system. All the properties included in this model can be used on when providing

an affinity formula function.

from base import *

from flavor import *

from physical_machine import *

from forwarding_graph import *
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class VNF(BaseModel):

label = models.CharField(max_length=50)

vm_cpu = models.FloatField()

vm_memory = models.FloatField()

vm_storage = models.FloatField()

cpu_usage = models.FloatField()

memory_usage = models.FloatField()

storage_usage = models.FloatField()

flavor = models.ForeignKey(Flavor)

physical_machine = models.ForeignKey(PhysicalMachine)

forwarding_graphs = models.ManyToManyField(ForwardingGraph)

def __unicode__(self):

return self.label

A.2 Flavor

The Flavor model contains the requirement specification of each VNF that has

that flavor. As mentioned before, management and registration of flavors are out of the

scope of AMNESiA. Nonetheless, this information may be used during affinity measure-

ment.

from base import *

class Flavor(BaseModel):

label = models.CharField(max_length=50)

minimum_cpu = models.FloatField()

minimum_memory = models.FloatField()

minimum_storage = models.FloatField()

def __unicode__(self):

return self.label
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A.3 Physical Machine

The PhysicalMachine model holds information of the hardware hosting VNF.

One PhysicalMachine may be connected to many VNFs.

from base import *

class PhysicalMachine(BaseModel):

label = models.CharField(max_length=50)

cpu = models.FloatField()

memory = models.FloatField()

storage = models.FloatField()

class Meta():

db_table = 'amnesia_physical_machine'

def __unicode__(self):

return self.label

A.4 Forwarding Graph and Flow

The ForwardingGraph and Flow models contains information regarding ser-

vices provided by chained VNFs. Each ForwardingGraph has one or many Flow

related objects. In turn, each Flow has two related VNFs, a source and a destination of

the flow. In addition, the Flow model holds all information of links, physical or virtual,

connecting the source and destination VNFs.

from base import *

class Flow(BaseModel):

source = models.ForeignKey(

"VNF",

related_name="source_vnf"

)

destination = models.ForeignKey(
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"VNF",

related_name="destination_vnf"

)

latency = models.FloatField()

traffic = models.FloatField()

bandwidth_usage = models.FloatField()

packet_loss = models.FloatField()

def __unicode__(self):

return self.src.label + " -> " + self.dst.label

class ForwardingGraph(BaseModel):

label = models.CharField(max_length=50)

flows = models.ManyToManyField(Flow)

class Meta:

db_table = "amnesia_forwarding_graph"

def __unicode__(self):

return self.label

A.5 Descriptor and Conflict

The Descriptor model was built to represent any possible descriptor (e.g.,

NSD, VNFD, VNFFGD, etc.) on an NFV scenario. However, for the scope of AM-

NESiA, we only populated the model with the necessary information to measure affinity

for the presented criteria. To enhance the application, a logical first step would be to

include in the Descriptor model all the fields of the descriptors described in [ISG

2014]. In addition, we added to the Descriptor model a list known conflicts of VNFs,

representing all VNFs that should not be directly linked on the same FG.

from base import *

from conflict import *
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class Descriptor(BaseModel):

label = models.CharField(max_length=50)

sla = models.FloatField()

conflicts = models.ManyToManyField(Conflict)

def __unicode__(self):

return self.label

A.6 Criterion

Finally, the Criterion model holds all the information provided when includ-

ing a new criterion in AMNESiA. In addition, this model includes the weight property,

in which the last used weight to measure affinity is stored into.

from base import *

class Criterion(BaseModel):

CRITERIA_TYPES = (

('static', 'Static'),

('dynamic', 'Dynamic'),

)

CRITERIA_SCOPE = (

('PM', 'Physical Machine'),

('FG', 'Forwarding Graph'),

)

name = models.CharField(max_length=50, unique=True)

label = models.CharField(max_length=100, default="Criterion")

type = models.CharField(max_length=50, choices=CRITERIA_TYPES)

scope = models.CharField(max_length=50, choices=CRITERIA_SCOPE)

weight = models.IntegerField(default=0)

default_weight = models.IntegerField(default=1)

formula = models.CharField(max_length=100,default="")

def __unicode__(self):

return self.name
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Abstract—Network Functions Virtualization (NFV) offers sev-
eral benefits for Service Providers (SPs), such as mitigating equip-
ment cost and increasing business agility. In NFV-enabled net-
works, inadequate placement of Virtualized Network Functions
(VNFs) creates bottlenecks, impacting negatively on performance.
Therefore, network operators must establish affinity and anti-
affinity rules to avoid network and processing bottlenecks, and
thus comply with Service Level Agreement (SLA) requirements
of tenants. Affinity and anti-affinity rules in NFV must be
broad and carefully elaborated to maintain service performance.
Network operators must consider further than simply resource
allocation when identifying affinity among VNFs. The criteria for
VNFs affinity varies for different forwarding graphs. Geolocation,
latency, packet loss, and bandwidth usage are some examples of
criteria that can be considered as indicators of bottlenecks in
high traffic networks. In this paper, we propose a solution to
measure affinity between pairs of VNFs, based on a weighted set
of affinity criteria considered relevant by a network operator. To
evaluate the feasibility of our affinity model, we analyze three
case studies over an experimental NFV scenario. We conclude
that our affinity model can help network operators identify the
cause of issues in NFV-enabled networks, as well as it may be used
by NFV orchestrators to aid on VNFs migration and embedding.

I. INTRODUCTION

Network Functions Virtualization (NFV) offers several ben-
efits for Service Providers (SPs), such as mitigating equipment
cost and increasing business agility [1]. NFV migrates network
functions from dedicated hardware to software running on
general-purpose servers, often referred to as Virtualized Net-
work Functions (VNFs). Virtual Machines (VMs) are used to
host VNFs, which can then be created, migrated, and destroyed
on-the-fly. In the end of the day, VNFs provide flexibility and
scalability, avoiding ossification and introducing innovation in
the network core [2].

In NFV-enabled networks, inadequate placement of VNFs
creates bottlenecks, impacting negatively on performance [3].
Network operators establish affinity and anti-affinity rules to
avoid network and processing bottlenecks [4], and thus comply
with Service Level Agreement (SLA) requirements of tenants.
These rules help operators improve service execution and
minimize resources waste [5]. Moreover, affinity and anti-
affinity rules can be based on several different aspects, such
as VNFs minimum resource requirements, latency, number of
processed packets, or even network operators needs for the
service [6]. Although affinity is a critical issue, to the best
of our knowledge, efforts to determine affinity among VNFs

have been scarce [7] [8]. Besides, these efforts focus solely on
resource allocation, disregarding the service being provided.

Affinity and anti-affinity rules in NFV must be broad and
carefully elaborated to maintain service performance. VNFs
are chained in a Forwarding Graph (FG) to provide a service
(i.e., service chaining), increasing substantially management
complexity. Network operators must consider further than
simply resource allocation when identifying affinity among
VNFs. The criteria for VNFs affinity varies widely for different
forwarding graphs. For instance, geolocation can be taken into
account to minimize latency and propagation delay among
chained VNFs located far from each other, while packet loss
and bandwidth usage can be considered as an indicator of
bottlenecks in high traffic networks. All this backs up the
argument that network operators must be able to select what
criteria are relevant when establishing VNFs affinities.

In this paper, we introduce an extendable solution to mea-
sure affinity between pairs of VNFs, given a weighted set
of affinity criteria considered relevant by a network operator.
First, we provide a definition of affinity between a pair
of VNFs, to specify the semantics of our affinity measure.
Second, we specify an extendable set of affinity criteria for an
NFV-enabled network, which an operator may provide weights
to, according to the relevance of each criterion. Third, we
propose a mathematical solution to measure affinity between
two VNFs, based on the criteria and weights provided by
the operator. Thus, our solution can help network operators
identify the root cause of problems in NFV-enabled networks
by analyzing affinity measures between VNFs. In addition,
an affinity measure supports the creation of more concise
and improved affinity rules, avoiding performance degradation
of services. Finally, affinity measures may be used by NFV
orchestrators — in addition to network operators — to aid on
VNFs migration and embedding.

The remaining of this paper is organized as follows. In
Section II, we present the related work regarding affinity in
NFV and network virtualization. In Section III, we define a
set of admissible affinity criteria and introduce our solution for
affinity measure. In Section IV, we evaluate our solution by
analyzing experimental scenarios. In Section V, we conclude
this paper and present future work.



II. RELATED WORK

Affinity and anti-affinity have been discussed in the context
of Cloud-based environments. However, most of current affin-
ity solutions disregard the nature of functions being executed
by each VM, focusing primarily on resource allocation. Most
commonly, solutions propose affinity relations based on CPU
[5], bandwidth [8], or even memory page sharing [9]. Next, we
discuss the relevant affinity related solutions for both Cloud
and NFV environments.

Chen et al. [7] proposed a method to identify affinity
relations based on resource demands and dependency among
VMs, alongside an algorithm to group these affine VMs. By
grouping affine VMs as a unit, they aim to co-locate them on
the same physical machine to improve system performance.
Despite their solution showing positive results for multi-VM
applications, the authors only consider communication patterns
to identify affinity, disregarding other criteria relevant in the
NFV context, such as latency and FGs.

Yoshida et al. [10] propose a Multi-objective Resource
Scheduling Algorithm (MORSA) for NFV. They use genetic
algorithms to obtain the best possible placement over multiple
data centers for VNFs, considering a dynamic set of criteria.
These criteria are determined by several plugins inserted in
their solutions. They present plugins for common issues in the
NFV context, such as minimizing physical machine load, intra-
datacenter traffic and protocol requirements for linked VNFs.
Although their solution takes into account many affinity related
matters intrinsic to NFV environments, it does not present any
kind of affinity metric. In addition, that paper also disregards
the services being provided by each VNF.

Franco et al. [11] present VISION, a visualization platform
with multiple interactive and selective techniques for NFV-
enabled networks. Network operators may take advantage of
VISION to identify problems on the network that impact on
the VNFs performances. Also, their solution provide unique
perspectives on NFV-enabled networks that assist in recogniz-
ing behavioral patterns, allowing a better service for tenants.
Although this study allows network operators to identify
affinity and anti-affinity relations through visualizations, they
do not propose a distinct visualization technique to achieve
this objective. Thus, the result from the model we propose can
improve their visualizations to identify performance issues.

Yousaf and T. Taleb [12] propose fine-grained resource-
aware VM management solution for NFV-enabled networks,
based on a reference resource affinity score (RRAS). The
authors consider affinity as a correlation between different
entities, which for their specific case is the correlation between
different Resource Units (RUs) of a VM running a VNF,
such as processing, memory, I/O module and storage. Their
affinity calculation results on a vector quantity representing
the impact of one reference RU (e.g., memory) on other RUs
(e.g., processing, storage, and I/O module). This affinity score
is calculated for each VM, from time to time, and stored
for further analysis. This data can then be used to trace
behavior patterns for each VNF, which can be used by the NFV

Management and Orchestration (MANO) [12] for short-term
and long-term decision making regarding VM deployment
and migration, for instance. Although the authors provide an
affinity calculation for NFV environments, their solution only
provides affinity values for RUs of a single VM, requiring
extra work to determine patterns among VMs.

Even though affinity and affinity-related issues have been
discussed by several authors, their approaches have focused
mainly on computational resources awareness. Consequently,
these solutions fall short for NFV-enabled networks, which re-
quires further considerations when defining affinity. In addition
to computational resources, requirements such as geolocation,
FGs, and service performance, must be taken into account.
Furthermore, most current solutions lack in dynamicity, since
they do not consider any interaction with operators. In the
following section, we present our affinity measure solution,
which tackles these issues.

III. SOLUTION

In this section, we present our solution to measure the
affinity between a pair of VNFs. To measure that, we must
primarily establish the semantics of an affinity relationship.
The concept of affinity refers to the correlation of different
entities, representing their ability, or inability, to perform when
combined in a certain way. The proposed solution considers
affinity as an indicative of how well two VNFs operate,
either when placed on the same Physical Machine (PM), or
when chained on the same FG. Bearing this concept in mind,
our solution provides a numerical value that represents the
affinity between a pair of VNFs, for each FG both VNFs
are chained. This affinity value can be used to help either
a network operator to rearrange the VNFs, or an orchestrator
better resolve VNF placement problems.

The proposed solution receives as input a list of weights
for each affinity criterion (see subsection III-A) and a pair of
VNFs, returning a normalized value between 0 and 1, which
represents the affinity value based on the input criteria. The
input criteria are chosen by a network operator among a set
of pre-established criteria. Additionally, one can extend this
initial set to include other criteria not considered yet.

We define two sets of admissible criteria: static and dy-
namic. The former refers to data that can be collected without
the need of VNF deployment (e.g., CPU requirements, and
VNFs conflicts). The latter relates to information of running
VNFs (e.g., memory usage, and latency). Dynamic VNF data
can be collected using a monitoring solution for NFV-enabled
networks, such as the one proposed by DReAM [13]. It is
important to distinct these two types of criterion, due to the
nature of the criteria in each set. Static criteria can be used
to measure affinity regardless whether the target VNFs are
running or not, whereas dynamic criteria can only be used
when VNFs are running. The complete set of pre-established
criteria is presented below.



Type Scope Criterion Description

Static

PM

Minimum CPU

The minimum CPU requirement, in MHz, is declared on the NSD and should be used when instantiating
VNFs for a network service. Notice that if a VNF is instantiated disregarding these requirements, then it
could have a negative impact on the service due to lack of resources. If these requirements are not met for
the VNF being evaluated, these VNFs would have a lower affinity.

Minimum memory
The minimum memory requirement, in MB, is also declared on the NSD and should be used when instantiating
VNFs for a network service. If these requirements are not met for the VNF being evaluated, these VNFs
would have a lower affinity.

Minimum storage
The minimum storage requirement, in IOPS, is declared on the NSD and should be used when instantiating
VNFs for a network service. If these requirements are not met for the VNF being evaluated, these VNFs
would have a lower affinity.

FG NFV conflicts
Check if the two VNFs are placed correctly according to a list of known VNF conflicts. VNFs with known
conflicts should not be chained on the same FG, or placed on the same PM. This criterion’s calculation will
return 1 if the conflicts are respected and 0.001 if not.

Dynamic

PM

CPU usage

CPU usage is an important metric to monitor the stress on PMs, specially because communication between
VNFs hosted by the same PM is made through memory sharing, which causes great stress to CPU. If two
VNFs were responsible for a large percentage of the PM CPU usage, then these VNFs would have a low
affinity.

Memory usage Just as CPU usage, indicates stress levels on PMs. If two VNFs were responsible for a large percentage of
the PM memory usage, then these VNFs would have a low affinity.

Storage usage This criterion is also an indicator of stress levels on PMs. A higher percentage of storage usage of two VNFs
would impact negatively on these VNFs affinity.

FG

Bandwidth usage
Bandwidth usage is an indicator of how much two VNFs are stressing the links connecting them. If these
VNFs were responsible for a large percentage of bandwidth consumption, then they would have a lower
affinity.

Packet loss Packet loss, just as latency and bandwidth usage, is an indicator of issues in the network. A higher packet
loss percentage between two VNFs would cause these VNFs to have a lower affinity.

Latency

Latency is an indicator of several issues in the network, including large distances between VNFs and
bottlenecks in the service. How much latency — and all the other FG graph criteria above — influence the
service performance, and therefore affinity, depends on the amount of traffic between the VNFs. If latency
is very high and traffic is also high between two VNFs, then these VNFs would have a very low affinity.
If latency is very low and traffic is high, then these two VNFs would have a very high affinity. However,
if traffic is low between two VNFs, latency, either high or low, would not influence the service much, and
therefore, the VNFs would have a somewhat medium affinity.

Table I: Set of criteria.

A. Criteria

In our affinity model, each dynamic and static criterion is
labeled regarding their scope: PM or FG. All static criteria
are used when calculating affinity, according to the operator’s
input weights, no matter the scope of the selected criteria.
However, dynamic criteria usage depends, in addition to the
operator’s input, on their scope. If two VNFs are running on
the same PM, then the dynamic PM criteria will be considered
on the result. If two VNFs are chained on the same FG, then
the dynamic FG will be considered on the result. It is important
to point out that a VNF may fit in both scopes presented, and
therefore, all dynamic criteria will be used.

Table I presents a brief description, type, and scope of
all admissible criteria. Table II shows the affinity calculation
equation for each criterion. All affinity measures in Table II
follow the same principle: if two VNFs are performing well
together, and respect all resource requirements, the resulting
affinity will be closer to 1; further, if there is any performance
or resource allocation problem related to those two VNFs, the
resulting affinity measure will be closer to 0.001. Hence, the
affinity of each criterion must be a normalized value between
0.001 and 1 for the overall affinity calculation to work.

The proposed initial set of criteria can be easily extended
without changing the overall affinity measurement solution.
For example, if a network operator wants to consider other
criteria not presented in our solution, he/she can provide the
necessary information in the criteria tables (i.e., criterion’s
type, scope and affinity equation) to define a new criterion.
Thus, we allow the affinity measure to be customized accord-
ing to the operator’s need.

B. Affinity measurement
Our affinity measure solution combines several equations

into one. The affinity measure calculation between two VNFs,
presented in Equation 1, is a harmonic mean of the static
affinity (Equation 3) and dynamic affinity (Equation 4). How-
ever, whether or not dynamic affinity is considered in the
mean depends on both VNFs being running. This behavior
is represented by p (Equation 2). If both VNFs are running,
p will be 1 and the dynamic affinity will be considered in the
final result. If any of the two VNFs is not running, p will
be 0 and the result will be the same as the static affinity. In
addition, since two VNFs may be chained in more than one
FG, which could imply on different values for FG criteria such
as latency, our affinity measure is calculated for each FG both



Criterion Formula

Minimum CPU α =





1 if (cpuvnfa >= cpuNSD) ∧ (cpuvnfb >= cpuNSD),

(1 +max(0.001,
cpuvnfb /cpuNSD ))× 0.5 if (cpuvnfa >= cpuNSD) ∧ (cpuvnfb < cpuNSD),

(max(0.001,cpuvnfa /cpuNSD ) + 1)× 0.5 if (cpuvnfa < cpuNSD) ∧ (cpuvnfb >= cpuNSD),

(max(0.001,cpuvnfa /cpuNSD ) +max(0.001,
cpuvnfb /cpuNSD ))× 0.5 otherwise.

Minimum memory α =





1 if (memvnfa >= memNSD) ∧ (memvnfb >= memNSD),

(1 +max(0.001,
memvnfb /memNSD ))× 0.5 if (memvnfa >= memNSD) ∧ (memvnfb < memNSD),

(max(0.001,memvnfa /memNSD ) + 1)× 0.5 if (memvnfa < memNSD) ∧ (memvnfb >= memNSD),

(max(0.001,memvnfa /memNSD ) +max(0.001,
memvnfb /memNSD ))× 0.5 otherwise.

Minimum storage α =





1 if (stovnfa >= stoNSD) ∧ (stovnfb >= stoNSD),

(1 +max(0.001,
stovnfb /stoNSD ))× 0.5 if (stovnfa >= stoNSD) ∧ (stovnfb < stoNSD),

(max(0.001,stovnfa /stoNSD ) + 1)× 0.5 if (stovnfa < stoNSD) ∧ (stovnfb >= stoNSD),

(max(0.001,stovnfa /stoNSD ) +max(0.001,
stovnfb /stoNSD )× 0.5 otherwise.

NFV conflicts α =





1 if the two VNFs respect conflicts,

0.001 otherwise.

CPU usage α = max(0.001, 1− (
%cpuvnfa+%cpuvnfb /100))

Memory usage α = max(0.001, 1− (
%memvnfa+%memvnfb /100))

Storage usage α = max(0.001, 1− (
%stovnfa+%stovnfb /100))

Bandwidth usage α = max(0.001, 1− (
%bnd(vnfa,vnfb)/100))

Packet loss α = max(0.001, 1− (
%pkt loss(vnfa,vnfb)/100))

Latency α =





1 if 2× lat(vnfa,vnfb)
<= latSLA,

max(0.001, 1−
2× lat(vnfa,vnfb)

− latSLA

latSLA
) otherwise.

Table II: Criteria formulas.

VNFs belong to. If the two VNFs are not directly chained
in any FG, the affinity measure will be only calculated once,
taking into account solely PM criteria.

Using a harmonic mean to combine bottom-level calcula-
tions keeps the final result value high in case the bottom-level
results are high, and decreases the result value as bottom-level
results decrease. Also, by using a harmonic mean to combine
affinities ensures that low measures are not masked by a higher
measure, since any low affinity value will decrease the final
result significantly. However, because of the harmonic mean
behavior, it is crucial that no bottom-level calculation results
on zero, since any zeros in the mean would simply result on
a zero result, possibly masking any other higher values in the
mean.

α(vnfa,vnfb) =
1 + p
1

αs
+

p

αd

, ∀fg ∈ {vnfa ∩ vnfb} (1)

p =





1 if the two VNFs are running,

0 otherwise.
(2)

The static affinity calculation (Equation 3) is a harmonic
mean of the static PM affinity and the static FG affinity. The
input for this measure is the constant information from all
static criteria, such as resource requirements and historical
data. In this way, the static affinity measure can be used before
VNFs deployment, to aid on the embedding process.



αs =
2

1

αspm
+

1

αsfg

(3)

The dynamic affinity calculation (Equation 4) is a harmonic
mean of the dynamic PM affinity and the network affinity.
However, whether or not PM and network affinities are taken
into account depends on a couple of parameters: x (Equation 5)
and y (Equation 6). If both VNFs being evaluated are hosted by
the same PM, then x will be 1, and therefore, PM affinity will
be considered in the harmonic mean. Likewise, if both VNFs
are directly chained on the FG being evaluated, according to
the NSD, y will be 1 and network affinity will be considered
on the harmonic mean. If those conditions are not met, then x
or y will be zero, disregarding either PM or network affinity
from the equation.

αd =
x+ y

x

αdpm
+

y

αnet

(4)

x =





1 if the two VNFs are hosted by the same PM,

0 otherwise.
(5)

y =





1 if the two VNFs are directly chained on the FG,

0 otherwise.
(6)

The network affinity (Equation 7) is used to adjust the
dynamic FG affinity. To do so, a specific parameter is used
to drive the result: traffic affinity. This formula follows the
following behavior: if two VNFs have a high traffic affinity,
that is, there is a relatively large amount of traffic flowing
between them, the dynamic FG affinity will have a large
influence on the overall dynamic affinity result; if two VNFs
have a low traffic affinity, the dynamic FG will not have as
much influence on the overall dynamic affinity. Thus, as there
is a low amount of traffic flowing through the VNFs, the
dynamic FG criteria will not impact the service provided by
the FG.

αnet = 0.5 + ((αtrf /2)× (αdfg
− (1− αdfg

))) (7)

Figure 1 depicts a heat map demonstrating the network
affinity behavior. As the traffic affinity increases, the dynamic
FG affinity determines whether the resulting network affinity
will be high or low. For example, considering a fixed value
of traffic affinity measure of 0.9, if the dynamic FG affinity is
0.2, the network affinity will be 0.23, whereas if the dynamic
is 0.9, the network affinity will be 0.85. On the contrary, as
traffic affinity decreases, such as 0.2, the dynamic FG affinity
has a lower impact on the resulting value of network affinity,
which tends to stay around 0.5.

The traffic affinity measure (Equation 8) is a proportion
of how much traffic is passing through the virtual links
between the two VNFs being evaluated. Since this value is

only calculated if the VNFs are directly chained, we consider
the traffic value going through a single virtual link as the traffic
between the two VNFs. This value is proportioned relative to
the highest single virtual link traffic rate between any two
VNFs in the FG.
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0.40 0.34 0.38 0.42 0.46 0.50 0.54 0.58 0.62 0.66 0.70

0.30 0.38 0.41 0.44 0.47 0.50 0.53 0.56 0.59 0.62 0.65

0.20 0.42 0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60

0.10 0.46 0.47 0.48 0.49 0.50 0.51 0.52 0.53 0.54 0.55

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
𝛼𝑡𝑟𝑓 

𝛼𝑓𝑔 

Figure 1: Network affinity values by dynamic FG affinity
and traffic affinity.

αtrf =
trf(vnfa,vnfb)

hgst trffg
(8)

Finally, the static FG and PM affinity, as well as the dynamic
FG and PM affinity, are presented in Equation 9. All four
affinity measures are calculated in the same way, a weighted
harmonic mean of the affinity measures of each criterion,
differing only by the criteria it takes into account. Each
criterion has an associated weight provided as input by the
network operator. If a network operator wants to disregard any
criterion, he needs to provide zero as the criterion’s weight.

αx =

∑nx

i=1 wi∑nx

i=1
wi

αCi

, ∀x ∈ {spm, sfg, dpm, dfg}

nx, number of criteria of x.
wi ∈ N, weight for criterion i.
αCi, affinity measure for criterion i.

(9)

IV. CASE STUDIES

To evaluate our affinity model, we analyze a VNF as a
Service [14] (VNFaaS) scenario with multiple tenants sharing
the same infrastructure and VNFs. We provide case studies
to demonstrate how our solution helps a network operator
to identify three distinct issues: physical machine resources
contention; latency on NFV-enabled networks, and VNFs
dependency issues.

Figure 2 illustrates our evaluation scenario, which contains
seven VNFs running over three PMs and three distinct tenants
with their respective FGs. PM 1 hosts three VNFs — a load
balancer, a firewall, and an Intrusion Detection System (IDS);
PM 2 hosts three VNFs as well — a Deep Packet Inspection
(DPI), another firewall, and an Intrusion Prevention System



(IPS); PM 3 hosts a single VNF — a packet sniffer. FG 1,
contracted by an university, includes a load balancer, two
firewalls and an IDS; FG 2 provides to a bank a DPI, a
firewall and an IPS; and FG 3, contracted by an Information
Technology (IT) company, consists of a load balancer, two
firewalls, a DPI and a packet sniffer. Figure 2 also includes
the resource capacities of each PM, described by: number
of CPUs and clock frequency, amount of memory; and I/O
operations per second (IOPS). In addition, Figure 2 includes
the bandwidth capacity of physical links between PMs, PMs
to the Internet, and PMs to tenants.

Figure 2: NFV example scenario.

Table III shows a snapshot of the current resource usage for
each PM: CPU, memory and IOPS. In addition, Table III also
informs how much of the usage percentage each VNF hosted
on one particular PM is responsible for. For instance, in this
scenario, PM 1 has a 85% of CPU Usage, from which the
load balancer is responsible for 40%. Meanwhile, Table IV
presents the usage data relevant for each FG, divided by each
flow: traffic, bandwidth usage, packet loss, and latency. It is
important to point out that FG 1 and FG 2 share a physical
link, since they both have the same flow from the Internet
to the load balancer. For all case studies, consider an empty
conflicts lists and a 30 ms SLA for latency. Also, consider
that all VNFs fulfill their resource requirements, resulting on
a static affinity value of 1.

A. Case Study #1

Consider the three VNFs running on PM 1. The load
balancer receives traffic from two different FGs; as a result,
it consumes 40% of PM 1 CPU capacity. IDS is a CPU
bound network function, being responsible for 35% of the
CPU usage. The firewall only performs rules matching, thus,
its consumption is low (10%) in comparison with the other
two VNFs. This CPU usage behavior can lead to resource
contention in PM 1, which incurs in performance degradation.

Equation 10 presents the resulting affinities, given that all the
criteria have the same weight 1.

∀ αCi, wi = 1

α(LoadBalancer, F irewallA) = 0.755

α(FirewallA, IDS) = 0.743

α(LoadBalancer, IDS) = 0.554

(10)

The provided values show that the IDS and the load balancer
have a lower affinity when compared to the affinities they have
with the firewall. The model results in an affinity close to 0.75
between the firewall and the other two VNFs, and 0.55 for the
relation between the load balancer and IDS. However, it is
important to notice that the static affinity for this calculation
was at its maximum value, which increases the total affinity.

If a network operator wants to ignore the static criteria, to
produce an affinity result more focused on execution stats,
he/she can provide input weights with zero value for the static
criteria. Equation 11 produces the affinity results directed for
the dynamic behavior in this scenario. Therefore, all static
criteria receives zero as input weight.

∀ αCi ∈ {spm, sfg}, wi = 0

∀ αCi ∈ {dpm, dfg}, wi = 1

α(LoadBalancer, F irewallA) = 0.609

α(FirewallA, IDS) = 0.592

α(LoadBalancer, IDS) = 0.383

(11)

The results without the static criteria reduces the overall
affinity among all the VNFs. However, it provides a significant
result for identifying the root cause of the problem. The
change in criteria incur in a conceptual shift for the relation
between the load balancer and the IDS. By considering only
dynamic criteria, they expose an anti-affinity behavior, which
is not true for the relationships that include the firewall. In
this scenario, the network operator, noticing the anti-affinity
relation, could move either the load balancer or the IDS to a
separate hardware, with less stress on physical resources.

B. Case Study #2

In the second case study we assess how FG dynamic criteria
impact the affinity measure. For this analysis, consider the four
VNFs chained on FG 3, in which VNFs are placed on different
PMs. In addition, as we are focusing on FG 3, affinities from
other FG that may apply to any VNF will not be analyzed in
this case study. Most VNFs on FG 3 run on distinct hardware,
so the dynamic PM criteria will not interfere in the affinity
measurement. Thus, let us focus on the network behavior
exhibited in the FG. All VNFs in FG 3 have low values for
bandwidth usage and packet loss, and there is a high input
traffic in the load balancer. However, as the function distributes
traffic among FGs, it causes a decrease in the amount of traffic
reaching both firewalls. In the case of latency, the values are
below the 30 ms established in SLA for all VNFs relations,
except for the one between the DPI and the packet sniffer,



PM CPU Usage Memory Usage Storage Usage VNF VNF’s CPU Usage VNF’s Memory Usage VNF’s Storage Usage

1 85% 65% 60%

Load Balancer 40% 20% 30%

Firewall A 10% 20% 10%

IDS 35% 25% 20%

2 90% 60% 45%

DPI 60% 30% 20%

Firewall B 10% 20% 10%

IPS 20% 10% 15%

3 20% 15% 20% Packet Sniffer 20% 15% 20%

Table III: PMs resources usage of example scenario.

FG Flow Traffic Bandwidth Usage Packet Loss Latency

1

Internet→ Load Balancer 500 Mbit/s 50% 1% 10 ms

Load Balancer → FirewallA 200 Mbit/s 25% 1% 1 ms

Load Balancer → FirewallB 200 Mbit/s 37% 1% 5 ms

FirewallA → IDS 100 Mbit/s 10% 1% 1 ms

FirewallB → IDS 100 Mbit/s 37% 1% 5 ms

IDS → University 200 Mbit/s 20% 1% 10 ms

2

Internet→ DPI 200 Mbit/s 20% 1% 10 ms

DPI → FirewallB 200 Mbit/s 22% 1% 35 ms

FirewallB → IPS 40 Mbit/s 4% 1% 1 ms

IPS → Bank 40 Mbit/s 4% 1% 10 ms

3

Internet→ Load Balancer 500 Mbit/s 50% 1% 10 ms

Load Balancer → FirewallA 50 Mbit/s 25% 1% 1 ms

Load Balancer → FirewallB 50 Mbit/s 37% 1% 5 ms

FirewallA → DPI 20 Mbit/s 37% 1% 5 ms

FirewallB → DPI 20 Mbit/s 22% 1% 1 ms

DPI → Packet Sniffer 40 Mbit/s 4% 1% 28 ms

Packet Sniffer → IT Company 40 Mbit/s 4% 1% 10 ms

Table IV: FGs resources usage of example scenario.

which is close to the SLA. This high value indicates that PM
3 is physically distant from PMs 1 and 2.

With these exposed values, a network operator might iden-
tify this abnormal latency as a problem. However, taking a
closer look, the amount of traffic that is being transmitted in
this flow is low, when compared to the highest value in the
FG. Hence, even though latency is high, it compromises just a
bit of the service being provided, reducing its overall impact.
Equation 12 exposes the affinity measure from our model in
this case.

fg = 3

∀ αCi, wi = 1

α(LoadBalancer, F irewallA) = 0.707

α(LoadBalancer, F irewallB) = 0.695

α(FirewallA, DPI) = 0.678

α(FirewallB , DPI) = 0.646

α(DPI, PacketSniffer) = 0.653

(12)

These values reveal an affinity relationship between any

pair of VNFs in the FG. This occur because the combination
of small traffic and high latency reduces the network affinity
in Equation 7. Thus, since the static criteria affinity equals
to 1, the total affinity results in a measure larger than 0.5.
In summary, the observance of theses values can prevent
the operator from misplacing VNFs based only on latency
observations.

C. Case Study #3

Finally, consider the VNFs chained on FG 2. Analyzing the
FG criteria, it is possible to notice a high discrepancy on the
latency values. The normal latency value for links between
PM 1 and 2 is 5 ms, but the latency between the DPI and the
firewall on FG 3 is 35 ms, higher than the 30 ms SLA. In
addition, evaluating the PM criteria, it is clear that the DPI is
consuming a great portion of the PM resources, stressing the
CPU and memory.

Considering the amount of traffic that gets blocked by the
firewall, decreasing from 2 Mbit/s to 0.4 Mbit/s, it is safe to
assume that it was mistakenly chained after the DPI on FG



2, causing the identified issues. To confirm this insight, we
apply our affinity measure model considering a higher weight
for the suspect resources, CPU usage and latency. Equation
13 presents the resultant affinities for the VNFs on FG 2.

fg = 2

∀ αCi ∈ {latency, cpu usage}, wi = 2

∀ αCi ∈ {spm, sfg}, wi = 0

∀ αCi 6∈ {latency, cpu usage, spm, sfg}, wi = 1

α(DPI, F irewallB) = 0.003

α(FirewallB , IPS) = 0.655

α(DPI, IPS) = 0.391
(13)

The resulting affinities show an anti-affinity relation be-
tween the DPI and the firewall, due to the high latency in
the flow and the high CPU usage of the DPI. The DPI and
the IPS also present a low affinity, since the IPS is a CPU-
bound VNF and the DPI is consuming 60% of PM 2 CPU.
Notice that the DPI and the firewall belong to both FG 2 and
FG 3. For such case, we measure the affinity for each FG
that the VNFs are part of. For instance, FG 2 and FG 3 have
distinct values of latency, which further implies that the DPI
is mistakenly chained before the firewall on FG 2. Equation
14 presents the affinity measure for the DPI and the firewall
B for FG 3, considering the same weights as in Equation 13.
The resulting affinity is low due to PM resource contention,
but since the FG criteria are normalized for FG 3, the measure
is much higher than the value presented on Equation 13.

fg = 3

∀ αCi ∈ {latency, cpu usage}, wi = 2

∀ αCi ∈ {spm, sfg}, wi = 0

∀ αCi 6∈ {latency, cpu usage, spm, sfg}, wi = 1

α(DPI, F irewallB) = 0.448
(14)

To solve the stated issues, and the results provided by the
affinity model, an operator can change the dependencies in FG
2, so that the DPI is chained after the firewall. In this way,
the traffic load processed by the DPI decreases, as the firewall
blocks packets. By changing the dependencies in FG 3, the
DPI and firewall will have the same flow as in FG 2, in which
the affinity measure is higher.

V. CONCLUSION AND FUTURE WORK

In this paper, we introduced a measure to estimate affinity
between pairs of VNFs, based on a weighted set of criteria.
This measure helps network operators identify issues on NFV-
enabled networks. In addition, this measure can be used to
aid NFV orchestrators — and network operators — on VNFs
embedding and migration. In summary, we (i) provide an
affinity relationship definition, (ii) define an extendable set

of affinity criteria; and (iii) describe a mathematical model to
measure the affinity between any pair of VNFs.

We analyzed our affinity measure over an NFVaaS scenario,
with multiple tenants sharing infrastructure and VNFs. We
provided three distinct case studies, demonstrating how our
affinity measure helps the network operator identify different
issues on the network. In case study #1, we use our affinity
model to expose PM resource contention, derived from two
resource consuming VNFs on the same PM. In case study
#2, we analyze latency among VNFs, and how our affinity
measure might prevent network operators from misplacing
VNFs simply on latency observations. Finally, in case study
#3, we use our affinity model to highlight dependency issues
on the network, in which a DPI is mistakenly placed before a
firewall, causing high latency and CPU consumption. All these
case studies reveal that the proposed affinity measure provides
insight on NFV-enabled network issues. In addition, instead
of having to analyze dozens of different metrics, our model
combine all those metrics into a single value that expresses
how well two VNFs run together, simplifying management
and scalability.

As future work, we intend to add different criteria, to
improve the affinity measure, such as considering the function
being provided by each VNF (e.g., which rules are running on
a firewall, and what kind of inspection is being provided by a
IPS). Also, we plan to store historical data for each measure
calculated, and use it as input to retroactively improve the
affinity measure for the evaluated VNFs. Finally, this measure
might be incorporated on a visualization platform, such as
VISION [11], to aid network operators on having insights
about the network.
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