
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

CURSO DE CIÊNCIA DA COMPUTAÇÃO

CARLO SULZBACH SARTORI

Optimizing Solutions for the Pickup and
Delivery Problem

Work presented in partial fulfillment
of the requirements for the degree of
Bachelor in Computer Science

Advisor: Prof. Dr. Luciana Salete Buriol
Coadvisor: MSc. Marcelo Wuttig Friske

Porto Alegre
December 2016

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Rui Vicente Oppermann
Vice-Reitora: Profa. Jane Fraga Tutikian
Pró-Reitor de Graduação: Prof. Vladimir Pinheiro do Nascimento
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do Curso de Ciência de Computação: Prof. Sérgio Luis Cechin
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

ABSTRACT

Pickup and Delivery Problems are a variation of Vehicle Routing Problems that arise in

many real-world transportation scenarios, such as product delivery and courier services.

This work studies the Pickup and Delivery Problem with Time Windows, in which goods

have to be transported from one location to another, respecting certain time restrictions

and the capacity of the vehicles. It aims at minimizing the number of vehicles used, as

well as the operational costs to perform all routes. To solve this problem, a mathematical

formulation is used and an algorithm is proposed by embedding a Variable Neighborhood

Descent method into an Iterated Local Search metaheuristic. Experiments are carried out

with standard literature instances, showing that the algorithm is able to deliver good so-

lutions in reasonable time up to a certain number of locations and vehicles. A real-world

case study is conducted together with a partner company, which provided the data to gen-

erate a set of new instances based on the case. Experiments are done to evaluate how

well the proposed algorithm can handle the different scenario. Results show the proposed

algorithm produces good solutions for most instances of the real-world case.

Keywords: Vehicle routing problem. pickup and delivery. optimization. heuristic. iter-

ated local search.

Otimizando Soluções para o Problema de Coleta e Entrega de Produtos

RESUMO

Problemas de Coleta e Entrega de Produtos são uma variação dos Problemas de Rotea-

mento de Veículos, os quais têm um amplo número de aplicações reais em transportes,

como entrega de produtos e serviços de correios. Este trabalho estuda o Problema de

Coleta e Entrega de Produtos com Janelas de Tempo, no qual produtos devem ser trans-

portados de um local para o outro, respeitando certas restrições de tempo e a capacidade

de cada veículo. O objetivo é minimizar o número de veículos usados, assim como o custo

total de operação das rotas. Para resolver este problema, uma formulação matemática é

utilizada e um algoritmo é proposto através da implementação de um método de Descida

com Variação de Vizinhança dentro de uma Busca Local Iterada. Experimentos foram

realizados com instâncias padrões da literatura, demonstrando que o algoritmo é capaz

de encontrar boas soluções em tempo razoável, para até um número limite de locais e

veículos. Um estudo sbore um caso real é feito juntamente com uma empresa parceira,

a qual forneceu dados para a geração de um novo conjunto de instâncias baseado nesse

caso de estudo. Experimentos foram realizados para avaliar como o algoritmo proposto

se comportaria neste cenário diferente. Os resultados demonstram que o método produz

boas soluções para grande parte das instâncias dos casos reais.

Palavras-chave: problema de roteamento de veículos. coleta e entrega. otimização.

heurística. busca local iterada.

LIST OF FIGURES

Figure 2.1 Example of PDPTW solutions. (a) Locations with demands and time
windows [min, max], square node is the depot and circles are requests’ loca-
tions; (b) and (c) possible solutions, with node labels being the exact time a
vehicle reaches the node, and arc labels being the load being carried; (c), the
dark node is responsible for the infeasibility. ...16

Figure 3.1 Pictorial representation of iterated local search...24

Figure 4.1 Inter-route neighborhood movements..31
Figure 4.2 Intra-route neighborhood movement ...32
Figure 4.3 Example of a PDPTW solution. Arc labels present the amount of load

being carried. Time windows have been omitted for simplicity.36
Figure 4.4 Example of route representation..36
Figure 4.5 Example of accumulated demand vector ...37

Figure 5.1 Graphic of average running times for instances type 1 and 2........................47

LIST OF TABLES

Table 5.1 Summary of instances characteristics ...41
Table 5.2 Details of the five toy instances ...41
Table 5.3 Training instances for irace ...42
Table 5.4 Parameter tuning ranges for irace..43
Table 5.5 Comparison between CPLEX and IVND for the toy instances44
Table 5.6 Average Initial and Final Results of IVND for standard instances45
Table 5.7 Computational Enviroments..48
Table 5.8 Comparison of IVND average results with the main literature methods49

Table 6.1 Results for the Fast Deliveries instances...52
Table 6.2 Results for the Programmed Deliveries instances...53

Table A.1 Average results for 100 locations instances..61
Table A.2 Average results for 200 locations instances..62
Table A.3 Average results for 400 locations instances..63
Table A.4 Average results for 600 locations instances..64
Table A.5 Average results for 800 locations instances..65
Table A.6 Average results for 1000 locations instances..66

LIST OF ABBREVIATIONS AND ACRONYMS

API Application Program Interface

CPLEX IBM ILOG CPLEX Optimization Studio

CPU Central Processing Unit

CVRP Capacitated Vehicle Routing Problem

CVRPTW Capacitated Vehicle Routing Problem with Time Windows

DARP Dial-a-Ride Problem

ILS Iterated Local Search

IVND Iterated Variable Neighborhood Descent

MILP Mixed Integer Linear Programming

OR Operations Research

PDPTW Pickup and Delivery Problem with Time Windows

TSP Travelling Salesman Problem

VNS Variable Neighborhood Search

VND Variable Neighborhood Descent

VRP Vehicle Routing Problem

VRPTW Vehicle Routing Problem with Time Windows

CONTENTS

1 INTRODUCTION...10
1.1 Motivation..10
1.2 Vehicle Routing Problems ..12
1.3 Solution Methods ..13
1.4 Overview ..14
2 PROBLEM DEFINITION ...15
2.1 Mathematical Model...16
3 LITERATURE REVIEW...20
3.1 Methods for solving the PDPTW...20
3.1.1 Heuristic methods ..20
3.1.2 Exact methods..22
3.2 Metaheuristics ...23
3.2.1 Iterated Local Search ...23
3.2.1.1 Iterated Local Search Applications...25
3.2.2 Variable Neighborhood Descent ..26
4 PROPOSED ITERATED VARIABLE NEIGHBORHOOD DESCENT...............27
4.1 Algorithm...27
4.1.1 Initial Solution ...28
4.1.1.1 Route Initialization..29
4.1.1.2 Request Insertion ..29
4.1.2 Local Search...30
4.1.2.1 Shift Request...31
4.1.2.2 Exchange Request...31
4.1.2.3 Rearrange Request ..32
4.1.2.4 Unbalanced Shift Request...32
4.1.3 Perturbation..33
4.1.3.1 Multiple Reinsertions..33
4.1.3.2 Multiple Exchanges ..33
4.1.4 Acceptance Criterion ...34
4.1.5 Parameters..34
4.2 Data Structures and Speedup ..35
4.2.1 Solution Representation ...35
4.2.1.1 Forward and Backward Vectors ..35
4.2.1.2 Auxiliary Vectors ..37
4.2.2 Forward Time Slack...37
4.2.3 Movement Memory..38
5 RESULTS...40
5.1 Benchmark Instances..40
5.1.1 Li & Lim Instances ..40
5.1.2 Toy Instances..41
5.2 Configurations and Parameters...42
5.3 Evaluation..43
5.3.1 Toy Instances..43
5.3.2 Li & Lim Instances ..44
5.3.2.1 General Performance of IVND ...45
5.3.2.2 IVND and Literature Methods ..48

6 REAL-WORLD CASE STUDY ..50
6.1 Data Sets ..50
6.1.1 Experiment analysis ...51
7 CONCLUSION ...55
REFERENCES...57
APPENDIX A — RESULT TABLES FOR THE STANDARD INSTANCES..........60

10

1 INTRODUCTION

Transportation and mobility in modern societies are seen as major concerns by

people, companies and the public services. These problems have been studied with much

interest by the scientific community for years, contributing to a better logistic network,

cost reduction, and the improvement of service quality and urban mobility.

In the field of combinatorial optimization and operations research, the problem

related to transportation and mobility that has received a lot of attention is the Vehicle

Routing Problem (VRP). The VRP aims at building a set of vehicle routes to attend a set

of customers, so that operational costs are minimized. It is used to model several real-

world situations, and has many variations, each one considering different constraints and

scenarios.

This work focuses on the case where goods should be transported from one lo-

cation to another, while respecting the capacity of the vehicles, as well as the specific

periods of time when goods can be picked up and delivered at each location. In the sci-

entific literature this problem is modeled as a variation of the VRP, known as Pickup and

Delivery Problem with Time Windows (PDPTW), which has a great applicability in the

transportation field.

1.1 Motivation

There is a wide range of practical applications for the PDPTW, including product

delivery, courier services, dial-a-ride problems, bus routing, bulk product transportation

and pickup and delivery for overnight carriers. According to Trego and Murray (2010),

all of them spend enormous amounts of money on a daily basis, mainly due to fuel,

equipment, maintenance and wages. Moreover, studies of King and Mast (1987) and

Rodrigues, Comtois and Slack (2013) show 10% to 15% of a product’s cost comes just

from transportation, so it seems fair to optimize the process involving such activity.

A related issue is the amount of time customers spend waiting the delivery of an

order or service, usually missing an entire shift of day at home and possibly having to deal

with delays. In order to maximize customers’ convenience, companies have to carefully

schedule the order of the visits to minimize delays and perform deliveries within the

promised time to the customer.

When considering municipal laws in Brazil, there are cities where delayed deliv-

11

eries may also incur penalties to companies. In São Paulo city, for example, this happens

since 20091, being stated that a company must clearly define shift hours (morning, after-

noon, or night), and perform the delivery within the shift chosen by the customer. In Porto

Alegre city a similar law is being discussed2, which stipulates at most one hour of delay

to perform a delivery, from the time agreed with the customer. It is expected that cases

like these will become more common in the next years.

Additionally, the transportation sector accounts for a great percentage of green-

house gas emissions in world today. According to Velazquez et al. (2015), 28% of the

total emission in the United States is due to this sector, and 25% in the European Union.

As the number of vehicles grows, those numbers are expected to reach higher levels as

well. Thus, there is also an environmental concern to ease.

To solve the referred problems, it is possible to make use of operations research

(OR) techniques. In fact, Toth and Vigo (2001) and Hasle, Lie and Quak (2007) estimate

the use of computerized procedures for planning the distribution processes can offer sav-

ings of up to 20% to companies. Also, OR techniques can help avoiding delayed services

to customers by better scheduling the order of visits, and reducing the number of vehicles

used, hence lowering both the CO2 emissions and the operational cost.

Operations research has been successfully applied in the transportation area. There

are companies that exist solely or primarily developing optimization software to this

sector. Some examples are the Dutch Quintiq3 that develops general optimization and

planning software for companies; the Norse SINTEF4 that develops general optimization

software, including for transportation and planning; and the Danish TetraSoft S/A5 that

develops software for routing and planning. These companies also hold some of the best

known solutions for the benchmark instances used to compare PDPTW solution methods.

As far as we know, there are no OR companies working in Porto Alegre, which is

another fact that motivated this research. This work has been done in collaboration with

a software service company, uMov.me6 (located in Porto Alegre), who provided both the

data and the scenario description for real-world cases. We are also using this opportunity

to approximate our research group to the industry, and helping solving problems of local

need. A tool is already being developed with this partner.

1Municipal law of São Paulo city - 13.747/09, known as "Right Time Law".
2Law Project 195/2015 of Porto Alegre city, also known as "Right Time Law".
3http://www.quintiq.com/
4http://www.sintef.no/en/
5http://www.tetrasoft.dk/english-info/
6https://umov.me

12

At last, the PDPTW is a NP-Hard combinatorial optimization problem, which

means there is no polynomial time algorithm capable of solving it, unless P = NP . So,

there is also a theoretical interest in the study of such problem and in the development of

efficient algorithms to solve it.

It is safe to say, then, that the PDPTW has a wide range of scientific and real-world

applications, and studying it is worthwhile. In this context, we hope with this work to

bring some contributions to the OR area, especially to the optimization of transportation.

1.2 Vehicle Routing Problems

The Pickup and Delivery Problem with Time Windows is part of a wider class of

problems, the so-called Vehicle Routing Problems. The VRP has more than fifty years

of scientific studies, with the first work dating from the end of the 1950s (DANTZIG;

RAMSER, 1959).

In the VRP, there is a set of requests, or customers, with demands to be supplied

by a fleet of vehicles located in a common location, the depot. The goal is to build a

route for each vehicle so that all requests are attended and that costs are minimized. The

definition of how a route is constructed and costs are minimized are both linked to the

variant considered, more specifically, to its restrictions.

The VRP generalizes the classicalNP-Hard Travelling Salesman Problem (TSP),

so it is NP-Hard as well. In fact, the TSP can be thought as a special case of the VRP,

where the requests are the locations, or cities, which should be visited only once, and

there is only one route that starts and ends at the same location. The cost function to be

minimized is the total distance travelled. However, the TSP is usually not classified as a

VRP variation, having its own set of variations.

The classical and most studied variation of VRP is actually the Capacitated Vehi-

cle Routing Problem (CVRP). In it, just as in the TSP, all requests should be visited only

once, but they have a certain demand, while all the vehicles have a maximum capacity to

attend all demands. This capacity should never be exceeded during a route. All vehicles

start and end their routes at a single common depot, and a vehicle can have at most one

route. The cost function to be minimized is the total cost of all routes.

Further, another commonly studied VRP variation is the Vehicle Routing Problem

with Time Windows (VRPTW). In this case, the requests have a defined time interval in

which service can occur. Other restrictions are usually very close to the ones of the CVRP,

13

and in fact most studies of the VRPTW actually consider the Capacitated Vehicle Routing

Problem with Time Windows (CVRPTW), being a generalization of the CVRP. The two

most common cost functions to be minimized are the total cost of the routes, and the total

travel time by all vehicles.

The last variation to be referred and later detailed is the Pickup and Delivery Prob-

lem with Time Windows, which generalizes the VRPTW. In the PDPTW, the vehicles no

longer deliver goods from a depot to the customers, but instead the customers need goods

to be transported from a pickup location to a delivery location. These visits should also

respect a time interval to happen at each location, just as in the VRPTW. The cost function

to be minimized is usually the total cost of all routes, the number of vehicles used, or even

a combination of both.

1.3 Solution Methods

Ropke (2005) makes the following statement about the vehicle routing problem

addressed by this work:

For many of the problems [...] the set of feasible solutions is so large that even
if we had a computer that in a systematic way could construct and evaluate the
cost of a trillion (1012) solutions per second, and we had started that computer
right after the big bang, 14 billion years ago, it would still not have evaluated
all the feasible solutions today.

Even though the computational power has greatly increased in the past years, there

is still no possible way of solving these combinatorial optimization problems purely by

enumeration. Particularly, when considering real-world situations, the best solution is not

necessarily the one with the least cost, but the one that can be obtained fast and with

reasonable cost. Usually, a fast procedure should run in a matter of seconds, or at most a

couple of minutes, depending on the application.

The case mentioned is exactly of the same type as in the PDPTW, where good so-

lutions should be found as fast as possible for a big number of requests. In such situations,

it is common to turn to heuristic methods, which can return good solutions quickly if well

planned.

Taking all of this into account, this work proposes a study in the application of the

Iterated Local Search metaheuristic (LOURENÇO; MARTIN; STÜTZLE, 2010) for solv-

ing the PDPTW. Furthermore, the mathematical formulation of the problem is presented,

and the model is solved by the CPLEX commercial solver. Both methods are compared to

14

other works in the literature through the use of well known benchmark instances. More-

over, tests are carried out with instances built from real-world data provided by our partner

company. The heuristic and CPLEX are compared in this scenario to further analyse their

application in a real-world case.

1.4 Overview

This work is organized as follows. In Chapter 2 the problem is completely detailed

and a mathematical formulation is given. In Chapter 3 a literature review is presented

considering the main methods for PDPTW, as well as metaheuristics used in this work.

The proposed algorithm is described in Chapter 4. Results for the standard benchmark

instances of the literature are given in Chapter 5. In Chapter 6 a set of real-world instances

is evaluated. The work is concluded in Chapter 7.

15

2 PROBLEM DEFINITION

In the studied Pickup and Delivery Problem with Time Windows, a set of routes has

to be constructed in order to satisfy transportation requests. The transportation requests

specify an origin location, referred as pickup, and a destination location, referred as de-

livery. A delivery may only happen after its corresponding pickup (so called precedence

constraint). A fleet of identical vehicles is available to attend such requests with a given

maximum capacity. Each request should be transported by only one of these vehicles, that

is, there is no transhipment.

Cordeau, Laporte and Ropke (2008) define the same version of PDPTW as a Multi-

vehicle one-to-one static Pickup and Delivery Problem with Time Windows. It is said to

be multi-vehicle because allows more than one route, as opposed to single-vehicle vari-

ations where only one route is allowed. It is called one-to-one, because for each pickup

request there is only one corresponding delivery. And it is a static version because all

requests are known beforehand, while in the dynamic requests become available during

the optimization process.

The PDPTW has a set of n transportation requests and all of them should be at-

tended. Each request has: (i) pickup location; (ii) delivery location; (iii) time window

for pickup, indicating the earliest and latest time the pickup may be performed; (iv) time

window for delivery; (v) service time, or how much time a vehicle takes to complete the

service; and (vi) demand, how many units of goods the vehicle should pickup and de-

liver. The demand of the delivery location should be strictly complementary to the one

of the pickup location, i.e., if the pickup location has demand a, the delivery should have

demand −a.

It is important to distinguish between the types of time windows restrictions.

These can be soft time windows, or hard time windows. The former considers a sce-

nario where time windows can be violated, in order to perform all the deliveries. The

latter considers the opposite scenario, where time windows cannot be violated, and a vio-

lation leads to an infeasible solution. The problem being studied considers only hard time

windows.

The fleet of m vehicles is located at a common starting location, referred as depot,

from where vehicles start and end their routes. The problem considers that there is only

one depot, and it has its own time window, defining the size of the planning horizon, or

the maximum time a vehicle route can have.

16

A solution to the PDPTW can be given in a graph as a set of vehicle routes, and

a vehicle route is a set of ordered locations, or nodes, to be visited. Figure 2.1 shows

an example of PDPTW solutions in a graph. In Figure 2.1(a) the locations are presented,

together with their time windows [min, max] and demands. The time window of the depot

has been omitted for simplicity. In Figure 2.1(b) a feasible solution is presented, i.e., a

solution respecting all constraints of the problem. The solution s has two routes r1 and r2,

and is denoted by s = {r1, r2}. Finally, solution in Figure 2.1(c) is infeasible because the

dark node is reached by the vehicle at time 5, while its time window states the maximum

time of 3 ([1, 3]).

Figure 2.1: Example of PDPTW solutions. (a) Locations with demands and time windows
[min, max], square node is the depot and circles are requests’ locations; (b) and (c) pos-
sible solutions, with node labels being the exact time a vehicle reaches the node, and arc
labels being the load being carried; (c), the dark node is responsible for the infeasibility.

[1, 2] a

[1, 3] b

[4, 7]−b

[2, 5]−a

[1, 1] c [3, 4]−c

5
2

(a) Locations in a graph

1

3

6

5

1 3

r1

r2

a

ab

b

c

(b) A feasible solution

1

5

7

3

1 3

r1

r2

a

b

c

(c) An infeasible solution

Source: From the Author

The aim of the PDPTW is to find a feasible solution, so that the number of vehicles

(|s|) is minimized, and the total cost of the routes is also minimized. This defines and

hierarchical order of minimization, the first being the number of routes, and the second

the total operational cost of the routes.

A mathematical formulation can be given to this problem so that it can be better

understood. Also, this allows it to be solved exaclty by a generic solver, such as CPLEX.

The formulation is given in Section 2.1.

2.1 Mathematical Model

This section presents a formal description of the PDPTW through a mathemat-

ical model in Mixed Integer Linear Programming (MILP) form, based on the work of

17

Grandinetti et al. (2014). The formulation considers the same objective function of Li and

Lim (2003), minimizing first the number of vehicles, and second the cost of all routes.

As in other variations of VRP, the problem is defined on a graph G = (V,A),

where V is the set of all nodes and A the set of all arcs connecting two nodes. An usual

PDPTW scenario has n requests and a maximum of m vehicles to be used. This defines

the following sets: P ⊂ V the set of all pickup locations, D ⊂ V the set of all delivery

locations and K the set of all vehicles, such that |P | = |D| = n and |K| = m. Each node

p ∈ P has strictly one corresponding delivery pair, denoted as dev(p); analogously, each

node d ∈ D has an unique pickup location. Two depots are considered in this model: the

departure δ0 = 0, and the arrival δ1 = 2n+ 1, which could be physically the same. Then,

the set of all nodes is given by V = P ∪D ∪ {δ0, δ1}. Also, each arc a ∈ A connecting

two nodes i, j ∈ V has a time tij , and a cost cij of using this arc. It is assumed the times

and costs are non-negative, and that arc times satisfy the triangular inequality.

Each node i ∈ V has a service time si and a time window [ei, li]. A vehicle is

allowed to arrive at a location before service can start (before ei), but in this case it must

wait until the start of time window to perform the visit. Though, a vehicle is never allowed

to arrive after the maximum time li. Additionally, every node has a demandQi associated,

being Qi > 0 when i ∈ P , Qi < 0 when i ∈ D and Qi = 0 when i ∈ {δ0, δ1}. This

demand corresponds to the amount of goods a vehicle must pickup or deliver at the given

location.

The homogeneous fleet of vehicles has a maximum capacity U per vehicle. There

is also a cost associated for allocating a vehicle to a route, given as a weight parameter

ω. This weight should be big enough in order to dominate the objective function’s value

and drive the search to solutions with fewer vehicles. In practice, ω is defined according

to the number of locations in the problem, so that it is able to dominate the value.

Four sets of decision variables are used in this model: xijk, i, j ∈ V, k ∈ K, a

binary variable which assumes one if the arc (i, j) is traversed by vehicle k, and zero

otherwise; yk, k ∈ K, a binary variable which takes value one if vehicle k is used, and

zero otherwise; hik, i ∈ V, k ∈ K, a real variable, which indicates the time vehicle k starts

service at node i; and qik, i ∈ V, k ∈ K, a real variable indicating the remaining capacity

of vehicle k before leaving node i. Both variables hik and qik are only well defined when

vehicle k is used.

Then, the mathematical model is given as follows:

18

minimize ω
∑
k∈K

yk +
∑
i∈V

∑
j∈V

∑
k∈K

cijxijk, (2.1)

subject to ∑
k∈K

∑
j∈V |j 6=i

xijk = 1 ∀i ∈ P (2.2)

∑
j∈V |j 6=i

xijk −
∑

j∈V |j 6=i

xdev(i)jk = 0 ∀i ∈ P, k ∈ K (2.3)

∑
j∈V |j 6=δ0

xδ0jk = yk ∀k ∈ K (2.4)

∑
j∈V |j 6=δ1

xjδ1k = yk ∀k ∈ K (2.5)

∑
i∈V

∑
j∈V |j 6=i

xijk ≤ Wyk ∀k ∈ K (2.6)

∑
j∈V |j 6=i

xijk −
∑

j∈V |j 6=i

xjik = 0 ∀i ∈ P ∪D, k ∈ K (2.7)

hjk ≥ hik + (tij + si)xijk −W (1− xijk) ∀i, j ∈ V |i 6= j, k ∈ K (2.8)

hdev(i)k ≥ hik + tidev(i)
∑

j∈V |j 6=i

xijk ∀i ∈ P, k ∈ K (2.9)

hik ≥ ei ∀i ∈ V, k ∈ K (2.10)

hik ≤ li ∀i ∈ V, k ∈ K (2.11)

qjk ≥ qik +Qj −W (1− xijk) ∀i, j ∈ V |i 6= j, k ∈ K (2.12)

max(0, Qi)
∑

j∈V |j 6=i

xijk ≤ qik ∀i ∈ V, k ∈ K (2.13)

min(U,U +Qi)
∑

j∈V |j 6=i

xijk ≥ qik ∀i ∈ V, k ∈ K (2.14)

xijk, yk ∈ {0, 1} ∀i, j ∈ V, k ∈ K (2.15)

hik, qik ∈ R ∀i ∈ V, k ∈ K (2.16)

As stated previously, the objective function (2.1) minimizes the accumulated costs.

Parameter ω is responsible for relating the cost of each route in solution to the number of

vehicles used, resulting in the final total operational cost.

Constraint (2.2) ensures that all requests are attended, while (2.3) ensures the pair-

ing condition, that is, if a vehicle k serves a pickup p, then k must also serve the delivery

pair of p, dev(p). Constraints (2.4) and (2.5) assure that for each route, only one arc

19

leaves depot δ0 and only one arc arrives at depot δ1, respectively. Constraints (2.6) link

the x-variables to the y-variables: if an arc (i, j) is traversed by vehicle k, then k must be

considered used (yk = 1); on the other hand, if a vehicle k does not traverse arc (i, j), the

corresponding x must be zero. Here, W is defined as a large non-negative scalar. Next,

constraint (2.7) is the flow conservation constraint, stating that the number of incoming

arcs must be equal to the number of outgoing arcs for all nodes, except the depots.

Constraint (2.8) assures all nodes in a route are served after their predecessor,

and constraint (2.9) ensures the precedence constraint, that is, a delivery node can only

be served after its corresponding pickup node. Constraints (2.10) and (2.11) impose the

time window limits for service to occur in node i, being the earliest time and latest time,

respectively. Constraint (2.12) updates the remaining capacity of a vehicle before leaving

node i. Constraints (2.13) and (2.14) assure that a vehicle’s transportation will neither

become negative nor exceed its maximum capacity U . Finally, constraint (2.15) ensures

the binary condition of the x and y-variables, as well as, (2.16) set variables h and q to be

real.

20

3 LITERATURE REVIEW

This chapter presents a literature review on the main existing methods to solve the

PDPTW, as well on the metaheuristics later used to create the proposed algorithm in this

work. The first section (3.1) reviews the heuristic and exact methods to solve the PDPTW,

and the second section (3.2) reviews the two metaheuristics used in this work.

3.1 Methods for solving the PDPTW

The literature about the PDPTW is not as extensive as about the CVRP or the

VRPTW, but has many overlaps with the one of the Dial-a-ride Problem. Two main

surveys about the problem can be considered, one by Savelsbergh and Sol (1995), and

another by Cordeau, Laporte and Ropke (2008).

As it is usual, the methods for solving the problem can be divided into two classes:

the heuristic methods, and the exact methods. This work presents a review on both types,

but focusing on heuristics.

3.1.1 Heuristic methods

The first work using metaheuristics is by Bruggen, Lenstra and Schuur (1993).

The authors proposed two different approaches to solve only the single vehicle version of

PDPTW. First a two-phase local search algorithm, and a second method using a Penal-

ized Simulated Annealing. The methods were not directly compared, being tested against

different sets of instances according to the aim each algorithm had.

It was only with the work of Nanry and Barnes (2000) that a metaheuristic was

applied to the multi-vehicle version of the PDPTW. The proposed method used a Reactive

Tabu Search with a neighborhood consisting of three simple movements: 1) moving a

request from one route to another; 2) exchanging a request in one route with a request

in another; and 3) relocating a request to another position within its original route. The

method uses a sort of shaking to escape local minima. This method was tested in instances

with up to 50 requests, however these instances were later considered too easy and ended

up unused.

Based on the previous work, Li and Lim (2003) proposed a Tabu-embedded Sim-

21

ulated Annealing approach for solving the PDPTW. The method uses the same neighbor-

hoods of Nanry and Barnes (2000) inside the embedded tabu search. The authors have

also introduced a set of new benchmark instances, which became the standard set for the

PDPTW, being still used nowadays. The objective function first minimizes the number of

vehicles used, and second the total cost of all routes.

Bent and Hentenryck (2006) have applied a Two-stage Hybrid Algorithm for the

PDPTW, and were able to find good results for the Li and Lim (2003) benchmark in-

stances. The first stage of the algorithm aims at minimizing the number of vehicles used

by means of a Simulated Annealing that uses a modified objective function to create routes

with few requests and routes with many requests, i.e., unbalanced routes. The second

stage minimizes the travel distance by means of a Large Neighborhood Search, which

uses an approach of removing and reinserting requests.

Ropke and Pisinger (2006) developed an Adaptive Large Neighborhood Search for

the PDPTW, being able to outperform results of the previous methods. In fact, it can still

be considered the state-of-the-art method for the PDPTW. The method also uses a two-

stage approach, but the heuristics used in both stages are exactly the same, only varying

the objective function’s weights. In the first stage, vehicle minimization is considered,

while in the second is the total distance minimization. The method also uses a remove

and reinsert approach, but with more types of removal and reinsertion methods (three

for removal and two for reinsertion). It is named adaptive because the method favors

the choice of the removal and reinsertion methods based on how well they behave in run

time. This approach was able to improve on more than half of all instances of Li and Lim

(2003) data set.

There are also three commercial solvers that hold some of the best known solu-

tions for the standard set of instances. One proposed by SINTEF, another by TetraSoft

A/S and another by Quintiq. Details about the methods are not available, but the results

obtained are available at SINTEF’s website (SINTEF, 2008). Even though they have not

been published in a scientific paper, it is important to confirm that there is so much ap-

plication for the PDPTW that even commercial softwares are testing their quality against

benchmark instances used in the academia.

Finally, some of the recorded best known solutions for the Li and Lim (2003)

data set are from works in progress by the time this work was published. This is another

important fact, because it shows that there is active research on the PDPTW, and that the

benchmark instances proposed a decade ago are still challenging.

22

3.1.2 Exact methods

The first work on exact methods was developed by Desrosiers, Dumas and Soumis

(1986). It was a dynamic programming approach for the single vehicle version of PDPTW,

with rules for eliminating dominated labels. It could handle instances with up to 40 re-

quests.

Dumas, Desrosiers and Soumis (1991) proposed the first column generation ap-

proach to the multi-vehicle version of the PDPTW. It was embedded into a branch-and-

bound algorithm, able to handle instances with up to 50 requests. Sol (1994) proposed

another column generation with a different pricing problem and branching rules, as well

as a procedure for reducing the number of variables in the set partitioning problem. An

updated version of this method was presented in the work of Savelsbergh and Sol (1998).

Sigurd, Pisinger and Sig (2004) proposed a column generation embedded into a

branch-and-bound approach for a closely related variant of the PDPTW. The research

was motivated by a real-world problem of transporting live animals, in this case pigs,

from one farm to another, avoiding the spread of animal diseases. For example, trucks

that have transported sick pigs were not allowed to pickup healthy pigs. This is an extra

precedence constraint, and it allowed to evaluate the pricing problem much faster. Tests

were carried out with instances containing up to 108 requests with time windows, and 320

without time windows. The instances tested were not from the Li and Lim (2003) data

set.

Ropke, Cordeau and Laporte (2007) developed a Branch-and-cut algorithm to

solve the PDPTW and the Dial-a-ride Problem (DARP). The authors also proposed a

new set of benchmark instances with up to 96 requests, though they are not widely used.

It was only with the work of Ropke and Cordeau (2009) that an exact method was tested

against the standard data set, even though only a small set of instances could be solved.

The proposed algorithm was a Branch-and-cut-and-price, that outperformed the previous

algorithm.

More recently, Koning (2011) proposed a Column Generation approach for the

PDPTW. In the master problem, it selects the routes that result in the best overall solution,

while the subproblem searches for good routes. The standard benchmark set was used for

testing, with the method performing better in instances with short planning horizon and

400 customers, because the development was mainly focused on these.

23

3.2 Metaheuristics

Before describing the proposed method to solve the PDPTW, it is important to be

familiar with the metaheuristics employed. Two are combined in our proposed algorithm,

namely the Iterated Local Search (ILS) and the Variable Neighborhood Descent (VND).

A review on both is presented in the following subsections.

3.2.1 Iterated Local Search

The ILS is an stochastic local search method used for solving hard combinato-

rial optimization problems. It holds some resemblance to the Random Restart Search,

performing a biased walk through the solution space. Although, according to Lourenço,

Martin and Stützle (2010) it can outperform Random Restart methods in most cases, both

in solution quality and speed. The method’s main characteristics rely on its modularity

and simplicity, both conceptually and in practice.

Iterated Local Search works by iterating an embedded heuristic usually called lo-

cal search, even if in fact it has not to be a true local search. This procedure is responsible

for reaching a local optimum in the solution space. Because this locally optimal solu-

tion is not guaranteed to be the global optimum, ILS applies a perturbation to escape this

solution and continue the exploration.

The perturbation is a slight modification on the current local optimum, just enough

to reach a "nearby" solution. Local search is applied to this new starting point to reach an-

other local optimum. This differs from the approach of Random Restart Search, because

ILS keeps a certain amount of information about the previously visited local optimum,

reducing the actual search space (LOURENÇO; MARTIN; STÜTZLE, 2010).

In Figure 3.1, a pictorial view of ILS is presented. A combinatorial optimization

problem with cost function to be minimized is considered, with its solution space denoted

by S. Solution s∗ is the current local minimum, and the perturbation takes it to an inter-

mediate solution s′. Next, a local search is applied to s′ and another local minimum is

reached, denoted by s∗′.

In order to continue the search, one has to decide whether to perturb the new s∗′ or

the incumbent s∗. This decision is done by a so-called acceptance criterion. The whole

process is then repeated, with new local minimum and perturbations, until some stopping

criterion is met.

24

Figure 3.1: Pictorial representation of iterated local search.

Source: (LOURENÇO; MARTIN; STÜTZLE, 2010)

A basic framework is presented in Algorithm 1. When designing an ILS ap-

proach, only four modules must be considered: GenerateInitialSolution, LocalSearch,

Perturbation and AcceptanceCriterion. Those modules can have no interactions whatso-

ever, but considering their interactions does lead to much better results. A further analysis

in each module is given next.

Algorithm 1 Iterated Local Search

1: s0 = GenerateInitialSolution()
2: s∗ = LocalSearch(s0)
3: repeat
4: s′ = Perturbation(s∗, history)
5: s∗′ = LocalSearch(s′)
6: s∗ = AcceptanceCriterion(s∗, s∗′, history)
7: until termination condition met

The quality needed for the initial solution s0 depends on the type of application. If

a good solution is to be found as fast as possible, then a greedy construction heuristic is

generally the best approach. If time is not an issue, a random initial solution can be used,

as they tend to converge to the same point when large periods of time are considered.

For most of the combinatorial optimization problems studied, there are already

several local search procedures available. Most of them will perform well when embedded

in the ILS framework. Another approach that has been used recently is the embedding

of metaheuristics as a local search, such as Tabu Search, Variable Neighborhood Search,

and Simulated Annealing.

25

The perturbation mechanism has a great responsibility in the search process. It is

said that the perturbation has a strength, usually measured by how much of the solution it

changes. When the perturbation is too weak, the local search may undo the changes and

the ILS is kept trapped in the basin of attraction of that local optimum. On the other hand,

when the perturbation is too strong, only a few, or any information about the current

solution is kept, and the search becomes a Random Restart Search. A certain balance

has to be taken in order to avoid such cases. The history parameter works much like a

memory, and can be used to help guiding the perturbation based on previous moves.

Finally, the AcceptanceCriterion module chooses between the current solution s∗′

and the best found so far s∗ to continue the search. This module tells if the search will

favor intensification or diversification. Several methods can be considered. For example,

one can choose to always keep the best solution found so far, thus favoring intensification;

analogously, one can always keep the current solution, thus favoring diversification. Many

other methods lie in between those two, usually accepting a solution probabilistically, or

based on the history parameter, so that diversification and intensification are alternated

during the search.

3.2.1.1 Iterated Local Search Applications

Iterated Local Search has been successfully applied to many NP-Hard problems,

such as the TSP (MERZ; HUHSE, 2008), Quadratic Assignment Problem (STÜTZLE,

2006), MAX-SAT (BATTITI; PROTASI, 1997) and Job Shop Scheduling (LOURENCO,

1995). It has also several applications to VRP variants, such as the VRPTW (RIBAS et al.,

2011), the Heterogeneous Fleet Vehicle Routing Problem (PENNA; SUBRAMANIAN;

OCHI, 2013), the Vehicle Routing Problem with Cross-Docking (MORAIS; MATEUS;

NORONHA, 2014), and the Multi-compartment Vehicle Routing Problem (SILVESTRIN,

2016).

However, there are no known direct applications of ILS to solve the PDPTW. The

work of Nanry and Barnes (2000) that applied Reactive Tabu Search with a procedure

similar to a perturbation holds some resemblance to ILS, but it was never tested against

the data set proposed by Li and Lim (2003) to better compare its performance with current

methods.

26

3.2.2 Variable Neighborhood Descent

Variable Neighborhood Descent was first proposed by Mladenović and Hansen

(1997) as a variation of the Variable Neighborhood Search (VNS). Both methods are

based on the systematic change of neighborhoods within the search, so that the algorithm

does not get stuck on a neighborhood’s local minima.

To better understand the process, letN be a set of predefined neighborhood struc-

tures given by {N1, ...,Nkmax}, where Nk is a structure in this set. Then, when a local

optimum in neighborhood Nk is reached, one moves the search to another neighborhood.

This way, a different area of the search space is considered, allowing further optimiza-

tions.

The main difference between VNS’s variations is how neighborhoods are changed.

In VND, this change is deterministic, and the stopping criterion is when no further im-

provements can be done, i.e., a local optimum has been reached with regards to all neigh-

borhoods. This is illustrated in Algorithm 2. For more variations the reader is referred to

(MLADENOVIĆ; HANSEN, 1997).

Algorithm 2 VND

Input: Neighborhood set N = {N1, ...,Nkmax}
1: k = 1
2: repeat
3: s∗′ = Nk(s∗)
4: if s∗′ < s∗ then
5: s∗ = s∗′

6: k = 1
7: else
8: k = k + 1
9: end if

10: until k > kmax

27

4 PROPOSED ITERATED VARIABLE NEIGHBORHOOD DESCENT

This chapter describes the Iterated Variable Neighborhood Descent (IVND) method

proposed to solve the Pickup and Delivery Problem with Time Windows. It is assumed, to

this end, that the problem is defined on a graph, just as in Chapter 2, and so the algorithm

makes use of node and edge manipulations to search in the solution space.

A solution to the problem is taken to be a set of routes in that graph. A route is an

ordered set of requests to be visited, with regards to the PDPTW side constraints. Further,

for simplicity, a pickup-delivery pair is denoted as a request, and any request p can be

decomposed into its two locations, namely pu, the pickup location, and pv, the delivery

location.

In fact, different from other VRP variations in which one request corresponds

to one node in the graph (such as CVRP and VRPTW), the PDPTW considers always

two nodes for each request. Thus, when moving a request in the solution’s graph, the

algorithm has to actually move two nodes, increasing its complexity.

The chapter goes as follows. In Section 4.1 the algorithm is detailed, and pa-

rameters are discussed; after, in Section 4.2, an analysis of data structures and speedup

techniques used is conducted.

4.1 Algorithm

An Iterated Variable Neighborhood Descent algorithm can be seen as an Iterated

Local Search, where the local search is actually a VND. It starts from a local minimum and

repeatedly applies a perturbation to escape from it, followed by a Variable Neighborhood

Descent to find another local minimum, until a stopping criterion is satisfied. A criterion

decides if the newly found local minimum is accepted to continue the search, or if a

previously visited solution is to be taken.

The proposed IVND is presented in Algorithm 3. In line 1, the initial solution s0

is generated, and improved in line 2 by the VND metaheuristic. Then, the main loop

(lines 3-7) is repeated until the number of iterations without improvement, ib, reaches a

maximum value I , the stopping criterion. This loop is responsible for alternating between

perturbations, improvements and the acceptance of new solutions to continue the search.

Unless otherwise stated, a solution is evaluated by the function in Equation 4.1,

which is a more explicit description of the objective function presented in Chapter 2. It

28

Algorithm 3 IVND

1: s0 = ModifiedInsertionHeuristic()
2: s∗ = s∗′ = VND(s0)
3: repeat
4: s′ = Perturbation(s∗′)
5: s∗′ = VND(s′)
6: s∗′ = AcceptanceCriterion(s∗, s∗′)
7: until ib > I
8: return s∗

is supposed to minimize the values of its terms in hierarchical order. The first term is the

number of routes in solution s, and the second term is the total distance travelled by all

routes. Note that the second term is usually referred as the total cost, though, in this case

distance and cost will be used interchangeably.

e(s) = (|s|,
∑
r∈s

d(r)) (4.1)

In the following sections, all four modules of the IVND are described and anal-

ysed.

4.1.1 Initial Solution

In order to generate initial solutions, a modified version of the Insertion Heuristic

by Solomon (1987) is proposed to work with pairs of locations. This greedy algorithm

was chosen because it is able to produce good solutions quickly, which is an important

feature when dealing with vehicle routing problems such as the PDPTW.

The Insertion Heuristic is a sequential route construction algorithm, meaning it

builds a solution one route at a time. Requests are progressively inserted into their best

position in the current route. This is done until no more feasible insertions are possible,

when a new route is taken to continue the procedure.

Algorithm 4 describes the Modified Insertion Heuristic. It takes as input a set P

containing all the n requests to be routed in the problem, and an integer Km, the number

of vehicles available. Then, starting with k = 1, it initializes an empty route rk with

one request p ∈ P , a process named Route Initialization (detailed in Section 4.1.1.1).

Once a route has been initialized, the method proceeds by adding more requests to this

route, as long as feasible insertions are possible. The request p ∈ P that minimizes the

insertion cost is chosen to be inserted. This process is named Request Insertion (detailed

29

in Section 4.1.1.2). Every time a request is added to route rk, it is removed from P .

When no more feasible insertions are possible in rk, this route is added to solu-

tion s. If there are still requests in P , a new empty route is initialized and the procedure

is repeated. In case there are no more vehicles available, the algorithm terminates with no

feasible solution. Otherwise, if set P = ∅, a feasible solution s is returned.

Algorithm 4 Modified Insertion Heuristic
Input: set P with n requests to be routed
Input: number of vehicles available Km

1: s = ∅
2: k = 1
3: while k ≤ Km and P 6= ∅ do
4: rk = initialize route rk with a request p ∈ P
5: P = remove p from P
6: while there is feasible insertion in rk do
7: p = choose request p that minimizes ci(b, p, f)
8: rk = insert p in rk
9: P = remove p from P

10: end while
11: s = insert rk in s
12: k = k + 1
13: end while

4.1.1.1 Route Initialization

Two criteria are taken into account when selecting the first request to be inserted

in an empty route. First, from the set P , those requests that have a feasible insertion

and the pickup location with minimum value of starting time window are chosen. In

cases where more than one request meets the previous criterion, the one with the pickup

location closest to the depot (minimum distance) is chosen. If there are any ties left, the

pickup location with highest index is selected.

This combination of criteria was chosen because resulted in the best average solu-

tions. A similar method was proposed by Li and Lim (2003).

4.1.1.2 Request Insertion

After a route has been initialized with one pickup-delivery pair, the heuristic con-

tinues by inserting other requests according to a cost function ci(b, p, f). This function

evaluates the cost of inserting a request p in the current route. Equation 4.3 details the

function. Here, request p is decomposed into its pickup location pu and its delivery lo-

30

cation pv. Locations bu and fu are adjacent in the current route, and location pu is to be

inserted between them. The same applies to locations bv, fv and pv.

ci(b, p, f) = c1(bu, pu, fu) + c1(bv, pv, fv) (4.2)

To evaluate the insertion of pu and pv, function c1(i, x, j) is used. It evaluates the

cost of inserting location x between locations i and j. Equation 4.3 presents this function,

where values of type dij are the distance from location i to location j.

c1(i, x, j) = dix + dxj − dij (4.3)

Given that, the request p and adjacent locations b and f which minimize function

ci(b, p, f) are chosen. This is described in Equation 4.4, where p∗ is the selected request

with least insertion cost between b∗ and f ∗ in route.

ci(b
∗, p∗, f ∗) = min[ci(b, p, f)], ∀p ∈ P (4.4)

It is important to note that only feasible insertions are considered when selecting

a position to insert request p. If no feasible insertions are found, it is said p cannot be

inserted in this route, and another request is to be tried. This results in only feasible

routes being constructed by this procedure.

4.1.2 Local Search

A Variable Neighborhood Descent metaheuristic is employed as the local search

module to improve a given solution. The VND has the major advantages of being overall

simple and needing only a few parameters. In fact, given only a set of neighborhoods, the

method will stop when a local minimum is reached with regards to all neighborhoods.

Recalling Chapter 3, VND needs a setN of neighborhoods to explore the solution

space. The proposed IVND uses four neighborhoods: 1) Shift Request, 2) Exchange

Request, 3) Rearrange Request, and 4) Unbalanced Shift Request. The first three were

proposed and used by Nanry and Barnes (2000), and Li and Lim (2003), while the last is

inspired by a method of Bent and Hentenryck (2006).

All neighborhoods are of the best improvement type, that is, from all possibilities

in a given neighborhood Nk, the best is performed. Each one is described next.

31

4.1.2.1 Shift Request

The first neighborhood attempts to move a request from one route to another in

solution. For every pair of routes r1, r2 | r1 6= r2, a request in route r1 is removed and

inserted into all feasible positions in r2. From all possible pairs and positions, the one that

minimizes the cost is chosen. The basic idea is pictured in Figure 4.1(b). Infeasible shifts

are forbidden with regards to the PDPTW constraints.

This neighborhood, together with the Unbalanced Shift Request (in Section 4.1.2.4),

is important for the search, because it is able to reduce the number of routes, i.e, minimize

the number of vehicles used.

Figure 4.1: Inter-route neighborhood movements

route1

route2

(a) Original Routes

route1

route2

(b) Shift Request

route1

route2

(c) Exchange Request

depot moved location other location

Source: From the Author

4.1.2.2 Exchange Request

The second neighborhood considered swaps two requests between routes. Again,

for every pair of routes r1, r2 | r1 6= r2, a request p1 is removed from route r1 and another

p2 from route r2. Then, request p1 is inserted into all feasible positions in r2, as well as

p2 is inserted into all feasible positions in r1. Again, from all possible pairs and positions,

32

the one that minimizes the cost is chosen. The basic essence is shown in Figure 4.1(c).

Infeasible changes are also forbidden with regards to the PDPTW constraints.

4.1.2.3 Rearrange Request

The third neighborhood is the only intra-route neighborhood, meaning its move-

ments only affect a single route. For every route r, a request p is removed and reinserted

in another position in r. From all the possible routes and positions, the one that mini-

mizes the cost is chosen. This allows further refinement after other neighborhoods have

been applied. Figure 4.2(b) pictures this basic idea. Infeasible changes are forbidden with

regards to the PDPTW constraints.

Figure 4.2: Intra-route neighborhood movement

route

(a) Original Route

route

(b) Rearrange Request

depot moved location other location

Source: From the Author

4.1.2.4 Unbalanced Shift Request

The last neighborhood is based on the shifting of requests, just like the Shift Re-

quest in Section 4.1.2.1. Their difference relies on the objective function used to evaluate

the movement. In the Shift Request, the original evaluation is used (Equation 4.1), while

in the Unbalanced Shift Request the objective function presented in Equation 4.5 is used.

e(s) = (|s|,−
∑
r∈s

|r|2,
∑
r∈s

d(r)) (4.5)

The terms are also minimized in hierarchical order. The first term is the number

of routes in solution s. The second term maximizes
∑

r∈s |r|2, which means it favors

routes with many locations and with fewer locations, instead of routes with a balanced

distribution of them. This can lead the algorithm to remove locations from small routes

33

and add them to larger routes. The third term minimizes the total distance travelled. This

same function was proposed by Bent and Hentenryck (2006) in the first stage of their

algorithm to reduce the number of vehicles. As in all the other neighborhoods, infeasible

moves are forbidden with regards to the PDPTW constraints.

4.1.3 Perturbation

In order to escape local minimum, ILS employs a perturbation mechanism. The

proposed IVND uses two types of perturbation: 1) Multiple Reinsertions, 2) Multiple Ex-

changes. They are performed one after the other during the search, so that the perturbation

is strong enough to change the solutions visited, but not too much to become a Random

Restart Search.

4.1.3.1 Multiple Reinsertions

The first perturbation used is based on the idea of remove and reinsert. First,

a number Nr = nrN of requests are randomly removed from solution s, where nr is

a parameter containing the percentage of locations to be removed and N the number

of locations in the problem. Then, all Nr requests are reinserted in the same order of

removal, but at random positions in the solution, not necessarily belonging to its original

route. Infeasible changes are forbidden. If some of the requests could not be reinserted,

the perturbation is undone and the original solution s is returned.

4.1.3.2 Multiple Exchanges

This perturbation is based on the previously presented neighborhood Exchange

Request. This procedure executes a total of ne exchanges, one by one. For each exchange

performed, two routes in solution s are randomly picked, say r1, r2 | r1 6= r2. Then, two

requests p1 ∈ r1, p2 ∈ r2 are removed and reinserted at a random position in the other

route, i.e., p1 in r2, and p2 in r1. This is repeated until ne exchanges, or N2 unsuccessful

tries have been performed, whichever happens first. Infeasible movements are forbidden

with regards to the PDPTW constraints.

34

4.1.4 Acceptance Criterion

The acceptance criterion in ILS is responsible for guiding the search towards so-

lution diversification, or intensification. In other words, it chooses to accept the newly

found local minimum s∗′ or the incumbent s∗ to continue the search. The proposed IVND

employs a criterion based on the amount of iterations without improvement.

The method automatically accepts the new s∗′ if it is better than the incumbent s∗.

Otherwise, it accepts s∗′ over s∗ with probability α ib
I

. Here, ib is the variable containing

the number of iterations without improvement, I is the maximum number of iterations

without improvement, and α is a parameter responsible for adjusting the acceptance rate.

The acceptance criterion is summarized in Algorithm 5.

Such an approach is able to alternate between intensification and diversification

of solutions. When the algorithm is successfully improving the incumbent s∗, ib assumes

small values, leading to a higher probability of accepting s∗, and favoring intensification.

On the other hand, if the algorithm is trapped in a local minimum, ib will reach larger

values, being more likely to accept s∗′ to continue the search, thus favoring diversification.

Algorithm 5 Acceptance Criterion
Input: Best solution found s∗

Input: Newly found local minimum s∗′

1: if s∗ < s∗′ then
2: ib = ib + 1
3: if rand(0, 1) > α ib

I
then

4: s∗′ = s∗

5: end if
6: else
7: s∗ = s∗′

8: ib = 0
9: end if

4.1.5 Parameters

The IVND has a set of four parameters to be defined. They are listed below:

1. Stopping Criterion: the parameter I , with the maximum number of iterations with-

out improvement, making the algorithm stop when it has converged to a local min-

imum;

35

2. Acceptance rate: parameter α, with the acceptance rate to choose between s∗ and

s∗′ to continue the search, given as a percentage;

3. Perturbation size: the perturbations sizes, ne, the number of exchanges (given as

an absolute number), and nr, the number of reinsertions (given as a percentage of

the problem size);

4. Neighborhood order: the order in which the neighborhoods of VND should be

searched, that is, the order of set N .

All parameters can largely impact on the solution’s quality and general perfor-

mance of the method. Because of that, a special tuning is conducted to decide on the best

combination of parameters. This process is described in Chapter 5.

4.2 Data Structures and Speedup

An important aspect of metaheuristics is how and which data structures are em-

ployed to search for solutions. They have a great impact on an algorithm’s performance.

Since the proposed algorithm is supposed to be used in the real-world application studied,

an algorithm with small response time is needed, thus good data structures and speedup

techniques are important.

Those data structure and speedup used in the our algorithm are described in this

section. First the representation of a solution is considered, and after specific speedup

techniques such as constant time feasibility test and movement memory are detailed.

4.2.1 Solution Representation

As previously mentioned, a solution is a set of routes in a graph, and a route is a

set of ordered locations to be visited by a vehicle. Since a solution is trivially defined, let

us consider the data structures used to represent a route.

4.2.1.1 Forward and Backward Vectors

In our implementation, each route rk in solution s = {r1, ..., rm} is constructed

with two main vectors, namely the forward, ~fk, and the backward, ~bk. For each node in

the route, the forward vector stores the next node to be visited following the path’s order.

36

Analogously, the backward vector stores the incoming node.

In Figure 4.3 a solution to the PDPTW is presented containing two routes. By

using the forward and backward structures described, and considering node 0 as the depot,

the first location in route r1 to be visited can be seen as the forward of node 0, ~f 1
0 = 1.

Similarly, the next node to be visited is denoted by ~f 1
1 = 2, while the previous node is

~b11 = 0. When looking at route r2, though, the first node visited after the depot is ~f 2
0 = 5.

Figure 4.3: Example of a PDPTW solution. Arc labels present the amount of load being
carried. Time windows have been omitted for simplicity.

0

1

2

4

3

5 6

r1

r2

a

ab

b

c

Source: From the Author

The complete solution in Figure 4.3 is represented by four vectors of constant size

N = 7, where N is the total number of locations in the problem, including the depot. All

four are given in Figure 4.4, the first position is indexed by 0 and is the depot.

Figure 4.4: Example of route representation

~f 1 = 〈 1, 2, 3, 4, 0,−,− 〉
~b1 = 〈 4, 0, 1, 2, 3,−,− 〉

~f 2 = 〈 5,−,−,−,−, 6, 0 〉
~b2 = 〈 6,−,−,−,−, 0, 5 〉

Source: From the Author

A route does not necessarily have all the N locations in the problem, as in Fig-

ure 4.3, locations 5 and 6 do not belong to route r1. In the above vectors, the sign−means

37

the location is not well defined for the considered route, since it is not part of it. This fact

could be seen as a drawback of this representation, because it stores 2N |s| total locations,

as opposed to only N . However, it allows O(1) access to any node i, as well as its fol-

lowing and incoming nodes, easing the insertion and removal of nodes at any point in the

route. Memory not being an issue, this representation can greatly improve the algorithm’s

performance.

4.2.1.2 Auxiliary Vectors

Besides the forward and backward vectors, two other auxiliary vectors are also

considered, both of size n as well. The first is a vector of accumulated demand, ~qk, that

stores how much load a vehicle is carrying before leaving a given node i. In Figure 4.3,

the accumulated demand vectors are given as in Figure 4.5.

Figure 4.5: Example of accumulated demand vector

~q1 = 〈 0, a, ab, b, 0,−,− 〉

~q2 = 〈 0,−,−,−,−, c, 0 〉

Source: From the Author

The second auxiliary vector employed stores the accumulated time to reach a given

node i. More precisely, it stores the exact moment in time at which the vehicle arrives at

node i, but not the time the vehicle starts service at node i, since it can arrive before the

start of time window.

Those two auxiliary structures are particularly important because they allow a

faster verification of whether the node can be inserted in the given route or not, so that

the solution does not become infeasible. Their main usage is to speedup the perturbation

process and the forward time slack calculation explained in the next section.

4.2.2 Forward Time Slack

When a problem considers time windows, such as in the VRPTW and PDPTW, it

can be hard to create efficient methods to check the feasibility of a node’s insertion in a

38

route. In a naive implementation, one would have to check all the following nodes and

their time windows to avoid falling into infeasibility. Although, this is a computationally

expensive approach, with worst case complexity O(N).

To overcome this problem, Savelsbergh (1992) proposed a method capable of mak-

ing the feasibility test in O(1) time, through so called Forward Time Slacks. For each

node i, a forward time slack is defined as Fi, and indicates how far the departure time of

this node can be shifted forward in time without causing the route to become infeasible.

Taking the departure time of the depot as early as possible D0 = e0, the forward

time slack is given in Equation 4.6:

Fi = min
i≤k≤n

(lk − (Di +
∑
i≤p<k

tp,p+1)) ,∀i ∈ rk (4.6)

This is defined for all nodes i in route rk. The term lk is the latest time in time

window of node k, [ek, lk]. The departure time at node i is denoted by Di, while term∑
i≤p<k(tp,p+1) is how much time it takes to reach node k. In a concrete implementation,

this Fi is calculated for every node, starting from the last node in route (~bk0), and going

backwards to the first node (0).

Then, to test the feasibility of inserting node i just before a given node j, it is

sufficient to test if the amount of time added to reach node j is less then its Fj . This

method was first proposed to the VRPTW and TSPTW, however it is easy to extend it to

work with pairs of locations.

Nevertheless, the forward time slacks only allow testing in O(1) time, while the

insertion and correct update of data structures are still O(N). Also, every time a modifi-

cation is performed in a route, the forward time slacks must be recalculated for this route.

The improvement in performance is rewarding, though, especially when applied to a best

improvement strategy.

4.2.3 Movement Memory

One of the major drawbacks when using best improvement type neighborhoods, is

the computational time needed to perform only a small modification in the solution. If

the neighborhoods are iteratevely explored, many possible movements in these neighbor-

hoods are recomputed over and over, even though they remain the same at every itera-

tion. Though, the neighborhood’s structure can be exploited to avoid recalculations and

39

speedup the process.

In the proposed IVND, the neighborhoods are all based in modifications involv-

ing one or two routes, only the best being used. When a modification is performed, at

most two routes are changed, all the others staying the same. More precisely, the best

movements between the unmodified routes also stay being the same in next iterations of

VND.

To better understand the idea, consider a PDPTW solution s = {r1, r2, r3, r4, r5},

with five routes, and the neighborhood, Nk, Shift Request. Also, suppose in the first

iteration the best improving movement in Nk is between r1 and r2. So, r1 and r2 are

modified, but the rest remains the same. The best possible movement between r3 and r4,

or r4 and r5 are kept the same in the second iteration, and need not to be computed.

Computations are avoided by storing the best movements in a movement memory.

Considering the previous example, the best movement between r3 and r4 is stored, as

well as all the others computed. In the second iteration, when the algorithm is to compute

the best movement between r3 and r4, it first looks at the memory, and if a movement is

stored, it is taken, avoiding a possibly long computation time. However, when a route is

modified, its memory is erased, because the best movement may have changed, or become

infeasible.

In concrete terms, the memory is implemented as a matrix M , with dimensions

|s| × |s|. Each neighborhood Nk has its memory, denoted as Mk. When a movement

between two routes ra and rb is to be performed in neighborhoodNk, the algorithm checks

the memory by index, as Mk
ab, looking for an available entry. If it exists, it is taken,

otherwise the algorithm computes an available movement normally.

This data structure is important when large number of requests and vehicles are

considered, as the computational time of the neighborhoods grows quickly. In fact, exper-

iments have shown that this movement memory can improve the algorithm’s performance

up to a matter of four times, reducing the computation time by 75%. It is important to

note that the fewer the vehicles used in a solution s, the less effective this memory gets.

40

5 RESULTS

This chapter presents the results of the Iterated Variable Neighborhood Descent

method obtained from the standard set of benchmark instances of the PDPTW. For real-

world instances and application one is referred to Chapter 6.

The text goes as follows. First it is described the test environment and methodol-

ogy for the choice of parameters’ values. Then, the benchmark instances are detailed. A

comparison is done between the proposed IVND, CPLEX and the main algorithms in the

literature that solved the same set of instances.

5.1 Benchmark Instances

The benchmark data set used is the same proposed by Li and Lim (2003), available

at SINTEF’s website (SINTEF, 2008), and taken as the standard for the PDPTW. Even

though there are some small and easy instances among this set, the CPLEX solver running

the MILP formulation is not able to solve them. Thus a subset with smaller instances has

been generated. These instances have been named toy instances, and are described next,

after the Li and Lim (2003) data set.

5.1.1 Li & Lim Instances

These instances were generated from the VRPTW instances proposed by Solomon

(1987) and from the larger VRPTW instances by Gehring and Homberger (1999). The

instances were created by first solving the VRPTW with an heuristic method, and then

randomly pairing nodes that appeared in the same route in the obtained solution. A total

of 354 instances were created, with 100, 200, 400, 600, 800, and 1000 total locations.

For each size, instances are divided into sets according to the locations’ spatial

distribution: locations clustered (LC); locations randomly distributed (LR); and locations

partially clustered and partially randomly distributed (LRC). Additionally, they are di-

vided according to the planning horizon, measured by the maximum arrival time at the

depot. Instances of type 1 (LC1, LR1 and LRC1) have short planning horizon, while those

of type 2 (LC2, LR2 and LRC2) have a longer planning horizon. Table 5.1 presents a

summary of instances characteristics.

41

Table 5.1: Summary of instances characteristics

Instance Size Number of Instances Vehicles Available
LC1 LC2 LR1 LR2 LRC1 LRC2

100 9 8 12 11 8 8 25
200 10 10 10 10 10 10 50
400 10 10 10 10 10 10 100
600 10 10 10 10 10 10 150
800 10 10 10 10 10 10 200
1000 10 10 10 10 10 8 250

This set considers that the locations are in a 2D Cartesian plane, and the distances

between each pair of locations are given by the Euclidean distance. The time tij and

cost cij to go from one location i to a location j have the same value of the distance dij

between these locations. Because of that, the terms distance and cost are used inter-

changeably in the evaluation. Although, this relation only holds for this particular set of

instances, not being true for the PDPTW as a whole.

5.1.2 Toy Instances

Because the smallest instances in the standard set have 100 locations, that is con-

sidered large for CPLEX, a subset of smaller instances has been generated in order to run

CPLEX up to optimality, within a maximum time limit of 20 hours. Five instances have

been created with different sizes: 10, 20, 30, 40, and 50 locations.

The instances were all generated from the first instance of the 100 set, namely in-

stance LC101, by taking random pairs of locations fom it to produce the smaller instances.

The number of vehicles available was taken to be half the total number of locations in the

problem. The distance considered is also the Euclidean distance, as well as time and costs

are the same as the distance.

The basic characteristics are presented in Table 5.2.

Table 5.2: Details of the five toy instances

Instance Number of Locations Vehicles Available
LC1_10 10 5
LC1_20 20 10
LC1_30 30 15
LC1_40 40 20
LC1_50 50 25

42

5.2 Configurations and Parameters

The proposed IVND has been implemented in C++ and compiled with the GNU

C++ compiler g++ with flags -std=c++11 -O3 -lm. Tests were carried out in a

computer with AMD FX-8150 processor containing 8 cores running at 3.6 GHz, and with

32 GB of RAM memory. Only one core has been used during the tests. Also, the operating

system Ubuntu 16.04 LTS 64-bits has been used.

Recalling Chapter 4, the IVND has four parameters: stopping criterion (I), ac-

ceptance rate (α), perturbation size (nr, ne) and neighborhood order (N). Since they can

assume a wide range of values, and have impact on each other, an automatic methodology

is needed to best choose their values. This process is usually called parameter tuning.

The tuning has been done through the use of the irace package1. The scenario

defined for irace had a maximum number of experiments of 1000, and the instances used

for training are reported in Table 5.3, with a total of 18 instances, 3 for each size. The

choice had no special methodology, but we tried to diversify between type 1 and type 2

instances. Parameters’ ranges tested, as well as the best values reported by irace can be

seen in Table 5.4.

Table 5.3: Training instances for irace

Inst. Size Inst. LC Inst. LR Inst. LRC
100 LC104 LR105 LRC201
200 LC1_2_5 LR2_2_8 LRC1_2_5
400 LC2_4_5 LR1_4_5 LRC1_4_5
600 LC2_6_10 LR1_6_5 LRC2_6_2
800 LC1_8_5 LR1_8_10 LRC1_8_5
1000 LC1_10_5 LR1_10_4 LRC1_10_5

In the tuning process, parameter α is allowed to take values in the set {0.0, 0.3, 0.5,

0.9, 150.0}. If it assumes 0.0, the algorithm always accepts the newly found local min-

imum (s∗′). On the other hand, if it takes value 150.0, the algorithm always accepts the

incumbent solution (s∗). The other values are allowed so that these acceptances are alter-

nated.

The set of ordered neighborhoods N is allowed to take all the possible permu-

tations of the four neighborhoods available. This is denoted by {SR, ER, RR, USR} in

1The irace package implements the iterated racing procedure, which is an extension of the Iterated F-
race procedure, and has a strong statistical basis. Its main purpose is to automatically configure optimization
algorithms by finding the most appropriate settings given a set of instances of an optimization problem
(LÓPEZ-IBÁNEZ et al., 2011)

43

Table 5.4. The acronyms stand for the neighborhoods’ names: Shift Request (SR), Ex-

change Request (ER), Rearrange Request (RR) and Unbalanced Shift Request (USR).

Table 5.4: Parameter tuning ranges for irace

Parameter Values Range Best Value
I {50, 100, 150} 100
α {0.0, 0.3, 0.5, 0.9, 150.0} 0.9
ne {0, 2, 4, 6, 10} 4
nr {0.00...0.15} 0.02
N {SR, ER, RR, USR} USR, RR, ER, SR

5.3 Evaluation

The evaluation of the proposed IVND has been done in two steps. First, the toy in-

stances have been used to compare CPLEX running the MILP formulation and the IVND.

Then, the standard set of instances has been used to analyse the general performance of

IVND compared to the main literature methods.

The comparison considers both solution quality and time, because these are two

important characteristics when designing a real-world application solver. The solution

quality is measured according to the objective function considered to the PDPTW, first

minimizing the number of vehicles and then the total cost of the routes.

At last, the parameters configuration used is the same returned by the irace run,

presented in the previous section.

5.3.1 Toy Instances

This evaluation considers IVND, and CPLEX running the MILP formulation pre-

sented in Chapter 2. The toy instances have been used in order to better evaluate the

CPLEX performance, since it has difficulties solving large instances. CPLEX was al-

lowed to run for at most 20 hours (72000 s) in single thread mode with default configu-

rations for each instance, while 10 runs of IVND were performed and the average results

calculated.

Table 5.5 presents the results. Three columns are given for CPLEX and IVND.

Column OF gives the value of the objective function of a given solution s, calculated as

OF (s) = ω ∗ |s| +
∑

r∈S d(r), where ω is defined based on the number of locations L

44

in the instance, ω = L100 - this variable cost of the vehicles is needed because the total

cost of the solutions grows with the instance size, thus the larger the number of locations,

the bigger ω should be. Column gapf (%)2 gives the deviation of the obtained solution s,

from the best known solution s∗ (column BKS), calculated as gapf(s) = (s − s∗)/s∗.

Finally, column t(s) gives the amount of CPU time, in seconds, the method took to reach

the reported solution. Solutions presented with an asterisk (value∗) have been proven to

be the optimal solutions.

Table 5.5: Comparison between CPLEX and IVND for the toy instances

CPLEX IVND
Instance BKS OF gapf(%) t(s) OF gapf(%) t(s)
LC_10 1,056.02* 1,056.02* 0.00 1.80 1,056.02* 0.00 0.00
LC_20 4,155.50* 4,155.50* 0.00 3,625.04 4,155.50* 0.00 1.46
LC_30 9,201.94* 9,201.94* 0.00 27,139.61 9,201.94* 0.00 1.79
LC_40 16,303.53* 16,303.53* 0.00 71,941.11 16,303.53* 0.00 1.82
LC_50 25,360.24 - - 72,000.00 25,360.24 0.00 1.86

Note that CPLEX could not find a feasible solution for the instance with 50 loca-

tions within the stipulated time limit. Although, the previous instances were already hard

for it to solve, taking one hour to solve an instance with only 20 locations. It is possible

to note that the time needed for CPLEX to solve the instances grows exponentially with

the instance size, as it would be expected.

The proposed IVND, on the other hand, could handle those small instances very

easily, providing the optimal solutions to them in a much smaller time, i.e., less than 2

seconds. This offers a clue on the fact that an heuristic method can be a good choice for

solving the addressed problem. More specifically, the IVND can handle small cases well,

we still have to analyse its scalability with larger instances.

5.3.2 Li & Lim Instances

This section considers experiments with the IVND and the standard set of in-

stances. Section 5.3.2.1 analyses the general performance of IVND as the instance size

grows, while Section 5.3.2.2 compares IVND to the main literature methods.

Because the IVND is an stochastic method, the results presented are the average

of a number of runs. For instances of size 100 and 200, 10 runs were allowed, while for
2It is denoted gapf because it is the gap of the full solution, that is, the cost of using the vehicles (ω|s|)

plus the accumulated cost of the routes (
∑

r∈S d(r)). It contrasts with the gapc, which considers only the
costs of the routes, and not the one of the vehicles.

45

sizes 400, 600, 8003 and 10003, 5 runs were allowed. Also, for simplicity, instances are

separated by type according to their planning horizon (1 - short, 2 - long), and only the

average results for each type and size are presented. For detailed information on each

instance, one is referred to Appendix A.

5.3.2.1 General Performance of IVND

Table 5.6 presents the average results for each size and type of instance. Columns

#Vb, #Vi and #Vf are the average number of vehicles of the best known solution, of the

initial solution of IVND, and of the final solution of IVND, respectively. Column gapc (%)

refers to the percentage deviation of the total cost (or distance) of the routes found to

the best known solution; It is calculated as gapc(s) = (sc − s∗c)/s
∗
c , where s∗ is the

BKS, and sc is the accumulated cost of all routes in solution s. Column gapv (%) is the

percentage deviation of the number of vehicles of the final solution to the BKS, given

by gapv(s) = (sv − s∗v)/s∗v, where sv is the number of vehicles used in solution s. The

column t(s) gives the average CPU time in seconds taken to reach the reported solution.

Table 5.6: Average Initial and Final Results of IVND for standard instances
BKS Initial Solution Final Solution

Type Inst. Size #Vb Cost #Vi gapc(%) t(s) #Vf gapv(%) gapc(%) t(s)

1

100 11.10 1,158.50 14.24 28.37 0.01 11.26 1.45 -0.11 4.18
200 15.43 3,439.06 19.30 39.65 0.06 16.40 7.34 -3.28 60.73
400 29.37 8,175.50 36.80 42.54 0.31 32.13 11.55 -1.94 222.15
600 42.47 16,352.54 52.57 47.12 1.31 46.28 11.43 -0.35 763.93
800 55.13 28,265.12 67.90 48.68 2.83 61.33 14.73 0.90 1,504.54

1000 68.33 43,590.16 83.27 45.84 14.91 76.29 15.55 2.15 1,790.11

2

100 2.96 906.04 4.30 75.02 0.04 3.05 3.95 1.75 32.54
200 4.57 2,690.69 6.17 73.73 0.27 5.09 15.17 -0.49 168.23
400 8.53 6,278.10 11.83 87.31 1.89 10.11 24.27 -5.23 1,801.71
600 12.03 13,422.25 16.63 82.77 5.59 14.38 26.18 -9.59 4,992.48
800 15.70 21,595.10 22.03 86.14 15.48 18.88 29.24 -8.16 12,220.91

1000 19.57 31,431.00 26.50 79.50 25.79 23.21 26.70 -5.07 21,479.84

Note: Detailed results are found in Appendix A.

Regarding the initial solutions obtained by IVND, there is a major difference be-

tween solution quality for type 1 and type 2 instances. At first, type 1 instances have 8

more vehicles in average than the BKS, while type 2 instances have only an average of 4

more vehicles. However, the total cost of the routes has an average gapc of 40% for type 1

instances and 80% for type 2 instances. The main reason for these differences is that

the type 1 instances have a shorter planning horizon, that is to say that routes tend to be

smaller, thus more routes need to be created at first. On the other hand, it is easier to place
3For some of the 800 and 1000 instances of type 2 (long planning horizon) only one run was possible,

because of the amount of time required to complete one.

46

new requests on better positions when routes are small, reducing the the total cost, and

hence the gapc.

As to the final solutions, the improvements obtained relative to the initial solutions

are meaningful. The number of additional vehicles drops to only 4 for type 1 instances

and only 2 for type 2, a reduction by half when compared to the initial solution. However,

the average gapv of the instances is high, reaching 15% on type 1 and 29% on type 2

instances. This deviation shows clearly that the final solutions obtained by the IVND

are not as good as the best known solutions, reaching very large gaps, mainly on type 2

instances.

On the other hand, the final gapc decreases to -0.44% for type 1 instances and to

-4.46% for type 2. These negative gaps are possible, even though the solution is not better

than the BKS, because when the IVND can no longer reduce the number of vehicles, it

reduces the total cost of the routes. Moreover, with more routes, it is easier to construct

routes of smaller cost than when using less vehicles.

The analysis of those results makes it clear that the proposed IVND is able to im-

prove the initial solution, as it would be expected. In fact, it is able to reduce both the

number of vehicles and the total cost of the routes, sometimes reaching the best known so-

lution (appendix A). Additionally, the method presents better performance on the smaller

instances, of size 100, 200 and some of 400. However, as the instance size grows, the

average difference on the number of vehicles also grows. This is another expected effect,

because with the growth of the instance size there is also the growth of the solution space,

which is already enormous for 100 locations instances.

Another important conclusion to take from Table 5.6 is the running time of the

algorithm, and if it scales as the instance size grows. For the IVND, there is a major dif-

ference in running times when comparing type 1 instances to type 2 instances. Figure 5.1

presents a graphic comparing the average time to reach the final solution for each instance

type, according to the growth of the instance size.

Clearly the type 2 instances have a much steeper growth on the average time rel-

ative to the instance size, while type 1 instances have an almost linear growth. The main

cause for this is the structure of the solutions generated in each type. For type 1 instances,

solutions have more vehicles, thus each route has fewer locations. This is an important

fact, because the size of a route greatly impacts on the number of combinations of the

neighborhoods used in the IVND, since they perform movements between routes in a best

improvement manner.

47

Figure 5.1: Graphic of average running times for instances type 1 and 2

 0

 5000

 10000

 15000

 20000

 25000

 0 200 400 600 800 1000

C
P

U
 T

im
e
 (

s
e
c
.)

Instance Size

Type 2
Type 1

Source: From the Author

More specifically, the movement memory is the technique that can overcome the

problem. On the one hand, it is very effective in reducing the computation time when a

solution has many routes. On the other hand, when a solution has many locations (e.g.,

1000) and only a small number of vehicles, the memory can only save some calculations,

and the modified routes that need to be recomputed are still time consuming, because of

their size. This is exactly the case of type 2 instances, and the reason why its growth in

time is so steep. The speedup technique of the movement memory has little effect on them,

but a larger effect on type 1 instances, allowing a scalable growth on the latter.

To make the previous analysis clear, take for example two routes that have been

modified in an iteration of the IVND, call them ri and rj . Then, in the next iteration,

only the movements regarding ri or rj will be computed. Also, assume that all routes in

the solution have the same size, and take only the exchange neighborhood to calculate

the movements, which has worst time complexity O(n2). For routes of size a and b, the

update time would be O(a2) and O(b2), respectively. If the relation a ≤ b holds, than

the update time of the smaller routes (size a, type 1) is clearly smaller than of the larger

(size b, type 2).

At last, it is important to note that the proposed IVND always keeps solution feasi-

48

bility, which is expensive, especially in a problem with many restrictions as the PDPTW.

Even though the precedence constraint feasibility, as well as the capacity feasibility, are

important in a real-world situation, the time windows could be allowed to become infea-

sible, for an easier search on the solution space, and still be acceptable from the real point

of view.

In fact, two possible improvements for further research would be to drop the best

improvement strategy, and to allow some infeasibility of solutions.

5.3.2.2 IVND and Literature Methods

This section compares the IVND performace to other methods from the literature.

The methods are from the works of Li and Lim (2003), Bent and Hentenryck (2006), and

Ropke and Pisinger (2006). These have been chosen because they had the most complete

set of informations needed to perform the comparisons, both from the quality and from

the time point of view.

Table 5.7 presents the computational environment for each of the methods to be

compared. Column Reference presents the method, and column Instances gives the in-

stances that were tested with the method. Column Environment gives the processor used.

And column speed(%) presents an estimated percentage of speed of each computer rela-

tive to the computer used by this work. This means it is considered that the environment

of Li and Lim (2003) is eight times slower, that of Bent and Hentenryck (2006) six times

slower, and that of Ropke and Pisinger (2006) five times slower. The estimation is highly

conservative, and is based on the PassMark Benchmark4.

Table 5.7: Computational Enviroments

Reference Instances Environment speed(%)

(LI; LIM, 2003) {100} Intel 686 Generation 12.50
(BENT; HENTENRYCK, 2006) {100, 200, 600} AMD Athlon K7 (1.2 GHz) 16.67
(ROPKE; PISINGER, 2006) All Pentium IV (1.5 GHz) 20.00
This Work All AMD FX 8150 (3.6 GHz) 100.00

It is important to note that Li and Lim (2003) have only reported detailed informa-

tion for instances of size 100, even though the authors had run for all other sizes, it is just

that their information has been lost from (SINTEF, 2008). However, the same does not

apply to Bent and Hentenryck (2006), that had not run at all for instances of sizes 400,

800 and 1000.
4http://www.cpubenchmark.net

49

In Table 5.8 the results of IVND for each size and instance type are compared to

the results of the other three methods. For simplicity, Li and Lim (2003) is denoted by

LL, Bent and Hentenryck (2006) by BVH, and Ropke and Pisinger (2006) by RP. The

BKS column has been omitted, though it is available in Table 5.6. The reported times are

all normalized to the time of our tests, following the relation in Table 5.7.

Table 5.8: Comparison of IVND average results with the main literature methods
LL BVH RP IVND

Type Inst. Size #V gapc(%) t(s) #V gapc(%) t(s) #V gapc(%) t(s) #V gapc(%) t(s)

1

100 11.21 -1.17 36.95 11.10 0.00 64.81 11.10 0.01 8.19 11.26 -0.11 4.18
200 - - - 15.77 -2.26 172.17 15.64 -1.63 31.67 16.40 -3.28 60.73
400 - - - x x x 30.15 -1.44 108.52 32.13 -1.94 222.15
600 - - - 43.93 -0.88 602.22 43.72 -1.15 272.31 46.28 -0.35 763.93
800 - - - x x x 50.57 -0.98 493.54 61.33 0.90 1,504.54

1000 - - - x x x 70.15 -1.45 756.14 76.29 2.15 1,790.11

2

100 2.96 1.57 159.72 2.96 0.01 57.68 3.00 0.57 18.48 3.05 1.75 32.54
200 - - - 4.77 -0.23 194.34 4.63 0.66 73.75 5.09 -0.49 168.23
400 - - - x x x 8.77 -0.84 243.82 10.11 -5.23 1,801.71
600 - - - 13.37 -0.89 621.80 12.5 -3.74 615.91 14.38 -9.59 4,992.48
800 - - - x x x 16.59 -6.82 1,073.52 18.88 -8.16 12,220.91

1000 - - - x x x 20.48 -3.01 1,414.42 23.21 -5.07 21,479.84

Note: The sign - means there is not enough information to compute the results; and sign x means the method
was not tested at all against the set of instances

Those results show that the IVND, in spite of its simplicity, is able to reach good

solutions in reasonable time for instances of size 100, 200 and 400 (type 1). For these, it

has solution quality and run time comparable to the ones found in the literature. However,

the state-of-the-art method could not be outperformed by the IVND. For all of the cases,

Ropke and Pisinger (2006) still hold very good solutions and running times hard to be

beaten up. Perhaps the already mentioned improvements on the proposed algorithm could

bring better results, and are up to further research.

50

6 REAL-WORLD CASE STUDY

In this chapter, a real-world application of the Pickup and Delivery Problem with

Time Windows is considered. The study was motivated by a partnership with a software

service company in Porto Alegre, uMov.me1. All the data has been provided by the com-

pany, as well as the description of the scenario, which fits perfectly in the case of the

PDPTW. Although, for confidentiality reasons, we are not allowed to give much more

information about the case.

The scenario is of a store franchise working in Porto Alegre. It offers a product

delivery service to its customers with maximum delivery time, that is, time windows. The

vehicles are located at several stores existing in the city, and each vehicle serves orders

from its particular store, the depot. Moreover, vehicles may have to pickup a product that

has been ordered but has no units in the store it is leaving, thus performing a pickup in

other stores and a delivery to the customers.

The orders are split into two different types, according to the time window re-

strictions and vehicle capacity: fast deliveries and programmed deliveries. The first type

considers a maximum time window of 1 hour to perform the delivery, and a vehicle may

perform at most 6 deliveries. The second type has a wider planning horizon of 4 hours,

and vehicles can perform at most 40 deliveries, which is the maximum capacity of a vehi-

cle. Also, in fast deliveries, only 1 vehicle is considered, while in programmed deliveries

up to 4 vehicles are available.

It is important to note that the referred division for the orders is how the franchise

works today, and not a particular decision of this work. In fact, we tried to better simulate

a real-world situation, in order to compare the results to what they use today. Additionally,

most instances may seem small when compared to the literature ones. Although, this is

caused by the consideration of small planning horizons with capacity restrictions imposed

by the franchise.

6.1 Data Sets

A total of 40 instances have been generated with the data provided by the partner

company, being 25 of the fast delivery type, and 15 of the programmed delivery type. The

methodology to generate them is explained next.

1www.umov.me

51

The original data contained orders from several depots, thus we had to separate

them by depot in order to apply the studied formulation (single depot). Requests have

been separated according to the depot and to their time windows, so that all instances are

feasible. When a request had no pickup location in the provided data, a virtual pickup

location was created in order to simulate the pickup and delivery. If a pickup existed in

the data, it was directly used in the instance.

In the provided data, locations were given by their geographical coordinates (lat-

itude and longitude), and were transformed to 2D Cartesian coordinates during the in-

stance generation. Distances have been computed as the Euclidean distance. The time

was computed assuming an average speed of a vehicle of 40 km/h, which is a reasonable

estimation for big cities, according to our partners.

Because of the previously stated characteristics, Fast Deliveries instances have at

most 6 requests (12 locations) and one vehicle available. Also, all locations have been

given a time window of one hour. For Programmed Deliveries, there are at most 160

requests (320 locations), a total of 4 vehicles to attend them (each with capacity for 40

requests), and time windows are all of 4 hours.

The tests have been executed in the same computer configuration presented in

Chapter 5. Both CPLEX and IVND were tested against the newly generated instances.

CPLEX solver was allowed to run for one hour, and the proposed IVND was run 10 times

and average results computed. It received the same parameters returned by the irace, also

reported in Chapter 5. One important aspect of the real-world application is the response

time, which according to our partners, for this case, should not be larger than 10 seconds.

Clearly CPLEX is not a good option to solve the problem, though it is a good source for

comparison and evaluation.

However, the solutions obtained by the company’s current method were not pro-

vided, thus we are not able to compare directly our results to the ones obtained in practice.

On the other hand, the experiments allowed us to confirm if the run time of the method

would be applicable in a real-world situation.

6.1.1 Experiment analysis

The computational results with the fast deliveries and programmed deliveries are

reported in Table 6.1 and Table 6.2, respectively. The first column presents the instance

identifier, and column Size gives the number of locations in the problem (N locations

52

means N/2 deliveries). The next five columns are results of the IVND. Column #Vf

is the number of vehicles used in solution (both initial and final, because the number

was not modified). Column D0 is the distance (in kilometers) of the initial solution, and

column Df is the average distance of the final solution. Column t(s) gives the average

CPU time in seconds IVND took to reach the final solution, while gapc(%) column gives

the percentage deviation of the initial solution distance to the final solution distance found

by IVND. The last three columns present results for CPLEX solver, with #Vc being the

number of vehicles used, Dc the distance of the final solution and t(s) the total time to

find the given solution, or time out. Solutions with an asterisk (value∗) have been proven

to be optimal.

Regarding the fast deliveries, all the instances could be solved in less than one sec-

ond, most of them up to optimality. It is safe to say that for these instances the algorithm

has met the company’s demands.

Table 6.1: Results for the Fast Deliveries instances

Data IVND CPLEX
Inst. Size #Vf D0 Df gapc(%) t(s) #Vc Dc t(s)

fd3003 2 1 6.86 6.86* 0.00 0.00 1 6.86* 0.00
fd3021 2 1 6.54 6.54* 0.00 0.00 1 6.54* 0.00
fd4030 2 1 3.48 3.48* 0.00 0.00 1 3.48* 0.00
fd1046 2 1 4.99 4.99* 0.00 0.00 1 4.99* 0.00
fd2040 10 1 9.48 9.48* 0.00 0.01 1 9.48* 326.91
fd0090 2 1 2.83 2.83* 0.00 0.00 1 2.83* 0.00
fd1090 4 1 10.73 10.73* 0.00 0.00 1 10.73* 0.03
fd0102 2 1 3.66 3.66* 0.00 0.00 1 3.66* 0.00
fd1102 12 1 9.79 9.79 0.00 0.01 1 9.79 3600.00
fd1104 6 1 12.82 12.82* 0.00 0.00 1 12.82* 0.83
fd2101 12 1 7.54 7.54 0.00 0.01 1 7.54 3600.00
fd2103 2 1 6.10 6.10* 0.00 0.00 1 6.10* 0.00
fd3100 10 1 11.15 10.62* -7.81 0.01 1 10.62* 192.65
fd4101 4 1 2.53 2.53* 0.00 0.00 1 2.53* 0.03
fd5100 6 1 22.16 22.16* 0.00 0.00 1 22.16* 0.59
fd0111 12 1 5.59 5.59 0.00 0.00 1 5.59 3600.00
fd1111 12 1 10.63 10.63 0.00 0.00 1 10.63 3600.00
fd1115 4 1 6.50 6.50* 0.00 0.00 1 6.50* 0.03
fd2112 12 1 11.91 11.40 -4.28 0.00 1 11.40 3600.00
fd2114 2 1 1.22 1.22* 0.00 0.00 1 1.22* 0.00
fd3112 4 1 4.01 4.01* 0.00 0.00 1 4.01* 0.03
fd4112 2 1 4.05 4.05* 0.00 0.00 1 4.05* 0.00
fd7110 4 1 2.82 2.82* 0.00 0.00 1 2.82* 0.03
fd1123 12 1 14.56 14.56 0.00 0.01 1 14.56 3600.00
fd5121 2 1 1.98 1.98* 0.00 0.00 1 1.98* 0.00

53

Table 6.2: Results for the Programmed Deliveries instances

Data IVND CPLEX
Inst. Size #Vf D0 Df gapc(%) t(s) #Vc Dc t(s)

pd1090 2 1 7.23 7.23* 0.00 0.00 1 7.23* 0.02
pd0130 40 2 71.42 53.97 -24.43 0.22 - - 3600.00
pd1130 70 2 36.34 24.65 -32.11 3.22 - - 3600.00
pd6130 6 1 11.33 11.33* 0.00 0.00 1 11.33* 2.99
pd1180 62 1 31.86 29.80 -6.46 0.74 - - 3600.00
pd2180 70 1 21.10 19.13 -9.33 0.95 - - 3600.00
pd4180 26 1 20.27 20.20 -0.34 0.05 - - 3600.00
pd6180 2 1 3.69 3.69* 0.00 0.00 1 3.69* 0.03
pd2190 2 1 0.89 0.89* 0.00 0.00 1 0.89* 0.03
pd0220 4 1 1.25 1.25* 0.00 0.00 1 1.25* 0.08
pd1220 14 1 12.85 12.85 0.00 0.10 1 12.85 3600.00
pd2220 22 1 13.34 12.42 -6.89 0.03 1 12.42 3600.00
pd4220 14 1 11.24 11.24 0.00 0.01 1 11.24 3600.00
pd2130 140 2 38.55 31.26 -18.91 100.23 - - 3600.00
pd4130 80 2 36.07 27.81 -22.90 10.34 - - 3600.00

For the programmed deliveries instances the results are more diversified. The

small instances could be solved to optimality by both CPLEX and IVND. Some solutions,

although, could not be found by CPLEX within the time limit. IVND solved 14 instances

under the maximum time limit of 10 seconds, but for the larger instance (pd2130), with

140 locations, it took 100 seconds, ten times the maximum time limit allowed. Again, this

probably happened because of the small number of vehicles used compared to the large

number of locations. Indeed, for only 2 vehicles, the movement memory has absolutely

no effect, thus the larger time for this particular instance.

To conclude this analysis, it is important to note that those newly generated in-

stances try to mimic real-world situations. This is to say that they simulate the spatial

distribution of locations in a city, differently from the instances in the Li and Lim (2003)

set, that were randomly created without any special distribution besides the clustered or

non clustered type. This distribution factor has already been questioned by Ropke (2005),

as in how realistic are the literature instances used to test and compare new heuristics,

and how well would they behave when truly realistic data were to be considered. For

example, according to Fleming, Griffis and Bell (2013), one concern that can have great

impact on the algorithm’s performance is the consideration of asymmetric distance and/or

time between locations.

Those informations can be obtained from several databases, like Google Maps by

54

using Google’s Application Program Interface (API)2. On the one hand, this provides

accurate data and even real time estimation of traffic. On the other hand, to obtain such

data can be time consuming, because of the overheads involved3. For usage in real time

applications, such as the one described, a local database would be needed.

As far as the experiments here presented go, we could not test the new instances

with those real-world distances and times, because of the hardness on obtaining them

(particularly time consuming). Although, the distribution could be consistently simulated,

which can be considered a good progress for testing the method.

2https://developers.google.com/maps/
3Our tests have shown the response time can reach the order of several minutes even for a small number

of locations (e.g., 40). There is also a limitation on the number of locations to request the data from, so that
the request is not considered forbidden (around 50 locations for the free version of Google’s API).

55

7 CONCLUSION

This work has studied the Pickup and Delivery Problem with Time Windows, its

applications in real-world cases, as well as methods for solving it efficiently. Regard-

ing the applications of the PDPTW, it can be found on many real-world problems, such

as product delivery, courier services and dial-a-ride problems. Moreover, it generalizes

many other variations of VRP, and thus can also be applied to solve any of them. This

is important, because reinforces the concept that research on this problem, and on meth-

ods for solving it, can help improve many areas of society, providing improvements on

customer service, cost reduction and even environmental impacts.

Specifically to the real-world applications, a study has been conducted on the ap-

plication of the model and solution of the problem to a real case in Porto Alegre. Infor-

mations and data about the case have been provided by a partner company of the software

service market, also from Porto Alegre. New instances have been generated from the

provided data.

Two methods have been proposed by this work to solve the PDPTW. An exact

method, through the usage of a mathematical formulation in Mixed Integer Linear Pro-

gramming form, applied on CPLEX solver. The second method is a metaheristic based on

Iterated Local Search with an embedded Variable Neighborhood Descent method work-

ing as local search. Both methods are tested against the literature standard set of instances

for the PDPTW, and the newly generated instances from the partner company.

The first hypothesis was that the problem could not be solved by the generic solver

on reasonable time for practical uses. The evaluation confirmed the hypothesis for both

sets of instances, assuring that a metaheuristic is necessary to solve the problem. The

second hypothesis was how would a basic Iterated Local Search algorithm perform on

such problem.

The proposed IVND, despite its simplicity, was able to produce good solutions on

reasonable time for some instances of the standard set, and for most instances of the new

set. When compared to some methods in the literature, it had a comparable quality and run

time for the smaller instances. Further, the results on real-world instances showed that the

algorithm could be applied to solve the studied case, being able to provide good solutions,

most of the time optimal solutions, within the required time by the partner company.

It has been verified, however, that the method presents some drawbacks on its best

improvement neighborhood strategy, because of the time needed to explore the neighbor-

56

hood space, especially for large instances. Moreover, the speedup techniques were able

to help saving computation time in cases where large number of vehicles were used, but

for the opposite case the algorithm had some bottlenecks during execution. Additionally,

the fact that feasibility was kept at all moments during the search presented another time

consuming restriction, specially for the perturbation procedure in the IVND.

For future research and improvements, it is possible to consider the case of al-

lowing solutions to become infeasible, in order to explore more of the solution space,

visiting regions that could not be reached by the current algorithm. The best improvement

technique was not able to scale up with the instance size, thus experiments with first im-

provement techniques could be considered. At last, for real-world applications, it would

be better to consider a PDPTW where time windows restrictions are soft, as opposed to the

hard time windows studied, because in such situations there is no guarantee that it is pos-

sible to respect all time windows, especially inside big cities with known transportation

issues.

Finally, future projects with the partner company are going to consider the imple-

mentation of the method, or a variation of it. This work was able to lead the research

for such development, and point out how an ILS algorithm would behave in this prob-

lem. It is expected that the knowledge developed has also been able to contribute to the

optimization area, specially on the transportation field.

57

REFERENCES

BATTITI, R.; PROTASI, M. Reactive search, a history-sensitive heuristic for max-sat.
Journal of Experimental Algorithmics (JEA), ACM, New York, NY, USA, v. 2, jan.
1997.

BENT, R.; HENTENRYCK, P. V. A two-stage hybrid algorithm for pickup and delivery
vehicle routing problems with time windows. Computers & Operations Research,
Elsevier, v. 33, n. 4, p. 875–893, 2006.

BRUGGEN, L. Van der; LENSTRA, J. K.; SCHUUR, P. Variable-depth search for
the single-vehicle pickup and delivery problem with time windows. Transportation
Science, INFORMS, v. 27, n. 3, p. 298–311, 1993.

CORDEAU, J.-F.; LAPORTE, G.; ROPKE, S. Recent models and algorithms for
one-to-one pickup and delivery problems. In: . The Vehicle Routing Problem:
Latest Advances and New Challenges. Boston, MA: Springer US, 2008. p. 327–357.

DANTZIG, G. B.; RAMSER, J. H. The truck dispatching problem. Management
science, INFORMS, v. 6, n. 1, p. 80–91, 1959.

DESROSIERS, J.; DUMAS, Y.; SOUMIS, F. A dynamic programming solution of the
large-scale single-vehicle dial-a-ride problem with time windows. American Journal of
Mathematical and Management Sciences, Taylor & Francis, v. 6, n. 3-4, p. 301–325,
1986.

DUMAS, Y.; DESROSIERS, J.; SOUMIS, F. The pickup and delivery problem with time
windows. European Journal of Operational Research, Elsevier, v. 54, n. 1, p. 7–22,
1991.

FLEMING, C. L.; GRIFFIS, S. E.; BELL, J. E. The effects of triangle inequality on the
vehicle routing problem. European Journal of Operational Research, v. 224, n. 1, p. 1
– 7, 2013.

GEHRING, H.; HOMBERGER, J. A parallel hybrid evolutionary metaheuristic for
the vehicle routing problem with time windows. In: CITESEER. Proceedings of
EUROGEN99. [S.l.], 1999. v. 2, p. 57–64.

GRANDINETTI, L. et al. The multi-objective multi-vehicle pickup and delivery problem
with time windows. Procedia - Social and Behavioral Sciences, v. 111, p. 203 – 212,
2014. ISSN 1877-0428.

HASLE, G.; LIE, K.-A.; QUAK, E. Geometric Modelling, Numerical Simulation, and
Optimization - Applied Mathematics at SINTEF. [S.l.]: Springer Science & Business
Media, 2007.

KING, G. F.; MAST, T. M. Excess travel: causes, extent, and consequences. [S.l.]:
Transportation Research Board, 1987.

KONING, D. Using column generation for the pickup and delivery problem with
disturbances. Dissertation (Master) — Universiteit Utrecht, 2011. 29 pages. MSc in
Computer Science.

58

LI, H.; LIM, A. A metaheuristic for the pickup and delivery problem with time windows.
International Journal on Artificial Intelligence Tools, v. 12, n. 02, p. 173–186, 2003.

LÓPEZ-IBÁNEZ, M. et al. The irace package, iterated race for automatic algorithm
configuration. [S.l.], 2011.

LOURENCO, H. R. Job-shop scheduling: Computational study of local search and
large-step optimization methods. European Journal of Operational Research, Elsevier,
v. 83, n. 2, p. 347–364, 1995.

LOURENÇO, H. R.; MARTIN, O. C.; STÜTZLE, T. Iterated local search: Framework
and applications. In: . Handbook of Metaheuristics. Boston, MA: Springer US,
2010. p. 363–397.

MERZ, P.; HUHSE, J. An iterated local search approach for finding provably good
solutions for very large tsp instances. In: SPRINGER. International Conference on
Parallel Problem Solving from Nature. [S.l.], 2008. p. 929–939.

MLADENOVIĆ, N.; HANSEN, P. Variable neighborhood search. Computers &
Operations Research, Elsevier, v. 24, n. 11, p. 1097–1100, 1997.

MORAIS, V. W.; MATEUS, G. R.; NORONHA, T. F. Iterated local search heuristics for
the vehicle routing problem with cross-docking. Expert Systems with Applications,
Elsevier, v. 41, n. 16, p. 7495–7506, 2014.

NANRY, W. P.; BARNES, J. W. Solving the pickup and delivery problem with time
windows using reactive tabu search. Transportation Research Part B: Methodological,
Elsevier, v. 34, n. 2, p. 107–121, 2000.

PENNA, P. H. V.; SUBRAMANIAN, A.; OCHI, L. S. An iterated local search heuristic
for the heterogeneous fleet vehicle routing problem. Journal of Heuristics, Springer,
v. 19, n. 2, p. 201–232, 2013.

RIBAS, S. et al. An algorithm based on iterated local search and set partitioning for the
vehicle routing problem with time windows. Strathprints Institutional Repository,
p. 145, 2011.

RODRIGUES, J.-P.; COMTOIS, C.; SLACK, B. The geography of transport systems.
[S.l.]: Routledge, 2013.

ROPKE, S. Heuristic and exact algorithms for vehicle routing problems. Thesis
(PhD) — University of Copenhagen, Copenhagen, 2005. 256 pages. PhD in Computer
Science.

ROPKE, S.; CORDEAU, J.-F. Branch-and-cut-and-price for the pickup and delivery
problem with time windows. Transportation Science, INFORMS, v. 43, n. 3, p.
267–286, 2009.

ROPKE, S.; CORDEAU, J.-F.; LAPORTE, G. Models and branch-and-cut algorithms
for pickup and delivery problems with time windows. Networks, Wiley Online Library,
v. 49, n. 4, p. 258–272, 2007.

59

ROPKE, S.; PISINGER, D. An adaptive large neighborhood search heuristic for the
pickup and delivery problem with time windows. Transportation science, INFORMS,
v. 40, n. 4, p. 455–472, 2006.

SAVELSBERGH, M.; SOL, M. Drive: Dynamic routing of independent vehicles.
Operations Research, INFORMS, v. 46, n. 4, p. 474–490, 1998.

SAVELSBERGH, M. W. The vehicle routing problem with time windows: Minimizing
route duration. ORSA journal on computing, INFORMS, v. 4, n. 2, p. 146–154, 1992.

SAVELSBERGH, M. W.; SOL, M. The general pickup and delivery problem.
Transportation science, INFORMS, v. 29, n. 1, p. 17–29, 1995.

SIGURD, M.; PISINGER, D.; SIG, M. Scheduling transportation of live animals to avoid
the spread of diseases. Transportation Science, INFORMS, v. 38, n. 2, p. 197–209,
2004.

SILVESTRIN, P. V. An efficient heuristic for the Multi-compartment Vehicle Routing
Problem. Dissertation (Master) — Universidade Federal do Rio Grande do Sul, Porto
Alegre, 2016. 69 pages. MSc in Computer Science.

SINTEF. Li & Lim Benchmark Instances. 2008. Accessed 17-October-2016. Available
from Internet: <https://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/>.

SOL, M. Column generation techniques for pickup and delivery problems. Thesis
(PhD) — Technische Universiteit Eindhoven, 1994. 121 pages. PhD in Computer
Sciente.

SOLOMON, M. M. Algorithms for the vehicle routing and scheduling problems with
time window constraints. Operations research, INFORMS, v. 35, n. 2, p. 254–265,
1987.

STÜTZLE, T. Iterated local search for the quadratic assignment problem. European
Journal of Operational Research, Elsevier, v. 174, n. 3, p. 1519–1539, 2006.

TOTH, P.; VIGO, D. The vehicle routing problem. In: TOTH, P.; VIGO, D. (Ed.).
Philadelphia, PA, USA: Society for Industrial and Applied Mathematics, 2001. chp. An
Overview of Vehicle Routing Problems, p. 1–26.

TREGO, T.; MURRAY, D. An analysis of the operational costs of trucking. In:
Transportation Research Board 2010 Annual Meetings. Washington, DC. [S.l.: s.n.],
2010. v. 18, p. 20.

VELAZQUEZ, L. et al. Sustainable transportation strategies for decoupling road vehicle
transport and carbon dioxide emissions. Management of Environmental Quality: An
International Journal, Emerald Group Publishing Limited, v. 26, n. 3, p. 373–388,
2015.

https://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/

60

APPENDIX A — RESULT TABLES FOR THE STANDARD INSTANCES

All the tables presented in this appendix have been generated by running the pro-

posed IVND to solve the PDPTW. The instances considered are all from the standard set

of instances, proposed by Li and Lim (2003), available in SINTEF’s website (SINTEF,

2008), as well as the best known solutions, and its references.

For each instance, a number of IVND runs has been executed and the average

results are reported, one instance by table line. For instances of size 100 and 200, 10 runs

were allowed. Instances of size 400, 600, 800 and 1000, were allowed 5 runs (except

for some of the 800 and 1000 that could only run one time - these are marked in their

respective tables).

Column Instance gives the instance identifier. The three columns of BKS refer to

the best known solution for the given instance. Column #Vb gives the number of vehicles

of the BKS, column Cost gives the total cost (or distance) of the BKS, and column Ref.

gives the reference that first discovered the result. The complete references are available

in (SINTEF, 2008).

The next four columns refer to the initial solution generated by IVND. Column

#Vi gives the average number of vehicles in the initial solution, column gapc(%) gives the

deviation of the initial solution s cost to the BKS, calculated as gapc(s) = (sc − s∗c)/s∗c ,

where s∗ is the BKS, and sc is the accumulated cost of all routes in solution s. Column

gapf(%) reports the deviation of the full solution value to the BKS. The full solution

value of s is computed by OF (s) = ω ∗ |s| +
∑

r∈S d(r), where ω is defined based

on the number of locations L in the instance, ω = L100. The deviation is given by

gapf(s) = (sf − s∗f)/s∗f , where s∗ is the BKS, and sf is the full solution value of s. At

last, column t(s) gives the average CPU time in seconds taken to reach the solution.

The last six columns refer to the final solution obtained by IVND. Columns #Vf ,

Cost, gapc(%), gapf(%) and t(s), are all similar to the columns that have already been

described. Column gapv(%) gives the deviation of the number of vehicles from the BKS.

Column σ(%) gives the standard deviation in percentage from the solutions found during

all the runs performed for the given instance. That is to say that the full solution value

(considering the vehicles) has varied ± x percent.

The last line presents the general average results for all instances in the set. Note

that the results were not separated here between type 1 and type 2, however all the infor-

mation needed to compute it is available in the tables.

61

Table A.1: Average results for 100 locations instances
BKS Initial Solution Final Solution

Instance #Vb Cost Ref. #Vi gapc(%) gapf(%) t(s) #Vf Cost gapv(%) gapc(%) gapf(%) σ(%) t(s)
LC101 10 828.94 LL 10.00 0.00 0.00 0.01 10.00 828.94 0.00 0.00 0.00 ± 0.00 2.91
LC102 10 828.94 LL 12.00 54.61 20.28 0.01 10.00 828.94 0.00 0.00 0.00 ± 0.00 4.58
LC103 9 1035.35 BVH 10.00 16.91 11.18 0.01 9.30 996.57 3.33 -3.75 3.25 ± 1.59 5.34
LC104 9 860.01 SAM 10.00 43.08 11.41 0.01 9.10 878.21 1.11 2.12 1.12 ± 1.08 8.44
LC105 10 828.94 LL 10.00 4.55 0.04 0.01 10.00 828.94 0.00 0.00 0.00 ± 0.00 3.35
LC106 10 828.94 LL 11.00 5.83 9.97 0.01 10.00 828.94 0.00 0.00 0.00 ± 0.00 3.41
LC107 10 828.94 LL 10.00 2.90 0.02 0.01 10.00 832.22 0.00 0.40 0.00 ± 0.00 4.53
LC108 10 826.44 LL 10.00 3.55 0.03 0.01 10.00 827.61 0.00 0.14 0.00 ± 0.00 4.86
LC109 9 1000.60 BVH 10.00 3.87 11.03 0.02 10.00 853.78 11.11 -14.67 10.83 ± 0.00 6.26
LC201 3 591.56 LL 3.00 -0.00 0.00 0.01 3.00 591.56 0.00 -0.00 0.00 ± 0.00 41.06
LC202 3 591.56 LL 4.00 70.27 34.05 0.02 3.00 591.56 0.00 -0.00 0.00 ± 0.00 56.73
LC203 3 591.17 SAM 4.00 43.98 33.54 0.03 3.00 591.17 0.00 0.00 0.00 ± 0.00 39.61
LC204 3 590.60 SAM 4.00 39.82 33.46 0.07 3.00 590.83 0.00 0.04 0.00 ± 0.00 75.98
LC205 3 588.88 LL 4.00 171.50 35.99 0.01 3.00 588.88 0.00 0.00 0.00 ± 0.00 57.01
LC206 3 588.49 LL 4.00 39.85 33.46 0.03 3.00 588.49 0.00 -0.00 0.00 ± 0.00 85.72
LC207 3 588.29 LL 4.00 90.60 34.43 0.02 3.00 588.29 0.00 0.00 0.00 ± 0.00 32.55
LC208 3 588.32 LL 4.00 88.35 34.39 0.02 3.00 588.32 0.00 -0.00 0.00 ± 0.00 72.13
LR101 19 1650.80 LL 23.00 19.58 21.04 0.00 19.00 1650.80 0.00 -0.00 0.00 ± 0.00 1.75
LR102 17 1487.57 LL 20.00 29.31 17.75 0.01 17.00 1491.58 0.00 0.27 0.00 ± 0.00 5.31
LR103 13 1292.68 LL 18.00 41.27 38.49 0.01 13.00 1292.77 0.00 0.01 0.00 ± 0.00 3.60
LR104 9 1013.39 LL 13.00 38.53 44.38 0.01 9.10 1018.81 1.11 0.54 1.10 ± 1.09 4.93
LR105 14 1377.11 LL 18.00 23.84 28.53 0.00 14.00 1377.30 0.00 0.01 0.00 ± 0.00 3.26
LR106 12 1252.62 LL 15.00 25.25 25.00 0.01 12.00 1258.70 0.00 0.49 0.01 ± 0.00 2.69
LR107 10 1111.31 LL 16.00 49.51 59.88 0.01 10.00 1120.79 0.00 0.85 0.01 ± 0.01 3.74
LR108 9 968.97 LL 12.00 38.72 33.39 0.01 9.00 968.97 0.00 0.00 0.00 ± 0.00 4.07
LR109 11 1208.96 SAM 16.00 33.39 45.32 0.01 11.40 1234.83 3.64 2.14 3.62 ± 1.43 3.28
LR110 10 1159.35 LL 13.00 20.87 29.90 0.01 10.60 1170.64 6.00 0.97 5.94 ± 2.07 5.84
LR111 10 1108.90 LL 16.00 51.11 59.90 0.01 10.10 1117.28 1.00 0.76 1.00 ± 0.98 4.45
LR112 9 1003.77 LL 13.00 41.77 44.41 0.01 9.00 1004.07 0.00 0.03 0.00 ± 0.00 5.69
LR201 4 1253.23 SAM 6.00 52.10 50.06 0.02 4.00 1261.95 0.00 0.70 0.02 ± 0.02 9.52
LR202 3 1197.67 LL 6.00 77.35 99.13 0.03 3.00 1201.82 0.00 0.35 0.01 ± 0.01 4.75
LR203 3 949.40 LL 4.00 61.58 34.20 0.04 3.00 951.95 0.00 0.27 0.01 ± 0.01 12.73
LR204 2 849.05 LL 4.00 102.14 100.09 0.06 2.00 852.47 0.00 0.40 0.02 ± 0.02 8.38
LR205 3 1054.02 LL 5.00 69.67 66.77 0.02 3.00 1054.04 0.00 0.00 0.00 ± 0.00 4.48
LR206 3 931.63 LL 4.00 64.18 34.26 0.04 3.00 931.63 0.00 -0.00 0.00 ± 0.00 8.94
LR207 2 903.06 LL 3.00 48.80 49.95 0.08 2.70 994.67 35.00 10.14 33.93 ± 5.50 145.37
LR208 2 734.85 LL 3.00 65.06 50.53 0.08 2.00 739.35 0.00 0.61 0.02 ± 0.01 15.47
LR209 3 930.59 SAM 4.00 52.67 33.92 0.04 3.00 971.34 0.00 4.38 0.13 ± 0.05 15.13
LR210 3 964.22 LL 5.00 102.55 67.78 0.03 3.20 1032.65 6.67 7.10 6.68 ± 4.12 14.10
LR211 2 911.52 SAM 3.00 65.64 50.68 0.05 2.90 907.79 45.00 -0.41 43.02 ± 3.34 49.69

LRC101 14 1708.80 LL 19.00 21.46 35.54 0.00 14.20 1718.86 1.43 0.59 1.42 ± 0.93 2.25
LRC102 12 1558.07 SAM 19.00 42.46 58.13 0.01 12.20 1564.27 1.67 0.40 1.65 ± 1.08 3.49
LRC103 11 1258.74 LL 14.00 31.70 27.32 0.01 11.00 1258.74 0.00 0.00 0.00 ± 0.00 3.61
LRC104 10 1128.40 LL 13.00 39.24 30.10 0.01 10.00 1132.92 0.00 0.40 0.00 ± 0.00 4.74
LRC105 13 1637.62 LL 18.00 30.86 38.37 0.01 14.50 1710.63 11.54 4.46 11.45 ± 1.53 4.04
LRC106 11 1424.73 SAM 16.00 32.70 45.29 0.01 11.00 1428.20 0.00 0.24 0.00 ± 0.00 4.00
LRC107 11 1230.14 SAM 15.00 46.57 36.48 0.01 11.00 1230.14 0.00 -0.00 0.00 ± 0.00 3.33
LRC108 10 1147.43 SAM 13.00 29.22 29.99 0.01 10.00 1151.87 0.00 0.39 0.00 ± 0.00 3.56
LRC201 4 1406.94 SAM 6.00 85.25 51.20 0.01 4.00 1466.86 0.00 4.26 0.14 ± 0.01 5.96
LRC202 3 1374.27 LL 4.00 40.36 33.64 0.02 3.20 1378.49 6.67 0.31 6.39 ± 4.00 44.09
LRC203 3 1089.07 LL 5.00 100.45 67.85 0.03 3.20 1142.28 6.67 4.89 6.60 ± 4.04 13.99
LRC204 3 818.66 SAM 4.00 91.69 34.88 0.08 3.00 826.11 0.00 0.91 0.02 ± 0.02 29.69
LRC205 4 1302.20 LL 5.00 94.97 27.21 0.02 4.00 1360.39 0.00 4.47 0.14 ± 0.03 5.52
LRC206 3 1159.03 SAM 5.00 90.44 67.55 0.02 3.10 1189.51 3.33 2.63 3.31 ± 3.11 8.69
LRC207 3 1062.05 SAM 5.00 95.10 67.64 0.03 3.10 1090.57 3.33 2.69 3.31 ± 3.15 8.25
LRC208 3 852.76 LL 4.00 121.29 35.76 0.04 3.00 882.67 0.00 3.51 0.10 ± 0.08 13.05
Average 7.18 1036.78 - 9.45 50.86 37.06 0.02 7.30 1045.75 2.65 0.79 2.59 ± 0.70 17.86

62

Table A.2: Average results for 200 locations instances
BKS Initial Solution Final Solution

Instance #Vb Cost Ref. #Vi gapc(%) gapf(%) t(s) #Vf Cost gapv(%) gapc(%) gapf(%) σ(%) t(s)
LC1_2_1 20 2704.57 LL 20.00 6.98 0.05 0.03 20.00 2705.94 0.00 0.05 0.00 ± 0.00 5.74
LC1_2_2 19 2764.56 LL 20.00 48.58 5.58 0.04 19.00 2814.40 0.00 1.80 0.01 ± 0.00 16.01
LC1_2_3 17 3127.78 H 20.00 35.00 17.81 0.05 18.00 2773.30 5.88 -11.33 5.73 ± 0.00 38.96
LC1_2_4 17 2693.41 BVH 19.00 55.00 12.10 0.09 17.00 2709.44 0.00 0.60 0.00 ± 0.00 90.02
LC1_2_5 20 2702.05 LL 20.00 15.69 0.11 0.03 20.00 2765.41 0.00 2.34 0.02 ± 0.00 7.64
LC1_2_6 20 2701.04 LL 21.00 18.62 5.09 0.04 20.00 2701.04 0.00 0.00 0.00 ± 0.00 7.15
LC1_2_7 20 2701.04 LL 20.00 21.21 0.14 0.04 20.00 2702.13 0.00 0.04 0.00 ± 0.00 14.48
LC1_2_8 19 3379.97 EOE 22.00 34.73 15.96 0.04 20.00 2707.47 5.26 -19.90 5.04 ± 0.00 37.21
LC1_2_9 18 2724.24 LL 21.00 82.18 17.16 0.05 18.00 2724.48 0.00 0.01 0.00 ± 0.00 26.96
LC1_2_10 17 2942.13 EOE 20.00 55.00 17.97 0.07 18.00 2769.30 5.88 -5.87 5.78 ± 0.00 55.15
LC2_2_1 6 1931.44 LL 7.00 12.45 16.60 0.07 6.00 1931.44 0.00 0.00 0.00 ± 0.00 55.95
LC2_2_2 6 1881.40 LL 8.00 53.21 33.64 0.12 6.00 1881.40 0.00 0.00 0.00 ± 0.00 42.88
LC2_2_3 6 1844.33 SAM 8.00 96.07 34.28 0.16 6.00 1847.60 0.00 0.18 0.00 ± 0.00 52.71
LC2_2_4 6 1767.12 LL 8.00 85.16 34.09 0.33 6.10 1807.47 1.67 2.28 1.68 ± 1.63 176.02
LC2_2_5 6 1891.21 LL 7.00 40.11 17.03 0.09 6.00 1891.21 0.00 -0.00 0.00 ± 0.00 58.55
LC2_2_6 6 1857.78 SAM 7.00 72.73 17.52 0.14 6.00 1859.02 0.00 0.07 0.00 ± 0.00 61.59
LC2_2_7 6 1850.13 SAM 7.00 90.28 17.78 0.13 6.00 1857.30 0.00 0.39 0.01 ± 0.00 72.19
LC2_2_8 6 1824.34 LL 7.00 69.13 17.45 0.20 6.00 1824.51 0.00 0.01 0.00 ± 0.00 104.16
LC2_2_9 6 1854.21 SAM 8.00 79.93 34.04 0.17 6.00 1887.85 0.00 1.81 0.03 ± 0.02 66.03
LC2_2_10 6 1817.45 LL 7.00 63.56 17.37 0.26 6.00 1817.93 0.00 0.03 0.00 ± 0.00 83.37
LR1_2_1 20 4819.12 LL 26.00 33.49 30.04 0.03 20.50 4937.42 2.50 2.45 2.50 ± 0.81 11.80
LR1_2_2 17 4621.21 RP 23.00 35.52 35.30 0.04 18.30 4226.63 7.65 -8.54 7.43 ± 0.82 52.44
LR1_2_3 14 4402.38 CLS 19.00 25.00 35.55 0.06 15.80 3711.44 12.86 -15.69 12.42 ± 0.84 75.17
LR1_2_4 10 3030.03 H 15.00 55.72 50.09 0.14 11.60 2971.32 16.00 -1.94 15.73 ± 1.38 137.74
LR1_2_5 16 4760.18 BVH 23.00 24.95 43.47 0.03 17.10 4421.78 6.88 -7.11 6.67 ± 0.58 33.48
LR1_2_6 13 4800.94 CLS 19.00 18.23 45.65 0.06 14.80 4184.82 13.85 -12.83 13.36 ± 1.65 81.43
LR1_2_7 12 3550.61 RP 17.00 45.97 41.73 0.06 13.90 3341.93 15.83 -5.88 15.52 ± 1.65 103.23
LR1_2_8 9 2766.42 EOE 12.00 38.94 33.42 0.16 10.10 2741.74 12.22 -0.89 12.02 ± 0.98 90.82
LR1_2_9 13 5050.75 CLS 17.00 10.22 30.38 0.04 15.20 4266.51 16.92 -15.53 16.30 ± 0.86 58.77
LR1_2_10 11 3664.08 H 15.00 31.70 36.29 0.06 12.30 3635.88 11.82 -0.77 11.61 ± 1.22 62.95
LR2_2_1 5 4073.10 SAM 6.00 56.41 21.42 0.11 5.00 4266.22 0.00 4.74 0.19 ± 0.01 31.54
LR2_2_2 4 3796.00 SAM 6.00 68.78 50.85 0.21 5.40 4117.19 35.00 8.46 33.80 ± 3.96 166.24
LR2_2_3 4 3098.36 RP 6.00 116.17 52.47 0.35 4.60 3433.70 15.00 10.82 14.84 ± 3.41 292.59
LR2_2_4 3 2486.00 H 4.00 96.80 35.86 0.68 4.00 2393.46 33.33 -3.72 31.86 ± 0.04 499.03
LR2_2_5 4 3438.39 SAM 6.00 99.75 52.05 0.18 4.50 3615.46 12.50 5.15 12.20 ± 3.58 103.06
LR2_2_6 3 4518.93 H 5.00 46.82 65.28 0.22 4.10 3289.70 36.67 -27.20 32.19 ± 2.37 195.92
LR2_2_7 3 3098.35 H 4.00 72.33 35.25 0.41 4.00 2838.20 33.33 -8.40 31.28 ± 0.05 360.05
LR2_2_8 2 2455.87 H 4.00 53.14 97.29 1.17 3.00 2568.10 50.00 4.57 47.37 ± 0.04 448.99
LR2_2_9 3 3927.13 CLS 5.00 34.40 64.68 0.21 4.00 3413.90 33.33 -13.07 30.48 ± 0.09 101.73
LR2_2_10 3 3274.96 CLS 4.00 74.61 35.47 0.25 3.60 3429.74 20.00 4.73 19.21 ± 4.24 132.19
LRC1_2_1 19 3606.06 SAM 23.00 54.42 21.37 0.04 19.00 3722.21 0.00 3.22 0.03 ± 0.01 41.24
LRC1_2_2 15 3671.02 EOE 21.00 34.95 39.94 0.04 17.00 3466.20 13.33 -5.58 13.10 ± 0.01 90.27
LRC1_2_3 13 3154.92 CLS 16.00 40.12 23.28 0.06 14.10 3333.52 8.46 5.66 8.43 ± 0.70 96.63
LRC1_2_4 10 2631.82 RP 13.00 48.93 30.25 0.20 11.20 2629.96 12.00 -0.07 11.84 ± 1.18 95.62
LRC1_2_5 16 3715.81 BVH 21.00 51.56 31.48 0.04 16.40 3944.94 2.50 6.17 2.54 ± 0.99 48.04
LRC1_2_6 16 3572.16 EOE 23.00 59.07 43.92 0.04 17.00 3459.91 6.25 -3.14 6.15 ± 0.01 70.58
LRC1_2_7 14 3666.34 K 19.00 44.98 35.83 0.05 15.90 3503.27 13.57 -4.45 13.34 ± 1.12 95.80
LRC1_2_8 13 3161.06 H 19.00 61.93 46.34 0.05 14.00 3122.17 7.69 -1.23 7.59 ± 0.00 84.56
LRC1_2_9 13 3157.34 EOE 18.00 54.25 38.65 0.05 14.90 3161.21 14.62 0.12 14.44 ± 0.66 88.36

LRC1_2_10 12 2928.90 EOE 17.00 46.62 41.73 0.07 13.00 2929.88 8.33 0.03 8.23 ± 0.01 103.62
LRC2_2_1 6 3595.18 K 8.00 43.34 33.62 0.10 7.00 3217.20 16.67 -10.51 15.88 ± 0.05 39.82
LRC2_2_2 5 3158.25 H 7.00 85.51 41.39 0.17 6.10 3103.26 22.00 -1.74 21.27 ± 1.59 167.74
LRC2_2_3 4 2881.99 H 6.00 90.08 51.39 0.24 5.70 2666.42 42.50 -7.48 40.76 ± 2.63 240.43
LRC2_2_4 3 2849.43 H 5.00 39.71 65.44 0.54 4.00 2635.52 33.33 -7.51 31.48 ± 0.03 620.53
LRC2_2_5 5 2776.93 BVH 8.00 109.49 61.34 0.16 5.20 2917.10 4.00 5.05 4.03 ± 2.52 112.90
LRC2_2_6 5 2707.96 SAM 6.00 92.04 21.90 0.15 5.00 2748.69 0.00 1.50 0.04 ± 0.00 62.51
LRC2_2_7 4 3018.05 EOE 6.00 75.44 50.92 0.22 5.10 2690.28 27.50 -10.86 26.11 ± 1.92 197.27
LRC2_2_8 4 2399.89 EOE 5.00 93.51 27.00 0.32 4.00 2774.15 0.00 15.59 0.45 ± 0.05 82.47
LRC2_2_9 4 2208.49 RP 5.00 110.95 27.31 0.24 4.20 2597.32 5.00 17.61 5.34 ± 3.12 204.17

LRC2_2_10 3 2437.88 H 5.00 89.93 67.57 0.37 4.00 2261.90 33.33 -7.22 31.75 ± 0.06 214.35
Average 10.00 3064.87 - 12.73 56.69 33.75 0.16 10.75 2977.81 11.26 -1.88 10.80 ± 0.78 114.48

63

Table A.3: Average results for 400 locations instances
BKS Initial Solution Final Solution

Instance #Vb Cost Ref. #Vi gapc(%) gapf(%) t(s) #Vf Cost gapv(%) gapc(%) gapf(%) σ(%) t(s)
LC1_4_1 40 7152.06 SAM 40.00 13.91 0.06 0.17 40.00 7152.06 0.00 0.00 0.00 ± 0.00 14.20
LC1_4_2 38 8007.79 Q 45.00 43.37 18.55 0.22 40.00 7238.68 5.26 -9.60 5.19 ± 0.00 94.64
LC1_4_3 32 9252.95 CLS 40.00 26.53 25.01 0.29 37.20 7428.31 16.25 -19.72 15.99 ± 0.25 195.99
LC1_4_4 30 6451.68 LL 36.00 48.68 20.15 0.45 31.40 6915.64 4.67 7.19 4.68 ± 0.36 329.94
LC1_4_5 40 7150.00 SAM 40.00 18.98 0.08 0.20 40.00 7151.31 0.00 0.02 0.00 ± 0.00 23.28
LC1_4_6 40 7154.02 LL 42.00 35.22 5.13 0.18 40.00 7197.02 0.00 0.60 0.00 ± 0.00 22.67
LC1_4_7 40 7149.43 SAM 41.00 27.26 2.61 0.20 40.00 7559.94 0.00 5.74 0.03 ± 0.00 19.41
LC1_4_8 39 7111.16 LL 42.00 41.32 7.84 0.20 39.00 7313.15 0.00 2.84 0.01 ± 0.00 42.19
LC1_4_9 36 7451.20 Q 42.00 62.27 16.90 0.28 37.00 7478.73 2.78 0.37 2.77 ± 0.00 82.08
LC1_4_10 35 7325.01 CLS 42.00 66.01 20.24 0.28 36.00 7229.33 2.86 -1.31 2.84 ± 0.00 104.94
LC2_4_1 12 4116.33 LL 14.00 58.97 17.03 0.40 12.00 4116.33 0.00 0.00 0.00 ± 0.00 84.57
LC2_4_2 12 4144.29 SAM 15.00 91.41 25.57 0.64 12.60 4231.53 5.00 2.11 4.98 ± 0.91 202.60
LC2_4_3 12 4418.88 CLS 15.00 117.97 25.85 0.94 13.00 4102.07 8.33 -7.17 8.19 ± 0.00 447.87
LC2_4_4 12 3743.95 LL 14.00 106.34 17.36 1.91 13.00 4436.96 8.33 18.51 8.41 ± 0.01 1631.23
LC2_4_5 12 4030.63 SAM 16.00 111.06 33.98 0.55 12.00 4035.93 0.00 0.13 0.00 ± 0.00 158.39
LC2_4_6 12 3900.29 SAM 14.00 82.50 17.20 0.66 12.00 3912.41 0.00 0.31 0.00 ± 0.00 194.77
LC2_4_7 12 3962.51 BVH 15.00 113.30 25.72 0.77 12.00 3977.15 0.00 0.37 0.00 ± 0.00 273.77
LC2_4_8 12 3844.45 LL 14.00 93.96 17.28 0.78 12.00 3851.50 0.00 0.18 0.00 ± 0.00 346.39
LC2_4_9 12 4188.93 RP 15.00 95.44 25.61 0.88 13.00 4432.44 8.33 5.81 8.31 ± 0.00 436.21
LC2_4_10 12 3828.44 BVH 14.00 105.03 17.37 0.94 12.00 3841.93 0.00 0.35 0.00 ± 0.00 409.29
LR1_4_1 40 10639.75 SAM 50.00 48.29 25.15 0.17 40.00 10988.31 0.00 3.28 0.02 ± 0.00 74.42
LR1_4_2 31 9968.19 BN 41.00 44.78 32.36 0.27 34.40 9887.53 10.97 -0.81 10.87 ± 0.33 215.73
LR1_4_3 22 9291.25 CLS 33.00 30.08 49.79 0.37 27.20 8317.27 23.64 -10.48 23.28 ± 0.34 459.79
LR1_4_4 16 6710.99 CLS 24.00 53.90 50.04 0.68 19.40 6675.91 21.25 -0.52 21.02 ± 0.59 578.37
LR1_4_5 28 11374.06 CLS 39.00 23.51 39.13 0.20 33.20 10060.52 18.57 -11.55 18.27 ± 0.53 85.79
LR1_4_6 24 9891.02 CLS 34.00 35.99 41.61 0.30 28.80 9221.67 20.00 -6.77 19.73 ± 0.61 218.01
LR1_4_7 18 8999.97 CLS 28.00 38.39 55.34 0.40 24.40 7715.49 35.56 -14.27 34.94 ± 0.98 417.47
LR1_4_8 14 5944.55 H 20.00 53.34 42.97 0.78 17.60 6393.23 25.71 7.55 25.52 ± 0.65 455.75
LR1_4_9 24 9862.65 CLS 33.00 35.50 37.48 0.27 28.40 9529.36 18.33 -3.38 18.11 ± 0.40 237.94
LR1_4_10 20 8364.66 CLS 27.00 41.62 35.07 0.34 23.40 8063.67 17.00 -3.60 16.79 ± 0.49 331.12
LR2_4_1 8 9726.88 BVH 12.00 71.55 50.64 0.69 9.20 9761.06 15.00 0.35 14.57 ± 1.01 452.44
LR2_4_2 7 9440.93 EOE 10.00 56.49 43.30 1.16 9.00 8242.79 28.57 -12.69 27.23 ± 1.62 864.93
LR2_4_3 5 10658.64 CLS 9.00 35.02 77.72 2.16 8.80 7288.25 76.00 -31.62 70.55 ± 1.08 2442.19
LR2_4_4 4 6404.87 H 7.00 62.13 74.50 8.21 6.00 5905.46 50.00 -7.80 47.78 ± 0.01 6432.21
LR2_4_5 6 10084.44 Q 9.00 41.90 49.67 1.12 8.20 8674.45 36.67 -13.98 34.62 ± 1.13 923.15
LR2_4_6 5 9044.03 EOE 8.00 51.17 59.62 1.64 7.60 7826.57 52.00 -13.46 49.17 ± 1.45 2250.79
LR2_4_7 5 6729.67 EOE 7.00 92.50 41.71 3.04 6.00 6710.38 20.00 -0.29 19.34 ± 0.03 5600.59
LR2_4_8 4 5330.41 H 6.00 76.39 50.85 10.54 5.00 5723.83 25.00 7.38 24.43 ± 0.02 7714.39
LR2_4_9 6 7930.55 Q 10.00 80.75 67.12 1.19 8.00 7162.81 33.33 -9.68 31.96 ± 0.03 1187.85
LR2_4_10 5 7846.99 EOE 9.00 86.46 80.24 1.61 7.20 7401.74 44.00 -5.67 42.12 ± 1.27 1923.58
LRC1_4_1 36 9124.52 CLS 45.00 44.72 25.12 0.18 37.00 9200.78 2.78 0.84 2.77 ± 0.00 140.46
LRC1_4_2 31 8346.06 RP 41.00 58.62 32.43 0.26 34.40 8106.64 10.97 -2.87 10.88 ± 0.33 295.90
LRC1_4_3 24 7856.72 CLS 31.00 40.12 29.26 0.41 28.40 7541.69 18.33 -4.01 18.15 ± 0.40 378.90
LRC1_4_4 19 5806.20 DK 26.00 63.98 37.05 0.62 21.20 6349.16 11.58 9.35 11.56 ± 0.44 490.42
LRC1_4_5 32 8867.38 DK 43.00 46.44 34.46 0.20 35.40 8905.91 10.62 0.43 10.55 ± 0.33 116.14
LRC1_4_6 30 8396.08 DK 39.00 48.19 30.13 0.22 33.60 8230.63 12.00 -1.97 11.90 ± 0.34 171.78
LRC1_4_7 28 8037.87 DK 38.00 45.61 35.78 0.25 31.60 8090.20 12.86 0.65 12.77 ± 0.36 201.12
LRC1_4_8 26 8173.63 CLS 35.00 43.73 34.69 0.26 30.20 7778.33 16.15 -4.84 15.99 ± 0.31 237.12
LRC1_4_9 25 8181.32 CLS 35.00 44.62 40.04 0.25 28.60 8059.21 14.40 -1.49 14.27 ± 0.40 252.92

LRC1_4_10 23 7222.97 CLS 32.00 51.13 39.22 0.30 26.20 7237.41 13.91 0.20 13.81 ± 0.67 375.86
LRC2_4_1 12 7454.14 Q 16.00 95.62 34.29 0.54 14.20 6874.34 18.33 -7.78 17.93 ± 0.66 310.67
LRC2_4_2 10 7424.72 Q 14.00 84.56 40.81 0.94 13.40 6737.12 34.00 -9.26 33.21 ± 1.39 946.27
LRC2_4_3 8 6576.48 CLS 13.00 102.92 63.31 2.13 11.40 5955.03 42.50 -9.45 41.45 ± 1.00 2495.38
LRC2_4_4 5 5322.43 RP 9.00 82.10 80.05 6.80 8.00 4404.63 60.00 -17.24 58.00 ± 0.00 9289.78
LRC2_4_5 10 7462.66 CLS 15.00 99.80 50.91 0.66 11.60 6448.38 16.00 -13.59 15.46 ± 0.98 609.74
LRC2_4_6 9 6337.08 Q 13.00 112.31 45.62 0.77 11.60 6179.41 28.89 -2.49 28.35 ± 0.98 796.49
LRC2_4_7 8 6322.35 H 12.00 103.69 51.04 0.99 9.20 6123.99 15.00 -3.14 14.65 ± 1.01 915.52
LRC2_4_8 7 5814.93 Q 11.00 121.86 58.46 1.21 8.60 5624.92 22.86 -3.27 22.33 ± 1.33 990.13
LRC2_4_9 6 6666.94 H 10.00 77.50 66.96 1.26 9.20 5553.57 53.33 -16.70 51.44 ± 1.02 1709.97

LRC2_4_10 6 5585.18 Q 9.00 108.65 51.33 1.53 7.60 5192.02 26.67 -7.04 25.90 ± 1.48 2010.20
Average 18.95 7226.80 - 24.32 64.92 37.08 1.10 21.12 6895.77 17.91 -3.58 17.38 ± 0.46 1011.93

64

Table A.4: Average results for 600 locations instances
BKS Initial Solution Final Solution

Instance #Vb Cost Ref. #Vi gapc(%) gapf(%) t(s) #Vf Cost gapv(%) gapc(%) gapf(%) σ(%) t(s)
LC1_6_1 60 14095.60 LL 64.00 23.32 6.73 0.55 60.00 14098.06 0.00 0.02 0.00 ± 0.00 48.30
LC1_6_2 57 15048.16 CLS 75.00 59.58 31.70 0.68 59.00 14237.48 3.51 -5.39 3.47 ± 0.00 154.32
LC1_6_3 50 14683.43 RP 64.00 43.89 28.08 0.84 53.80 14366.28 7.60 -2.16 7.55 ± 0.17 435.69
LC1_6_4 47 13648.03 RP 56.00 45.07 19.27 1.35 49.20 13535.37 4.68 -0.83 4.65 ± 0.36 555.02
LC1_6_5 60 14086.30 LL 60.00 18.33 0.07 0.57 60.00 14197.37 0.00 0.79 0.00 ± 0.00 63.21
LC1_6_6 60 14090.79 RP 62.00 25.90 3.42 0.58 60.00 14235.14 0.00 1.02 0.00 ± 0.00 59.67
LC1_6_7 60 14083.76 SAM 60.00 23.31 0.09 0.58 60.00 14439.80 0.00 2.53 0.01 ± 0.00 92.71
LC1_6_8 58 14880.70 CLS 68.00 53.02 17.39 0.66 59.00 15035.42 1.72 1.04 1.72 ± 0.00 96.63
LC1_6_9 54 14661.73 CLS 65.00 56.15 20.53 0.80 55.80 14767.32 3.33 0.72 3.32 ± 0.17 189.26
LC1_6_10 52 15204.30 CLS 62.00 45.54 19.36 0.92 55.20 14811.99 6.15 -2.58 6.11 ± 0.17 306.95
LC2_6_1 19 7977.98 SAM 21.00 73.45 10.96 1.27 19.00 7977.98 0.00 -0.00 0.00 ± 0.00 179.07
LC2_6_2 18 9914.10 Q 24.00 92.14 33.87 1.59 19.00 8254.01 5.56 -16.74 5.35 ± 0.00 451.38
LC2_6_3 17 8718.22 Q 21.00 53.02 23.78 2.46 18.00 7461.78 5.88 -14.41 5.71 ± 0.00 702.78
LC2_6_4 17 7902.66 Q 20.00 94.26 18.24 5.12 18.00 8248.77 5.88 4.38 5.87 ± 0.00 2241.85
LC2_6_5 19 8047.37 BVH 23.00 84.29 21.50 1.51 19.20 8102.45 1.05 0.68 1.05 ± 0.49 485.96
LC2_6_6 18 8859.78 CLS 22.00 92.35 22.79 1.89 19.00 8217.35 5.56 -7.25 5.45 ± 0.00 543.59
LC2_6_7 19 7997.96 Q 23.00 123.48 21.77 1.79 19.00 8074.56 0.00 0.96 0.01 ± 0.00 720.52
LC2_6_8 18 7579.93 RP 21.00 109.02 17.31 2.16 18.00 7742.78 0.00 2.15 0.01 ± 0.00 915.54
LC2_6_9 18 8864.29 Q 22.00 91.57 22.79 2.25 19.00 8207.71 5.56 -7.41 5.45 ± 0.00 905.19
LC2_6_10 17 7965.41 Q 20.00 67.46 18.03 2.94 18.00 7502.65 5.88 -5.81 5.79 ± 0.00 961.17
LR1_6_1 59 22824.32 CLS 67.00 47.38 13.78 0.66 60.20 23800.82 2.03 4.28 2.05 ± 0.45 309.67
LR1_6_2 45 20246.18 RP 56.00 53.34 24.66 1.00 48.20 20880.43 7.11 3.13 7.08 ± 0.36 557.91
LR1_6_3 37 17987.49 CLS 44.00 55.57 19.21 1.63 38.40 18910.09 3.78 5.13 3.79 ± 0.30 1266.60
LR1_6_4 28 13191.79 CLS 34.00 66.85 21.78 4.10 29.00 14058.73 3.57 6.57 3.59 ± 0.00 2259.25
LR1_6_5 38 22489.30 CLS 52.00 31.12 36.79 0.80 46.60 21766.33 22.63 -3.21 22.38 ± 0.25 312.86
LR1_6_6 31 22188.80 CLS 46.00 32.95 48.21 1.08 40.40 19819.52 30.32 -10.68 29.84 ± 0.46 939.20
LR1_6_7 24 18531.68 CLS 35.00 28.34 45.61 1.60 33.20 16059.14 38.33 -13.34 37.68 ± 0.28 1375.38
LR1_6_8 18 12255.29 CLS 29.00 51.15 61.00 4.23 23.60 12256.80 31.11 0.01 30.76 ± 0.48 2394.36
LR1_6_9 32 21117.75 CLS 45.00 32.60 40.54 0.86 39.40 20073.20 23.12 -4.95 22.82 ± 0.61 450.73
LR1_6_10 26 19028.25 CLS 37.00 33.03 42.20 1.13 32.80 18011.07 26.15 -5.35 25.77 ± 0.53 1124.68
LR2_6_1 11 21945.30 RP 16.00 52.08 45.67 2.35 12.80 19175.86 16.36 -12.62 15.43 ± 1.35 1143.47
LR2_6_2 9 23903.03 CLS 15.00 40.00 65.54 3.62 13.00 15706.10 44.44 -34.29 41.11 ± 0.00 2483.07
LR2_6_3 7 19183.41 CLS 11.00 45.83 56.65 6.60 11.00 15220.83 57.14 -20.66 53.74 ± 0.01 8628.04
LR2_6_4 6 10819.45 RP 9.00 93.25 51.26 26.52 8.00 12093.77 33.33 11.78 32.70 ± 0.04 18880.96
LR2_6_5 9 19411.73 CLS 13.00 58.88 44.95 3.34 12.00 17484.45 33.33 -9.93 31.83 ± 0.02 2304.02
LR2_6_6 7 22570.45 CLS 12.00 39.59 69.80 4.78 11.00 15312.07 57.14 -32.16 52.59 ± 0.00 5721.55
LR2_6_7 6 15526.81 CLS 11.00 90.26 83.62 10.17 10.00 14912.88 66.67 -3.95 63.75 ± 0.03 14729.37
LR2_6_8 5 10950.90 RP 7.00 95.83 41.97 16.70 6.00 11879.64 20.00 8.48 19.59 ± 0.00 23389.19
LR2_6_9 8 18799.36 RP 13.00 61.73 62.47 3.76 11.00 14981.90 37.50 -20.31 35.32 ± 0.00 3093.35
LR2_6_10 7 17034.63 RP 10.00 55.38 43.35 5.29 9.60 15960.17 37.14 -6.31 35.45 ± 1.16 3115.23
LRC1_6_1 52 18312.60 CLS 65.00 49.39 25.14 0.67 55.20 18162.99 6.15 -0.82 6.11 ± 0.17 495.32
LRC1_6_2 43 17063.21 CLS 57.00 53.92 32.70 1.02 48.60 16651.81 13.02 -2.41 12.92 ± 0.49 929.90
LRC1_6_3 36 14060.31 RP 43.00 71.45 19.78 1.93 38.00 15173.70 5.56 7.92 5.57 ± 0.39 1376.26
LRC1_6_4 25 10950.52 RP 30.00 64.69 20.32 4.98 26.80 11986.21 7.20 9.46 7.22 ± 0.35 2817.18
LRC1_6_5 46 17067.17 CLS 60.00 57.64 30.60 1.43 49.80 17452.85 8.26 2.26 8.22 ± 0.35 439.06
LRC1_6_6 42 17405.48 CLS 57.00 56.72 35.86 0.82 47.80 17132.22 13.81 -1.57 13.70 ± 0.37 502.40
LRC1_6_7 38 15609.86 CLS 51.00 60.37 34.39 0.87 43.60 15922.78 14.74 2.00 14.65 ± 0.55 866.65
LRC1_6_8 33 15919.78 CLS 46.00 57.58 39.54 0.93 39.60 15635.47 20.00 -1.79 19.83 ± 0.29 746.23
LRC1_6_9 34 15236.23 CLS 45.00 61.66 32.57 1.15 40.00 15179.70 17.65 -0.37 17.51 ± 0.83 971.98

LRC1_6_10 29 14607.38 CLS 42.00 53.71 44.90 1.01 35.20 14305.47 21.38 -2.07 21.18 ± 0.50 780.45
LRC2_6_1 16 14782.39 EOE 22.00 105.24 38.53 1.82 19.80 13787.87 23.75 -6.73 23.29 ± 1.16 1214.39
LRC2_6_2 13 13958.91 EOE 19.00 111.98 47.31 3.01 16.20 12100.90 24.62 -13.31 23.95 ± 1.08 2097.50
LRC2_6_3 10 12741.64 EOE 14.00 109.33 41.44 10.36 13.00 10644.20 30.00 -16.46 29.03 ± 0.00 7057.32
LRC2_6_4 7 10536.79 EOE 11.00 106.43 58.35 26.42 10.00 11004.04 42.86 4.43 41.92 ± 0.02 29709.58
LRC2_6_5 13 14886.35 EOE 21.00 93.35 62.13 2.78 17.60 12663.15 35.38 -14.93 34.44 ± 0.65 2154.25
LRC2_6_6 12 15315.05 EOE 20.00 103.00 67.42 2.42 14.80 13807.69 23.33 -9.84 22.64 ± 1.18 1528.62
LRC2_6_7 10 15032.16 EOE 17.00 84.91 70.36 3.38 15.00 12393.18 50.00 -17.56 48.35 ± 0.00 3124.05
LRC2_6_8 9 13836.07 EOE 15.00 88.45 67.21 3.67 12.40 11302.06 37.78 -18.31 36.38 ± 0.92 3362.97
LRC2_6_9 9 13464.16 EOE 14.00 104.78 56.75 3.05 11.00 11600.16 22.22 -13.84 21.34 ± 0.01 3645.81

LRC2_6_10 7 14141.16 EOE 12.00 61.67 71.11 4.76 11.00 11647.15 57.14 -17.64 54.71 ± 0.00 4284.72
Average 27.25 14887.39 - 34.60 64.94 36.22 3.45 30.33 14007.19 18.81 -4.97 18.20 ± 0.28 2878.21

65

Table A.5: Average results for 800 locations instances
BKS Initial Solution Final Solution

Instance #Vb Cost Ref. #Vi gapc(%) gapf(%) t(s) #Vf Cost gapv(%) gapc(%) gapf(%) σ(%) t(s)
LC1_8_1 80 25184.38 SAM 80.00 17.84 0.07 1.29 80.00 25401.59 0.00 0.86 0.00 ± 0.00 113.30
LC1_8_2 77 26864.13 CLS 96.00 62.31 24.84 1.56 80.00 25936.49 3.90 -3.45 3.86 ± 0.00 407.06
LC1_8_3 63 27459.81 CLS 78.00 25.03 23.82 2.02 72.60 25892.34 15.24 -5.71 15.12 ± 0.16 810.16
LC1_8_4 60 22943.54 CLS 70.00 39.68 16.78 3.06 63.20 23827.18 5.33 3.85 5.33 ± 0.28 744.81
LC1_8_5 80 25211.22 SAM 80.00 17.70 0.07 1.34 80.00 25331.30 0.00 0.48 0.00 ± 0.00 110.97
LC1_8_6 80 25164.25 SAM 83.00 29.74 3.85 1.34 80.00 26092.09 0.00 3.69 0.01 ± 0.00 154.31
LC1_8_7 80 25158.38 SAM 81.00 30.97 1.37 1.38 80.20 25468.26 0.25 1.23 0.25 ± 0.12 131.29
LC1_8_8 78 25348.45 RP 91.00 64.46 16.86 1.38 79.60 26056.24 2.05 2.79 2.05 ± 0.15 237.36
LC1_8_9 72 26360.69 CLS 84.00 42.02 16.78 1.70 75.80 26948.77 5.28 2.23 5.26 ± 0.12 297.98
LC1_8_10 70 26811.45 CLS 84.00 47.35 20.13 1.88 74.00 26608.03 5.71 -0.76 5.68 ± 0.20 371.70
LC2_8_1 24 11687.06 SAM 27.00 52.97 12.74 3.14 24.00 11793.77 0.00 0.91 0.01 ± 0.00 226.69
LC2_8_2 24 13990.57 EOE 31.00 68.85 29.45 4.21 25.00 12620.78 4.17 -9.79 4.07 ± 0.00 1146.81
LC2_8_3 24 13195.83 EOE 31.00 106.16 29.69 5.47 25.00 12535.35 4.17 -5.01 4.10 ± 0.00 3777.52
LC2_8_4 23 13376.82 RP 29.00 83.20 26.50 10.42 24.00 12537.57 4.35 -6.27 4.27 ± 0.00 3257.31
LC2_8_5 25 12298.33 EOE 30.00 93.60 20.45 3.33 25.00 12361.32 0.00 0.51 0.00 ± 0.00 520.66
LC2_8_6 24 12645.72 EOE 30.00 123.55 25.64 3.76 25.20 12417.26 5.00 -1.81 4.96 ± 0.37 1042.15
LC2_8_7 25 11854.44 CLS 31.00 105.35 24.48 4.52 25.00 12143.40 0.00 2.44 0.01 ± 0.00 777.70
LC2_8_8 24 11454.33 CLS 30.00 120.51 25.57 4.45 24.20 11916.20 0.83 4.03 0.85 ± 0.39 1009.01
LC2_8_9 24 11629.41 CLS 30.00 124.52 25.60 4.43 24.00 11782.16 0.00 1.31 0.01 ± 0.00 989.86
LC2_8_10 23 12459.43 EOE 29.00 92.98 26.54 5.67 24.20 11912.38 5.22 -4.39 5.15 ± 0.39 1713.21
LR1_8_1 80 39292.13 CLS 88.00 61.79 10.32 1.61 80.20 41508.91 0.25 5.64 0.28 ± 0.12 353.92
LR1_8_2 59 34325.92 CLS 72.00 61.94 22.32 2.36 63.00 35553.01 6.78 3.57 6.76 ± 0.47 948.88
LR1_8_3 44 29676.42 CLS 57.00 64.99 29.84 4.40 50.20 29917.95 14.09 0.81 13.98 ± 0.19 4010.71
LR1_8_4 25 21189.75 CLS 37.00 59.92 48.12 8.94 32.60 21878.47 30.40 3.25 30.12 ± 0.73 7349.16
LR1_8_5 49 39624.94 CLS 69.00 28.58 40.69 1.83 62.80 37040.42 28.16 -6.52 27.82 ± 0.37 417.17
LR1_8_6 40 35042.41 CLS 57.00 49.27 42.57 2.60 52.80 33200.06 32.00 -5.26 31.60 ± 0.33 2223.11
LR1_8_7 30 28252.49 CLS 44.00 51.10 46.72 3.99 41.80 27099.19 39.33 -4.08 38.83 ± 0.55 2025.28
LR1_8_8 20 20037.07 CLS 30.00 58.49 50.11 7.92 28.20 20366.18 41.00 1.64 40.51 ± 0.33 6928.47
LR1_8_9 40 40077.86 CLS 55.00 20.28 37.29 2.17 51.80 35615.08 29.50 -11.14 29.00 ± 0.34 597.73
LR1_8_10 31 32241.06 CLS 43.00 27.32 38.56 2.66 40.40 29750.05 30.32 -7.73 29.83 ± 0.28 1013.22
LR2_8_1 14 46452.00 CLS 22.00 34.22 56.23 5.55 18.40 30957.02 31.43 -33.36 28.85 ± 0.63 2481.96
LR2_8_2 12 32575.97 RP 18.00 63.72 50.45 9.86 17.00 26834.31 41.67 -17.63 39.72 ± 0.01 5998.20

LR2_8_3• 9 30151.50 EOE 14.00 50.61 55.36 23.95 14.00 23469.11 55.56 -22.16 52.43 ± 0.00 17036.43
LR2_8_4• 6 24285.15 CLS 10.00 45.42 65.64 96.01 10.00 21125.05 66.67 -13.01 62.83 ± 0.00 63054.35
LR2_8_5 11 37332.53 CLS 16.00 42.24 45.32 7.21 15.00 30563.84 36.36 -18.13 34.15 ± 0.02 3705.67
LR2_8_6 9 29832.94 EOE 15.00 71.28 66.85 14.02 14.00 25519.90 55.56 -14.46 52.77 ± 0.01 8814.73

LR2_8_7• 7 27499.87 EOE 12.00 55.17 70.67 43.25 11.00 24260.42 57.14 -11.78 53.92 ± 0.00 25443.85
LR2_8_8• 5 19256.79 RP 9.00 66.42 79.38 70.76 8.00 18504.01 60.00 -3.91 57.06 ± 0.00 68343.16
LR2_8_9 10 30791.77 RP 16.00 67.89 60.29 9.87 15.00 27117.35 50.00 -11.93 47.70 ± 0.01 4746.50
LR2_8_10 9 28265.24 RP 13.00 64.16 45.19 10.95 13.00 29344.71 44.44 3.82 42.91 ± 0.01 6626.80
LRC1_8_1 66 32302.57 CLS 86.00 59.65 30.48 1.56 72.20 33569.91 9.39 3.92 9.36 ± 0.38 676.19
LRC1_8_2 56 28042.91 CLS 77.00 63.71 37.66 2.51 61.80 29586.46 10.36 5.50 10.33 ± 0.50 1279.79
LRC1_8_3 48 24693.73 CLS 62.00 70.11 29.43 4.09 55.20 26355.51 15.00 6.73 14.95 ± 0.32 3022.48
LRC1_8_4 34 18712.08 EOE 40.00 66.98 17.98 8.37 37.00 20153.09 8.82 7.70 8.82 ± 0.40 6342.52
LRC1_8_5 58 31457.69 CLS 78.00 51.53 34.60 1.90 68.00 33606.19 17.24 6.83 17.17 ± 0.65 465.86
LRC1_8_6 54 29836.27 CLS 73.00 53.90 35.31 1.98 63.40 30051.63 17.41 0.72 17.29 ± 0.44 609.09
LRC1_8_7 51 28705.17 CLS 67.00 57.13 31.55 2.00 58.00 29544.51 13.73 2.92 13.65 ± 0.44 640.88
LRC1_8_8 45 27374.52 CLS 61.00 59.39 35.74 2.34 55.40 27856.12 23.11 1.76 22.95 ± 0.21 870.22
LRC1_8_9 44 25980.07 CLS 58.00 56.41 32.00 2.29 52.20 26367.41 18.64 1.49 18.51 ± 0.60 972.62

LRC1_8_10 40 24582.28 CLS 56.00 60.96 40.16 2.47 47.40 25560.29 18.50 3.98 18.39 ± 0.51 1009.94
LRC2_8_1 20 23157.34 CLS 30.00 120.76 51.01 4.83 24.40 22733.81 22.00 -1.83 21.66 ± 1.30 1869.54
LRC2_8_2 17 22686.62 CLS 26.00 118.38 54.01 8.23 22.00 21146.21 29.41 -6.79 28.82 ± 0.00 4397.41

LRC2_8_3• 14 21651.20 CLS 20.00 93.56 43.82 14.14 19.00 19117.81 35.71 -11.70 34.82 ± 0.00 13464.57
LRC2_8_4• 11 16149.39 EOE 15.00 93.73 37.40 48.21 15.00 16582.77 36.36 2.68 35.76 ± 0.00 93746.74
LRC2_8_5 16 24404.69 CLS 27.00 114.50 69.61 6.21 21.00 22075.18 31.25 -9.55 30.49 ± 0.00 2747.64
LRC2_8_6 15 22992.93 EOE 23.00 101.71 54.24 6.57 19.00 20783.70 26.67 -9.61 25.98 ± 0.00 2963.34
LRC2_8_7 14 23391.20 EOE 23.00 116.14 65.35 7.22 18.00 19153.42 28.57 -18.12 27.62 ± 0.01 5118.94
LRC2_8_8 12 20934.68 EOE 21.00 103.94 75.62 8.56 17.00 18700.34 41.67 -10.67 40.55 ± 0.00 7467.82
LRC2_8_9 11 20444.00 EOE 18.00 103.70 64.55 9.09 15.00 18996.02 36.36 -7.08 35.38 ± 0.01 5384.56

LRC2_8_10 9 21005.25 EOE 15.00 85.04 67.19 10.39 15.00 18563.98 66.67 -11.62 64.45 ± 0.01 8754.33
Average 35.42 24930.11 - 44.97 67.41 37.35 9.15 40.10 23828.53 21.98 -3.63 21.32 ± 0.21 6862.73

Note: Names of instances denoted with name• have been run only one time, because of their potentially long computation time.

66

Table A.6: Average results for 1000 locations instances
BKS Initial Solution Final Solution

Instance #Vb Cost Ref. #Vi gapc(%) gapf(%) t(s) #Vf Cost gapv(%) gapc(%) gapf(%) σ(%) t(s)
LC1_10_1 100 42488.66 SAM 100.00 14.14 0.07 2.31 100.00 43373.32 0.00 2.08 0.01 ± 0.00 143.50
LC1_10_2 94 45238.29 CLS 117.00 44.18 24.59 2.60 97.60 43895.90 3.83 -2.97 3.79 ± 0.12 420.89
LC1_10_3 80 45175.07 CLS 100.00 31.33 25.04 3.49 89.80 42560.93 12.25 -5.79 12.12 ± 0.20 1045.48
LC1_10_4 74 38376.00 CLS 87.00 28.10 17.64 4.77 79.20 39328.99 7.03 2.48 7.00 ± 0.12 1251.60
LC1_10_5 100 42477.40 SAM 100.00 15.72 0.08 2.50 100.00 43864.44 0.00 3.27 0.02 ± 0.00 234.42
LC1_10_6 101 42838.39 SAM 107.00 28.89 6.06 2.42 101.00 43499.55 0.00 1.54 0.01 ± 0.00 185.04
LC1_10_7 100 42854.99 SAM 103.00 23.80 3.11 2.53 100.60 43845.07 0.60 2.31 0.61 ± 0.12 155.68
LC1_10_8 98 42951.56 RP 111.00 44.05 13.43 2.42 100.20 44154.11 2.24 2.80 2.25 ± 0.09 322.58
LC1_10_9 91 43426.76 CLS 109.00 51.04 19.97 2.89 94.80 44067.76 4.18 1.48 4.16 ± 0.19 435.34

LC1_10_10 88 42873.50 CLS 103.00 46.34 17.22 3.04 92.60 43367.14 5.23 1.15 5.20 ± 0.13 846.90
LC2_10_1 30 16879.24 SAM 34.00 43.07 13.54 5.70 30.00 16879.24 0.00 0.00 0.00 ± 0.00 290.12
LC2_10_2 31 18980.98 RP 39.00 70.76 26.15 7.49 32.40 17999.86 4.52 -5.17 4.44 ± 0.36 1913.80
LC2_10_3 30 17772.49 RP 37.00 93.47 23.85 9.71 31.60 17798.29 5.33 0.15 5.30 ± 0.37 3382.27
LC2_10_4 29 18089.98 RP 35.00 76.38 21.12 17.11 32.00 19705.29 10.34 8.93 10.33 ± 0.00 5965.67
LC2_10_5 31 17137.53 RP 38.00 76.16 22.95 5.98 31.00 17437.32 0.00 1.75 0.01 ± 0.00 915.95
LC2_10_6 31 17198.01 RP 38.00 97.45 23.10 7.16 31.00 17509.16 0.00 1.81 0.01 ± 0.00 1055.11
LC2_10_7 31 19117.67 RP 38.00 81.47 23.03 6.57 32.00 18128.56 3.23 -5.17 3.16 ± 0.00 1998.26
LC2_10_8 30 17015.41 CLS 37.00 111.23 23.95 7.63 30.00 17557.63 0.00 3.19 0.02 ± 0.00 1369.80
LC2_10_9 30 20057.42 CLS 39.00 97.32 30.56 9.09 31.40 18013.26 4.67 -10.19 4.54 ± 0.37 1513.33

LC2_10_10 29 17425.55 RP 36.00 80.69 24.56 10.02 30.40 17932.10 4.83 2.91 4.81 ± 0.38 2657.55
LR1_10_1 100 56875.21 CLS 106.00 57.88 6.37 2.99 100.00 61016.83 0.00 7.28 0.05 ± 0.00 610.37
LR1_10_2 80 49627.16 CLS 83.00 56.71 4.16 4.08 80.00 51888.55 0.00 4.56 0.04 ± 0.00 1169.33
LR1_10_3 54 42124.44 RP 67.00 62.76 24.45 8.14 61.40 44267.68 13.70 5.09 13.62 ± 0.19 3381.62
LR1_10_4 28 31617.58 CLS 43.00 54.95 53.59 16.82 39.00 31769.20 39.29 0.48 38.75 ± 0.00 5712.96
LR1_10_5 59 60616.90 CLS 85.00 26.39 43.84 3.68 77.80 56083.72 31.86 -7.48 31.37 ± 0.44 1438.18
LR1_10_6 48 51842.12 CLS 69.00 32.08 43.59 4.94 64.00 46847.02 33.33 -9.64 32.76 ± 0.00 3389.25
LR1_10_7 36 40127.52 CLS 53.00 52.21 47.29 7.97 49.00 37896.55 36.11 -5.56 35.54 ± 0.00 3257.60
LR1_10_8 26 29099.22 CLS 40.00 66.42 54.02 16.02 36.00 30799.76 38.46 5.84 38.01 ± 0.00 6677.52
LR1_10_9 49 53353.22 CLS 70.00 34.30 42.74 4.16 63.80 51495.58 30.20 -3.48 29.75 ± 0.15 724.66

LR1_10_10 39 47290.00 CLS 53.00 28.79 35.79 4.82 49.00 45086.82 25.64 -4.66 25.19 ± 0.52 1186.52
LR2_10_1 18 56089.88 CLS 27.00 47.98 49.92 10.48 22.00 47725.75 22.22 -14.91 20.83 ± 0.01 4291.17
LR2_10_2 14 58654.95 CLS 20.00 28.97 42.17 19.14 20.00 45915.94 42.86 -21.72 39.64 ± 0.02 7926.49

LR2_10_3• 11 39894.32 RP 17.00 63.84 54.95 42.28 17.00 34414.86 54.55 -13.73 51.58 ± 0.00 31577.05
LR2_10_4• 8 28314.95 RP 12.00 79.76 51.26 65.30 11.00 29594.53 37.50 4.52 36.10 ± 0.00 122430.03
LR2_10_5 14 53209.98 RP 19.00 47.89 36.27 14.33 18.00 43888.82 28.57 -17.52 26.48 ± 0.01 5405.58

LR2_10_6• 11 53051.42 CLS 18.00 42.42 62.43 23.70 17.00 41776.22 54.55 -21.25 50.24 ± 0.00 14960.15
LR2_10_7• 9 36728.20 RP 15.00 80.34 67.33 44.78 14.00 33244.64 55.56 -9.48 52.40 ± 0.00 62304.89
LR2_10_8• 7 26278.09 RP 11.00 94.73 58.83 90.43 10.00 27454.60 42.86 4.48 41.14 ± 0.00 146045.85
LR2_10_9 13 48447.49 RP 20.00 74.60 54.77 15.02 20.00 39473.93 53.85 -18.52 50.62 ± 0.00 8469.63

LR2_10_10• 11 43889.20 CLS 17.00 67.02 55.14 19.18 16.00 40832.30 45.45 -6.97 42.96 ± 0.00 11830.38
LRC1_10_1 82 49285.19 CLS 100.00 52.55 22.18 3.84 91.00 51963.26 10.98 5.43 10.93 ± 0.28 672.97
LRC1_10_2 72 45289.03 CLS 93.00 66.27 29.46 4.31 81.60 48729.25 13.33 7.60 13.29 ± 0.23 1743.08
LRC1_10_3 53 36499.96 CLS 68.00 61.68 28.59 8.40 62.00 38503.35 16.98 5.49 16.88 ± 0.00 3959.52
LRC1_10_4 40 27680.12 K 55.00 69.84 37.78 20.49 46.00 31862.66 15.00 15.11 15.00 ± 0.00 7012.44
LRC1_10_5 72 51733.03 CLS 94.00 46.45 30.70 3.30 85.60 55046.03 18.89 6.40 18.78 ± 0.13 744.23
LRC1_10_6 68 44444.34 CLS 85.00 51.53 25.22 3.33 79.00 47445.35 16.18 6.75 16.10 ± 0.27 833.61
LRC1_10_7 61 41917.62 CLS 81.00 57.14 32.99 3.68 73.40 43835.85 20.33 4.58 20.19 ± 0.33 1071.41
LRC1_10_8 56 42640.89 CLS 76.00 56.31 35.91 3.95 69.20 43921.15 23.57 3.00 23.38 ± 0.45 1174.09
LRC1_10_9 53 40848.27 CLS 73.00 50.77 37.86 4.02 66.20 42251.39 24.91 3.43 24.70 ± 0.47 1243.88
LRC1_10_10 48 36092.22 CLS 67.00 62.65 39.80 4.54 58.80 38177.57 22.50 5.78 22.34 ± 0.30 2658.57
LRC2_10_1 22 34960.69 CLS 31.00 96.65 41.99 8.72 27.00 35411.72 22.73 1.29 22.31 ± 0.02 4220.67
LRC2_10_2 20 33576.15 CLS 27.00 102.58 36.39 16.43 26.00 34624.09 30.00 3.12 29.45 ± 0.02 6313.46

LRC2_10_3• 16 28403.51 RP 23.00 106.13 45.10 41.41 21.00 29124.13 31.25 2.54 30.63 ± 0.00 22934.50
LRC2_10_4• 11 26239.60 CLS 18.00 82.94 64.20 172.12 17.00 25610.10 54.55 -2.40 52.90 ± 0.00 99520.10
LRC2_10_5 17 37312.43 CLS 27.00 91.54 59.70 10.99 22.00 30055.26 29.41 -19.45 28.11 ± 0.00 5935.13
LRC2_10_6 17 31470.58 EOE 27.00 109.08 59.96 11.88 24.00 33505.18 41.18 6.47 40.39 ± 0.03 5696.61
LRC2_10_7 16 32537.87 CLS 24.00 95.46 51.13 12.45 21.00 31373.14 31.25 -3.58 30.39 ± 0.02 6221.15

LRC2_10_10• 11 31334.49 CLS 18.00 86.18 64.41 16.98 15.00 27230.27 36.36 -13.10 34.66 ± 0.00 14290.88
Average 44.79 37720.22 - 55.86 62.09 34.35 15.25 50.66 36914.84 20.93 -1.34 20.26 ± 0.11 11295.50

Note: Names of instances denoted with name• have been run only one time, because of their potentially long computation time.

	Abstract
	Resumo
	List of Figures
	List of Tables
	List of Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Vehicle Routing Problems
	1.3 Solution Methods
	1.4 Overview

	2 Problem Definition
	2.1 Mathematical Model

	3 Literature Review
	3.1 Methods for solving the PDPTW
	3.1.1 Heuristic methods
	3.1.2 Exact methods

	3.2 Metaheuristics
	3.2.1 Iterated Local Search
	3.2.1.1 Iterated Local Search Applications

	3.2.2 Variable Neighborhood Descent

	4 Proposed Iterated Variable Neighborhood Descent
	4.1 Algorithm
	4.1.1 Initial Solution
	4.1.1.1 Route Initialization
	4.1.1.2 Request Insertion

	4.1.2 Local Search
	4.1.2.1 Shift Request
	4.1.2.2 Exchange Request
	4.1.2.3 Rearrange Request
	4.1.2.4 Unbalanced Shift Request

	4.1.3 Perturbation
	4.1.3.1 Multiple Reinsertions
	4.1.3.2 Multiple Exchanges

	4.1.4 Acceptance Criterion
	4.1.5 Parameters

	4.2 Data Structures and Speedup
	4.2.1 Solution Representation
	4.2.1.1 Forward and Backward Vectors
	4.2.1.2 Auxiliary Vectors

	4.2.2 Forward Time Slack
	4.2.3 Movement Memory

	5 Results
	5.1 Benchmark Instances
	5.1.1 Li & Lim Instances
	5.1.2 Toy Instances

	5.2 Configurations and Parameters
	5.3 Evaluation
	5.3.1 Toy Instances
	5.3.2 Li & Lim Instances
	5.3.2.1 General Performance of IVND
	5.3.2.2 IVND and Literature Methods

	6 Real-World Case Study
	6.1 Data Sets
	6.1.1 Experiment analysis

	7 Conclusion
	References
	Appendix A — Result Tables for the Standard Instances

