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Nonlinear ion-acoustic waves are analyzed in a nonrelativistic magnetized quantum plasma with arbitrary
degeneracy of electrons. Quantum statistics is taken into account by means of the equation of state for ideal
fermions at arbitrary temperature. Quantum diffraction is described by a modified Bohm potential consistent
with finite-temperature quantum kinetic theory in the long-wavelength limit. The dispersion relation of the
obliquely propagating electrostatic waves in magnetized quantum plasma with arbitrary degeneracy of electrons
is obtained. Using the reductive perturbation method, the corresponding Zakharov-Kuznetsov equation is derived,
describing obliquely propagating two-dimensional ion-acoustic solitons in a magnetized quantum plasma with
degenerate electrons having an arbitrary electron temperature. It is found that in the dilute plasma case only
electrostatic potential hump structures are possible, while in dense quantum plasma, in principle, both hump and
dip soliton structures are obtainable, depending on the electron plasma density and its temperature. The results
are validated by comparison with the quantum hydrodynamic model including electron inertia and magnetization
effects. Suitable physical parameters for observations are identified.
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I. INTRODUCTION

The ion-acoustic wave, which is the fundamental low-
frequency mode of plasma physics, is a prime focus of
many current studies of localized electrostatic disturbances
in laboratory, space, and astrophysical plasmas. The study of
ion-acoustic waves has also gained importance in quantum
plasmas for understanding electrostatic wave propagation in
microscopic scales. During the last decade, there has been
renewed interest in study of the collective wave phenomenon in
quantum plasma, motivated by applications in semiconductors
[1], high-intensity laser-plasma experiments [2–4], and high-
density astrophysical plasmas such as in the interior of massive
planets and white dwarfs, neutron stars, or magnetars [5–7].
Quantum or degeneracy effects appear in plasmas when the
de Broglie wavelength associated with the charged carriers
becomes of the order of the interparticle distances. Quantum
effects in plasmas are more frequently due to electrons, which
are lighter than ions, and they include both Pauli’s exclusion
principle (for half-spin particles) and Heisenberg’s uncertainty
principle, due to the wavelike nature of the particles.

Quantum ion-acoustic waves in unmagnetized dense
plasma have been investigated using quantum hydrodynamic
models [8]. In quantum hydrodynamics, the momentum
equation for degenerate electrons contains a pressure term
compatible with a Fermi-Dirac distribution function, while
the Bohm potential term is included to account for quantum
diffraction [9–11]. Later on the quantum hydrodynamics
model for plasmas was extended to include magnetic fields,
with the associated quantum magnetohydrodynamics theory
developed and discussed in connection with astrophysical
dense plasmas [12]. Quantum Trivelpiece-Gould modes in a
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dense magnetized quantum plasma were derived [13]. The
exchange effects on low-frequency excitations in plasma
have been discussed [14], using a modified Vlasov equation
incorporating the exchange interaction [15,16].

The Zakharov-Kuznetsov (ZK) equation was derived in
1974, to study nonlinear propagation of ion-acoustic waves
in magnetized plasmas [17–19]. The ZK equation is a multidi-
mensional extension of the well-known Korteweg–de Vries
equation for studying solitons (or single-pulse structures).
In the degenerate magnetized plasma case, the cold Fermi
electron gas assumption has been applied in the derivation of
the appropriate ZK equation [20–22], restricted to the fully
degenerate case of a negligible thermodynamic temperature in
comparison to the Fermi temperature.

Linear ion-acoustic and electron Langmuir waves in a
plasma with arbitrary degeneracy of electrons were studied
using quantum kinetic theory [23]. The nonlinear theory of
the isothermal ion-acoustic waves in degenerate unmagnetized
electron plasmas was investigated [24]. The ranges of the phase
velocities of the periodic ion-acoustic waves and the soliton
speed were determined in degenerate plasma, but ignoring
quantum diffraction effects. Also, nonlinear Langmuir waves
in a dense plasma with arbitrary degeneracy of electrons in
the absence as well as in the presence of quantum diffraction
effects in the model have been studied [25]. Eliasson and
Shukla [26] derived certain nonlinear quantum electron fluid
equation by taking into account the moments of the Wigner
equation and using the Fermi-Dirac distribution function for
electrons of arbitrary temperature. The relativistic description
of localized wave packets in electrostatic plasma [27] as well
as the associated ZK equation for dense relativistic plasma
[28] was obtained, in the limit of a negligible thermodynamic
temperature. Recently, the hydrodynamic equations for ion-
acoustic excitations in electrostatic quantum plasma with
arbitrary degeneracy were put forward [29]. The purpose
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of the present paper is to achieve a notable generalization
of this work, obtaining the corresponding fluid theory for
quantum magnetized ion-acoustic waves (MIAWs), in both
the linear and the nonlinear realms. The extension is definitely
of interest since magnetized degenerate plasmas are ubiquitous
in astrophysics as well as in laboratory [30]. Specifically,
it is of fundamental interest to access the nonlinear aspects
of quantum MIAWs, which is a more accessible trend using
hydrodynamic methods.

The paper is organized in the following way. In Sec. II,
the set of dynamic equations for studying ion-acoustic waves
in magnetized quantum plasmas with arbitrary degeneracy of
electrons is presented. In Sec. III, the dispersion relation of
obliquely propagating electrostatic linear waves in magnetized
quantum plasma with arbitrary degeneracy of electrons is
obtained. The limiting cases of waves parallel or perpendicular
to the magnetic field are discussed, as well as the strongly
magnetized ion limit. Section IV describes the modifications of
the linear dispersion relation due to the inclusion of electron in-
ertia and magnetization effects. Section V shows that the fluid
theory is the limit case of quantum kinetic theory in the long-
wavelength limit, as it should be. In Sec. VI, using reductive
perturbation methods, the ZK equation for two-dimensional
propagation of nonlinear ion-acoustic waves is derived for
a magnetized degenerate electron plasma of arbitrary tem-
perature. The soliton solution is presented. Section VII
illustrates the results, using suitable plasma parameters for
observations, within the applicability range of the model.
Section VIII contains the summary of the conclusions. Finally,
the Appendix reports a more detailed derivation of the static
electronic response from quantum kinetic theory, necessary
in Sec. VI.

II. DYNAMIC EQUATIONS FOR MAGNETIZED
QUANTUM FLUIDS

Consider a quantum electron-ion plasma with arbitrary
degeneracy of electrons, embedded in an external magnetic
field B0 = B0x̂ directed along the x axis. In principle, the
electrostatic wave is assumed to propagate obliquely to the
external magnetic field in the xy plane, i.e., ∇ = (∂x,∂y,0).
In order to study quantum MIAWs, ions are taken to be
inertial, while electrons are assumed to be inertialess. The
set of dynamic equations for MIAWs in a quantum plasma
with arbitrary degeneracy of electrons is described as follows.

The ion continuity equation is given by

∂ni

∂t
+ ∂

∂x
(niuix) + ∂

∂y
(niuiy) = 0, (1)

while the ion momentum equations in component form are

∂uix

∂t
+

(
uix

∂

∂x
+ uiy

∂

∂y

)
uix = − e

mi

∂φ

∂x
, (2)

∂uiy

∂t
+

(
uix

∂

∂x
+ uiy

∂

∂y

)
uiy = − e

mi

∂φ

∂y
+ ωciuiz, (3)

∂uiz

∂t
+

(
uix

∂

∂x
+ uiy

∂

∂y

)
uiz = −ωciuiy. (4)

The momentum equation for the inertialess quantum electron
fluid is

0 = −∇p

ne

+ e∇φ + α�
2

6me

∇
[

1√
ne

(
∂2

∂x2
+ ∂2

∂y2

)√
ne

]
. (5)

The Poisson equation is written as(
∂2

∂x2
+ ∂2

∂y2

)
φ = e

ε0
(ne − ni), (6)

where φ is the electrostatic potential. The ion fluid density
and velocity are represented by ni and ui = (uix,uiy,uiz),
respectively, while ne is the electron fluid density. Also, me

and mi are the electron and ion masses, −e is the electronic
charge, ε0 is the vacuum permittivity, � is the reduced Planck’s
constant, and ωci = eB0/mi is the ion cyclotron frequency.
In equilibrium, we have ne0 = ni0 ≡ n0. The electron’s fluid
pressure p = p(ne) is specified by a barotropic equation of
state which is given below. The last term on the right-hand
side of the momentum Eq. (5), for electrons is the quantum
force, which arises from the Bohm potential, giving rise to
quantum diffraction or tunneling effects due to the wavelike
nature of the charged particles. The dimensionless quantity α

is selected in order to fit the kinetic linear dispersion relation
in the long-wavelength limit, in a Fermi-Dirac equilibrium, as
shown in the continuation. Quantum effects on ions are ignored
in view of their large mass in comparison to electrons. In
addition, temperature effects on ions are disregarded. Finally,
to avoid too much complexity and to focus on the interplay
between degeneracy and quantum recoil, exchange effects are
also ignored.

The equation of state can be obtained from the moments of
a local Fermi-Dirac distribution function [29,31] of an ideal
Fermi gas and reads

p = ne

β

Li5/2(−eβμ)

Li3/2(−eβμ)
, (7)

where β = (κBT )−1, κB is the Boltzmann constant, T is the
temperature, and μ is the chemical potential, satisfying

ne = n0
Li3/2(−eβμ)

Li3/2(−eβμ0 )
. (8)

The equilibrium chemical potential μ0 is related to the
equilibrium density n0 through

− n0

Li3/2(−eβμ0 )

(
βme

2π

)3/2

= 2

(
me

2π�

)3

= A, (9)

where the quantity A was defined for later convenience.
Equations (7) and (8) contain the polylogarithm function

Liν(−z) with index ν, which for ν > 0 can be defined [32] as

Liν(−z) = − 1

�(ν)

∫ ∞

0

sν−1

1 + es/z
ds, ν > 0, (10)

where �(ν) is the gamma function. For ν < 0 one applies

Liν(−z) =
(

z
∂

∂z

)
Liν+1(−z) (11)

as many times as necessary, where ν + 1 > 0.
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FIG. 1. Coefficient α from Eq. (12), as a function of the chemical
potential μ0. Solid line: T = 4000 K. Dotted line: T = 6000 K.
Dashed line: T = 8000 K.

The numerical coefficient α appearing in the Bohm poten-
tial term in Eq. (5) has been derived from finite-temperature
quantum kinetic theory for low-frequency electrostatic excita-
tions in [29],

α = Li3/2(−eβμ0 ) Li−1/2(−eβμ0 )

[Li1/2(−eβμ0 )]2
, (12)

expressed as a function of the equilibrium fugacity z =
exp(βμ0). The treatment of [29] considered nonmagnetized
plasmas, but in Sec. V it is proved that Eq. (12) applies
to MIAWs too. As discussed in [29], in the classical limit
(z � 1) one has α ≈ 1, while in the full degenerate limit
(z � 1) one has α ≈ 1/3. The same behavior is seen for
α as a function of the chemical potential, as depicted in
Fig. 1, showing a transition zone from classical to dense
regimes.

It happens [33] that the finite-temperature quantum hy-
drodynamic equations using α from Eq. (12) are consistent
with the results from orbital free density functional theory
[34,35].

III. LINEAR WAVES

In order to find the dispersion relation for electrostatic wave
in a magnetized quantum plasma with arbitrary degeneracy
of electrons, we linearize the system of Eqs. (1)–(6) by
considering

ni = n0 + ni1, ne = n0 + ne1, uix = uix1,

uiy = uiy1, uiz = uiz1, φ = φ1, (13)

inducing a correction μ = μ0 + μ1, where the subscript 1
denotes first-order quantities. In particular, using the expansion
of the polylogarithm function to first order, i.e.,

Liν(−eβ(μ0+μ1)) = Liν(−eβμ0 ) + βμ1Liν−1(−eβμ0 ), (14)

and considering plane-wave perturbations ∼ exp[i(kxx +
kyy − ωt)], the result is

1 + χi(ω,k) + χe(0,k) = 0, (15)

where the ionic and electronic susceptibilities are given by,
respectively,

χi(ω,k) = −ω2
pi

(
ω2 − ω2

ci cos2 θ
)

ω2
(
ω2 − ω2

ci

) , (16)

χe(0,k) = ω2
pe

[
1

me

(
dp

dne

)
0

k2 + α�
2k4

12m2
e

]−1

, (17)

where ω2
pj = n0e

2/(mjε0) for j = i,e and k = k(cos θ,

sin θ,0). Due to the neglect of electron’s inertia, only the static
electronic susceptibility χe(0,k) is necessary. There is no loss
of generality in assuming waves in the xy plane, due to the
cylindrical geometry around the x axis.

The dispersion relation (15), develops as a quadratic
equation for ω2 whose solution is

ω2 = 1
2

[
ω2

0 + ω2
ci ± ((

ω2
0 + ω2

ci

)2 − 4ω2
0ω

2
ci cos2 θ

)1/2]
, (18)

where ω0 was already obtained [29] in the case of unmagne-
tized quantum ion-acoustic waves,

ω2
0 = c2

s k
2[1 + H 2(kλD)2/4]

1 + (kλD)2 + H 2(kλD)4/4
. (19)

In Eq. (19) one has the ion-acoustic speed cs which follows
from

c2
s = 1

mi

(
dp

dne

)
0

= κBT

mi

Li3/2(−eβμ0 )

Li1/2(−eβμ0 )
, (20)

the generalized electronic screening length λD from

λ2
D = c2

s

ω2
pi

= κBT

meω2
pe

Li3/2(−eβμ0 )

Li1/2(−eβμ0 )
, (21)

and the quantum diffraction parameter H specified by

H = β�ωpe√
3

(
Li−1/2(−eβμ0 )

Li3/2(−eβμ0 )

)1/2

. (22)

In the dilute plasma limit eβμ0 � 1, implying Liν(−eβμ0 ) ≈
−eβμ0 , one has cs ≈ √

κBT /mi and λD =
√

κBT /(meω
2
pe),

which, respectively, are the more traditional ion-acoustic speed
and Debye length, and H ≈ β�ωpe/

√
3. On the other hand,

in the fully degenerate case eβμ0 � 1, using Liν(−eβμ0 ) ≈
−(βμ0)ν/�(ν + 1) one has μ0 ≈ EF = �

2(3π2n0)2/3/(2me),
which is the Fermi energy, and cs ≈ √

(2/3)EF /mi and λD =√
2EF /(3meω

2
pe), which are, respectively, the quantum ion-

acoustic speed and the Thomas-Fermi screening length, and
H ≈ (1/2)�ωpe/EF . The dispersion relation (18), is formally
the same as for classical magnetized plasma [36,37], provided
the fully quantum ion-acoustic frequency ω0 is replaced by its
purely classical counterpart.

As is apparent from the dispersion relation (15), ions
are responsible for providing inertia effects, while electrons
are responsible for the kinetic energy (arising from the
standard, thermodynamic temperature and/or Fermi pressure)
and quantum diffraction is represented by the parameter H . It
is convenient to rewrite Eq. (22) using Eq. (9), yielding

H 2 = −2αF

3

√
2βmec2

π
Li−1/2(−eβμ0 ), (23)
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FIG. 2. Quantum diffraction parameter defined in Eq. (23), as
a function of the equilibrium fugacity z = eβμ0 , and normalized to
H0 = [(2αF /3)(2βmec

2/π )1/2]1/2.

where αF = e2/(4πε0�c) ≈ 1/137 is the fine-structure con-
stant. Obviously the theory is nonrelativistic, in spite of the
appearance of the rest energy mec

2 in Eq. (23).
For a fixed temperature, H is a simple function of the

fugacity z = exp(βμ0), as shown in Fig. 2. It is seen that
the pure wavelike quantum effects are enhanced for higher
densities (and fugacities) up to z ≈ 3.03, while for larger
degeneracy the quantum statistical effects prevail, showing that
the quantum force becomes less effective in denser systems,
in view of Pauli’s exclusion principle. Therefore for dilute
systems H increases with the density and decreases with the
temperature, while for fully degenerate systems the leading-
order behavior shows a decrease in H with increasing density.

The positive sign in Eq. (18) corresponds to fast electrostatic
waves, and a negative sign corresponds to slow electrostatic
waves in a magnetized plasma. The effect of degeneracy for
arbitrary angle θ is not entirely straightforward to identify,
due to the somewhat involved expression (18). However, in
practical applications it is likely to have ω0 � ωci , so that the
fast mode becomes ω2 ≈ ω2

0 + ω2
ci sin2 θ , while the slow mode

becomes ω2 ≈ ω2
ci cos2 θ . Since quantum effects are present

only on ω2
0 � ω2

ci , it happens that the fast wave has an angular
dependence appearing as a correction, while the slow wave
is strongly angle dependent but not as influenced by quantum
effects. As an example, consider hydrogen plasma with an
ambient magnetic field B0 = 103 T, yielding the ion cyclotron
frequency ωci = 9.58×1010 rad/s. For solid-density plasma
with T = 106 K, n0 = 5×1030 m−3, and a wave- umber k =
2π×109 m−1, one has ω0 = 6.50×1014 rad/s � ωci . These
parameters are in accordance with the more detailed validity
conditions discussed in Sec. VII.

In addition, some significant limiting cases are described
below.

A. Wave propagation parallel to the magnetic field

Considering θ = 0 in Eq. (18), one has either ω = ωci

(the ion cyclotron frequency) or ω = ω0. The latter has been
discussed in [29]. In the limit kλD � 1 one has ω0 ≈ csk,
where the ion-acoustic speed contains only quantum degener-
acy effects as seen from Eq. (20).

B. Wave propagation perpendicular to the magnetic field

Considering θ = π/2 in Eq. (18), one has a vanishing
solution ( ω2 = 0) as well as a quantum modified electrostatic
ion cyclotron wave given by ω2 = ω2

ci + ω2
0.

C. Strongly magnetized ions

For completeness we consider the strongly magnetized ion
case. If ωci � ω0, one has the fast mode,

ω2 = ω2
ci

[
1 + ω2

0

ω2
ci

sin2 θ + ω4
0

4 ω4
ci

sin2(2θ ) + O

((
ω0

ωci

)6)]
,

(24)

and the slow mode,

ω2 = ω2
0 cos2 θ

[
1 − ω2

0

ω2
ci

sin2 θ + O

((
ω0

ωci

)4)]
. (25)

IV. ELECTRON INERTIA AND
MAGNETIZATION EFFECTS

In the purely classical case, the conditions of applicability
of the model are well known [18,19]. In the quantum case,
it is interesting to include electron inertia and magnetization
effects, to measure the limitations of Eq. (15). In this context
one adds to Eqs. (1)–(4) and (6) the electron continuity
equation,

∂ne

∂t
+ ∂

∂x
(neuex) + ∂

∂y
(neuey) = 0, (26)

and replaces Eq. (5) with

me

(
∂ue

∂t
+ ue · ∇ue

)
= −∇p

ne

− e(−∇φ + ue × B0)

+ α�
2

6me

∇
[

1√
ne

(
∂2

∂x2
+ ∂2

∂y2

)√
ne

]
, (27)

where ue = (uex,uey,uez) is the electron fluid velocity. Pro-
ceeding as in Sec. III and also supposing linear perturbations
where ue = ue1, the result is

1 + χi(ω,k) + χe(ω,k) = 0, (28)

where the ionic susceptibility is still given by Eq. (16) and

χe(ω,k) = − ω2
pe

(
ω2 − ω2

ce cos2 θ
)

ω4 − (
k2v2

T (k) + ω2
ce

)
ω2 + k2v2

T (k)ω2
ce cos2 θ

,

(29)

where ωce = eB0/me is the electron cyclotron frequency and

v2
T (k) = 1

me

(
dp

dne

)
0

+ α�
2k2

12m2
e

. (30)

It is not the purpose of this work to develop the full
consequences of the dispersion relation (28), but it is useful to
observe that in the formal limit ω → 0 the electron response
(29), regains the static electronic response χe(0,k) given by
Eq. (17). Moreover, by inspection of Eq. (29) it is found that
such a limit is attended for a warm electron fluid, where
k2v2

T (k) � ω2
ce, so that the electrons’ magnetization could

be disregarded, and k2v2
T (k) � ω2, which is attainable for
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low-frequency excitations. In addition, note that vT (k) from
Eq. (30) depends not only on the pressure but also on quantum
diffraction effects. On the other hand, ions are assumed to be
cold and nonquantum enough.

V. COMPARISON TO KINETIC THEORY

The results from hydrodynamics should agree with kinetic
theory in the long-wavelength limit. Therefore it is necessary to
compare the ionic and electronic responses found from kinetic
theory to the susceptibilities shown in Eqs. (16) and (17). Since
ions are safely assumed to be classical in most cases, their
particle distribution function fi = fi(r,v,t) satisfies Vlasov’s
equation, which presently is[

∂

∂t
+ v · ∇ + e

mi

(−∇φ + v × B0) · ∂

∂v

]
fi = 0. (31)

On the other hand, the quantum nature of electrons merits
the use of the quantum Vlasov equation satisfied by the
electronic Wigner quasidistribution fe = fe(r,v,t),

∂fe

∂t
+ v · ∇fe − ie

�

(
me

2π�

)3

×
∫

ds dv′ exp

(
ime(v′ − v) · s

�

)

×
[
φ

(
r + s

2
,t

)
− φ

(
r − s

2
,t

)]
fe(r,v′,t) = 0. (32)

All integrals run from −∞ to ∞, unless otherwise stated.
Moreover, under the same assumption as before, namely,
large electron thermal and quantum (statistical and diffraction)
effects, the magnetic force on electrons was omitted in Eq. (32).

The scalar potential is self-consistently determined by
Poisson’s equation,(

∂2

∂x2
+ ∂2

∂y2

)
φ = e

ε0

(∫
fe dv −

∫
fi dv

)
, (33)

where we take spatial variations in the xy plane only.
Proceeding as in Sec. III, assuming plane-wave perturba-

tions ∼ exp[i(kxx + kyy − ωt)] around isotropic in velocities
equilibria, the dispersion relation 1 + χi(ω,k) + χe(ω,k) = 0
is easily derived. Disregarding the negligibly small Landau
damping of MIAWs in the case of cold ions, it is found [38,39]
that the ionic susceptibility from kinetic theory coincides with
the fluid expression (16). On the other hand, for low-frequency
waves, the static limit χe(0,k) is sufficient for electrons,
reading

χe(0,k) = e2

ε0�k2

∫
dv

k · v

[
F

(
v− �k

2me

)
− F

(
v+ �k

2me

)]
,

(34)

where the principal value of the integral is understood
if necessary and where the equilibrium electronic Wigner
function is fe = F (v).

Consider a Fermi-Dirac equilibrium,

F (v) = A
1 + eβ(mev2/2−μ0)

, v = |v|, (35)

where the normalization constantA is given in Eq. (9), assuring
that

∫
F (v) dv = n0.

It turns out that the right-hand side of Eq. (34) can
be evaluated as a power series of the quantum recoil
q = √

β/(2me) �k/2, supposed to be a small quantity
for long wavelengths and/or sufficiently high electronic
temperature:

χe(0,k) = βmeω
2
pe√

π Li3/2(−z)k2

[
�

(
1

2

)
Li1/2(−z)

+�

(
−1

2

)
Li−1/2(−z)

q2

3

+�

(
−3

2

)
Li−3/2(−z)

q4

5
+ · · ·

]

= βmeω
2
pe√

π Li3/2(−z)k2

∞∑
j=0

�

(
1

2
− j

)

×Li1/2−j (−z)
q2j

2j + 1
, (36)

where z = eβμ0 . The derivation is detailed in the Appendix.
Expression (36) is exact, as long as the series converges.
Moreover, it coincides with the static limit of Eq. (29) in
Ref. [40], where only the leading O(q2) quantum recoil
correction was calculated.

For the sake of comparison, the hydrodynamic result from
Eq. (17) can be rewritten as

χe(0,k)

= βmeω
2
peLi1/2(−z)

Li3/2(−z)k2

(
1 + 2q2

3

Li−1/2(−z)

Li1/2(−z)

)−1

= βmeω
2
pe

Li3/2(−z)k2

(
Li1/2(−z) − 2q2

3
Li−1/2(−z) + O(q4)

)
,

(37)

which coincides with Eq. (36) in the long-wavelength limit,
as �(1/2) = √

π, �(−1/2) = −2
√

π . This completes the
justification of α in Eq. (12) in the magnetized case.

VI. ZAKHAROV-KUZNETSOV EQUATION
FOR ARBITRARY DEGENERACY

In order to derive the ZK equation for obliquely propagating
MIAWs in arbitrary degenerate plasma, it is convenient to
make use of normalized quantities. The dispersion relation
(18), suggests the use of the dimensionless variables (x̃,ỹ) =
(x,y)/λDt̃ = ω

pi
t , (ũix,ũiy,ũiz) = (uix,uiy,uiz)/cs , and φ̃ =

eφ/(mic
2
s ), ñj = nj/n0, where j = e,i. Equations (1)–(6) are

then written as

∂ñi

∂ t̃
+ ∂

∂x̃
(ñi ũix) + ∂

∂ỹ
(ñi ũiy) = 0, (38)

∂ũix

∂ t̃
+

(
ũix

∂

∂x̃
+ ũiy

∂

∂ỹ

)
ũix = −∂φ̃

∂x̃
, (39)

∂ũiy

∂ t̃
+

(
ũix

∂

∂x̃
+ ũiy

∂

∂ỹ

)
ũiy = −∂φ̃

∂ỹ
+ �ũiz, (40)
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∂ũiz

∂ t̃
+

(
ũix

∂

∂x̃
+ ũiy

∂

∂ỹ

)
ũiz = −�ũiy, (41)

0 = ∇̃φ̃ − Li1/2(−eβμ0 )

Li1/2(−eβμ)
∇̃ñe

+ H 2

2
∇̃

[
1√
ñe

(
∂2

∂x̃2
+ ∂2

∂ỹ2

)√
ñe

]
, (42)

(
∂2

∂x̃2
+ ∂2

∂ỹ2

)
φ̃ = ñe − ñi , (43)

where � = ωci/ωpi has been defined and where ∇̃ =
(∂/∂x̃,∂/∂ỹ,0), while Eq. (8) becomes

ñe = Li3/2(−eβμ)

Li3/2(−eβμ0 )
. (44)

In the following calculations, for brevity the tilde sign used for
defining normalized quantities is omitted.

In order to find a nonlinear evolution equation describing
the magnetized plasma, the stretching of the independent
variables x, y, and t is defined under the assumption of strong
magnetization as [41–44]

X = ε1/2(x − V0t), Y = ε1/2y, τ = ε3/2t, (45)

where ε is a formal small expansion parameter and V0 is
the phase velocity of the wave, to be determined later. The
perturbed quantities can be expanded in powers of ε as follows:

nj = 1 + εnj1 + ε2nj2 + . . . , j = e,i, (46)

uix = εux1 + ε2ux2 + ε3ux3 . . . , (47)

ui⊥ = ε3/2u⊥1 + ε2u⊥2 + ε5/2u⊥3 . . . , ⊥= y,z, (48)

φ = εφ1 + ε2φ2 + · · · , (49)

μ = μ0 + εμ1 + ε2μ2 + · · · . (50)

In the present model, the ion velocity components (uiy , uiz)
perpendicular to the magnetic-field directions are taken as
higher order perturbations compared to the parallel component
uix since, in the presence of a strong magnetic field, the plasma
is anisotropic so that the ion gyromotion becomes a higher
order effect.

The lowest ε-order terms (∼ε3/2) from the set of Eqs. (38)–
(42) give

−V0
∂ni1

∂X
+ ∂ux1

∂X
= 0, (51)

V0
∂ux1

∂X
= ∂φ1

∂X
, (52)

uz1 = 1

�

∂φ1

∂Y
, (53)

−�uy1 = 0, (54)

∂φ1

∂X
= ∂ne1

∂X
. (55)

The velocity uz1 appears in Eq. (53) due to the E×B drift.
The lowest ε-order terms (∼ε) from Eqs. (43) and (44) give

ni1 = ne1 = Li1/2(−eβμ0 )

Li3/2(−eβμ0 )
βμ1. (56)

Solving the system (51)–(56), we get V0 = ±1. We set V0 = 1
(the normalized phase velocity of the MIAW) without loss of
generality.

Collecting the next higher order terms of the ion continuity
(∼ε5/2) and of the X, Y, and Z components of the ion
momentum equations (∼ε5/2,ε2,ε2), and after rearrangement,
we find

∂ni1

∂τ
− ∂ni2

∂X
+ ∂ux2

∂X
+ ∂

∂X
(ni1ux1) + ∂uy2

∂Y
= 0, (57)

∂ux1

∂τ
− ∂ux2

∂X
+ ux1

∂

∂X
ux1 = −∂φ2

∂X
, (58)

−∂uy1

∂X
= �uz2, (59)

∂uz1

∂X
= �uy2. (60)

Using Eq. (56) and the next higher order terms ∼ε5/2 from the
equations of motion of the inertialess degenerate electrons in
the X and Y directions, we get

∂ne2

∂X
= ∂φ2

∂X
+ αne1

∂ne1

∂X
+ H 2

4

(
∂3

∂X3
+ ∂

∂X

∂2

∂Y 2

)
ne1 (61)

and

∂ne2

∂Y
= ∂φ2

∂Y
+ αne1

∂ne1

∂Y
+ H 2

4

(
∂

∂Y

∂2

∂X2
+ ∂3

∂Y 3

)
ne1, (62)

where α has been defined in Eq. (12).
Now collecting the ε2-order terms from Poisson’s equation,

we have (
∂2

∂X2
+ ∂2

∂Y 2

)
φ1 = ne2 − ni2, (63)

while the next-higher terms from Eqs. (57), (58), and (60) give

∂ni2

∂X
= ∂ni1

∂τ
+ ∂

∂X
(ni1ux1) + 1

�

∂

∂Y

(
∂uz1

∂X

)

+ ∂ux1

∂τ
+ ux1

∂ux1

∂X
+ ∂φ2

∂X
. (64)

Differentiating Eq. (63) with respect to X and using
Eqs. (61) and (64) together with ni1 = ne1 = ux1 = φ1, uz1 =
(1/�) ∂φ1/∂Y , it is finally possible to write the ZK equation
for obliquely propagating quantum MIAWs in terms of
φ1 ≡ ϕ:

∂ϕ

∂τ
+ Aϕ

∂ϕ

∂X
+ ∂

∂X

(
B

∂2ϕ

∂X2
+ C

∂2ϕ

∂Y 2

)
= 0. (65)

The nonlinearity coefficient A and the dispersion coefficients
B and C, in the parallel and perpendicular directions of the
magnetic field, respectively, are defined as

A = 1

2
(3 − α), (66)

B = 1

2

(
1 − H 2

4

)
, (67)

C = 1

2

(
1 + 1

�2
− H 2

4

)
. (68)
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In the purely classical limit the nonlinearity and disper-
sion coefficients become A = 1, B = 1/2, and C = (1/2)
(1 + 1/�2), in agreement with Refs. [17,43] and [44], treating
MIAWs in a classical electron-ion plasma. In addition, the
ZK equation for fully degenerate plasma will have A =
4/3 and H = (1/2) �ωpe/EF in coefficients B and C. The
associated fully degenerate ZK equation does not match the
results from Refs. [20–22], after comparison using physical
(dimensional and nonstretched) coordinates, restricted to the
case of electron-ion plasmas. Note that the ZK equations from
the previous works do not match the purely classical result.

Provided l2
xB + l2

yC = 0, the soliton solution of the ZK
equation (65), for obliquely propagating MIAWs is given by

ϕ = ϕ0 sech2(η/W ), (69)

where ϕ0 = 3u0/(Alx) is the height and W =√
4lx(l2

xB + l2
yC)/u0 is the width of the soliton in terms

of the stretched coordinates. The polarity of the soliton
depends on the sign of ϕ0. The transformed coordinate η in the
comoving frame is defined as η = lxX + lyY − u0τ , where
u0 = 0 is the speed of the nonlinear pulse and lx > 0 and ly
are direction cosines, so that l2

x + l2
y = 1. To obtain localized

structures, decaying boundary conditions as η → ±∞ were
applied. Following the habitual usage the term “soliton” is
applied to the solitary wave (69), although the ZK equation
does not belong to the class of completely integrable evolution
equations. The dispersion effects arising from the combination
of charge separation and finite ion Larmor radius balance the
nonlinearity in the system to form the soliton.

Defining δV = εu0/lx , in the laboratory frame the solution
reads

ϕ = 3 δV

A
sech2

{
1

2

(
δV

l2
xB + l2

yC

)1/2

× [lx(x − (V0 + δV ) t) + lyy]

}
. (70)

It is apparent that V0 + δV corresponds to the velocity at which
the intersection between a plane of constant phase and a field
line travels, down the same field line [42].

From Eq. (70) the width L of the soliton in the laboratory
frame is

L = 2

(
l2
xB + l2

yC

δV

)1/2

=
√

2

δV

(
1 − H 2

4
+ l2

y

�2

)1/2

. (71)

From this expression one concludes that while in the non-
quantum H = 0 limit necessarily δV > 0 (bright soliton
propagating at supersonic speed), in the quantum case one has
the theoretical possibility of δV < 0 (dark soliton propagating
at subsonic speed), provided H 2/4 > 1 + l2

y/�2.
It is interesting to single out the different quantum effects

in the soliton (70). The amplitude/dip of bright/dark solitons is
inversely proportional to A, which depends only on quantum
degeneracy, and not on quantum diffraction. More degenerate
systems produce a smaller α—as shown, e.g., in Fig. 1—and
hence a larger A. Therefore the soliton amplitude/dip decreases
with the degeneracy. On the other hand, from the width (71),
one finds the dependence on the quantum diffraction parameter
H 2 (which is also dependent on the degree of degeneracy)

2
ΔV 1 ly2

2

1
ly2

2
ΔV 0 ΔV 0

H2 4

L2

FIG. 3. Squared width of the localized structure as shown in
Eq. (71), as a function of the quantum diffraction parameter H 2.

shown in Fig. 3. For semiclassical bright solitons (δV > 0)
one has L2 decreasing with quantum effects, while for quantum
dark solitons (δV < 0) one has L2 increasing with quantum
effects.

In unmagnetized quantum plasmas, by construction the
term ∼1/�2 does not appear. In this case when H = 2 the
corresponding Korteweg–de Vries (KdV) equation collapses
to Burger’s equation, producing an ion-acoustic shock wave
structure instead of a soliton [8].

In the magnetized case, a further possibility occurs when
C = 0, or, equivalently, 1 + 1/�2 = H 2/4, which is not
allowed in the classical limit (H ≡ 0). When C = 0, from
Eq. (65) one has

∂ϕ

∂τ
+ Aϕ

∂ϕ

∂X
− 1

2�2

∂3ϕ

∂X3
= 0, (72)

which transforms to the KdV equation in its standard form by
means of ϕ → −ϕ,X → −X,τ → τ . Therefore, in this par-
ticular situation the problem becomes completely integrable.

Finally, if B = 0, it means that 1 − H 2/4 = 0, due to which
C = 1/2�2, so that Eq. (65) becomes

∂ϕ

∂τ
+ Aϕ

∂ϕ

∂X
+ 1

2�2

∂

∂X

∂2ϕ

∂Y 2
= 0. (73)

This is a KdV-like equation having dispersion effects perpen-
dicular to the magnetic field, due to the obliquely propagating
MIAW.

Regarding the ranges of validity of the parameters A, B,
and C in Eqs. (66)–(68), first we observe that from Eq. (12) one
has 1/3 < α < 1, so that 1 < A < 4/3. In addition, since H 2

from Eq. (23) can, in principle, attain any non-negative value,
B and C are not positive definite. However, strictly speaking,
very large values of H 2 are associated with strongly coupling
effects, which can have a large impact on soliton propagation,
to be addressed in a separate extended theory. Only in such a
generalized framework could one be able to make more precise
statements on the existence or nonexistence of pure quantum
solitons. Nevertheless, significant values of H 2 are certainly
physically acceptable, as found from the present treatment.
These issues are discussed in the following section.
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VII. APPLICATIONS

It is important to discuss the validity domain of the general
theory devised in the last sections. Moreover, it is highly desir-
able to offer precise physical parameters where the predicted
linear and nonlinear waves could be searched for in practice.
Obviously, the theory is more relevant in the intermediate
regimes, where the thermal and Fermi temperatures are not
significantly different. Otherwise, the fully degenerate or dilute
limits could be sufficiently accurate. Therefore, in this section
we frequently assume that

T = TF , (74)

where TF = EF /κB is the electron’s Fermi temperature.
To start, consider the normalization condition (9), which

can be expressed [26] as

Li3/2(−z) = − 4

3
√

π
(βEF )3/2, (75)

where z = exp(βμ0). For equal thermal and Fermi tempera-
tures, βEF = 1, which from Eq. (75) gives the equilibrium
fugacity z = 0.98 and from Eq. (12) a parameter α = 0.80,
definitely in the intermediate dilute-degenerate situation as
explicitly shown, e.g., in Fig. 1.

Besides quantum degeneracy, quantum diffraction effects
can also provide qualitatively new aspects as found, e.g.,
in the extra dispersion of linear waves in Sec. III and the
modified width of the solitons in Sec. VI. Therefore it would
be interesting to investigate systems with a large parameter H .
However, realistically speaking it is not possible to increase
H without limits, which would enter the strongly coupled
plasma regime, not included in the present formalism. For
instance, the ideal Fermi gas equation of state for electrons
would be unappropriated. Therefore, it is necessary to analyze
the coupling parameter g for electrons, which can be defined
[45] as g = l/a, where

l = − e2

12πε0κBT

n0�
3
T

Li5/2(−z)
(76)

is a generalized Landau length involving the thermal
de Broglie wavelength �T = [2π�

2/(meκBT )]1/2, and a =
(4πn0/3)−1/3 is the Wigner-Seitz radius. In the dilute case, one
has e2/(4πε0 l) = (3/2)κBT , so that l would be the classical
distance of closest approach in a binary collision, for average
kinetic energy. The general expression (76), accounts for
the degeneracy effects on the mean kinetic energy. A few
calculations yield

g = −2αF

√
2βmec2

3 (3
√

π)1/3

[
Li23/2(−z)

]2/3

Li5/2(−z)
, (77)

an expression similar to the one for H 2 in Eq. (23). Hence,
it is legitimate to suspect that the indiscriminate increase
in quantum diffraction gives rise to nonideality effects such
as dynamical screening and bound states [45]. Incidentally
Eq. (77) agrees with Eq. (16) of [29], found from related but
different methods.

The resemblance between the coupling and the quantum
diffraction parameters is confirmed in Fig. 4, which can be
compared to Fig. 2 for H 2. Moreover, it is apparent in Fig. 5
that we have H 2 < 0.5 for the whole span of degeneracy

0 10 20 30 40 50 60

0.2

0.4

0.6

0.8

z

g

g0

FIG. 4. Coupling parameter defined in Eq. (77), as a function
of the equilibrium fugacity z = eβμ0 , and normalized to g0 =
2αF

√
2βmec2/[3(3

√
π)1/3].

regimes, as far as g < 1. Strictly speaking, the dark soliton,
shock wave, and completely integrable case associated with
the KdV equation (72), are therefore outside the validity
domain of the model, since they require large values of the
quantum diffraction parameter H . Nevertheless, the influence
of the wave nature of the electrons can still provide important
corrections on its own, at least for reasonable values of H 2, as is
obvious, for instance, in the width of the ZK soliton in Eq. (71).

The behavior of the parameters g and H 2 is summarized
in Fig. 6 for T = TF and considering hydrogen plasma
parameters. We observe that g < 1 for n0 > 5.23×1028 m−3,
or EF > 5.11 eV, which starts becoming realizable for typical
densities in solid-density plasmas [46,47].

It is necessary to discuss additional points about the validity
conditions of the model. Both the static electronic response
and the long-wavelength (and hence fluid) assumptions are
collected in Eq. (27) of [29], reproduced here for convenience:

kmin ≡ 2
√

3mecs

�
� k � ωpi

cs

≡ kmax. (78)

For hydrogen plasma and T = TF , from Eq. (78) one has
kmax > kmin for n0 < 9.81×1035 m−3. The latter condition is

0 20 40

0.1

0.2

0.3

0.4

0.5

z

H2

g

FIG. 5. Ratio between the diffraction parameter H 2 from Eq. (23)
and the coupling parameter g from Eq. (77), as a function of the
equilibrium fugacity z = eβμ0 .
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0 100 200 300 400 500
0.0

0.2

0.4

0.6

0.8

1.0

EF eV

g, H2

FIG. 6. Upper, dotted curve: Coupling parameter g from Eq. (77),
Lower, dashed curve: Quantum diffraction parameter H 2 from
Eq. (23), as a function of the electronic Fermi energy EF (in eV),
for hydrogen plasma and the intermediate dilute-degenerate regime
where T = TF .

safely satisfied for nonrelativistic plasma. At the high densities
available in compact astrophysical objects like white dwarfs
and neutron stars, the Fermi momentum becomes comparable
to mec, requiring a relativistic treatment. Strictly speaking, the
first inequality in Eq. (78) could be removed, but in this case
the quantum recoil would be less significant. In this case, only
quantum degeneracy effects would be relevant.

In terms of the wavelength λ, Eq. (78) yields a suit-
able range, λmin = 2π/kmax � λ � λmax = 2π/kmin, shown
in Fig. 7, on the nanometric scale from extreme ultraviolet to
soft x rays.

As discussed in Sec. IV, the model also assumes that the
pressure effects are significantly larger than the magnetic-field
effects regarding electrons, or k2v2

T (k) � ω2
ce. In the worst

case, where k ≈ kmin, the quantum diffraction is typically a
correction in expression (30) for vT (k). We then find

�ωce

EF

� 2
√

3

(
me

mi

)1/2 Li3/2(−z)

Li1/2(−z)
≈ 0.10 (79)

Λmax

Λmin

0 100 200 300 400 500
0

1

2

3

4

5

6

7

EF eV

Λ nm

FIG. 7. Upper, dotted curve: Maximum wavelength λmax. Lower,
dashed curve: Minimal wavelength λmin, consistent with Eq. (78), as
a function of the electronic Fermi energy EF (in eV), for hydrogen
plasma and the intermediate dilute-degenerate regime where T = TF .

Ti TF

gi 1

29 30 31 32 33 34 35
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log10n0 m 3

lo
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0T
I
K

FIG. 8. Cold and weakly coupled ions are below the upper, dotted
straight line (where the ionic temperature Ti equals the electronic
Fermi temperature TF ) and above the lower, dashed straight line
(where the ionic coupling parameter gi = 1).

for T = TF . Condition (79), which is easier to satisfy for
higher densities, is safely satisfied except for very strong
magnetic fields. For instance, for EF ≈ 10 eV, we just need
B0 � 8.81 kTa.

Ions have been assumed to be cold, classical, and ideal
(disregarding strong ion coupling effects). Denoting Ti the
ionic temperature, when TF � Ti the MIAW phase speed
becomes much higher than the ionic thermal speed, justifying
the cold-ion assumption. On the other hand, there is the need
for a small ionic coupling parameter gi . For a nondegenerate
ionic fluid we then [45] have

gi = e2

4πε0a

(
3κBTi

2

)−1

� 1. (80)

Otherwise, one would have an ionic liquid or even an ionic
crystal, as is believed to happen for gi ≈ 172 in a one-
component plasma [48]. The joint requirements of cold and
non–strongly coupled ions are represented in Fig. 8, where the

8
4

0
4

8

x V0 V t

L
8

4

0

4
8

y L

0

0.2

0.4

FIG. 9. Two-dimensional profile of the MIAW hump soliton
structure (70), moving at supersonic speed in the laboratory frame,
using normalized coordinates. Parameters: n0 = 5×1030 m−3, H 2 =
0.10, g = 0.22, T = TF = 1.24×106 K, B0 = 103 T, lx = ly =√

2/2, and δV = 0.10.
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allowable region is between the straight lines, Ti = TF ,gi = 1.
A minimal number density, n0 = 3.63×1028 m−3, is found to
be necessary, which again is accessible for typical solid-density
plasmas.

For the sake of illustration, consider the bright soliton
solution from Eq. (70), for parameters representative of solid-
density plasmas, namely, n0 = 5×1030 m−3, H 2 = 0.10, g =
0.22, and T = TF = 1.24×106 K. In this case the allowable
wave numbers satisfy 0.24 nm < λ < 1.85 nm, the ionic
temperatures are in the range 3.04×105 K < Ti < 1.57×106

K, and the magnetic field should have a strength B0 <

9.23×104 T. The soliton is shown in Fig. 9, where B0 = 103

T, lx = ly = √
2/2, and δV = 0.10.

VIII. SUMMARY

The main results of this work are the dispersion relation
(18), and the ZK equation (65), both of which describe
quantum MIAWs in the linear and nonlinear regimes, respec-
tively, allowing for an arbitrary electron degeneracy degree.
The results significantly generalize the previous literature,
restricted to either dilute (Maxwell-Boltzmann) or fully degen-
erate plasmas. The conditions for applications are investigated
in depth, pointing out the importance of the findings for,

e.g., magnetized solid-density plasma. While the physical
parameters have been more focused on hydrogen plasma
in the intermediate dilute-degenerate limit where T = TF ,
adaptation to fully ionized electron-ion cases with atomic
number Z = 1 and arbitrary temperatures is not difficult at
all. With minor adjustments, the whole parametric analysis in
Sec. VII also applies to the unmagnetized case. It is hoped that
the detailed assessment of physical parameters thus developed,
will incentive experimental and observational verifications
of linear and nonlinear quantum ion-acoustic waves, both
in the laboratory and in nature, considering a large span of
degeneracy regimes. A possibly important next step is the
rigorous (non–ad hoc) incorporation of exchange-correlation
effects, which are beyond the scope of the present paper.
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APPENDIX: DERIVATION OF EQ. (36)

From Eqs. (34) and (35) one has

χe(0,k) = Ae2

ε0�k2

∫
dv

[
1

k · v + �k2/(2me)
− 1

k · v − �k2/(2me)

]
1

1 + exp(βmev2/2)/z

= 2πAe2

ε0�k2

∫ ∞

−∞
dv‖

[
1

kv‖ + �k2/(2me)
− 1

kv‖ − �k2/(2me)

] ∫ ∞

0
dv⊥

v⊥
1 + exp[βme(v2

⊥ + v2
‖)/2]/z

, (A1)

where v = v‖k/k + v⊥, k · v⊥ = 0, z = exp(βμ0), and all integrals consider the principal value sense.
Performing the v⊥ integral, considering the expression of A in Eq. (9), and applying a simple change of variables, we get

χe(0,k) = βmeω
2
pe

4
√

π Li3/2(−z)qk2

∫ ∞

−∞

ds

s
[ln(1 + ze−(s+q)2

) − ln(1 + ze−(s−q)2
)], (A2)

where q = √
β/(2me) �k/2.

Expanding in powers of the quantum recoil one has

ln(1 + ze−(s+q)2
) − ln(1 + ze−(s−q)2

) = −4q

(
g(s) + q2

3!
g′′(s) + q4

5!
g(iv)(s) + O(q6)

)
, (A3)

where g(s) ≡ s/[1 + exp(s2)/z]. At this point, note that the possible divergence at s = 0 in integral (A2) has been explicitly
removed.

After integrating by parts, it is found that

χe(0,k) = − 2βmeω
2
pez√

π Li3/2(−z)k2

(∫ ∞

0

ds

z + es2 − 2q2

3

∫ ∞

0

ds es2

(z + es2 )2
+ 4q4

15

∫ ∞

0

ds es2
(es2 − z)

(z + es2 )3
+ O(q6)

)
. (A4)

From Eqs. (10) and (11), each term on the right-hand side of (A4) can be evaluated in terms of polylogarithms. For instance,

Li1/2(−z) = − 2z√
π

∫ ∞

0

ds

z + es2 ,

Li−1/2(−z) = − 2z√
π

∫ ∞

0

ds es2

(z + es2 )2
, (A5)

Li−3/2(−z) = 2z√
π

∫ ∞

0

ds es2
(z − es2

)

(z + es2 )3
,

clearly related to the integrals in expression (A4). In this way Eq. (36), which is also independently confirmed by numerical
evaluation, is proved.
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