
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

VINICIUS DA COSTA DE AZEVEDO

Preserving Geometry and Topology for
Fluid Flows

with Thin Obstacles and Narrow Gaps

Thesis presented in partial fulfillment
of the requirements for the degree of
Doctor of Computer Science

Advisor: Prof. Dr. Manuel Menezes de Oliveira Neto

Porto Alegre
November 2016

CIP — CATALOGING-IN-PUBLICATION

Da Costa de Azevedo, Vinicius

Preserving Geometry and Topology for Fluid Flows
with Thin Obstacles and Narrow Gaps / Vinicius Da Costa de
Azevedo. – Porto Alegre: PPGC da UFRGS, 2016.

97 f.: il.

Thesis (Ph.D.) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2016. Advisor: Manuel Menezes de Oliveira Neto.

1. Fluid simulation. 2. Physics based animation. 3. Computer
graphics. I. Menezes de Oliveira Neto, Manuel. II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos Alexandre Netto
Vice-Reitor: Prof. Rui Vicente Oppermann
Pró-Reitor de Pós-Graduação: Prof. Vladimir Pinheiro do Nascimento
Diretor do Instituto de Informática: Prof. Luis da Cunha Lamb
Coordenador do PPGC: Prof. Luigi Carro
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

“This planet has - or rather had - a problem, which was this: most of the people living on

it were unhappy for pretty much of the time. Many solutions were suggested for this

problem, but most of these were largely concerned with the movement of small green

pieces of paper, which was odd because on the whole it wasn’t the small green pieces

of paper that were unhappy”

— DOUGLAS ADAMS

ACKNOWLEDGEMENTS

First and foremost, I would like to acknowledge my co-advisor, Christopher Batty, the

Batman. Battyman is the offspring of a long successful chain of researchers in the dark art of

fluid animation. A man dressed like a normal man who’s able to calmly advise through enor-

mous amounts of ignorance, never upset by slow-moving work or by my restless stubbornness.

Although he has no superhuman powers (apart from those previously stated), he has keen eye for

details and a honorable-code for making good research. His intellectual prowess and the ability

the swiftly read student-drafts/papers make him a dangerous reviewer. All of these characteristics

inspire me to become a better professional, and I will take his example for the rest of my career.

I’m very grateful to you!

I’m also grateful for my advisor, prof. Manuel Menezes. His ability to craft perfect

presentations and to organize and polish drafts up to the minimal details were a really valuable

lesson. I also want to give a shout-out for my boys (and some girls) of UFRGS Computer

Graphics/Interaction/Visualization Lab: Bernardo, Victor, Rosalia, Fred, Eduardo, Jeronimo,

Andre, Guilherme, Roger, Renato, Vitor Jorge, Victor Adriel, Marcelo(s), Tales, Borja, Juliano,

Lenna, Alex, Vinicius. I also grateful for the help and collaboration from my colleagues and

friends of Computational Motion and Scientific Computing Group at Waterloo University: Egor,

Par, Eddie, Dustin, Coleen, Ryan, Phillipe, Yipeng. Thanks everyone for the awesome moments

and for the lessons learnt!

This thesis couldn’t be done without the help of my family. Especially my mother, Maria

Helena, which often summoned spells to help me through hard stages of my doctorate. Thanks

mom, I love you! Other important family members include my step-father Sergio, my father

and step-mother Mateus and Rosalia; my baby brother Anderson; my mother and sister-in-law

Teresa and Elisa and my cousin Tarso.

ABSTRACT

Fluid animation methods based on Eulerian grids have long struggled to resolve flows involving

narrow gaps and thin solid features. Past approaches have artificially inflated or voxelized

boundaries, although this sacrifices the correct geometry and topology of the fluid domain and

prevents flow through narrow regions. We present a boundary-respecting fluid simulator that

overcomes these challenges. Our solution is to intersect the solid boundary geometry with the

cells of a background regular grid to generate a topologically correct, boundary-conforming

cut-cell mesh. We extend both pressure projection and velocity advection to support this en-

hanced grid structure. For pressure projection, we introduce a general graph-based scheme

that properly preserves discrete incompressibility even in thin and topologically complex flow

regions, while nevertheless yielding symmetric positive definite linear systems. For advection,

we exploit polyhedral interpolation to improve the degree to which the flow conforms to irregular

and possibly non-convex cell boundaries, and propose a modified PIC/FLIP advection scheme

to eliminate the need to inaccurately reinitialize invalid cells that are swept over by moving

boundaries. The method naturally extends the standard Eulerian fluid simulation framework, and

while we focus on thin boundaries, our contributions are beneficial for volumetric solids as well.

Our results demonstrate successful one-way fluid-solid coupling in the presence of thin objects

and narrow flow regions even on very coarse grids.

Keywords: Fluid simulation. physics based animation. computer graphics.

Preservando geometria e topologia de escoamento de fluidos com a presença de

geometrias finas e aberturas estreitas

RESUMO

Métodos tradicionais de animação de fluidos têm dificuldade em resolver escoamentos que

envolvem aberturas estreitas e geometrias finas. Abordagens anteriores artificialmente inflaram

ou voxelizaram geometrias de objetos finos, sacrificando a geometria e topologias corretas

do domínio de simulação, impedindo que o escoamento interaja corretamente com regiões

estreitas. No trabalho desenvolvido, apresentamos uma técnica de simulação de fluidos que

respeita geometrias complexas de maneira precisa e supera obstáculos comuns em ambientes

com aberturas estreitas e geometrias finas. A nossa solução baseia-se no recorte preciso de

células do grid regular, gerando uma malha conformal à geometria e topologicamente correta.

Nós utilizamos uma abordagem de bordas incorporadas (cut-cells): em cada passo do tempo, a

malha de triângulos representando a superfície sólida de um objeto no domínio de simulação é

recortada pelas células que intercepta, potencialmente gerando múltiplas sub-células distintas. A

malha resultante é conformal ao objeto incorporado e se reduz ao grid regular em regiões que

não estão em contato com a superfície. Nós estendemos as abordagens tradicionais de advecção

de velocidade e projeção da pressão para dar suporte a essa estrutura de malha aprimorada. Em

geral, nossa abordagem é capaz de representar melhor detalhes de geometrias que são menores

que uma célula do grid, corretamente recuperando condições de contorno no-slip e free-slip,

enquanto mantém uma convergência para a solução da pressão de segunda ordem no espaço.

Para melhorar a advecção em regiões próximas às bordas irregulares, introduzimos um método

de interpolação que funciona em células poliédricas arbitrárias, utilizando-se do método de

interpolação spherical barycentric coordinates (SBC). Essa abordagem possibilita que as linhas

características do escoamento respeitem a geometria sem penetrá-la, em contraste com métodos

tradicionais de interpolação lineares ou cúbicos. Finalmente, nós melhoramos os métodos de

advecção com um método FLIP modificado. Nosso método resolve uma dificuldade inerente a

advecção Semi-Lagrangiana no contexto de geometrias deslocando-se através do domínio de

simulação: as células que são varridas por sólidos em locomoção perdem sua informação de

velocidade e tem de ser preenchidas com velocidades extrapoladas de células vizinhas. Nosso

esquema FLIP garante que a informação de velocidade viaje corretamente com as superfícies,

não necessitando de nenhum método de extrapolação.

Palavras-chave: Simulação de fluidos, animação baseada em física, computação gráfica.

LIST OF ABBREVIATIONS AND ACRONYMS

CGAL Computational Geometry Algorithms Library

FLIP Fluid-Implicit-Particle

CAD Computer Aided Design

CFD Computational Fluid Dynamics

PIC Particle-in-Cell

LIST OF FIGURES

Figure 1.1 Successful fluid simulation research examples through years: (a) multiscale
approach for surface tension (THUREY et al., 2010), (b) material point method for
snow simulation (STOMAKHIN et al., 2013), (c) stream-function solver (ANDO;
THUEREY; WOJTAN, 2015) and (d) Schrödinger Smoke (CHERN et al., 2016)......... 17

Figure 1.2 Different scenarios that are difficult to handle with standard regular-grid dis-
cretization: (a) narrow gap between solid objects, (b) an object with small hole and
(c) infinitesimally thin object. .. 18

Figure 1.3 Our geometry- and topology-aware boundary treatment supports simulating
smooth flows in the presence of thin solid geometry, irregular geometry and narrow
gaps on very coarse grids. .. 20

Figure 2.1 Different grid types: (a) regular grid; (b) unstructured grid; and (c) non-regular
structured grid. Image from (AZEVEDO; OLIVEIRA, 2013)...21

Figure 2.2 Hybrid tetrahedral meshes proposed. Left: regular cells close to object’s em-
bedded meshes are removed and replaced by triangle (tetrahedra in 3-D) meshes. On
the image on the right, different types of cells in their method are shown: Tetrahe-
dral (blue), transition (green) and regular cells (red). Adapted from (FELDMAN;
O’BRIEN; KLINGNER, 2005). .. 22

Figure 2.3 Volumetric solid embedded in a regular-grid domain. Lagrangian mesh control
points are represented as yellow circles. (a) Solid immersed in a regular-grid setting;
the red line represents the interface between solid and fluid. (b) Immersed boundary
method transferring function schematic view: each of the Lagrangian control points
transfers its influence to a circular kernel around its location (green dashed circles).
(c) Schematic view of cut-cell methods: partially-filled boundary-conforming cells
(blue regions) are computed to enforce proper boundary conditions. 24

Figure 2.4 Previous works in boundary treatment for fluids simulation schematic overview. 24
Figure 2.5 Raycasting approach for representing an embedded boundary (green dashed

line): shared edges between regular cells are tagged as solid (red lines), and pressure
samples adjacent to solid edges are not linked to each other. A single solid shared
edge, in (a), between two regular grid cells A and B. If a ray casted from the centroid
of A to centroid of B (blue dashed line) intersects the embedded geometry, the shared
edge between these cells is tagged as solid. The procedure is performed for all cells
in (b), and the embedded object geometry is represented by the red regular grid edges. 30

Figure 2.6 Different velocity arrangements adopted in our method: (a) staggered velocity
arrangement stores Cartesian components of the velocities (blue arrows) on the
center of cell edges (faces in 3-D), while pressures (red circles) are stored on cells’
centroids. In (b), nodal velocity arrangement stores all Cartesian components of the
velocities (green arrows) at nodal positions... 32

Figure 3.1 (a) Sub-grid thin boundaries (green) are represented by a polyline mesh in
2-D. (b) Voxelization/raycasting yields inaccurate axis-aligned boundaries (red). (c)
Clipping the grid against the solid boundary mesh instead yields a cut-cell mesh
with multiple distinct sub-cells, with new mesh nodes shown in yellow. (d) The
connectivity relationships between sub-cells can be visualized as a graph (blue)........... 37

Figure 3.2 A more complex cut-cell geometry, featuring sharp geometry and a regular
cell divided into four sub-cells (bright colors). Connected neighboring sub-cells are
filled with lighter shades of the same colors.. 37

Figure 3.3 (Left) The dragon solid geometry, shown with the regular grid superimposed.
(Right) The network of curves generated by intersecting the two, with the dragon
rendered transparent... 38

Figure 3.4 Top-left: The method of Ng et al. for embedded volumetric solid boundaries
(green) converges despite using active face midpoints (black dash) and cell centers
(black disks) lying outside the fluid domain (white). Top-right: A complementary
dual geometry, created by swapping fluid and solid domains, can also be easily
simulated with Ng’s method. Bottom-left: By conceptually superimposing the top
two scenarios and duplicating the required degrees of freedom, a pressure projection
can be performed on the thin solid, shown at the bottom-right, without interference
across it. ... 40

Figure 3.5 Geometry and notation used in our 2-D Poisson matrix example (Table 3.1).
The solid thin boundary is shown in green. ci,j is a regular grid cell at row j, column
i. sck is sub-cell k. fa-b is the fraction of the fluid edge shared by sub-cells a and b. 42

Figure 3.6 Left: Naïve octree discretizations yield face fluxes (blue) and pressure gradients
(red) that are not aligned. Right: Following Ng, our cut-cell discretization co-locates
all sub-cell pressures at grid cell centers (filled black circle) rather than sub-cell
centroids (empty black circles). Thus our “T-junction-like" branching preserves
orthogonality and avoids artifacts. Similarly, face fluxes are conceptually stored at
original face midpoints (blue), rather than at sub-face midpoints. 44

Figure 3.7 Streamlines of a velocity field obtained using different one-sided interpolation
schemes, with a stationary flow on one side. (a) SBC interpolation from nodal
velocities using free-slip boundary conditions leads to streamlines that flow smoothly
along the boundary. (b) SBC with no-slip likewise conforms to the boundary, but
both tangential and normal velocities drop to zero precisely at the boundary. (c)
and (d) show one-sided bilinear interpolation from values stored at the regular grid
corners for both free-slip and no-slip. The bilinear results exhibit grid-dependence,
and do not differ appreciably from one another. Moreover, since the interpolant
is non-conforming, the relevant velocity components do not drop to zero on the
boundary curve... 45

Figure 3.8 Velocity interpolation inside a cell containing a dangling interior face (green).
(left) Inverse-distance interpolation at a sampling point S is performed using the
velocities at the visible nodes (n1 and n2) , and at “virtual nodes" (n′3 and n′4) on the
solid boundary intersected by the rays from S to the occluded nodes (n3 and n4). di
is the distance from S to a visible node ni and d′i is the distance from S to a virtual
node n′i. (right) Example of a velocity field interpolation for a scenario containing a
static solid boundary using free-slip. ... 47

Figure 3.9 Different types of nodes for 2 (a) and 3 (b and c) dimensions. Fluid nodes
(cyan) are the original nodes of the regular grid that were not intersected by the
object; mixed nodes (white) are the incident on both solid and fluid faces and are
on top of grid edges; face mixed nodes (magenta, 3-D only) are those that are on
top of grid faces; and solid nodes (black) are the original mesh nodes that were not
modified by intersections with grid planes. .. 48

Figure 3.10 Visualization of the velocity propagation scheme. The image on the left
shows a 3-D cut-cell, with three nodes tagged as "A", "B" and "C". The image on
the right shows the planar view of the nodes where the velocity propagation will
occur. The velocity is found on edge-mixed nodes by the use of the weighted least
squares algorithm. Then, the velocity on face-mixed nodes is interpolated from
nearby edge-mixed nodes (e.g., velocity on "B" is interpolated from "A" and "C").
Lastly, the velocity on mixed nodes (red edges) is iteratively propagated to inside
solid nodes. ... 49

Figure 3.11 Projection of normal components of the velocities on cut-cell nodes. Edge-
mixed node velocities v1 and v2 are found by the weighted least squares method.
The unprojected velocity v∗ is interpolated from v1 and v2. The normal of the solid
node is represented as n and the projected velocity v is orthogonal to it.51

Figure 3.12 Horizontal straight segments aligned with the flow. (Top) Free-slip allows
the flow to continue undisturbed. (Bottom) No-slip causes drag on the fluid and a
deflection in the flow. ... 52

Figure 3.13 Two distinct FLIP advection operations: (a) particle-to-grid (transfer) and (b)
grid-to-particle (interpolation). The particle-to-grid operation transfers velocities
from particles to grid nodes. The transferring function is discretized with a SPH
kernel spiky kernel (Equation (3.13)). The grid-to-particle operation is a interpolation
from the grid velocities to the evaluated particle. This is performed using a bilinear
(trilinear in 3-D) interpolant on regular cells, and a Spherical Barycentric Coordinates
interpolant on cut-cells. .. 54

Figure 3.14 A volumetric object translating left-to-right reveals the uninitialized center
cell over a time step. ... 56

Figure 3.15 Failure cases for standard velocity extrapolation from valid into invalid (unini-
tialized) cells. Left: Closed regions cannot be extrapolated into. Right: Long narrow
regions may require extrapolation across arbitrary distances. ... 57

Figure 4.1 Cut-cell examples: (a) cut-cell of intersected tori meshes; (b) cut-cell example
for a mesh with border edges; (c) cut-cell of a mesh with holes. 59

Figure 4.2 Intersection computation with the Stanford bunny and generation of boundary
voxels: (a) lines resulting from the intersection of the grid planes and the object’s
mesh. Blue lines represent intersections with X-aligned planes; green lines cor-
respond to intersections with Y-aligned planes; and yellow lines correspond to
intersections with Z-aligned planes; (b) candidate cells tagged for non-manifold
mesh construction and subdivision. ..61

Figure 4.3 Schematic view of the non-manifold splitting algorithm in 2-D: (a) desired
solution of the splitting algorithm showing cells C1 and C2; (b) non-manifold mesh
structure, green vertices are T connections, in which the degree of the connectivity
graph is greater than 2. The arrows point the direction that the algorithm may choose
on vertices B and C. (c) A schematic view of the non-manifold graph structure,
which connects both edges and vertices. ... 62

Figure 4.4 Different cut-cell face types for 3-D: (a) grid faces (highlighted in blue and
red) are generated by the 2-D non-manifold splitting algorithm and can be arbitrary
planar polygons; (b) geometry faces (highlighted in yellow) belong to the original
mesh and are always triangular. ... 64

Figure 4.5 Node degrees examples: (a) two nodes (A and B) with degree equal to 3 are
connected to grid edges that are at opposite sides of the mesh boundary (green); (b)
when a node of the object lies exactly on top of a grid edge (red C node) it creates a
T-junction with degree > 3, since now 4 edges (two grid edges and two geometry
edges) are connected to it... 65

Figure 4.6 (a) 2-D horizontal cell faces (X aligned) initialized by the 2-D non-manifold al-
gorithm using slices intersection information; (b) 2-D vertical cell faces (Y aligned);
and (c) 2-D transversal cell faces (Z aligned). .. 65

Figure 4.7 Half-edges orientations for faces "A" and "B": (a) planar 2-D view of cut-
faces. Red edges represent the interface between the two grid faces and the objects
geometry. Each of those edges on the interface are represented on grid faces by
opposing half-edges. In (b), schematic 3-D visualization of the polygon winding
orientation of same set of geometry and grid faces. Geometry half-edge orientations
of grid face "B" are omitted for visualization purposes. .. 67

Figure 4.8 Examples of cut-cells generated with our algorithm for the Stanford Bunny. 67
Figure 4.9 Disconnected regions examples: (a) a cylinder cuts through a single regular

grid face; (b) cylinder intersection (red edge) is completely contained inside a grid
face, not crossing any grid edges. So, the algorithm adds two connection edges
(green edges) from the disconnected region to regular grid nodes generate valid
cut-faces In (c), a more complex example with multiple disconnected regions (red
edges) connected to geometry intersections (blue edges). .. 68

Figure 4.10 Schematic view of different disconnected regions. (a) A single circular hole
(C3) through a grid face. (b) Two disconnected regions (C3 and C4) connected by
their closest points. (c) Closest points between disconnected regions (C5 and C6)
obstructed by another geometry face. In this case the algorithm adds connections
directly to the geometry face between disconnected regions and new regions are
generated by those connections (C3 and C4). .. 68

Figure 4.11 Triangulation of a cut-cell: (a) original bunny cut-cell polyhedron with
arbitrary polygonal faces; (b) triangulated cut-cell...71

Figure 4.12 Velocity interpolation examples using Spherical Barycentric Coordinates on
cut-cells. ... 73

Figure 5.1 Different frames for the diagonal line example. Left image: line remains still,
and the diagonal flow is undisturbed by its presence because of free-slip boundary
conditions. Center image: line starts to rotate clockwise, disturbing the flow. Right
image: line rotates in counter-clockwise direction, also disturbing the flow. 76

Figure 5.2 Oscillating lines examples: no-slip boundary conditions (top), and free-slip
boundary conditions (bottom). Images on the right are the zoomed version for the
current time-step of the images on the left. In the free-slip case, particles can freely
move up and down through the gap between thin objects. .. 77

Figure 5.3 No-slip and free slip stress tests. In this example the line translates tangentially
to its geometry: In (a), with no-slip the translation disrupts the flow, since the velocity
at the boundary is set to be the solid’s velocity. In (b), with free-slip boundaries, the
fluid is freely allowed to flow tangentially and no disturbance is shown, as expected. .. 78

Figure 5.4 A disk passing through smoke, first tangentially (2nd column), then while
rotating (3rd column). Top row: Free-slip case. The smoke is undisturbed after the
first tangential slice through. Bottom row: No-slip case. The smoke is disturbed
immediately. .. 79

Figure 5.5 Frames from rotating line example for 2-D.. 80
Figure 5.6 Frames from rotating paddle example for 3-D. ...81
Figure 5.7 Irregularly shaped object example: (a) Gear-like shape with high frequency

features, (b) zoomed version of the same example. .. 82
Figure 5.8 Three circles example. (a) Three circles with a small gap between them; (b)

zoomed version of the three circles experiment... 83
Figure 5.9 Left: The fluid flow conforms to the irregular bunny mesh due to our use of

conforming polyhedral interpolation. Right: The same bunny with black curves
illustrating the coarse grid.. 84

Figure 5.10 Simulation of fluid flow around the Bunny model (free-slip, same time step)
using grids of various resolutions. While the level of turbulent detail naturally
increases at higher resolutions, the flow still respects the geometry even at extremely
coarse resolutions. .. 84

Figure 5.11 Frames from the linked torii example. .. 85
Figure 5.12 Flow simulation on a turning and branching tube whose width is smaller than

a grid cell width. (a) Free-slip flows smoothly. (c) No-slip halts in the tube. (b) and
(d) show closeup views of the highlighted regions. ... 85

Figure 5.13 Example of flow inside a simple maze. The flow is able to topologically
solve the maze, as expected in a real case scenario. a) The flow is presented with
an increased number of FLIP particles to visualize how the interpolation process
is consistent across sharp corners and highly non-convex cells. b) "Ghost" moving
through the maze also disrupts the flow in a way that converges to the maze solution. . 86

Figure 5.14 Frames of 3-D dragon animation discretized with a regular grid spacing of
h = 0.5. .. 86

Figure 5.15 Frames of 3-D dragon animation discretized with a regular grid spacing of
h = 0.25. .. 86

LIST OF TABLES

Table 3.1 The symmetric cut-cell pressure projection matrix that results from the 2-D
configuration shown in Figure 3.5, assuming Neumann boundary conditions on the
domain perimeter. ci,j represents a regular grid cell at row j, column i. sck is sub-cell
k. fa-b is the fraction of the fluid edge shared by sub-cells a and b.

∑
fk is the sum

of all fluid-edge entries in the row that represents the sub-cell sck. pi,j and di,j are,
respectively, the pressure and divergence at grid cell ci,j . psck and dsck are the pressure
and divergence at sub-cell sck. ... 43

Table 5.1 Timing and parameters for 3-D simulations: NS stands for no-slip and FS stands
for free-slip boundary conditions. Timing information is in seconds per frame, and is
computed as an average over the first 3-4 frames. Total time excludes meshing, listed
separately. For moving geometry, the cut-cell count is given for the first frame, and
the cut-cell meshing time is per frame. For static meshes, meshing occurs only once
at the start, as stated on the table. All examples use 64 particles per cell, except the
Linked Tori with 128. In static examples, cut-cells are generated only once; otherwise,
meshing times are computed per frame. .. 75

Table 5.2 Statistics for a fluid simulation around the Bunny model (5,002 triangles) on
grids of various resolutions. For each grid resolution, the table provides the number
of cut cells (# Cut-Cells), its percentage with respect to the total number of cubic
cells in the regular grid (% Cut-Cells), the number of triangles in the Bunny mesh
after intersecting with the grid (# Polygons), the total time in seconds required to
generate the cut cells (CC), the subset of the cut-cell generation time spent on CGAL
operations (CGAL (sec)), the percentage of the cut-cell generation time corresponding
to CGAL operations (CGAL (%)), the time spent by our meshing algorithm in the
key step of finding all faces incident on each mixed node (MN), and the advection
and projection times for simulating one time step. .. 75

Table 6.1 For one step at a fixed 2D grid resolution (16 × 10), 1, 8, and 64 lines per
cell crossing over 5 cells (as in Figure 3.12 top). # of Cut-Cells (CC), percentage of
CC relative to the regular 160 grid cells. Times (sec) for: CC generation, advection,
projection, and total time. .. 88

CONTENTS

1 INTRODUCTION.. 16
1.1 Thesis Statement .. 18
1.2 Thesis Organization ... 20
2 RELATED WORK ...21
2.1 Immersed Boundary Methods .. 25
2.1.1 Continuous Forcing Methods.. 25
2.1.2 Discrete Forcing Methods... 26
2.2 Cut-Cell methods ... 27
2.3 Boundary Treatment in Computer Graphics.. 28
2.4 Thin Solid Boundaries ... 29
2.5 Velocity Reconstruction and Interpolation...31
2.5.1 Reconstruction ...31
2.5.2 Interpolation.. 32
2.5.3 Summary ... 33
3 A CUT-CELL METHOD FOR HANDLING THIN OBSTACLES AND NARROW

GAPS... 35
3.1 Cut-Cell Meshes ... 36
3.2 Graph-Based Pressure Projection .. 38
3.2.1 Cut-Cell Pressure Projection... 38
3.2.2 Topology-Aware Pressure Projection.. 39
3.2.3 Primal-Dual Orthogonality ... 43
3.2.4 Dangling Cut-Cells ... 43
3.3 Conforming Interpolation on Cut-Cells... 44
3.3.1 Polyhedral Cut-Cell Interpolation... 46
3.3.2 Velocity Reconstruction .. 47
3.3.2.1 Free-Slip Case.. 48
3.3.2.2 No-Slip Case ...51
3.4 Fluid-Implicit-Particle Advection... 52
3.4.1 Integration of Particle Positions.. 53
3.4.2 Transfer to Mesh ... 54
3.4.3 Storing Intermediary Velocity Field.. 55
3.4.4 Transfer to Particles .. 55
3.4.5 Discussion ... 56
3.5 Summary... 57
4 IMPLEMENTATION .. 59
4.1 Cut-cell splitting method ... 59
4.1.1 Computing intersections between the grid and meshes .. 60
4.1.2 Cut-face computation in 2-D ...61
4.1.3 Boundary voxel list generation ... 63
4.1.4 Construction of non-manifold meshes .. 64
4.1.5 Non-Manifold mesh splitting in 3-D... 66
4.1.5.1 Disconnected regions ... 67
4.2 Least squares velocity fitting... 69
4.2.1 Weighted least squares .. 69
4.3 Spherical Barycentric Coordinates .. 70
5 RESULTS.. 74
5.1 Flow around thin objects... 76
5.1.1 Diagonal Line.. 76

5.1.2 Oscillating Lines ... 77
5.1.3 Stirring Line .. 78
5.1.4 Disk Slicing Smoke... 78
5.1.5 Rotating Line and Paddle.. 79
5.2 Flow around irregular objects .. 80
5.2.1 Smoothed Gear.. 80
5.2.2 Three Circles..81
5.2.3 Bunny...81
5.3 Flow through narrow regions ... 82
5.3.1 Linked Tori.. 82
5.3.2 Branching Tube... 83
5.3.3 Flows in a Maze .. 83
5.3.4 Dragon... 84
6 CONCLUSION .. 87
6.1 Limitations.. 87
6.2 Future Work ... 88
REFERENCES.. 89

16

1 INTRODUCTION

Current fluid animation research focuses its efforts on the visual reproduction of the com-

plex movements of natural phenomena like water, smoke and explosions. These phenomena are

pervasive in a vast spectrum of applications in computer graphics and it is important to plausibly

simulate those flows in virtual environments. Through the years, several successful algorithms

were proposed in computer graphics (Figure 1.1), with notable presence in films (FEDKIW;

STAM; JENSEN, 2001; ENRIGHT; MARSCHNER; FEDKIW, 2002; RASMUSSEN et al.,

2004; MOLEMAKER et al., 2008), animations (CHENTANEZ et al., 2007; HONG; SHINAR;

FEDKIW, 2007) and interactive games (COHEN; TARIQ; GREEN, 2010; CHENTANEZ;

MULLER, 2011).

Due to the complex nature of fluids and the continuous demand for high-quality special

effects, fluid animation research is still an active area, despite the progresses made in the

last twenty years. Some examples of highly-successful research include the unconditionally-

stable advection method (STAM, 1999), non-dissipative smoke (FEDKIW; STAM; JENSEN,

2001), particle level-set for liquids (ENRIGHT; MARSCHNER; FEDKIW, 2002), particle-

based fluids (MULLER; CHARYPAR; GROSS, 2003), adaptive grids (LOSASSO; GIBOU;

FEDKIW, 2004), hybrid meshes (FELDMAN; O’BRIEN; KLINGNER, 2005), semi-Lagrangian

surface tracking (BARGTEIL et al., 2006), variational method for fluid-solid coupling (BATTY;

BERTAILS; BRIDSON, 2007), wavelet turbulence (KIM et al., 2008), Predictive-Corrective SPH

(SOLENTHALER; PAJAROLA, 2009), multiscale approach for surface tension (THUREY et

al., 2010), tall-cell grids (CHENTANEZ; MULLER, 2011), bubbles (BUSARYEV et al., 2012),

position-based fluids (MACKLIN; MULLER, 2013), the material point method (STOMAKHIN

et al., 2014), stream-function solvers (ANDO; THUEREY; WOJTAN, 2015) and Schrödinger

smoke (CHERN et al., 2016).

With a given scene configuration and the nature of the fluid (e.g. water or smoke),

the usual approach is to execute a numerical simulation to model plausible and consistent

representations of the flow. The numerical simulation utilizes mathematical models that represent

fluid movement similarly to the way they behave in the real world. The most famous model is

based on the solution of the Navier-Stokes equations, which are discretized in time and space.

For the space discretization, Eulerian Methods (FOSTER; METAXAS, 1997; STAM, 1999;

FEDKIW; STAM; JENSEN, 2001) utilize grids of fixed points distributed on the simulation

domain to evaluate fluid properties. These grids are obtained through a successive domain

17

Figure 1.1: Successful fluid simulation research examples through years: (a) multiscale approach
for surface tension (THUREY et al., 2010), (b) material point method for snow simulation
(STOMAKHIN et al., 2013), (c) stream-function solver (ANDO; THUEREY; WOJTAN, 2015)
and (d) Schrödinger Smoke (CHERN et al., 2016).

subdivision. The usual layout used on computer graphics consists of a regular structured

subdivision of the domain, representing it through regular cells.

However, standard grid-based discretizations face difficulties when either the boundaries

themselves or the spaces between the boundaries are thin relative to the grid resolution. For

narrow flow regions, which could be caused either by spaces between objects smaller than

a grid cell (Figure 1.2a) or by detailed features inherent to the geometry (Figure 1.2b), the

challenge is that a typical voxelized view of the domain simply cannot capture them correctly,

either topologically or geometrically. For thin boundaries (Figure 1.2c), the same difficulties

are exacerbated by the need to prevent flow on one side of an impermeable boundary from

erroneously interfering with flow on the opposing side.

While in principle one could continually increase the grid resolution until the thin feature

or region is fully resolved, this is tremendously expensive and impractical for most animation

scenarios. The poor scaling of volumetric simulation has motivated recent efforts to capture as

much detail as possible at free surface boundaries while using much lower resolution underlying

simulation grids (KIM; SONG; KO, 2009; WOJTAN et al., 2010; BOJSEN-HANSEN; WOJTAN,

2013; EDWARDS; BRIDSON, 2014). Our goal is philosophically similar: we seek to enhance

the ability of coarse grid-based Eulerian fluid simulators to resolve interesting flows, but focus

instead on solid boundaries which may be moving, irregularly shaped, arbitrarily thin, and in

18

close mutual proximity.

(a) (b) (c)
Figure 1.2: Different scenarios that are difficult to handle with standard regular-grid discretization:
(a) narrow gap between solid objects, (b) an object with small hole and (c) infinitesimally thin
object.

1.1 Thesis Statement

The central idea of this thesis is that infinitesimally thin objects, narrow gaps and complex

shapes can be represented using a cut-cell data-structure that correctly models geometry and

topology. Pressure and velocity samples can be connected by a graph that preserves correct

topology of the domain for very coarse settings. A symmetric positive definite pressure matrix

formulation can be employed to model the problem, yielding second-order convergence for

pressure in space. Additionally, a carefully tailored FLIP advection scheme can be used to move

boundaries and velocity information in tandem; with sufficient particle sampling, no velocity

extrapolation is needed for filling-in empty spaces left by moving boundaries. Together, these

concepts lend to stable and efficient simulations of flows involving thin obstacles possibly con-

taining complex shapes and narrow gaps, relaxing a long standing restriction in fluid animation.

The ability to simulate such representations on very coarse grids lends to computational sav-

ings that can be explored to efficiently create animation previews, potentially saving animators

considerable time.

To demonstrate this thesis, we present an embedded boundary or cut-cell approach that at

each time-step intersects grid cells with triangle meshes representing solid boundaries, potentially

yielding multiple distinct polyhedral sub-cells per regular voxel. The resulting hybrid simulation

mesh closely conforms to the geometry of the solid boundary and reduces to a regular grid away

from the boundary. Crucially, and in contrast to existing fluid animation methods using regular

19

grids, our approach preserves the topology of the fluid domain, including thin solids and slender

narrow gaps between nearby solids. The practical advantage this offers is a sharp reduction

in the unnecessary coupling between grid resolution and solid boundary topology present in

previous work; that is, fluid grid resolution can be artistically adjusted solely to achieve the

desired balance of fluid detail and computational cost, without concern for whether an inaccurate

solid discretization will inadvertently disconnect or merge flow regions in the process.

We first introduce a topologically-accurate, graph-based discretization for the pressure

projection on the cut-cell mesh which can resolve flows in difficult regions. Furthermore, it

offers greater fidelity than prior work on thin solids: it better accounts for the sub-grid geometry

of the boundary, correctly recovers free-slip boundary conditions, and is consistent with existing

cut-cell approaches for volumetric objects (e.g., (BATTY; BERTAILS; BRIDSON, 2007; NG;

MIN; GIBOU, 2009)).

Secondly, to improve the handling of advection near boundaries we develop a conforming

velocity interpolant on arbitrarily-shaped polyhedral cut-cells by relying on spherical barycentric

coordinates (SBC) (LANGER; BELYAEV; SEIDEL, 2006). This allows flow characteristics

to more closely respect boundary geometry than is possible with standard, boundary-oblivious

linear or cubic interpolation schemes, particularly in narrow regions.

Lastly, we augment our approach with a tailored PIC/FLIP (ZHU; BRIDSON, 2005)

advection scheme. Beyond its usual ability to reduce numerical dissipation, this resolves a

lingering difficulty with semi-Lagrangian advection in the context of thin moving boundaries.

Specifically, grid cells swept over by solids lack valid velocity information after semi-Lagrangian

advection (GUENDELMAN et al., 2005), and must be filled back in by extrapolating from valid

cells that may be arbitrarily far away. Our use of Lagrangian particles ensures that velocity data

flows coherently with the boundaries themselves, so that extrapolation is not required.

These enhancements substantially improve the detail that can be achieved when simulat-

ing fluids interacting with solid boundaries, while readily integrating into the dominant Eulerian

staggered grid fluid pipeline. Figure 1.3 shows examples of fluid animations containing thin

obstacles and gaps created with our technique on very coarse grids. On the left, a very thin

paddle successfully stirs smoke. The image on the right shows smoke propagating through a

narrow tunnel in a low-resolution grid.

To summarize, the technical contributions of this thesis include:

• The identification of key limitations of existing thin solid and thin gap treatments, due to

voxelized geometry and standard interpolation strategies (Section 3.1);

• A symmetric, graph-based cut-cell pressure projection method that preserves the domain

20

topology (Section 3.2). It is the first to properly handle both thin obstacles and thin gaps

between obstacles within coarse 3-D grid cells, allowing the use of less costly grids to

animate flows in difficult geometries;

• An improved velocity interpolation scheme in polyhedral cut-cells based on spherical

barycentric coordinates (Section 3.3), allowing flows to better respect irregular solid

boundaries;

• A technique to improve velocity advection near thin moving obstacles (Section 3.4). By

combining Lagrangian PIC/FLIP particles with our cut-cell scheme, velocity information

is correctly propagated despite the presence of moving geometry.

23× 10× 6 grid 11× 9× 6 grid
Figure 1.3: Our geometry- and topology-aware boundary treatment supports simulating smooth
flows in the presence of thin solid geometry, irregular geometry and narrow gaps on very coarse
grids.

1.2 Thesis Organization

Chapter 2 discusses relevant works to this thesis, focusing on embedded meshes in regular-

grid settings. Chapter 3 details the proposed cut-cell mesh structure, our topologically-aware

pressure projection method, the conforming interpolation and velocity reconstruction on cut-cells,

and our modified FLIP advection scheme. Chapter 4 provides specific implementation details,

covering the construction of cut-cells, our least squares velocity fitting, and the implementation

of Spherycal Barycentric Coordinates interpolant. Chapter 5 illustrates many results obtained

with our technique, including flows in narrow regions and gaps, flows interacting with irregular

shapes, and flows around thin objects. Lastly, Chapter 6 presents our conclusions and possible

directions for future work.

21

2 RELATED WORK

Most fluid animation methods are based on the evaluation of the Navier-Stokes equa-

tions, which can be discretized in space by two popular approaches: Lagrangian, or Eulerian.

Lagrangian methods (MULLER; CHARYPAR; GROSS, 2003; SOLENTHALER; PAJAROLA,

2009) evaluate each blob of fluid separately, so the discretized information moves along with

the fluid flow. These methods can be either meshless (particles) or mesh-based; for computer

graphics applications, the most common approach is to represent flows as particle systems. Eule-

rian methods (FOSTER; METAXAS, 1997; STAM, 1999), on the other hand, use fixed points

distributed on the simulation domain to evaluate fluid properties. In this thesis, the proposed

method is of Eulerian type. For a comprehensive review on Lagrangian fluids in computer

graphics, we refer to Ihmsen et al. (IHMSEN et al., 2014).

The usual grid layout consists of a regular subdivision, discretizing the environment

in a voxelized fashion. Although common and reliable, it produces rough representations

for object geometry, as shown in Figure 2.1a. The resulting incorrect boundaries introduce

noticeable artifacts in the simulations/animations, which may not vanish with increased grid

resolution (FELDMAN; O’BRIEN; KLINGNER, 2005; BATTY; BERTAILS; BRIDSON, 2007),

especially in the presence of narrow gaps. Moreover, a voxelized pressure solver still produces

objectionable artifacts in thin objects settings unless high-resolution grids are used.

(a) (b) (c)
Figure 2.1: Different grid types: (a) regular grid; (b) unstructured grid; and (c) non-regular
structured grid. Image from (AZEVEDO; OLIVEIRA, 2013).

Adaptive refinement techniques (LOSASSO; GIBOU; FEDKIW, 2004; LENTINE;

ZHENG; FEDKIW, 2010) try to optimize the domain cell distribution concentrating fine cells

near object boundaries or regions of high vorticity. While octrees (MARTIN, 1996) can improve

the use of computational resources, their usage leads to non-symmetric systems in the pressure

22

Figure 2.2: Hybrid tetrahedral meshes proposed. Left: regular cells close to object’s embedded
meshes are removed and replaced by triangle (tetrahedra in 3-D) meshes. On the image on the
right, different types of cells in their method are shown: Tetrahedral (blue), transition (green)
and regular cells (red). Adapted from (FELDMAN; O’BRIEN; KLINGNER, 2005).

equation. To overcome this, Losasso et al. (LOSASSO; GIBOU; FEDKIW, 2004) simplify the

representation of the pressure gradient on T-junctions. This drops the pressure representation

on those regions to first order accuracy in space, hindering the overall exactness of the method.

Overlapping grids (ENGLISH et al., 2013; QIU; LU; FEDKIW, 2016) have also been used

for adding details on interest regions. Adaptive refinement and boundary conforming cells are

orthogonal concerns; i.e. even with very fine adaptive cells, it still will not fix errors from a

voxelized boundary. Those approaches can be easily combined as in (BERGER; LEVEQUE,

1989).

Unstructured grids methods (Figure 2.1b) discretize the solution environment using

triangles (2-D) or tetrahedra (3-D). These methods were introduced in computer graphics by

Feldman et al. (FELDMAN; O’BRIEN; KLINGNER, 2005). Their work composed the simula-

tion domain by fixed unstructured tetrahedral meshes and regular hexahedral cells, combining

accuracy near obstacles and efficiency in open regions (Figure 2.2). It was later extended to

dynamic environments (FELDMAN et al., 2005; KLINGNER et al., 2006; CHENTANEZ et

al., 2007) using a mesh re-generation technique, which can take up to forty percent of the total

simulation time (KLINGNER et al., 2006).

The main advantage of unstructured grids is the ability to discretize non-axis aligned

boundaries with acute angles and concavities. Also, when compared with the generation of

conforming structured grids, which in some cases might take weeks to custom-fit, unstructured

grids generation is fast and automated. However, unstructured grids have no discernible or-

ganized structure, and node locations and neighbors need to be specified explicitly. For fluid

simulation, this implies that more sophisticated and robust algorithms are required to solve the

23

resulting system of equations, causing its solution to be slow due the overhead for accessing

and preprocessing data. Also, concentrating cells in high-vorticity regions can be a complex

task. This happens because triangle and tetrahedral elements do not stretch or twist well without

affecting the stability and convergence of the flow solver, limiting the grid mesh to some level

of isotropy. Therefore, it is often necessary to refine large portions of the grid to achieve local

refinements (WYMAN, 2001).

Non-regular structured grids (Figure 2.1c) methods, also known as curvilinear grids

(AZEVEDO; OLIVEIRA, 2013), are based on tessellations of an N -dimensional Euclidean

space, adaptively contouring objects and filling the simulation domain without gaps. They are

constructed using quadrilaterals (in 2-D) or hexahedra (in 3-D). Their regular structure makes

the cost of the flow solver nearly identical to the ones used with regular grids. However those

methods are unfeasible on dynamical 3-D scenarios due the difficulty of generating curvilinear

grids on three dimensions.

In this thesis we augment current state-of-the-art for boundary treatment of Eulerian

regular-grid flow solvers. Regular-grid methods are popular to computer graphics applications

because no grid generation is required. Conforming non-regular grids are popular in compu-

tational fluid dynamics since the goal is to compute physically correct variables, thus models

need to provide accuracy near boundaries. Our method is a combination from both worlds: our

boundary cut-cells can be seen as conforming non-regular cells, though most of our grids cells

remain regular. We may categorize previous embedded boundary works in two major classes

(following Choi et al. (CHOI et al., 2007)): Immersed Boundary (Figure 2.3c) and Cartesian

Cut-cell (Figure 2.3c) methods. Immersed Boundary methods (or diffuse interface) enforce wall

conditions indirectly through the use of forcing functions, while Cartesian Cut-cells methods

(or sharp interface) are based on the construction of irregular cells nearby geometry boundaries.

However, this categorization is not strict, since methods from both areas often use overlapping

concepts. The literature on these methods is extensive and for a thorough discussion we refer

to Shelley et al. (SHELLEY; ZHANG, 2011), Hou et al. (HOU; WANG; LAYTON, 2012) and

Gornak (GORNAK, 2013). On Sections 2.1 and 2.2 we will discuss important papers from both

approaches.

We categorize previous work in boundary treatment for fluids simulation in two major

areas (Figure 2.4): computational fluid dynamics (Sections 2.1 and 2.2) and computer graphics

(Sections 2.3 and 2.4). More common to computational fluid dynamics are the cut-cell methods,

which are covered in Section 2.2 of this thesis. Since these methods are more concerned with

sharp representation of embedded objects inside regular grids, they are more employed in CFD

24

literature. More common to computer graphics, are the thin boundaries methods (Section 2.4),

since usually infinitesimally thin geometries – like cloth and thin shells – are more present in

computer graphics environments. Lastly, in Section 2.5, we discuss the literature about velocity

reconstruction and interpolation that are relevant to this thesis. These methods are partly outside

the boundary treatment for fluids simulation box, since they are widely employed in other

different research areas.

Embedded Boundary

(a)

Embedded Boundary

(b)

Embedded Boundary

(c)
Figure 2.3: Volumetric solid embedded in a regular-grid domain. Lagrangian mesh control
points are represented as yellow circles. (a) Solid immersed in a regular-grid setting; the
red line represents the interface between solid and fluid. (b) Immersed boundary method
transferring function schematic view: each of the Lagrangian control points transfers its influence
to a circular kernel around its location (green dashed circles). (c) Schematic view of cut-cell
methods: partially-filled boundary-conforming cells (blue regions) are computed to enforce
proper boundary conditions.

Figure 2.4: Previous works in boundary treatment for fluids simulation schematic overview.

25

2.1 Immersed Boundary Methods

In this section, we provide an overview of the Immersed Boundary Method. Immersed

boundary methods can be mathematically modelled by continuous or discrete forcing methods

(GORNAK, 2013), which will be detailed, respectively, in Sections 2.1.1 and 2.1.2.

2.1.1 Continuous Forcing Methods

Treating irregular boundaries on regular grids was first addressed by the Immersed

Boundary Method (IBM) of Charles Peskin (PESKIN, 1972). Originally, the objects inside

the domain were represented only by its infinitesimal boundaries modelled as elastic fibers.

These fibers transferred the stress to the fluid through a continuous force field f(x) that could be

derived using constitutive laws (e.g. Hooke’s law). Forces are transferred to the regular-grid flow

solver as

f(x) =

∫
Γ

h(s, t) δ(x− x(s)) ds, (2.1)

where Γ is the embedded boundary geometry, which is parametrized by s, h(s, t) is a non-linear

function describing the elastic properties of the boundary in time t, δ is a delta function that

maps forces to local regular-grid cells, and x(s) is the closest point on the boundary relative to

position x. The delta function could be replaced by a smooth distribution function to transfer the

forces to grid nodes (PESKIN, 1977). IBM has been used in a variety of applications, such as

simulation of blood flow in heart valves (MCQUEEN; PESKIN; YELLIN, 1982), blood clotting

(FOGELSON, 1984), and aquatic animal locomotion (FAUCI; PESKIN, 1988).

Several extensions to IBM have been proposed. We highlight the virtual boundary method

(GOLDSTEIN; HANDLER; SIROVICH, 1995; SAIKI; BIRINGEN, 1996) and the Immersed

Interface Method (IIM) (LI; LAI, 2001; LEE; LEVEQUE, 2003). The virtual boundary method

extended the forcing approach to satisfy exact no-slip boundary condition at interfaces. In this

way, the force is not known a-priori, but it evolves in a feedback loop along with fluid velocities

defined at the interface. Custom parameters α, β are introduced, and they account respectively

for natural oscillation and dampening of the boundary response.

The Immersed Interface Method is an extension to IBM that uses boundary forces to

derive proper jump conditions for pressure and velocities. IIM can achieve higher accuracy near

boundaries when compared with IBM because it is able to successfully reduce the effects of the

transfer function smearing due smooth kernels. The IIM is one of the most popular second-order

26

finite difference methods for approximating interface problems (HELLRUNG et al., 2012).

One of the disadvantages of using the immersed boundary method is that it is hard to

enforce rigidity on constitutive forces that are based on the Hooke’s law. This happens because

strain material coefficients have to be tuned to simulate rigid bodies, leading to stiff systems.

2.1.2 Discrete Forcing Methods

Discrete forcing methods, introduced by Mohd-Yusof (MOHD-YUSOF, 1997), overcome

the limitations from continuous forcing by imposing the desired value of the velocity directly,

without an evolving dynamical process. Assuming discrete-time integration, we can define a

velocity function on the embedded boundary as

un+1 − un

∆t
= RHSn+1/2 + fn+1/2, (2.2)

where un and un+1 are the velocities at the beginning and at the end of the time-step, respectively;

RHS is the convective, diffusive and pressure gradient terms of the Navier-Stokes equations at

an intermediate step, and fn+1/2 is the intermediate forcing function. The value of fn+1/2 which

will yield un+1 = vn+1, where vn+1 is a desired boundary velocity, is given by:

fn+1/2 = −RHSn+1/2 +
vn+1 − un

∆t
(2.3)

Thus, the final expression for discrete forcing methods become:

f =

u · u−∇2u +∇p+ 1
∆t

(vn+1 − un), in Γ

0, otherwise.
(2.4)

Due its simplicity and efficiency, most of the modern embedded boundary methods use

this continuous formulation to obtain a discrete form of force transferring. The difference between

the various discrete forcing transferring methods is on the discretization of Equation (2.4), since

the objects boundaries and the grid cells often do not coincide. Fadlun et al. (FADLUN et al.,

2000) categorized three major schemes for discretizing Equation (2.4):

• Project irregular boundaries on grid faces and apply forcing conditions on the voxelized

boundary, as in the lumped-mass method of Robinson-Mosher et al. (ROBINSON-

MOSHER et al., 2008);

27

• Assume partially-filled cells to transfer forces using fractional cell formulation, as in the

sharp interface immersed boundary method of Mittal et al. (MITTAL et al., 2008);

• Compute velocities on closest fluid points relative to the boundary by a special interpolation

scheme, as in (KIM; KIM; CHOI, 2001).

Another set of techniques that are based on direct forcing are the ghost-cell or ghost-fluid

approaches. The ghost-fluid approach was originally proposed for enforcing jump conditions

for multi-phase flows in regular grids (FEDKIW et al., 1999; LIU; FEDKIW; KANG, 2000). A

ghost-cell has some portion of the fluid, but its centroid is covered by the embedded boundary,

which could be solid or air in liquid-air interfaces. On the other hand, a partially-filled fluid cell

has some portion of the embedded boundary, but its centroid is covered by fluid. Gibou et al.

(GIBOU et al., 2002) proposed a second-order accurate Poisson solver for irregular embedded

boundaries by adopting ghost-cells with extrapolation to properly define jump conditions. Enright

et al. (ENRIGHT et al., 2003) extended this method with a particle level-set to get second-order

accurate pressures for free surface flows.

2.2 Cut-Cell methods

Cut-cell methods firstly appeared in the early work of Purvis and Burkhalter (PURVIS;

BURKHALTER, 1979): the authors solved a nonlinear potential equation to predict critical

Mach numbers of store configurations. Clark et al. (CLARKE; HASSAN; SALAS, 1986)

solved the Euler equations on partially filled cells discretized with the finite volume method;

Berger and Leveque (BERGER; LEVEQUE, 1989) and later Zeeuw and Powell (DEZEEUW;

POWELL, 1993) extended this approach to support adaptivity. Quirk (QUIRK, 1994) extended

previous adaptive approaches to model shock dynamics. Udaykumar et al. (UDAYKUMAR;

SHYY; RAO, 1996; UDAYKUMAR et al., 1997) used cut-cells to capture free interfaces in

multi-phase flows using a finite-difference scheme. Cut-cells are often modified to deal with

time-step restrictions, since non-linear convective terms have to be evaluated in possibly small

cut-cells. Therefore, merging small cut-cells with their adjacent neighbors is a commonplace

technique in CFD methods. This is unnecessary in our approach, since we adopt a modified

FLIP advection scheme that avoids this limitation (Section 3.4).

Udaykumar et al. (UDAYKUMAR et al., 2001) extended previous sharp-interface

approaches for dealing with moving boundaries. The advection-diffusion terms are modified

on boundary cut-cells to enforce proper velocities. The authors also dealt with the problem of

28

"freshly-cleared" cells, which arise when computational points that were inside a solid emerge

as fluid on the subsequent time-steps. This could be treated with proper jump conditions in

time for the convection equation; however, no physically-based condition can be derived for

fluid-structure interaction problems. To overcome that, they merge freshly-cleared cells with

their neighbors and the new velocity is computed on merged cells by a simple interpolation

using nearby velocities samples. We do not observe problems created by moving boundaries in

our method, since our modified FLIP advection scheme is able to move velocities information

along with moving boundaries and no velocity interpolation is needed. We will further detail our

modified FLIP advection scheme in Section 3.4.

Colella and collaborators (JOHANSEN; COLELLA, 1998; SCHWARTZ et al., 2006)

developed a cut-cell method that interpolates velocities to lie at the centroids of partial faces.

This achieves second-order accurate velocities at the expense of more complex stencils; however,

these stencils yield non-symmetric systems and cannot be applied in narrow regions. Day et

al. presented an interesting partial extension of this idea to thin boundaries in two dimensions,

through the use of a more general graph structure and extra ghost samples on the grid (DAY et al.,

1998). Ng et al. (NG; MIN; GIBOU, 2009) showed that the finite volume variant of Batty et al.

(BATTY; BERTAILS; BRIDSON, 2007) yields second-order accurate pressures and first-order

velocities. In essence, our pressure-solve discretization applies and generalizes the work of Ng

et al. to thin boundaries and regions.

Cut-cells were also employed for achieving better convergence rates for algebraic multi-

grid methods. Crockett et al. (CROCKETT; COLELLA; GRAVES, 2011) discussed the related

idea of “multi-cells" which arise during coarsening steps of a multigrid scheme for Poisson

problems on irregular domains. Hellrung et al. (HELLRUNG et al., 2012) presented a more

complex virtual node discretization for 3-D Poisson problems with discontinuities, assuming

a level-set description of domain boundaries which effectively restricts the method to closed

regions that do not possess thin boundaries or gaps. They presented a family of multigrid

algorithms that solve the Poisson equation with near-optimal efficiency.

2.3 Boundary Treatment in Computer Graphics

Foster and Fedkiw (FOSTER; FEDKIW, 2001) tried to minimize voxelization artifacts

using the obstacle’s normal vectors to enforce appropriate velocity boundary conditions. Enright

et al (ENRIGHT; MARSCHNER; FEDKIW, 2002) extrapolated velocities across the surface

of the liquid to surrounding air cells to get better implicit surfaces update. This idea was

29

further extended by Houston et al. (HOUSTON; BOND; WIEBE, 2003) and by Rasmussen et

al. (RASMUSSEN et al., 2004). Robinson-Mosher et al. (ROBINSON-MOSHER et al., 2008;

ROBINSON-MOSHER; ENGLISH; FEDKIW, 2009) proposed an IBM mass-lumping scheme;

their transferring function was able to better conserve torque on two-way interactions. Their

approach inspired follow-up papers in CFD (ROBINSON-MOSHER; SCHROEDER; FEDKIW,

2011; QIU; FEDKIW, 2015).

A sharp interface method was introduced in computer graphics by Roble et al. (ROBLE;

ZAFAR; FALT, 2005). They proposed a two-dimensional finite volume-like technique for

irregular static boundaries, in which the usual Poisson stencil is augmented with per-face weights

that account for the fluid fraction of each face. Batty et al. (BATTY; BERTAILS; BRIDSON,

2007) presented a closely related, variational technique that enabled stable coupling in 3-D with

irregular volumetric rigid bodies; the transfer function was based on the fluid/boundary ratio

of partially filled cells. Batty et al. (BATTY; XENOS; HOUSTON, 2010) further combined a

sharp embedded boundary technique with unstructured grids, enabling spatially adaptive liquid

simulation with more accurate enforcement of air and liquid interfaces.

In the context of multigrid solvers, Weber et al. (WEBER et al., 2015) adapted the scheme

of Ng et al., ensuring consistent discretization across grid levels, but did not consider multi-cells

or the treatment of thin solids; work by Dick et al. (DICK; ROGOWSKY; WESTERMANN,

2016) is similar in spirit. Ferstl et al. (FERSTL; WESTERMANN; DICK, 2014) used a cut-cell

tetrahedra-based finite-element scheme with a multigrid solver, and similarly preserved the free

surface topology during coarsening, though solid boundaries were treated as voxelized.

Edwards et al. (EDWARDS; BRIDSON, 2014) proposed an adaptive discontinuous

Galerkin scheme on cut-cell meshes to handle detailed free surface flow on coarse grids, po-

tentially involving multiple disjoint liquid components per original cell; they did not discuss

thin solids or thin gaps. Outside of fluid animation, topology-aware strategies have been applied

to simulate the dynamics of elastic deformable objects possessing multiple distinct deforming

components inside a single finite element (TERAN et al., 2005; NESME et al., 2009). Though

conceptually related, they are naturally inapplicable to the problem we consider.

2.4 Thin Solid Boundaries

While thin boundaries often arise in two-way coupling, we focus our review on aspects

relevant to the one-way (solid-to-fluid) coupling problem addressed by our work. The cou-

pling of fluid to thin boundaries in computer graphics was first addressed by Guendelman et

30

al. (GUENDELMAN et al., 2005). Their approach voxelized the geometry of thin shells onto

the regular grid, and used a one-sided extension of trilinear interpolation based on raycasting

to avoid mixing data from the opposite side of a boundary (Figure 2.5). They also proposed

an extrapolation approach to fill in data for fluid regions that are swept over and invalidated by

moving boundaries. Later work by Robinson-Mosher et al. (ROBINSON-MOSHER et al., 2008;

ROBINSON-MOSHER; ENGLISH; FEDKIW, 2009) adopted essentially the same one-sided

interpolation mechanism. A similar raycasting strategy has been applied to compressible flows

in computational fluid dynamics (WANG et al., 2012).

(a) (b)
Figure 2.5: Raycasting approach for representing an embedded boundary (green dashed line):
shared edges between regular cells are tagged as solid (red lines), and pressure samples adjacent
to solid edges are not linked to each other. A single solid shared edge, in (a), between two regular
grid cells A and B. If a ray casted from the centroid of A to centroid of B (blue dashed line)
intersects the embedded geometry, the shared edge between these cells is tagged as solid. The
procedure is performed for all cells in (b), and the embedded object geometry is represented by
the red regular grid edges.

Robinson-Mosher et al. (ROBINSON-MOSHER et al., 2008) used a mass-lumping

technique for two-way coupling of thin shells to fluid on a regular grid. This sacrifices free-slip

velocities even in the inviscid limit, so the same authors proposed the use of ghost-velocities and

a constraint-based formulation to restrict only the normal component of velocity (ROBINSON-

MOSHER; ENGLISH; FEDKIW, 2009). Both methods use a voxelized boundary approximation,

and thus the topology of the fluid domain used by the pressure solver is often incorrect in tight

configurations. Voxelization also leads the solid boundary velocity constraints to be applied at

grid face centres rather than on the actual boundary itself. Qiu et al. (QIU; FEDKIW, 2015)

proposed a two-way rigid-body-fluid coupling scheme that extends the voxelized approach to

thin gaps using lower-dimensional advection and extra degrees of freedom, though it does not

consider thin objects.

31

Boundary-conforming Eulerian tetrahedral meshes (e.g., (KLINGNER et al., 2006;

FELDMAN; O’BRIEN; KLINGNER, 2005; ELCOTT et al., 2007)) could potentially simplify

the treatment of thin boundaries during pressure projection, at the cost of repeated and potentially

costly remeshing, but to our knowledge this has not been explicitly considered. The closest

is the work of Chentanez et al. (CHENTANEZ et al., 2006), who simulated the coupling of

fluid to deformable shells of modest thickness discretized with tetrahedra using a conforming

mesh approach. To reduce meshing costs for liquid animation, Chentanez et al. (CHENTANEZ

et al., 2007) later relied on the efficiency of isosurface stuffing (LABELLE; SHEWCHUK,

2007); however, isosurface stuffing conforms to an approximate isosurface rather than the exact

solid geometry. In general, while conforming meshes simplify the pressure projection, their use

in Eulerian schemes does not inherently resolve interpolation and advection issues near thin

boundaries. In contrast to Eulerian methods, purely Lagrangian methods that rely on conforming

tetrahedralizations of both fluid and solid are also possible (MISZTAL et al., 2010; CLAUSEN

et al., 2013), and may better avoid these issues; again, this does not appear to have been studied.

While beyond the scope of this thesis, thin objects have also been coupled to SPH

simulations (e.g., (LENAERTS; DUTRÉ, 2008)). Another interesting alternative uses history-

based forces to approximate the effects of fluid on submerged cloth (OZGEN et al., 2010); this

does not extend to scenarios where the fluid motion itself is also of interest.

2.5 Velocity Reconstruction and Interpolation

This section reviews techniques for velocity reconstruction and interpolation. For re-

construction, the challenge is to recover all Cartesian components of the velocities at cut-cell

nodal locations. For interpolation, velocities must be obtained inside cells using data that is only

defined at cell boundaries. We use staggered velocities arrangement for reconstruction and for

pressure projection (Figure 2.6a) and nodal based velocities for interpolation (Figure 2.6b).

2.5.1 Reconstruction

Staggered-grid projection methods recover only the face-normal components of velocity

rather than full vectors; this slightly complicates interpolation and advection. In the regular grid

case, interpolation can be applied on each per-axis velocity grid independently. However, for

more general unstructured or polyhedral meshes, full velocities must first be reconstructed before

32

(a) (b)
Figure 2.6: Different velocity arrangements adopted in our method: (a) staggered velocity
arrangement stores Cartesian components of the velocities (blue arrows) on the center of cell
edges (faces in 3-D), while pressures (red circles) are stored on cells’ centroids. In (b), nodal
velocity arrangement stores all Cartesian components of the velocities (green arrows) at nodal
positions.

interpolating. Velocity reconstruction uses a least squares solve to find a best-fit vector from

nearby face-normal components. Feldman et al. (FELDMAN; O’BRIEN; KLINGNER, 2005)

proposed to use fully mesh-free moving least squares interpolation any time pointwise velocities

need to be evaluated. A more efficient method is to first recover velocities for a set of nodal

points via standard least squares, and then apply a mesh-based interpolant to define the velocity

over the whole domain (KLINGNER et al., 2006; ELCOTT et al., 2007). Since the number of

incident faces at tetrahedral mesh vertices is often quite large, leading to overly-smooth velocity

estimates, these authors also demonstrated that less dissipation is incurred by reconstructing

velocities at circumcenters from just the four faces of each tetrahedron.

We use a least squares fit to recover nodal velocities from face fluxes on our polyhedral

cells. Having full velocities values at the nodes simplifies the velocity interpolation used during

advection.

2.5.2 Interpolation

Various velocity interpolation schemes have been proposed for use during the advection

step, the most common being simple bi/tri-linear interpolation on a regular grid (STAM, 1999).

Higher-order extensions have been used to improve the retention of vorticity (FEDKIW; STAM;

JENSEN, 2001; SELLE et al., 2008). Guendelman et al. (GUENDELMAN et al., 2005) were

33

the first to directly address the interpolation issues raised by thin boundaries. Subsequent related

work by Robinson-Mosher et al. (ROBINSON-MOSHER et al., 2008; ROBINSON-MOSHER;

ENGLISH; FEDKIW, 2009) relied on the same interpolation technique. Raycasting is used

to determine visibility between an interpolation point and the position of a velocity sample

it would depend on; one-sided interpolation can then be performed using only the visible

data to robustly avoid polluting the result with data from the opposite side of a thin boundary.

However, since basic trilinear or tricubic interpolation do not possess knowledge of the solid

position, fluid trajectories typically still cross boundaries; this necessitates the frequent use of

collision-processing during advection to prevent data crossing over.

On unstructured tetrahedral meshes, the velocity reconstruction approaches discussed in

the previous section are first used to determine velocities at desired nodal points; these can then

be applied within a mesh-based barycentric interpolant. Given the velocities at tetrahedra centres

(i.e., Voronoi vertices), generalized barycentric interpolation is applied over the convex Voronoi

elements (KLINGNER et al., 2006; ELCOTT et al., 2007). Brochu et al. (BROCHU; BATTY;

BRIDSON, 2010) suggested sub-dividing convex Voronoi elements up into smaller tetrahedra,

and showed that this allows standard tetrahedron-based barycentric interpolation to be used with

no appreciable loss of quality. Ando et al. (ANDO; THUEREY; WOJTAN, 2013) later applied a

similar technique.

Polyhedral interpolants were used for the purpose of avoiding oversmoothing velocities,

as compared to interpolating over tetrahedra. By contrast, our primary motivation for using

polyhedral interpolation is that it enables the interpolated velocity to closely conform to the

geometry of solid boundaries. Rosatti et al. (ROSATTI; CESARI; BONAVENTURA, 2005)

presented a related two-dimensional technique that fits boundary-respecting linear velocity fields

to the triangular, trapezoidal, and pentagonal cells resulting from the usual marching-squares

cases applied to an implicit representation of the solid boundary. Our approach clips the regular

grid against the solid boundary triangle mesh, yielding arbitrary polyhedral cells. We can then

use an interpolant that handles non-convex polyhedra, i.e., spherical barycentric coordinates

(LANGER; BELYAEV; SEIDEL, 2006).

2.5.3 Summary

This chapter discussed different approaches for discretizing complex geometries in fluid

simulation. Our review focused on methods that adopt regular-grid configurations and we

categorized embedded boundary methods by having either diffuse (immersed boundary) or sharp

34

(cut-cells) interface treatment. The review considered the discretization of boundary conditions

in the context of computer graphics, thin boundaries, velocity reconstruction and interpolation.

While several methods have been proposed for dealing individually with complicated aspects of

complex geometries immersed in regular grids, our approach draws inspiration from different

techniques to provide an unified framework for treating irregular shapes, thin objects and narrow

gaps. Specifically, our pressure discretization applies and generalizes the work of Ng et al. (NG;

MIN; GIBOU, 2009) to thin boundaries and thin gaps, achieving a symmetric positive-definite

system, which supports an arbitrary number of disjoint components per cell. Finally, we reviewed

several approaches that inspired our treatment of velocity reconstruction and interpolation on

polyhedral cut-cells.

35

3 A CUT-CELL METHOD FOR HANDLING THIN OBSTACLES AND NARROW GAPS

To mathematically model our fluid solver we use the differential form of the incompress-

ible Euler equations, which are written as

∂u

∂t
+ u · ∇u +

1

ρ
∇p = f (3.1)

and

∇ · u = 0, (3.2)

where u and p are the velocity and pressure fields, respectively, ρ is the fluid density, and f

represents additional forces acting on the fluid. The Euler equations, which do not explicitly

account for viscosity terms, are widely adopted in fluid animation (FEDKIW; STAM; JENSEN,

2001; MOLEMAKER et al., 2008; LENTINE; ZHENG; FEDKIW, 2010). The viscosity terms

can be neglected since advection methods usually present some level of dissipation, which

may further be re-interpreted as viscosity. Equations (3.1) and (3.2) are called the momentum

conservation and the mass conservation equations.

The traditional way of solving Equations (3.1) and (3.2) is using the projection method

(CHORIN, 1968), which consists of two main phases: (i) Advection and (ii) Pressure projection.

The advection phase consists in estimating an intermediate value u∗(n+1) based on the velocity

field u(n) at time t(n), and computing external forces acting on the fluid (e.g., gravity). The

pressure projection computes a scalar field of pseudo pressure values p(n+1) at time t(n+1) that

guarantees mass conservation (i.e., enforces that ∇ · u = 0). Then, mass and momentum conser-

vation equations are coupled by subtracting pressure gradients of p(n+1) from the intermediate

velocity field u∗(n+1). This final step gives us the actual value of the fluid velocity u(n+1) at time

t(n+1).

The following sections detail the method proposed in this thesis. Section 3.1 introduces

our boundary conforming cut-cells. Section 3.2 describes the proposed graph-based cut-cell

pressure projection. Section 3.3 presents our interpolation method developed to maintain

boundary conforming velocity fields. Finally, Section 3.4 describes our particle-based advection

scheme. Implementation details will be addressed separately in the next chapter. Algorithm 3

presents an algorithmic outline of the full simulation pipeline.

36

Algorithm 1 Main Loop
while simulating do

Advect FLIP particles (Section 3.3) and advance solid position
Generate cut-cell mesh (Section 3.1 and Section 4.1)
Transfer particle velocities to the mesh (Section 3.4)
Add external forces to the mesh
Perform pressure projection on the mesh (Section 3.2)
Update particle velocities from the mesh (Section 3.4)

end while

3.1 Cut-Cell Meshes

Given a triangle mesh representing the geometry of the solid boundary, we perform

clipping on all cells intersected by this boundary. Each affected original grid cell may give rise

to one or more boundary-conforming polyhedral sub-cells, which we will address simply as

cut-cells. Clipping with triangle meshes is a well-studied problem (e.g., (AFTOSMIS; BERGER;

MELTON, 1998; SIFAKIS; DER; FEDKIW, 2007; WANG et al., 2014)), most recently used by

Edwards and Bridson (EDWARDS; BRIDSON, 2014) to support detailed liquid free surfaces.

We will further detail our cut-cell generation algorithm in Chapter 4.

A principal difference between our cut-cell meshes and those used by Edwards and

Bridson is that we retain sub-cells on both sides of the triangle mesh geometry. The geometry is

also not required to be a “closed" surface, and therefore the triangle mesh may cut only partway

through a cell. In this case, we subdivide the faces through which it crosses, but do not partition

the cell itself. We will refer to the resulting faces as dangling interior faces. We will refer to mesh

faces that connect two fluid (sub-)cells as fluid or grid faces; these will always be axis-aligned

and will be inside an original regular-grid face. New faces produced by clipping against the solid

boundary will be called solid or geometry faces. We do not tetrahedralize the resulting polyhedra,

so cell faces may be general planar polygons. Cells that are not intersected by the geometry are

left untouched, so as to be efficiently and conveniently treated with standard methods.

Figure 3.1 illustrates these cut-cell concepts in 2-D, for two infinitesimally thin solid

boundaries with fluid on either side. In (a), the thin boundaries are represented by polylines,

shown in green with bright green nodes. The original regular grid is shown in gray. Part

(b) illustrates the boundaries (in red) resulting from the raycasting or voxelized view used by

previous work (GUENDELMAN et al., 2005; ROBINSON-MOSHER et al., 2008; ROBINSON-

MOSHER; ENGLISH; FEDKIW, 2009). Both the geometry and topology of the fluid domain

are sacrificed: the gap between the two solid boundaries has been entirely collapsed away.

37

Part (c) illustrates our cut-cell mesh with the new vertices created during clipping (shown in

black). Under our cut-cell view, both the thin gap and the detailed geometry of the boundary

are maintained. Part (d) uses a graph (blue) to illustrate the neighbour relationships between the

resulting sub-cells. The segments in the partially cut upper-left and lower-left cells are examples

of dangling interior faces; notice that, as illustrated in the graph view, these partially cut cells

are assigned only a single pressure sample although some of their faces are subdivided.

(a) Geometry (b) Raycast (c) Cut-cell (d) Graph
Figure 3.1: (a) Sub-grid thin boundaries (green) are represented by a polyline mesh in 2-D. (b)
Voxelization/raycasting yields inaccurate axis-aligned boundaries (red). (c) Clipping the grid
against the solid boundary mesh instead yields a cut-cell mesh with multiple distinct sub-cells,
with new mesh nodes shown in yellow. (d) The connectivity relationships between sub-cells can
be visualized as a graph (blue).

Figure 3.2 demonstrates the type of scenarios we can support, including narrow tubes,

sharp geometry, and multiple disjoint solid boundaries and sub-cells per regular cell. For

convenience and efficiency, cells away from the solid boundary can be implemented with a

standard regular grid indicated by the dashed lines. An example of a complex topological domain

in 3-D using a Dragon mesh is shown in Figure 3.3.

(a) Complex geometry (b) Closeup
Figure 3.2: A more complex cut-cell geometry, featuring sharp geometry and a regular cell
divided into four sub-cells (bright colors). Connected neighboring sub-cells are filled with lighter
shades of the same colors.

38

Figure 3.3: (Left) The dragon solid geometry, shown with the regular grid superimposed. (Right)
The network of curves generated by intersecting the two, with the dragon rendered transparent.

3.2 Graph-Based Pressure Projection

This section details our cut-cell pressure projection algorithm. Section 3.2.1 discretize

pressure gradients using standard centered differences between cell-centered pressures. Section

3.2.2 details our topology-aware pressure projection and Section 3.2.3 discusses the accuracy

of the proposed approach. Finally, Section 3.2.4 presents how the proposed pressure projection

algorithm deals with dangling cut-cells, which are cells that contain object’s geometry with

border edges or holes.

3.2.1 Cut-Cell Pressure Projection

The standard pressure projection step solves the Poisson problem ∆t
ρ
∇ · ∇p = ∇ · u∗, in

order to find the pressure field that will correctly convert the intermediate velocity field, u∗, into

the nearest incompressible field, u. Having found the pressure field p, its gradient is subtracted

from the velocity field: u = u∗ − ∆t
ρ
∇p.

Our approach to discretizing this problem on the cut-cell mesh extends previous varia-

tional (BATTY; BERTAILS; BRIDSON, 2007) and finite volume cut-cell (ROBLE; ZAFAR;

FALT, 2005; NG; MIN; GIBOU, 2009; BATTY; XENOS; HOUSTON, 2010) techniques for

volumetric solids, which account for the flow through each face of a given grid cell adjusted

for the area of the faces that are blocked by a solid obstacle. In particular, we begin with the

scheme of Ng et al. (NG; MIN; GIBOU, 2009) as the basis of our approach as it yields symmetric

positive definite linear systems and pressure solutions that converge with second-order spatial

39

accuracy. The associated discrete divergence measure is:

∇ · u ≈
∑

iAi(u · n)i +
∑

j Aj(usolid · nsolid)j
Vcell

, (3.3)

where the index i runs over all fluid faces of a cell, and j runs over all solid faces. Ak indicates

the area of the k-th face, u is the fluid velocity, usolid is the solid velocity, n is the fluid face

normal vector, nsolid is the solid face normal vector, and Vcell indicates the volume of the cell.

Face normals are assumed to be oriented outwards. As usual, scaling each row of the discrete

Poisson problem by its corresponding cell volume cancels volume terms in the system; we

require only face areas (e.g., (LOSASSO; GIBOU; FEDKIW, 2004)). Following Guendelman

et al. (GUENDELMAN et al., 2005) one must also take care to set the velocity for the solid

boundary condition to be the effective velocity computed over the subsequent time-step rather

than its instantaneous/analytical velocity, to ensure that the resulting end-of-step velocities sync

with the motion of the solid during advection on the next step. The effective velocity is calculated

for each node in the object’s mesh by dividing its positional change by the size of the simulation

time-step. In this way, particles carrying velocity information that are close to the boundary will

move the exact same amount as the updated mesh. Thus, any discrepancies on the integration of

mesh’s position and nearby particles are avoided by using the same integration scheme.

Pressure gradients are computed using standard centered differences between cell-

centered pressures relative to staggered velocity components, i.e. in 2-D, ∇p ≈ pi+1j−pij
∆x

i +
pij+1−pij

∆y
j, even near cut-cell faces. Given these discrete divergence and gradient operators, the

Poisson problem can be directly discretized on the usual staggered grid. Perhaps surprisingly,

Ng et al. clearly show that this projection scheme correctly converges even though the geometric

centers of cells and the midpoints of faces often lie outside the actual fluid domain (see Figure 3.4,

top-left). This feature conveniently preserves many of the benefits of the structured regular grid

(symmetry, positive-definiteness, primal-dual orthogonality, second-order accurate pressures) as

we extend it to more general topologies below.

3.2.2 Topology-Aware Pressure Projection

The method of Ng et al. implies a few restrictions. It assumes a level set description of

the geometry, which limits it to volumetric objects and fluid regions larger than a grid cell width

to guarantee a faithful topological description of the domain. The strictly regular underlying

40

(a) (b)

(c) (d)
Figure 3.4: Top-left: The method of Ng et al. for embedded volumetric solid boundaries (green)
converges despite using active face midpoints (black dash) and cell centers (black disks) lying
outside the fluid domain (white). Top-right: A complementary dual geometry, created by
swapping fluid and solid domains, can also be easily simulated with Ng’s method. Bottom-left:
By conceptually superimposing the top two scenarios and duplicating the required degrees of
freedom, a pressure projection can be performed on the thin solid, shown at the bottom-right,
without interference across it.

grid structure also means that each cell contains only a single active region and corresponding

pressure. We seek to relieve these restrictions.

To extend this strategy to multiple distinct flow regions within a single regular grid cell, as

produced by our mesh clipping strategy, we take inspiration from recent virtual node (MOLINO;

BAO; FEDKIW, 2004; HELLRUNG et al., 2012) and topology-preserving (TERAN et al., 2005;

NESME et al., 2009) schemes. We allow multiple disjoint active sub-cells within a single original

cell, with additional pressure and velocity degrees of freedom that conceptually coincide for

consistency with Ng’s discretization (see Figure 3.4). We assign one pressure to each sub-cell,

placing it at the original cell center’s location (i.e., not at sub-cell centroids). Each original fluid

face of the grid has multiple fluid sub-faces which connect sub-cells of adjacent regular cells

together; each sub-face is assigned a velocity degree of freedom that is geometrically positioned

at the regular cell face midpoint (i.e., not at the sub-face midpoint). This yields a more general

graph structure (see Figure 3.1d) on which we can perform the pressure projection, yet the

gradient and divergence operators remain axis-aligned.

In Table 3.1, we present the explicit matrix representation of our discrete Poisson equation

for the small 2-D scenario shown in Figure 3.5. In large examples, most of the mesh will exhibit

41

the usual banded Poisson matrix structure, with a few additional unstructured entries to treat

regions involving cut geometry. We also notice that pressure matrix weights (fi on Table 3.1) on

cut-cell rows only consider fluid area fractions on axis-aligned faces (edges in 2-D), ignoring

any sub-cell geometry faces inside cut-cells. To calculate the matrix for the example shown in

Figure 3.5, the velocities in the integral form of the divergence operator (Equation (3.3)) are

replaced by u = u∗ − ∆t
ρ
∇p, which yields, for a cell with indices i, j,

Ai− 1
2
jni−1

2
j ·
[(
u∗
i− 1

2
j
− ∆t

ρ

pij − pi−1j

∆x

)
i

]
+ Ai+ 1

2
jni+1

2
j ·
[(
u∗
i+ 1

2
j
− ∆t

ρ

pi+1j − pij
∆x

)
i

]
+

Aij− 1
2
nij−1

2
·
[(
v∗
ij− 1

2
− ∆t

ρ

pij − pij−1

∆x

)
j

]
+ Aij+ 1

2
nij+1

2
·
[(
v∗
ij+ 1

2
− ∆t

ρ

pi+1j − pij
∆x

)
j

]
+∑

k

Ak(u
n+1
solid · nsolid)k = 0.

(3.4)

The summation over k in the equation above indicates iteration through solid faces from

a cut-cell. For horizontal velocities, the dot product of the normal by the full velocity vector at

an edge center becomes n · (u∗ i) = sgn(n · i) u∗. Applying the same procedure for vertical

velocities, Equation (3.4) becomes

(∑
k Akpij − Ai− 1

2
jpi−1j − Ai+ 1

2
jpi+1j − Aij− 1

2
pij−1 − Aij+ 1

2
pi+1j

∆x

)
=

− ρ

∆t

(
Ai+ 1

2
ju
∗
i+ 1

2
j
− Ai− 1

2
ju
∗
i− 1

2
j

+ Aij+ 1
2
v∗
ij+ 1

2
− Aij− 1

2
v∗
ij− 1

2
+
∑
k

Ak(u
n+1
solid · nsolid)k

)
.

(3.5)

We can show that the system arising from the discretization on equation above is symmet-

ric, taking advantage of a relationship between the discrete gradient and divergence operators.

Specifically, considering the discrete finite-difference gradient operator G, the discrete diver-

gence operator D can be written as D = GT . Adding a diagonal matrix M , whose entries

represent the fluid area fractions of each corresponding edge (left-hand side of Equation (3.5)),

does not breaks this property. The system coupling pressures and velocities with matrix M is ρ
∆t
M MG

GTM 0

 u

p

 =

 ρ
∆t
Mu∗

0

 (3.6)

This system is symmetric, since the transpose of the gradient operator (MG)T is GTM . The first

line of the above equation yields Mu +MGp = Mu∗ and the second line yields GTMu = 0.

42

Multiplying first line equation by M−1, rearranging it to get an expression for u in terms of p,

and substituting in the second equation gives

GTMGp = GTMu∗, (3.7)

which represents the linear system for the pressure coupled with the velocity divergence. GTMG

and GTMu∗ terms represent the usual B matrix and d vector (on the left and right-hand side,

respectively, of Table 3.1) of the standard Poisson system Bp = d.

c1,1

sc1 sc5

f1-2

f1-3

sc6

c2,1

sc4sc2
f2-4 f5-6

sc7
f4-7

sc3
f3-5

Figure 3.5: Geometry and notation used in our 2-D Poisson matrix example (Table 3.1). The
solid thin boundary is shown in green. ci,j is a regular grid cell at row j, column i. sck is sub-cell
k. fa-b is the fraction of the fluid edge shared by sub-cells a and b.

43

c1,1 c2,1 sc1 sc2 sc3 sc4 sc5 sc6 sc7

c1,1 2 −1 −1 0 0 0 0 0 0
c2,1 −1 3 0 −1 0 0 0 0 −1
sc1 −1 0

∑
f1 −f1-2 −f1-3 0 0 0 0

sc2 0 −1 −f1-2
∑
f2 0 −f2-4 0 0 0

sc3 0 0 −f1-3 0
∑
f3 0 −f3-5 0 0

sc4 0 0 0 −f2-4 0
∑
f4 0 0 −f4-7

sc5 0 0 0 0 −f3-5 0
∑
f5 −f5-6 0

sc6 0 0 0 0 0 0 −f5-6
∑
f6 0

sc7 0 −1 0 0 0 −f4-7 0 0
∑
f7

p1,1

p2,1

psc1
psc2
psc3
psc4
psc5
psc6
psc7

=

d1,1

d2,1

dsc1
dsc2
dsc3
dsc4
dsc5
dsc6
dsc7

Table 3.1: The symmetric cut-cell pressure projection matrix that results from the 2-D configu-
ration shown in Figure 3.5, assuming Neumann boundary conditions on the domain perimeter.
ci,j represents a regular grid cell at row j, column i. sck is sub-cell k. fa-b is the fraction of the
fluid edge shared by sub-cells a and b.

∑
fk is the sum of all fluid-edge entries in the row that

represents the sub-cell sck. pi,j and di,j are, respectively, the pressure and divergence at grid cell
ci,j . psck and dsck are the pressure and divergence at sub-cell sck.

3.2.3 Primal-Dual Orthogonality

As highlighted by Batty et al. (BATTY; XENOS; HOUSTON, 2010), orthogonality of

the discrete gradient estimates with respect to the face-normal velocity components is key to

preserving accuracy in staggered finite volume approaches. For example, staggered octree

schemes (LOSASSO; GIBOU; FEDKIW, 2004) can lose accuracy at T-junctions due to non-

orthogonal gradients between large and small neighbor cells, without a more careful treatment

(LOSASSO; FEDKIW; OSHER, 2005). By contrast, the gradients we use between sub-cells

are always computed between the geometric centers of their original grid cells, and therefore

preserve orthogonality with respect to the grid faces (see Figure 3.6). This property is key to

both our method and that of Ng et al.

3.2.4 Dangling Cut-Cells

Our pressure discretization effectively ignores any dangling interior solid faces arising

from partially cut cells, as in previous regular grid schemes for thin boundaries (e.g., (DAY et

al., 1998; GUENDELMAN et al., 2005; ROBINSON-MOSHER; ENGLISH; FEDKIW, 2009)).

Precisely accounting for this geometry would require generating a reasonable quality fully

unstructured conforming mesh within the cell. While coupling a regular grid MAC scheme to a

44

Figure 3.6: Left: Naïve octree discretizations yield face fluxes (blue) and pressure gradients
(red) that are not aligned. Right: Following Ng, our cut-cell discretization co-locates all sub-cell
pressures at grid cell centers (filled black circle) rather than sub-cell centroids (empty black
circles). Thus our “T-junction-like" branching preserves orthogonality and avoids artifacts.
Similarly, face fluxes are conceptually stored at original face midpoints (blue), rather than at
sub-face midpoints.

full FEM scheme is possible (e.g., (ZHENG et al., 2015)) it sacrifices many of the benefits of our

chosen near-regular grid discretization, both in terms of numerical properties and implementation

complexity.

3.3 Conforming Interpolation on Cut-Cells

Both PIC/FLIP and semi-Lagrangian advection schemes rely on the ability to interpolate

velocities at arbitrary points in the fluid domain. The interpolants used to estimate pointwise

velocity values in grid-based methods typically rely on simple piecewise linear or cubic ap-

proximations (FEDKIW; STAM; JENSEN, 2001). Though effective in free flowing regions,

such interpolants are fundamentally oblivious to the domain geometry, regardless of either the

order of the interpolant or the accuracy of the pressure projection. As a result, the interpo-

lated fluid velocities do not necessarily satisfy the desired no-penetration boundary condition

ufluid · n = usolid · n, but are instead often directed towards and through the boundary, a

fact which is particularly problematic for thin solids. The most common treatment is to apply

collision detection to directly clip particle trajectories against solids (e.g., (FEDKIW; STAM;

JENSEN, 2001; GUENDELMAN et al., 2005)), although this can exacerbate artificial clumping

of particles and other data (RASMUSSEN et al., 2004).

We instead aim to construct an improved interpolant so that the fluid velocities them-

selves better respect the solid geometry, and reliance on explicit collision-processing can be

reduced. Figure 3.7 uses a streamline visualization to compare one-sided bilinear interpolation

(GUENDELMAN et al., 2005; ROBINSON-MOSHER; ENGLISH; FEDKIW, 2009) against

our interpolation method. Although both approaches carefully avoid mixing data from the wrong

45

(a) MVC (free-slip) (b) MVC (no-slip)

(c) Bilinear (free-slip) (d) Bilinear (no-slip)
Figure 3.7: Streamlines of a velocity field obtained using different one-sided interpolation
schemes, with a stationary flow on one side. (a) SBC interpolation from nodal velocities using
free-slip boundary conditions leads to streamlines that flow smoothly along the boundary. (b)
SBC with no-slip likewise conforms to the boundary, but both tangential and normal velocities
drop to zero precisely at the boundary. (c) and (d) show one-sided bilinear interpolation from
values stored at the regular grid corners for both free-slip and no-slip. The bilinear results exhibit
grid-dependence, and do not differ appreciably from one another. Moreover, since the interpolant
is non-conforming, the relevant velocity components do not drop to zero on the boundary curve.

side of the thin boundary, ours yields a velocity field that conforms more closely to the boundary,

reduces grid-dependence, and can easily be set to satisfy either a free-slip or no-slip condition as

desired. By contrast, the results for bilinear interpolation do not align with the boundary and

exhibit nearly identical results under free-slip and no-slip conditions.

We describe our interpolation approach below, and use it during the particle advection

step of Section 3.4.

46

3.3.1 Polyhedral Cut-Cell Interpolation

Away from solid boundaries, we apply standard trilinear interpolation to the regular grid

velocities. For polyhedral (sub-)cells abutting the solid geometry, we will first reconstruct nodal

velocity values (Section 3.3.2), and use these values for interpolation.

To perform interpolation over potentially non-convex polyhedra with general planar

polygonal faces, we make use of spherical barycentric coordinates (SBC) (LANGER; BELYAEV;

SEIDEL, 2006), which provide a convenient generalization of standard barycentric coordinates to

this case. We select SBC over the more widely-known mean value coordinates (JU; SCHAEFER;

WARREN, 2005), because SBC supports polygonal rather than triangular faces. This method is

effective for the vast majority of cut cells, and the result is a nicely conforming interpolant.

Unfortunately, SBC cannot be readily applied to the comparatively small set of cells

containing dangling interior faces, as this represents a degenerate configuration (essentially two

coincident but oppositely oriented faces). The simplest way to treat this is to just thicken or

extrude the input geometry into a very slim volume before simulating. This naturally eliminates

problematic dangling interior faces, allowing SBC to work as usual. However, while the geometry

is thin it is no longer of infinitesimal width.

The alternative is to try to construct an interpolant that is effective in the presence of the

problematic dangling faces. We experimented with various approaches, including visibility-aware

SPH interpolation, visibility-aware Shepard (SHEPARD, 1968) (i.e., inverse distance-weighting

with a raycast check of mutual visibility) interpolation, or simply ignoring the dangling geometry

altogether and reverting to trilinear interpolation similar to previous work. None of these choices

is entirely satisfactory, because none ensure a velocity field that is consistent with interpolation

on neighbouring cells, conforms to the interior geometry, and avoids mixing data from opposing

sides of the geometry. For examples involving truly infinitesimal width geometry, we used the

Shepard interpolation approach; we highlight this as an interesting challenge for future work.

Our modified Shepard interpolation is represented by:

uS =

∑
(uni/di) +

∑
(un′j/d

′
j)∑

(1/di) +
∑

(1/d′j)
, (3.8)

where i runs over all visible nodes and j runs over all virtual nodes, di is the distance from S

to visible node ni and d′j is the distance from S to virtual node n′j . Virtual nodes are obtained

by intersecting rays from S to nodes occluded from S by the solid boundary. The velocity at a

virtual node is the same as the velocity of its containing boundary. Figure 3.8 (left) illustrates this

47

concept, where the visible nodes (n1 and n2) are shown in blue, and the virtual nodes (n′3 and

n′4) are shown as yellow diamond shapes. Figure 3.8 (right) shows an example of velocity field

interpolation obtained for a scenario containing a static solid boundary (in green) using free-slip.

Note the smooth transitions of the vector field at the interfaces between the cell containing the

dangling face and the cut cells just below it.

n'3

n1

n2n3

n4

s

d1

d2

d'3

d'4
n'4

Figure 3.8: Velocity interpolation inside a cell containing a dangling interior face (green). (left)
Inverse-distance interpolation at a sampling point S is performed using the velocities at the
visible nodes (n1 and n2) , and at “virtual nodes" (n′3 and n′4) on the solid boundary intersected
by the rays from S to the occluded nodes (n3 and n4). di is the distance from S to a visible
node ni and d′i is the distance from S to a virtual node n′i. (right) Example of a velocity field
interpolation for a scenario containing a static solid boundary using free-slip.

3.3.2 Velocity Reconstruction

To better demonstrate cut-cell velocity reconstruction, we define three types of cut-cell

nodes, illustrated in Figure 3.9. Fluid nodes (cyan) are the original nodes of the regular grid

outside the object, for which all incident faces are axis-aligned fluid faces. Solid nodes (black)

are nodes on the solid for which all incident faces are solid faces. Edge-mixed nodes (white)

are nodes incident on both solid and fluid faces generated by the clipping process and lie on

edges of the original grid. For 3-D, the geometry is a set of triangles (surface) rather than a

piecewise linear curve. Therefore, there is one additional node type, which we call face-mixed

nodes (magenta) and they are also added by the intersections between grid faces and the objects’

meshes. Face-mixed nodes lie on the faces of the original 3-D regular grid, and will be treated

differently on the velocity reconstruction phase.

48

Recovering a full velocity at fluid nodes is done by averaging from the staggered data on

the incident fluid faces (edges in 2-D) for both free-slip and no-slip boundary conditions. The

averaging procedure considers the distance of faces centers (edges in 2-D) to nodal locations,

similar to weights obtained in inverse-distance Shepard interpolation. Other nodes will be

addressed depending on the boundary condition type and will be discussed on the next sections.

We consider free-slip first, in which the solid velocity determines the normal component, and

fluid velocities dictate tangential components.

(a) (b) (c)
Figure 3.9: Different types of nodes for 2 (a) and 3 (b and c) dimensions. Fluid nodes (cyan)
are the original nodes of the regular grid that were not intersected by the object; mixed nodes
(white) are the incident on both solid and fluid faces and are on top of grid edges; face mixed
nodes (magenta, 3-D only) are those that are on top of grid faces; and solid nodes (black) are the
original mesh nodes that were not modified by intersections with grid planes.

3.3.2.1 Free-Slip Case

For mixed nodes, we apply a weighted least squares fit to the normal velocity components

corresponding to the incident faces (solid and fluid) on the same side of the solid boundary. As

in previous work (e.g., (FELDMAN; O’BRIEN; KLINGNER, 2005)), the least squares fit can

be expressed as

min
u
‖WNu−Wz‖2, (3.9)

where W is the weights matrix, N is a matrix whose rows are the face-normal vectors, z is a

column vector whose entries are the corresponding face-normal velocity components, and u is

the reconstructed velocity vector. We use the (inverse) distances from the node to the face centre

as the weights; thus, the weight matrix is defined by:

Wii =
1

rii + ε
, (3.10)

49

where rii is the distance of the mixed node and one of the velocities sample and ε is a small value

to avoid division by zero. The system can occasionally be underdetermined if a mixed node

has nearly co-planar faces, as shown in Figure 3.9c; however, this can be compensated for by

incorporating extra face-normal velocity samples from previously unused faces from the cut-cell

were the mixed node lies. We provide additional insight into our weighted least squares scheme

and the addition of face-normal velocity samples in Section 4.2.

A

C

B

A
B

C

Figure 3.10: Visualization of the velocity propagation scheme. The image on the left shows
a 3-D cut-cell, with three nodes tagged as "A", "B" and "C". The image on the right shows
the planar view of the nodes where the velocity propagation will occur. The velocity is found
on edge-mixed nodes by the use of the weighted least squares algorithm. Then, the velocity
on face-mixed nodes is interpolated from nearby edge-mixed nodes (e.g., velocity on "B" is
interpolated from "A" and "C"). Lastly, the velocity on mixed nodes (red edges) is iteratively
propagated to inside solid nodes.

If all faces incident to a node are solid faces (e.g., the solid black node of Figure 3.9b),

we extrapolate from the nearby mixed nodes for which a valid velocity has been reconstructed as

described above; let us call these valid nodes. We call invalid nodes the solids nodes for which

we have yet to assign a velocity. For this procedure to work, all velocities at the outer boundary

mixed nodes have to be found before the propagation to the internal solid nodes can be made. In

2-D, we perform this extrapolation by simply linear interpolating along the solid boundary curve

inside the cell, but considering the manifold distance between vertices (Equation (3.11)) on the

original’s object geometry. Initially, edge-mixed ones are the only nodes incident to solid faces

that are marked as valid.

Starting from reconstructed velocity data at edge-mixed nodes, we linearly interpolate

along the solid boundary curves so that every face-mixed node on the boundary curve has

valid data. Figure 3.10 (right) represents the topological graph for the 3-D example shown

Figure 3.10 (left). In this example, the velocity for the face-mixed "B" node is defined by a

50

linear interpolation between "A" and "C" edge-mixed nodes, similarly to the 2-D approach, but

considering the distances on the surface manifold. That is, the velocity on "B" is calculated by:

uB =
||pA − pB||uA + ||pB − pC ||uC

||pA − pB||+ ||pB − pC ||
(3.11)

We label the internal (solid) nodes of a surface patch to be initially invalid, and perform a

simple iterative averaging approach to extrapolate into the interior solid geometry: all invalid

nodes with a valid neighbour are set to the arithmetic mean of the valid neighbours, and then

marked as valid. This process is iterated until no invalid nodes are left. Once all interior nodes

have valid data assigned, we perform a few additional iterations of repeated averaging to smooth

the velocities towards a steady distribution. To avoid the damping of velocities introduced by

this averaging process, we perform this step for vector magnitudes and directions separately,

re-combining them at the end.

We further improve the degree to which the interpolated velocity remains tangent to

the solid by directly projecting out the normal component (Figure 3.11) of the relative velocity

between the solid and the fluid for mixed and solid nodes (similar in spirit to constrained velocity

extrapolation (HOUSTON; BOND; WIEBE, 2003; RASMUSSEN et al., 2004)). This amounts

to computing a new fluid velocity as

u′fluid = ufluid − ((ufluid − usolid) · nsolid)nsolid. (3.12)

We observe that even if nodal velocities are projected to be orthogonal to vertex normals,

the interpolated flow may still clearly cross boundaries if the geometry is sharply concave, i.e., a

interpolated velocity may still have trajectories that do not satisfy ufluid · n = usolid · n at all

points along the perimeter of the cell. In 2-D, we further handle this by treating sharp corners

with a no-slip condition, and smooth curves with the preceding approach; this can be observed in

our results. However, in 3-D such a treatment is not straightforward, and we have not pursued it.

We may not be able to reconstruct full velocities at face-mixed nodes, as they may lack

enough data to reconstruct a full 3-D fluid velocity. However, there are cases where a boundary

loop consists of only face-mixed nodes, and no edge-mixed nodes, e.g. a cylindrical tube with

diameter less than a grid cell width cutting horizontally through a cell face (see Section 4.1.5.1

for more details). The face-mixed nodes on the boundary of the cylinder have only one fluid face

component, and the solid normal contribution may only reliably determine one of the remaining

two axes. At present, we are therefore limited to scenarios in which each such a solid geometry

51

n vv∗

v1

v2

(a)
Figure 3.11: Projection of normal components of the velocities on cut-cell nodes. Edge-mixed
node velocities v1 and v2 are found by the weighted least squares method. The unprojected
velocity v∗ is interpolated from v1 and v2. The normal of the solid node is represented as n and
the projected velocity v is orthogonal to it.

patch includes at least one edge-mixed node on its boundary. A reasonable approach in severely

under-resolved cases would be to reconstruct the available dimensions, and set the the remaining

dimension to zero. In the cylindrical example, the missing dimension would correspond to

circular rotations around the cylinder’s dominant axis, which is not provided by the fluxes along

the axis or the solid normal velocities perpendicular to it.

3.3.2.2 No-Slip Case

If no-slip interpolation is preferred for visual purposes, fluid nodes are again treated using

least squares, but all mixed and solid nodes are directly assigned the solid velocity, including

its tangential component. However, note that no-slip conditions will tend to rapidly damp out

relative tangential flow in very slender gaps. This is because fluid nodes are the only nodes that

no-slip conditions do not effect, and narrow gaps may contain relatively few such nodes. Hence,

velocities in these sub-cells will be totally dominated by the solid, and will halt the flow entirely

near static solids; an example can be seen in Figure 3.12 (bottom). No-slip can also lead to extra

particle clumping, because it is fundamentally inconsistent with the inviscid free-slip condition

inherent in the pressure solve.

Figure 3.12 illustrates the case of parallel line segments aligned with the flow direction.

Free-slip (top) allows the flow to pass undisturbed, while no-slip (bottom) causes some drag

and deflection in the velocity field. For free-slip, no velocity dissipation happens, regardless

of the number of parallel lines per cell, as long as a sufficient number of particles is available

(Figure 3.12 top). Table 6.1 shows, for a fixed 2D grid resolution (16× 10), performance figures

52

for 1, 8, and 64 lines per cell over 5 cells (Figure 3.12 top). In such a scenario, as the percentage

of cut cells relative to the regular 160 grid cells increases from 5% to 123.12% (24.62×), the

cut-cell generation time increases 38×. Even for the 64-line case, the total time is still dominated

by pressure projection.

Figure 3.12: Horizontal straight segments aligned with the flow. (Top) Free-slip allows the flow
to continue undisturbed. (Bottom) No-slip causes drag on the fluid and a deflection in the flow.

3.4 Fluid-Implicit-Particle Advection

The Fluid-Implicit Particle Advection (FLIP) and Particle-In-Cell methods (PIC) were

popularized in computer graphics by the work of Zhu and Bridson (ZHU; BRIDSON, 2005).

The authors track fluid quantities in regular grids with an explicit particle-based representation,

contrary to the traditional Semi-Lagrangian method, which creates particles at velocity locations

that are deleted after the advection time-step ends.

53

Algorithm 2 PIC/FLIP velocity update
if particle inside cut-cell then

Integrate particles position with forward Euler
else

Integrate particles position with Runge-Kutta-2
end if
(External step: solid position is updated by the object’s mesh integrator)
Transfer velocities from particles to simulation mesh nodes
if FLIP velocity update then

Store intermediary velocity field
end if
(External step: mass conservation is enforced through projection of velocity)
if PIC velocity update or particle inside cut-cell then

Interpolate velocities and transfer to particles
else

Interpolate velocities difference and transfer to particles
end if

The conventional FLIP/PIC advection scheme starts by integrating all particles positions

using a specified integration scheme. Then it transfers velocities information from particles to

simulation mesh nodes (Figure 3.13a). This step creates an intermediary velocity field which will

be projected in its divergence free part by the pressure projection step. Depending if one chooses

FLIP or PIC, the intermediary velocity field is stored. Finally, all particles velocities are updated,

and information goes from grid nodes to the particles (Figure 3.13b); the difference between

FLIP and PIC is on the way that velocities are updated in this step. Algorithm 2 summarizes our

FLIP/PIC method, which is slightly modified to work with cut-cells. Steps inside parenthesis

are evaluated by external simulation functions and will not be covered in this Section. All other

steps of the above algorithm are detailed on the next subsections.

3.4.1 Integration of Particle Positions

Particle positions are updated in our method in different ways, depending if they are

inside cut-cells or not. Runge-Kutta methods integrate ordinary differential equations using

intermediary steps for improved accuracy and stability. While this can be successfully employed

in the bulk of the fluid, these intermediary steps cannot be efficiently evaluated inside cut-cells.

This happens because evaluating velocities in fractional time-steps would require intermediary

cut-cells configurations, which might increase the computational time disproportionally to the

gain in quality. Therefore, we chose to use forward Euler integration on particles that are inside

54

(a) (b)
Figure 3.13: Two distinct FLIP advection operations: (a) particle-to-grid (transfer) and (b) grid-
to-particle (interpolation). The particle-to-grid operation transfers velocities from particles to grid
nodes. The transferring function is discretized with a SPH kernel spiky kernel (Equation (3.13)).
The grid-to-particle operation is a interpolation from the grid velocities to the evaluated particle.
This is performed using a bilinear (trilinear in 3-D) interpolant on regular cells, and a Spherical
Barycentric Coordinates interpolant on cut-cells.

cut-cells. This approach yields correct results, since particles that are close to moving geometries

will have the same effective velocity encountered at boundaries. For the majority of the fluid, we

use a standard midpoint Runge-Kutta-2 integration scheme.

3.4.2 Transfer to Mesh

We transfer velocity information carried by the particles onto the simulation mesh nodes

by setting each nodal velocity to be a weighted average of the velocity of all particles in the cells

incident on that node. We use SPH kernels throughout, with one minor twist in presence of solid

geometry. We use a raycast to check whether the node in question is visible from the particle,

and if not, we discard its contribution to that node. When face-normal velocity components

are needed by the pressure solve, they are computed by interpolating the velocity vector at

face’s centroid from cell nodes and taking the dot-product with the corresponding face normal.

We use a SPH kernel radius of twice the grid cell width, although one can safely use smaller

kernels provided they cover one full cell. Our kernel of choice for transferring the velocities

from particles to the grid is the spiky SPH kernel (MULLER; CHARYPAR; GROSS, 2003)

kspiky(r, h) =
15

2πh6

(h− r)3, 0 ≤ r ≤ h

0, otherwise,
(3.13)

55

where r is the the distance from the particle to the grid velocity sample and h is the kernel size.

3.4.3 Storing Intermediary Velocity Field

In order to perform Fluid-Implicit Particle Advection update we need to store intermediary

velocities that will be used at the end of the time-step. Those velocities are the ones that were

transferred from the particles to the mesh; however, they are not free of divergence, since no

pressure projection was performed. The intermediary velocity field is stored at node-locations,

since it simplifies the interpolation procedure for cut-cells.

3.4.4 Transfer to Particles

PIC velocity update interpolates a new velocity from the grid to particles using a bilin-

ear/trilinear interpolant. However, this update introduces dissipation, and interesting features of

the flow quickly dampen. To alleviate that, the FLIP velocity update better enforces momentum

conservation using a Lagrangian view of the flow: each particle, individually, should retain the

same original velocity as time advances; if this is the done for all the particles inside the domain,

momentum is exactly conserved. In the real world, particles also collide and interact with each

other (BRACKBILL; RUPPEL, 1986), and this changes their velocity as time advances. These

collisions and interactions are modelled in the FLIP scheme by interpolating the difference of the

intermediate velocity field with respect to the mass-conserving velocity field. This is expressed

as:

up = up + (uinterp − u∗interp), (3.14)

where up the particle’s velocity, u∗interp and uinterp are the interpolated velocities from the grid

before and after projection, respectively.

Interpolation of data from the simulation mesh back to the particles is performed using our

Spherical Barycentric interpolation scheme on cut-cells, which will be presented in Section 4.3;

for regular cells, standard bilinear/trilinear interpolants are used. However, we found that using

FLIP in cut-cells leads to instability, particularly for small cells; we conjecture that the inherent

instabilities in the FLIP scheme are exacerbated in the presence of such small cells. Therefore,

we revert to a pure PIC approach in cut-cells, using FLIP only in the broader domain.

56

3.4.5 Discussion

Our modified FLIP advection scheme allows us to construct a cut-cell-aware particle-

based advection scheme that addresses an issue faced by previous Eulerian and semi-Lagrangian

schemes in the presence of moving boundaries. Specifically, solid boundaries that sweep over

the stationary Eulerian grid leave behind cells lacking velocity data. Consider the example in

Figure 3.14: a volumetric circular solid (green) translates past to reveal the formerly inactive

central cell (light blue). It suddenly becomes active again and its faces must be assigned valid

velocity data before continuing the simulation. Mittal and Iaccarino (MITTAL; IACCARINO,

2005) dub these “freshly-cleared" cells. While physically, fluid velocities would simply advect

along with the object and fill in the missing data, this is not true in the discrete case for Eulerian

and semi-Lagrangian schemes.

Figure 3.14: A volumetric object translating left-to-right reveals the uninitialized center cell over
a time step.

For large volumetric solids, semi-Lagrangian advection suffices, since the velocities

previously extrapolated into the solid are often reasonable. However, for relatively thin bound-

aries, (sub-)cell regions often go from one side of a moving solid boundary to another in a

single step, and there is no extrapolated velocity already present “inside" the object. Using

semi-Lagrangian advection, the end-of-trajectory velocity value which one would ordinarily use

to begin backtracing from lies on the wrong side of the boundary, where the fluid may be flowing

in entirely the wrong direction.

Guendelman et al. (GUENDELMAN et al., 2005) observe this issue, and instead reini-

tialize these cells by using an iterative averaging procedure to extrapolate data from nearby fluid

cells on the same side which were not swept over, and hence contain valid data. However, this

choice has two shortcomings illustrated in (Figure 3.15): in the case of closed invalid regions,

57

data must be created from scratch, or it may result in data being extrapolated quite long distances

(e.g., in narrow regions).

valid

invalid validvalid invalid

Figure 3.15: Failure cases for standard velocity extrapolation from valid into invalid (uninitial-
ized) cells. Left: Closed regions cannot be extrapolated into. Right: Long narrow regions may
require extrapolation across arbitrary distances.

We observe that with an appropriate PIC/FLIP implementation, this issue does not

arise. Given a sufficient sampling of Lagrangian particles, there is no need for backtracing or

extrapolation; velocity data carried by the particles travels forwards in tandem with the solid

boundary to fill the freshly cleared cells, much like in the physical world. Semi-Lagrangian

methods create particles on velocity locations on-the-fly and update those particles back in time

in order to find new advected velocities; thus, a moving object will invalidate cells swept over by

it, since semi-Lagrangian particles often travel in the opposite direction of moving boundaries.

We maintain a good sampling of particles throughout by placing a user-defined lower and upper

bound on the number of particles per unit area, and reseeding on each sub-cell independently.

To complete our advection scheme, we just need mechanisms to transfer particle velocity data to

and from the cut-cell mesh.

3.5 Summary

This chapter discussed our proposed cut-cell method for handling thin boundaries, narrow

gaps and irregular shapes. We introduced boundary cut-cell meshes and briefly discussed how

they are created - more details about cut-cell construction will be presented in the next chapter.

Section 3.2 presented our topological pressure projection method. The proposed pressure

projection algorithm is able to converge with second-order accuracy in space for pressure

samples. Moreover, a feasible approach for handling cells with degenerate geometry was

58

proposed. Section 3.3 discussed details about the interpolation and reconstruction of velocities

on cut-cells. We showed that our boundary-conforming velocity interpolant is able to produce

streamlines that do not interpenetrate the object’s mesh, while standard one-sided bilinear

interpolants do not guarantee this property. We reconstructed free-slip and no-slip velocities for

cut-cells using a weighted least squares approach coupled with propagation. Finally, Section 3.4

presented our FLIP/PIC advection scheme, detailing its steps and highlighting the differences

with the traditional approach. The next chapter presents specific implementation details our

method.

59

4 IMPLEMENTATION

This chapter discusses specific implementation details of the proposed algorithm. Sec-

tion 4.1 presents details about the cut-cell generation scheme and Section 4.2 discusses our

free-slip velocity reconstruction using the weighted least squares method. Our prototype was

implemented using C++, CUDA and GLSL.

4.1 Cut-cell splitting method

Cut-cell generation is not a trivial task, especially when considering that an arbitrary

number of complex 3-D objects may subdivide a regular voxel multiple times. Besides that,

we allow the geometries of the objects to have holes and border edges, which also complicate

cut-cell generation. The algorithm presented in this thesis is able to successfully handle these

cases, as shown in Figure 4.1.

(a) (b) (c)
Figure 4.1: Cut-cell examples: (a) cut-cell of intersected tori meshes; (b) cut-cell example for a
mesh with border edges; (c) cut-cell of a mesh with holes.

Initially, our cut-cell generation algorithm constructs a single non-manifold mesh for

each regular voxel that is in contact with any geometric element on the domain. For voxels that

encapsulate mesh regions with no holes or border edges, each non-manifold mesh is then split

into two or more manifold parts, each of which generates an independent cut-cell. For voxels

containing meshes with holes or border edges, we allow non-manifold cut-cells that will receive

special treatment in later phases of the simulation. However, a voxel could have a combination

of the above cases, i.e., at least one mesh without holes and at least one mesh with holes sharing

the same voxel. Our splitting algorithm is able successfully identify non-manifold parts that

cannot be split.

60

Although splitting non-manifold geometry into separate manifold parts is a well-known

and studied problem, most of the methods proposed so far focus on geometry noise removal or

fixing defective computer aided design (CAD) models (GUÉZIEC et al., 2001). Moreover, these

algorithms often require user interaction to resolve ambiguity among multiple possible solutions.

Our algorithm, on other hand, does not require user-interaction to construct cut-cells on difficult

scenarios. Algorithm 3 provides an overview of our cut-cell generation method.

Algorithm 3 Cut-Cell Generation
for each mesh in domain do

Compute intersections between the grid and the mesh (Section 4.1.1)
Compute 2-D cut-faces from obtained intersections (Section 4.1.2)
Generate a list of boundary 3-D voxels (Section 4.1.3)
Initialize non-manifold meshes (Section 4.1.4)
while Non-visited faces do

Depth-first splitting algorithm (Section 4.1.5)
end while

end for

4.1.1 Computing intersections between the grid and meshes

Firstly, we compute all intersections between regular grid faces and the meshes repre-

senting the objects. In 2-D, this reduces to computing crossings between grid edges and line

segments; the output is a set of ordered crossing points, classified by the type of the grid edge

that they cross (vertical or horizontal). These crossings points are added to the original line that

represents the object, ensuring that each line segment spans only a single cut-cell. In 3-D, the

output of computing intersections with grid faces are three different sets of lines for each mesh

(Figure 4.6). Each set represents one of the different plane orientations (vertical, horizontal,

transversal) that constitute 3-D regular grids. The output of finding intersections for the Bunny

mesh is shown in Figure 4.2a, and these are computed using the Computational Geometry

Algorithms Library (CGAL).

Analogous to the 2-D case, the computed 3-D intersections are added to the original mesh.

This step ensures that triangles of the mesh does not span different regular grid voxels, facilitating

the non-manifold mesh subdivision process. Adding sets of connected lines can modify the

original mesh topology and generate quadrilateral mesh patches. Even though our cut-cell

assembly or interpolation algorithms do not need a triangular mesh as input, we use CGAL’s

61

library (CGAL, 2016) to triangulate the modified geometry mesh to speed up point-in-polygon

tests that are needed in the advection stage.

(a) (b)
Figure 4.2: Intersection computation with the Stanford bunny and generation of boundary voxels:
(a) lines resulting from the intersection of the grid planes and the object’s mesh. Blue lines
represent intersections with X-aligned planes; green lines correspond to intersections with Y-
aligned planes; and yellow lines correspond to intersections with Z-aligned planes; (b) candidate
cells tagged for non-manifold mesh construction and subdivision.

4.1.2 Cut-face computation in 2-D

After computing the intersections between grid planes and object meshes, we can compute

2-D cut-faces in 3-D. Each computed cut-face will belong to a grid plane orientation (vertical,

horizontal, transversal). The algorithm in 2-D follows the same logic as its 3-D counterpart,

except that it is in a lower dimension: 2-D cut-faces are replaced by the computation of 1-D

cut-edges; a list of boundary 3-D voxels is replaced by a list of boundary 2-D cells; non-manifold

meshes in 2-D are initialized and, lastly, a depth-first algorithm will be performed until all the

cut-edges are visited. The first step is not needed, since the intersections between grid planes

and the mesh are sets of 2-D lines, so they are just incorporated into the 2-D cut-cell generation

algorithm. Also, computing 1-D cut-edges follows logically from computing intersections, since

they are created from partial edge fractions from the crossing of geometry 2-D lines and grid

edges.

62

We will detail our 2-D depth-first splitting algorithm, which works similarly for 3-D, by

illustrating its steps. Figure 4.3a shows a 2-D regular cell subdivided by some object geometry

into two cut-cells C1 and C2. The non-manifold mesh has T-junction nodes represented by the

green vertices B and C in Figure 4.3b. Using this representation, a graph that connects edges

and vertices according to their adjacency information is constructed, as shown in Figure 4.3c.

In order to split the graph into cells C1 and C2, we perform a depth-first search, starting on an

arbitrary grid edge. Once on an edge, the algorithm always accesses a node to its right (or to its

left), following a counter-clockwise (or clockwise) order that must be respected until the end of

the algorithm.

C1

C2

(a)

α β

A B

CD

E

F

(b)

C2

C1
A B

CD

E

F

AB BE

CD CF

AD BC EF

(c)
Figure 4.3: Schematic view of the non-manifold splitting algorithm in 2-D: (a) desired solution
of the splitting algorithm showing cells C1 and C2; (b) non-manifold mesh structure, green
vertices are T connections, in which the degree of the connectivity graph is greater than 2. The
arrows point the direction that the algorithm may choose on vertices B and C. (c) A schematic
view of the non-manifold graph structure, which connects both edges and vertices.

The non-manifold splitting algorithm follows from edges to vertices and vice-versa using

a pre-defined orientation when the degree of the nodes is equal to 2. However on T-junction

nodes (vertices B and C, degree > 2) the algorithm has to choose which path it should follow to

create a consistent manifold mesh. The key constraint is that all edges of the split manifold must

belong to the same side of the geometry boundary. Alternatively we could use a greedy approach

coupled with some backtracking mechanism, which follows all possible paths and rolls back to

the last valid configuration when it fails. We adopt a simpler and more efficient solution that uses

location and geometry information to correctly choose which path the algorithm should take.

Given the example shown in Figure 4.3c, the algorithm starts with an initial non-visited

edge, and it navigates through the graph accessing the vertices and checking which edges are

connected to it, tagging each edge that it accesses as visited. Let AD be the initial edge, and

assume that the algorithm proceeds in a counter-clockwise order. Then it accesses vertex A,

63

which has only 2 neighbors (one of them is the edge AD that was accessed last), so it simply

follows to the next non-visited edge AB.

The AB edge is classified as a grid edge, since it is on top of an edge of the regular grid;

an edge could also be classified as a geometry edge, when it lies on top of a geometry edge (e.g.,

BC). The algorithm continues accessing the next non-visited vertex, which is B, checking its

connectivity. In this case, it has to choose between the edges BC and BE (bottom dark arrows

in Figure 4.3b). Here, it uses its location information to choose correctly: when the algorithm

is currently evaluating a grid edge (AB) and has to choose between a geometry edge (BC) and

another grid edge (BE), it will always choose the geometry edge. This approach is sufficient to

build a consistent non-manifold cut-cell mesh which does not contain edges from different sides

of the obstacle’s geometry.

The algorithm continues to the next non-visited vertex, which is vertex C. In this case it

also has to choose between two different edges (CD and CF), but those edges are both grid edges.

Here, the algorithm uses geometry information: we calculate the relative signed angle between

the vector that is arriving on the vertex C (BC), and the vectors that have its origin on vertex C

(CD and CF). These angles, are depicted as α and β in Figure 4.3b. We choose the smaller angle

between those vectors to continue, which in this case is the edge CD, since α is the smallest

angle. This is equivalent to a "left-turn" and it follows because we chose a counter-clockwise

orientation. If one chooses a clockwise orientation we must choose the greater angle, which is

equivalent to a "right-turn". The algorithm will end when it reaches the initial edge AD, since

now all possible paths from this edge have already been visited.

We notice that our solution works for graphs of arbitrary degrees; however all of our sim-

ulation scenarios had connectivity equal to or smaller than 3 (Figure 4.5). When the connectivity

is higher than 3 we have degenerate cases, where mesh points are lying exactly on top of grid

faces, edges or nodes, complicating other parts (such as triangulation for point-in-cut-cell tests)

of the simulation pipeline.

4.1.3 Boundary voxel list generation

The next step is to identify grid voxels that are going to be assembled into non-manifold

meshes (Figure 4.2b). This is accomplished by tagging all voxels containing our 2-D cut-faces

discussed in previous section. To quickly do that, we compute the regular-grid index locations of

each 2-D cut-face by dividing its centroid location by the regular-grid spacing. This will give us

the absolute index relative to the dimension of the grid of each 2-D cut-face. Then, depending

64

on the plane that the cut-face belongs to, we tag the 2 voxels that share that face. For example,

let a regular-grid index be expressed as (i, j, k), where i, j, and k correspond to the X, Y, and Z

coordinates, respectively. For a cut-face that belongs to the XZ plane, the voxels that are going to

be tagged are the ones with (i, j, k) and (i, j + 1, k) indices. The output of the tagging procedure

is the list of non-manifold meshes that are going to be (possibly) decomposed into manifold

parts.

4.1.4 Construction of non-manifold meshes

With the list produced by the tagging procedure, we can construct non-manifold meshes

for each cut-cell. To accomplish this, the algorithm has to find and categorize all faces inside the

same regular-grid voxel. Similar to 2-D cut-faces computation, there are two categories of faces:

grid faces (Figure 4.4a) and geometry faces (Figure 4.4b). Grid faces are polygonal, most of the

time having more than 3 segments, and are contained inside a plane that constitutes the original

regular grid. These faces are computed by the 2-D version of the non-manifold algorithm and are

always shared by only 2 distinct cut-cells. Geometry faces are those that belong to the original

mesh, will always be triangular and span only one regular voxel.

(a) (b)
Figure 4.4: Different cut-cell face types for 3-D: (a) grid faces (highlighted in blue and red) are
generated by the 2-D non-manifold splitting algorithm and can be arbitrary planar polygons; (b)
geometry faces (highlighted in yellow) belong to the original mesh and are always triangular.

Faces from the non-manifold mesh are initialized according to their respective types. Grid

faces are categorized by their orientation (XY, XZ or YZ planes) by checking the corresponding

65

face normal; then, these faces are added to a 3-D matrix that will encode their index location

within the regular grid. For geometry faces, only a mapping to the regular-grid location is needed.

The location of both geometry and grid faces in regular-grid index coordinates is calculated by

computing the centroid of the face and dividing it by the grid spacing. Lastly, all faces grouped

together in a regular-grid voxel are connected by a graph, whose adjacency map is built using

faces’ edges information. Non-manifold meshes will have nodes with degree higher than 2

(T-junctions). T-junction nodes will be the key elements on the splitting method that generates

separate manifold parts.

A B

(a)

C

(b)
Figure 4.5: Node degrees examples: (a) two nodes (A and B) with degree equal to 3 are connected
to grid edges that are at opposite sides of the mesh boundary (green); (b) when a node of the
object lies exactly on top of a grid edge (red C node) it creates a T-junction with degree > 3,
since now 4 edges (two grid edges and two geometry edges) are connected to it.

(a) (b) (c)
Figure 4.6: (a) 2-D horizontal cell faces (X aligned) initialized by the 2-D non-manifold
algorithm using slices intersection information; (b) 2-D vertical cell faces (Y aligned); and (c)
2-D transversal cell faces (Z aligned).

66

4.1.5 Non-Manifold mesh splitting in 3-D

The non-manifold splitting in 3-D is analogous to the 2-D version. The graph building

procedure is similar, with faces substituting edges and edges substituting vertices. We can keep

the same strategy using location information when choosing the path to go from a grid face

(analogous to grid edge) to a geometry face (analogous to geometry edge). However, since

each face now has at least 3 edges, it is not possible to define an access rule that follows a

counter-clockwise (or clockwise) order through the entire non-manifold geometry. This means

that the 2-D strategy of using relative signed angle cannot be applied for the 3-D case.

A key property for cut-cells that can be used for path selection is that all its faces must

always be on the same side (interior or exterior) of the geometry mesh. Inside geometry tests

for grid faces are often costly and non-robust for 3-D, but they can be completely avoided by

using the winding order defined by the 2-D algorithm. All 2-D faces from a non-manifold mesh

respect the same winding order (clockwise or counter-clockwise). Each geometry edge (red

edges on Figure 4.7a) is composed by half-edges (directed edges, arrows on Figure 4.7a) with

opposite directions.

To verify if a grid face is interior or exterior to the mesh, we devise a simple but effective

solution. The half-edges of an edge shared by a grid-face and a geometry face are compared: if

their orientations match (Figure 4.7b), it means that the grid face is exterior the mesh; otherwise,

the grid face is interior to the mesh. This is only possible because the half-edges of our mesh

patches have their orientation defined consistently to the mesh original normal and its containing

regular-grid voxel.

Therefore, when the algorithm transitions from a grid face to a geometry face using

location information, we verify if the grid face is interior or exterior to the mesh and store this

relative position. A transition from a grid face to a geometry face will always happen before a

transition from a geometry face to a grid face, because the algorithm always starts in a grid face.

Whenever the decision between two different grid faces has to be made, the algorithm simply

follows the same order stored on the transition of a grid face to a geometry face. For the example

shown in Figure 4.7b, the geometry half-edges (black arrows) of the foremost grid face match

their orientation with the half-edges (red arrows) of geometry faces (red triangles), which means

that this grid face is exterior to the mesh. With this simple rule, we are able to decide correctly

between paths in T-junctions, and no backtracking is needed.

Some cut-cells examples generated by the proposed algorithm can be seen on Figure 4.8.

67

A

B

(a)

A

B

(b)
Figure 4.7: Half-edges orientations for faces "A" and "B": (a) planar 2-D view of cut-faces. Red
edges represent the interface between the two grid faces and the objects geometry. Each of those
edges on the interface are represented on grid faces by opposing half-edges. In (b), schematic
3-D visualization of the polygon winding orientation of same set of geometry and grid faces.
Geometry half-edge orientations of grid face "B" are omitted for visualization purposes.

Figure 4.8: Examples of cut-cells generated with our algorithm for the Stanford Bunny.

4.1.5.1 Disconnected regions

In 3-D, there may be cases in which objects cut a hole through a single grid face (e.g.,

a long cylinder as in Figure 4.9). In this case, the intersection line between the plane and the

geometry is completely contained inside a grid face, and the non-manifold splitting algorithm

in 2-D is oblivious to interior disconnected regions. Therefore, disconnected regions must be

connected to outer grid face edges in order to provide valid 2-D faces for the non-manifold

splitting algorithm (center and right images of Figure 4.9).

We devise a simple algorithm to connect disconnected regions to outer grid face edges.

It starts by ordering the centroids of disconnected regions relative to one axis in a list (e.g.

ordering by the Y axis). Then it sequentially accesses the vector, connecting each subsequent

pair of disconnected regions by their closest points (Figure 4.10a). If this connection between

disconnected regions crosses through another geometry edge (Figure 4.10c), the algorithm simply

68

(a) (b) (c)
Figure 4.9: Disconnected regions examples: (a) a cylinder cuts through a single regular grid face;
(b) cylinder intersection (red edge) is completely contained inside a grid face, not crossing any
grid edges. So, the algorithm adds two connection edges (green edges) from the disconnected
region to regular grid nodes generate valid cut-faces In (c), a more complex example with
multiple disconnected regions (red edges) connected to geometry intersections (blue edges).

adds additional connections to the crossed geometry edge. Lastly, it connects the first (lower

relative to the order of the centroids) disconnected region to the closest outer regular-grid face

vertex; a similar procedure is done for the last (upper relative to the order of the centroids)

disconnected region as well. We notice that this algorithm might fail, if the disconnected regions

are non-monotonic or be disposed in a intricate fashion. However, for all tested configurations,

the algorithm performed correctly; one example of a complex case successfully handled by our

algorithm can be seen on Figure 4.9 (c).

C2

C1
C3

(a)

C2

C1

C3

C4

(b)

C2

C1

C4

C5

C6

C3

(c)
Figure 4.10: Schematic view of different disconnected regions. (a) A single circular hole (C3)
through a grid face. (b) Two disconnected regions (C3 and C4) connected by their closest
points. (c) Closest points between disconnected regions (C5 and C6) obstructed by another
geometry face. In this case the algorithm adds connections directly to the geometry face between
disconnected regions and new regions are generated by those connections (C3 and C4).

69

4.2 Least squares velocity fitting

The method of least squares is a standard approach to determine approximation solutions

of overdetermined systems by minimizing the sum of the squares of the errors made in the results

of every single equation. Consider the following overdetermined system, for an m by n matrix

N , where m > n:

Nu = z (4.1)

We can multiply the whole equation by NT , which will yield a n by n matrix:

NTNu = NT z (4.2)

The result of NTN now can be inverted, since the matrix is square. The product NTN is also

positive definite. To demonstrate that, assume x 6= 0, then

xT (NTN)x = (Nx)T (Nx) = ||Nx||22 > 0. (4.3)

Multiplying Equation (4.2) by the inverse of NTN will yield the standard solution for linear

squares systems:

(NTN)−1(NTN)u = (NTN)−1NT z (4.4)

We can define the pseudo-inverse of N as N+ = (NTN)−1NT ; thus

Iu = N+z (4.5)

4.2.1 Weighted least squares

The weighted least squares approach can be written in the following form

WNu = W z, (4.6)

where the W matrix is a m by m diagonal matrix of the weights from each sample contribution.

The product WN is a m by n matrix, which cannot be inverted. To fix that, one can multiply the

equation by NT :

NTWNu = NTW z. (4.7)

70

The product NTWN is a n by n matrix that can be inverted. One can multiply the both sides of

the equation by the inverted expression:

(NTWN)−1(NTWN)u = (NTWN)−1NTW z. (4.8)

Then, to find u, we have to just solve the right side of the equation above. Our weights are

obtained as

Wii =
1

rii + ε
, (4.9)

where rii are the distances between the mixed node i and the location of its velocity node.

4.3 Spherical Barycentric Coordinates

We adopted the Spherical Barycentric Coordinates (SBC) interpolant in our 3-D imple-

mentation. This interpolant was chosen over Mean Value Coordinates (MVC) since SBC is able

to work on polyhedra with arbitrary polygonal meshes, while MVC only works for polyhedra

with triangular faces. Our cut-cells are triangulated for point-in-polygon tests; however, the

triangulation process introduces skew triangles that may hinder the overall accuracy of the

interpolation (for some examples, check (LANGER; BELYAEV; SEIDEL, 2006)). A cut-cell tri-

angulation example can be seen on Figure 4.11. Notice how the triangulation process introduces

small skew triangles.

Spherical Barycentric Coordinates describe the position of a point inside a polyhedra with

respect to all of its spherical polygons. A spherical polygon is found by projecting a polygon

into a sphere of unit radius. For interpolating a discrete function defined at the boundaries of a

irregular polyhedra M to a point p inside M, we want to find a set of weights λi such as: s

p =
n∑
i

λixi, (4.10)

where xi are the vertices of the polyhedra. Although SBC does not satisfy the partition of unity

(i.e.,
∑n

i λi = 1) and may fail reproducing constant functions over a polyhedra, it satisfies the

linear precision property:
n∑
i

λif(xi) = f(p), (4.11)

where f is an arbitrary function over the domain spanning the polyhedra. The linear precision

property is important for defining velocity field streamlines that do not interpenetrate the object

71

mesh. As an arbitrary interpolation point approaches a given face, the linear precision property

guarantees that the interpolated value will converge to a linear combination of the values defined

at the vertices of that face. This property does not hold in radial basis interpolants, for example.

(a) (b)
Figure 4.11: Triangulation of a cut-cell: (a) original bunny cut-cell polyhedron with arbitrary
polygonal faces; (b) triangulated cut-cell.

Langer et al. (LANGER; BELYAEV; SEIDEL, 2006) do not explicitly present an

algorithm and a straightforward SBC implementation is challenging. Therefore, in Algorithm 4,

we present the steps of the Spherical Barycentric Coordinates algorithm employed in our

implementation. The algorithm starts by finding vi values for each face on the polyhedra and

normalizing the corresponding face vector. Then for each point in each face, it calculates a

distinct λ∗ij value and this means that for a given unique vertex several instances of λ∗ij will be

associated to it. Therefore, all values of λ∗ij are summed to λi, which relates each weight to

a unique vertex in the polyhedra. Finally, all the weights λ∗ij are normalized by their sum λi,

being ready for interpolating values for points inside the polyhedra. Some velocity interpolation

examples are shown below in Figure 4.12.

72

Algorithm 4 Spherical Barycentric Coordinates Interpolation
for each polygon with index i in mesh do

for each point with index j in polygon do
//Auxiliary vectors calculation
aj = xj − p
aj+1 = xj+1 − p
ni = aj × aj+1

ni = ni
||ni||

//Auxiliary angle calculation
θ = arccos(

aj ·aji+1

||aj ||||aj+1||)

vi = vi + ni ∗ 0.5 ∗ θ
end for
//Normalize vi
vi = vi

||vi||

for each point with index j in polygon do
//Auxiliary vectors calculation
aj−1 = vi ×

(
xj−1−p
||xj−1−p||

)
aj = vi ×

(
xj−p
||xj−p||

)
aj+1 = vi ×

(
xj+1−p
||xj+1−p||

)
//Auxiliary angles calculation
αj−1 = arccos(aj−1 · aj)
αj = arccos(aj · aj+1)
θ = arccos(vi · aj)

//Lambda and denominator calculation
λ∗ij =

tan(αj−1∗0.5)+tan(αj∗0.5)

sin(θ)

d = d+ (tan(αj−1 ∗ 0.5) + tan(αj ∗ 0.5)) tan(π
2
− θ)

end for
for each point with index j in polygon do

λ∗ij =
λ∗ij
d

end for
end for
//For all faces connected to a given vertex, sum each λ∗ij to the vertex
λj =

∑n
i λ
∗
ij

//Calculate the sum of all weights and normalize
sλ =

∑n
j λj

for each vertex with index i in vertices do
λi = λi

sλ
end for

73

Figure 4.12: Velocity interpolation examples using Spherical Barycentric Coordinates on cut-
cells.

74

5 RESULTS

This chapter discusses the results obtained applying our cut-cell algorithm to various

challenging regular-grid scenarios involving thin objects, irregular shapes, and narrow regions.

We present our prototype in 3-D, except for certain flow characteristics, which are better demon-

strated in 2-D. Before discussing our results, we firstly present timings and settings (Table 5.1);

all our results are computed using a single core of an Intel i7-2600 CPU at 3.4 GHz with 8GB

memory. The robust intersection processing needed for mesh generation is handled with the

CGAL library (CGAL, 2016). We simulated a single time-step per frame of the video.

While we focus primarily on coarse grids, Table 5.2 shows how our technique scales

with increasing grid resolution. It provides some cut-cell statistics and performance numbers

for a fluid flow around a Bunny model (5,002 triangles) with grid resolutions ranging from 83

up to 2563. Timings were obtained by averaging five measurements with identical settings. As

expected, as the number of regular cubic cells increases by a factor of 23 from one grid resolution

to the next, the number of cut cells only increases by a factor of 22. Consequently, the percentage

of cut cells (relative to the number of grid cells) reduces by a factor of 2; that is, for any given

solid geometry, the relative overhead associated with handling irregular cells decreases as grid

resolution increases. The cut-cell generation time is dominated by CGAL operations (ranging

from 80% to 90% of the time for resolutions up to 1283). The identification of all faces (both

mesh and grid ones) incident to each mixed node is currently performed in a brute force and

unoptimized fashion, and thus its cost (column Mixed Nodes in Table 5.2) increases by a factor

of roughly 15 from one resolution to the next; this rapid growth ultimately causes it to reduce

CGAL’s relative contribution to the overall time at the 2563 grid level. We expect that optimizing

this procedure will significantly accelerate cut-cell generation at high resolutions. The rightmost

columns of Table 5.2 show the advection and projection times involved in simulating a single

time step.

Our simulations do not apply vorticity confinement or other artificial turbulence-creation

mechanisms, although these could be easily added. Our 3-D examples use 64 or 128 PIC/FLIP

particles per cell, while our 2-D examples use 32 or 64 particles; these counts are higher than

normal because we want to ensure that even small or skinny cells are sufficiently well-sampled.

A smart adaptive particle sampling scheme would likely bring these values down with minimal

impact on the results.

The presentation of the results is organized as follows: Section 5.1 shows scenarios with

infinitesimally thin objects, where the challenge consists of creating a representation that avoids

75

Example Advection Projection Total Meshing Grid Dims No. Cut-Cells
Linked Tori - FS 0.372 0.040 0.597 0.443 (once) 7× 7× 7 88
Bunny - NS 0.343 0.004 0.516 1.527 (once) 7× 7× 7 78
Bunny - FS 0.490 0.004 0.881 1.469 (once) 7× 7× 7 78
Dragon (f) - FS 1.124 0.301 2.686 7.984 (once) 19× 14× 11 1298
Dragon (c) - FS 0.880 0.172 1.986 4.446 (once) 11× 9× 6 326
Disk - FS 0.319 0.118 0.63 0.197 25× 21× 13 137
Disk - NS 0.296 0.105 0.554 0.200 25× 21× 13 137
Paddle - NS 0.290 0.148 0.597 0.153 23× 10× 6 67

Table 5.1: Timing and parameters for 3-D simulations: NS stands for no-slip and FS stands for
free-slip boundary conditions. Timing information is in seconds per frame, and is computed
as an average over the first 3-4 frames. Total time excludes meshing, listed separately. For
moving geometry, the cut-cell count is given for the first frame, and the cut-cell meshing time is
per frame. For static meshes, meshing occurs only once at the start, as stated on the table. All
examples use 64 particles per cell, except the Linked Tori with 128. In static examples, cut-cells
are generated only once; otherwise, meshing times are computed per frame.

CC CGAL CGAL MN Advect Project
Grid # Cut-Cells % Cut-Cells # Polygons (sec) (sec) (%) (sec) (sec) (sec)
83 90 17.58 7,810 0.82 0.68 82.06 0.0004 0.54 0.006
163 316 7.71 10,636 1.31 1.15 87.95 0.0012 0.71 0.045
323 1,359 4.15 17,502 2.81 2.55 90.43 0.0168 1.24 0.956
643 5,260 2.01 32,342 7.85 6.62 84.36 0.2030 2.57 10.094
1283 20,943 1.00 70,034 29.20 23.37 80.06 3.0822 7.80 47.218
2563 83,518 0.50 176,584 172.33 111.12 64.48 49.0320 17.09 224.981

Table 5.2: Statistics for a fluid simulation around the Bunny model (5,002 triangles) on grids
of various resolutions. For each grid resolution, the table provides the number of cut cells (#
Cut-Cells), its percentage with respect to the total number of cubic cells in the regular grid
(% Cut-Cells), the number of triangles in the Bunny mesh after intersecting with the grid (#
Polygons), the total time in seconds required to generate the cut cells (CC), the subset of the
cut-cell generation time spent on CGAL operations (CGAL (sec)), the percentage of the cut-
cell generation time corresponding to CGAL operations (CGAL (%)), the time spent by our
meshing algorithm in the key step of finding all faces incident on each mixed node (MN), and
the advection and projection times for simulating one time step.

flow mixing from different sides of a thin boundary. Section 5.2 presents scenarios where objects

with complex boundary meshes are embedded in a regular grid. The challenge in these scenarios

is to create conforming flows that do not interpenetrate irregularly-shaped objects without heavy

reliance on collision detection. Lastly, Section 5.3 discusses flows through narrow regions or

gaps, where standard regular-grid solvers would be unable to topologically model the domain.

76

5.1 Flow around thin objects

Flows with the presence of infinitesimally thin embedded geometries face the challenge

of isolating different flow characteristics inside a same regular-grid cell. Our results show that

the proposed method in this thesis is able to prevent flow mixing from different sides of a thin

object. On the next subsections, we present the following examples: 2-D diagonal line with

free-slip boundary conditions, 2-D oscillating lines, 2-D stirring line, 3-D disk slicing through

smoke and 2-D/3-D rotating line/paddle.

5.1.1 Diagonal Line

We illustrate the accuracy of the ideal free-slip conditions with a 2-D example of a

diagonal solid line embedded in a perfectly tangential flow. The 2-D line remains still for some

time, then it starts rotating in alternating directions. Our accompanying video and the image

sequence shown in Figure 5.1 show that the line does not disrupt the flow unless it rotates.

Figure 5.1: Different frames for the diagonal line example. Left image: line remains still,
and the diagonal flow is undisturbed by its presence because of free-slip boundary conditions.
Center image: line starts to rotate clockwise, disturbing the flow. Right image: line rotates in
counter-clockwise direction, also disturbing the flow.

77

5.1.2 Oscillating Lines

A sequence of examples in our video and in Figure 5.2 feature two vertical line segments

oscillating back and forth horizontally. At the closest point of their trajectories, the segments

occupy the same column of grid cells, dividing them into three sub-cells (left-most images

of Figure 5.2); even in this extreme case the flow behaves naturally. We can see all our

contributions in action: the cut-cell pressure projection yields proper fluxes, our PIC/FLIP

particles ensure coherent motion without velocity extrapolation for swept-over regions, and our

modified interpolation yields particle motion that conforms closely to segments. A close-up

illustrates that with free-slip (bottom-right image of Figure 5.2), the fluid flows vertically even

as it is squeezed out of the slender sub-cell narrow gap at the closest position. With no-slip

(top-right image of Figure 5.2), the interpolated vertical velocities in the gap drop to zero when

the segments enter the same grid column, since they are forced to match that the solid.

Figure 5.2: Oscillating lines examples: no-slip boundary conditions (top), and free-slip boundary
conditions (bottom). Images on the right are the zoomed version for the current time-step of the
images on the left. In the free-slip case, particles can freely move up and down through the gap
between thin objects.

78

5.1.3 Stirring Line

In Figure 5.3b, we show a free-slip test in a related scenario where the object is translating

tangentially without disrupting the flow; later it begins to rotate and stir the surrounding fluid. In

Figure 5.3a the same example is reproduced with no-slip boundary conditions, which immediately

induce flow as the line translates tangentially.

(a) (b)
Figure 5.3: No-slip and free slip stress tests. In this example the line translates tangentially to its
geometry: In (a), with no-slip the translation disrupts the flow, since the velocity at the boundary
is set to be the solid’s velocity. In (b), with free-slip boundaries, the fluid is freely allowed to
flow tangentially and no disturbance is shown, as expected.

5.1.4 Disk Slicing Smoke

Extending the above scenario to 3-D, we reproduce a test proposed by Robinson-Mosher

et al. (ROBINSON-MOSHER; ENGLISH; FEDKIW, 2009) in which a disk with infinitesimal

thickness slices tangentially through a block of stationary smoke (Figure 5.4). With ideal free-

slip, the smoke should remain perfectly stationary as the disk slips through edge-on; when it

passes through a second time while rotating, the smoke should be disturbed. The accuracy of the

cut-cell pressure solver allows our simulator to pass this stress test, in contrast to the results in

previous work.

79

Figure 5.4: A disk passing through smoke, first tangentially (2nd column), then while rotating
(3rd column). Top row: Free-slip case. The smoke is undisturbed after the first tangential slice
through. Bottom row: No-slip case. The smoke is disturbed immediately.

5.1.5 Rotating Line and Paddle

Figure 5.5 shows a 2-D example of a rotating line with no-slip conditions, demonstrating

that the fluid is able to faithfully react to and follow the moving geometry. In the 3-D variant of

this example shown in Figure 5.6, a rotating thin paddle translates back and forth through a fluid

domain stirring up a volume of smoke on a grid with dimensions 23× 10× 6. This example is

modeled after one proposed by Klingner et al. (KLINGNER et al., 2006) and used by Batty et

al. (BATTY; BERTAILS; BRIDSON, 2007), with the exception that our paddle is extremely thin

relative to the grid resolution. This compares favourably to the work of Batty et al. who used as

their lowest resolution a grid of 40× 20× 30 in order to ensure that their much thicker paddle

was adequately resolved at the grid scale. In this example, to avoid issues caused by inadequate

treatment of dangling interior faces provided by Shepard interpolation, we assigned the paddle a

finite but very small thickness which ensures that SBC is used.

80

Figure 5.5: Frames from rotating line example for 2-D.

5.2 Flow around irregular objects

Irregularly-shaped objects embedded in regular-grid settings seldom conform with regular

grid cells in flow animation scenarios, and have to be handled explicitly. Our results enhance the

state-of-the-art boundary treatment for these scenarios, as we are able to reproduce approximately

boundary conforming streamlines for both no-slip and free-slip boundary conditions on irregular

objects. The following scenarios are discussed in this section: 2-D smoothed gear, 2-D three

circles, 3-D dragon and 3-D bunny.

5.2.1 Smoothed Gear

Figure 5.7 shows a irregularly shaped object immersed in a regular-grid setting. The

boundary conditions are set to free-slip, allowing tangential flow to conform the irregular

boundaries of the object. A rotational velocity field is enforced on the outer part of the gear at

the beginning of the simulation. In inner part, no flow is present, since our algorithm is able

to successfully isolate the inner and outer regions. Notice that the cut-cells (outlined in blue)

are coarse relative to the geometry, creating cut-cells that are curvilinear. Even though, our

interpolation scheme is able to maintain accurate tangential free slip flow streamlines that do not

penetrate the object.

81

Figure 5.6: Frames from rotating paddle example for 3-D.

5.2.2 Three Circles

Figure 5.8a shows an example of topologically complex scenario coupled with objects

with curved boundaries. Three circles are placed close to each other, creating narrow communi-

cating gaps. If a standard regular grid approximation were used, no flow would pass between the

circles, since pressure information connecting the flux coming from the left into the bottom and

right parts of the flow would not be available. Figure Figure 5.8b shows the same example, this

time zoomed in the gaps between the objects.

5.2.3 Bunny

Figure 5.9 illustrates the improved quality of flow around coarse 3-D objects (5,002

triangles) as well. Conforming polyhedral interpolation ensures a reasonable motion that follows

the curves of the bunny even on a 7 × 7 × 7 grid. Trading computational cost for quality,

Figure 5.10 shows how the level of turbulent detail increases with higher resolution grids.

82

(a) (b)

Figure 5.7: Irregularly shaped object example: (a) Gear-like shape with high frequency features,
(b) zoomed version of the same example.

5.3 Flow through narrow regions

We consider narrow regions those which have distinct mesh patches inside a single

regular-grid cell. In scenarios like this, pressure samples are connected through a topological

graph that enables flows to reach in small spaces of the simulation domain. The following flow

scenarios are discussed in this section: 2-D branching tubes, 2-D maze, 3-D dragon and 3-D

linked tori.

5.3.1 Linked Tori

Figure 5.11 shows a 3-D two linked tori (grid dimensions: 7× 7× 7) with flows through

quite narrow regions discretized by only a few cells. Velocity forcing is provided by setting

a velocity condition on a few faces inside each torus. Moreover, our free-slip implementation

allow particles to flow closely to the torus geometry. However, we observed that a very small

percentage of the animated particles crosses the object boundary. This happens because our

free-slip method projects penetrating velocity components using normals defined at vertices,

thus when particles are really close to faces, particles are able to cross the object boundary. We

avoid crossing by using a collision detection algorithm for particles that are really close to the

object’s boundary mesh.

83

(a) (b)
Figure 5.8: Three circles example. (a) Three circles with a small gap between them; (b) zoomed
version of the three circles experiment.

5.3.2 Branching Tube

Figure 5.12 shows a challenging example of flow in a thin gap: a narrow tube, whose

width is less than that of a grid cell, turns and branches, creating numerous cut cells and a

rich topology. This illustrates the ability of our technique to handle flows through complex

regions defined by closely spaced thin boundaries. Results are shown for interpolation using both

free-slip (top) and no-slip (bottom) rules. Here and elsewhere free-slip is generally preferred for

its superior behavior, but we show various examples with no-slip for completeness.

5.3.3 Flows in a Maze

In this example we show a flow inside a maze. The flow is able to topologically solve the

maze (finding the entrance and the exit of it), as expected in a real case scenario. Notice that

in Figure 5.13a the maze is highly coarse (blue lines), and all the flow is topologically flowing

through cut-cells. We can also see that the velocity interpolation is consistent even through

highly non-convex cells. In Figure 5.13b we show a "ghost" geometry moving through a maze

with double the resolution of the previous example. The flow also respects the maze topology,

while it shows challenging cut-cells shapes being resolved accurately.

84

Figure 5.9: Left: The fluid flow conforms to the irregular bunny mesh due to our use of
conforming polyhedral interpolation. Right: The same bunny with black curves illustrating the
coarse grid.

8× 8× 8 16× 16× 16 32× 32× 32 64× 64× 64 128× 128× 128

Figure 5.10: Simulation of fluid flow around the Bunny model (free-slip, same time step) using
grids of various resolutions. While the level of turbulent detail naturally increases at higher
resolutions, the flow still respects the geometry even at extremely coarse resolutions.

5.3.4 Dragon

Figure 5.14 shows a complex dragon mesh, where a smoke stream passes through narrow

regions inside the dragon mesh. Velocity forcing is provided by setting a velocity condition on a

few faces at the tail of the dragon. We ran a second version this same experiment at approximately

twice the grid resolution in each dimension (Figure 5.15); while the flow is indeed smoother at

finer resolution, it flows in essentially the same fashion as its less well-resolved counterpart. It is

this tradeoff of quality and cost, independent of the geometry, that we seek to provide the user.

85

Figure 5.11: Frames from the linked torii example.

(a) Free-slip (b) Free-slip Closeup

(c) No-slip (d) No-slip Closeup
Figure 5.12: Flow simulation on a turning and branching tube whose width is smaller than a grid
cell width. (a) Free-slip flows smoothly. (c) No-slip halts in the tube. (b) and (d) show closeup
views of the highlighted regions.

86

(a) (b)
Figure 5.13: Example of flow inside a simple maze. The flow is able to topologically solve the
maze, as expected in a real case scenario. a) The flow is presented with an increased number of
FLIP particles to visualize how the interpolation process is consistent across sharp corners and
highly non-convex cells. b) "Ghost" moving through the maze also disrupts the flow in a way
that converges to the maze solution.

Figure 5.14: Frames of 3-D dragon animation discretized with a regular grid spacing of h = 0.5.

Figure 5.15: Frames of 3-D dragon animation discretized with a regular grid spacing of h = 0.25.

87

6 CONCLUSION

This thesis introduced a technique for simulating fluids in the presence of infinitesimally

thin obstacles, narrow gaps, and complex shapes. Our cut-cell meshes are constructed only on

the immediate vicinity of any embedded mesh, and as our results show, add little overhead to the

overall simulation time. A symmetric positive definite pressure matrix formulation was employed

to model the problem and second-order accuracy was obtained for the solution of the pressure

system. Our advection scheme is able to produce boundary conforming streamlines and improves

current velocity treatment for moving boundaries. Such improvements enabled us to simulate

flows in challenging scenarios - such as objects in close proximity and highly irregular shapes -

on very coarse grids settings. The concepts presented in this thesis can be readily applied for

industry applications, such as creating a computationally fast and topologically correct preview

of flows interacting with complex scenes while using very coarse grids.

6.1 Limitations

Our pressure discretization ignores dangling interior solid faces arising from partially

cut cells, as in previous regular grid schemes for thin boundaries (e.g., (DAY et al., 1998;

GUENDELMAN et al., 2005; ROBINSON-MOSHER; ENGLISH; FEDKIW, 2009)). Precisely

accounting for this geometry would require generating a fully unstructured conforming mesh

within the cell. While coupling a regular grid MAC scheme to a full FEM scheme is possible

(e.g., (ZHENG et al., 2015)), it would sacrifice the numerical and implementation benefits of our

chosen nearly-regular grid discretization.

When tunnels between solid geometry within a single cell become very small or labyrinthine,

a sufficient number of particles may fail to flow into or through gaps. Hence, truly extreme

scenarios, such as flow through stacked pages of a book or pores of a sponge, remain impractical;

porous flow or homogenization schemes may be preferable.

Although our interpolation method improves the interpolated velocities and resulting

trajectories, it cannot guarantee trajectories never cross, due to truncation error in time integration.

For free-slip conditions on cells with sharp corners, the interpolated velocity may also still have

trajectories that do not satisfy ufluid · n = usolid · n at all points along the perimeter of the cell.

More broadly, our interpolants cannot ensure pointwise divergence-free velocity fields, which

can lead to uneven particle distributions or poor flows near high-frequency geometry. However,

for open regular grid regions, even standard trilinear and tricubic interpolation do not yield

88

Lines # CC % CC CC Gen. Adv. Proj. Total
1 8 5.00 0.001 0.0016 0.023 0.0256
8 29 18.12 0.003 0.0028 0.035 0.0408

64 197 123.12 0.038 0.0120 0.063 0.1130
Table 6.1: For one step at a fixed 2D grid resolution (16× 10), 1, 8, and 64 lines per cell crossing
over 5 cells (as in Figure 3.12 top). # of Cut-Cells (CC), percentage of CC relative to the regular
160 grid cells. Times (sec) for: CC generation, advection, projection, and total time.

pointwise divergence-free fields. This highlights an interesting challenge for future work: can

one construct interpolants which simultaneously (a) respect the discrete face velocities from the

pressure solve, (b) accurately conform to boundaries, and (c) satisfy pointwise incompressibility?

This holds out the potential to produce significantly improved visual results even in extremely

under-resolved regions.

6.2 Future Work

Our approach should be readily extensible to two-way coupling. The challenge for

this would be to couple the pressure gradient across the solid-fluid interface without changing

the symmetric positive definiteness property of our matrix formulation. A similar and related

extension would be incorporating our cut-cell method to capture sub-grid free surface flows

details. Since our method enables the use of very coarse grid settings, it is a natural candidate for

incorporating sub-grid turbulence to incorporate even greater apparent detail on coarse settings.

89

REFERENCES

AFTOSMIS, M. J.; BERGER, M. J.; MELTON, J. E. Robust and efficient Cartesian mesh
generation for component-based geometry. AIAA Journal, v. 36, n. 6, p. 952–960, 1998.

ANDO, R.; THUEREY, N.; WOJTAN, C. Highly adaptive liquid simulations on tetrahedral
meshes. ACM Trans. Graph. (SIGGRAPH), v. 32, n. 4, p. 103, 2013.

ANDO, R.; THUEREY, N.; WOJTAN, C. A stream function solver for liquid simulations.
ACM Trans. Graph., ACM, New York, NY, USA, v. 34, n. 4, p. 53:1–53:9, jul. 2015. ISSN
0730-0301. Available from Internet: <http://doi.acm.org/10.1145/2766935>.

AZEVEDO, V. C.; OLIVEIRA, M. M. Efficient smoke simulation on curvilinear grids.
Computer Graphics Forum, v. 32, n. 7, p. 235–244, October 2013.

BARGTEIL, A. W. et al. A semi-lagrangian contouring method for fluid simulation. ACM
Trans. Graph., ACM, New York, NY, USA, v. 25, n. 1, p. 19–38, jan. 2006. ISSN 0730-0301.
Available from Internet: <http://doi.acm.org/10.1145/1122501.1122503>.

BATTY, C.; BERTAILS, F.; BRIDSON, R. A fast variational framework for accurate solid-fluid
coupling. ACM Trans. Graph. (SIGGRAPH), v. 26, n. 3, p. 100, 2007. ISSN 0730-0301.
Available from Internet: <http://portal.acm.org/citation.cfm?id=1276502&CFID=4700498&
CFTOKEN=64533352>.

BATTY, C.; XENOS, S.; HOUSTON, B. Tetrahedral embedded boundary methods for
accurate and flexible adaptive fluids. Computer Graphics Forum (Eurographics), v. 29, n. 2,
p. 695–704, 2010. Available from Internet: <http://onlinelibrary.wiley.com/doi/10.1111/j.
1467-8659.2009.01639.x/full>.

BERGER, M. J.; LEVEQUE, R. J. An adaptive cartesian mesh algorithm for the euler equations
in arbitrary geometries. In: AIAA COMPUTATIONAL FLUID DYNAMICS CONFERENCE.
Proceedings of the AIAA 9th Computational Fluid Dynamics Conference. Buffalo, NY,
USA, 1989. p. 1–7.

BOJSEN-HANSEN, M.; WOJTAN, C. Liquid surface tracking with error compensation. ACM
Trans. Graph. (SIGGRAPH), v. 32, n. 4, p. 79:1–79:10, 2013.

BRACKBILL, J.; RUPPEL, H. Flip: A method for adaptively zoned, particle-in-cell calculations
of fluid flows in two dimensions. Journal of Computational Physics, Elsevier, v. 65, n. 2, p.
314–343, 1986.

BROCHU, T.; BATTY, C.; BRIDSON, R. Matching fluid simulation elements to surface
geometry and topology. ACM Trans. Graph. (SIGGRAPH), v. 29, n. 4, p. 47, 2010. Available
from Internet: <http://portal.acm.org/citation.cfm?id=1778784&CFID=4700498&CFTOKEN=
64533352>.

BUSARYEV, O. et al. Animating bubble interactions in a liquid foam. ACM Trans. Graph.,
ACM, New York, NY, USA, v. 31, n. 4, p. 63:1–63:8, jul. 2012. ISSN 0730-0301. Available
from Internet: <http://doi.acm.org/10.1145/2185520.2185559>.

CGAL. CGAL User and Reference Manual. 4.8. ed. CGAL Editorial Board, 2016. Available
from Internet: <http://doc.cgal.org/4.8/Manual/packages.html>.

http://doi.acm.org/10.1145/2766935
http://doi.acm.org/10.1145/1122501.1122503
http://portal.acm.org/citation.cfm?id=1276502&CFID=4700498&CFTOKEN=64533352
http://portal.acm.org/citation.cfm?id=1276502&CFID=4700498&CFTOKEN=64533352
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-8659.2009.01639.x/full
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-8659.2009.01639.x/full
http://portal.acm.org/citation.cfm?id=1778784&CFID=4700498&CFTOKEN=64533352
http://portal.acm.org/citation.cfm?id=1778784&CFID=4700498&CFTOKEN=64533352
http://doi.acm.org/10.1145/2185520.2185559
http://doc.cgal.org/4.8/Manual/packages.html

90

CHENTANEZ, N. et al. Liquid simulation on lattice-based tetrahedral meshes. In: ACM
SIGGRAPH/EUROGRAPHICS SYMPOSIUM ON COMPUTER ANIMATION. Proceedings
of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation.
Aire-la-Ville, Switzerland, Switzerland: Eurographics Association, 2007. p. 219–228. ISBN
978-1-59593-624-4.

CHENTANEZ, N. et al. Simultaneous coupling of fluids and deformable bodies. In: ACM
SIGGRAPH/EUROGRAPHICS SYMPOSIUM ON COMPUTER ANIMATION. Proceedings
of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer Animation.
Vienna, Austria, 2006. p. 83–89.

CHENTANEZ, N.; MULLER, M. Real-time eulerian water simulation using a restricted tall
cell grid. In: ACM SIGGRAPH. Proceedings of 2011 ACM SIGGRAPH. Vancouver, British
Columbia, Canada: ACM, 2011. (SIGGRAPH ’11), p. 82:1–82:10. ISBN 978-1-4503-0943-1.
Available from Internet: <http://doi.acm.org/10.1145/1964921.1964977>.

CHERN, A. et al. SchrÖdinger’s smoke. ACM Trans. Graph., ACM, New York, NY,
USA, v. 35, n. 4, p. 77:1–77:13, jul. 2016. ISSN 0730-0301. Available from Internet:
<http://doi.acm.org/10.1145/2897824.2925868>.

CHOI, J.-I. et al. An immersed boundary method for complex incompressible flows. Journal of
Computational Physics, Elsevier, v. 224, n. 2, p. 757–784, 2007.

CHORIN, A. J. Numerical solutions of the navier-stokes equations. Mathematics of
computation, American Mathematical Society, v. 22, n. 104, p. 745–762, October 1968.

CLARKE, D. K.; HASSAN, H.; SALAS, M. Euler calculations for multielement airfoils using
cartesian grids. AIAA journal, v. 24, n. 3, p. 353–358, 1986.

CLAUSEN, P. et al. Simulating liquids and solid-liquid interactions with Lagrangian meshes.
ACM Trans. Graph., v. 32, n. 2, p. 17, 2013.

COHEN, J. M.; TARIQ, S.; GREEN, S. Interactive fluid-particle simulation using translating
eulerian grids. In: ACM SIGGRAPH/EUROGRAPHICS SYMPOSIUM ON INTERACTIVE
3D GRAPHICS AND GAMES. Proceedings of the 2010 ACM SIGGRAPH Symposium on
Interactive 3D Graphics and Games. New York, NY, USA: ACM, 2010. p. 15–22. ISBN
978-1-60558-939-8.

CROCKETT, R. K.; COLELLA, P.; GRAVES, D. T. A Cartesian grid embedded boundary
method for solving the Poisson and heat equations with discontinuous coefficients in three
dimensions. J. Comp. Phys., v. 230, n. 7, p. 2451–2469, 2011.

DAY, M. et al. Embedded boundary algorithms for solving the Poisson equation on
Complex Domains. [S.l.], 1998. Available from Internet: <http://www.seesar.lbl.gov/ccse/
Publications/day/dclrm98/dclrm.ps.gz>.

DEZEEUW, D.; POWELL, K. G. An adaptively refined cartesian mesh solver for the euler
equations. Journal of Computational Physics, Elsevier, v. 104, n. 1, p. 56–68, 1993.

DICK, C.; ROGOWSKY, M.; WESTERMANN, R. Solving the Fluid Pressure Poisson Equation
Using Multigrid - Evaluation and Improvements. IEEE TVCG, v. 22, n. 11, p. 2480–2492,
2016.

http://doi.acm.org/10.1145/1964921.1964977
http://doi.acm.org/10.1145/2897824.2925868
http://www.seesar.lbl.gov/ccse/Publications/day/dclrm98/dclrm.ps.gz
http://www.seesar.lbl.gov/ccse/Publications/day/dclrm98/dclrm.ps.gz

91

EDWARDS, E.; BRIDSON, R. Detailed water with coarse grids: Combining surface meshes
and adaptive discontinuous Galerkin. ACM Trans. Graph. (SIGGRAPH), v. 33, n. 4, p.
136:1–136:9, 2014.

ELCOTT, S. et al. Stable, circulation-preserving, simplicial fluids. ACM Trans. Graph., v. 26,
n. 1, p. 4–22, 2007.

ENGLISH, R. E. et al. Chimera grids for water simulation. In: ACM SIG-
GRAPH/EUROGRAPHICS SYMPOSIUM ON COMPUTER ANIMATION. Proceedings
of the 12th ACM SIGGRAPH/Eurographics Symposium on Computer Animation. New
York, NY, USA: ACM, 2013. (SCA ’13), p. 85–94. ISBN 978-1-4503-2132-7. Available from
Internet: <http://doi.acm.org/10.1145/2485895.2485897>.

ENRIGHT, D.; MARSCHNER, S.; FEDKIW, R. Animation and rendering of complex water
surfaces. ACM Trans. Graph., ACM, New York, NY, USA, v. 21, n. 3, p. 736–744, 2002. ISSN
0730-0301.

ENRIGHT, D. et al. Using the particle level set method and a second order accurate
pressure boundary condition for free surface flows. In: ASME-JSME JOINT FLUIDS
ENGINEERING CONFERENCE. Proceedings of the 4th ASME-JSME Joint Fluids
Engineering Conference. Honolulu, HI: ASME, 2003. p. 337–342.

FADLUN, E. et al. Combined immersed-boundary finite-difference methods for three-
dimensional complex flow simulations. Journal of computational physics, Elsevier, v. 161,
n. 1, p. 35–60, 2000.

FAUCI, L. J.; PESKIN, C. S. A computational model of aquatic animal locomotion. Journal
of Computational Physics, v. 77, n. 1, p. 85 – 108, 1988. ISSN 0021-9991. Available from
Internet: <http://www.sciencedirect.com/science/article/pii/0021999188901581>.

FEDKIW, R.; STAM, J.; JENSEN, H. W. Visual simulation of smoke. In: ACM
SIGGRAPH/EUROGRAPHICS SYMPOSIUM ON INTERACTIVE 3D GRAPHICS
AND GAMES. Proceedings of the 28th annual conference on Computer Graphics and
Interactive Techniques. [S.l.], 2001. p. 15–22.

FEDKIW, R. P. et al. A non-oscillatory eulerian approach to interfaces in multimaterial flows
(the ghost fluid method). J. Comput. Phys., Academic Press Professional, Inc., San Diego,
CA, USA, v. 152, n. 2, p. 457–492, jul. 1999. ISSN 0021-9991. Available from Internet:
<http://dx.doi.org/10.1006/jcph.1999.6236>.

FELDMAN, B. E.; O’BRIEN, J. F.; KLINGNER, B. M. Animating gases with hybrid meshes.
ACM Trans. Graph. (SIGGRAPH), ACM Press, v. 24, n. 3, p. 904–909, jul. 2005. ISSN
0730-0301. Available from Internet: <http://portal.acm.org/citation.cfm?id=1073281>.

FELDMAN, B. E. et al. Fluids in deforming meshes. In: SIGGRAPH/EUROGRAPHICS
SYMPOSIUM OF COMPUTER ANIMATION. Proceedings of the 2005 ACM
SIGGRAPH/Eurographics Symposium of Computer Animation. [S.l.], 2005. p. 255–259.
ISBN 1-7695-2270-X.

FERSTL, F.; WESTERMANN, R.; DICK, C. Large-scale liquid simulation on adaptive
hexahedral grids. IEEE transactions on visualization and computer graphics, IEEE, v. 20,
n. 10, p. 1405–1417, 2014.

http://doi.acm.org/10.1145/2485895.2485897
http://www.sciencedirect.com/science/article/pii/0021999188901581
http://dx.doi.org/10.1006/jcph.1999.6236
http://portal.acm.org/citation.cfm?id=1073281

92

FOGELSON, A. L. A mathematical model and numerical method for studying
platelet adhesion and aggregation during blood clotting. Journal of Computational
Physics, v. 56, n. 1, p. 111 – 134, 1984. ISSN 0021-9991. Available from Internet:
<http://www.sciencedirect.com/science/article/pii/002199918490086X>.

FOSTER, N.; FEDKIW, R. Practical animation of liquids. In: ACM SIG-
GRAPH/EUROGRAPHICS SYMPOSIUM ON INTERACTIVE 3D GRAPHICS
AND GAMES. Proceedings of the 28th annual conference on Computer Graphics and
Interactive Techniques. [S.l.], 2001. p. 23–30. ISBN 1-58113-374-X.

FOSTER, N.; METAXAS, D. Modeling the motion of a hot, turbulent gas. In: SIGGRAPH
’97. Proceedings of the 24th Annual Conference on Computer Graphics and Interactive
Techniques. New York, NY, USA: ACM Press/Addison-Wesley Publishing Co., 1997. p. 181–
188. ISBN 0-89791-896-7. Available from Internet: <http://dx.doi.org/10.1145/258734.258838>.

GIBOU, F. et al. A second-order-accurate symmetric discretization of the poisson equation on
irregular domains. Journal of Computational Physics, Elsevier, v. 176, n. 1, p. 205–227, 2002.

GOLDSTEIN, D.; HANDLER, R.; SIROVICH, L. Direct numerical simulation of
turbulent flow over a modeled riblet covered surface. Journal of Fluid Mechanics,
v. 302, p. 333–376, 11 1995. ISSN 1469-7645. Available from Internet: <http:
//journals.cambridge.org/article_S0022112095004125>.

GORNAK, T. A goal oriented survey on immersed boundary methods. [S.l.], 2013.

GUENDELMAN, E. et al. Coupling water and smoke to thin deformable and rigid shells.
ACM Transactions on Graphics, New York, NY, USA, v. 24, n. 3, p. 973–981, 2005. ISSN
0730-0301.

GUÉZIEC, A. et al. Cutting and stitching: Converting sets of polygons to manifold surfaces.
IEEE Transactions on Visualization and Computer Graphics, IEEE, v. 7, n. 2, p. 136–151,
2001.

HELLRUNG, J. et al. A second order virtual node method for elliptic problems with interfaces
and irregular domains. J. Comp. Phys., v. 231, n. 4, p. 2015–2048, 2012.

HONG, J.-M.; SHINAR, T.; FEDKIW, R. Wrinkled flames and cellular patterns. In: ACM
SIGGRAPH. Proceedings of ACM SIGGRAPH 2007. San Diego, California: ACM, 2007.
(SIGGRAPH ’07). Available from Internet: <http://doi.acm.org/10.1145/1275808.1276436>.

HOU, G.; WANG, J.; LAYTON, A. Numerical methods for fluid-structure interaction — a review.
Communications in Computational Physics, v. 12, p. 337–377, 8 2012. ISSN 1991-7120.
Available from Internet: <http://journals.cambridge.org/article_S1815240600003029>.

HOUSTON, B.; BOND, C.; WIEBE, M. A unified approach for modeling complex occlusions
in fluid simulations. In: ACM SIGGRAPH. Proceedings of SIGGRAPH Sketches. San Diego,
California, USA, 2003.

IHMSEN, M. et al. Sph fluids in computer graphics. In: ACM SIGGRAPH/EUROGRAPHICS
SYMPOSIUM ON INTERACTIVE 3D GRAPHICS AND GAMES. Eurographics 2014 -
State of the Art Reports. Strasbourg, France: The Eurographics Association, 2014. p. 21–42.
ISSN 1017-4656.

http://www.sciencedirect.com/science/article/pii/002199918490086X
http://dx.doi.org/10.1145/258734.258838
http://journals.cambridge.org/article_S0022112095004125
http://journals.cambridge.org/article_S0022112095004125
http://doi.acm.org/10.1145/1275808.1276436
http://journals.cambridge.org/article_S1815240600003029

93

JOHANSEN, H.; COLELLA, P. A Cartesian grid embedded boundary method for Poisson’s
equation on irregular domains. J. Comp. Phys., v. 147, n. 1, p. 60–85, nov. 1998.

JU, T.; SCHAEFER, S.; WARREN, J. Mean value coordinates for closed triangular meshes.
ACM Trans. Graph. (SIGGRAPH), v. 24, n. 3, p. 561–566, 2005.

KIM, D.; SONG, O.-y.; KO, H.-S. Stretching and wiggling liquids. ACM Trans. Graph., v. 28,
n. 5, p. 120, 2009.

KIM, J.; KIM, D.; CHOI, H. An immersed-boundary finite-volume method for simulations
of flow in complex geometries. Journal of Computational Physics, Elsevier, v. 171, n. 1, p.
132–150, 2001.

KIM, T. et al. Wavelet turbulence for fluid simulation. In: ACM SIGGRAPH. Proceedings of
ACM SIGGRAPH 2008 Papers. Los Angeles, California: ACM, 2008. (SIGGRAPH ’08), p.
50:1–50:6. ISBN 978-1-4503-0112-1. Available from Internet: <http://doi.acm.org/10.1145/
1399504.1360649>.

KLINGNER, B. M. et al. Fluid animation with dynamic meshes. ACM Trans. Graph.
(SIGGRAPH), v. 25, n. 3, p. 820–825, 2006.

LABELLE, F.; SHEWCHUK, J. R. Isosurface stuffing: Fast tetrahedral meshes with good
dihedral angles. ACM Trans. Graph., v. 26, n. 3, p. 57, 2007.

LANGER, T.; BELYAEV, A.; SEIDEL, H.-P. Spherical barycentric coordinates. In:
EUROGRAPHICS SYMPOSIUM ON GEOMETRY PROCESSING. Proceedings of the
Fourth Eurographics Symposium on Geometry Processing. Aire-la-Ville, Switzerland,
Switzerland: Eurographics Association, 2006. (SGP ’06), p. 81–88. ISBN 3-905673-36-3.
Available from Internet: <http://dl.acm.org/citation.cfm?id=1281957.1281968>.

LEE, L.; LEVEQUE, R. J. An immersed interface method for incompressible navier-stokes
equations. SIAM J. Sci. Comput., Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, v. 25, n. 3, p. 832–856, mar. 2003. ISSN 1064-8275. Available from
Internet: <http://dx.doi.org/10.1137/S1064827502414060>.

LENAERTS, T.; DUTRÉ, P. Unified SPH model for fluid-shell simulations. Celestijnenlaan
200A, 3001 Heverlee, Belgium, 2008. 7 p. Available from Internet: <http://www.cs.kuleuven.be/
publicaties/rapporten/cw/CW530.abs.html>.

LENTINE, M.; ZHENG, W.; FEDKIW, R. A novel algorithm for incompressible flow using only
a coarse grid projection. In: ACM SIGGRAPH. Proceedings of 2010 ACM SIGGRAPH. Los
Angeles, California: ACM, 2010. (SIGGRAPH ’10), p. 114:1–114:9. ISBN 978-1-4503-0210-4.
Available from Internet: <http://doi.acm.org/10.1145/1833349.1778851>.

LI, Z.; LAI, M.-C. The immersed interface method for the navier–stokes equations with
singular forces. Journal of Computational Physics, v. 171, n. 2, p. 822 – 842, 2001. ISSN
0021-9991. Available from Internet: <http://www.sciencedirect.com/science/article/pii/
S0021999101968135>.

LIU, X.-D.; FEDKIW, R. P.; KANG, M. A boundary condition capturing method for poisson’s
equation on irregular domains. Journal of Computational Physics, Elsevier, v. 160, n. 1, p.
151–178, 2000.

http://doi.acm.org/10.1145/1399504.1360649
http://doi.acm.org/10.1145/1399504.1360649
http://dl.acm.org/citation.cfm?id=1281957.1281968
http://dx.doi.org/10.1137/S1064827502414060
http://www.cs.kuleuven.be/publicaties/rapporten/cw/CW530.abs.html
http://www.cs.kuleuven.be/publicaties/rapporten/cw/CW530.abs.html
http://doi.acm.org/10.1145/1833349.1778851
http://www.sciencedirect.com/science/article/pii/S0021999101968135
http://www.sciencedirect.com/science/article/pii/S0021999101968135

94

LOSASSO, F.; FEDKIW, R.; OSHER, S. Spatially adaptive techniques for level set methods and
incompressible flow. Computers & Fluids, v. 35, n. 10, p. 995–1010, 2005.

LOSASSO, F.; GIBOU, F.; FEDKIW, R. Simulating water and smoke with an octree data
structure. ACM Trans. Graph. (SIGGRAPH), ACM Press, v. 23, n. 3, p. 457–462, aug. 2004.
ISSN 0730-0301. Available from Internet: <http://portal.acm.org/citation.cfm?id=1015745>.

MACKLIN, M.; MULLER, M. Position based fluids. ACM Trans. Graph., ACM, New York,
NY, USA, v. 32, n. 4, p. 104:1–104:12, jul. 2013. ISSN 0730-0301. Available from Internet:
<http://doi.acm.org/10.1145/2461912.2461984>.

MARTIN, D. Solving Poisson’s equation using adaptive mesh refinement. [S.l.]: Citeseer,
1996.

MCQUEEN, D. M.; PESKIN, C. S.; YELLIN, E. L. Fluid dynamics of the mitral valve:
physiological aspects of a mathematical model. American Journal of Physiology - Heart and
Circulatory Physiology, American Physiological Society, v. 242, n. 6, p. H1095–H1110, 1982.
Available from Internet: <http://ajpheart.physiology.org/content/242/6/H1095>.

MISZTAL, M. et al. Optimization-based fluid simulation on unstructured meshes. In: VRIPHYS.
Proceedings of the 7th Workshop on Virtual Reality Interaction and Physical Simulation.
[S.l.], 2010.

MITTAL, R. et al. A versatile sharp interface immersed boundary method for incompressible
flows with complex boundaries. Journal of Computational Physics, v. 227, n. 10, p. 4825 –
4852, 2008. ISSN 0021-9991. Available from Internet: <http://www.sciencedirect.com/science/
article/pii/S0021999108000235>.

MITTAL, R.; IACCARINO, G. Immersed boundary methods. Annual review of fluid
mechanics, Annual Reviews, v. 37, p. 239–261, 2005. ISSN 0066-4189.

MOHD-YUSOF, J. Combined immersed-boundary/b-spline methods for simulations of flow
in complex geometries. Annual Research Briefs. NASA Ames Research Center Stanford
University Center of Turbulence Research: Stanford, p. 317–327, 1997.

MOLEMAKER, J. et al. Low viscosity flow simulations for animation. In: ACM
SIGGRAPH/EUROGRAPHICS SYMPOSIUM ON COMPUTER ANIMATION. Proceedings
of the 2008 ACM SIGGRAPH/Eurographics Symposium on Computer Animation.
Aire-la-Ville, Switzerland, Switzerland: Eurographics Association, 2008. p. 9–18. ISBN
978-3-905674-10-1.

MOLINO, N.; BAO, Z.; FEDKIW, R. A virtual node algorithm for changing mesh
topology during simulation. ACM Trans. Graph. (SIGGRAPH), ACM Press, v. 23,
n. 3, p. 385–392, aug. 2004. ISSN 0730-0301. Available from Internet: <http:
//portal.acm.org/citation.cfm?id=1015706.1015734>.

MULLER, M.; CHARYPAR, D.; GROSS, M. Particle-based fluid simulation for
interactive applications. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation. Aire-la-Ville, Switzerland, Switzerland: Eurographics
Association, 2003. (SCA ’03), p. 154–159. ISBN 1-58113-659-5. Available from Internet:
<http://dl.acm.org/citation.cfm?id=846276.846298>.

http://portal.acm.org/citation.cfm?id=1015745
http://doi.acm.org/10.1145/2461912.2461984
http://ajpheart.physiology.org/content/242/6/H1095
http://www.sciencedirect.com/science/article/pii/S0021999108000235
http://www.sciencedirect.com/science/article/pii/S0021999108000235
http://portal.acm.org/citation.cfm?id=1015706.1015734
http://portal.acm.org/citation.cfm?id=1015706.1015734
http://dl.acm.org/citation.cfm?id=846276.846298

95

NESME, M. et al. Preserving topology and elasticity for embedded deformable models. ACM
Trans. Graph. (SIGGRAPH), v. 28, n. 3, p. 52, 2009.

NG, Y. T.; MIN, C.; GIBOU, F. An efficient fluid-solid coupling algorithm for single-phase
flows. J. Comp. Phys., v. 228, n. 23, p. 8807–8829, 2009. ISSN 0021-9991.

OZGEN, O. et al. Underwater cloth simulation with fractional derivatives. ACM Transactions
on Graphics (TOG), ACM, New York, NY, USA, v. 29, n. 3, p. 1–9, 2010. ISSN 0730-0301.

PESKIN, C. S. Flow patterns around heart valves: A numerical method. Journal of
Computational Physics, v. 10, n. 2, p. 252 – 271, 1972. ISSN 0021-9991. Available from
Internet: <http://www.sciencedirect.com/science/article/pii/0021999172900654>.

PESKIN, C. S. Numerical analysis of blood flow in the heart. Journal of Computational
Physics, v. 25, n. 3, p. 220 – 252, 1977. ISSN 0021-9991. Available from Internet:
<http://www.sciencedirect.com/science/article/pii/0021999177901000>.

PURVIS, J. W.; BURKHALTER, J. E. Prediction of critical Mach number for store
configurations. AIAA Journal, v. 17, n. 11, p. 1170–1177, 1979.

QIU, L.; FEDKIW, R. On thin gaps between rigid bodies two-way coupled to
incompressible flow. J. Comput. Phys., Academic Press Professional, Inc., San Diego,
CA, USA, v. 292, n. C, p. 1–29, jul. 2015. ISSN 0021-9991. Available from Internet:
<http://dx.doi.org/10.1016/j.jcp.2015.03.027>.

QIU, L.; LU, W.; FEDKIW, R. An adaptive discretization of compressible flow using a multitude
of moving cartesian grids. Journal of Computational Physics, v. 305, p. 75 – 110, 2016.
ISSN 0021-9991. Available from Internet: <http://www.sciencedirect.com/science/article/pii/
S0021999115006890>.

QUIRK, J. J. An alternative to unstructured grids for computing gas dynamic flows around
arbitrarily complex two-dimensional bodies. Computers & Fluids, v. 23, n. 1, p. 125 – 142,
1994. ISSN 0045-7930. Available from Internet: <http://www.sciencedirect.com/science/article/
pii/0045793094900310>.

RASMUSSEN, N. et al. Directable photorealistic liquids. In: ACM SIG-
GRAPH/EUROGRAPHICS SYMPOSIUM ON COMPUTER ANIMATION. Proceedings
of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation.
Aire-la-Ville, Switzerland, Switzerland: Eurographics Association, 2004. (SCA ’04), p. 193–202.
ISBN 3-905673-14-2. Available from Internet: <http://dx.doi.org/10.1145/1028523.1028549>.

ROBINSON-MOSHER, A.; ENGLISH, R. E.; FEDKIW, R. Accurate tangential
velocities for solid fluid coupling. In: ACM SIGGRAPH. Proceedings of the 2009 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation. New Orleans, Louisiana:
ACM, 2009. (SCA ’09), p. 227–236. ISBN 978-1-60558-610-6. Available from Internet:
<http://doi.acm.org/10.1145/1599470.1599500>.

ROBINSON-MOSHER, A.; SCHROEDER, C.; FEDKIW, R. A symmetric positive definite
formulation for monolithic fluid structure interaction. J. Comp. Phys., v. 230, n. 4, p.
1547–1566, 2011. Available from Internet: <http://physbam.stanford.edu/~avir/papers.html>.

http://www.sciencedirect.com/science/article/pii/0021999172900654
http://www.sciencedirect.com/science/article/pii/0021999177901000
http://dx.doi.org/10.1016/j.jcp.2015.03.027
http://www.sciencedirect.com/science/article/pii/S0021999115006890
http://www.sciencedirect.com/science/article/pii/S0021999115006890
http://www.sciencedirect.com/science/article/pii/0045793094900310
http://www.sciencedirect.com/science/article/pii/0045793094900310
http://dx.doi.org/10.1145/1028523.1028549
http://doi.acm.org/10.1145/1599470.1599500
http://physbam.stanford.edu/~avir/papers.html

96

ROBINSON-MOSHER, A. et al. Two-way coupling of fluids to rigid and deformable
solids and shells. ACM Trans. Graph., v. 27, n. 3, p. 46, 2008. Available from Internet:
<http://portal.acm.org/citation.cfm?id=1399504.1360645>.

ROBLE, D.; ZAFAR, N. b.; FALT, H. Cartesian grid fluid simulation with irregular
boundary voxels. In: ACM SIGGRAPH. Proceedings of ACM SIGGRAPH 2005
Sketches. Los Angeles, California: ACM, 2005. Available from Internet: <http:
//doi.acm.org/10.1145/1187112.1187279>.

ROSATTI, G.; CESARI, D.; BONAVENTURA, L. Semi-implicit, semi-Lagrangian
modelling for environmental problems on staggered Cartesian grids with cut cells. J. Comp.
Phys., v. 204, n. 1, p. 353–377, mar. 2005. ISSN 00219991. Available from Internet:
<http://dx.doi.org/10.1016/j.jcp.2004.10.013>.

SAIKI, E.; BIRINGEN, S. Numerical simulation of a cylinder in uniform flow:
Application of a virtual boundary method. Journal of Computational Physics,
v. 123, n. 2, p. 450 – 465, 1996. ISSN 0021-9991. Available from Internet: <http:
//www.sciencedirect.com/science/article/pii/S0021999196900364>.

SCHWARTZ, P. et al. A Cartesian grid embedded boundary method for the heat equation and
Poisson’s equation in three dimensions. J. Comp. Phys., San Diego, CA, USA, v. 211, n. 2, p.
531–550, 2006.

SELLE, A. et al. An unconditionally stable MacCormack method. SIAM J. Sci.Comput.,
v. 35, n. 2-3, p. 350–371, 2008. ISSN 0885-7474. Available from Internet: <http:
//portal.acm.org/citation.cfm?id=1401764>.

SHELLEY, M. J.; ZHANG, J. Flapping and bending bodies interacting with fluid flows.
Annual Review of Fluid Mechanics, v. 43, n. 1, p. 449–465, 2011. Available from Internet:
<http://dx.doi.org/10.1146/annurev-fluid-121108-145456>.

SHEPARD, D. A two-dimensional interpolation function for irregularly-spaced data. In: ACM
’68 Proceedings of the 1968 23rd ACM national conference. [S.l.: s.n.], 1968. p. 517–524.

SIFAKIS, E.; DER, K. G.; FEDKIW, R. Arbitrary cutting of deformable tetrahedralized
objects. In: ACM SIGGRAPH/EUROGRAPHICS SYMPOSIUM ON COMPUTER
ANIMATION. Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium
on Computer Animation. Aire-la-Ville, Switzerland, Switzerland: Eurographics
Association, 2007. p. 73–80. ISBN 978-1-59593-624-0. Available from Internet:
<http://dl.acm.org/citation.cfm?id=1272690.1272701>.

SOLENTHALER, B.; PAJAROLA, R. Predictive-corrective incompressible sph. ACM Trans.
Graph., ACM, New York, NY, USA, v. 28, n. 3, p. 40:1–40:6, jul. 2009. ISSN 0730-0301.
Available from Internet: <http://doi.acm.org/10.1145/1531326.1531346>.

STAM, J. Stable fluids. In: ACM SIGGRAPH. Proceedings of the 26th Annual Conference
on Computer Graphics and Interactive Techniques. Los Angeles, CA: ACM Press/Addison-
Wesley Publishing Co., 1999. p. 121–128. ISBN 0-201-48560-5. Available from Internet:
<http://dx.doi.org/10.1145/311535.311548>.

STOMAKHIN, A. et al. A material point method for snow simulation. ACM Transactions on
Graphics (TOG), ACM, v. 32, n. 4, p. 102, 2013.

http://portal.acm.org/citation.cfm?id=1399504.1360645
http://doi.acm.org/10.1145/1187112.1187279
http://doi.acm.org/10.1145/1187112.1187279
http://dx.doi.org/10.1016/j.jcp.2004.10.013
http://www.sciencedirect.com/science/article/pii/S0021999196900364
http://www.sciencedirect.com/science/article/pii/S0021999196900364
http://portal.acm.org/citation.cfm?id=1401764
http://portal.acm.org/citation.cfm?id=1401764
http://dx.doi.org/10.1146/annurev-fluid-121108-145456
http://dl.acm.org/citation.cfm?id=1272690.1272701
http://doi.acm.org/10.1145/1531326.1531346
http://dx.doi.org/10.1145/311535.311548

97

STOMAKHIN, A. et al. Augmented mpm for phase-change and varied materials. ACM Trans.
Graph., ACM, New York, NY, USA, v. 33, n. 4, p. 138:1–138:11, jul. 2014. ISSN 0730-0301.
Available from Internet: <http://doi.acm.org/10.1145/2601097.2601176>.

TERAN, J. et al. Creating and simulating skeletal muscle from the visible human data set. IEEE
TVCG, v. 11, n. 3, p. 317–328, 2005.

THUREY, N. et al. A multiscale approach to mesh-based surface tension flows. In: ACM
SIGGRAPH. Proceedings of ACM SIGGRAPH 2010 Papers. Los Angeles, California: ACM,
2010. (SIGGRAPH ’10), p. 48:1–48:10. ISBN 978-1-4503-0210-4. Available from Internet:
<http://doi.acm.org/10.1145/1833349.1778785>.

UDAYKUMAR, H. et al. Multiphase dynamics in arbitrary geometries on fixed cartesian grids.
Journal of Computational Physics, Elsevier, v. 137, n. 2, p. 366–405, 1997.

UDAYKUMAR, H. et al. A sharp interface cartesian grid method for simulating flows with
complex moving boundaries. Journal of Computational Physics, Elsevier, v. 174, n. 1, p.
345–380, 2001.

UDAYKUMAR, H.; SHYY, W.; RAO, M. Elafint: a mixed eulerian–lagrangian method for fluid
flows with complex and moving boundaries. International journal for numerical methods in
fluids, Wiley Online Library, v. 22, n. 8, p. 691–712, 1996.

WANG, K. et al. Computational algorithms for tracking dynamic fluid–structure interfaces in
embedded boundary methods. International Journal for Numerical Methods in Fluids, v. 70,
n. 4, p. 515–535, 2012.

WANG, Y. et al. An adaptive virtual node algorithm with robust mesh cutting. In: ACM
SIGGRAPH/EUROGRAPHICS SYMPOSIUM ON COMPUTER ANIMATION. Proceedings
of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Aire-la-Ville,
Switzerland, Switzerland: Eurographics Association, 2014. p. 77–85. Available from Internet:
<http://dl.acm.org/citation.cfm?id=2849517.2849531>.

WEBER, D. et al. A cut-cell geometric multigrid Poisson solver for fluid simulation. Computer
Graphics Forum, v. 34, n. 2, p. 481–491, 2015.

WOJTAN, C. et al. Physically-inspired topology changes for thin fluid features. ACM Trans.
Graph. (SIGGRAPH), v. 29, n. 3, p. 50, 2010.

WYMAN, N. State of the Art in Grid Generation. CFD Review. 2001.
Http://www.cfdreview.com/article.pl?sid=01/04/28/2131215. Last access, Sept. 2012.
Available from Internet: <http://www.cfdreview.com/article.pl?sid=01/04/28/2131215>.

ZHENG, W. et al. A new incompressibility discretization for a hybrid particle MAC grid
representation with surface tension. J. Comp. Phys., v. 280, n. 1, p. 96–142, 2015.

ZHU, Y.; BRIDSON, R. Animating sand as a fluid. ACM Trans. Graph. (SIGGRAPH),
ACM Press, v. 24, n. 3, p. 965–972, jul. 2005. ISSN 0730-0301. Available from Internet:
<http://portal.acm.org/citation.cfm?id=1073298>.

http://doi.acm.org/10.1145/2601097.2601176
http://doi.acm.org/10.1145/1833349.1778785
http://dl.acm.org/citation.cfm?id=2849517.2849531
http://www.cfdreview.com/article.pl?sid=01/04/28/2131215
http://portal.acm.org/citation.cfm?id=1073298

	Acknowledgements
	Abstract
	Resumo
	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	Contents
	1 Introduction
	1.1 Thesis Statement
	1.2 Thesis Organization

	2 Related Work
	2.1 Immersed Boundary Methods
	2.1.1 Continuous Forcing Methods
	2.1.2 Discrete Forcing Methods

	2.2 Cut-Cell methods
	2.3 Boundary Treatment in Computer Graphics
	2.4 Thin Solid Boundaries
	2.5 Velocity Reconstruction and Interpolation
	2.5.1 Reconstruction
	2.5.2 Interpolation
	2.5.3 Summary

	3 A Cut-Cell Method for Handling Thin Obstacles and Narrow Gaps
	3.1 Cut-Cell Meshes
	3.2 Graph-Based Pressure Projection
	3.2.1 Cut-Cell Pressure Projection
	3.2.2 Topology-Aware Pressure Projection
	3.2.3 Primal-Dual Orthogonality
	3.2.4 Dangling Cut-Cells

	3.3 Conforming Interpolation on Cut-Cells
	3.3.1 Polyhedral Cut-Cell Interpolation
	3.3.2 Velocity Reconstruction
	3.3.2.1 Free-Slip Case
	3.3.2.2 No-Slip Case

	3.4 Fluid-Implicit-Particle Advection
	3.4.1 Integration of Particle Positions
	3.4.2 Transfer to Mesh
	3.4.3 Storing Intermediary Velocity Field
	3.4.4 Transfer to Particles
	3.4.5 Discussion

	3.5 Summary

	4 Implementation
	4.1 Cut-cell splitting method
	4.1.1 Computing intersections between the grid and meshes
	4.1.2 Cut-face computation in 2-D
	4.1.3 Boundary voxel list generation
	4.1.4 Construction of non-manifold meshes
	4.1.5 Non-Manifold mesh splitting in 3-D
	4.1.5.1 Disconnected regions

	4.2 Least squares velocity fitting
	4.2.1 Weighted least squares

	4.3 Spherical Barycentric Coordinates

	5 Results
	5.1 Flow around thin objects
	5.1.1 Diagonal Line
	5.1.2 Oscillating Lines
	5.1.3 Stirring Line
	5.1.4 Disk Slicing Smoke
	5.1.5 Rotating Line and Paddle

	5.2 Flow around irregular objects
	5.2.1 Smoothed Gear
	5.2.2 Three Circles
	5.2.3 Bunny

	5.3 Flow through narrow regions
	5.3.1 Linked Tori
	5.3.2 Branching Tube
	5.3.3 Flows in a Maze
	5.3.4 Dragon

	6 Conclusion
	6.1 Limitations
	6.2 Future Work

	References

