UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE FÍSICA

DISTRIBUIÇÃO DA INTENSIDADE NO ESPECTRO VIBRACIONAL DE MOLÉCULAS DIATÔMICAS: COMPARAÇÃO TEÓRICA E EXPERIMENTAL NOS SISTEMAS $N_2(2^+) \in N_2^+(1^-)^*$

des.

Jason Alfredo Carlson Gallas

Dissertação realizada sob a orien tação dos Doutores Hans Peter H. Grieneisen, Ricardo E. Francke e Bijoy P. Chakraborty e apresentada ao Instituto de Física da UFRGS em preenchimento parcial dos requisitos para a obtenção do títu lo de Mestre em Física.

alphate of the

UFRGS

Instituto de Física Biblioteca

Trabalho parcialmente financiado pelo Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) e pela Financiado ra de Estudos e Projetos (FINEP).

> Porto Alegre 1978

Dedico o presente trabalho a meus pais Wilma Esther Gallas e Erich Daniel Gallas. AGRADECIMENTOS

Agradeço aos Drs. Hans Peter H.Grieneisen, Ricardo E. Francke e Bijoy P. Chakraborty pelos ensinamentos transmitidos du rante este trabalho: ao Dr. Hans Peter H. Grieneisen pela constan te orientação e apoio, ao Dr. Ricardo E. Francke pelas discussões, por minha iniciação nas técnicas experimentais e pelo auxílio na redação deste trabalho, e ao Dr. Bijoy P. Chakraborty pela suge<u>s</u> tão do problema teórico aqui tratado e pela iniciação na técnica de resolvê-lo;

aos colegas do grupo do laser Jorge A. Lisboa, Alexan dre Lago, Silvio L. S. Cunha e Flávio Horowitz pelas inúmeras di<u>s</u> cussões e sugestões;

ao Dr. G. Bandyopadhyay do Argonne National Laboratory pelo envio de vários artigos inexistentes em nossa biblioteca.

Agradeço também

ao Prof. Celso S. Müller pelo interesse e pelas suges tões apresentadas;

a Joel Bellanca, Ivo Bello, Eri Bellanca e Nilo Mar tins pelos trabalhos na oficina mecânica; a Irai A. Carlotto pelos trabalhos em vidro;

a Francisco F. Schlabitz pelo interesse e sugestões, a Flavio R. Volcato pelo eficiente atendimento no CPD;

ao CPD-UFRGS pelo tempo de máquina cedido;

ao colega Luiz Fernando Ziebell por sugestões e pelo auxílio na revisão deste trabalho;

a Zuleika Berto pela colaboração e ordenação das ref<u>e</u> rências; a Maria Cecilia do Amaral pela datilografia deste tr<u>a</u>

balho e

a Cleto Tartarelli pelos desenhos.

Porto Alegre, 12 de junho de 1978.

Jason A. C. Gallas

Meu agradecimento especial a Marcia Russman Gallas pela compreensão e apoio.

SUMÁRIO

Este trabalho consiste num estudo de espectroscopia de moléculas diatômicas. Primeiramente, propomos um método de cálcu lo para as probabilidades de transição entre os estados eletrôni cos de tais moléculas, visando a aplicação ao cálculo teórico de tempos de vida radiativos e intensidades espectrais. Em seguida, apresentamos resultados da observação da distribuição das intensi dades espectrais resultantes das transições entre os estados C ${}^{3}\pi_{u}$ - B ${}^{3}\pi_{g}$ do nitrogênio molecular, N₂, e B ${}^{2}\Sigma_{u}^{+}$ - X ${}^{2}\Sigma_{g}^{+}$ do íon molecular N₂⁺. Apresentamos também uma comparação entre as intensi dades espectrais calculadas e medidas, ambas, por nós e por vários autores.

Supondo o modelo de Morse-Pekeris para descrever a vibra ção e a interação entre vibração e rotação das moléculas, baseamos nosso método de cálculo das probabilidades de transição no em prego da técnica de expansão assintótica para resolver uma integral estratégica. O presente método permite que sejam calculadas as probabilidades de transição sem o emprego da usual aproximação empírica da centróide r.

Para a excitação das espécies moleculares estudadas experimentalmente neste trabalho usamos uma descarga elétrica em meio gasoso: contínua no caso do N₂ e pulsada no do íon N₂⁺. A distribuição vibracional do estado B ${}^{2}\Sigma_{u}^{+}$ do N₂⁺, excitado através da des carga elétrica pulsada, é bastante semelhante à obtida pelo processo usual de excitação, ou seja, descarga contínua em Hélio con tendo traços de nitrogênio.

Os dados experimentais obtidos são usados para derivar-se a função momento de transição eletrônico e a temperatura vibracio nal efetiva. Nosso método de cálculo é aplicado para obtenção de fatores de Franck Condon e fatores de intensidade de banda, e para um cálculo teórico dos tempos de vida radiativos.

ABSTRACT

Spectroscopic properties of diatomic molecules are investigated. First a method for calculating transition probabilities between eletronic states of such molecules is proposed. This method is applied to obtain theoretical values for the radiative lifetime and spectral intensities. Furthermore, observational results are presented concerning the distribution of the spectral intensity due to transitions between the C ${}^{3}\pi_{u}$ - B ${}^{3}\pi_{g}$ states of molecular nitrogen and B ${}^{2}\Sigma_{u}^{+}$ - X ${}^{2}\Sigma_{g}^{+}$ states of molecular ion N $_{2}^{+}$. Also, the measured and calculated values for spectral intensities are compared with each other, as well as with values found in the literature.

A certain integral, the evaluation of which is crucial to derive theoretical values for transition probabilities, is solved by applying an asymptotic expansion technique. Hereby, the Morse--Pekeris model for the molecular vibration and vibration-rotation interaction is used. The proposed method allows calculation of transition probabilities without the usual empirical r-centroid approximation.

For the excitation of the molecular species experimentally studied in this work, a gaseous electrical discharge is used: DC in the N₂ case and pulsed for the N₂⁺ ion. The vibrational distribution of the N₂⁺ B $^{2}\Sigma_{u}^{+}$ state, excited by pulsed electrical discharge, is quite similar to the one produced by the usual excitation process, i.e., by DC electric discharge through helium with nitrogen traces.

The obtained experimental data are used to calculate the electronic transition moment function and the effective vibrational temperature. We apply our calculational method to derive the Franck-Condon factors, band strength factors and to calculate the radiative lifetime.

-			-			
T	TA	D	T	0	T.	
	IN.	11		· · ·	1.	
				-		

	Pág.
I - INTRODUÇÃO	1
II - A MOLÉCULA DIATÔMICA	
II.l - Introdução	8
II.2 - A aproximação de Born-Oppenheimer	9
II.3 - Vibração e Rotação Molecular	15
II.4 - O Oscilador de Morse-Pekeris	17
III - DISTRIBUIÇÃO DE INTENSIDADE NO ESPECTRO DAS MOLÉCULAS	5
DIATÔMICAS	
III.l - Introdução	22
III.2 - Intensidade Espectral: Coeficiente A de	
Einstein	23
III.3 - O Cálculo Aproximado da Intensidade: Fatores	
de Franck Condon	33
III.4 - Sobre o Uso dos Potenciais de Morse e RKR no	
Cálculo de Fatores de Franck Condon	36
III.5 - O Cálculo Exato da Intensidade: Fatores de	
Intensidade de Banda	
a) A Centróide r	39
b) A Expansão Assintótica	41
IV - ARRANJO EXPERIMENTAL PARA MEDIDA DA DISTRIBUIÇÃO DA	
INTENSIDADE ESPECTRAL	
IV.1 - Introdução	47
IV.2 - Eletrônica da Descarga Elétrica	48
IV.3 - A Célula de Descarga Elétrica e o Sistema de	
Vácuo e Gás	52

	IV.4 - Öptica e Eletrônica de Detecção	54
	IV.5 - Calibração do Equipamento	57
<i>v</i> -	RESULTADOS E INTERPRETAÇÃO	64
I -	CONCLUSÕES	93
	APÊNDICE A - DETALHES MATEMÁTICOS	
	l. A Integral	96
	2. A Equação Transcendental	101
	APÊNDICE B - DESCRIÇÃO DO PROGRAMA BSF	104
	REFERÊNCIAS	122

1

V

I - INTRODUÇÃO

O estudo do espectro molecular é um dos meios mais eficientes de se obter informações sobre a estrutura molecular.Os vários níveis discretos de energia de uma molécula podem ser der<u>i</u> vados diretamente do espectro. A partir destes níveis, podemos o<u>b</u> ter informação detalhada sobre o movimento dos elétrons e sobre a vibração e rotação dos núcleos na molécula. O estudo dos movime<u>n</u> tos eletrônicos originou a compreensão da valência química enqua<u>n</u> to que a obtenção das freqüências de vibração e rotação permitiu calcular com grande precisão a geometria e as forças entre os át<u>o</u> mos na molécula.

O espectro molecular, além de fornecer informações so bre a molécula em si, nos permite também conhecer várias proprie dades físicas e químicas do meio em que elas se encontram e, em muitas circunstâncias, permite-nos predizer estas propriedades. De particular importância é o fato que o estudo do espectro molecu lar levou à descoberta de novas moléculas, desconhecidas da quími ca tradicional, por serem instáveis quimicamente ou de vida muito curta.

As investigações do espectro das moléculas diatômicas têm também grande importância no estudo dos núcleos atômicos: cer tas propriedades nucleares influenciam este espectro de maneira característica e podem, portanto, ser determinadas a partir dele; isótopos raros podem ser também detectados deste modo.

As aplicações importantes da espectroscopia molecular acima mencionadas jã são relativamente standard, isto é, bem co

nhecidas. Recentemente a espectroscopia molecular tem proporciona do notáveis progressos principalmente em dois campos: astrofísica e física de lasers. No caso da astrofísica, não somente a presen ça de várias moléculas em estrelas, planetas, cometas, atmosfera superior e no espaço interestelar pode ser detectada através do espectro como também, através de estudos mais detalhados, condi ções físicas destes meios podem ser obtidas. Em particular, o co nhecimento das condições da atmosfera superior terrestre é de bas tante interesse para a operação de veículos espaciais, por exem plo, nos casos de reentrada na atmosfera [AN72]. No caso do laser, o envolvimento é ainda mais interessante: por suas característi cas especiais o laser está bastante próximo da fonte ideal de luz monocromática desejável para aplicação em espectroscopia. Este fa to permite-nos utilizá-lo em experiências bastante limpas, tais como as de bombeamento óptico de um determinado nível energético para medida do tempo de vida de estados excitados, momento de tran sição eletrônico e probabilidade de transição. Estes dados por sua vez são muito úteis para o conhecimento de meios laser mais efica zes, com vistas à separação de isótopos e monitoração da poluição atmosférica. Como um exemplo particular, a pesquisa relacionada com o desenvolvimento e o uso de lasers moleculares motivou Suchard [Su75a,b] e Suchard e Melzer [SM76] a fazerem uma extensa pesquisa na literatura sobre a extensão e qualidade dos dados dis poníveis sobre análises espectrais, vibracionais e rotacionais, probabilidades de transição, energias de dissociação e dados da cinética química, para 264 moléculas heteronucleares e 102 homonu cleares.

2 -

Hoje em dia, a espectroscopia avança preponderantemen te através de: (a) medidas de comprimento de onda, ou seja, dos niveis de energia, a partir dos quais geram-se as constantes mole culares e (b) estudos de intensidade das linhas espectrais, a par tir de onde obtém-se dados sobre as probabilidades de transição e as condições físico-químicas da fonte luminosa ou camada de absor ção. A ênfase preponderante nas medidas de comprimento de onda é devida em grande parte ao fato de que elas dão com enorme preci são valores para as constantes estruturais dos átomos e moléculas, contra as quais modelos teóricos podem ser testados. Apesar dos constantes progressos técnicos, a precisão na medida das intensi dades espectrais não pode ainda ser comparada nem de longe com a precisão possível nas medidas de comprimento de onda. Entretanto, o grande potencial para diagnósticos através dos resultados de es tudos da intensidade espectral tem assegurado um contínuo interes se neste tipo de estudo.

Quando comparada ao caso atômico, a situação do espec tro molecular mostra-se bastante complicada, tanto para medidas de comprimento de onda como para medidas de intensidade. Isto de ve-se em parte ao fato que o grande número de linhas emitido e ab sorvido num sistema depende de um modo bastante sensível das con dições da fonte (por exemplo, da temperatura), por causa da peque na separação entre os níveis de energia moleculares. Apesar de muito estudo ter sido feito sobre o rico espectro molecular, de ma neira alguma todas as linhas das bandas moleculares já foram iden tificadas ou analizadas: como mostrado por Grinfeld [Gr62] das possíveis 5000 espécies de moléculas diatômicas, 400 já foram es pectroscopicamente examinadas de algum modo. Destas, 15% já tiv<u>e</u> ram suas estruturas rotacionais analizadas com confiabilidade v<u>a</u> riável e 30% já, nas mesmas condições, foram vibracionalmente estudadas. Esta situação não evoluiu muito desde então [Ni77].

A pesquisa das intensidades no espectro molecular tem duas componentes principais: (a) medidas experimentais de intensi dade em emissão ou absorção, e (b) estudos teóricos, incluindo cál culos "ab initio", dos potenciais moleculares, funções de onda e quantidades derivadas, tais como fátores de intensidade de banda, fatores de Hönl-London, momentos de transição eletrônicos e tempo de vida. Dados sobre as probabilidades de transição óptica em sis temas moleculares, tais como fátores de intensidade de banda e fa tores de Franck Condon, têm tido recentemente grande importância em conexão com muitos problemas em ciência e tecnologia. Por exem plo, tais dados são essenciais para cálculos do poder de emissão e absorção de plasmas formados, por exemplo, durante descargas elétricas em gases (em lâmpadas) e em instalações de confinamento magnético de plasmas (Tokamaks, θ -pinches, etc) [KKKP74].

No presente trabalho dedicamo-nos ao estudo das inten sidades espectrais em moléculas diatômicas. Primeiramente propomos um método analítico para o cálculo das probabilidades de transição como alternativa para o processo empírico aproximado usado atual mente.Este método está demonstrado no Capítulo III e em [GGC78] e apresentado no Apêndice B sob a forma de um programa em linguagem ALGOL para o computador B-6700. Em seguida descrevemos um experi mento por nós realizado para obtenção das intensidades experimen tais. Finalmente, apresentamos a comparação entre os resultados experimentais e teóricos, cujo relacionamento nos fornece quanti dades de interesse, tais como o momento de transição eletrônico, probabilidade de transição, tempo de vida dos estados excitados e outros.

As moléculas diatômicas estudadas por nos são o nitro gênio molecular N_2 e o ion molecular N_2^+ , cujos estados excitados são gerados através de descarga elétrica. Estas espécies foram es colhidas tendo em vista sua fácil e barata obtenção e por terem grande importância nos fenômenos atmosféricos, e ainda por serem um meio Laser muito eficiente. Os níveis de energia destas duas espécies moleculares são apresentados na Figura I.1. As duas tran sições eletrônicas estudadas foram N₂(C ${}^{3}\pi_{u} \rightarrow B {}^{3}\pi_{q}$), que resulta nas bandas do segundo sistema positivo, $N_2(2^+)$, e a transição N_2^+ $(B^{2}\Sigma_{11}^{+} \rightarrow X^{2}\Sigma_{\alpha}^{+})$ que da as bandas do primeiro sistema negativo, N2(1-). Ambos os tempos de vida dos estados superiores envolvidos, $C_{\pi_u}^3 \in B_{\Sigma_u}^2$, são menores que 10^{-7} segundos [OG76]. Isto signif<u>i</u> ca que a baixas pressões é improvável que as moléculas colidam com outras antes de fazerem as transições radiativas, ou seja, elas se comportam como se estivessem livres no espaço. Em particu lar, no caso de descargas elétricas continuas, existe um equili brio dinâmico no sistema, de modo que as taxas de decaimento po dem ser comparadas com as taxas de excitação calculadas para OS estados superiores a baixas pressões.

Os principais processos pelos quais os estados sup<u>e</u> riores são excitados envolvem a colisão de elétrons com moléculas de nitrogênio no estado fundamental X ${}^{1}\Sigma_{g}^{+}$. Os outros processos e<u>n</u> volvidos são minoritários e podem ser encontrados, junto com co<u>m</u>

FIGURA I.1 - Estados eletrônicos do nitrogênio molecular e dos ions N_2^+ e N_2^- . [LP77], [L078].

6 -

parações convenientes, em [Ba49] e [Ge76].

O plano geral da apresentação do nosso trabalho é 0 seguinte: no Capítulo II apresentamos a molécula diatômica: des crevemos a aproximação básica que nos permite separar os movimen tos eletrônicos e nucleares e calculamos as funções de onda que descrevem a rotação da molécula. No Capítulo III calculamos as fun ções de onda que descrevem os movimentos de vibração nuclear e com elas estabelecemos a formula teórica para a intensidade de linha espectral em emissão. Neste capítulo, comentamos ainda os vários processos aproximados para o cálculo teórico das intensidades de linha e apresentamos o método proposto por nós. O Capítulo IV se guinte é dedicado à descrição dos equipamentos que usamos pa ra a medida das intensidades espectrais nos sistemas $N_2(2^+)$ e $N_2^+(1^-)$. Finalmente, no Capítulo V apresentamos os resultados, com parações e interpretações.

Antes de concluir esta introdução gostaríamos de men cionar que J.Costa Ribeiro, falando sobre a física no nosso país em "A História da Ciência no Brasil" [Az55], afirma que um grande impulso à física experimental foi dado por Henrique Morize com sua pioneira tese de concurso, apresentada na Escola Politécnica do Rio de Janeiro, em 1898, e que versava sobre "Descarga elétri ca nos gases rarefeitos". Este era, segundo Costa Ribeiro, "um as sunto atualíssimo na época de Morize". Oitenta anos depois o estu do dos fenômenos resultantes da passagem de corrente elétrica em gases rarefeitos continua atual, dando-nos informações importantes sobre os gases nestas condições, tais como temperatura vibr<u>a</u> cional efetiva e emissividade espectral.

- 7 -

II - A MOLÉCULA DIATÔMICA.

II.l - Introdução

Das espécies moleculares a mais simples de todas é a molécula diatômica. Consequentemente, é a que de modo mais comple to pode ser investigada teórica [Mi72] e experimentalmente [He50]. Ela foi a primeira molécula cujo espectro foi explicado pela mecâ nica quântica. Este espectro, bastante diferente do caso atômico, apresenta suas linhas agrupadas em bandas, isto é, uma següência de linhas separadas regularmente, cuja intensidade varia de forma regular a partir de um máximo. Também observa-se que as bandas aparecem em grupos que seguem um ao outro em intervalos aproxima damente iquais, sendo então chamadas de progressões. De acordo com a mecânica quântica as linhas originam-se de transições entre os diferentes níveis de energia da molécula. Portanto, o estudo detalhado do espectro de uma molécula diatômica permite conhecer com muita exatidão estes níveis de energia. Sabe-se que a cada ní vel de energia corresponde um estado particular de movimento dos elétrons e do núcleo. Por exemplo, uma banda resulta de transi ções nas quais somente o estado de rotação da molécula muda.

O estudo do espectro das moléculas diatômicas permitiu conhecer com grande exatidão a geometria e as forças que mantém unidos os componentes da molécula. Além disso, o estudo do espectro permitiu conhecer novas moléculas que na química tradicional não eram conhecidas por serem quimicamente instáveis ou de vida muito curta: alguns exemplos são CH, C₂, OH e He₂.

De um ponto de vista teórico, a relativa simplicidade do espectro de uma molécula diatômica, quando comparado ao de uma poliatômica, foi usada para testar numerosos modelos aproximados de peculiaridades moleculares, tais como o rotor rígido, para ex plicar os estados rotacionais [Ko69], o potencial de Morse, para tratar os estados de movimento do núcleo [TS55], etc. Mais recen temente cálculos "ab initio" feitos em computadores de grande por te foram realizados [Co76] para investigar o Hélio. Encontrou-se uma boa concordância entre os dados experimentais e os cálculos. Novas técnicas experimentais permitem-nos conhecer o espectro com exatidão sem precedentes [HCKE75].

Neste capítulo faremos uma revisão dos resultados mais relevantes para explicar a intensidade das linhas entre diferen tes bandas de uma progressão. Como introdução a este estudo revi saremos brevemente a aproximação básica utilizada no estudo de mo léculas, ou seja, a aproximação de Born-Oppenheimer.

II.2 - A aproximação de Born-Oppenheimer

Basicamente, numa molécula diatômica a força de repul são entre os dois núcleos pode ser balanceada pela força de atra ção com os elétrons. Isto se obtém quando a densidade de elétrons é grande entre os dois núcleos, sendo estes fortemente atraídos para os elétrons. O balanço entre esta atração e a repulsão nuclear estabelece uma posição de equilíbrio para os dois núcleos. Deste modo os níveis de energia rotacional da molécula resultam

- 9 -

da rotação da molécula com os núcleos em sua posição de equil<u>í</u> brio. Os dois núcleos podem também oscilar em torno de sua pos<u>i</u> ção de equilíbrio dando origem aos níveis vibracionais. Além di<u>s</u> to, a configuração dos elétrons pode mudar, estabelecendo novas posições de equilíbrio para os núcleos, alterando a distribuição de forças. Isto dá origem aos diferentes níveis eletrônicos da mo lécula. Portanto, uma molécula diatômica apresenta uma série de níveis de energia eletrônica, cada um dos quais com vários níveis vibracionais e cada nível vibracional com uma série de estados ro tacionais.

De acordo com a mecânica quântica, os níveis de ene<u>r</u> gia de uma molécula diatômica podem ser explicados pela resolução da equação de Schrödinger independente do tempo, isto é,

$$H\phi = E\phi \qquad (II.1)$$

onde ϕ é a função de onda de um estado com energia E. O Hamiltoniano H apropriado para este problema é [Ko74]

$$H = T_e^{+T_N^+V_eN^+V_{NN}^+V_ee^{+V_spin-orbita^{+V}spin-spin^+}}$$

$$V_{spin-núcleo}^{+V_orbita-núcleo^{+V_núcleo-núcleo}}$$
(II.2)

onde $T_e e T_N s$ ão a energia cinética dos elétrons e do núcleo respec tivamente e V_{eN} , $V_{NN} e V_{ee}$ são as interações Coulombianas entre elétron-núcleo, núcleo-núcleo e elétron-elétron respectivamente. $V_{spin-orbita}$ é a interação do spin do elétron com o movimento or bital dos elétrons, o que produz os multipletes nos níveis eletro nicos. Isto é, cada estado eletrônico apresenta um desdobramento de acordo com a magnitude do spin. O termo $V_{spin-spin}$ é a intera ção dos spins dos elétrons entre si. Esta contribuição ao Hamilto niano (II.2) produz a separação entre estados singletes e tripl<u>e</u> tes, dupletes e quadrupletes, etc. Os últimos três termos representam interações entre o spin do núcleo e os elétrons. Estas i<u>n</u> terações produzem um desdobramento das linhas chamado de *estrut<u>u</u> na hiperfina* [TS55]; constituem um termo muito pequeno no Hamilto niano (II.2).

O próximo passo na obtenção dos níveis de energia da molécula diatômica é substituir-se as energias cinéticas T_e e T_N pelos seus respectivos operadores

$$T_{e} = -\sum_{i} \frac{\varkappa^{2}}{2m} \nabla_{i}^{2}$$
(II.3)

e

$$T_{N} = -\sum_{j} \frac{\mu^{2}}{2M_{j}} \nabla_{j}^{2}$$
(II.4)

onde m e M_j são a massa do elétron e do núcleo j respectivamente. A equação de Schrödinger (II.1) se transforma então em

$$-\sum_{i} \frac{\mu^{2}}{2m} \nabla_{i}^{2} \phi(\mathbf{r}_{i}, \mathbf{R}_{j}, \lambda) - \sum_{j} \frac{\mu^{2}}{2M_{j}} \nabla_{j}^{2} \phi(\mathbf{r}_{i}, \mathbf{R}_{j}, \lambda) +$$

$$\nabla(\mathbf{r}_{i}, \mathbf{R}_{j}, \lambda) \phi(\mathbf{r}_{i}, \mathbf{R}_{j}, \lambda) = E \phi(\mathbf{r}_{i}, \mathbf{R}_{j}, \lambda)$$
(II.5)

As coordenadas dos elétrons e dos núcleos são chamadas coletiva-

mente r_i e R_j , respectivamente; a letra λ representa as variáveis do spin nuclear e eletrônico.

É possível obter-se uma grande simplificação da equa ção (II.5) notando que a energia cinética dos núcleos é menor que a dos elétrons em certas circunstâncias. Para ver isto, considere mos um elétron girando em torno de um núcleo de massa M numa órbi ta circular de raio r. Neste caso pode-se mostrar [Da65] que a energia cinética do núcleo é só m/M da energia cinética do elē tron. Para uma molécula diatômica, além de um termo semelhante, te mos ainda a contribuição da energia cinética de vibração dos nú cleos. Geralmente, a equação (II.5) é resolvida considerando-se o termo T_N como uma perturbação pequena, sendo este passo conhecido como a aproximação de Born-Oppenheimer ou aproximação adiabática. É interessante notar entretanto que esta aproximação somente é vá lida para baixos níveis vibracionais, uma vez que para v grande ${\rm T}_{\rm N}$ pode até ser maior que a contribuição eletrônica.

Como uma primeira aproximação desprezemos T_N complet<u>a</u> mente; então, a equação (II.5) se transforma em

$$-\sum_{i} \frac{\varkappa^{2}}{2m} \nabla_{i}^{2} \Phi_{k}(\mathbf{r}_{i}, \mathbf{R}_{j}, \lambda) + V(\mathbf{r}_{i}, \mathbf{R}_{j}, \lambda) \Phi_{k}(\mathbf{r}_{i}, \mathbf{R}_{j}, \lambda) = U_{k}(\mathbf{R}_{j}) \Phi_{k}(\mathbf{r}_{i}, \mathbf{R}_{j}, \lambda)$$
(II.6)

Nesta equação, que representa o movimento dos elétrons em relação a dois núcleos fixos, as funções de onda Φ_k só dependem parametr<u>i</u> camente das coordenadas nucleares R_j . Portanto, para cada posição dos núcleos, $U_k(R_j)$ é obtido como um autovalor da equação (II.6). As funções de onda Φ_k , obtidas resolvendo-se a equação (II.6), for mam um conjunto completo de funções [Ba73] que podem ser usadas para representar qualquer outra função, em particular a solução da equação (II.5)

$$\phi(\mathbf{r}_{i},\mathbf{R}_{j},\lambda) = \sum_{k} \Phi_{k}(\mathbf{r}_{i},\mathbf{R}_{j},\lambda) \Psi_{k}(\mathbf{R}_{j})$$
(II.7)

Nesta equação, k representa um dos estados eletrônicos da moléc<u>u</u> la. Podemos então encontrar o estado de movimento nuclear consid<u>e</u> rando $U_k(R_j)$ como um potencial molecular e usã-lo para achar a fu<u>n</u> ção de onda nuclear, isto é, os coeficientes $\Psi_k(R_j)$. Portanto, o problema agora reduz-se a encontrar os coeficientes $\Psi_k(R_j)$. Isto pode ser feito substituindo-se a equação (II.7) na equação (II.5)

$$-\sum_{k,i} \frac{\cancel{\mu}^{2}}{2m} \Psi_{k}(R_{j}) \nabla_{i}^{2} \Phi_{k}(r_{i},R_{j},\lambda) - \sum_{k,j} \frac{\cancel{\mu}^{2}}{2M_{j}} \nabla_{j}^{2} \left[\Phi_{k}(r_{i},R_{j},\lambda) \Psi_{k}(R_{j}) \right] + \sum_{k} \nabla(r_{i},R_{j},\lambda) \Phi_{k}(r_{i},R_{j},\lambda) \Psi_{k}(R_{j}) = \sum_{k} E \Phi_{k}(r_{i},R_{j},\lambda) \Psi_{k}(R_{j})$$
(II.8)

A equação (II.6) pode ser usada para simplificar a equação (II.8)

$$\sum_{k}^{\Sigma} U_{k}(R_{j}) \Phi_{k}(r_{i},R_{j},\lambda) \Psi_{k}(R_{j}) - \sum_{k,j}^{\Sigma} \frac{\not{k}^{2}}{2M_{j}} \left\{ \left[\nabla_{j}^{2} \Phi_{k}(r_{i},R_{j},\lambda) \right] \Psi_{k}(R_{j}) + \Phi_{k}(r_{i},R_{j},\lambda) \nabla_{j}^{2} \Psi_{k}(R_{j}) + 2 \nabla_{j} \Phi_{k}(r_{i},R_{j},\lambda) \cdot \nabla_{j} \Psi_{k}(R_{j}) \right\} = \sum_{k}^{\Sigma} E \Phi_{k}(r_{i},R_{j},\lambda) \Psi_{k}(R_{j})$$
(II.9)

Em seguida multiplicamos a equação (II.9) por $\Phi_{\ell}(r_i, R_j, \lambda) d\tau_e$, on de $d\tau_e$ é o elemento de volume no espaço das coordenadas eletrôni cas. Isto permite-nos usar a condição de ortogonalidade das funções de onda $\Phi_{\ell}(\mathbf{r}_{i},\mathbf{R}_{j},\lambda)$. Assim obtemos

$$J_{\ell}(R_{j})\Psi_{\ell}(R_{j}) - \sum_{j} \frac{\mu^{2}}{2M_{j}} \nabla_{j}^{2}\Psi_{\ell}(R_{j}) = E \Psi_{\ell}(R_{j}) +$$

$$\sum_{k,j} \frac{\mu^{2}}{2M_{j}} \Psi_{k}(R_{j}) \int \Phi_{\ell}(r_{i},R_{j},\lambda) \nabla_{j}^{2}\Phi_{k}(r_{i},R_{j},\lambda)d\tau_{e} +$$

$$\sum_{k,j} \frac{2\mu^{2}}{2M_{j}} \nabla_{j}\Psi_{k}(R_{j}) \cdot \int \Phi_{\ell}(r_{i},R_{j},\lambda) \nabla_{j}\Phi_{k}(r_{i},R_{j},\lambda)d\tau_{e} \quad (II.10)$$

Pode-se mostrar [Ba73] que quando a energia cinética dos núcleos é pequena os dois últimos termos da equação (II.10) são desprez<u>í</u> veis. Então ela se reduz a

$$U_{\ell}(R_{j})\Psi_{\ell}(R_{j}) - \sum_{j} \frac{\not{k}^{2}}{2M_{j}} \nabla_{j}^{2}\Psi_{\ell}(R_{j}) = E \Psi_{\ell}(R_{j})$$
(II.11)

onde

$$\nabla_{j}^{2} = \frac{\partial^{2}}{\partial x_{j}^{2}} + \frac{\partial^{2}}{\partial y_{j}^{2}} + \frac{\partial^{2}}{\partial z_{j}^{2}} \qquad j = 1,2$$

 $e x_j$, $y_j e z_j$ são as coordenadas Cartesianas do j-ésimo núcleo relativas a eixos fixos no espaço. Escrevendo explicitamente a soma na equação (II.11) e esquecendo os subíndices obtemos

$$\frac{\mu^2}{2M_1} \nabla_1^2 \Psi + \frac{\mu^2}{2M_2} \nabla_2^2 \Psi + [E - U(R)] \Psi = 0 \qquad (II.12)$$

Portanto, para se conhecer os níveis de energia e as autofunções de uma molécula diatômica precisamos basicamente resol ver dois problemas: 1) resolver a equação (II.6) obtendo-se então as funções de onda eletrônicas e o potencial molecular U(R) e 2) r<u>e</u> solver a equação (II.12) para conhecer o movimento nuclear sob a ação do potencial molecular U(R).

II.3 - Vibração e Rotação Molecular

Para se tratar da vibração e da rotação molecular é bastante conveniente substituir o modelo de dois centros (núcleos) por um modelo de centro simples através de uma substituição de va riável[†]. Os dois núcleos, de massa $M_1 e M_2$, separados por uma dis tância r, oscilando em torno de uma posição de equilíbrio $r_e e gi$ rando como um haltere em torno de umeixo que passa pelo seu centro de massa, são substituídos por uma massa reduzida $\mu = M_1 M_2 / (M_1 + M_2)$, separada do centro de força por uma distância r. O rotor de massa μ tem a mesma velocidade angular que o haltere e o oscilador de massa sa μ oscila com a mesma freqüência que a molécula.

Para este modelo a equação (II.12) fica

$$\nabla^2 \Psi_n + \frac{2\mu}{k^2} \left[E - U(r) \right] \Psi_n = 0 \qquad (II.13)$$

Esta equação pode ser resolvida para uma série de modelos molecul<u>a</u> res de crescente complexidade e, conseqüentemente, de crescente

Para forças centrais o problema de dois corpos, de massas $M_1 e M_2$, pode ser substituído por um problema efetivo de um corpo de mas sa reduzida $\mu = M_1 M_2 / (M_1 + M_2)$ [Me70].

- 16 -

realismo, tais como: (a) o rotor rígido (r = constante), (b) o os cilador sem rotação, (c) o oscilador com rotação; finalmente o mo delo deve ser suplementado pelo "efeito volante" (flywhell effect) [He50] devido à rotação dos elétrons em torno do eixo molecular, o que dá origem ao (d) pião simétrico. Este último modelo, entretan to, é útil para se estudar as rotações moleculares e não vai ser tratado neste trabalho.

Como o potencial molecular U(r) é somente função da distância internuclear r, a equação (II.13), que representa os mo vimentos nucleares, pode ser separada de modo usual como

$$\Psi_{n} = \frac{\Psi(r)}{r} \Psi(\theta, \phi) = \frac{\Psi(r)}{r} \Theta(\theta) \Phi(\phi) \qquad (II.14)$$

onde a dependência angular é conhecida. A equação em ϕ é

$$\frac{\mathrm{d}^2 \Phi}{\mathrm{d} \phi^2} + \mathrm{M}^2 \Phi = 0 \tag{II.15}$$

cuja solução é

$$\Phi_{M}(\phi) = \frac{1}{\sqrt{2\pi}} \exp(iM\phi) \qquad (II.16)$$

M é chamado de número quântico magnético. A equação $\Theta(\theta)$ é a mesma do rotor rígido:

$$\frac{1}{\operatorname{sen}\theta} \frac{\mathrm{d}}{\mathrm{d}\theta} \left(\operatorname{sen}\theta \ \frac{\mathrm{d}\theta}{\mathrm{d}\theta} \right) - \frac{\mathrm{M}^2}{\operatorname{sen}^2_{\theta}} \ \Theta + \mathrm{J}(\mathrm{J}+1)\Theta = 0 \tag{II.17}$$

onde

- 17 -

$$\Theta_{\rm JM}(\theta) = \left[\frac{(2J+1)(J-|M|)!}{2(J+|M|)!}\right]^{1/2} P_{\rm J}^{|M|}(\cos\theta)$$
(II.18)

e onde J é um inteiro positivo e M é um inteiro tal que $|M| \leq J$. O número quântico J é o que descreve o estado de rotação dos núcleos ao redor de um eixo que passa pelo seu centro de massa. O momento angular de rotação no nível J é $\sqrt{J(J+1)}$ // e sua componente numa d<u>a</u> da direção é M/A. Na equação (II.18), $P_J^{|M|}(\cos\theta)$ é a função associ<u>a</u> da de Legendre [MOS66]. Como equação radial temos

$$\frac{d^2 \Psi}{dr^2} + \frac{2\mu}{\mu^2} \left[E - U(r) - \frac{\mu^2}{2\mu} \frac{J(J+1)}{r^2} \right] \Psi = 0 \qquad (II.19)$$

onde o termo $J(J+1)\not/^2/(2\mu r^2)$ é a energia potencial associada com a força centrífuga devida ao momento angular de rotação $\sqrt{J(J+1)}\not/$.

Portanto, em vez da equação (II.12), precisamos somente resolver a equação (II.19).

II.4 - O Oscilador de Morse-Pekeris

Vamos agora brevemente revisar os resultados da sol<u>u</u> ção da equação (II.19) para um oscilador de Morse, isto é, para o potencial molecular

$$U(r) = T_{o} + D \{1 - \exp[-a(r-r_{o})]\}^{2}$$
(II.20)

onde T_e é o valor da curva de potencial na distância internuclear de equilíbrio r_e, D é a energia de dissociação referida a este equilíbrio e a é uma constante característica do estado eletrônico em questão. Morse [Mo29] e Pekeris [Pe34] resolveram esta equação para os casos sem rotação (J = 0) e com rotação, respectivamente. As funções de onda são bastante complicadas e vão ser tratadas mais adiante. Por ora, vamos somente revisar[†] os níveis de energia (is to é, os números de onda) que neste caso são dados aproximadamente por [TS55].

$$E_{vJ} \simeq hc \left[w_{e}^{(v+1/2)} - w_{e}^{x} e^{(v+1/2)^{2}} + B_{v}^{J}^{(J+1)} - D_{e}^{J}^{2}^{(J+1)^{2}} \right]$$
(II.21)

Nesta equação o primeiro termo, $w_e(v+1/2)$, dá os níveis de energia igualmente espaçados de um oscilador harmônico simples (sem rotação). O segundo termo, $w_e x_e(v+1/2)^2$, é a correção anharmônica do primeiro termo. $B_v J(J+1)$ é a energia do rotor rígido (no nível de energia v) e o último termo, $D_e J^2(J+1)^2$, é a distorção centrífuga do rotor rígido.

O relacionamento entre as constantes vibracionais e os parâmetros da função de Morse (II.20) é o seguinte:

$$D = \frac{w_e^2}{4w_e x_e}$$
(11.22)

$$a = \left[\frac{4\pi c\mu}{\cancel{k}} w_e x_e\right]^{1/2}$$
(II.23)

Para os termos rotacionais

^T Maiores detalhes podem ser encontrados em [PW35] e [TS55].

- 19 -

$$B_v = B_e - \alpha_e (v+1/2)$$
 (II.24)

onde

$$B_{e} = \frac{\varkappa}{4\pi c \mu r_{e}^{2}}$$
(II.25)

$$\alpha_{e} = \frac{6\sqrt{w_{e}x_{e}B_{e}^{3}}}{w_{e}} - \frac{6B_{e}^{2}}{w_{e}}$$
(II.26)

Nas equações (II.24) e (II.25), B_e é na realidade uma medida do momento de inércia μr_e^2 da molécula em r_e , e B_v é uma medida do momento de inércia efetivo no nível vibracional v. O termo α_e (v+1/2) é o que leva em consideração a variação do momento de inércia da molécula, de nível vibracional para nível vibracional. Analogamente

$$D_{e} = \frac{\mu^{3}}{16\pi^{3}\mu^{3}c^{3}w_{e}^{2}r_{e}^{6}}$$
(II.27)

Algumas vezes é necessário modificar-se D_e , de modo análogo a B_e , para levar-se em conta a vibração [Du32].

$$D_{v} = D_{e} - \beta_{e} (v+1/2)$$
 (II.28)

onde

$$\beta_{e} = D_{e} \left[\frac{8w_{e}x_{e}}{w_{e}} - \frac{5\alpha_{e}}{B_{e}} - \frac{\alpha_{e}^{2}w_{e}}{24B_{e}^{3}} \right]$$
(II.29)

Em unidades de número de onda (isto é, cm⁻¹), os níveis de energia para uma "molécula de Morse" que está girando são

- 20 -

$$E_{vJ} = G(v) + F(J) = \left[w_{e}(v+1/2) - w_{e}x_{e}(v+1/2)^{2}\right] + \left[B_{v}J(J+1) - D_{v}J^{2}(J+1)^{2}\right]$$
(II.30)

O número de onda de uma linha de uma banda de tal molécula é, po<u>r</u> tanto[†],

$$V_{v''J''}^{v'J''} = E_{v'J'} - E_{v'J''}$$

$$= G'(v') - G''(v'') + F'(J') - F''(J'')$$

$$= \left[w_{e}'(v'+1/2) - w_{e} x_{e}'(v'+1/2)^{2} \right] - \left[w_{e}''(v''+1/2) - w_{e} x_{e}''(v''+1/2)^{2} \right] + \left[B_{v'}'J''(J'+1) - D_{v'}'J'^{2}(J'+1)^{2} \right] - \left[B_{v''}'J''(J''+1) - D_{v''}'J''^{2}(J''+1)^{2} \right]$$

$$(II.31)$$

que concorda excelentemente com o que se observa experimentalmente. Muitos trabalhos espectroscópicos são feitos para medir as constan tes w_e , $w_e x_e$, B_e , r_e , D, a, D_e , $\alpha_e \in \beta_e$. Relações empíricas aproximadas foram observadas entre algumas destas constantes [He50], sen do a mais comum a regra de Birge

[†] Em espectroscopia de moléculas diatômicas é usual referir-se ao estado de energia superior através de uma linha (') e ao inf<u>e</u> rior através de duas ("). Além disso, nos símbolos com dois núm<u>e</u> ros quânticos coloca-se em primeiro lugar o número quântico ref<u>e</u> rente ao estado superior, ao contrário da notação usada em espec troscopia atômica. Por exemplo, $\lambda_{v'v''}$ é o comprimento de onda da transição entre o estado vibracional superior v' e o estado inf<u>e</u> rior v".

 $w_e/B_e \sim r_e^2 w_e \sim constante$

para todos os estados eletrônicos de uma molécula.

III.1 - Introdução

Basicamente, o cálculo da distribuição de intensidade espectral em emissão de um átomo ou molécula resume-se no cálculo da probabilidade de transição do estado excitado para os diversos estados possíveis de mais baixa energia. A solução deste problema origina-se de um estudo de Einstein [Eil7][†] sobre a interação da radiação eletromagnética com a matéria num corpo negro em equilí brio térmico. Neste estudo, ele relacionou os processos de absor ção, emissão estimulada e emissão espontânea de radiação com um coeficiente, Anm, que representa a probabilidade por unidade de tempo de ocorrer a transição espontânea do estado n para o estado m, de mais baixa energia, e que mais tarde ficou conhecido como coeficiente A de Einstein. Na realidade, o valor deste coeficien te está ligado a uma série de parâmetros atômicos e moleculares de interesse como por exemplo τ_n , o tempo de vida do estado n,que é dado por

$$1/\tau_n = \sum_{m} A_{nm}$$
(III.1)

Quanticamente, pode-se mostrar [CS35] que $A_{nm} \alpha |R_{nm}|^2$ onde R_{nm} é o elemento de matriz multipolar da transição.

O objetivo do presente capítulo é primeiramente calcu lar a probabilidade de transição A_{nm} (isto é, R_{nm}), usando o poten

⁺ Este artigo foi reimpresso em [Wa67].

cial de Morse-Pekeris com a aproximação de Born-Oppenheimer, e re lacioná-la com a intensidade de banda vibracional I, Usualmen te o cálculo da intensidade de banda I_{v'v"} é feito pela introdu ção de várias aproximações, entre outras que a intensidade é pro porcional ao fator de Franck Condon (FCF) qu'u". Numerosas tecni cas são usadas para calcular estes fatores quiv", sendo mais co muns as que fazem uso dos potenciais de Rydberg-Klein-Rees (RKR) e de Morse-Pekeris. Entretanto, sendo o potencial de RKR construi do diretamente das energias medidas experimentalmente, é de se es perar que suas predições sejam mais exatas que as obtidas pelo uso de um potencial molecular aproximado como o de Morse-Pekeris. Po rém, veremos que os cálculos usando estes dois tipos de potencial produzem basicamente os mesmos resultados.

A seguir propomos um método analítico de cálculo, usan do o potencial de Morse-Pekeris, que permite conhecer as intensi dades I_{v'v"} exatamente, sem o uso das aproximações anteriormente mencionadas. Além disso, por ser analítico, este método reduz dras ticamente o tempo necessário para os cálculos, relativamente ao método de RKR. Nosso método é ilustrado praticamente por um pro grama em linguagem ALGOL, para o computador B-6700, que está des crito e listado no Apêndice B.

III.2 - Intensidade Espectral: Coeficiente A de Einstein

A intensidade em emissão I_{nm} de uma linha espectral entre os estados moleculares n e m é definida [He50] como a ener gia emitida pela molécula nesta linha por segundo. Se existirem N_n moléculas no estado inicial n e se A_{nm} é a fração de moléculas no estado inicial que fazem a transição para o estado m por segu<u>n</u> do, então I_{nm} é dada por

$$I_{nm} = N_n \frac{hc}{\lambda_{nm}} A_{nm}$$
(III.2)

Nesta equação hc/λ_{nm} é a energia de cada quantum de luz de comprimento de onda λ_{nm} . A probabilidade de transição espontânea A_{nm} , de acordo com a mecânica quântica [CS35], para o caso de radiação dipolar[†], é dada por (MKS)

$$A_{nm} = \frac{16\pi^3}{3h\epsilon_0 \lambda_{nm}^3} \frac{1}{w_n} |R_{nm}|^2 \qquad (III.3)$$

onde R_{nm} é o elemento de matriz da transição e w_n é a degeneres cência do estado superior. Portanto, para a intensidade de uma linha em emissão temos

$$I_{nm} = N_n \frac{hc}{\lambda_{nm}} \frac{16\pi^3}{3h\epsilon_0 \lambda_{nm}^3} \frac{1}{w_n} |R_{nm}|^2$$
 (III.4)

O elemento da matriz de transição entre dois estados n e m caracterizados pelas funções de onda Ψ_n e Ψ_m , respectivamente, é dado por

$$\vec{R}_{nm} = \int \Psi_n^* \vec{M} \Psi_m d\tau \qquad (III.5)$$

^r Os momentos multipolares de ordem superior são considerados co mo transições proibidas [He50].

Nesta equação \vec{M} é o vetor momento de dipolo num sistema de ref<u>e</u> rência fixo no laboratório, d τ é um elemento de volume e nem são Indices que denotam em geral o conjunto de números quânticos que caracterizam o estado superior e inferior, respectivamente. Como já vimos, no caso de uma molécula diatômica a aproximação de Born--Oppenheimer nos permite separar a função de onda no produto de uma parte eletrônica e outra nuclear. Além disso, como o pote<u>n</u> cial molecular somente depende de r, podemos separar ainda a fu<u>n</u> ção de onda nuclear no produto de uma parte vibracional e outra rotacional:

$$\Psi_n = \Psi_e \frac{\Psi_v(r)}{r} \Psi_{rot}$$
(III.6)

Esta separação é válida mesmo em casos que se considera o spin eletrônico e interações magnéticas dos momenta angulares [He50]. O momento de dipolo Å pode ser escrito [He50] como

$$\vec{M} = \vec{M}_{p} + \vec{M}_{p} \qquad (III.7)$$

onde $\vec{M}_e \in \vec{M}_n$ representam as contribuições eletrônicas e nucleares. Em particular, num sistema de coordenadas fixo na molécula, $\vec{M}_e = \Sigma (-e\vec{r}_i)$ onde \vec{r}_i é o vetor posição do i-ésimo elétron.Na equa ção (III.5)

$$d\tau = d\tau_e d\tau_n = d\tau_e r^2 dr d\Omega \qquad (III.8)$$

onde $d\tau_e \in o$ elemento de volume do espaço de configuração dos elé

trons, $d\tau_n$ dos núcleos, $d\Omega$ um elemento de ângulo sólido e r a se paração internuclear.

As equações (III.6) - (III.8) permitem escrever o el<u>e</u> mento de matriz, entre dois níveis n e m dos estados moleculares Ψ'_n e Ψ''_m respectivamente, como[†]

$$R_{nm} = \int \Psi_{e}^{\star}, \quad \frac{\Psi_{v}^{\star}}{r} \quad \Psi_{rot}^{\star} \quad (\vec{M}_{e} + \vec{M}_{n}) \Psi_{e}^{*}, \quad \frac{\Psi_{v}^{*}}{r} \quad \Psi_{rot}^{*} \quad d\tau_{e} r^{2} dr d\Omega =$$

$$\int \Psi_{e}^{\star}, \quad \Psi_{v}^{\star}, \quad \Psi_{rot}^{\star} \quad \vec{M}_{e} \quad \Psi_{e}^{*}, \quad \Psi_{rot}^{*} \quad d\tau_{e} dr d\Omega +$$

$$\int \Psi_{e}^{\star}, \quad \Psi_{e}^{*}, \quad d\tau_{e} \quad \int \Psi_{v}^{\star}, \quad \Psi_{rot}^{*} \quad \vec{M}_{n} \quad \Psi_{v}^{*}, \quad \Psi_{rot}^{*} dr d\Omega \qquad (III.9)$$

O segundo termo na expressão acima é nulo devido a somente estar mos considerando estados eletrônicos diferentes para os quais as funções de onda eletrônicas são ortogonais. Se usarmos a expres são explícita da função de onda rotacional derivada em (II.14) ob temos para o quadrado do elemento de matriz

$$\left| R_{v'J'M'}^{v'J'M'} \right|^{2} = \left| \int \Psi_{v'}^{*} \int \Psi_{e'}^{*} \int \Psi_{J'M'}^{*} (\theta, \phi) \right| \sum e\vec{r}_{i}$$

$$\Psi_{J'M''}^{(\theta,\phi)} \operatorname{sen}\theta d\theta d\phi \Psi_{e''} d\tau_{e''v''} dr \Big|^{2}$$
(III.10)

Esta transição corresponde à emissão de luz entre dois níveis caracterizados pelos números quânticos $v'J'M' \rightarrow v"J"M"$. No presente trabalho porém, estamos interessados em obter o elemento de tran

^T Uma linha indica o estado superior e duas linhas o inferior, con forme nota de rodapé na página 20.

- 27 -

sição correspondente a bandas vibracionais, ou seja, devemos so mar $\left| R_{v'J'M'}^{v'J'M'} \right|^2$ sobre os números quânticos J e M. A soma sobre os números quânticos M dá

$$\sum_{M'M''} \left| R_{v'J'M'}^{v'J'M'} \right|^{2} = \left| R_{v'J'}^{v'J'} \right|^{2}$$

$$= \left| \int \Psi_{v'}^{\star} \left[\int \Psi_{e'} | \Sigma - e\vec{r}_{i} | \Psi_{e''} d\tau_{e} \right] \Psi_{v''} dr \right|^{2} S_{J'J''} \qquad (III.11)$$

Nesta equação S, ", " é um fator que determina a distribuição de in tensidade entre as diferentes linhas rotacionais de uma banda. 0 modelo até aqui considerado para a molécula diatômica leva em con ta exatamente os efeitos de rotação e vibração na distribuição de intensidade. Porém, para muitas moléculas é preciso incluir ainda o efeito do momento angular eletrônico. Este efeito, que produz uma alteração fundamental na distribuição das intensidades, somen te é importante no estudo das linhas rotacionais de uma banda vi bracional. Para incluir este efeito a molécula é representada por um pião simétrico, isto é, um rotor no qual os elétrons produzem um pequeno momento de inércia em relação ao eixo internuclear. A função de onda rotacional usada na equação (III.10) é substituída pela função de onda do pião simétrico Y_{TAM} onde A é a projeção do momento angular dos elétrons no eixo internuclear. Esta função de onda pode ser encontrada, por exemplo, em [PW35] na página 280. O termo $S_{J'J''}$ é então substituído pelo fator de Hönl-London $S_{J'A''}$ que está amplamente tabulado para as transições de interêsse [Ta67][†].

⁺ Para transições entre estados singletes, seus valores podem ser encontrados na página 208 de [He50].
Entretanto, é interessante notar-se que o momento angular total J do pião simétrico inclui o momento angular eletrônico através de A. Isto é, o J do pião simétrico não representa mais o momento an gular do oscilador de Morse-Pekeris descrito pela equação (II.19), com U(r) dado pela equação (II.20). Apesar disto, é usual util<u>i</u> zar-se no oscilador de Morse-Pekeris o mesmo J do pião simétrico, porque a energia rotacional é apenas uma pequena perturbação na vibração.

Na equação (III.11) é usual introduzir o momento de transição eletrônico definido por

$$R_{e}(r) = \int \Psi_{e}^{*} |\Sigma - e\vec{r}_{i}| \Psi_{e} d\tau_{e}$$
 (III.12)

A complexidade das funções de onda eletrônicas das moléculas to<u>r</u> na muito difícil o cálculo exato de R_e(r). Portanto este momento é usualmente aproximado por expressões polinomiais ou exponenciais.

Usando o momento de transição eletrônico, o quadrado da integral na coordenada internuclear pode ser escrito como

$$S_{v'v''} = \left| \int_{0}^{\infty} \Psi_{v'}^{*} R_{e}(r) \Psi_{v''} dr \right|^{2}$$
(III.13)

que é muito conhecido com o nome de fator de intensidade de banda. Com esta notação o elemento de matriz (III.11) se transforma em

$$\left| R_{v'J'}^{v'J'} \right|^2 = S_{v'v''} S_{J'J''}$$
 (III.14)

Tendo em vista a equação (III.4)e que os fatores $S_{J'J''}$ já estão tabulados, o cálculo da intensidade de uma linha de uma banda vibracional v'J' \rightarrow v"J" fica reduzido ao cálculo dos fat<u>o</u> res de intensidade de banda $S_{v'v''}$ dados pela equação (III.13). E<u>s</u> ta integral é extremamente difícil de se computar, tendo várias aproximações sido introduzidas para este fim. A aproximação mais comum é supor que R_e(r) é constante ou varia lentamente na região em que a contribuição da função de onda vibracional é grande. Com isto a equação (III.13) se reduz a

$$s_{v'v''} = R_e^2 q_{v'v''}$$
 (III.15)

onde

$$q_{v'v''} = \left| \int_{0}^{\infty} \Psi_{v'}^{*} \Psi_{v''} dr \right|^{2} \qquad (III.16)$$

é o chamado fator de Franck Condon. Existem vários métodos para calcular a integral da equação (III.16), que também é chamada de *integral de overlap*. Estes métodos são tratados na seqüência do presente capítulo.

Com estas definições temos, das equações (III.4) e (III.14), para a intensidade de uma linha de uma banda vibracional

$$I_{v'J'}^{v'J'} = N_{v'J'} \frac{16\pi^{3}c}{3\epsilon_{0}(2J'+1)w} \frac{S_{v'v''}S_{J'J''}}{(\lambda_{v'J'}^{v'J'})^{4}}$$
(III.17)

Nesta equação w é o peso do estado eletrônico superior. A popul<u>a</u> ção no estado v'J' do nível eletrônico superior é dada por $N_{v',I'}$. Para a maioria dos casos de interesse é um fator de Boltzmann no qual a energia é a soma da energia rotacional e vibracional.Os f<u>a</u> tores S_J'J" na equação (III.17) obedecem uma regra de soma dada por

$$\sum_{J'J'} S_{J'J''} = 2J' + 1$$
 (III.18)

Com tudo isto, a soma das intensidades de todas as linhas rotaci<u>o</u> nais entre dois estados vibracionais v' e v" é

$$\mathbf{I}_{\mathbf{v}'\mathbf{v}''} = \sum_{\mathbf{J}'\mathbf{J}''} \mathbf{I}_{\mathbf{v}''\mathbf{J}'}^{\mathbf{v}'\mathbf{J}'} = \left(\sum_{\mathbf{J}'} \mathbf{N}_{\mathbf{v}'\mathbf{J}'}\right) \frac{16\pi^{3}\mathbf{c}}{3\varepsilon_{0}} \frac{\mathbf{S}_{\mathbf{v}'\mathbf{v}''}}{(2\mathbf{J}'+1)\mathbf{w}} \frac{\mathbf{S}_{\mathbf{J}'\mathbf{J}''}}{\left(\lambda_{\mathbf{v}''\mathbf{J}''}\right)^{4}} \frac{1}{\left(\lambda_{\mathbf{v}''\mathbf{J}''}^{\mathbf{v}'\mathbf{J}''}\right)^{4}}$$
(III.19)

Como estamos interessados em aplicar estas relações para trans<u>i</u> ções na parte ultravioleta e visível do espectro, onde a energia rotacional é uma pequena perturbação da energia total da transição, o termo $\lambda_{v"J"}^{v'J'}$ pode ser corretamente aproximado por uma ene<u>r</u> gia média $\lambda_{v'v"}$. Resumindo, a intensidade total da banda v'-v" é dada por

$$I_{v'v''} = N_{v'} \frac{16\pi^3 c}{3\epsilon_0 w} \frac{S_{v'v''}}{\lambda_{v'v''}}$$
(III.20)

Usualmente os fatores de intensidade de banda $S_{v'v''}$ (ou os fatores de Franck Condon, no caso de $R_e(r)$ ser constante) são calculados desprezando a interação entre os movimentos de ro tação e vibração. Entretanto existem casos (por exemplo, [JS66], [AL67], [VSI69] e [BBR73]) em que esta interação é bastante impor tante e não pode ser desprezada. Quando o potencial centrífugo na equação (II.19) é levado em conta,o fator de intensidade de banda (ou o fator de Franck Condon) depende do estado de rotação da mo lécula, sendo então dado por [Za64]

$$S_{\mathbf{v}'J'}^{\mathbf{v}'J'} = \left| \int_{0}^{\infty} \Psi_{\mathbf{v}'J'}^{*} R_{e}(\mathbf{r}) \Psi_{\mathbf{v}'J'} d\mathbf{r} \right| \qquad (III.21)$$

Finalmente, para obter à intensidade de uma banda mo lecular em emissão como dado pela equação (III.20) só nos falta obter a população do nível superior. Portanto, vamos considerar agora com um pouco mais de detalhe a população dos níveis vibr<u>a</u> cionais e introduzir o conceito de temperatura vibracional efet<u>i</u> va.

Se as funções de onda estiverem convenientemente nor malizadas pode-se mostrar que [He50]

$$\sum_{\mathbf{v}''} \mathbf{q}_{\mathbf{v}'\mathbf{v}''} = 1 \tag{III.22}$$

Fisicamente esta expressão é de se esperar, uma vez que a molécu la está excitada e somente pode fazer a transição por radiação di polar; portanto, a soma das probabilidades de transição para os diversos níveis mais baixos deve ser igual a 1. Das equações (III.22) e (III.20), que pode ser escrita como

$$\mathbf{I}_{\mathbf{v}'\mathbf{v}''}\lambda_{\mathbf{v}'\mathbf{v}''}^{4} = \frac{16\pi^{3}c}{3\varepsilon_{0}\mathbf{w}} \mathbf{R}_{e}^{2} \mathbf{N}_{\mathbf{v}'\mathbf{v}''}$$
(III.23)

segue que

$$\sum_{\mathbf{v}''} \mathbf{I}_{\mathbf{v}'\mathbf{v}''} \lambda_{\mathbf{v}'\mathbf{v}''}^4 \alpha N_{\mathbf{v}'}, \qquad (III.24)$$

isto é, existe uma *regra de soma vibracional* para as intensidades das bandas numa progressão de bandas. Desta derivação nota-se que a regra de soma somente é válida se o momento de transição eletr<u>ô</u> nico $R_e(r)$ é constante para todas transições vibracionais que co<u>n</u> tribuem significativamente para a soma. Se esta condição é sati<u>s</u> feita, a regra de soma pode ser usada para a determinação de te<u>m</u> peratura do gás que está emitindo o sistema de bandas.Se este gás está em equilíbrio térmico, a população do estado inicial é pr<u>o</u> porcional a

$$exp[-G(v)hc/kT]$$
 (III.25)

onde G(v)hc é a energia vibracional.Portanto, da equação (III.24)

$$\ln \left(\sum_{\mathbf{v}''} \mathbf{I}_{\mathbf{v}'\mathbf{v}''} \lambda_{\mathbf{v}'\mathbf{v}''}^{4} \right) = C_{o} - \frac{G'(\mathbf{v}')hc}{kT}$$
(III.26)

onde Co é uma constante. Logo, plotando-se o logaritmo de $\sum\limits_{v'v''} \mathbf{\lambda}_{v'v''}^4$, medido para várias progressões v', contra os ter mos vibracionais G(v), obtém-se uma reta cuja inclinação é hc/kT.É claro que as intensidades de banda usadas neste procedimento SO mente precisam ser intensidades relativas. No caso de bandas de emissão, este método somente dá bons resultados quando a excita ção do sistema de bandas é puramente térmica. Entretanto, para ca sos de excitação em que não existe equilíbrio termodinâmico (des carga elétrica, por exemplo), pode-se seguidamente obter uma reta no gráfico acima mencionado e determinar uma temperatura vibracio nal efetiva. Esta temperatura efetiva, em geral, é diferente da temperatura cinética do gás e da temperatura que determina a dis tribuição entre os diferentes níveis rotacionais, ou seja, da tem peratura rotacional.

III.3 - O Cálculo Aproximado da Intensidade: Fatores de Franck Condon

Como vimos acima, para o cálculo teórico da distribu<u>i</u> ção da intensidade das bandas vibracionais entre diferentes est<u>a</u> dos eletrônicos de uma molécula diatômica, na aproximação em que R_e(r) varia suavemente com r, é importante conhecer-se o fator de Franck Condon (FCF)

$$\mathbf{q}_{\mathbf{v}'\mathbf{v}''} = \left| \int_{0}^{\infty} \Psi_{\mathbf{v}'}^{*} \Psi_{\mathbf{v}''} d\mathbf{r} \right|^{2} \qquad (\text{III.16})$$

Este fator, que dá a probabilidade de transição vibracional,é ca<u>l</u> culado colocando-se o potencial molecular U(r) na equação de Schrödinger

$$\frac{d^{2}\Psi_{v}}{dr^{2}} + \frac{2\mu}{\mu^{2}} \left[E_{v} - U(r) \right] \Psi_{v} = 0 \qquad (III.27)$$

cuja solução dá as funções de onda vibracionais Ψ_v . O passo seguinte é substituí-las na equação (III.16) acima e computar a in tegral de overlap.

É claro que a precisão com que os FCF são calculados

aumenta com o aumento de precisão na determinação das funções de onda vibracionais. Por outro lado, a precisão destas funções de onda é determinada pela exatidão com que o potencial usado na equa ção de Schrödinger representa verdadeiramente o potencial da mol<u>é</u> cula, e também pelas aproximações usadas na solução da equação de Schrödinger.

Os vários tipos de potencial utilizados para o cálc<u>u</u> lo das Ψ_v estão descritos em [Va57] e comparados em [Ja70]; po<u>r</u> tanto, vamos simplesmente listar alguns dos vários tipos usados: oscilador harmônico e suas modificações,o potencial de Lippincott, o de Hulburt-Hirschfelder, o de Morse e vários outros potenciais *verdadeiros*, ou *realísticos*, deduzidos à partir de dados espe<u>c</u> troscópicos. Os diversos métodos para o cálculo dos FCF são revi<u>s</u> tos em [OA67] e [CP73]. Atualmente o cálculo dos FCF está baseado, quase que exclusivamente, no uso das autofunções de Morse ou das autofunções obtidas pelo uso dos potenciais *realísticos* através do método de Rydberg-Klein-Rees (RKR)[†] modificado por Vanderslice [VMM60] e Jarmain [Ja60].

A equação de Schrödinger com o potencial de Morse tem soluções que, no caso de moléculas diatômicas, são exatas [Ru65]. As funções de onda Ψ_v são expressas em termos de polinômios de Laguerre com sinal alternante: com isto, a integração na equação (III.16) fica extremamente difícil. Com o advento dos computado res, esta dificuldade foi teoricamente eliminada:vários programas foram desenvolvidos para fazer a integração numericamente, usando

Detalhes sobre este método podem ser encontrados em [Ja71]

autofunções de Morse. Entretanto, estes processos numéricos tendem a apresentar erros, devido às oscilações rápidas das autofun ções [Ni61]. Relacionados à dificuldade na integração numérica da equação (III.16) estão alguns métodos aproximados para o cálculo da integral de overlap. O mais usado destes métodos é o método do a-médio [FJ53]. Neste método, os parâmetros a dos potenciais de Morse

$$U(r) = T_e + D \{1 - \exp[-a(r-r_e)]\}^2$$
 (II.20)

que representam os estados superior e inferior na transição, são substituídos por $a_m = (a'+a'')/2$. Esta substituição permite solução analítica para os FCF. Quando

$$\left|\frac{\mathrm{da}}{\mathrm{a}}\right| = \left|\frac{\mathrm{a'-a''}}{\mathrm{a'+a''}}\right| < 5\% \qquad (III.28)$$

o erro introduzido nas funções de onda é pequeno e a aproximação é razoável. Quando a condição (III.28) não é satisfeita, pode-se usar uma aproximação adicional, conhecida como deslocamento do r_e (r_e shift) [JF53], que deu bons resultados para alguns sistemas de bandas. O método do a-médio envolve a distorção do pote<u>n</u> cial e o erro cresce à medida que (a'-a") e (v'+v") crescem [CP73].

Recentemente entretanto, Chang e Karplus [CK70] prop<u>u</u> seram um novo método para o cálculo de FCF baseando-se numa expan são assintótica para a integral que no método do a-médio é aproxi mada empíricamente. Este método foi empregado com sucesso no cá<u>l</u> culo de FCF para o primeiro sistema positivo do N₂, o segundo si<u>s</u> tema positivo do N₂ e o sistema violeta do CN [CP70].Adiante apr<u>e</u> sentamos uma extensão deste método para o cálculo de fatores de intensidade de banda (III.21) que, para R_e(r) = 1 e J = 0, repr<u>o</u> duzem os FCF de [CK70].

III.4 - Sobre o Uso dos Potenciais de Morse e RKR no Cálcu lo de Fatores de Franck Condon

Os métodos mais usados atualmente para o cálculo de fatores de Franck Condon são os baseados no emprego dos potenciais de Rydberg-Klein-Rees (RKR) e de Morse. Nesta seção, descrevemos ambos os métodos e comentamos suas aplicações.

O método de RKR [CP73] parte dos níveis de energia d<u>e</u> rivados experimentalmente E_{vJ} para construir a curva do potencial molecular usando um método da mecânica clássica. Os pontos de r<u>e</u> torno clássico do movimento vibracional correspondente a uma ener gia potencial U são dados por

$$r_{+}(U) = (f/g + f^2)^{1/2} \pm f$$
 (III.29)

onde f e g são definidas por

$$f = \frac{\partial S}{\partial U} e g = -\frac{\partial S}{\partial k}$$
 (III.30)

S é a integral de Klein definida por

- 37 -

$$S(U,k) = \frac{h}{\sqrt{2\pi^{2}\mu}} \int_{0}^{1} \sqrt{U-E_{vJ}} dI$$
 (III.31)

Nesta equação μ é a massa reduzida da molécula, I = v + 1/2 e $k = \mu^2 J(J+1)/2\mu$ são as variáveis correspondentes à vibração e ro tação da molécula respectivamente. Os valores destas variáveis não estão restritos a números discretos e a integração deve ser feita para todos valores de I até I', onde $E_{TT} = U.$ 0 potencial U assim calculado é usado para obter-se as funções de onda molecu lares pela integração numérica da equação de Schrödinger. Isto fei to, nova integração numérica é necessária para obter os fatores de Franck Condon através da equação (III.16). A vantagem do méto do de RKR é que a curva de potencial é derivada diretamente dos niveis de energia. Em consequência, não depende de suposições SO bre a forma da curva de potencial. Porém, para baixos números vi bracionais existem poucos pontos para fazer a integral da equação (III.31). Além disto, os vários processos numéricos envolvidos na obtenção dos fatores de Franck Condon devem ser criteriosamente es colhidos para assegurar a exatidão das várias quantidades envolvi das. Em particular, para números vibracionais altos, as funções de onda têm muitas oscilações, o que dificulta as integrações numé ricas.

Em contraste, o cálculo dos fatores de Franck Condon com o potencial de Morse usa somente algumas constantes espectros cópicas da molécula para construir um potencial que permite encon trar soluções analíticas para as funções de onda. Então a int<u>e</u> gral da equação (III.16) pode ser feita ou numericamente ou, em vista de existirem expressões analíticas para as funções de onda,

usando aproximações convenientes, tais como a do a-médio anterior mente descrita. Existe ainda um método exato para a solução da equação (III.16) para autofunções de Morse [CK70]. A vantagem do uso do potencial de Morse é permitir o cálculo dos números 9., 1 ,, " e outros, mesmo quando se tem poucos dados da molécula e com um minimo de trabalho numérico. Porém, a energia de dissociação pre dita pelo método de Morse é, em geral, um pouco alta em relação aos valores experimentalmente determinados. Como conseqüência dis to, quantidades calculadas para altos números vibracionais podem desviar-se dos valores obtidos experimentalmente. Além disso, a energia potencial para r = 0 é um valor grande mas finito. Porém este fato não tem consequências na prática.

Uma detalhada comparação entre as quantidades deriva das através do emprego dos dois métodos, tais como FCF e o momen to de transição eletrônico, é apresentada por Kuznetsova, Kuzmenko, Kuziakov e Plastinin [KKKP74]. Neste artigo de revisão se conclui que ambos os métodos produzem resultados basicamente equivalentes. Como, por exemplo, cálculos RKR feitos por diferentes autores apr<u>e</u> sentam diferenças entre si semelhantes às diferenças entre Morse e RKR. Em vista disto, achamos o método que utiliza o potencial de Morse conveniente, por requerer um mínimo de dados espectrosc<u>ó</u> picos na construção do potencial e por apresentar soluções anal<u>í</u> ticas facilitando enormemente os cálculos.

- 38 -

III.5 - <u>O Cálculo Exato da Intensidade: Fatores de Intensi</u> dade de Banda

a) A Centroide r

Quanticamente, para conhecer-se exatamente a in tensidade das transições vibracionais, como mostrado na equação (III.20), devemos calcular o fator de intensidade de banda (BSF)

$$\mathbf{S}_{\mathbf{v}'\mathbf{v}''} = \left| \int_{0}^{\infty} \Psi_{\mathbf{v}'}^{*} \mathbf{R}_{\mathbf{e}}(\mathbf{r}) \Psi_{\mathbf{v}''} d\mathbf{r} \right|^{2} \qquad (\text{III,13})$$

onde $R_e(r)$ é o momento de transição eletrônico (III.12) e $\Psi_{v'}$, $\Psi_{v''}$ são as funções de onda do estado superior e inferior respect<u>i</u> vamente.

Esta integral é bastante difícil de se calcular. O processo de cálculo para a obtenção dos números S_{v'v"} usado h<u>o</u> je em dia, é o que vamos descrever a seguir [Ni77].

A expansão empírica finita para o momento de transição eletrônico

$$R_{e}(r) = \Sigma a_{n}r^{n} , \qquad (III.32)$$

para o intervalo de distância internuclear r encontrado num siste ma de bandas, é freqüentemente encontrada na literatura. Portanto, a equação (III.13) nos mostra que é preciso calcular integrais do tipo

$$H_{v'v''}^{(n)} = \int_{0}^{\infty} \Psi_{v'}^{*} \Psi_{v''} r^{n} dr \qquad (III.33)$$

Através desta expressão define-se a centróide r de grau n:

$$r_{v'v''}^{(n)} = H_{v'v''}^{(n)} / H_{v'v''}^{(0)}$$
(III.34)

Esta é interpretada como a distância internuclear no momento que se efetua a transição. Em particular, para a centróide r do pri meiro grau temos

$$r_{v'v''} = H_{v'v''}^{(1)} / H_{v'v''}^{(0)}$$
(III.35)

Entretanto, para o cálculo da centróide r de grau n, em vez de usar a definição (III.34), usa-se a aproximação da centróide r se gundo a qual

$$r_{v'v''}^{(n)} \sim (r_{v'v''})^n$$
 (III.36)

Esta aproximação é feita tendo-se em consideração a dificuldade das integrais na equação (III.33). Temos então para o fator de in tensidade de banda teórico, usando (III.13), (III.32) e (III.33),

$$S_{v'v''} = R_e^2(r_{v'v''}) q_{v'v''}$$
 (III.37)

ou seja, no lugar da equação (III.13), usa-se a equação (III.37), utilizando-se os números $r_{v'v''}$, calculados através das equações (III.35) e (III.36), o fator de Franck Condon $q_{v'v''}$ e a expressão (III.32) para o momento de transição eletrônico. É comum encontrar-se arranjos dos números $q_{v'v''}$ e $r_{v'v''}$ na literatura. É int<u>e</u> ressante ler-se os artigos onde a aproximação da centróide r foi originalmente apresentada [Fr54a], [Fr54b] para ver sob quais con dições ela é aplicável e as justificativas.

As expressões para o momento de transição eletr<u>ô</u> nico R_e(r) usualmente encontradas na literatura são calculadas p<u>e</u> lo processo descrito em [Fr54a], isto é: mede-se I_{v'v"}, calcula--se $(I\lambda^4/q)_{v'v"}^{1/2}$ e coloca-se esta quantidade num gráfico contra a centróide r, r_{v'v"}, renormalizando convenientemente para levar em conta os efeitos da população N_v, na equação

$$\left[\frac{I_{v'v''}^{\lambda}v'v''}{q_{v'v''}}\right]^{1/2} = \operatorname{cte} N_{v'}^{1/2} R_{e}(r_{v'v''}) \qquad (III.38)$$

Este método empírico de cálculo, que praticamente força a conco<u>r</u> dância entre dados experimentais e cálculos teóricos, vem sendo bastante criticado [Ja66], [JS67], [KB68], [JS68], [K171], [Ja72]. Yeager e McKoy [YM77] observam ainda que uma comparação detalhada entre os momentos de transição teórico e experimental é algo d<u>i</u> fícil, já que o momento de transição eletrônico extraído da anál<u>i</u> se da intensidade das bandas é usualmente expresso em termos da centróide r.

b) A Expansão Assintótica

Recentemente, Chakraborty [CPC71], [Ch72] esten deu o método da expansão assintótica, usado originalmente por Chang e Karplus [CK70] no cálculo de FCF, para calcular os fato res de intensidade de banda dados pela equação (III.13) nos casos em que[†]

$$R_{o}(r) = A e^{-Br} \qquad (III.39)$$

e introduziu a dependência rotacional tanto para FCF (A = 1, B = 0) como para BSF, através do modelo de Morse-Pekeris [Mo29], [Pe34].

Como parte do presente trabalho, apresentamos a solução de

$$\mathbf{S}_{\mathbf{v}^{'}\mathbf{J}^{'}}^{\mathbf{v}^{'}\mathbf{J}^{'}} = \left| \mathbf{J}_{\mathbf{v}^{''}\mathbf{J}^{''}}^{\mathbf{v}^{'}\mathbf{J}^{'}} \right|^{2} = \left| \mathbf{\int}_{0}^{\infty} \Psi_{\mathbf{v}^{'}\mathbf{J}^{'}} \mathbf{R}_{e}(\mathbf{r}) \Psi_{\mathbf{v}^{''}\mathbf{J}^{''}} d\mathbf{r} \right|^{2} \quad (\text{III.40})$$

com $R_e(r)$ dado pela equação (III.32), onde $\Psi_{v'J'}$ e $\Psi_{v'J''}$ são aut<u>o</u> funções de Morse-Pekeris (incluindo a interação entre vibração e rotação da molécula) para os níveis superior e inferior respect<u>i</u> vamente. A presente solução é exata no sentido de que o polinômio $R_e(r)$ é levado em conta sem nenhuma aproximação do tipo centróide r, anteriormente descrita.

Para uma molécula diatômica de massa reduzida µ a autofunção de Morse-Pekeris é dada por [Ru65]

$$\Psi_{vJ}(r) = N_{vJ} e^{-z/2} z^{b/2} L_{v+b}^{b}(z)$$
 (III.41)

onde v e J são os números quânticos vibracional e rotacional e

[†] As duas formas usuais para R_e(r) são dadas pelas equações (III.32) e (III.39) sendo que a (III.39) representa aproximada mente 20% dos casos, como pode ser visto na Tabela II de [KKKP74].

$$z = K_{1} \exp[-a(r-r_{0})]$$
 (adimensional)

$$r_{0} = r_{e}(1+\alpha)$$
 (Ångstrom)

$$\alpha = 4 \ A \ B_{e}/w_{e}^{2}$$
 (adimensional)

$$A = B_{e} \ J \ (J+1)$$
 (cm⁻¹)

$$a = 0.243559 (\mu w_{e} x_{e})^{1/2}$$
 (Ångstrom⁻¹)

$$r_{e} = 1/[0.243559 (\mu B_{e})^{1/2}]$$
 (Ångstrom)

$$K_{1} = 2 \ [(D_{2}-C_{2})/w_{e} x_{e}]^{1/2}$$
 (adimensional)

$$K_{2} = 2 \ (2D_{1}-C_{1})/(w_{e} x_{e} K_{1})$$
 (adimensional)

$$K_{2} = 2 \ (2D_{1}-C_{1})/(w_{e} x_{e} K_{1})$$
 (adimensional)

$$D_{1} = \frac{D_{2}}{E_{0}} = w_{e}^{2} E_{0}/(4w_{e} x_{e})$$
 (cm⁻¹)

$$E_{0} = \exp(-a \ r_{e} \ \alpha)$$

$$C_{1} = [A/ar_{0}(1+\alpha)^{2}] \ [1-3/ar_{0}]$$
 (cm⁻¹)

$$b = K_{2} - 2v - 1$$
 (adimensional)

$$N_{vJ}^{2} = \frac{ab}{v! \Gamma(K_{2}-v)}$$
 (Ångstrom⁻¹)

$$L_{v+b}^{b}(z) = L_{K_{2}-v-1}^{K_{2}-2v-1}(z) = (-1)^{V} \ \Gamma(K_{2}-v) \ \sum_{n=0}^{V} (-1)^{n} \binom{v}{n} \ \frac{z^{V-n}}{\Gamma(K_{2}-v-n)}$$

onde w_e, w_ex_e e B_e são as constantes espectroscópicas usuais [He50]. Substituindo a equação (III.41) na (III.40) temos[†]

⁺ Uma linha refere-se ao estado superior e duas linhas ao estado inferior.

$$J_{v''J''}^{v'J'} = \frac{N_{v'J'} N_{v''J''}}{a'} \xi^{(K_2^{\nu}-1)/2}$$

$$\sum_{\lambda=0}^{v'} \sum_{\mu=0}^{v''} (-1)^{\lambda+\mu} \xi^{-\mu} B(b',v',\lambda) B(b'',v'',\mu) I_{\mu}^{\lambda}(\xi,\gamma,p) \quad (III.42)$$

44

onde

$$\gamma = a''/a' \qquad \xi = \left[K_1''/(K_1')^{\gamma}\right] \exp(a''r_0'' - \gamma a'r_0')$$

B(b, v,
$$\sigma$$
) = $\frac{v!(b+v)_{\sigma}}{\sigma!(v-\sigma)!}$ = $\binom{v}{\sigma} \frac{\Gamma(b+v+1)}{\Gamma(b+v+1-\sigma)}$

 $(b+v)_{\sigma} = (b+v) (b+v-1) \dots (b+v-\sigma+1)$

$$(b+v) = 1$$

е

$$I_{\mu}^{\lambda}(\xi,\gamma,p) = \int_{0}^{\infty} z^{p} \exp\left[-\frac{1}{2} (z+\xi z^{\gamma})\right] R_{e}(z) dz \qquad (III.43)$$

com

$$p = \frac{1}{2}(K_2' + \gamma K_2'') - \frac{1}{2}(1+\gamma) - 1 - \lambda - \gamma \mu$$

onde z'(\exists z, para simplificar a notação) foi escolhida como vari<u>á</u> vel de integração; é fácil ver que

$$dr = -\frac{dz}{a'z}$$
$$z'' = Ez^{\gamma}$$

Mudando-se de variável de acordo com z = pt a integral (III.43) pode ser escrita como

$$I_{\mu}^{\gamma}(\xi,\gamma,p) = p^{p+1} \int_{0}^{\infty} \exp[pg(t)] R_{e}(t) dt \qquad (III.44)$$

onde

$$g(t) = -\frac{1}{2}(t+\xi p^{\gamma-1}t^{\gamma}) + \ln t$$
 (III.45)

Como, na integral da equação (III.44), $p(=p_{\lambda\mu})$ é um parâmetro gran de[†], podemos resolvê-la através do método de Laplace de expansão assintótica [0174]. Esta integral é tratada com detalhe no Apênd<u>i</u> ce A.

Supondo então para o momento de transição a for

ma

$$R_e(r) = a_0 + a_1 r + a_2 r^2 + a_3 r^3 + \dots$$

temos, até o termo em r^2 na expansão,

$$I_{\mu}^{\lambda}(\xi,\gamma,p) = p^{p+1/2} \left(\frac{\pi}{-b_2}\right)^{1/2} \exp(pg_0) R_e(\rho_0) \left[1 + (E+E_1)/p\right] \quad (III.46)$$

onde

$$E = \frac{3b_4}{4b_2^2} - \frac{15b_3^2}{16b_2^3}$$

^TPor exemplo,
$$p_{00} = 112.76$$
 ($\gamma = 0.92$) para o $N_2(2^+)$
 $p_{00} = 107.30$ ($\gamma = 0.83$) para o $N_2^+(1^-)$
 $p_{00} = 243.08$ ($\gamma = 0.92$) para o I_2 (B-X)

$$E_{1} = -\left[a_{1}\left(\frac{3b_{3}}{4b_{2}} + \frac{1}{4t_{0}}\right) + a_{2}\left(\frac{3b_{3}\rho_{0}}{2b_{2}} + \frac{\rho_{0}}{2t_{0}} + \frac{1}{2a^{*}t_{0}}\right)\right] / \left[a^{*}t_{0}b_{2}R_{e}(\rho_{0})\right]$$

$$g_{0} = g(t_{0})$$

$$b_{2} = g^{*}(t_{0})/2!$$

$$b_{3} = g^{**}(t_{0})/3!$$

$$b_{4} = g^{***}(t_{0})/4!$$

$$\rho_{0} = r_{0}' + \ln[K_{1}'/(pt_{0})]/a'$$

com to sendo dado pela condição

$$g'(t_{0}) = 0$$
 (III.47)

É interessante notar que para o caso $R_e(r) = 1$ a equação (III.46) se reduz a

$$I_{\mu}^{\lambda}(\xi,\gamma,p) = p^{p+1/2} \left(\frac{\pi}{-b_2}\right)^{1/2} \exp(pg_0) \ [1+E/p] \qquad (III.48)$$

que é idêntica à obtida por Chakraborty [Ch72] para o FCF, como era de se esperar.

Gostariamos ainda de mencionar o fato de que as expressões aqui derivadas podem também ser utilizadas para calcu lar fatores de Franck Condon, centróides r e integrais afins, sim plesmente trocando os coeficientes da equação (III.32). Em particular, nossos cálculos podem ser usados para testar a validade da equação (III.36). IV - ARRANJO EXPERIMENTAL PARA MEDIDA DA DISTRIBUIÇÃO DA INTENSI DADE ESPECTRAL.

IV.1 - Introdução

Os primeiros estados eletrônicos excitados do nitrogê nio molecular estão a mais de 6 eV acima do seu estado fundamen tal, como pode ser visto na Figura I.l. Esta é uma energia consi deravelmente maior do que a de uma molécula de nitrogênio à tempe ratura ambiente. Estes estados do N, são excitados, geralmente, por transferência de energia de partículas com a energia apropria da. No laboratório, a técnica mais simples de produzir moléculas de nitrogênio excitadas é por meio de uma descarga elétrica em meio gasoso. Nestas descargas a corrente elétrica é conduzida por elétrons de alta energia, os quais podem transferir esta energia às moléculas de nitrogênio através de colisões. As moléculas assim excitadas decaem para seus níveis de mais baixa energia atra vés de vários processos, tais como radiação, colisão com as pró prias espécies existentes na descarga, colisão com as paredes do canal, dissociação, etc. Quando a vida média do estado excitado é curta (da ordem de 30-60 nseg) e a pressão no canal não muito ele vada (0.1 - 0.5 torr), o modo de decaimento predominante é a emis são de luz. Esta emissão luminosa apresenta uma distribuição es pectral caracterizada por numerosas progressões de bandas. Para uma descarga em nitrogênio, na parte do espectro entre 3000 e 5000 Å, estas progressões são numerosas e bem resolvidas. Este úl timo fato torna simples a análise do espectro e permite comparar

as intensidades das bandas medidas com os cálculos apresentados no Capítulo V.

O presente capítulo começa com uma descrição do sist<u>e</u> ma de descarga elétrica e da óptica e eletrônica de detecção. A seguir vêm alguns detalhes da técnica de medição das intensidades relativas. Finalmente, os dados experimentais obtidos e a maneira de reduzi-los.

IV.2 - Eletrônica da Descarga Elétrica

Neste trabalho, usamos um circuito elétrico padrão para gerar uma descarga elétrica numa célula apropriada. Esta célula é de vidro "pyrex" e tem dois eletrodos, entre os quais se aplica a voltagem necessária para gerar a corrente da descarga elétrica, que pode ser contínua ou pulsada. Esta característica do circuito elétrico permite que a corrente na célula seja varia da desde 1 mA até 100 A, com uma fonte de alta tensão variavel entre 0-20 KV e cujo limite de corrente é de 20 mA. No caso de re gime contínuo de corrente, a tensão da fonte é aplicada diretamen te entre os eletrodos. Para se obter pulsos de corrente, a tensão da fonte é usada para carregar um capacitor de 0.03µF, o qual é descarregado por meio do circuito mostrado na Figura IV.1. Nesta figura o resistor de carga R pode ser variado de modo a obter-se diferentes intensidades de corrente no canal.O indutor Lé de 10 mH e foi construído especialmente, usando-se indutores comerciais de

- 48 -

radiofreqüência^T. A corrente e tensão na célula foram medidas com o medidor de corrente Tektronix P6042 e a ponteira de alta tensão Tektronix P6015, respectivamente. O elemento T na Figura IV.1 r<u>e</u> presenta o sistema de chaveamento eletrônico. Quando esta chave é fechada o capacitor Ce o indutor L formam um circuito LC standard, enquanto não rompe a descarga no canal. A alta tensão que aparece periodicamente nos extremos do indutor L é capaz de romper uma descarga elétrica no canal, descarregando deste modo a energia a<u>r</u> mazenada no circuito LC. Na Figura IV.2 mostramos os pulsos de co<u>r</u> rente e tensão aplicados no canal de descarga.

FIGURA IV.1 - Esquema do circuito elétrico usado para obtenção de corrente elétrica pulsada.

UFRGS Instituto de Física Biblioteca

A isolação foi consideravelmente melhorada aquecendo-se o indu tor até 70°C e em seguida envernizando-o com verniz comum de m<u>a</u> deira.

Figura IV.2 (a) corrente e (b) tensão no canal de descarga usadas para gerar o fon N_2^+ .

O chaveamento eletrônico T é o mesmo usado por Francke [Fr76] e constitui-se basicamente num Thyratron de hidrogênio 5C22 controlado por um gerador de pulsos. Este gerador fornece pulsos de 900 Volts de pico, o que é suficiente para disparar 0 5C22. Seu esquema é dado pelas Figuras IV.3 e IV.4 e tem como componentes essenciais um Thyratron 3C45 e um circuito integrado TDB-555. O circuito integrado é usado para gerar pulsos cuja re petição pode ser variada até 100 Hz. O Thyratron 3C45, além da função de chavear o pulso de tensão intermediária, tem por fina lidade desacoplar a alta tensão no Thyratron 5C22 do circuito in tegrado. Nas medidas com corrente contínua passando pelo canal, a resistência R da Figura IV.4 foi ajustada convenientemente de modo a obter-se a intensidade de corrente desejada. Para as medi

FIGURA IV.3 - Diagrama do gerador de pulsos com controle de freqüência. Resistências em Ω e capacitâncias em μ F.

FIGURA IV.4 - Esquema do chaveamento eletrônico da descarga elétrica. Resistências em Ω e capacitâncias em μ F. 1

J

-

das na descarga pulsada seu valor foi mantido constante. Neste c<u>a</u> so, apesar de ter valor bastante pequeno (1Ω) , sua presença era importante para limitar o ruído eletromagnético gerado.

IV.3 - <u>A Célula de Descarga Elétrica e o Sistema de Vácuo e</u> Gás

O diagrama esquemático da experiência, com o sistema de vácuo e gás, o canal de descarga elétrica e a óptica empregada na coleta do sinal luminoso, é mostrado na Figura IV.5.

O canal de descarga foi feito de um tubo de "pyrex" de 7.8 mm de diâmetro interno, no qual foram soldados dois eletro dos de aço-inox através de junções metal-vidro de tungstênio. O canal foi conectado à linha de vácuo, entre os pontos Tl e A (ve ja Figura 6), através de uma tubulação de vidro comum. No restan te da linha utilizou-se cobre: 1/4" de diâmetro, no trecho entre R e Tl, e $1\frac{1}{4}$ " à partir do ponto A em direção à bomba de vácuo. O volume deste sistema, entre as duas torneiras, é de 110 cm³ e da torneira T2 até a bomba de vácuo, 150 cm³. Para determinar a pre<u>s</u> são no canal de descarga utilizou-se um medidor tipo Pirani gauge, modelo Combitron CM30, da Leybold-Heraeus.

O gás puro de nitrogênio usado nesta experiência foi obtido pela evaporação de nitrogênio líquido. Este método tem uma grande vantagem: devido à baixa temperatura do nitrogênio líquido (-196^OC), o gás evaporado não apresenta impurezas condensáveis a temperaturas mais altas, como é o caso do vapor de água e oxig<u>ê</u>

53 -

FIGURA IV.5 - Diagrama do arranjo experimental (fora de escala).

R - Reservatório de N₂ líquido.

F

CD - Canal de descarga.

P - Medidor de Pressão (Pirani gauge).

E - Espectrômetro.

F - Fotomultiplicadora.

T1,T2 - Torneiras.

nio; estas impurezas ficam retidas no líquido.Tentativas iniciais de se usar nitrogênio comercial foram infrutíferas devido à gra<u>n</u> de quantidade de impurezas nele detectadas.

IV.4 - Optica e Eletrônica de Detecção

A luz emitida pela descarga elétrica foi recolhida com o auxílio de duas lentes e analizada com um espectrômetro de 0.25 m da Jarrell-Ash, modelo JA-82410 (veja Figura IV.5), com r<u>e</u> soluções finais entre 3 e 5 Å. Portanto, no presente experimento a estrutura rotacional não é resolvida. A intensidade luminosa na saída deste espectrômetro foi medida com uma fotomultiplicadora RCA 8575 (com fotocátodo 116). O sinal elétrico assim obtido, no caso de descarga contínua, foi amplificado (10x) num osciloscópio Tektronix modelo 556 e registrado em papel na forma usual. Para as medidas pulsadas, o sinal proveniente do fotomultiplicadorafoi integrado com um BOX-CAR da PAR modelo 162. Nas Figuras IV.6, IV.7 e IV.8 são mostrados exemplos de espectros obtidos.

As Figuras IV.6 e IV.7 mostram espectros da descarga contínua e a Figura IV.9 da descarga pulsada. Neste trabalho, m<u>e</u> dimos os diversos conjuntos de bandas com $\Delta v = v' - v'' = cte$ sob ganho crescente, para acentuar as diferenças entre os picos de uma mesma seqüência $\Delta v = cte$ e permitir maior precisão na medida das intensidades relativas. Tendo em vista a boa luminosidade da fo<u>n</u> te, este procedimento, junto com o teste da linearidade do sist<u>e</u> ma (filtros ND da Oriel Optics), nos permitiu estender as medidas

FIGURA IV.6 - Sequências $\Delta v = 4$, 5 e 6 do segundo sistema positivo do nitrogênio molecular. O pico assinalado correspon de à transição (0-0), em 3914 Å, do primeiro sistema negativo do ion N_2^+ .

FIGURA IV.8

Descarga elétrica pulsada em nitrogênio, mostrando o aparecimento das bandas do primeiro sistema negativo do N_2^+ . Notar a alteração na intensidade relativa das bandas 2-5 e 0-3 do $N_2(2^+)$.

até a banda 0-6 (5032Å) do nitrogênio.

No caso da descarga pulsada, em virtude da maior de<u>n</u> sidade dos elétrons, observou-se o aparecimento com maior intens<u>i</u> dade das bandas do primeiro sistema negativo $(B^2\Sigma_u^+ - X^2\Sigma_g^+)$ do fon N_2^+ . Isto é claramente visto comparando-se as Figuras IV.7 e IV.8. Na descarga pulsada observa-se ainda uma alteração das intensid<u>a</u> des em relação ao caso contínuo. Isto também pode ser visto pela comparação das intensidades relativas das bandas vibracionais 2-5 e 0-3 do segundo sistema positivo do N₂, nas Figuras IV.7 e IV.8.

A Figura IV.2a mostra o pulso de corrente no canal de descarga. Este pulso apresenta dois máximos que são devidos a os cilações próprias do circuito LC. Como o intervalo de tempo entre eles é relativamente pequeno e portanto a densidade de espécimes excitadas é ainda razoável no canal, o segundo pulso de corrente, apesar de bem menor consegue "reacender" a descarga. Pode-se ver isto na Figura IV.9, que mostra a evolução temporal da luz emiti da por duas espécies existentes no plasma: N₂ no estado C ${}^{3}\pi_{u}$ e N⁺₂ no estado B ${}^{2}\Sigma_{u}^{+}$. É interessante notar-se a relação diferente entre os dois máximos destas curvas, mostrando que a densidade de N⁺₂ no estado B ${}^{2}\Sigma_{u}^{+}$ é bem menor no segundo máximo, quando compara da com a correspondente densidade de N₂ no estado C ${}^{3}\pi_{u}$, no mesmo instante de tempo.

IV.5 - Calibração do Equipamento

A sensibilidade da fotomultiplicadora e a eficiência

FIGURA IV.9 - Evolução temporal da luz emitida por duas das espécies existentes numa descarga el<u>é</u> trica pulsada em nitrogênio molecular. das lentes e do espectrômetro usados neste experimento são fun ções do comprimento de onda. Portanto, as intensidades medidas de vem ser convenientemente corrigidas para assim obtermos as inten sidades "verdadeiras" emitidas pelo gás. A eficiência da óptica usada para recolher a luz é determinada pela absorção da luz no vidro das lentes e do canal e pela eficiência do espectrômetro. A eficiência do espectrômetro é constante entre 3500 e 4200 Å e vai lentamente diminuindo na direção de comprimentos de onda maiores. Esta variação, junto com a menor intensidade das bandas nesta re gião, pode introduzir um erro nas intensidades medidas compreend<u>i</u> do entre 10 e 15%.

A absorção pelos vidros no ultravioleta foi determina da do seguinte modo: como as bandas mais intensas do segundo sis tema positivo do N, estão nesta região do espectro, suas intensi dades são bem estudadas. Assim sendo, medimos a intensidade das bandas nesta região do espectro e calculamos a absorção comparan do nossas medidas com as observadas por Tyte [Ty62a]. Este proce dimento nos permitiu determinar a curva de resposta do sistema pa ra a luz do $N_{2}(2^{+})$ no ultravioleta. O ponto desta curva em 3370 Å (banda 0-0) foi ainda testado adicionalmente, de modo absoluto, u tilizando-se a emissão superradiante de um Laser de nitrogênio, de tectada por um calorímetro Thermopile, da TRG, modelo 110. Uma me dida relativa adicional foi feita com o fotodiodo F4000 da ITT. A curva assim obtida está em bom acordo com a fornecida pelo manual da Esco Optics. Determinou-se também que acima de 3700 Å os vidros são completamente transparentes. A comparação da relação de intensidade da banda 0-0, medida de modo absoluto com o Thermopile, com as bandas acima de 3700 Å que não são afetadas pelo vidro, concorda muito bem com as medidas de vários autores, como pode ser visto na Tabela V.5 do capítulo V. Este tipo de medida revelouse um auxiliar valioso no laboratório quando se precisa determi nar a resposta de um tipo de vidro desconhecido, no ultravioleta.

Quanto à fotomultiplicadora, sabemos que sua sensib<u>i</u> lidade é medida pela eficiência quântica $Q(\lambda)$ do fotocátodo. Esta eficiência quântica é a probabilidade de emitir um elétron por f<u>o</u> ton de luz incidente. Se o número de fótons emitidos por unidade de tempo por uma fonte luminosa com potência radiante de P watts no comprimento de onda λ (quando cada fóton tem energia hc/ λ) é P λ /hc, temos que a corrente obtida no fotocátodo será

$$I = \frac{P\lambda}{hc} \in Q(\lambda)$$
 ampéres

onde "e" é a carga de um elétron. Portanto, a sensitividade $E(\lambda)$ do fotocátodo será dada por

$$E(\lambda) = \frac{I}{P} = \frac{e\lambda}{hc} Q(\lambda)$$

Usando dados fornecidos pelo fabricante da fotomultiplicadora [RCA70], obtivemos, através de um ajuste pelo método dos mínimos quadrados, as seguintes expressões para a sensitividade do fotocá todo, em mA/W,

$$E(\lambda) = -585.90 + 0.3483\lambda - 0.4448 10^{-4} \lambda^{2}$$

para 3000 < λ < 4600 Å

e $E(\lambda) = 262.00 - 0.04\lambda$

para $4600 < \lambda < 5050 Å$

O fator fornecido por estas expressões foi utilizado para corr<u>i</u> gir as intensidades medidas.

Nas Tabelas IV.1 e IV.2 apresentamos o resultados das medidas de intensidade das diversas bandas compreendidas entre 3266 e 5032 Å. Na Tabela IV.1 a intensidade 100 foi escolhida pa ra marcar as bandas, na direção de v" crescente, a partir de onde o vidro é transparente. Como já foi notado anteriormente na seção IV.4, os dados da Tabela IV.1 são de medidas em descarga contínua e as da Tabela IV.2 em descarga pulsada.

TABELA IV.1 - Intensidades observadas do segundo sistema positivo do N₂, pressão de 0.2 torr^(a).

v"	0	1	2	3	4	5	6	7	8	9	10
0	570.8 559.5	320.3 293.6	100.0 100.0	28.3 33.2	6.7 9.2	1.4 2.3	0.4				
1		26.7 25.2	141.6 135.7	100.0	45.4 53.6	15.1 21.1	2.5	0.6			
2			11.1 14.8	60.7 56.1	100.0 100.0	72.4 82.8	31.8 42.8	6.3 8.9	1.8 3.2		
3				99.4 123.0		79.9 116.0	100.0	51.1 50.0	18.8 34.3	6.2 14.8	
4		-			229.2 165.9		50.0 55.3	100.0	74.0	34.4 42.1	12.0

(a) Na primeira linha: medidas com 20 mA de corrente no canal; Na segunda linha: medidas com 30 mA de corrente no canal.

TABELA IV.2 Intensidades observadas do primeiro sistema negativo do N⁺₂, pressão 1.5 torr e corrente no canal 1.7 A de pico (veja Figura IV.2)

v"	0	1	2	3	4	5
0	91.1	23.0	2.7			
1	19.1	17.2	9.6	4.4		
		16.3		15	2.4	
			19.8		3.3	2.4

Finalmente, a Tabela IV.3 apresenta uma série de núm<u>e</u> ros derivados das medidas no sistema $N_2(2^+)$, para 20 mA de corre<u>n</u> te no canal de descarga, as quais serão utilizados no capítulo s<u>e</u> guinte. Nesta tabela (R_e)_i refere-se aos valores $I\lambda^4/q_i$ corrigidos com a população 1, 0.59, 0.30, 0.15 e 0.10 dada naTabela V.6a. Estes números foram ajustados, pelo método dos mínimos quadrados, com as respectivas centróides r da Tabela V.7, para gerar as fu<u>n</u> ções R_e (r) relativas apresentadas na Tabela V.11.

			No. of Concession, Name	and the second se	THE OWNER AND ADDRESS OF THE OWNER ADDRESS OF THE O			
	Iv'v"	1λ4	$1\lambda^4/q_1$	$1\lambda^4/q_2$	$1\lambda^4/q_3$	$(R_e)_1$	$(R_e)_2$	$(R_e)_3$
	2 0m A		RKR	Morse	Morse	RKR	Morse	Morse
(a) C.Esp.			BVTW65	He50	BVTW65			
$\begin{array}{c} 0 - 0 \\ 0 - 1 \\ 0 - 2 \\ 0 - 3 \\ 0 - 4 \\ 0 - 5 \\ 0 - 6 \end{array}$	1198.1 672.4 209.9 59.4 14.0 3.0 0.8	1545.31099.6439.5161.149.814.25.1	3413.52 3341.23 3006.16 3116.05 3132.08 3155.56 4250.00	3439.35 3345.30 2991.83 3080.31 3055.21 3021.28 3923.08	3307.58 3410.67 3146.03 3356.25 3531.91 3837.84 5666.67	58.43 57.80 54.83 55.82 55.96 56.17 65.19	58.65 57.84 54.70 55.50 55.27 54.97 62.63	57.51 58.40 56.09 57.93 59.43 61.95 75.28
$ \begin{array}{r} 1-1 \\ 1-2 \\ 1-3 \\ 1-4 \\ 1-5 \\ 1-6 \\ 1-7 \end{array} $	49.5 262.3 185.3 84.2 28.0 4.6 1.1	61.5 410.1 368.0 214.9 92.9 20.1 6.4	2847.22 2017.22 1850.18 1958.98 1993.56 1189.35 1122.81	3271.28 2013.25 1840.00 1917.04 1927.39 1129.21 1066.67	1747.16 1890.73 1925.69 2159.80 2357.87 1546.15 1684.21	69.47 58.47 55.99 57.62 58.13 44.90 43.63	74.47 58.42 55.85 57.00 57.15 43.74 42.52	54.42 56.61 57.13 60.50 63.22 51.19 53.43
2-2 2-3 2-4 2-5 2-6 2-7 2-8	10.1 55.1 90.8 65.7 28.9 5.7 1.6	$ \begin{array}{r} 12.1\\ 82.6\\ 171.8\\ 158.6\\ 89.9\\ 23.1\\ 8.6 \end{array} $	508.40 1302.84 1070.40 1138.55 1136.54 638.12 589.04	368.90 1383.58 1065.10 1112.98 1085.75 600.00 551.28	1315.22904.711012.371234.241364.19865.17945.05	41.17 65.89 59.74 61.60 61.55 46.12 44.13	35.07 67.92 59.59 60.91 60.16 44.71 42.87	66.22 54.92 58.10 64.14 67.42 53.70 56.12
3-3 3-5 3-6 3-7 3-8 3-9	40.1 32.2 40.3 20.6 7.6 2.5	46.6 58.5 92.7 60.5 28.9 12.4	528.34 621.02 718.05 613.59 523.55 482.49	394.58 658.04 689.22 569.68 469:16 416.11	763.93 2554.59 699.62 704.31 693.05 746.99	59.36 64.34 69.20 63.96 59.08 56.73	51.28 66.23 67.78 61.63 55.93 52.67	71.37 130.49 68.29 68.53 67.98 70.57
4-4 4-6 4-7 4-8 4-9 4-10	44.0 9.6 19.2 14.2 6.6 2.3	50.1 16.9 42.4 39.9 23.7 10.7	466.05 398.58 423.58 401.41 360.18 301.41	319.11 572.88 426.13 361.41 296.25 232.61	494.08 225.94 354.81 413.90 430.91 426.29	68.27 63.12 65.08 63.37 60.02 54.90	56.48 75.62 65.27 60.11 54.42 48.22	70.30 47.53 59.58 64.32 65.65 65.30

TABELA IV.3 - Resultados das medidas no sistema N₂(2⁺)(veja texto)

(a) C.Esp. dá a referência de onde tiramos as constantes espectroscópicas para calcular os q_i que, após a renormalização para compensar as diferentes populações, originam os números $(R_e)_i$, i = 1, 2, 3.
V - RESULTADOS E INTERPRETAÇÃO[†].

No presente capítulo vamos apresentar a comparação en tre as intensidades medidas neste trabalho e as intensidades cal culadas por nós e por vários autores. Nesta comparação utilizamos as intensidades medidas do segundo sistema positivo (2^+) do nitro gênio molecular, com 20 mA de corrente contínua no canal, apresen tadas na Tabela IV.3. As condições de excitação do primeiro siste ma negativo (1^-) do Ion N_2^+ foram apresentadas no capítulo anterior. Estas intensidades serão também utilizadas para estudar pro priedades moleculares, tais como a população nos níveis vibracio nais, o momento de transição eletrônico e a temperatura vibracional efetiva.

A comparação entre as intensidades medidas e calcul<u>a</u> das é feita em duas etapas: na primeira etapa comparamos $(I\lambda^4)_{v'v''}$ com os fatores de Franck Condon (FCF) $q_{v'v''}$ para progressões v'', isto é, para transições com v' = cte. Isto é feito da maneira us<u>u</u> al, supondo-se que o momento de transição eletrônico R_e é consta<u>n</u> te, através da relação

$$I_{v'v''} \lambda_{v'v''}^4 = cte N_{v'} R_e^2 q_{v'v''}$$
 (V.1)

obtida no capítulo III. Para progressões v", quando N, é constan

⁺ Neste trabalho, para simplificar as tabelas, usamos, às vezes, as referências [BVTW65] e [Ty62] para indicar dados coletados das referências [BVTW65a] e [BVTW65b] e [Ty62a] e [Ty62b]. O mesmo se aplica para [Fr54] e [Fr54a] e [Fr54b].

te, podemos escrever

$$I_{v'v''} \lambda_{v'v''}^4 = cte q_{v'v''}$$
 (V.2)

Na etapa seguinte, levamos em conta a variação do momento de tran sição eletrônico em função da separação internuclear, calculando as intensidades exatamente, através de

$$I_{v'v''} \lambda_{v'v''}^{4} = \text{cte } N_{v'} S_{v'v''} \qquad (V.3)$$

onde $S_{v'v''}$ são os fatores de intensidade de banda (BSF) dados p<u>e</u> la equação (III.13) e calculados pelo programa BSF.Utilizando pr<u>o</u> cedimento padrão [Fr54a,b] e as nossas medidas de intensidade,ca<u>l</u> culamos várias funções momento de transição eletrônico para est<u>u</u> dar o efeito dos fatores de Franck Condon nesta função.

As constantes espectroscópicas necessárias para efetuar os cálculos com o programa BSF estão resumidas na Tabela V.I. As unidades nesta tabela são as usuais em espectroscopia de molé culas diatômicas e estão definidas no Apêndice B. Apesar de na Ta bela V.1 existirem valores de r_e , sempre utilizamos nos cálculos r_e gerado a partir de B_e segundo a equação (B.1). Os valores $w_e Y_e$ nesta tabela somente são necessários para o cálculo de G(v), quan do da determinação da temperatura vibracional efetiva. Como suge rido por Herzberg [He50], um bom indicador da confiabilidade do potencial de Morse na representação do potencial molecular é a com paração da constante α_e experimental com a calculada teoricamente através da relação obtida por Pekeris [Pe34]

	N ₂ [H	le50]	N ₂ [BV]	W65b]	N ⁺ ₂ [H	le50]	N ⁺ ₂ [KP72]	
Estado	с ³ т _и	B ³ πg	с ³ т _и	B ³ πg	$B \Sigma_{u}^{+}$	$x^{2}\Sigma_{g}^{+}$	$X \Sigma_g^+$	
we	2035.1	1734.11	2047.178	1733.391	2419.84	2207.19	2207.00	
wexe	17.08	14.47	28.4450	14.1221	23.190	16.136	16.10	
weye	-2.15		2.08833	-0.05688	-0.5375	-0.040	-0.040	
B ₆	1.8259	1.6380	1.82473	1.6374	2.083	1.9322	1.9319	
$r_e(\hat{A})$	1.1482	1.2123	1.1487	1.2126	1.075	1.1162		
α _e	0.0197	0.0184	0.018683	0.01791	0.0202	0.0195	0.0190	
acalc	0.020233	0.018308	0.028771	0.017974	0.025138	0.019180	0.019145	
μ _A	7.00377				7.00363			

TABELA V.1 - Constantes espectroscópicas das moléculas estudadas[†].

⁺ Constantes espectroscópicas dadas em cm⁻¹.

TABELA V.2 - $\lambda_{v'v''}(\hat{A})$ para os sistemas de bandas $N_2(2^+) \in N_2^+(1^-)$.

v"	0	1	2	3	4	5	6	7	8	9	10
0	3370 3914	3576 4278	3804 4709	4058 5228	4343	4665	5032	5452			
1	3158 3582	3338 3884	3536 4236	3754 4652	3997 5149	4268	4573	4917	5309		
2		3135 3564	3309 3858	3499 4199	3709 4600	3942 5076	4200	4489	4813	5180	
3			3115 3549	3284 3835	3468 4167	3671 4554	3894 5012	4140	4415	4722	5067
4				3102 3538	3266 3818	3445 4141	3641 4516	3856 4958	4093	4355	4647

Primeira linha: $N_2(2^+)$ [BVTW66]. Segunda linha: $N_2^+(1^-)$ [Ba49].

- 67 -

$$\alpha_{e} = \frac{6 \sqrt{B_{e}^{3} w_{e} x_{e}}}{w_{e}} - \frac{6 B_{e}^{2}}{w_{e}}$$
(V.4)

Esta comparação pode ser feita utilizando-se os dados da Tabela V.1. O indice superior CALC indica os a calculados atra vés da equação (V.4). A concordância é muito boa, com exceção da constante α_{e} proposta por [BVTW65a]. Entretanto, a constante a não foi obtida experimentalmente por estes autores, mas sim toma da de outros autores (Dieke e Heath [DH59] [BVTW65b]). As energias, ou seja os valores $\lambda_{u'v''}$ necessários para os cálculos, são apre sentados na Tabela V.2. Na Tabela V.3 apresentamos os FCF calcula dos por vários autores e por nos. Estes valores serão necessários mais adiante para o tratamento dos dados experimentais. Nesta e nas tabelas similares adiante, "Pot." refere-se ao tipo de poten cial usado para calcular-se as funções de onda e "C.Esp." dá a re ferência de onde foram tiradas as constantes espectroscópicas, ne cessárias para construir-se o potencial molecular. Na Tabela V.3 é interessante notar-se a boa concordância entre os valores RKR obtidos por [BVTW66], utilizando suas constantes espectroscópicas obtidas de uma revisão experimental do nitrogênio [BVTW65a,b], e os valores Morse publicados por [JN54], [Ni61], [CP70] e os nos sos, utilizando-se as constantes espectroscópicas de Herzberg [He50]. Entretanto, os valores Morse obtidos com as constantes [BVTW65b] apresentam maiores diferenças quando comparadas com OS RKR de [BVTW66] chegando a variar de um fator ~ 2.5 na banda (2-2). É notável a concordância entre os valores obtidos por [Ni61] e [CP70], tendo-se em conta que diferentes processos de cálculo fo ram empregados por estes autores. A comparação entre os dois con

				-					
Ref.	Ba49	JN54	Pi54	Ni61	ZLB65	BVTW66	CP70	BSF	BSF
Pot.	М	М	Osc.H.	М	RKR	RKR	М	М	М
C.Esp.	He39 Sp35	He50	He50	He50	DH 59	BVTW65	He50	He50	BVTW65
$ \begin{array}{r} 0-0\\ 0-1\\ 0-2\\ 0-3\\ 0-4\\ 0-5\\ 0-6 \end{array} $	0.48 0.32 0.14 0.045	0.448 0.328 0.146 0.053 0.016 0.005 0.001	0.470 0.350 0.153 0.061 0.027 0.003	0.4493 0.3287 0.1469 0.0523 0.0163 0.0047 0.0013	0.455 0.331 0.145 0.0494 0.0145 0.0039 0.0010	0.4527 0.3291 0.1462 0.0517 0.0159 0.0045 0.0012	0.4493 0.3287 0.1469 0.0523 0.0163 0.0047 0.0013	0.4488 0.3281 0.1466 0.0521 0.0163 0.0047 0.0013	0.4672 0.3224 0.1397 0.0480 0.0141 0.0037 0.0009
1-1 1-2 1-3 1-4 1-5 1-6 1-7	0.038 0.22 0.19	0.019 0.203 0.195 0.115 0.047 0.020 0.006	0.027 0.198 0.205 0.136 0.054 0.021 0.007	0.0187 0.2038 0.2003 0.1124 0.0484 0.0179 0.0060	0.0229 0.212 0.202 0.109 0.0443 0.0152 0.0047	0.0216 0.2033 0.1989 0.1097 0.0466 0.0169 0.0057	0.0187 0.2038 0.2003 0.1124 0.0484 0.0179 0.0060	0.0188 0.2037 0.2000 0.1121 0.0482 0.0178 0.0060	0.0352 0.2169 0.1911 0.0995 0.0394 0.0130 0.0038
2-2 2-3 2-4 2-5 2-6 2-7 2-8	0.009 0.094	0.032 0.062 0.158 0.142 0.082 0.039 0.016	$\begin{array}{c} 0.011 \\ 0.074 \\ 0.193 \\ 0.165 \\ 0.089 \\ 0.039 \\ 0.009 \end{array}$	0.0330 0.0596 0.1614 0.1427 0.0830 0.0386 0.0156	0.0230 0.0691 0.169 0.141 0.0772 0.0332 0.0123	0.0238 0.0634 0.1605 0.1393 0.0791 0.0362 0.0146	0.0330 0.0596 0.1614 0.1427 0.0830 0.0386 0.0156	0.0328 0.0597 0.1613 0.1425 0.0828 0.0385 0.0156	0.0092 0.0913 0.1697 0.1285 0.0659 0.0267 0.0091
3-3 3-5 3-6 3-7 3-8 3-9		0.116 0.092 0.141 0.107 0.057 0.024	0.088 0.130 0.181 0.132 0.077 0.035	0.1181 0.0889 0.1345 0.1062 0.0616 0.0298	0.0881 0.102 0.137 0.0993 0.0526 0.0231	0.0882 0.0942 0.1291 0.0986 0.0552 0.0257	0.1181 0.0889 0.1345 0.1062 0.0616 0.0298	0.1178 0.0890 0.1344 0.1060 0.0614 0.0297	0.0610 0.0229 0.1325 0.0859 0.0417 0.0166
4-4 4-6 4-7 4-8 4-9 4-10		0.156 0.032 0.098 0.118 0.077 0.040	$\begin{array}{c} 0.134 \\ 0.061 \\ 0.150 \\ 0.153 \\ 0.104 \\ 0.040 \end{array}$	0.1570 0.0294 0.0996 0.1105 0.0802 0.0461	$\begin{array}{c} 0.116 \\ 0.0470 \\ 0.109 \\ 0.104 \\ 0.0667 \\ 0.0340 \end{array}$	$\begin{array}{c} 0.1075 \\ 0.0424 \\ 0.1001 \\ 0.0994 \\ 0.0658 \\ 0.0355 \end{array}$	0.1570 0.0294 0.0995 0.1105 0.0802 0.0461	0.1566 0.0295 0.0995 0.1104 0.0800 0.0460	0.1014 0.0748 0.1195 0.0964 0.0550 0.0251

TABELA V.3 - Comparação entre os FCF calculados por vários autores para o sistema $N_2(2^+)$.

- 69 -

juntos de valores RKR com valores Morse ([Ni61] por exemplo) mo<u>s</u> tra que, tomando-se [BVTW66] como referência, a concordância e<u>n</u> tre os valores RKR e Morse é melhor que a existente entre os val<u>o</u> res RKR. Os valores desta tabela foram utilizados para gerar as intensidades teóricas apresentadas na Tabela V.4. Nesta tabela, as progressões v" foram normalizadas para 100 para poderem ser co<u>m</u> paradas mais facilmente.

Os valores $(I\lambda^4)_{V'V''}$ obtidos experimentalmente por v<u>á</u> rios autores são apresentados na Tabela V.5[†], junto com os no<u>s</u> sos. Os valores de corrente nela indicados referem-se à corrente DC no canal de descarga. Comentários sobre as Tabelas V.4 e V.5 serão feitos mais adiante, quando apresentarmos os resultados te<u>ó</u> ricos calculados levando-se em conta a variação do momento de tra<u>n</u> sição eletrônico.

Pelo fato de conhecermos as intensidades medidas, po demos, através da comparação com os resultados teóricos, estimar as populações relativas dos estados excitados. O procedimento pa ra esta estimativa, que vamos agora brevemente descrever, é origi nário de Petrie e Small [Pi54]. Se $I_{v'v''}$ é a intensidade medida de uma banda vibracional, o valor de $\log(I\lambda^4/q)$ pode ser represen tado num gráfico em função do comprimento de onda λ . Idealmente o gráfico deveria consistir de um conjunto de linhas retas, todas paralelas ao eixo λ , e separadas por quantidades determinadas pe

[†] Sabemos, através de [Ty62a] e [Ho72], que estas intensidades fo ram também medidas, por Steers em 1957 e por Howorth em 1968, na Inglaterra. Entretanto, não conseguimos obter os valores publi cados nestas teses.

Ref.	Ba49	JN54	Pi54	Ni61	ZLB65	BVTW66	CP70	BSF	BSF
Pot.	М	М	Osc.H.	М	RKR	RKR	М	М	м
C.Esp.	He39 Sp35	He50	He50	He50	DH59	BVTW65	He50	He50	BVTW65
$ \begin{array}{r} 0-0 \\ 0-1 \\ 0-2 \\ 0-3 \\ 0-4 \\ 0-5 \\ 0-6 \end{array} $	100.00 66.67 29.17 9.37	100.0073.2132.5911.833.571.120.22	$100.00 \\ 74.47 \\ 32.55 \\ 12.89 \\ 5.74 \\ 0.64$	100.00 73.16 32.70 11.64 3.63 1.05 0.29	100.00 72.75 31.87 10.86 3.19 0.86 0.22	$100.00 \\ 72.70 \\ 32.30 \\ 11.42 \\ 3.51 \\ 0.99 \\ 0.27 \\ 0.27 \\ 0.00 \\ 0.$	100.00 73.16 32.70 11.64 3.63 1.05 0.29	100.00 73.11 32.66 11.61 3.63 1.05 0.29	100.00 69.01 29.90 10.27 3.02 0.79 0.19
1-1 1-2 1-3 1-4 1-5 1-6 1-7	17.27 100.00 86.36	9.36 100.00 96.06 56.65 23.15 9.85 2.96	$ \begin{array}{r} 13.64 \\ 100.00 \\ 103.54 \\ 68.69 \\ 27.27 \\ 10.61 \\ 3.54 \end{array} $	9.18 100.00 98.28 55.15 23.75 8.78 2.94	10.80 100.00 95.28 51.42 20.90 7.17 2.22	10.62 100.00 97.84 53.96 22.92 8.31 2.80	9.18 100.00 98.28 55.15 23.75 8.78 2.94	9.23 100.00 98.18 55.03 23.66 8.74 2.95	$ \begin{array}{r} 16.23\\ 100.00\\ 88.11\\ 45.87\\ 18.17\\ 5.99\\ 1.75 \end{array} $
2-2 2-3 2-4 2-5 2-6 2-7 2-8		20.25 39.24 100.00 89.87 51.90 24.68 10.13	5.70 38.34 100.00 85.49 46.11 20.21 4.66	20.45 36.93 100.00 88.41 51.43 23.92 9.67	$ \begin{array}{r} 13.61\\ 40.89\\ 100.00\\ 83.43\\ 45.68\\ 19.64\\ 7.28\\ \end{array} $	14.83 39.50 100.00 86.79 49.28 22.55 9.10	20.45 36.93 100.00 88.41 51.43 23.92 9.67	20.33 37.01 100.00 88.34 51.33 23.87 9.67	$5.42 \\ 53.80 \\ 100.00 \\ 75.72 \\ 38.83 \\ 15.73 \\ 5.36$
3-3 3-5 3-6 3-7 3-8 3-9		100.00 79.31 121.55 92.24 49.14 20.69	100.00 147.73 205.68 150.00 87.50 39.77	100.00 75.28 113.89 89.92 52.16 25.23	100.00 115.78 155.51 112.71 59.70 26.22	100.00 106.80 146.37 111.79 62.59 29.14	100.00 75.28 113.89 89.92 52.16 25.23	100.00 75.55 114.09 89.98 52.12 25.21	100.00 37.54 217.21 140.82 68.36 27.21
4-4 4-6 4-7 4-8 4-9 4-10		100.00 20.51 62.82 75.64 49.36 25.64	100.00 45.52 111.94 114.18 77.61 29.85	100.00 18.73 63.44 70.38 51.08 29.36	100.00 40.52 93.97 89.66 57.50 29.31	100.00 39.44 93.12 92.47 61.21 33.02	100.00 18.73 63.38 70.38 51.08 29.36	100.00 18.84 63.54 70.50 51.09 29.37	100.00 73.77 117.85 95.07 54.24 24.75

TABELA V.4 - Intensidades teóricas para o sistema $N_2(2^+)$ obtidos por vários autores, na aproximação em que $R_e(r)$ é constante.

Ref.	Ta34 Ba49	PS53	WN55	Ty62	Ty62	Ty62	Este trabalho	Este trabalho
				5mA	20mA	35mA	20mA	30mA
$ \begin{array}{r} 0-0 \\ 0-1 \\ 0-2 \\ 0-3 \\ 0-4 \\ 0-5 \\ 0-6 \end{array} $	100.0090.0042.5014.502.000.75	100.00 74.89 34.04 16.81	100.00 75.56 35.56 11.11	100.00 75.97 26.50 11.92 3.50	100.00 76.07 38.41 15.64 5.38	100.00 87.56 38.52 15.35 5.46	$ \begin{array}{r} 100.00 \\ 71.14 \\ 28.44 \\ 10.42 \\ 3.24 \\ 0.90 \\ 0.35 \end{array} $	$ \begin{array}{r} 100.00 \\ 66.53 \\ 29.02 \\ 12.48 \\ 4.54 \\ 1.51 \\ 0.45 \end{array} $
1-1 1-2 1-3 1-4 1-5 1-6 1-7	$ \begin{array}{r} 16.25\\ 100.00\\ 125.00\\ 62.50\\ 16.88\\ 3.75\\ 0.63\end{array} $	15.66 100.00 88.89 65.15 41.92	7.41 100.00 92.59 55.56 22.22 11.11	10.26 100.00 101.34 57.79 7.86	10.48 100.00 100.92 55.94 7.10	12.16 100.00 128.18 76.48 8.41	14.97100.0089.7152.3522.634.941.58	14.75100.0093.6164.4933.005.972.49
2-2 2-3 2-4 2-5 2-6 2-7 2-8	21.43 42.14 100.00 71.43 27.14 7.86 2.86	100.00 100.00	$ \begin{array}{r} 15.00\\30.00\\100.00\\80.00\\60.00\\25.00\\10.00\end{array} $	15.84 47.22 100.00 88.34 66.40 22.69	13.58 50.92 100.00 117.18 72.15 26.27	15.84 46.20 100.00 101.01 75.36 26.82	7.03 48.08 100.00 92.38 52.29 13.52 5.10	9.25 44.43 100.00 105.65 70.37 19.10 9.07
3-3 3-5 3-6 3-7 3-8 3-9	100.00 86.49 104.05 51.35 21.62 9.46	100.00	100.00 90.00 150.00 110.00 60.00 30.00	100.00 84.58 94.72 44.23	100.00 119.64 144.33 63.64	100.00 108.10 152.19 50.26	100.00 125.42 198.80 129.84 61.92 26.78	100.00 147.31 160.76 102.70 91.22 51.62
4-4 4-6 4-7 4-8 4-9 4-10	100.00 43.33 49.17 44.17 19.17		100.00 34.62 102.56 102.56	100.00 37.51 144.34 116.29 45.16	100.00 33.73 78.17 73.72 43.61	100.00 47.37 98.66 46.36	100.00 33.70 84.78 79.64 47.45 21.46	100.00 51.49 117.12 130.40 80.22 31.13

TABELA V.5 - Intensidades experimentais (I λ^4) segundo vários autores

las taxas de população dos níveis excitados. Um deslocamento co<u>n</u> veniente f(v') pode ser então usado para fazer todas as linhas coincidirem, sendo então a população do nível v' proporcional a -f(v') potência de 10. A importância de se conhecer as populações relativas dos vários estados excitados está em que, se admitirmos uma possível variação para R_e em função da distância internuclear, a equação (V.1) fica

$$\frac{I_{v'v''} \lambda_{v'v''}^{4}}{q_{v'v''}} = \text{cte } N_{v'} R_{e}^{2}(r_{v'v''}) \qquad (V.5)$$

e a comparação entre gráficos $(I\lambda^4/Nq)_{v'v''}^{1/2}$ contra $r_{v'v''}$ para vã rias progressões v" nos dá a variação de R_e em função da centrói de r, r, r, r, Existe um outro procedimento, descrito em [TN54], em que o comportamento de R_e(r) é obtido diretamente de gráficos $(I\lambda^4/q)_{v'v''}^{1/2}$ contra $r_{v'v''}$. O efeito das diferentes populações é com pensado através de uma renormalização, utilizando-se a razão das āreas sob as diversas curvas $(I\lambda^4/q)$ para cada progressão. As Fi guras V.1 e V.2 mostram os gráficos obtidos através dos dois pro cedimentos. Na Figura V.1, é claro que as curvas não são retas pa ralelas ao eixo λ e, na Figura V.2, a variação de $(I\lambda^4/q)^{1/2}$ (ou seja, de R_e(r)) com r_{v'v"} não é a mesma para cada v' = cte e, por tanto, é difícil obter-se uma expressão única para R_e(r) que re presente o comportamento em cada progressão v". Os autores [ZLB65], a partir de gráficos semelhantes aos da Figura V.2, inferem que os fatores de Franck Condon calculados usando potencial de Morse são os responsáveis por este comportamento. Entretanto gráficos feitos com q_{v'v}" calculados pelo método de RKR dão basicamente

- 73 .

FIGURA V.2 - Variação do momento de transição eletrônico com a centróide r_{v'v"}. o mesmo resultado, como mostrado nas Figuras V.1 e V.2, para os dois procedimentos. Como no gráfico $\log(I\lambda^4/q) \times \lambda$ não obtivemos r<u>e</u> tas, medimos a área sob as curvas e tomamos a média aritmética dos três conjuntos de curvas. Estes resultados, da população relativa do estado excitado C³ π_u , são apresentados na Tabela V.6 junto com valores medidos e calculados por vários autores. Uma compar<u>a</u> ção entre estes dados mostra que a concordância é bastante boa.

Como os dois conjuntos de populações são semelhantes, escolhemos arbitrariamente o primeiro, obtido dos gráficos $\log(I\lambda^4/q) \times \lambda$, para normalizar as intensidades.

Tendo os números $(I\lambda^4/q)_{V'V''}^{1/2}$ já normalizados, para se conhecer o momento de transição eletrônico necessitamos das ce<u>n</u> tróides r. Estas centróides r podem ser obtidas através do progr<u>a</u> ma BSF do seguinte modo: (a) colocar R_e(r) = r (a₁ = 1, a₀ = a₂ = 0) e (b) R_e(r) = 1 (a₀ = 1, a₁ = a₂ = 0). O quadrado da centróide r é obtido pela razão dos números obtidos no passo (a) pelos obtidos no passo (b), ou seja[†]

$$\mathbf{r}_{\mathbf{v}'\mathbf{v}''}^{2} = \frac{\left|\int_{0}^{\infty} \Psi_{\mathbf{v}'} \mathbf{r}_{\mathbf{v}''}^{2} \mathbf{r}_{\mathbf{v}''}^{2}\right|^{2}}{\left|\int_{0}^{\infty} \Psi_{\mathbf{v}'} \Psi_{\mathbf{v}''}^{2} \mathbf{r}_{\mathbf{v}''}^{2}\right|^{2}} \qquad (V.6)$$

As centróides r assim calculadas, usando-se as constantes espectroscópicas da Tabela V.1, são apresentadas nas Tabelas V.7 e V.9 para o segundo sistema positivo do nitrogênio e o primeiro siste-

[†] Notar que o programa BSF sempre calcula o módulo ao quadrado das integrais necessárias, isto é, $\left|\int_{0}^{\infty} \Psi_{v} r^{n} \Psi_{v} dr\right|^{2}$, n = 0, 1, 2.

UFRGS Instituto de Física Biblioteca

Referência	^N 0 ^{/N} 0	^N 1 ^{/N} 0	^N 2 ^{/N} 0	N ₃ /N ₀	N4/N0
TP43	1	0.54	0.28	0.13	
TP 4 7	1	0.60	0.32	0.16	0.09
Pi54	1	0.56	0.32	0.18	
Ту62	1	0.60	0.25	0.13	0.09
Ho72	1	0.60	0.30	0.20	0.10
Este trabalho(a)	1	0.59	0.30	0.15	0.10
Este trabalho(b)	1	0.61	0.32	0.15	0.07

(a) Usando processo de redução descrito em [Pi54].

(b) Usando processo de redução descrito em [TN54].

(b) Valores preditos

Referência	N ₀ /N ₀	N ₁ /N ₀	^N 2 ^{/N} 0	^N 3 ^{/N} 0	^N 4 ^{/N} 0
Ba49	1	0.56	0.28		
Pi54	1	0.68	0.33	0.12	0.06
Ni62	1	0.56	0.19	0.05	0.01
Но72	1	0.57	0.32	0.14	0.08

v' ^{v"}	0	1	2	3	4	5	6	7	8	9	10
0	1.1876	1.1483	1.1149	1.0841 1.0846	1.0544	1.0243	0,9924	0.9563 0.9812	0.9116	0.8481 0.9353	0.7325 0.9128
1	1.2336	1.2136	1.1567	1.1215	1.0903	1.0607	1.0312	1.0002	0.9657 0.9889	0.9243 0.9660	0.8679
2	1.2878	1.2461	1.1452	1.1667	1.1279	1.0961	1.0666	1.0374	1.0073	0.9742 0.9966	0.9354 0.9740
3	1.3637 1.3351	1.2999	1.2613 1.2514	1.1826	1.1824	1.1342	1.1015	1.0719	1.0432	1.0137	0.9819 1.0043
4	1.5240 1.4042	1.3798 1.3438	1.3127 1.2964	1.2807	1.1931	1.2609	1.1405	1.1065	1.0768	1.0484 1.0599	1.0196

TABELA V.7 - Centróides r para o sistema $N_2(2^+)$, calculados pelo programa BSF

Primeira linha: cálculos usando constantes de [BVTW65] Segunda linha: cálculos usando constantes de [He50]

v"	0	1	2	3	4	5	6	7	8	9	10
0	1.184	1.147	1.114	1.083	1.055	1.028	1.003	0.9783	0.9562	0.9336	0.9091
1	1.228	1.211	1.155	$1.121 \\ 1.122$	1.090	1.062	1.035	1.011	0.9864	0.9639	0.9430
2	1.278	1.239 1.234	1.168	1.165	1.129	1.098	1.069	1.042	1.018	0.9944	0.9698
3	1.342 1.344	1.289	1.255	1.183	1.185	1.137	1.104	1.076	1.049	1.024	1.001
4	1.469	1.357	1.303	1.283 1.247	1.180	1.168	1.148	1.110	1.082	1.054	1.029

TABELA V.8 - Centroides r para o sistema N2(2+).

Primeira linha: cálculos de [BVT70]. Segunda linha: cálculos de [WN55].

v'"	0	1	2	3	4	5	6	7
0	1.1015	1.0515 1.0513	1.0111 1.0109	0.9750 0.9748	0.9409 0.9406	0.9071 0.9068	0.8721 0.8717	0.8336 0.8333
1	1.1562	$1.1136 \\ 1.1135$	1.0573 1.0572	1.0160	0.9797 0.9795	0.9458 0.9455	0.9124 0.9121	0.8782
2	1.2254	1.1650 1.1651	$1.1343 \\ 1.1341$	1.0634 1.0633	1.0207	0.9842 0.9840	0.9504 0.9502	0.9175 0.9172
3	1.3372 1.3378	$1.2348 \\ 1.2350$	1.1745	1.2003	1.0699	1.0255	0.9886 0.9884	0.9550 0.9547
4	1.7700	1.3526	1.2445	1.1848	0.7759 0.7494	1.0771	1.0301	0.9929 0.9927

TABELA V.9 - Centróides r para o sistema $N_2^+(1^-)$, calculados pelo programa BSF.

Primeira linha: cálculos usando constantes de [KP72] · Segunda linha: cálculos usando constantes de [He50]

TABELA V.10 - Centróides r para o sistema $N_2^+(1^-)$

v"	0	1	2	3	4	5	6	7
0	1.115	1.058 1.053	1.006	0.976 0.974	0.987			
1	1.155	1.102	1.062	0.998	0.983 0.98	0.947	0.913	-
2	1.246 1.265	1.161 1.162	1.124 1.106	1.053 1.061	1.006	0.984	0.971	
3	1.263	1.230	1.174	1.187	1.061	1.005	0.992	0.926
4		1.261	1.247	1.183	1.537	1.058	1.036	1.007

Primeira linha: cálculos de [BVG70] Segunda linha: cálculos de [WN55]

ma negativo do N⁺₂ respectivamente. Em vista de estarmos usando um novo método de cálculo para estes números (expansão assintótica) apresentamos valores disponíveis na literatura, nas Tabelas V.8 e V.10, para comparação.

Com os números $I_{y'y''}$, $\lambda_{y'y''}$, $r_{y'y''}$ e com os fatores de Franck Condon apresentados na Tabela V.3 é possível estimar-se a dependência do momento de transição eletrônico em função da dis tância internuclear. Utilizando os dados acima mencionados (os va lores utilizados estão na Tabela IV.3) calculamos o momento de transição eletrônico, usando FCF calculados pelos métodos de RKR e Morse, disponíveis na literatura e calculados pelo programa BSF, respectivamente, para detectar possíveis alterações nesta função em razão dos FCF usados. Além disso, como nos trabalhos anteriores foram usados as constantes espectroscópicas de [He50], apre sentamos uma função onde estas constantes deram origem aos FCF. A expressão do momento de transição eletrônico é obtida do ajuste dos números $(I\lambda^4/q)_{y'y''}^{1/2}$, já convenientemente normalizados, COM rvvv". No ajuste por nos efetuado, usando-se o método dos mínimos quadrados[†], alguns pontos apresentaram maior desvio que a média^{††}. Estes pontos com maior desvio são também os de menor intensidade e onde as medidas estão mais sujeitas a erro. Portanto, calculamos R_o(r) ora considerando estes pontos no ajuste e ora simplesmente

⁺ Os pontos usados neste ajuste estão na Tabela IV.3 nas colunas numeradas por (R_e)₁, (R_e)₂ e (R_e)₃ cujo significado é lá explicado.

^{+†}No pior caso, 5 pontos em 33 apresentaram este desvio.

	R _e (r)	Referência	Método
(a)	$-1 + 2.325r - 1.102r^2$	WN55,Ni63	descarga elétrica
(b)	1 - 0.53r	Ty62	descarga elétrica
(c)	$-1 + 1.9669r - 0.8636r^2$	JS67	+
(d)	$-1 + 2.1047r - 0.9357r^2$	Ja72	+
(e)	1 - 0.51r	BET77	tempo de vida
TDA	$1 + 6.0874r - 2.6399r^2$	YM77	TDA
HRPA	$1 + 6.6879r - 2.8402r^2$	• ум77	HRPA
RB	$-1 + 1.9118r - 0.7992r^2$		0
RBD	$-1 + 2.3374r - 0.8445r^2$		
MB	$-1 + 2.2331r - 1.0893r^2$	Este	Descarga
MBD	$-1 + 2.1149r - 0.9465r^2$	trabalho	elétrica
MH	$-1 + 1.9265r - 0.8414r^2$		
MHD	$-1 + 1.8678r - 0.8127r^2$		

TABELA V.11 - Sumario das expressões R (r) relativas.

⁺ Obtidos através de nova análise dos dados experimentais de [WN55].

ignorando-os. As expressões por nos calculadas são apresentadas na Tabela V.11 junto com as de outros autores. Os valores calcula dos com todos os pontos são indicados pela terminação D na primei ra coluna desta tabela. Nesta tabela apresentamos também expressões para R_e(r) obtidas, através de ajuste pelo método dos míni mos quadrados, dos dados publicados por Yeager e McKoy [YM77]. Es tes autores calcularam teoricamente o valor do momento de transi ção eletrônica para alguns valores da distância internuclear: OS nomes TDA (Tamm-Dancoff approximation) e HRPA (higher random phase approximation) referem-se às aproximações usadas nestes cálculos. Em geral, estes autores acreditam ser a aproximação HRPA mais con fiável. Estes cálculos teóricos são importantes porque pela primeira vez se tem uma expressão para R_e(r) obtida sem envolver a centroide r. Como salientam Yeager e McKoy, esta expressão pode ser usada para testar a aproximação da centróide r. Na realidade, as intensidades calculadas com estas expressões teóricas pelo mé todo da expansão assintótica, apresentadas na Tabela V.12, são as primeiras intensidades preditas teoricamente sem se supor o momen to de transição eletrônico constante. Além disso, é digno de nota o fato de que estas intensidades foram obtidas sem recorrer-se ā usual aproximação empírica da centróide r. Na Tabela V.12 são ain da apresentados os fatores de intensidade de banda, obtidas COM as expressões da Tabela V.ll para R (r), calculados pelo programa BSF. Com exceção das colunas MH e MHD, todos os fatores de inten sidade de banda, apresentados na Tabela V.12, foram calculados usando as constantes espectroscópicas de [BVTW65]. A comparação destes dados com os resultados experimentais na Tabela V.5 mos-

	a	b	с	d	e	TDA	HRPA
Ref.	WN55 Ni63	Ту62	JS67	Ja72	BET77	YM77	YM77
0-0 0-1	100.00 73.13	100.00	100.00	100.00 70.92	100.00 76.31	100.00 67.48	100.00
0-2 0-3 0-4	32.84 11.44 3.48	36.51 13.57 4.37	31.03 10.32 3.45	30.50 10.62 2.84	35.81 13.22 4.13	29.24 10.05 2.97	29.47 10.11 2.98
0-5 0-6	1.00 0.21	1.25	0.70	0.71	1.10 0.28	0.78	0.78
$ \begin{array}{r} 1-1\\ 1-2\\ 1-3\\ 1-4\\ 1-5\\ 1-6\\ 1-7 \end{array} $	14.43 100.00 92.78 49.48 19.59 6.19 2.06	$ \begin{array}{r} 13.85\\ 100.00\\ 96.62\\ 54.46\\ 23.38\\ 8.31\\ 2.46 \end{array} $	14.81 100.00 88.89 44.44 18.52 3.70 1.41	$ \begin{array}{r} 15.15\\ 100.00\\ 89.39\\ 45.45\\ 18.18\\ 6.06\\ 1.52\end{array} $	$ \begin{array}{r} 13.97\\ 100.00\\ 95.89\\ 53.70\\ 22.74\\ 7.95\\ 2.47\\ \end{array} $	$ 18.09 \\ 100.00 \\ 88.09 \\ 45.86 \\ 18.21 \\ 6.04 \\ 1.75 $	17.25 100.00 87.92 45.74 18.11 5.99 1.72
2-2 2-3 2-4 2-5 2-6 2-7 2-8	$\begin{array}{r} 6.41 \\ 50.00 \\ 100.00 \\ 78.21 \\ 41.03 \\ 16.67 \\ 5.13 \end{array}$	5.09 48.36 100.00 82.18 45.45 19.64 7.07	4.76 52.38 100.00 76.19 38.10 14.29 4.76	5.77 51.92 100.00 75.00 38.46 15.38 5.77	5.23 49.02 100.00 81.70 44.77 19.28 7.19	3.89 53.47 100.00 75.48 38.84 15.76 5.38	4.58 53.89 100.00 75.61 38.78 15.69 5.34
3-3 3-5 3-6 3-7 3-8 3-9	100.00 203.70 233.33 151.85 74.07 30.04	100.00 227.06 270.59 188.24 97.65 41.82	$ \begin{array}{r} 100.00 \\ 187.50 \\ 200.00 \\ 125.00 \\ 62.50 \\ 21.50 \\ \end{array} $	100.00 194.74 210.53 136.84 63.16 23.19	100.00 225.00 264.58 184.38 94.79 39.80	100.00 240.72 258.94 169.03 81.92 32.67	100.00 216.36 235.16 152.55 73.92 29.38
4-4 4-6 4-7 4-8 4-9 4-10	$ \begin{array}{r} 100.00\\75.00\\127.27\\104.55\\60.44\\27.57\end{array} $	100.00 85.40 148.91 129.93 79.34 38.69	$ \begin{array}{r} 100.00\\69.23\\107.69\\84.62\\48.81\\20.78\end{array} $	100.00 70.97 116.13 93.55 52.30 30.15	100.00 84.52 146.45 126.45 71.36 35.24	100.0096.79146.98121.0868.5131.48	100.00 81.60 129.05 104.27 59.49 27.11

TABELA V.12 - Fatores de intensidade de banda teóricos, para $N_2^{(2^+)}$, calculados com R_e(r) dados na Tabela V.11

	RB	RBD	МВ	MBD	МН	MHD
	RKR	RKR	Morse	Morse	Morse	Morse
	BVTW65	BVTW65 +Desv.	BVTW65	BVTW65 +Desv.	He50	He50 +Desv.
$ \begin{array}{c} 0 - 0 \\ 0 - 1 \\ 0 - 2 \\ 0 - 3 \\ 0 - 4 \\ 0 - 5 \\ 0 - 6 \end{array} $	100.00 67.49 28.04 9.07 2.48 0.59 0.12	100.00 66.22 27.47 9.00 2.52 0.62 0.14	100.00 72.05 32.28 11.02 3.30 0.86 0.20	100.00 70.96 30.99 10.56 3.05 0.77 0.17	100.00 70.46 30.18 9.99 2.77 0.67 0.14	100.00 70.74 30.00 9.73 2.62 0.60 0.12
$ \begin{array}{r} 1-1 \\ 1-2 \\ 1-3 \\ 1-4 \\ 1-5 \\ 1-6 \\ 1-7 \end{array} $	15.65100.0085.3342.1315.554.691.20	16.86100.0084.4942.0415.854.961.34	14.82100.0091.1948.3319.276.351.80	14.86100.0089.6646.5718.155.831.60	14.36100.0088.4944.8016.845.151.32	13.67100.0088.2043.9216.054.711.14
2-2 2-3 2-4 2-5 2-6 2-7 2-8	6.93 54.42 100.00 72.36 34.77 12.93 3.95	5.97 55.90 100.00 72.51 35.46 13.62 4.37	5.84 51.14 100.00 77.47 40.11 16.23 5.48	6.28 51.82 100.00 76.03 38.52 15.20 4.97	$7.24 \\ 51.85 \\ 100.00 \\ 74.44 \\ 36.49 \\ 13.77 \\ 4.24$	8.17 51.33 100.00 73.54 35.17 12.78 3.72
3-3 3-5 3-6 3-7 3-8 3-9	100.00 170.81 179.88 109.94 49.26 17.65	100.00 181.33 189.89 117.60 54.20 20.31	100.00 199.54 224.26 147.26 71.55 28.19	$ \begin{array}{r} 100.00\\ 189.07\\ 208.95\\ 134.41\\ 63.75\\ 24.41 \end{array} $	100.00 173.81 189.16 118.18 53.79 19.48	100.00 162.83 176.14 107.75 47.41 16.32
4-4 4-6 4-7 4-8 4-9 4-10	100.00 63.67 99.67 76.31 40.50 16.75	$ \begin{array}{r} 100.00\\67.12\\103.29\\79.74\\43.36\\18.68\end{array} $	$ \begin{array}{r} 100.00 \\ 74.64 \\ 124.11 \\ 101.80 \\ 58.39 \\ 26.44 \end{array} $	100.00 70.73 115.98 93.30 52.30 23.05	100.00 65.22 106.27 83.35 45.00 18.84	100.00 61.29 100.19 77.28 40.46 16.17

TABELA V.12 - Continuação^(a)

^(a)Os símbolos desta parte da tabela estão definidos na Tab<u>e</u> la V.11

uma boa concordância nas duas primeiras progressões v"(v' = 0, 1). Nas outras progressões, as intensidades calculadas parecem "osci lar": em geral, são menores nas progressões com v' = 2 e 4 e maio res na progressão com v' = 3. É interessante observar a boa concordância entre as nossas medidas e os valores calculados usando as aproximações TDA e HRPA. As intensidades de [Ty62] também con cordam, porém para um valor mais baixo de corrente no canal. Uma possível causa para que as nossas medidas em 20-30 mA estejam em geral de acordo com as de [Ty62] para 5 mA é a diferente geometria do canal de descarga (ou seja, da distribuição de corrente no canal). Este fator geométrico, que usualmente não é considerado nos resultados experimentais, pode ser também o responsável por uma não melhor concordância entre as intensidades medidas.

Para uma descarga elétrica não em equilíbrio térmico é seguidamente possível definir-se uma temperatura vibracional efetiva pela inclinação de um gráfico de $\ln \left[\sum_{v''} (I\lambda^4)_{v'v''} \right]$ contra G'(v'), como vimos no capítulo III. Este gráfico é apresentado na Figura V.3 onde foram utilizadas as intensidades medidas com 20 mA de corrente no canal. Nele as cruzes indicam que G(v) foi calcul<u>a</u> do com 2 termos (até w_ex_e) e os pontos indicam G(v) calculado até w_ey_e. Tanto as constantes de Herzberg como as de Benesch e outros [BVTW65b] dão praticamente os mesmos resultados. Uma análise pelo método dos mínimos quadrados destes dados dá como temperatura v<u>i</u> bracional efetiva 3900 ± 250 K. Este resultado está plenamente de acordo com as medidas de Tyte [Ty62a]. Para a reta apresentada na Figura V.3, obtida desprezando-se os pontos extremos, a temperat<u>u</u> ra vibracional efetiva é de 3590 K.

A derivação da temperatura vibracional efetiva acima, como vimos no capítulo III, está baseada no fato de que $\sum_{v'v'v''} = 1$. Entretanto isto somente é verdade nas duas progres sões com v' = 0 e 1. Portanto achamos que a temperatura vibracional efetiva é melhor representada por

$$\ln \left[\frac{\sum_{v''} (I\lambda^4) v'v''}{\sum_{v''} q_{v'v''}} \right] = D - \frac{hc}{kT} G'(v') \qquad (V.7)$$

onde D é uma constante. A temperatura vibracional efetiva calcul<u>a</u> da através desta relação é 4890 K.

É bem sabido que o primeiro sistema negativo do ion N_2^{+} é fortemente excitado numa descarga em hélio contendo traços de nitrogênio. Este efeito tem sido utilizado por várias pessoas, cu jo interesse principal é a determinação dos comprimentos de onda e a análise detalhada das bandas, para obtenção deste sistema de bandas, livre de bandas próximas de outros sistemas e resolvidas até niveis vibracionais altamente excitados [MP25]; [He28a], [He28b], [Do52]. Também foi usado com sucesso para popular o estado B Σ_{1}^{+} e obter-se então emissão estimulada [CCCJS74]. No presente traba lho efetuamos medidas da distribuição de intensidade nas bandas do primeiro sistema negativo do N_2^+ excitado, não em uma mistura He-N2, mas sim através de uma descarga pulsada. Na Tabela V.13 apresentamos uma comparação entre as intensidades observadas por vários autores. Nesta tabela as intensidades das bandas (0 - 0), (1-2), (2-4) e (3-2) foram igualadas a valores arbitrários pa ra facilitar a comparação. Uma comparação com estes números é pos

Banda	SA30 ^a	SA30 ^b	SA30 ^c	DRR34 ^d	DRR34 ^c	WN55 ^e	Ty62b ^e	Este f Trabalho
0-0 0-1 0-2	100 80 53	100 62.5 12.5	100 75 35	100 75 45	100 45 22.5	100 32	100 25.3 5.0	100 25.3 3.0
1-0 1-2 1-3	8.6 10	11.4 10	12.5 10 5.8	10 10 6.7	10 10 4	10 4.3	21.0 10 6.0	19.9 10 5.1
2-1 2-4			6.7 5	7.1 5	5 5	26.4	30.8 5	34.0 5
3-2 3-4 3-5			5 2.9 2.5	5 3.0 2.5	5 • 5 5		5 0.7 0.5	5 0.8 0.6

TABELA V.13 - Intensidades observadas do sistema $N_2^+(1^-)$.

^aDescarga elétrica contínua em N₂.

^bExcitação com elétrons em N₂.

^cExcitação com ions positivos em N₂.

^dExcitação com ions positivos em mistura He-N2.

^eDescarga elétrica contínua em mistura He-N₂.

^fDescarga elétrica pulsada em N₂.

TABELA V.14 - Intensidades teóricas para sistema N⁺₂(1⁻), obtidas por vários autores, na aproximação em que R_e(r) é constante.

Banda	Ba49	WN55	Ni61	BVG70	PH71	Nossas ^a	Nossas ^b
0-0 0-1 0-2	100 40.0 10.9	100 36.3 9.2	100 39.8 10.8	100 43.3 12.1	100 40.9 11.2	100 36.6 9.2	100 36.7 9.3
1-0 1-2 1-3	10.3 10	9.8 10 4.2	10.5 10 4.6	10.6 10 4.7	10.5 10 4.8	9.9 10 4.2	9.9 10 4.2
2-1 2-4		12.0 5	12.3	13.5 5	11.8 5	12.6	12.6
3-2 3-4 3-5			5 1.9 2.1	5 2.4 2.0	5 1.8 2.1	5 2.1 2.0	5 2.1 2.0

^aUsando constantes espectroscópicas de [He50]. ^bUsando constantes espectroscópicas de [KP72].

sivel, na aproximação R_o(r) = cte, usando-se os fatores de Franck Condon. As intensidades teóricas derivadas destes fatores, calcu ladas por vários autores, são apresentadas na Tabela V.14. Os fa tores de Franck Condon para o primeiro sistema negativo do N_2^+ cal culados por nos encontram-se na Tabela V.15 junto com os disponíveis na literatura. A comparação dos fatores desta tabela mostra uma muito boa concordância entre os valores de [BVG70] e os calcu lados por nos. A comparação das intensidades teóricas da Tabela V.14 com as observadas, na Tabela V.13, mostra fatos interessantes: praticamente todas as experiências ali arroladas concordam na relação das intensidades entre as bandas (3-2),(3-4) e (3-5) (a exceção é [DRR34^C] onde a relação é 1:1:1), sendo que os FCF de [BVG70] e os nossos reproduzem este comportamento. Além disso, à exceção de [SA30^a], as medidas indicam que a banda (1-0) é mais intensa que a (1-2): este comportamento é predito por [Ba49], [Ni61], [BVG70] e [PH71]. Portanto, somente os FCF de [BVG70] con seguem reproduzir na totalidade a tendência da distribuição da in tensidade apresentada pela maioria das experiências listadas na Tabela XIII. Os autores deste cálculo, entretanto, no artigo cita do, não dão as constantes espectroscópicas utilizadas e, sobre o processo de cálculo, referem-se a suas teses de Doutoramento na Universidade de Lyon.

Por último, como o método por nós apresentado permite o cálculo exato dos fatores de intensidade de banda, vamos calc<u>u</u> lar os tempos de vida dos níveis vibracionais do estado C $^{3}\pi_{u}$ do nitrogênio molecular N₂.

Como vimos no Capítulo III, o tempo de vida Tu, do es

	and the second		Jaccore days				
Ref.	Ba49	WN 55	Ni61	BVG70	PH71	Nossas	Nossas
Pot.	М	М	М	а	RKR	м	м
C.Esp.		He50	He50	a	a	He50	KP72
0-0 0-1 0-2 0-3 0-4 0-5	0.65 0.26 0.071	0.677 0.246 0.062 0.013 0.002	0.6509 0.2588 0.0702 0.0160 0.0033 0.0006	0.672 0.291 0.081 0.014 0.006	0.645 0.264 0.072 0.016 0.003 0.001	0.6734 0.2465 0.0618 0.0131 0.0025 0.0004	0.6724 0.2471 0.0622 0.0132 0.0025 0.0004
$ \begin{array}{c} 1-0 \\ 1-1 \\ 1-2 \\ 1-3 \\ 1-4 \\ 1-5 \end{array} $	0.30 0.22 0.29	0.283 0.283 0.289 0.120 0.035	0.3014 0.2226 0.2860 0.1324 0.0427 0.0114	0.307 0.257 0.289 0.135 0.041 0.009	0.303 0.210 0.289 0.138 0.044 0.012	0.2839 0.2590 0.2868 0.1210 0.0359 0.0088	0.2847 0.2574 0.2868 0.1214 0.0361 0.0089
2-0 2-1 2-2 2-3 2-4 2-5	0.047 0.41 0.043	0.038 0.397 0.076 0.251 0.165	0.0454 0.4060 0.0506 0.2290 0.1654 0.0711	0.040 0.398 0.088 0.250 0.147 0.071	0.050 0.405 0.043 0.223 0.171 0.075	0.0386 0.3958 0.0755 0.2443 0.1570 0.0616	0.0389 0.3961 0.0744 0.2438 0.1574 0.0619
3-0 3-1 3-2 3-3 3-4 3-5	0.003 0.11 0.41		0.0022 0.1056 0.4137 0.0021 0.1557 0.1706	0.007 0.094 0.400 0.026 0.194 0.160	0.003 0.114 0.411 0.001 0.144 0.172	0.0017 0.0911 0.4183 0.0102 0.1795 0.1689	0.0017 0.0917 0.4181 0.0097 0.1787 0.1691
$ \begin{array}{r} 4-1 \\ 4-2 \\ 4-3 \\ 4-4 \\ 4-5 \\ 4-6 \\ \end{array} $			0.0069 0.1660 0.3792 0.0067 0.0929 0.1569	0.007 0.120 0.390 0.002 0.094 0.159	0.008 0.174 0.385 0.006 0.082	0.0051 0.1451 0.3985 0.0007 0.1188 0.1628	0.0052 0.1459 0.3978 0.0008 0.1179 0.1627

TABELA V.15 - Comparação entre os FCF calculados por vários auto tores para o sistema $N_2^+(1^-)$.

^aVeja o texto.

tado vibracional v' é dado por

$$1/\tau_{v'} = \sum_{v''} A_{v'v''} \qquad (v.8)$$

onde, no sistema MKS,

$$A_{v'v''} = \frac{16\pi^3}{3\hbar\epsilon_0 \lambda_{v'v''}^3} \frac{1}{w_{v'}} |R_{v'v''}|^2 \qquad (V.9)$$

Escrevendo a probabilidade absoluta de transição $A_{v'v''}$ de um modo mais conveniente temos, notando que $w_{v'} = 6$ [Ta67],

$$A_{v'v''} = \frac{2.02734 \ 10^{18}}{6} \frac{S_{v'v''}}{\lambda_{v'v''}^3}$$
(V.10)

onde $S_{v'v''}$ é medido em unidades atômicas (l a.u. = 2.542 Debye), λ em Angstroms e $A_{v'v''}$ em segundos⁻¹.

No caso em que são usadas medidas relativas de inte<u>n</u> sidade para obter-se a função R_e(r_{v'v"}), esta função fica determ<u>i</u> nada a menos de um fator constante. Isto impede sua utilização p<u>a</u> ra o cálculo do tempo de vida.

Recentemente, entretanto, foram publicados três expressões para o momento de transição eletrônico absoluto. Yeager e McKoy [YM77], usando as aproximações TDA e HRPA, sugerem[†]

[†] As duas funções R_e(r) a seguir foram obtidas através de um aju<u>s</u> te pelo método dos mínimos quadrados dos dados de [YM77]. Nestas expressões usamos unidades atômicas para R_e(r) e Angstroms para r.

$$R_{o}(r) = 0.3535 + 2.1519r - 0.9332r^{2}$$
 [TDA] (V.11)

е

$$R_{o}(r) = 0.3291 + 2.2010r - 0.9347r^{2}$$
 [HRPA] (V.12)

Becker, Engels e Tatarczyk [BET77], através de medidas de tempo de vida do estado C ${}^{3}\pi_{u}$, obtiveram para o momento de transição el<u>e</u> trônico absoluto (r em Ângstroms)

$$R_{e}(r) = 4.79 \ 10^{-18} (1 - 0.51r) \quad cm \ esu$$

$$= 1.884865 \quad (1 - 0.51r) \quad unidades \ atômicas$$
(V.13)

Com estas expressões calculamos os fatores de intensi dade de banda S_{v'v"} e obtivemos os tempos de vida, através das equações (V.10) e (V.8). Os resultados teóricos do tempo de vida, calculados com os R_e(r) de [YM77], junto com os valores calculados utilizando-se R_e(r) dado pela equação (V.13), são apresenta dos na Tabela V.16. Nestes cálculos somamos os $A_{v'v'}$ até v'' = 7. Os valores nas colunas (b) e (c) concordam bem com os valores ob tidos por Stephenson e Fraser [IR71], usando combinações lineares de funções de onda atômicas para descrever as autofunções do sis tema em questão. Entretanto, os cálculos teóricos ainda não estão de acordo com os valores experimentais. Os valores apresentados na coluna (d) são uma ordem de magnitude maiores. Entretanto, na de rivação da função momento de transição eletrônico, em que seu cál culo esta baseado, foi utilizada a aproximação da centróide r que, como é bem sabido, nem sempre produz bons resultados.

Nivel	ANTa	TDA ^b	HRPAC	BET77 ^d	EXP ^e
$\mathbf{v}^* = 0$	52 ^f 58 ^g	51.2	49.2	219.0	36.5
v' = 1		48.0	46.2	216.7	36.8
v' = 2		45.5	43.7	216.4	37.0
v' = 3		44.0	42.2	222.5	34.5

TABELA V.16 - Tempo de vida dos níveis vibracionais do estado C ${}^3\pi_u$ do N₂ em nseg.

^aCálculos teóricos anteriores:

^fStephenson 1951 [St51]. ^gFraser 1954 [IR71].

^D Valores	calculados	com	$R_{o}(r)$	da	equação	(V.11).	
^C Valores	calculados	com	$R_{p}(r)$	da	equação	(V.12).	
dValores	calculados	com	$R_{o}(r)$	da	equação	(V.13).	
^e Valores	experimenta	ais d	le [OG'	76]	para v'=	= 0, 1, 2	e
[PDP73]	para $v' = 3$	3.	-				

VI - CONCLUSÕES

A extensa comparação apresentada neste trabalho sobre quantidades de interesse na física de moléculas diatômicas, deri vadas pela suposição de dois tipos de potencial molecular, RKR e Morse, permite que se conclua que ambos os potenciais apresentam resultados equivalentes. Esta constatação é bastante importante, pois garante a confiabilidade dos dados obtidos a partir do poten cial de Morse. Este potencial, por possuir soluções analíticas da equação de Schrödinger, permite que as quantidades moleculares de interesse sejam determinadas rapidamente, utilizando-se até compu tadores pequenos. Isto significa que dispondo-se de um computador de pequeno porte[†] e das constantes espectroscópicas w_e, w_e×_e B_e (ou r_e) para ambos os estados eletrônicos envolvidos, podemos gerar com precisão quantidades tais como fatores de Franck Condon, centróides r, etc. Se, além das constantes espectroscópicas War wexe e Be (ou re), conhecermos o momento de transição eletrônico, o uso do potencial de Morse permite facilmente o conhecimento dos tempos de vida dos estados vibracionais excitados e suas intensi dades espectrais. Em particular, o método de cálculo por nos pro posto permite que estas quantidades sejam conhecidas sem o uso da aproximação empírica da centróide r que, por inexistência de alternativa, vem sendo empregada nos últimos 25 anos. Além disso, notamos que, para um melhor entendimento do que se passa com as transições eletrônicas em moléculas diatômicas, é de extremo in-

[†] O programa BSF foi amplamente testado no computador HP-2100 com ótimos resultados.

- 94 -

teresse o conhecimento experimental dos tempos de vida radiativos dos estados excitados: estes dados nos permitem obter o momento de transição eletrônico absoluto do sistema, quer através do pro cedimento da centroide r, de ajuste pelo método dos minimos qua drados ou de outro método qualquer. O momento de transição eletro nico, por sua vez, nos permite calcular exatamente o valor do coe ficiente A de Einstein, ou seja, da probabilidade de transição, o que finalmente nos conduz às intensidades de linhas espectrais. Portanto, a partir de dados experimentais sobre os tempos de vida radiativa, que podem ser acuradamente determinados, por exemplo, pela técnica da fluorescência induzida por laser, chegamos ao co nhecimento dos valores esperados para as intensidades de linhas espectrais: Com isto eliminamos o "grau de liberdade" usualmente existente no ajuste dos coeficientes a, do momento de transição eletrônico, $R_e(r) = a_0 + a_1r + a_2r^2$, que faz com que existam mo mentos de transição eletrônicos bons para o cálculo de tempos de vida e outros bons para o cálculo das intensidades espectrais, mas com pouca concordância entre si. É também encorajador o fato de que cálculos "ab initio" do momento de transição eletrônico, como os de [YM77], conduzam a valores tão próximos dos experimentalmen te observados (veja Tabela V.16).

Finalmente, gostaríamos de mencionar que uma situação experimental bastante promissora é o estudo de moléculas e íons moleculares gerados através de uma descarga elétrica pulsada em meio gasoso, utilizando bombeamento óptico, com laser de corante. Esta técnica extremamente *limpa* permite o acompanhamento da evol<u>u</u> ção temporal dos estados excitados existentes no plasma (veja F<u>i</u> gura IV.9) e seu estudo em função da pressão pode levar ao conh<u>e</u> cimento dos canais de reação, isto é da cinética química, que e<u>n</u> volvem a criação e destruição de ions moleculares e moléculas ne<u>u</u> tras em estados excitados. Presentemente estudamos experimentalmente os tempos de vida radiativa do estado B ${}^{2}\Sigma_{u}^{+}$ do ion N $_{2}^{+}$, ut<u>i</u> lizando a técnica de fluorescência induzida com laser (LIF) pela absorção de um fóton, e a excitação da molécula de nitrogênio p<u>e</u> la absorção de dois fótons. APÉNDICE A.

DETALHES MATEMATICOS

1. A Integral

Na presente seção apresentamos detalhes do cálculo que leva à solução da integral (III.44), isto é, da integral

$$I_{\mu}^{\lambda}(\xi,\gamma,p) = p^{p+1} \int_{0}^{\infty} \exp[pg(t)] R_{e}(t) dt \qquad (A.1)$$

onde

e

$$p = \frac{1}{2}(K_2' + \gamma K_2'') - \frac{1}{2}(1 + \gamma) - 1 - \lambda - \gamma \mu$$
 (A.2)

$$g(t) = -\frac{1}{2}(t + \xi p^{\gamma - 1} t^{\gamma}) + ln t$$
 (A.3)

As variáveis e parâmetros que constam nestas expressões estão de finidos na seção III.5b.

O cálculo da integral (A.1) está baseado no fato de que o parâmetro p é grande[†], o que possibilita o emprego do método de Laplace [O174] na sua solução. Este método usa o comport<u>a</u> mento particular do integrando de (A.1) nos casos em que p é gran

[†] Valores típicos deste parâmetro são apresentados na página 45. Notar que os valores de p dependem do conjunto de constantes es pectroscópicas usadas para representar os estados eletrônicos e vibracionais envolvidos na transição molecular.

de. O valor de pico do fator $e^{pg(t)}$ ocorre para um certo valor $t = t_0$, para o qual g(t) é máximo. Quando p é grande este pico é muito estreito e um gráfico do integrando nos sugere que a contr<u>i</u> buição principal para a integral vem da vizinhança de t_0 . Baseado neste comportamento, substituímos então g(t) e $R_e(t)$ pelos termos mais representativos de suas respectivas expansões em série de p<u>o</u> tenciais na variável $t - t_0$, e, convenientemente, extendemos os l<u>i</u> mites de integração de -∞ até ∞. A integral resultante é então f<u>a</u> cilmente calculada, dando-nos a solução desejada.

Vamos portanto expandir $g(t) \in R_e(t)$ em série, isto

ē,

$$g(t) = g(t_0) + \frac{g''(t_0)}{2!}\tau^2 + \frac{g'''(t_0)}{3!}\tau^3 + \dots$$
 (A.4)

$$R_{e}(t) = R_{e}(t_{o}) + \frac{R_{e}'(t_{o})}{1!}\tau + \frac{R_{e}''(t_{o})}{2!}\tau^{2} + \frac{R_{e}''(t_{o})}{3!}\tau^{3} + \dots \quad (A.5)$$

onde $\tau = t - t_0$, t_0 sendo o ponto em que g(t) atinge seu valor m<u>á</u> ximo. Note que g'(t₀) = 0. Para simplicar vamos reescrever a expansão (A.4) como

$$g(t) = g_0 + b_2 \tau^2 + b_3 \tau^3 + \dots$$
 (A.6)

onde as correspondências são óbvias. Substituindo-se as expansões na integral (A.1) temos

$$I_{\mu}^{\lambda}(\xi,\gamma,p) = p^{p+1} \int_{-\infty}^{\infty} \exp\left[pg_{0} + pb_{2}\tau^{2} + pb_{3}\tau^{3} + \dots\right] \\ \left[R_{e}(t_{0}) + \frac{R_{e}'(t_{0})}{1!}\tau + \frac{R_{e}''(t_{0})}{2!}\tau^{2} + \frac{R_{e}'''(t_{0})}{3!}\tau^{3} + \dots\right] d\tau \quad (A.7)$$

$$I_{\mu}^{\lambda}(\xi,\gamma,p) = p^{p+1} e^{pg_{0}} \int_{-\infty}^{\infty} e^{pb} 2^{\tau^{2}} e^{pb} 3^{\tau^{3}} e^{pb} 4^{\tau^{4}} \dots$$

$$\left[R_{e}(t_{0}) + \frac{R_{e}'(t_{0})}{1!} \tau + \frac{R_{e}''(t_{0})}{2!} \tau^{2} + \frac{R_{e}'''(t_{0})}{3!} \tau^{3} + \dots\right] d\tau \quad (A.8)$$

Expandindo agora as exponenciais no integrando nas quais a potência de τ é maior ou igual a 3, temos,

$$I_{\mu}^{\lambda}(\xi,\gamma,p) = p^{p+1} e^{pq_{0}} \int_{-\infty}^{\infty} e^{pb_{2}\tau^{2}} \left[1 + pb_{3}\tau^{3} + \frac{p^{2}b_{3}^{2}}{2!}\tau^{6} + \frac{p_{3}b_{3}^{3}}{3!}\tau^{9} + \ldots\right]$$

$$\left[1 + pb_{4}\tau^{4} + \frac{p^{2}b_{4}^{2}}{2!}\tau^{8} + \frac{p^{3}b_{4}^{3}}{3!}\tau^{12} + \ldots\right]$$

$$\left[1 + pb_{5}\tau^{5} + \frac{p^{2}b_{5}^{2}}{2!}\tau^{10} + \frac{p^{3}b_{4}^{3}}{3!}\tau^{15} + \ldots\right]$$

$$\ldots$$

$$\left[R_{e}(t_{0}) + \frac{R_{e}'(t_{0})}{1!}\tau + \frac{R_{e}''(t_{0})}{2!}\tau^{2} + \frac{R_{e}''(t_{0})}{3!}\tau^{3} + \ldots\right] d\tau \qquad (A.9)$$

Fazendo-se as multiplicações indicadas e colocando-se as potências de τ em ordem crescente temos

$$I_{\mu}^{\lambda}(\xi,\gamma,p) = p^{p+1} e^{pg} R_{e}(t_{0}) \int_{-\infty}^{\infty} e^{-(-pb}2^{\tau^{2})} \left[1 + \left(pb_{4}\tau^{4} + \frac{p^{2}b_{3}^{2}}{2!}\tau^{6} + \ldots\right) + \left(\frac{1}{2}\frac{R_{e}^{"}(t_{0})}{R_{e}(t_{0})}\tau^{2} + \frac{R_{e}^{"}(t_{0})}{R_{e}(t_{0})}pb_{3}\tau^{4} + \ldots\right)\right] d\tau \qquad (A.10)$$

cuja integração nos dá

$$I_{\mu}^{\lambda}(\xi,\gamma,p) = p^{p+1} e^{pg} R_{e}(t_{0}) \left\{ \left(\frac{\pi}{-pb_{2}}\right)^{1/2} + pb_{4} \frac{3}{4} \left[\frac{\pi}{(-pb_{2})^{5}}\right]^{1/2} + \frac{p^{2}b_{3}^{2}}{2} \frac{15}{8} \left[\frac{\pi}{(-pb_{2})^{7}}\right]^{1/2} + \dots + \frac{1}{2} \frac{R_{e}^{"}(t_{0})}{R_{e}(t_{0})} \frac{1}{2} \left[\frac{\pi}{(-pb_{2})^{3}}\right]^{1/2} + \frac{R_{e}^{"}(t_{0})}{R_{e}(t_{0})} pb_{3} \frac{3}{4} \left[\frac{\pi}{(-pb_{2})^{5}}\right]^{1/2} + \dots \right\}$$

Esta expressão pode ser simplificada resultando em

$$I_{\mu}^{\lambda}(\xi,\gamma,p) = p^{p+1} e^{pg_{0}} R_{e}(t_{0}) \left(\frac{\pi}{-pb_{2}}\right)^{1/2} \left\{1 + \left(\frac{3b_{4}}{4b_{2}^{2}} - \frac{15}{16} \frac{b_{3}^{2}}{b_{2}^{3}}\right)/p + \dots + \left(\frac{1}{4} \frac{R_{e}^{"}(t_{0})}{R_{e}(t_{0})} \frac{1}{(-b_{2})} + \frac{3}{4} \frac{R_{e}^{'}(t_{0})}{R_{e}(t_{0})} \frac{b_{3}}{b_{2}^{2}}\right)/p + \dots\right\}$$
(A.11)

Na equação (A.11) as reticências indicam os termos em $1/p^2$, $1/p^3$, etc onde p é o parâmetro cujo valor grande nos permitiu usar o método de Laplace.

Considerando agora explicitamente a relação do momento de transição eletrônico $R_e(r)$ com $R_e(t)$ que aparece na equação (A.11), através das mudanças de variável r + z + t

$$K_{1} \exp[-a'(r - r_{0})] = z = pt$$

$$r = r'_{0} + \frac{1}{a'} ln[K'_{1}/(pt)]$$
 (A.12)

temos
$$I_{\mu}^{\lambda}(\xi,\gamma,p) = p^{p+1} e^{pg} R_{e}(\rho_{o}) \left(\frac{\pi}{-pb_{2}}\right)^{1/2} \left[1 + (E + E_{1}) / p\right] \quad (A.13)$$

onde

$$E = \frac{3b_4}{4b_2^2} - \frac{15b_3^2}{16b_2^3}$$
(A.14)

$$E_{1} = \frac{1}{4} \frac{R_{e}^{"}(\rho_{0})}{R_{e}(\rho_{0})} \frac{1}{(-b_{2})} + \frac{3}{4} \frac{R_{e}^{'}(\rho_{0})}{R_{e}(\rho_{0})} \frac{b_{3}}{b_{2}^{2}}$$
(A.15)

$$\rho_{o} = \mathbf{r}_{o}' + \frac{1}{a'} \ln \left[\frac{K_{1}'}{p_{o}} \right]$$

Para conhecer o valor da integral $I^{\lambda}_{\mu}(\xi,\gamma,p)$ precisamos especificar a forma de R_e(r). Supondo que o momento de trans<u>i</u> ção eletrônico é dado por

$$R_e(r) = a_0 + a_1r + a_2r^2 + a_3r^3$$

temos

$$R_{e}' = \frac{dR_{e}}{dt} = \frac{dR_{e}}{dr} \frac{dr}{dt} = \left(-\frac{1}{a't}\right) (a_{1} + 2a_{2}r + 3a_{3}r^{2})$$

$$R_{e}'' = \frac{d^{2}R_{e}}{dt^{2}} = \frac{dR_{e}}{dr} \frac{d^{2}r}{dt^{2}} + \frac{d^{2}R_{e}}{dr^{2}} \left(\frac{dr}{dt}\right)^{2} = \frac{1}{a't^{2}} (a_{1} + 2a_{2}r + 3a_{3}r^{2}) + \frac{1}{(a't)^{2}} (2a_{2} + 6a_{3}r)$$

Substituindo-se estes valores na equação (A.15) obte

mos

$$E_{1} = -\frac{1}{a't_{0}b_{2}R_{e}(\rho_{0})} \left[a_{1} \left(\frac{3b_{3}}{4b_{2}} + \frac{1}{4t_{0}} \right) + a_{2} \left(\frac{3b_{3}\rho_{0}}{2b_{2}} + \frac{\rho_{0}}{2t_{0}} + \frac{1}{2a't_{0}} \right) + a_{3} \left(\frac{9b_{3}\rho_{0}^{2}}{4b_{2}} + \frac{3\rho_{0}^{2}}{4t_{0}} + \frac{3\rho_{0}}{2a't_{0}} \right) \right]$$
(A.16)

Usualmente o momento de transição eletrônico é encon trado na literatura sob forma de expansões até o termo em r^2 . Ne<u>s</u> te caso (a₃ = 0) a equação (A.13) reduz-se à forma (III.46).

2. A Equação Transcendental

O tempo envolvido no cálculo dos fatores de intensida de de banda é basicamente controlado pelo tempo necessário para o cálculo da integral (III.46)

$$I_{\mu}^{\lambda}(\xi,\gamma,p) = p^{p+1/2} \left(\frac{\pi}{-b_2}\right)^{1/2} \exp(pg_0) R_e(\rho_0) [1 + (E+E_1)/p]$$

Este tempo é por sua vez determinado pela rapidez com que se con nhece a raiz to da equação (III.47), g'(t) = 0.

Inicialmente [CK70], [CPC71], [Ch72] utilizaram o mé todo de Newton-Raphson para determinar esta raiz. Entretanto, de vido à particular forma da equação (III.47), este processo é len to e de convergência restrita. Notamos, porém, que esta raiz pode ser mais rapidamente determinada utilizando um processo iterativo que passamos a descrever. Por conveniência anotamos s = t .A equa ção (III.47) é explicitamente dada por

- 102 -

$$as^{\gamma} = 2-s \tag{A.17}$$

onde a, $\gamma > 0$ e

 $a = \xi \gamma p^{\gamma-1}$

O processo iterativo consiste em encontrar-se a intersecção das curvas as $^{\gamma}$ e 2-s. Para tanto definimos uma variável auxiliar y on de

$$y = as^{\gamma} = 2-s$$

ou seja

$$y = as^{\gamma}$$
 (A.18)

s = 2-y (A.19)

Com isto, a partir de um valor inicial para a raiz s, calculamos y através da equação (A.18). Este y é usado para achar-se a próxima aproximação da raiz s, através da equação (A.19). A repetição deste procedimento conduz à raiz desejada. Na prática a busca pela raiz pode ser ainda abreviada: para tanto, a cada par de aproximações $s_{i-1} e s_i$ calculadas, uma boa aproximação é dada por

$$s = \frac{s_{j-1} + s_j}{2}$$

Este valor de s é usado para gerar um novo par de aproximações à raiz, repetindo-se então o processo.

O cálculo da raiz da equação transcendental (A.17) é feito através dos comandos 243-265 do programa descrito no Apênd<u>i</u> ce seguinte. Apesar deste cálculo ser bastante rápido (cada raiz é determinada após 8-10 s_j calculados), acreditamos que ainda p<u>o</u> de ser otimizado. APÉNDICE B

DESCRIÇÃO DO PROGRAMA BSF

Usando as equações obtidas na seção (III.5) fizemos um programa em ALGOL para o computador Burroughs B-6700, para ca<u>l</u> cular os fatores de intensidade de banda. Apresentamos aqui in<u>s</u> truções para o uso deste programa, que vai listado em seguida.

O programa inicia pela leitura de quatro cartões de dados, conforme os comandos READ seguintes:

338 339 READ(BB><16A5>,TITLE[*])[ENDJOB]; 340 READ(BB>/,JWE,JWEXE,UBE,JWE,LWE,LWEXE,LBE,LRE,XMU); 341 READ(BB,/,JSTART,JEND,JSTEP,JVMIN,JVMAX,LVMIN,LVMAX, 342 UFLAG,UMK,LFLAG,LMK,JMK,FLAGFIT); 343 READ(BB,/,AAAO,AAA1,AAA2); 344

O primeiro cartão de dados, serve para se imprimir um comentário qualquer no relatório de saída do programa. Em geral, este comentário identifica a espécie molecular sob estudo, o si<u>s</u> tema de bandas e dá a referência de onde foram obtidas as consta<u>n</u> tes espectroscópicas que devem aparecer no cartão seguinte. Para este comentário, podem ser utilizadas todas as 80 colunas do ca<u>r</u> tão.

No segundo cartão, devem vir as constantes espectros cópicas do estado superior (U) e inferior (L) e também a massa re duzida da molécula. As unidades e convenção de sinal são as mesmas usadas na tabela do fim do livro de Herzberg [He50], ou seja, w_e , $w_e x_e e B_e$ em cm⁻¹, μ_A (isto é, XMU) em unidades de massa atômi ca, na escala de Aston, e ro em Ângstroms. Se Bo ou ro não forem

- 105 -

conhecidos para um ou ambos os estados, o programa deve ser infor mado pelos índices UFLAG (para o estado superior) e LFLAG (para o estado inferior), que aparecem no cartão seguinte. Como o formato livre é utilizado para a leitura dos três últimos cartões, os nú meros devem ser perfurados em seqüência (em qualquer coluna) e sim plesmente separados por vírgula. No caso de B_e ou r_e desconhecido, perfurar um número qualquer na posição correspondente (veja de<u>s</u> crição do cartão 3).

O terceiro cartão, contém os parâmetros de controle do programa. Este programa pode ser utilizado para gerar uma série de tabelas de BSF calculados com valores diferentes de J. JSTART, JEND e JSTEP são respectivamente os valores de J inicial, final e o incremento com que devem ser geradas as diversas tabelas de BSF. Caso seja necessário o cálculo somente para J = 0, utilizar 0,0,2 para estas variáveis, respectivamente. Os quatro parâmetros se guintes devem indicar ao computador qual o intervalo de variação de v' e v", isto é, qual a dimensão dos arranjos BSF desejados: UVMIN \leq v' \leq UVMAX e LVMIN \leq v" \leq LVMAX. O programa está dimen sionado para v_{max} = 15.

Como vimos na secção III.5b $B_e e r_e estão relaciona$ dos pela equação

$$r_{e} = \sqrt{\frac{\mu_{A}}{2c\mu_{A}B_{e}}} = 1/[0.243559 (\mu_{A}B_{e})^{1/2}] \qquad A \qquad (B.1)$$

onde μ_A é a massa reduzida da molécula na escala de Aston [He50], e N_A é o número de Avogadro. Entretanto, os valores experimentais de B_e e r_a usualmente não satisfazem exatamente esta relação. Além disso, algumas vêzes somente uma das constantes, B_e ou r_e , é d<u>e</u> terminada experimentalmente. A função dos quatro parâmetros UFLAG, UMK, LFLAG e LMK no cartão de dados é levar em conta estes fatos e, no caso de existirem as duas constantes, permitir estudar o efeito delas nos BSF. Se UFLAG = 0 o programa usa os dois valores de B_e e r_e lidos no segundo cartão. UFLAG \neq 0 serve para avisar o computador que ele deve utilizar a relação acima para calcular ou B_o ou r_o :

se UMK = 0 calcula r_e em função de B_e lido; se UMK \neq 0 calcula B_e em função de r_e lido.

Idem para o estado inferior (LFLAG e LMK). JMK indica qual o ramo de BSF que deve ser calculado:

 $JMK = J' - J'' = -1 \Rightarrow ramo P$ $0 \Rightarrow ramo Q$ $1 \Rightarrow ramo R$

Finalmente, neste cartão, se FLAGFIT $\neq 0$ o programa ajusta polinômios até o quarto grau na variável J'(J'+1) para os BSF calculados, pelo método dos mínimos quadrados.

No último cartão é lido o momento de transição eletr<u>ô</u> nico $R_e(r) = a_0 + a_1 r + a_2 r^2$. A unidade da separação internuclear r é o Ângstrom e a notação usada para as constantes neste cartão é evidente.

Após a listagem do programa, nas páginas 118 a 121, apresentamos parte do relatório gerado para um dado conjunto de parâmetros. Os parâmetros utilizados aparecem impressos neste relatório.

```
1
     BEGIN
        MODIFICACAD DO PROGRAMA LASER/BSF/SYM
 2
     8
 3
     8
         LFETUADA EM 27 DE MAIO DE 1978.
 4
     FILE ARKIV(KIND=DISK);
 5
            AA(KIND=PRINTER),BB(KIND=READER);
     FILE
 6
     REAL ARRAY STACKHISLOIZOIJ
                                      REAL ZTART, HEND;
 7
     LABEL LI, CUT, ENDJOB, NEWDATA, LLL222, OUTPUT, NOFIT, GALHO;
 8
     FORMAT FC(" FRANCK CONDON FACTORS FOR"), FR(" R=CENTROIDS FOR");
 9
     FORMAT FS(" BAND STRENGTH FACTORS FOR") FT(" TRANSCENDENTAL ROOTS");
10
     FORMAT FEG(X11, "FRANCK-CONDUN FACTORS"),
             FFR(X11,"R-CENTROIDS"),
11
             FFS(X11,"BAND STRENGTH FACTORS"),
12
13
             FFT(X11,"ROOTS"),
14
             FFL(X11, "WAVELENGTHS"),
15
             FFA(X11,"EINSTEIN'S A COEFFICIENTS"),
16
             FFG(X11,"OSCILLATOR STRENGTHS")
17
     DOUBLE UD, LD, UA, LA, UBE, LBE, UAJ, LAJ, UALP, LALP, URO, LRO, UC1, LC1,
18
             UC2+LC2+UD1+LD1+UD2+LD2+UK1+LK1+UK2+LK2+GAM+KSI+PO+P+PI+
19
             XMU, UWE, UWEXE, URE, LWE, LWEXE, LRE, AUX, S, S1, S2, SM, Y, TEST,
20
             EPS, ROOT, CCC, XXX, YYY, TTT, JSTART, JEND, JSTEP, CTE,
21
             A,SIGA,B,SIGB,R,CHS,
22
             GP, AO, A2, A3, A4, T3, T4, HM2, HM3, HM4, AAO, AA1, AA2, AA3,
23
             AAAO, AAA1, AAA2, AAA3, REO, RE1, RE2, RE3, RE4,
24
             UALDG + LALDG + GMO + GM2 + GM20 + GLOG + PLOGPO + ZAZ + UANV + LANV +
25
             GM, 82, 83, 84, 85, 86, 87, 38, E1, E2, E3, E41
26
     INTEGER KONTROL, JMK, UJ, LJ, UVMIN, UVMAX, LVMIN, LVMAX, UU, LL,
27
              LAMBDA, MU, NN, MIN, MAX, FLAGFIT, UFLAG, LFLAG, UMK, LMK,
28
              LGOP,
29
              INTER NPTS MM KK FALTAS
30
     DOUBLE ARRAY XX, YY, YCALC[1:500], FITS[1:500,1:10], CFF[1:5,1:5],
31
                    TABLE, UBETA, LBETA, UB1, LB1, D, Q, I, CDEF, BIN (0:50, C:50],
32
                    W[0:50,0:50,0:50],LFAT[0:50],TITLE[1:16],
33
                    0[0:50,0:50,0:50],RCENT[0:50,0:50],
34
                    AMN & IBSF & IRCENT, BSF & RAIZ[0:50,0:50],
35
                    H[0:50,0:50,0:50],
36
                    CHI+SCF[1:5];
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
```

```
- 108 -
 53
 54
      DOUBLE PROCEDURE DETERM(MTX, ORDER);
 55
      DOUBLE ARRAY MTX[1,1];
                                INTEGER ORDER!
 50
      BEGIN
 57
      DOUBLE DET; INTEGER K, J, II; LABEL FINAL, OK)
 58
      DOUBLE SAVE!
 59
      DOUBLE ARRAY MATE1:10,1:10];
      FOR KI=1 STEP 1 UNTIL ORDER DO
 60
 61
      FOR J:=1 STEP 1 UNTIL ORDER DO MAT(K, J):=MTX[K, J];
      DET:=1;
 62
      FOR K:=1 STEP 1 UNTIL ORDER DO
 63
 64
           BEGIN
 05
           IF MAT(K+K] NEQ O THEN GO TO OK
 65
                               ELSE FOR JI=K STEP 1 UNTIL ORDER DO
 67
                                IF MATEK, J] NEQ O THEN
 68
                                   BEGIN
 07
                                   FOR III *K STEP 1 UNTIL ORDER DO
 70
                                        BEGIN
 71
                                        SAVE:=MATEII,J];
 72
                                        MATEII=J1:=MATEII=K1;
 73
                                        MATEII+K1:=SAVE;
 74
                                        END;
 75
                                   DETI =- DETI GO TO OKI
 76
                                   END ;
 77
           DETERM:=0;
                         GO TO FINAL;
 78
           OK:
 79
           DET:=DET*MAT[K+K];
           IF K-ORDER NEQ O THEN FOR II := K+1 STEP 1 UNTIL ORDER DO
 80
 81
                                       JI=K+1 STEP 1 UNTIL ORDER DO
                                   FOR
 32
                                   MATEII+J1:=+-MATEII+K]*MATEK+ J]/MATEK+K];
 23
           END;
 84
      DETERM:=DET;
 85
      FINAL:
 86
      END OF PROCEDURE DETERMI
 87
 88
 39
      PROCEDURE LINFIT(X,Y,NPTS,A,SIGMAA,B,SIGMAB,RR,YCALC);
 90
      DOUBLE ARRAY X, Y, YCALC[1];
                                      INTEGER NPTS;
 91
      DOUBLE A, SIGMAA, B, SIGMAB, RR;
 92
      BEGIN
 93
      DOUBLE SUM, SUMX, SUMY, SUMX2, SUMY2, SUMXY, XI, YI, DELTA, VARNCE,
 94
      INTEGER II;
 95
      SUM := SUMX := SUMY := SUMX2 := SUMY2 := SUMXY := O;
 96
      FOR II:=1 STEP 1 UNTIL NPTS DO
 97
           BEGIN
 98
           XI:=X[II];
                           YII=YIII);
 99
           SUM
                1=++1;
100
           SUMX := * + XI;
101
           SUMY 1=++YI;
102
           SUMX21=++XI+XI;
103
           SUMY2:=*+YI*YI;
104
           SUMXY:=++XI+YI;
105
           ENDI
      DELTA:=SUM*SUMX2=SUMX*SUMX;
106
107
      A:=(SUMX2+SUMY
                        -SUMX + SUMXY)/DELTA;
108
                        -SUMX +SUMY )/DELTA;
      B = (SUMXY + SUM
109
      VARNCE:=(SUMY2+A*A*SUM+B*B*SUMX2=2*(A*SUMY+B*SUMXY=A*B*SUMX))/(NPTS=2)
      SIGMAA: =DSQRT(VARNCE +SUMX2/DELTA);
110
111
      SIGMAB = DSQRT(VARNCE + SUM
                                   /DELTA);
      RR:=(SUM*SUMXY-SUMX*SUMY)/DSQRT(DELTA*(SUM*SUMY2-SUMY*SUMY));
112
      FOR II: #1 STEP 1 UNTIL NPTS DO YCALC[II]:=A+B+X[II];
113
114
      END OF LINEAR FIT ;
115
```

```
- 109 -
116
117
118
119
120
121
122
123
       PROCEDURE POLFIT(X,Y,NPTS,DEGREE,A,CHISGR,YCALC);
124
125
       DOUBLE ARRAY A, X, Y, YCALC[1]; INTEGER NPTS, DEGREE; DOUBLE CHISCR!
125
       BEGIN
127
       DOUBLE ARRAY SUMX, SUMY[1:10], ARAY[1:10,1:10]
128
       DOUBLE CHISG, XTERM, YTERM, XI, YI, DELTA;
129
       INTEGER II.JJAKKALLANANTERMSA
                                           INTEGER NMAX!
130
       LABEL FIM:
131
       NTERMS = DEGREE +11
                           NMAX = 2*NTERMS=13
      FOR N:=1 STEP 1 UNTIL NTERMS DO A[N] =0;
132
                                                         CHISOR:=01
133
       IF NPTS NTERMS LEO O THEN GJ TO FIM;
134
      FOR N:=1 STEP 1 UNTIL NMAX DO SUMX[N]:=SUMY[N]:=O; CHISQ:=C;
135
      FOR II:=1 STEP 1 UNTIL NPTS DO
136
           BEGIN
           XI: +X[II]; YI: =Y[II]; XTERM:=1;
137
           FOR NI=1 STEP 1 UNTIL NMAX DO
138
139
               BEGIN
140
               SUMX[N]:=++XTERM;
141
               XTERM:=XTERM*XI;
142
               END;
           YTERM:=YI;
143
           FOR NI=1 STEP 1 UNTIL NTERMS DO
144
               BEGIN
145
146
               SUMY[N]:=++YTERM;
147
               YTERM:=YTERM*XI;
148
               ENDS
          CHISQ:=CHISQ+YI+YI;
149
150
           ENDI
      FOR JJ:=1 STEP 1 UNTIL NTERMS DO
151
      FOR KK = 1 STEP 1 UNTIL NTERMS DO
152
                                           ARAY[JJ#KK] #= SUMX[JJ+KK=1]]
153
      DELTA:=DETERM(ARAY,NTERMS);
154
      IF DELTA = O THEN BEGIN
155
                          FOR JJ:=1,2,3,4 DO ALJJ1=0; CHISQR:=0; GO TO FIM;
156
                          ENDI
      FOR LL .= 1 STEP 1 UNTIL NTERMS DO
157
158
          BEGIN
159
          FOR JJ1=1 STEP 1 UNTIL NTERMS DO
160
               BEGIN
               FOR KK:=1 STEP 1 UNTIL NTERMS DO ARAY[JJ+KK]:=SUMX[JJ+KK-1];
161
162
               ARAY[JJ,LL] = SUMY[JJ];
163
               ENDJ
164
          A[LL] = DETERM(ARAY, NTERMS)/DELTAJ
165
          ENDI
      FOR JJ:=1 STEP 1 UNTIL NTERMS DO
166
157
          BEGIN
168
          CHISQ:=*=2*A[JJ]*SUMY[JJ];
169
          FOR KKI=1 STEP 1 UNTIL NTERMS DO
170
               CHISQ:=**A[JJ]*A[KK]*SUMX[JJ*KK=1];
171
          ENDI
172
      CHISQR:=CHISQ/(NPTS=NTERMS);
173
      FIMS
174
      FOR JJ =1 STEP 1 UNTIL NPTS DO
175
          BEGIN
176
          YCALC[JJ]:=A[1];
177
          XI:= IF X[JJ]=0 THEN 1.000-30 ELSE X[JJ];
178
          FOR KK:=1 STEP 1 UNTIL DEGREE DO
```

```
- 110 -
179
                     YCALC[JJ]:=*+A[KK+1]*XI**KK3
          ENDI
180
      END OF. POLYNOMIAL FIT;
181
102
183
                                                          #3
      DEFINE RE(R) = AAO+AA1*R+AA2*R*R+AA3*R*R*R
104
185
126
187
188
189
190
      DEFINE SAI(G,FFF) =
191
192
      WRITE(AA, FFF);
      FOR NNI=LVMIN STEP 7 UNTIL LVMAX DO
193
194
           BEGIN
           WRITE (AAs</>>);
195
          MAX:=6+MIN:=NN;
196
           IF MAX GTR LVMAX THEN MAX = LVMAX
197
      WRITE (AA, <X11, "V" |
                             V'' --> ", I6, 6116>, FOR LLI=MIN STEP 1 UNTIL MAX
198
199
                                                   DO LL );
200
           FOR UUS=UVMIN STEP 1 UNTIL UVMAX DO
           WRITE (AA> < X9, 14, X3, 7016.8>, UU, FOR LLI=MIN STEP 1 UNTIL MAX DO
201
                                            [OLUUPLL]]);
202
           END;
203
204
      WRITE(AA,<//>);
205
                                                    *********
                23% *************
206
207
208
209
210
211
      DEFINE SAIDA(FF.W)
212
                            =
      WRITE(AALSKIP 11);
213
214
      WRITE (AA, FF);
215
      WRITE(AA, <X1, 1645>, TITLE[*]);
      WRITE(AA, <" REDUCED MASS = ",F16.10>,XMU)}
216
      WRITE(AA, <" UPPER WE, WEXE, BE, RE: ",4(X2,F15.8)>,UWE,UWEXE, UBE, URE);
217
      WRITE(AA, <" LOWER WE, WEXE, BE, RE: ",4(X2,F15,8)>,LWE,LWEXE,LBE,LRE);
218
      WRITE (AA, «" AO, A1, A2, A3=
219
                                   "+4F15.6>, AAO, AA1, AA2, AA3);
      WRITE(AA,<//>
220
221
           IF JMK=C THEN WRITE(AA, <X3, "Q BRANCH">)
                     ELSE IF JMK=1
222
                             THEN WRITE (AA + < X 3 + "R BRANCH">)
223
                             ELSE WRITE(AA, <X3, "P BRANCH">) ;
224
      FOR UU:=UVMIN STEP 1 UNTIL UVMAX DO
225
           BEGIN
226
227
           WRITE(AA></>);
                             J** ",*(X5,12,",",12)>+LVMAX+1+
           WRITE (AA + < X 3 + "
228
               FOR LL:=LVMIN STEP 1 UNTIL LVMAX DO (UU+LL));
229
230
           FOR NNI=0 STEP 1 UNTIL KONTROL DO
           WRITE(AA, <X3, F7.2, 12(X4, F6.4)>, W[NN, 50, 50],
231
               FOR LL:=LVMIN STEP 1 UNTIL LVMAX DO W(NN/UU/LL))
232
           ENDI
233
234
                   # ; %
                       *****************************
235
236
237
238
239
240
```

241

```
242
      DEFINE CONSTANTES(P+KSI+GAM+L1)=
                                                            - 111 -
243
              LOOK FOR G(S) MAXIMUM ********
           ×
244
           AUX:=KSI*GAM*P**(GAM=1);
245
           S:=SM;
240
           FOR NN:=1 STEP 1 UNTIL 5000 DO
247
               BEGIN
               Y:=AUX*(2=AUX*S**GAM)**GAM3
248
249
               S1:=2=AUX*(2=Y)**GAM;
250
               S2:=2=AUX + S1 + + GAM3
251
               SM:=(51+52)/2;
252
               TEST:=DABS(=0.5*(1+AUX*SM**(GAM=1))+1/SM);
253
               IF TEST LEQ 1.000-20 THEN GO TO L13
254
               SI=SM;
               ENDS
255
           WRITE(AA, <" DO NOT CONVERGE ", 100("#")>);
256
257
           WRITE (AA + <" AUX + P + SOLD + SNEW: ">) ;
           WRITE (AA+<4(X1+D32+20)>+AUX+P+S+SM);
255
259
           UVMAX = LAMBDA;
260
           LVMAX:=MU-1;
261
           GO DUTI
262
           L1:
           INTER:=INTER+NN;
263
              THERE'S THE ROOT ....
264
                                         STORED IN SM
           2
           RAIZ[LAMBDA,MU]:=SM;
265
                                            2;
266
           to
           %
267
268
269
270
271
      DEFINE INTEGRAL(P,KSI,GAM)=
272
273
           INTEGRAL EVALUATION
      2
                                    **********
274
           CHANG & KARPLUS NOTATION
      8
275
      SM:=RAIZ[LAMBDA,MU];
276
277
      ROCT = DLN(UK1/(P*SM))/UA+UROJ
278
           AUX = KSI * P * * (GAM = 1)/2;
279
           GM:==SM/2=AUX*SM**GAM+DLN(SM);
280
           AUX = AUX + GAM + (GAM - 1) + SM + + (GAM - 2);
281
           S1=1/(SM*SM);
282
           GM2:==AUX=S;
283
      GP:=KSI*P**(GAM=1)*GAM/2;
284
      AO = GP * SM * * GAM/GAM
      A2:=A0*GAM*(GAM=1)/SM**23
285
286
      A3:=A2*(GAM=2)/SM;
287
       T3:=S/SM;
      A4:=A3*(GAM=3)/SM;
288
289
      T4:=T3/SM;
290
      HM2:==A2=S;
291
      HM3:==A3+2*T3;
292
      HM4:==A4=6*T4;
293
      E1:=HM4/(8*HM2**2)*5*HM3**2/(24*(-HM2)**3);
      I[LAMBDA,MU]:=1+E1/P;
294
                               RE2:==RE1/SM;
295
      RE1:==
               1/(UA*SM);
      EPS:=(RE1*HM3/HM2=RE2)/(2*HM2*RUOT);
296
      IRCENTILAMBDA, MUI:=ROOT*(1+(E1+EPS)/P);
297
298
      S1:=AA1+2*AA2*ROOT+3*AA3*ROOT*ROOT;
299
      RE1:=S1/(-UA*SM);
      RE2:==RE1/SM+(2*AA2+6*AA3*ROOT)/(UA*SM*UA*SM);
300
      EPS:=(RE1*HM3/HM2=RE2)/(2*HM2);
301
302
      S1:=RE(ROOT);
303
      IBSF[LAMBDA,MU]:=S1+(E1*S1+EPS)/P;
304
           #;
```

```
305
306
307
308
309
310
311
      ON ANYFAULT [STACKHIS[*]:NN].
312
             BEGIN
313
             FALTA:=100;
             WRITE(AA, <" OCCURRED FAULT NUMBER ", I3>, NN))
314
             WRITE(AA, <20A6>, STACKHIS[*]);
315
316
             GO TO GALHO;
317
             ENDI
      CTE:=0.243559;
318
319
      LFAT[0]:=0;
      FOR NN:=1 STEP 1 UNTIL 50 DU LFAT[NN]:=LFAT[NN=1]+DLN(NN)]
320
321
322
          CALCULATION OF BINOMIAL COEFFICIENTS
323
      8
                                                    **************
324 325 326
      BIN[0,0]:=1;
327
      FOR UUI=1 STEP 1 UNTIL 50 DU
328
           BEGIN
329
           BIN(UU.0]:=1;
           FOR LL:=1 STEP 1 UNTIL UU DO BIN(UU,LL):=BIN(UU-1,LL=1)+BIN(UU-1,LL)
330
331
           ;END;
      FOR UU:=0 STEP 1 UNTIL 50 DU
333
      FOR LL:=0 STEP 1 UNTIL UU DO BIN(UU,LL):=DLN(BIN(UU,LL));
334
335
      PI:=3.141592653589793238462640000
336
      NEWDATA:
337
      FALTA:=0;
1338
339
      READ(BB,<16A5>,TITLE[*])[ENDJOB];
340
      READ (BB / / JUWE / UWE XE / UBE / URE / LWE / LWE XE / LBE / LRE / XMU) ;
341
      READ(BB)/)JSTART)JEND)JSTEP)UVMIN)UVMAX)LVMIN)LVMAX)
342
                 UFLAG, UMK, LFLAG, LMK, JMK, FLAGFIT);
343
      READ (BB / , AAAO, AAA1, AAA2);
344
345
      AAO:=AAAO; AA1:=AAA1; AA2:=AAA2;
      WRITE(AALSKIP 1]);
346
347
      UD:=UWE*UWE/(4*UWEXE);
348
      LD:=LWE*LWE/(4*LWEXE);
349
      UA:=0.243559*DSQRT(XMU*UWEXE);
350
      LA:=0.243559*DSQRT(XMU*LWEXE);
351
      GAM:=LA/UA;
352
                              LALDG = DLN(LA);
      UALOG:=DLN(UA);
353
      IF UFLAG = 1 THEN
354
           IF UMK = 1 THEN UBE:=1/((CTE*URE)**2*XMU)
                       ELSE URE:=1/(CTE*DSQRT(XMU*UBE));
355
      IF LFLAG = 1 THEN
356
357
           IF EMK = 1 THEN LBE:=1/((CTE*LRE)**2*XMU)
                       ELSE LREI=1/(CTE+DSORT(XMU+LBE));
358
      IF JSTART=0 AND JMK NEG 0 AND JMK NEG 1 THEN JSTART = 1;
359
360
      LJ:=JSTART-JSTEP;
                             KONTROL ==1;
      WHILE LJ LSS JEND DO
361
      BEGIN
362
      ZTART:=TIME(2);
363
      FOR NNI#0 STEP 1 UNTIL 50 DU
364
      FILL Q[NN+1] WITH 51("AAAAAAA");
365
366
      KONTROL:=*+1;
367
      UJ:=LJ:=LJ+JSTEP;
```

- 112 -

```
- 113 -
368
      IF JMK NEG C THEN
369
      IF JMK=1 THEN UJI=LJ+1
                                   8
                                         R-BRANCH
370
                ELSE UJ:=LJ-1;
                                      x
                                        P-BRANCH
371
      UAJI=UBE*UJ*(UJ+1);
372
      LAJ:=LBE+LJ*(LJ+1);
373
      UALP:=4*UAJ*UBE/(UWE**2);
374
      LALP:=4*LAJ*LBE/(LWE**2);
375
      URU:=URE*(1.0+UALP);
376
      LRO:=LRE*(1.0+LALP);
377
      UC1:= UAJ/(UA*UR0*(1+UALP)**2)*(4-6/(UA*UR0));
378
      LC1:= LAJ/(LA*LRO*(1+LALP)**2)*(4-6/(LA*LRO));
379
      UC2:= UAJ/(UA*UR0*(1+UALP)**2)*(3/(UA*UR0)-1);
330
      LC2:= LAJ/(LA*LRO*(1+LALP)**2)*(3/(LA*LRO)=1);
381
      UD1:=UD*DEXP(=UA*URE*UALP);
      LD1:=LD*DEXP(-LA*LRE*LALP);
382
      UD21=UD*DEXP(=2*UA*URE*UALP);
383
      LD2:=LD*DEXP(-2*LA*LRE*LALP);
384
385
      UK1:=2*DSQRT((UD2+UC2)/UWEXE);
      LK1 = 2 + DSGRT((LD2+LC2)/LWEXE);
386
387
      UK2:=2*(2*UD1=UC1)/(UWEXE*UK1);
388
      LK2:=2*(2*LD1=LC1)/(LWEXE*LK1);
339
      KSI:=(LK1/UK1**GAM)*DEXP(LA*LRO-UA*URO*GAM))
      PO:=0.5*((UK2+GAM+LK2)-3-GAM);
390
      PL0GP0:=(PC+0.5)*DLN(P0);
391
392
      GLOG:=DLN(KSI);
393
394
395
      E1:=2*UBE/UWE;
                         E2:=2*LBE/LWE:
      E3:=6*UBE*UBE*(DSORT(UWEXE/UBE)-1)/UWE;
395
397
      E4:=6*LBE*LBE*(DSORT(LWEXE/LBE)=1)/LWE;
398
      GALHC:
399
      WRITE(AA, <X1, 16A5>, TITLE[*]);
400
      WRITE(AA, <X1, "REDUCED MASS= ",F16.10>,XMU);
401
      WRITE(AA, <X1, "GAM, KSI, PO= ", 3(X2, D20, 10)>, GAM, KSI, PO);
402
      WRITE(AA, <" AO, A1, A2, A3= ", 4F15.6>, AAO, AA1, AA2, AA3);
403
      WRITE (AA, </>);
      WRITE(AA, <X1,9("*")," UPPER STATE DATA ",95("*")>);
404
      WRITE(AA, <x1"WE, WEXE, RE, BE, D, A=", 6(x2, F15, 8) > UWE, UWEXE, URE, UBE, UD, UA);
405
406
      WRITE(AA, <X1, "AJ, ALPHA, RO, C1, C2, =", 7(X1, D15, 8)>, UAJ, UALP, URC, UC1, UC2);
      WRITE(AA, <x1, "D1, D2, K1, K2= ", 5(x2, D19, 10)>, UD1, UD2, UK1, UK2);
407
      WRITE(AA, <" J = ", F7.2>, UJ);
408
      WRITE (AA, <" JAMES' GAMMA = ", D16.8," PEKERIS' ALPHA-E = ", D16.8>,
409
410
                 E1,E3);
411
      WRITE(AA, <X1,9("*")," LOWER STATE DATA ",95("*")>);
412
      WRITE(AA><X1"WE>WEXE>RE>BE>D>A=">6(X2>F15+8)>>LWE>LWE>LRE>LBE>LD>LA)$
      WRITE(AA, <X1, "AJ, ALPHA, RO, C1, C2 =", 7(X1, D15, 8)>, LAJ, LALP, LRC, LC1, LC2);
413
414
      WRITE(AA, <X1, "D1, D2, K1, K2= ",5(x2, D19, 10)>, LD1, LD2, LK1, LK2);
      WRITE(AA, <" J = ", F7.2>,LJ);
415
      WRITE(AA, <" JAMES' GAMMA = ",D16.8," PEKERIS' ALPHA-E = ",D16.8>,
416
                 E2+E4);
417
      WRITE(AA, <X1, 124("*")>);
418
419
      W[KONTROL = 16 = 48] = E1;
                                W[KUNTROL = 17 = 48] = E3;
420
      W[KONTROL , 40, 48]:=E2;
                                W[KONTROL + 41 + 48] = E4
421
      WRITE (AA, </>);
422
      WRITE(AA,</>>);
      IF FALTA=100 THEN GO TO OUTPUT;
423
424
      IF UK2 LSS 2*UVMAX THEN WRITE (AA, <" UVMAX CHANGED TO
                                                                  ", I6>,
425
                                       UVMAX = UK2/2)
      IF LK2 LSS 2*LVMAX THEN WRITE (AA . . . LVMAX CHANGED TO
                                                                 ", 16>,
426
427
                                       LVMAX:= LK2/2);
428
429
430
      FOR UU:=UVMIN STEP 1 UNTIL UVMAX DO
```

```
- 114 -
      FOR LAMBDA := 1 STEP 1 UNTIL UU DO
431
           UBETA[UU,LAMBDA]:=UBETA[UU,LAMBDA=1]+DLN(UK2=UU=LAMBDA);
432
433
      FOR UU:=UVMIN STEP 1 UNTIL UVMAX DO
434
      FOR LAMBDA:=1 STEP 1 UNTIL UU DO
435
           UB1[UU+LAMBDA] =
                                 BINIUU, LAMBDA] +UBETA(UU, LAMBDA);
      FOR LL:#LVMIN STEP 1 UNTIL LVMAX DO
FOR MU:#1 STEP 1 UNTIL LL DO
436
430
           LBETAILL,MU]:=LBETAILL,MU-1]+DLN(LK2-LL-MU);
439
      FOR
          LL:=LVMIN STEP 1 UNTIL LVMAX DO
      FOR
          MUS=1 STEP 1 UNTIL LL DU
440
                            BINILLAMU] +LBETAILLAMU] GLOG *MU;
441
           LB1[LL MU] :=
442
      %
443
      SM:=1;
444
445
      LAMEDA:=MU:=0;
      CONSTANTES (PO,KSI,GAM,L1);
440
447
      INTEGRAL (POPKSI, GAM);
448
      GMO:=GM;
                       GM201=GM2;
449
      ZAZ:=-UAL0G+(DLN(2*PI)+(LK2*1)*GL0G=DLN(=GM20))/2+PL0GP0+P0*GM0;
450
451
      FOR UU:=UVMIN STEP 1 UNTIL UVMAX DO
452
           BEGIN
453
           UANV:=(UALOG+DLN(UK2-2*UU-1)+DLGAMMA(UK2-UU)-LFAT[UU]
                 =2*DLGAMMA(UK2=2*UU))/2;
454
455
           AUX = ZAZ+UANV-UBETA[UU,UU];
456
             FOR LLS=LVMIN STEP 1 UNTIL LVMAX DO
457
               BEGIN
458
               LANV:=(LALOG+DLN(LK2-2*LL-1)+DLGAMMA(LK2-LL)-LFAT[LL]
459
                      -2*DLGAMMA(LK2=2*LL))/2;
               COEF[UU,LL]:=DEXP(AUX+LANV-LBETA(LL/LL]);
460
461
               ENDI
462
          ENDI
463
464
465
      INTER:=0;
466
467
      FOR LAMBDA := 0 STEP 1 UNTIL UVMAX DO
                 := O STEP 1 UNTIL LVMAX DO
468
      FOR MU
469
        BEGIN
470
        P:=PO-LAMBDA-GAM*MU;
471
        CUNSTANTES(P+KSI+GAM+LLL222);
        ENDS
472
473
474
      FOR UU: TUVMIN STEP 1 UNTIL UVMAX DO
475
      FOR LL:=LVMIN STEP 1 UNTIL LVMAX DO
476
           BEGIN
477
          FOR LAMBDA = 0 STEP 1 UNTIL UU DO
478
          FOR MU
                     := O STEP 1 UNTIL LL DO
479
               BEGIN
480
               P:=PO-LAMBDA-GAM*MU;
481
               INTEGRAL (P+KSI+GAM);
482
               AUX:=DEXP(UB1[UU;LAMBDA]+LB1[LL;MU]+(P+0.5)*DLN(P)-PLOGPO+
433
                    P*GM=PO*GMO);
484
               D[LAMBDA = MU] = (IF (LAMBDA + MU) . [0:1]=0 THEN 1 ELSE = 1) *
485
                               AUX*DSQRT(GM20/GM2);
486
               ENDS
           AUX:=E2:=E3:=0;
487
           FOR LAMBDA := 0 STEP 1 UNTIL UU DO
488
489
                      := O STEP 1 UNTIL LL DO
           FOR MU
490
               BEGIN
491
               E2:=E2+D[LAMBDA,MU]*IRCENT[LAMBDA,MU];
492
               E3:=E3+D[LAMBDA,MU]*IBSF[LAMBDA,MU];
493
               AUX = AUX+D[LAMBDA,MU]+I[LAMBDA,MU];
```

```
- 115 -
              ENDS
494
          Q[UU,LL]:=AUX+COEF[UU,LL];
495
          Q[UU,LL]:=Q[UU,LL]*Q[UU,LL]]
496
          RCENTEUU+LL1:=E2*COEF[UU+LL]]
497
          RCENT[UU,LL]:=RCENT[UU,LL]*RCENT[UU,LL];
498
          RCENTLUU,LL]:=DSQRT(RCENTLUU,LL]/QLUU,LL]);
499
          BSF[UU,LL]:=E3*COEF[UU,LL];
500
          BSF[UU,LL]:=BSF[UU,LL]*BSF[UU,LL];
501
502
          ENDI
503
504
505
506
50?
      OUT:
      W[KUNTRDL,50,50]:=0[KONTROL,50,50]:=H[KONTROL,50,50]:=LJ;
508
509
      XX[KONTROL+1]:=LJ*(LJ+1);
510
511
512
      FOR UU:=UVMIN STEP 1 UNTIL UVMAX DO
513
514
           BEGIN
515
           Q[UU,LVMAX+1]:=03
           FOR LL := LVMIN STEP 1 UNTIL LVMAX DO
516
517
               Q[UU+LVMAX+1]:=*+Q[UU+LL];
518
           END;
      FOR LL = LVMIN STEP 1 UNTIL LVMAX DO
519
520
           BEGIN
521
           Q[UVMAX+1,LL]:=0;
           FOR UU:=UVMIN STEP 1 UNTIL UVMAX DO
522
               Q[UVMAX+1,LL] = + Q[UU,LL];
523
           END;
524
      Q[UVMAX+1.LVMAX+1]:=0;
525
526
527
      8
528
      9
529
      劣
           GUTPUT:
                            *************
530
      9
531
532
      9
533
534
                        LVMAX: = ++1;
      UVMAX = * + 13
535
      SAIGOFFODI
                        LVMAX:=*=1;
536
      UVMAX:=*=1;
      SAI(RCENT, FFR);
                             SAI(BSF + FFS);
537
      SAI(RAIZ, FFT);
538
      HEND:=(TIME(2)=ZTART)/60;
539
      WRITE(AA, <73(" "), "TIME TO COMPUTE TABLES = ",
540
                F8.3," SECONDS">>HEND);
541
      WRITE(AA, <65(" "), " AVERAGED NUMBER OF ITERACTIONS = ",D16.8>,
542
                      AUX:=INTER/(UVMAX+LVMAX+2));
543
           FOR UU:=UVMIN STEP 1 UNTIL UVMAX DO
544
           FOR LL := LVMIN STEP 1 UNTIL LVMAX DO
545
               BEGIN
546
               O[KONTROL, UU, LL]:=RCENT[UU, LL];
547
               HEKONTROL, UU, LL]:=BSF[UU,LL];
548
549
               END;
       KK:=KONTROL;
550
                                                            WEKK, 3,5011=JSTEP:
                                 WEKK 2,501:= JENDS
       W[KK + 1 + 50] = JSTART ;
551
                                                            W[KK+ 6+50] == LVMIN3
                                 WEKKA 5,501 = UVMAXS
552
       W[KK # 4 50] = UVMIN3
                                                            W[KK+ 9+50] = GAM;
                                 W[KK# 8,50]:=XMU;
553
       W[KK > 7 = 50] = LVMAX;
                                                            WEKK 12+50] = AACJ
                                 W[KK,11,50]:=PO;
554
       W[KK + 10 + 50] = KSI ;
                                                            W[KK+49+50] = JMK;
                                 W[KK+14+50] = AA23
555
       W[KK + 13 + 50] = AA1;
                                             W[KK,21,50]:=AUX;
       W[KK, 20, 50] := (HEND-ZTART)/60;
556
```

```
- 116 -
      FOR NN:=1 STEP 1 UNTIL 16 DO W[KK,NN,49] =TITLE[NN];
557
                                                           W[KK# 3#48]1=URE:
      W[KK = 1 = 48] = UWE $
                                W[KK# 2.48] = UWEXE
356
                                                           W[KK+ 6+48] = UA;
559
      W[KK, 4,48] = UBE
                                W[KK+ 5+48]:=UD;
500
      W[KK# 7#42] = UAJ$
                                W[KK+ 8+48] = UALP;
                                                           W[KK# 9#48]:=URO;
561
      W[KK+10+48]:=UC13
                                W[KK+11+48]:=UC2;
                                                           W[KK,12,48]:=U01;
562
                                W[KK+14+48]:=UK1;
                                                           W[KK+15+48]:=UK2;
      W[KK+13+48]:=UD2
                                                           W[KK+27+48] = LRE3
563
      N[KK + 25+48] = = LWE ;
                                W[KK+26+48]:=LWEXE;
                                                           W[KK+30+48]:=LA;
564
                                W[KK+29+481:=LD;
      W[KK,28,48]:=LBE;
                                W[KK+32+48]:=LALP;
565
      W[KK+31+48] = LAJ$
                                                           W[KK+33+48]:=LRO;
      W[KK+34+42]:=LC1;
                                W[KK, 35, 48]:=LC2;
                                                           W[KK+36+48] = LD1;
500
567
      W[KK+37+48]:=LD21
                                W[KK, 38, 48]:=LK13
                                                           W[KK+39+48]:=LK2;
568
      FOR UUI=UVMIN STEP 1 UNTIL UVMAX DO
      FOR LL:=LVMIN STEP 1 UNTIL LVMAX DO W[KONTROL,UU,LL]:=G[UU,LL];
569
570
      END OF WHILE LOOP;
571
      SAIDA(FC, w);
                       SAIDA(FR.D);
572
      SAIDA(FSAM)
573
574
575
576
577
      IF FALTA = 100 THEN GO TO NEWDATAS
578
      IF FLAGFIT = O THEN GO TO NEWDATAJ
579
      NPTS:=KONTROL+1;
                                         MAX = 43
      IF NPTS LEG MAX+1 THEN MAXI=NPTS=21
530
531
      IF MAX LEG O THEN GO TO NEWDATA;
      WRITE (AALSKIP 11);
532
      FOR UU:=UVMIN STEP 1 UNTIL UVMAX DO
533
584
      FOR LL:=LVMIN STEP 1 UNTIL LVMAX DO
585
          BEGIN
          FOR NN:=1 STEP 1 UNTIL NPTS DO
586
587
          FOR MM:=1 STEP 1 UNTIL 10 DO FITS[NN,MM]:=0;
          FOR NN = 0 STEP 1 UNTIL KONTROL DO
588
589
          BEGIN
          INTER:=10000*W[NN,UU,LL];
                                        YYENN+11:=INTER;
590
591
          ENDS
592
          AUX:=C;
593
          FOR NN:=1 STEP 1 UNTIL NPTS DO IF YY[NN] LEQ 0 THEN AUX:=*+13
594
          IF AUX+3 GTR NPTS THEN GO TO NOFIT;
595
          FOR NNI=1 STEP 1 UNTIL NPTS DO YY[NN] == /10000;
596
          LINFIT(XX,YY,NPTS,A,SIGA,B,SIGB,R,YCALC);
597
          FOR NNI=1 STEP 1 UNTIL NPTS DO
598
               BEGIN
599
               FITS[NN,1]:=XX[NN];
600
               FITS[NN,2]:=YY[NN];
601
               FITS[NN, 3] = YCALC[NN];
               FITS[NN,4]:=FITS[NN,2]=FITS[NN,3];
602
603
               ENDS
          FOR MM:=2 STEP 1 UNTIL MAX DO
604
605
               REGIN
606
               FOR NN:=1,2,3,4,5 DO SCF[NN]:=0;
607
               POLFIT(XX,YY,NPTS,MM,SCF,CHS,YCALC)]
608
          FOR NN:=1 STEP 1 UNTIL NPTS DO
609
                   BEGIN
                   FITS[NN#2*MM+1]:=YCALC[NN];
610
                   FITS[NN+2*(MM+1)]:=YY[NN]-YCALC[NN];
611
612
                   END;
               FOR NN:=1,2,3,4,5 DO CFF[MM,NN]:=SCF[NN];
613
               CHI[MM]:=CHS;
614
               ENDI
615
          WRITE(AA, <" POINT", X5, "J(J+1)", X6, "FACTOR", X5, "LIN FT", X6, "DIF",
616
                     x7, "SQR FT", x6, "DIF", x8, "3 FIT", x6, "DIF", x8, "4 FIT", x6,
617
                     "DIF">);
618
         FOR NN:=1 STEP 1 UNTIL NPTS DO
619
```

	- 11/ -
620	WRITE(AA, <x2, 10(f11.4)="" i3,="" x2,="">, NN, FOR MMI=1 STEP 1 UNTIL 10 DO</x2,>
621	FITS[NN,MM])}
622	WRITE(AA, ," A,SIGMAA,B,SIGMAB,R = ",5D20.12 ,A,SIGA,B,SIGB,R); FOR NN:=2,3,4 DD
624	WRITE(AA, < " CHISQR= ",D16.8," CDEF= ",5D16.8, CHI[NN], CFF[NN, *]); WRITE(AA, //);
620	NOFIT: END;
628	GO TO NEWDATA;
629	ENDJOB:
630	WRITE(ARKIV, *, FOR NNI=0 STEP 1 UNTIL 50 DO
631	FOR UU:=C STEP 1 UNTIL 50 DO
632	FOR LLIS STEP 1 UNTIL 50 DO WENN, UU, LLJ);
633	LOCK (ARKIV)
634	
635	END.

N2+ FIRST NEGATIVE HER/BENG DATA

 wE+wExt+wE+d+0+A=
 2419+04000000
 23+19000000
 1+075000000
 2+08300000
 63126+62382061
 3+10396021

 AJ+AL9nA+R0+C1+C2+=
 0+
 0+
 1+0750000000000
 0+
 0+
 0+

 D1+D2+w1+w2=
 0+3126+238210+04
 1+04346426050+02
 1+04346426050+02
 1+04346426050+02

 DI-JC+RI+RC= 0.000 J = 0.00 JANES' GAMMA = -1.721601430-03 PEKERIS' ALPHA-E = 2.513/94590-02 0000000 10.13600000 1.11020000 1.11020000 J = 0.00 J= 0.00 J= 0.00 FRANCK-CUNDON FACTURS - VII -->. 6.7428105D-01 2.47271652D-01 6.21312084D-02 1.31351850F.02 2.50346821.-03 4.431002180-04 4.4441220-0 2.850604480-01 2.587947880-01 2.47350181D-01 1.214243220-01 3.508455770-02 8.881577030-03 4.4741440-01 3.882365530-02 3.470662750-01 7.507664610-02 2.445080335-01 1.574413450-01 0.1875455750-02 4.77474410-01 0 1 3.0023000002 3.910002/00-01 /.007000010-02 2.44008033[-01 1.074413700-01 0.18/040300-02 7.47714410-01
 3 1.077708130-03 9.1000220-02 4.193997070-01 9.940137070-03 1.473572000-01 1.072701200-01 0.713212300-01
 4 7.330972000-06 5.178953500-03 1.460420390-01 3.932205400-01 7.789118120-04 1.184507710-01 0.097871470-01
 5 4.123080370-07 1.772836250-05 9.970600460-03 1.465301700-01 3.827508000-01 1.430073200-02 0.033794000
 6 ∑ 1.000000220+00 9.999976250-01 9.9970600460-03 1.4653070-01 7.30921850-01 3.73220709-01 0. P-CENTROIDS V. 1 V .. --> 0 1.099745340+00 1.049900400+00 1.009583100+00 9.737231710-01 9.397375670-01 9.051037070-01 1.154203470+00 1.111708910+00 1.055710610+00 1.014532300+00 9./64042600-01 9.4445764260-01 1.223077510+00 1.162940210+00 1.132297230+00 1.061/74140+00 1.01433007510+00 9.629367530-01 2 1.334205330+00 1.23536560+00 1.172361200+00 1.172361200+00 1.00+05261770+00 1.00+05261770+00 3 1.703110200400 1.349406400400 1.2419680440400 1.182020-30400 7.00138370-01 1.075450592040 1.102935710400 1.928155020400 1.365787820400 1.251913450400 1.193905050400 1.030018450400 5 BAND STRENGTH FACTORS 1 V!! --> 5.41718189D-01 1.97727738D-01 4.93434798D-02 1.03460500D-02 1.93565320-03 3.419292440-04 2.300832930-01 2.075379100-01 2.298031940-01 9.64899379D-02 2.645287700-02 6.938201400-03 3.135407400-02 3.20200499D-01 5.99641650D-02 1.95524506D-01 1.251712400-01 4.882342540-02 0 1 2 1.342215850-03 7.392934300-02 3.378157540-01 7.811560010-03 1.43375//00-01 1.346295380-01 5.391630510-06 4.131097580-03 1.175947530-01 3.211631440-01 6.075459720-04 9.461073410-02 3.611760860-07 1.249992320+05 7.924004240-03 1.578004340-01 2.712059640-01 1.17946360-02 3 5 Section 1 Section ROOTS 1 V'' --> 3 0 8.95539029D-01 8.94834483D-01 8.94124457D-01 8.934088640-01 8.92087618J-01 8.91900628J-01 0 1 2 3 5 TIME TO COMPUTE TABLES = 11.003 SECONDS AVERAGED NUMBER OF ITERACTIONS = 3.10033333-41

FRANCK CONU	ON FACTUR	FUR					- 112
N2+ FIRST	NEGATIVE	HERZBERG	DATA				
REDUCED MAS	S =	7.003530000	0000000	24.1900	0000	2.08300000	1.0750000
LOWER WE . ME	AL.BE.RE:	2201.1	9000000	10.1300	00000	1.93220000	1.1102000
-AU. AL. AZ. A.3	=	0.439000	0.790	000	0.340000	0.000000	
HUTHLING							
		a series				e de la calendaria de la c	
U BRANCH		2					
	0.0	0.1	0. 2	0. 1	0.4	0.5	
0.00	0 6744	0.2473	0.0621	0.0131	0.0025	0-0004	
50.00	0.6741	0.2454	0.0021	0.0135	0.0027	0.0005	
100.00	Sibo.0	6465.0	0.0018	0.0140	0.0030	0.0006	
		0.12070					
، ان	1. 0	1. 1	1, 2	1, 3	1, 4	1.5	
0.00	1665.0	0.2588	0.2874	0.1214	0.0361	0.0089	
50.00	- 2085.0 -	0.2590		0.1215	0.0368	U.UUY3	
100.00	0.2842	0.2727	0.2749	0.1178	0.03/2.	0.0101	
	2.0	. 2. 1	2.2	2.3	2. 4	2.5	
0.00	0.0348	0.3971	0.0751	0.2445	0.1574	0.0019	
50.00	-0.0301-		- 0.0758	- 0.2407-	0.1562_	U.0626	
100.00	0.0337	0.4055	0.0884	0.2325	0.1493	0.0018	
	3. 0	3.1	3. 2	3. 3	3. 4	3, 5	
0.00	0.0017	0.0917	0.4194	0.0099	0.1794	V.1093	
50.00	-0.0015	0.0901	- 0.4240-	0.0105	0.1757	U.1057	
100.00	0.0009	0.0798	0.4425	0.0175	0.1707	0.1574	
	4. 0	1	4. 2	4. 3	4. 4	4. 5	
0.00	0.0000	0.0052	0.1460	0.3993	0.0008	0.1184	
	-0.0000-	0.0040	- 0.1436-	- 0.4072-		-0.1156	
100.00	0.0000	0.0020	0.1277	0.4343	5000.0	0.1141 .	
JII	5. 0	5, 1	5, 2	5, 3	5+ 4	5, 5	
0.00	0.0000	0.0000	0.0100	0.1963	0.3628	0.0143	
50.00	-0.0000			_0.1932_		U.0129	
100.00	0.0000	0.0000	0.0041	0.1724	0.4199	0.0001	

 FRANCK CONDON FACTORS FOR

 N2(2+)
 BENESCH DATA - BAND STRENGTH STUDY

 REDUCED MASS =
 7.0037700000

 UPPER WEINEXENBENE:
 204/17800000

 LOWER WEINEXENE:
 1/33.39100000

 A0+A1+A2+A3=
 1.000000

-					and the second s		
	Q BRANCH			1			
-				*			
	7.1	0.0	0, 1	. 0. 5	0.3	0, 4	
	0.00	0.4693	0.3236	0.1401	0.0480	0.0142	
		-0.4635-	-0.3218-		-0.0507	-0.0157	
	100.00	0.4006	0.3117	0.1415	0.0536	0.0103	
			· · · · ·				and a second
	JII	1.0	1.1 -	1, 2	1, 3	-1. 4	
	0.00	0.3977	.0.0355	0.2179	0.1917	0.0997	
-	50.00	-0.4031-	0.0320	6005.0	.0.1894	_ 0.1021	
	100.00	0.4133	0.0368	0.1960	0.1783	0.1015 .	
	JII	2. 0	2, 1	2, 2	2, 3	2, 4	
	0.00	0.1190	0.3755	0.0091	0.0918	0.1704	
-	50.00	-0.1201-	-0.3802	-0.0103-	0.0041	_0.1631	
	100.00	0.1116	0.4117	0.0062	0.0774	0.1465	
	1	142 1					
	J**	3, 0	3, 1	3, 2	3, 3	3, 4	
	0.00	0.0136	1855.0	0.2670	0.0611	0.0231	and a part of the second
		-0.0130	-0.2305-	0.2724	-1590.0	0.0193	
	100.00	0.0035	0.2187	0.3243	0.0477	0.0182	
	1.1	4.0	4. 1	4, 2	4, 3	4, 4	
	0.00	0.0004	0.0362	0.3033	0.1715	0.1017	
		-0.0003	-0.0342-	-0.3074	-0.1787	.0.1007	
	100.00	0.0000	0.0209	0.2996	0.2458	0.0788	

PER WE WE	XE.BE.RE:	2417.8	4000000 9000000 0.790	23.1900 16.1360	00000	2.0830000 1.9322000 0.000	0 1.07500000 0 1.11620000
			*				1
U BRANCH						•	-
JII	0.0	0.1	0, 2	0, 3	0, 4	0, 5	
0.00	1.0997	1.0499	1.0097	0.9737	0.9397	0.9061	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
			1.0177_	-0.9822 .	0.9490		······
100.00	1.1357	1.0810	1.0415	1.0069	0:9755	0.9459	
ر ار ا	1, 0	1. 1	1, 2	1, 3	1, 4	1, 5	
0.00	1.1542	1.111/	1.0557	1.0145	0.9784	0.9440	· · · · · · · · · · · · · · · · · · ·
50.00	1.1635	- 1.1209	1.0030	1.0225	0.9868	U. 9537	
100.00	1.1934	1.1497	1.0874	1.0460	1.0111	0.9797	
۱۱	2, 0	2, 1	2 • S	2, 3	2,4	2, 5	·
. 0.00	1.2231	1.1029	1.1323	1.0618	1.0193	0.9829	- · · · · · · · · · · · · · · · · · · ·
50.00	-1.2344	1.1723	1.1421_	1.0697	1.0272	0.9912	
100.00	1.2732	1.2028	1.1742	1.0932	1.0503	1.0151	
יינ	3, 0	3, 1	3, 2	3, 3	3, 4	3, 5	
0.00	1.3342	1.2324	1.1724	1.1971	1.0683	1.0240	
50.00	-1.3538 -	-1.2434		1.2100	1.0762	1.031a	A second s
100.00	1.4352	1.2037	1.2130	1.2389	1.0994	1.0540	
	4. 0	4.1	4. 2	4. 3	4. 4	4, 5	
0.00	1.7631	1.3494	1.2420	1.1826	0.7602	1.0755	
- 50.00	-1.9722-	- 1.3704 -	-1.2538	-1.1924	0.0635	1.0835	* y
100.00	0.4369	1.4000	1.2940	1.2242	2.2737	1.1062	
	The same way work						
JII	5. 0	5, 1	5, 2	5, 3	5, 4	5. 5	and a second
0.00	1.1029	1.9282	1.3658	1.2519	1.1939	1.0300	
	1.1744	2. 3466	1.3885	1.2040	1.2360	1 9160	
100.00	1.3/10	0.4015	1.4908	1.3001	1.004	0.9100	

 R-CENTROIDS FOR

 N2(2+)
 BENESCH DATA - BAND STRENGTH STUDY

 REDUCED MASS =
 7.0037700000

 UPPER WE*WEXE*HE*RE:
 2047.17800000

 LOWER WE*WEXE*HE*RE:
 2047.17800000

 LOWER WE*WEXE*HE*RE:
 1/33.39100000

 A0+A1+A2+A3=
 1.000000

U BRANCH			+				
Ju	0.0	0 • 1	0 • 2	0.3	0, 4		
0.00	1.1852	1.1402	1.1130	1.0824	1.0528		
50.00	-1.1954	1.1503	1.1233		1.0647		
100.00	1.2305	1.10/5	1.1541	1.1251	1.0986	•	
۱۱	1.0	1.1	1.2	1. 1	1. 4		
0.00	1.2303	1.2108	1.1545	1.1195	1.0885		
-50.00	-1.2410 -	1-2254	1.1648	1.1297	1.0942		
100.00	1.2784	1.2013	1.1959	1.1600	1.1302		
	2.0	2.1	2. 2	2. 3	2. 4		
0.00	1.2845	1.2432	1.1430	1.1644	1.1259		
-50.00 -	- 1.2964	1.2545-	1.1487	1.1/52	1.1360		
100.00	1.3408	1.2922	1.1230	1.2070	1.1659		
ر زر	3. 0	3.1	3. 2	1. 3	3. 4		
0.00	1.3546	1.2765	1.2582	1-1802	1.1744		
- 50.00	-1.3708	1.3041		1.1865	1.1934	and the second second	1
100.00	1.4480	1.35+2	1.3093	1.1940	1.2277	1	
	A			1.1.			
111	4. 0	4. 1	4, 2	4. 3	49 4		
0.00	1.5178	1.3750	1.3092	1.2774	1.1907		
-50.00	-1.5674 -	1-3437	-1-3221	-1.2901 -			
100.00	2.2712	1.4729	1.3686	1.3300	1.2033		

OWER WEANER	E+BE+RE:	2414.84	4000000	16.1360	0000	1-43550000	1.11620000
0+A1+A2+A3=		0.439000	0.190				
Q BRANCH							
JII	0.0	0 . 1	0 . 2	0, 3	0, 4	0, 5	1.4
0.00	0.5417	0.1977	0.0493	0.0107	1200.0		
100.00	0.5405	0.1923	0.0494	0.0111	0.0023	0.0005	
						1.5	
. J. I	1. 0	1, 1	1.2	1, 3	0.0285	0.0069	
0.00	0.2301	0.2075		- 0.0967-			
100.00	0.5525	0.2190	0.2208	0.0942	0.0546	0.0079	
				2. 2	2. 4	2. 5	
J''	2. 0	. 2, 1	2. 2	0.1955	0.1252	0.0488	
0.00	0.0314	-0.3222	-0.0606	- 0.1927	0.1244	0.0495	
100.00	0.0271	0.3260	0.0706	0.1867	0.1194	0.0472	
			2.0	2. 3	3. 4	3. 5	
J''	3, 0	3. 1	0.3378	0.0078	0.1434	0.1340	1 1 1 1 1
0.00	0.0013	0.0725	0.3419	0.0083	0.1406		
100.00	0.0007	0.0640	0.3557	0.0130	0.1371	0.1254	
					4. 4	4. 5	
J.1.	4.0	4, 1	0 1170	0, 1212	0.0007	0.0940	×
0.00	0.0000	0.0041	0-1155-	- 0.3273 -			
100.00	0.0000	0.0020	0.1021	0.3523	0.0001	0.0915	
					E. (5. 5	
J11	. 5. 0	5. 1	5, 2	0,1578	0.2912	0.0110	
0.00	0.0000	0.0000	0.0070	_0.1551_		0.0100	
100 00	0.0000	0.0000	0.0036	0.1374	0.3358	0.0043	
100.00	0.0000	0.0000					
HAND STRENG N2 (2+) BE REDUCED MAS	TH FACTUR	5 FUR A - BAND 7.003770000 20+7.1	STRENGTH 1	5TUDY	u0000	1-52473000	1.148/000
HAND STRENG N2(2+) BE REDUCED MAS UPPER HEASE LOWER AESSE AUSA15A25A3	TH FACTUR: NESCH UATA S = XE+HE+RE: XE+HE+RE:	5 FUR A - BAND 20+/-1 1/3J-2 1+000000	STRENGTH 10 17200000 39100000 0+000	5700Y 28.445 14.122	00000 10000 0.000000	1.52473000 1.63/40000 0.000000	1.148/000 1.2120000
HAND STRENG N2(2+) HE REDJCED MAS UPPER HEAR LOWER AEAR AUANIA2AAJ	TH FACTUR: NESCH DATA S = XE+HE+HE: XE+HE+HE: =	5 FUR A - BAND 7.003770000 2047.1 1/33.2 1.000000	STRENGTH 20 17800000 39100000 0+001	5TUDY 28.445 14.122 1000	uacoo 10000 - u • Oucooo	1.82473000 1.63/4000 0.000000	1.148/000 1.2120000
HAND STRENG N2(2+) BE REDJCED MAS UPPER HEARE LOWER ACARE AUAAIAA2AA3	0.0000 NESCH DATA S = XE+HE+HE: XE+HE+HE: =	5 FUR A - BAND 7.00377000 204/1 1/33.2 1.00000	STRENGTH 10 17800000 39100000 0+001	5700Y 28.445 14.122 1000	udooo 10000 _u.ouoodo	1.82473000 1.63/40000 0.000000	1.148/000 1.2126000
HAND STRENG N2 (2+) BE REDJCED MAS UPPER HE.ME LOWER AE.ME AU.A1.A2.A3	1H FACTUR: NESCH UATA S = XE+HE+HE: XE+HE+HE:	5 FUR A - BAND 7.003770000 2047.1 1/33.2 1.000000	STRENGTH 20 17800000 39100000 0+000	5TUDY 28.445 14.122 1000	uacoo 10000 - u • Oucooo	1.82473000 1.63/4000 0.000000	1.148/000 1.2126000
HAND STRENG N2 (2+) HE REDJCED MAS UPPER HE.ME LOWER AE.ME AU.AI.A2.AJ U BRANCH	0.0000	0.0000 5 FUR A - BAND 7.003770000 20+7.1 1/33.2 1.000000 0.1 0.132	STRENGTH 100000 17800000 39100000 0.000	28.445 14.122 1000	0, 0, 4	1.52473000 1.63/40000 0.000000	1.148/000 1.2126000
HAND STRENG N2 (2+) HE REDJCED MAS UPPER NENE LOWER AENE AU.AI.A2.AJ U BRANCH	0.0000	0+000 5 FUR A - BAND 7-00377000 20+7+1 1/33+2 1+000000 0+1 0+3236 0+3236	5TRENGTH 10 17800000 39100000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	28.445 14.122 1000 0.0430 0.0480 0.0507	0, 4 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	1.82473000 1.63/40000 0.000000	1.148/000
HAND STRENG N2(2+) BE REDJCED MAS UPPER NE.NE LOWER AE.NE AU.AI.A2.AJ U BRANCH J.1 0.00 50.00 100.00	0.0000	0.000 5 FUR A - BAND 7.003770000 20+7.1 1/33.2 1.000000 0.1 0.2236 0.3218 0.3117	STRENGTH 17.00000 39100000 0.001 	28.445 14.122 1000 0, 3 0.0480 0.0507 0.0536	0, 4 -0, 0142 -0, 0143	1.82473000 1.63/40000 0.000000	1.148/000
HAND STRENG N2(2+) BE REDUCED MAS UPPER HEARE A0+A1+A2+A3 U BRANCH J*1 0.00 50.00 100.00	0.0000 TH FACTUR: NESCH DATA S = XE+HE+HE: ZE+HE+HE: 0.000 0.00 0.4693 0.4655 0.4655	0.000 5 FUR A - BAND 7.00377000 204/1 1/33.2 1.000000 0.1 0.3236 0.3236 0.3218 0.3117	STRENGTH 17300000 39100000 0.0000 0.00000 0.0000	0+ 3 0.0507 0.0536	0, 4 -0.0142 -0.0157 -0.0183	1.82473000 1.63/40000 0.000000	1.148/000
HAND STRENG N2(2+) BE REDUCED MAS UPPER *E.**E A0+A1+A2+A3 U BRANCH J** 0.00 50.00 100.00	0.0000 DTH FACTUR: NESCH UATA S = XE+HE+RE: ZE+HE+RE:	0.000 5 FUR A - BAND 7.003770000 20.47.1 1/33.2 1.000000 0.1 0.3236 0.3236 0.3218 0.3117 1.1 0.035	STRENGTH 10 17300000 39100000 0.0000 0.00000 0.00000 0.0000 0.00000 0.00000 0.0000 0.0000	0+ 3 0.0507 0.0536	0, 4 0, 4 0, 0157 0, 0157 0, 0183	1.82473000 1.63/40000 0.000000	1.148/000
HAND STRENG N2(2+) BE REDJCED MAS UPPER *E**E A0*A1*A2*A3 U BRANCH J** 0.00 50.00 100.00	0.0000 DTH FACTUR: NESCH UATA S = XE+HE+RE: XE+HE+RE:	0+000 5 FUR A - BAND 7.003770000 20+7.1 1/33.2 1.000000 0+1 0.3236 0.3218 0.3218 0.3117 1.1 0.0355 0.0325	STRENGTH 10 17300000 39100000 0.000 0.000 17300000 0.000 0.000 17300000 0.000 17300000 0.000 17300000 0.000 17300000 0.0000 0.00000 0.00000 0.0000000 0.0000 0.0000 0.00000 0.00	0+ 3 0.0530 0.0530 0.0530 1+ 3 0.1917 0.19494	0, 4 -0, 0142 -0, 0157 -0, 0157 -0, 0157 -0, 0153 -0, 0154 -0, 0155 -0, 0155 -0, 0157 -0, 010	1.82473000 1.63/40000 0.000000	1.148/000
HAND STRENG N2(2+) BE REDJCED MAS UPPER *E.**E LOWER *E.**E LOWER *E.**E A0+A1+A2+A3 U BRANCH J** 0.00 	0.0000 TH FACTUR: NESCH DATA S = XE+HE+RE: ZE+HE+RE: 0.4033 0.4035 0.4035 0.4035 0.4035 0.4031 0.4133	0.000 5 FUR A - BAND 7.00377000 20+7.1 1/33.2 1.000000 0.1 0.3236 0.3236 0.3248 0.3218 0.3117 1.1 0.0355 0.0368	5TRENGTH 20 17800000 39100000 0.000 0.000 0.1400 0.1415 1. 2 0.2179 0.2093 0.1960	28.445 14.122 1000 0.0480 0.0507 0.0536 1.3 0.1917 0.1894 0.1783	0, 4 0, 4 0, 0142 0, 0157 0, 0183 1, 4 0, 0997 0, 1021 0, 1015	1.52473000 1.63/40000 0.000000	1.148/000
HAND STRENG N2(2+) BE REDJCED MAS UPPER NE.NE LOWER AE.NE AU.AI.A2.AJ U BRANCH J'' 0.00 50.00 100.00	0.0000 TH FACTUR: NESCH UATA S = XE.HE.HE: XE.HE.HE: 0.4693 0.4693 0.4695 0.4655 0.45555 0.45555 0.45555 0.45555 0.45555 0.45555 0.455555 0.4555555555555555555555555555555555555	0.000 5 FUR A - BAND 7.003770000 20+7.1 1/33.2 1.000000 0.1 0.3236 0.3218 0.3218 0.3117 1.1 0.0355 0.0368	STRENGTH 10 17800000 39100000 0.001 0.0	0, 3 0, 3 0, 0480 0, 0507 0, 0530 1, 3 0, 1917 0, 183	0, 4 0, 4 0, 0, 4 0, 0, 4 0, 0, 142 0, 0, 157 0, 0, 163 1, 4 0, 0, 997 0, 1021 0, 1015	1.52473000 1.63740000 0.000000	1.148/000 1.212000
HAND STRENG N2(2+) BE REDJCED MAS UPPER *E**E LOWER *E**E A0*A1*A2*A3 U BRANCH J'' 0.00 50.00 100.00 J'' 0.00 50.00 100.00	0.0000 TH FACTUR: NESCH UATA S = XE.HE.HE: XE.HE.HE: 0.000 0.4633 0.4635 0.4655 0.45555 0.45555 0.455555 0.455555 0.4555555 0.4555555555 0.45555555	0+000 5 FUR A - BAND 7.003770000 20+7.1 1/33.2 1.000000 0+1 0.3236 0.3236 0.3218 0.3117 1.1 0.0355 0.0368 2.1 0.3755	STRENGTH 10 17300000 39100000 0.000 0.000 0.000 0.000 0.1401 0.1425 0.1401 0.1425 0.1415 1.72 0.2179 0.2093 0.1960 2.22 0.0091	0+ 3 0+ 3 0.0480 0.0507 0.0536 1+ 3 0.1917 0.1894 0.1894 0.1894 0.1894 0.1894	0, 4 0, 4 0, 0, 4 0, 0, 0, 4 0, 0, 0, 142 0, 0, 157 0, 0, 10, 15 0, 10, 15 0, 10, 15 0, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1	1.82473000 1.63/40000 0.000000	1.148/000
HAND STRENG N2(2+) BE REDJCED MAS UPPER #E+#E LOWER *E+#E A0+A1+A2+A3 U BRANCH J'' 0.00 50.00 100.00 J'' 0.00 50.00 50.00	0.0000 TH FACTUR: NESCH UATA S = XE.HE.HE: XE.HE.HE: 2 0.000 0.4693 0.4635 0.4655 0.45555 0.45555 0.455555 0.45555 0.455555 0.4555555555 0.4555555555	0.000 5 FUR A - BAND 7.003770000 20+7.1 1/33.2 1.000000 0.1 0.3235 0.0368 2.1 0.3755 0.368	STRENGTH 10 17400000 39100000 0.001 0.001 0.001 0.001 0.001 0.001 0.201 0.2179 0.2093 0.1960 2.22 0.0091 0.0103	0, 3 0, 3 0, 0480 0, 0507 0, 0507000000000000000000000000000000000	0, 4 0, 4 0, 0, 4 0, 0, 142 0, 0, 157 0, 0, 163 0, 10, 157 0, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1	1.82473000 1.63/40000 0.000000	1.148/000
HAND STRENG N2(2+) BE REDJCED MAS UPPER *E.**E A0+A1+A2+A3 U BRANCH J'' 0.00 50.00 100.00 J'' 0.00 50.00 100.00	0.0000 ITH FACTUR: NESCH UATA S = XE+HE+RE: XE+HE+RE: 2 0.000 0.4693 0.4693 0.4695 0.4655 0.4555	0+0000 5 FUR A - BAND 1+0003770000 20+1-1 1/33-2 1+000000 0+1 0-3236 0-3236 0-3218 0-3218 0-3218 0-325 0-0368 2+1 0-3755 0-3602 0-4117	STRENGTH 17300000 39100000 0.000 0.000 0.000 0.1401 0.1425 0.1415 1.2 0.2179 0.2093 0.1960 2.2 0.0091 0.0103 0.0062	0+ 3 0+ 3 0+ 3 0.0480 - 0.0507 0.0536 1+ 3 0.1917 0.1894 0.1918 0.1947 0.1948 0.1948 0.1947 0.1948 0.1947 0.1948 0.1947 0.1948 0.1948 0.1947 0.1948 0.1948 0.1947 0.1948 0.1947 0.1948 0.1947 0.1948 0.0948 0.0948 0.0948 0.0948 0.0948 0.0948 0.0948 0.0947 0.00547 0.00547 0.00547 0.00547 0.00547 0.00547 0.00547 0.00547 0.00547 0.00547 0.00547 0.00547 0.00774 0.00774 0.00774 0.00548 0.00774 0.00774 0.00548 0.00774 0.00548 0.00774 0.00548 0.00548 0.00548 0.00548 0.00548 0.00548 0.00548 0.00577 0.00548 0.00577 0.00548 0.00577 0.00577 0.005788 0.005788 0.005788 0.005788 0.005788 0.005788 0.005788 0.005788 0.005788 0.0	0, 4 0, 4 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	1.82473000 1.63/40000 0.000000	1.148/000
HAND STRENG N2(2+) BE REDJCED MAS UPPER NE.**E LOWER NE.**E LOWER NE.**E A0+A1+A2+A3 U BRANCH J'' 0.00 50.00 100.00 J'' 0.00 50.00 100.00	0.0000 ITH FACTUR: NESCH DATA S = XE+HE+HE! XE+HE+HE! I 0.000 0.4693 0.4693 0.4693 0.4693 0.4695	0.000 5 FUR A - BAND 7.003770000 20+7.1 1/33.2 1.000000 0.1 0.3236 0.3236 0.3218 0.3117 1.1 0.0355 0.0368 2.1 0.3755 0.368 0.4117	STRENGTH 17300000 39100000 0.000 0.000 0.1401 0.1420 0.1415 1+ 2 0.2179 0.2093 0.1960 2+ 2 0.0091 0.0103 0.0062	0, 3 0, 3 0, 0, 3 0, 0480 - 0, 0507 0, 0536 1, 3 0, 1917 0, 1894 0, 1783 2, 3 0, 0918 0, 00774 3, 4	0, 4 -0.0142 -0.0157 -0.0183 -0.0157 -0.0183 -0.0183 -0.0183 -0.0183 -0.0183 -0.0183 -0.0183 -0.0183 -0.0183 -0.1015 -2, 4 -0.1704 -0.1631 -0.1465 -0.1465	1.52473000 1.63/40000 0.000000	1.148/000
HAND STRENG N2(2+) BE REDJCED MAS UPPER RE.*E LOWER *E.*E A0+A1+A2+A3 U BRANCH J'' 0.00 50.00 100.00 J'' 0.00 50.00 100.00 J'' 0.00	0.0000 I'H FACTUR: NESCH UATA S = XE+HE+RE: XE+HE+RE: XE+HE+RE: AEE+	0+0000 5 FUR A - BAND 1,003770000 204/1 1/33. 1.000000 0+1 0.3236 0.3236 0.3218 0.3117 1+1 0.0355 0.0325 0.0368 2+1 0.3755 0.368 2+1 0.3755 0.368 0.4117 3,1 0.2281	STRENGTH 17800000 39100000 0.000 0.000 0.000 0.1401 0.1426 0.1415 1. 2 0.2179 0.2093 0.1960 2. 2 0.0091 0.0103 0.0062 3. 2 0.2670	0, 3 14.122 1000 0, 3 0.0480 0.0507 0.0536 1, 3 0.1917 0.1944 0.1783 2, 3 0.0918 0.0541 0.0774 3, 3 0.0611	0, 4 -0,0142 -0,0157 -0,0157 -0,0183 -1, 4 0,0997 0,1021 0,1015 -2, 4 0,1704 0,1631 0,1465 -3, 4 0,0231	1.82473000 1.63/40000 0.000000	1.145/000
HAND STRENG N2(2+) BE REDJCED MAS UPPER *E.*E A0+A1+A2+A3 U BRANCH J'' 0.00 50.00 100.00 J'' 0.00 50.00 100.00 J'' 0.00 50.00 100.00	0.0000 of m FACTUR: NESCH UATA SS = XE+HE+RE: ZE+HE+RE: 2 0.000 0.4693 0.4693 0.4693 0.4693 0.4693 0.4695	0+0000 5 FUR A - BAND 1,003770000 204/1 1/33. 1.000000 0+1 0.3236 0.3236 0.3226 0.3225 0.0368 2+1 0.3755 0.368 2+1 0.3755 0.368 2+1 0.3755 0.368 2+1 0.3755 0.368 2+1 0.3755 0.368 2+1 0.325 0.368 2+1 0.325 0.368 2+1 0.325 0.368 2+1 0.325 0.368 2+1 0.325 0.368 2+1 0.325 0.368 2+1 0.325 0.368 2+1 0.325 0.368 2+1 0.325 0.368 2+1 0.325 0.368 2+1 0.325 0.368 2+1 0.325 0.368 2+1 0.325 0.368 2+1 0.325 0.368 2+1 0.325 0.368 2+1 0.325 0.368 0.325 0.355 0.325 0.355 0.	STRENGTH 17500000 39100000 0.000 0.000 0.000 0.000 0.1401 0.1425 0.1415 1. 2 0.2179 0.2033 0.1960 2. 2 0.0091 0.0103 0.0062 3. 2 0.2570 0.2724	0+ 3 0+ 3 0+ 3 0.0480 - 0.0507 0.0536 1+ 3 0.1917 0.1894 0.1918 0.0918 0.0918 0.0918 0.0918 0.0841 0.0774 3+ 3 0.0611 0.0621	0, 4 0, 4 0, 0142 0, 0157 0, 0183 1, 4 0, 0997 0, 1021 0, 1015 2, 4 0, 1704 0, 1631 0, 1465 3, 4 0, 0231 0, 0193	1.82473000 1.63/40000 0.000000	1.145/000
HAND STRENG N2(2+) BE REDJCED MAS UPPER *E.**E LOWER *E.**E A0+A1+A2+A3 U BRANCH J** 0.00 	0.0000 TH FACTUR: NESCH UATA S = XE.HE.HE. XE.HE.HE. 2 0.4633 0.4635 0.4635 0.4635 0.4655 0.45555 0.45555 0.455555 0.455555 0.45555555 0.45555555555555555555	0+0000 5 FUR A - BAND 7+003770000 20+7+1 1/33+2 1+000000 0+1 0+3236 0+3236 0+3218 0+3218 0+3218 0+3218 0+325 0+355 0+35	STRENGTH 17400000 39100000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.200 0.2179 0.2093 0.1960 2+ 2 0.0091 0.0103 0.0062 3+ 2 0.2670 0.2724 0.3243	28.445 14.122 1000 0.3 0.0480 0.0507 0.0530 1.3 0.1917 0.1894 0.1917 0.1894 0.0918 0.0918 0.00774	0,0000 10000 0,000000 0,000000 0,00142 0,0157 0,0143 1,4 0,0997 0,1021 0,1015 2,4 0,1704 0,1631 0,1465 3,4 0,0231 0,0193 0,0182	1.52473000 1.63740000 0.000000	1.148/000
HAND STRENG N2(2+) BE REDJCED MAS UPPER #E+#E LOWER *E+#E A0+A1+A2+A3 U BRANCH J'' 0.00 -50.00 -100.00 J'' 0.00 -50.00 -100.00 J'' 0.00 -50.00 -100.00	0.0000 ATH FACTUR: NESCH UATA S = XE.HE.HE: XE.HE.HE: XE.HE.HE: 2 0.00 0.4693 0.4693 0.4635 0.46555 0.4655 0.46555 0.4655 0.4655 0.46555 0.4	0.000 5 FUR A - BAND 1.003770000 20.4.1 1.735. 1.000000 0.1 0.2236 0.3218 0.3755 0.3268 2.1 0.3755 0.368 2.1 0.3755 0.368 2.1 0.2231 0.2231 0.2231 0.2231 0.2231 0.2231 0.2231 0.2231 0.2167	STRENGTH 10 17400000 39100000 0.000 0.000 0.000 0.000 0.000 0.000 0.200 0.2179 0.2179 0.2179 0.2093 0.1960 2.22 0.0091 0.0103 0.0062 3.2 0.2670 0.3243 0.2224 0.3243	28.445 14.122 1000 0, 3 0.0480 0.0507 0.0536 1, 3 0.1917 0.1894 0.1783 2, 3 0.0918 0.0841 0.0641 0.0641 0.0641 0.0641 0.0677 4. 3	0,000 10000 0,000000 0,000000 0,000000 0,0142 0,0157 0,0143 1,4 0,0997 0,1021 0,1015 2,4 0,1704 0,1631 0,1465 3,4 0,0231 0,0193 0,0182 4,4 4	1.82473000 1.63/40000 0.000000	1.148/000
HAND STRENG N2(2+) BE REDJCED MAS UPPER #E.*E LOWER *E.*E A0+A1+A2+A3 U BRANCH J'' 0.00 50.00 100.00 J'' 0.00 50.00 100.00 J'' 0.00 50.00 100.00	0.0000 TH FACTUR: NESCH UATA S = XE.HE.HE: XE.HE.HE: XE.HE.HE: 0.000 0.4693 0.4693 0.4635 0.4655 0	0.000 5 FUR A - BAND 1.003770000 20.4.1 1.33.2 1.000000 0.1 0.2236 0.3218 0.3755 0.3268 2.1 0.3755 0.368 2.1 0.3755 0.368 2.1 0.2281 0.2281 0.2281 0.2187 4.1 0.0362	STRENGTH 10 17400000 39100000 0.000 0.000 0.000 0.000 0.000 0.000 0.1401 0.1425 0.1401 0.1425 0.1415 1.72 0.2179 0.2093 0.1960 2.22 0.0091 0.0103 0.0062 3.2 0.2670 0.3243 4.2 0.3033	28.445 14.122 1000 0, 3 0.0480 0.0507 0.0536 1, 3 0.1917 0.1834 0.1783 2, 3 0.0918 0.0641 0.0641 0.0641 0.0641 0.0641 0.0641 0.0641 0.0641 0.0641 0.0641 0.0641 0.0641 0.0641 0.0641 0.0641 0.0641 0.0641	0,000 10000 0,000000 0,000000 0,000000 0,0142 0,0157 0,0143 1,4 0,0997 0,1021 0,1015 2,4 0,1704 0,1631 0,1465 3,4 0,0231 0,0193 0,0193 0,0182 4,4 0,1017	1.82473000 1.63/40000 0.000000	1.148/000
HAND STRENG N2(2+) BE REDJCED MAS UPPER #L+#E LOWER *L+#E A0+A1+A2+A3 U BRANCH J'' 0.00 50.00 100.00 J'' 0.00 50.00 100.00 J'' 0.00 50.00 100.00	0.0000 TH FACTUR: NESCH UATA S = XE.HE.HE: XE.HE.HE: XE.HE.HE: 0.4693 0.4635 0.4635 0.4635 0.4635 0.4655	0.000 5 FUR A - BAND 7.003770000 20.4.1 1.33.2 1.000000 0.1 0.2236 0.3218 0.3755 0.368 2.1 0.3755 0.368 2.1 0.3755 0.368 2.1 0.2281 0.2305 0.2187 4.1 0.0362 0.0342	STRENGTH 10 17400000 39100000 0.001 0.001 0.001 0.1401 0.1425 0.1401 0.1425 0.1415 1. 2 0.2179 0.2093 0.1960 2. 2 0.0091 0.0103 0.0062 3. 2 0.2670 0.3243 4. 2 0.3033 0.3074	28.445 14.122 1000 0, 3 0.0480 0.0507 0.0536 1, 3 0.1917 0.1834 0.1917 0.1844 0.1783 2, 3 0.0918 0.0541 0.0541 0.0641 0.0641 0.0641 0.06477 4, 3 0.1715 0.1767	0,000 10000 0,000000 0,000000 0,000000 0,0142 0,0142 0,0157 0,0143 1,4 0,0997 0,1021 0,1015 2,4 0,1704 0,1631 0,1465 3,4 0,0231 0,0182 4,4 0,1017 0,1007	1.52473000 1.63/40000 0.000000	1.148/000

- 121 -

REFERÊNCIAS

- AL67 ANKETELL, J. & LEARNER, R.C.M. Proc. R. Soc. London, Ser. A, 301, 355 (1967).
- AN72 ARMSTRONG, B.H. & NICHOLLS, R.W. Emission, absorption and transfer of radiation in heated atmospheres. London, Pergamon Press, 1972.
- Az55 AZEVEDO, F. de. <u>As ciências no Brasil</u>. São Paulo, Melhoramentos, 1955.
- Ba49 BATES, D.R. <u>Proc. R. Soc. London</u>, Ser. A, 196, 217 (1949).
- Ba73 BAYM, G. Lectures on quantum mechanics. Reading, Benjamin, 1973.
- BBR73 BROWN, J.D.; BURNS, G.; LeROY, R.J. <u>Can. J. Phys., 51</u>, 1664 (1973).
- BET77 BECKER, K.H.; ENGELS, H.; TATARCZYK, T. Chem. Phys. Lett., 51, 111 (1977).
- BVG70 BONY, A.M.J.; VINCENT, F.; GRANDMONTAGNE, R. C.R. Hebd. Seances Acad. Sc. Ser. B, 270, 491 (1970).
- BVT70 BENESCH, W.; VANDERSLICE, J.T.; TILFORD, S.G. J. Mol. Spectrosc., 36, 464 (1970).
- BVTW65a BENESCH, W.; VANDERSLICE, J.T.; TILFORD, S.G.; WILKINSON, P.G. Astrophys. J., 142, 1203 (1965).
- BVTW65b . Astrophys. J., 142, 1227 (1965).
- BVTW66 . Astrophys. J., 144, 408 (1966).
- CCCJS74 COLLINS, C.B.; CUNNINGHAM, A.J.; CURRY, S.M.; JOHNSON, B.W.; STOCKTON, M. Appl. Phys. Lett., 24, 477 (1974).

CHAKRABORTY, B.P. On the Franck Condon factor and band Ch72 strength calculations with vibration rotation interaction by asymptotic expansion method. Boston, University of Boston College, 1972, (PhD Thesis). CK70 CHANG, T.Y. & KARPLUS, M. J. Chem. Phys., 52, 783 (1970). CHAKRABORTY, B.P. & PAN, Y.K. Theor. Chim. Acta, 18, **CP70** 162 (1970). . Appl. Spectrosc. Rev., 7, 283 (1973). CP73 CPC71 CHAKRABORTY, B.P.; PAN, Y.K.; CHANG, T.Y. J. Chem. Phys., 55, 5147 (1971). COHEN, J.S. Phys. Rev. A, 13, 86 (1976); 13, 99 (1976). Co76 CS35 CONDON, E.U. & SHORTLEY, G.H. The theory of atomic spectra. Cambridge, University Press, 1935. Da65 DAVYDOV, A.S. Quantum mechanics. London, Pergamon Press, 1965. DH59 DIEKE, G.H. & HEATH, D.F. Spectroscopic Report nr.17. Baltimore, Johns Hopkins University, 1959. DOUGLAS, A.E. Can. J. Phys., 30, 302 (1952). Do52 DRR34 DUFFENDACK, O.S.; REVANS, R.W.; ROY, A.S. Phys. Rev., 45, 807 (1934). DUNHAM, J.L. Phys. Rev., 41, 713 (1932); 41, 721 (1932). Du32 Eil7 EINSTEIN, A. Physik Z., 18, 121 (1917). (Reimpresso em [Wa67]). FRASER, P.A. & JARMAIN, W.R. Proc. Phys. Soc., 66A, 1145 FJ53 (1953). Fr54a FRASER, P.A. Can. J. Phys., 32, 515 (1954). Fr54b _____ Proc. Phys. Soc., 67A, 939 (1954).

- Fr76 FRANCKE, R.E. <u>Study of relaxation processes in He₂ using</u> <u>pulsed dye laser techniques</u>. Boston, Massachusetts Institute of Technology, 1976, (PhD Thesis).
- Ge76 GEORGES, J.C. J. Phys. B., 9, 2153 (1976).
- GGC78 GALLAS, J.A.C.; GRIENEISEN, H.P.; CHAKRABORTY, B.P. J. Chem. Phys., 69, July, 1978.
- Gr62 GRINFELD, R. Proc. colloq. spectrosc. int. 10th. Washington, Spartan Books, 1962.
- HCKE75 HACKEL, L.A.; CASLETON, K.H.; KUKOLICH, S.G.; EZEKIEL, S. Phys. Rev. Lett., 35, 568 (1975).
- He28a HERZBERG, G. Ann. Phys. (Germany), 86, 191 (1928).
- He28b . Z. Phys., 49, 761 (1928).
- He39 _____. Molecular spectra and molecular structure; diatomic molecules. New York, Prentice-Hall, 1939.
- He50 _____. Molecular spectra and molecular structure. New York, Van Nostrand, 1950. v.1.
- HO72 HOWORTH, J.R. J. Phys. B., 5, 402 (1972).
- IR71 IMHOF, R.E. & READ, F.H. J. Phys. B., 4, 1063 (1971).
- Ja60 JARMAIN, W.R. Can. J. Phys., 38, 217 (1960).
- Ja66 JAMES, T.C. J. Mol. Spectrosc., 20, 77 (1966).
- Ja70 JAIN, D.C. Int. J. Quantum Chem., 4, 579 (1970).
- Ja71 JARMAIN, W.R. J. Quant. Spectrosc. & Radiat. Transfer, <u>11</u>, 421 (1971).
- Ja72 JAIN, D.C. J. Phys. B., 5, 196 (1972).
- JF53 JARMAIN, W.R. & FRASER, P.A. <u>Proc. Phys. Soc.</u>, <u>66A</u>, 1153 (1953).
- JN54 JARMAIN, W.R. & NICHOLLS, R.W. <u>Can. J. Phys.</u>, <u>32</u>, 201 (1954).

- JS66 JAIN, D.C. & SAHNI, R.C. Proc. Phys. Soc., 88, 495 (1966).
- JS67 _____. J. Quant. Spectrosc. & Radiat. Transfer, 1, 475 (1967).
- JS68 _____. Trans. Faraday Soc., 64, 3169 (1968).
- KB68 KRUPENIE, P.H. & BENESCH, W. J. <u>Res. Natl. Bur. Stand.</u> Sect. A, 72, 495 (1968).
- KKKP74 KUZNETSOVA, L.A.; KUZ'MENKO, N.E.; KUZIANOV, Yu. Ya.;

PLASTININ, Yu. A. Sov. Phys.-Usp., 17, 405 (1974).

- K171 KLEMSDAL, H. Phys. Norv., 5, 123 (1971).
- KO69 KOVÁCS, I. <u>Rotational structure in the spectra of</u> diatomic molecules. New York, Elsevier, 1969.
- Ko74 . Atoms, molecules and lasers. Vienna, IAEA, 1974.
- KP72 KLYNNING, L. & PAGES, P. Phys. Scr., 6, 195 (1972).
- LO78 LOFTUS, A. Comunicação particular.
- LP77 LOFTUS, A. & KRUPENIE, P.H. J. Phys. & Chem. Ref. Data, 6, 113 (1977).
- Me70 MERZBACHER, E. Quantum mechanics. 2.ed. New York, John Wiley, 1970.
- Mi72 MIZUSHIMA, M. <u>The theory of rotating diatomic molecules</u>. New York, John Wiley, 1972.
- Mo29 MORSE, P.M. Phys. Rev., 34, 57 (1929).
- MOS66 MAGNUS, W.; OBERHETTINGER, F.; SONI, R.P. 3.ed. Formulas and theorems for the special functions of mathematical physics. Berlin, Springer-Verlag, 1966.
- MP25 MERTON, T.R. & PILLEY, J.G. <u>Philos. Mag.</u>, <u>50</u>, 195 (1925).
 _____. <u>Proc. Phys. Soc.</u>, <u>107A</u>, 411 (1925).

- Ni61 NICHOLLS, R.W. J. <u>Res. Natl. Bur. Stand</u>. Sect. A, <u>65</u>, 451 (1961).
- Ni62 _____. J. Quant. Spectrosc. & Radiat. Transfer., 2, 433 (1962).
- Ni63 . J. Atmos. & Terr. Phys., 25, 218 (1963).
- Ni77 . Annu. Rev. Astron. Astrophys., 15, 197 (1977).
- OA67 ORTERBERG, F.S. & ANTROPOV, E.T. <u>Sov. Phys.-Usp.</u>, <u>9</u>, 717 (1967).
- OG76 OSHEROVICH, A.L. & GORSHKÖV, V.N. <u>Opt. & Spektrosk.</u>, <u>41</u>, 198 (1976).
- Ol74 OLVER, F.W.J. <u>Asymptotic and special functions</u>. New York, Academic Press, 1974.
- PDP73 POCHAT, A.; DORITCH, M.; PERESSE, J. J. Chim. Phys., 70, 936 (1973).
- Pe34 PEKERIS, C.L. Phys. Rev., 45, 98 (1934).
- Pi54 PILLOW, M.E. Proc. Phys. Soc., 67A, 780 (1954).
- PH71 POPKIE, H.E. & HENNEKER, W.H. J. Chem. Phys., 55, 617 1971.
- PS53 PETRIE, W. & SMALL, R. Can. J. Phys., 31, 911 (1953).
- PW35 PAULING, L. & WILSON Jr., E.B. <u>Introduction to quantum</u> <u>mechanics</u>. New York, McGraw-Hill, 1935.
- RCA70 RCA. Typical photocathode spectral response

characteristics. PIT-701B, Apr. 1970.

- Ru65 RUNDGREN, J. Ark. Fys. 30, 61 (1965).
- SA30 SMYTH, H.D. & ARNOTT, E.G.F. Phys. Rev., 36, 1021 (1930).
- SM76 SUCHARD, S.N. & MELZER, J.E. <u>Spectroscopic data</u>. New York, Plenum, 1976. v.2.

- Sp25 SPONER, H. Molekül spectren. Berlin, Springer, 1935.
- St51 STEPHENSON, G. Proc. Phys. Soc., 64A, 99 (1951).
- Su75a SUCHARD, S.N. <u>Spectroscopic data</u>. New York, Plenum, 1975. v.l, Part. A.
- Su75b ____. v.1, Part. B.
- Ta34 TAWDE, N.R. Proc. Phys. Soc., 46, 324 (1934).
- Ta67 TATUM, J.B. Astrophys. J. Suppl., 14, 21 (1967).
- TN54 TURNER, G.R. & NICHOLLS, R.W. <u>Can. J. Phys.</u>, <u>32</u>, 468 (1954).
- TP43 TAWDE, N.R. & PATANKAR, V.S. <u>Proc. Phys. Soc.</u>, <u>55</u>, 396 (1943).
- TP47 . Philos. Mag., 38, 65 (1947).
- TS55 TOWNES, C.H. & SCHAWLOW, A.L. <u>Microwave spectroscopy</u>. New York, McGraw-Hill, 1955.
- Ty62a TYTE, D.C. <u>Proc. Phys. Soc.</u>, <u>80</u>, 1347 (1962); <u>80</u>, 1354 (1962).
- Ty62b . Proc. Phys. Soc., 80, 1364 (1962).
- Va57 VARSHNI, Y.T. Rev. Mod. Phys., 29, 664 (1957).
- VMM60 VANDERSLICE, J.T.; MASON, E.A.; MAISCH, W.G. J. Chem. Phys., 32, 515 (1960).
- VSI69 VILLAREJO, D.; STOCKBAUER, R.; INGHAM, M.G. <u>J. Chem</u>. Phys., 50, 1724 (1969).
- Wa67 WAERDEN, B.L. van der. <u>Sources of quantum mechanics</u>. Amsterdam, North-Holland, 1967.
- WN55 WALLACE, L.V. & NICHOLLS, R.W. J. <u>Atmos. Terr. Phys.</u>, <u>7</u>, 101 (1955); <u>24</u>, 749 (1962). Erratum.
- YM77 YEAGER, D.L. & MCKOY, V. J. Chem. Phys., 67, 2473 (1977).

Za64 ZARE, R.N. J. Chem. Phys., 40, 1934 (1964).

ZLB65 ZARE, R.N.; LARSSON, E.O.; BERG, R.A. J. Mol. Spectrosc., 15, 117 (1965).