
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

SIMONE BAVARESCO

On-Silicon Testbench for Validation of Soft
Logic Cell Libraries

Thesis presented in partial fulfillment of
the requirements for the degree of Master
of Computer Science.

Prof. Dr. Renato Perez Ribas
Advisor

Prof. Dr. André Inácio Reis
Co-advisor

Porto Alegre, February 2008.

CIP – CATALOGAÇÃO NA PUBLICAÇÃO

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. José Carlos Ferraz Hennemann
Vice-reitor: Prof. Pedro Cezar Dutra Fonseca
Pró-Reitora Adjunta de Pós-Graduação: Profa. Valquiria Linck Bassani
Diretor do Instituto de Informática: Prof. Philippe Olivier Alexandre Navaux
Coordenador do PPGC: Prof. Flávio Rech Wagner
Bibliotecária-Chefe do Instituto de Informática: Beatriz Regina Bastos Haro

Bavaresco, Simone

On-Silicon Testbenh for Validation of Soft Logic Cell Libraries
/ Simone Bavaresco – Porto Alegre: Programa de Pós-Graduação
em Computação, 2008.

15 f.:il.

Thesis (Master) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação. Porto Alegre, BR –
RS, 2008. Advisor: Renato Perez Ribas; Co-advisor: André Inácio
Reis.

1.Integrated circuit 2.ASIC 3.Digital design 4.Standard cell
5.Library-free technology mapping 6.Soft library 7.Test circuit. I.
Ribas, Renato Perez. II. Reis, André Inácio. III. Title.

ACKNOWLEDGEMENTS

This dissertation is dedicated to the memory of my mother-in-law, Gioconda
Madalena Loëblein. In the beginning I was a stranger and even though she helped me
and gave me all comfort. She encouraged me in this study and over the last five years
she supported me with her love and caring. To get on with her during these years gave
me a new appreciation for the meaning and importance of family and friends. She faced
her death bravely. Her example and will power kept me working when I wanted to give
up.

I would like to express my deepest gratitude to my advisors, Renato Perez Ribas and
André Inácio Reis for their excellent guidance, caring, patience, and providing me with
an excellent atmosphere for doing research. Especially I would like to thank Renato for
urged me by providing critical assistance when all seemed dark and guided me when the
project seemed endless.

I would like to thank Nangate for financial support and thank all the staff, in
particular, my colleagues from Nangate Lab Research, Caio Alegretti, Mateus Gomes,
Leomar da Rosa, Carlos Afonso da Silva, Digeorgia Silva, Paulo Butzen, Felipe
Marques and Tiago Cardoso. They were always willing to help and give their best
suggestions.

There are many other people who contributed to this dissertation in many ways. My
sincere gratitude goes to all my friends, especially José Francisco Szücs, Laura Ghia,
Cleber Ughini and Sílvia Osório, who have contributed to my emotional and spiritual
well-being over this time. I would like to thank for their love, inspiration and support.

I would also like to thank my parents, my brother, my sisters and brothers-in-law.
They were always supporting me and encouraging me with their best wishes.

Finally, I would like to thank my husband, João Daniel Togni, for his support,
encouragement, love and caring. He was always there cheering me up and stood by me
through the good times and bad. His knowledge, valuable ideas and useful suggestions
were also extremely helpful.

TABLE OF CONTENTS

LIST OF ABBREVIATIONS.. 6

LIST OF FIGURES.. 8

LIST OF TABLES.. 10

ABSTRACT .. 11

RESUMO... 12

1 INTRODUCTION .. 13

2 BACKGROUND & MOTIVATION .. 18

2.1 ASIC Flow ... 18

2.2 Design Styles.. 20

2.3 Testing ... 23

2.3.1 Defect, fault, failure and error .. 23

2.3.2 Test Generation, Functional and Structural Testing... 23

2.3.3 Fault models ... 24

2.4 Delay test verification... 25

2.4.1 Characterization.. 25

2.4.2 Delay fault testing... 26

2.5 Testability and Design-for-Testability .. 27

2.6 How to test a library?... 28

3 COMBINATIONAL BLOCK ... 29

3.1 First stage .. 30

3.1.1 Implementation... 31

3.1.2 Sample block .. 35

3.2 Second stage .. 36

3.3 Combinational blocks stage analysis .. 40

3.3.1 First stage analysis.. 40

3.3.2 Second stage analysis ... 46

3.4 Last considerations ... 48

4 CIRCUIT ARCHITECTURE AND OPERATION MODES....................... 49

4.1 Circuit Architecture ... 49

4.2 Operation Modes .. 51

4.2.1 Synchronous Mode... 51

4.2.2 Asynchronous Mode... 53

4.2.3 Digital OBIST Mode .. 56

4.2.4 Diagnosis Mode.. 60

4.3 Overhead Analysis.. 61

5 CONCLUSIONS... 64

REFERENCES ... 66

APPENDIX A Circuito de teste EM SILÍCIO PARA VALIDAÇÃO DE
BIBLIOTECAS DE CÉLULAS LÓGICAS geradas por software.......................... 70

APPENDIX B Work presentation.. 78

APPENDIX C Paper submited to ITC’08... 101

LIST OF ABBREVIATIONS

ASIC Application Specific Integrated Circuit

BIST Built-In Self-Test

CAD Computer-Aided Design

CMOS Complementary metal–oxide–semiconductor

CUT Circuit Under Test

DFT Design For Testability

EDA Electronic design automation

FPGAs Field Programmable Gate Array

HDL Hardware Description Language

IC Integrated Circuit

IP Intellectual Property

IPO In Place Optimization

ISCAS International Symposium on Circuits and Systems

ITC International Test Conference

IWLS International Workshop on Logic and Synthesis

MCNC Microelectronics Center of North Carolina

MOS Metal-Oxide-Semiconductor

MPGA Metal Programmable Gate Array

N-equivalent equivalent under input Negation

NP-equivalent equivalent under input Negation and input Permutation

NRE Non-Recurring Engineering

NBTI Negative-Bias Temperature Instability

OBIST Oscillation Built-In Self Test

P-equivalent equivalent under input Permutation

RTL Register Transfer Level

SA Stuck-At

SoC System-on-Chip

SPICE Simulation Program with Integrated Circuit Emphasis

STA Static Timing Analysis

UFRGS Universidade Federal do Rio Grande do Sul

VHDL VHSIC Hardware Description Language

VHSIC Very High-Speed Integrated Circuits

VLSI Very Large-Scale Integration

LIST OF FIGURES

Figure 2.1: Levels of design abstraction (GAJSKI, 1988). .. 18

Figure 2.2: ASIC design flow diagram (WESTE, 2005) (MARQUES, 2007a)............. 19

Figure 2.3: Overview of IC design styles (MICHELI, 1994) (RABAEY, 2003)........... 20

Figure 2.4: ASIC design flow with library-based technology mapping (MARQUES,
2007). ... 22

Figure 2.5: ASIC design flow with library-free technology mapping (MARQUES,
2007). ... 22

Figure 2.6: Delay fault testing. ... 27

Figure 3.1: Combinational block illustration.. 29

Figure 3.2: Testbench flow... 34

Figure 3.3: Sample block.. 35

Figure 3.4: Combinational block with ‘check’ signal. ... 38

Figure 3.5: Total cells / combination set. ... 42

Figure 3.6: Reused cells / combination set. .. 43

Figure 3.7: Distribution of cells in blocks. ... 43

Figure 3.8: Build time / combination set. ... 44

Figure 3.9: Number of cells per block (first stage) for the combination set using the
library 44-6.genlib with 208 cells up to 7 inputs. 44

Figure 3.10: Number of cells per block (first stage) for the combination set using the
library 44-6.genlib with 92 cells up to 6 inputs. .. 45

Figure 3.11: Number of cells per block (first stage) for the combination set using the
library 44-6.genlib with 38 cells up to 5 inputs. .. 45

Figure 3.12: Total cells in the first stage considering the combination set for libraries
with different maximum number of cell inputs. .. 45

Figure 3.13: Area overhead measurements: 2nd / 1st stage, versus number of cell inputs.
... 46

Figure 3.14: Number of cells used in the 1st and 2nd stages for different number of block
inputs using library 44-6.genlib (16 cells up to 4 inputs). 46

Figure 3.15: Number of cells used in the 1st and 2nd stages for different number of block
inputs using library 44-6.genlib (38 cells up to 5 inputs). 47

Figure 3.16: Number of cells per block (second stage) for the combination set using the
library 44-6.genlib with 92 cells up to 6 inputs. .. 47

Figure 3.17: Number of cells per block (second stage) for the combination set using the
library 44-6.genlib with 208 cells up to 7 inputs. 48

Figure 4.1: Combination blocks in chain.. 49

Figure 4.2: Simulation of combination blocks in chain. ... 50

Figure 4.3: Combination blocks in chain with ‘check signal’. 50

Figure 4.4: Combination blocks with flip-flop barrier. .. 50

Figure 4.6: Simulation of synchronous mode... 52

Figure 4.7: Power consumption in synchronous mode. ... 52

Figure 4.8: Power consumption in the synchronous mode simulation........................... 53

Figure 4.9: Asynchronous mode... 54

Figure 4.10: Simulation of synchronous and asynchronous mode................................. 54

Figure 4.11: Electrical simulation of fault occurrence during the self-timed counting.. 55

Figure 4.12: Power consumption in asynchronous mode... 56

Figure 4.13: Power consumption in asynchronous mode simulation............................. 56

Figure 4.14: Digital OBIST mode. ... 58

Figure 4.15: Multiplexer for oscillations BIST mode. ... 58

Figure 4.16: Oscillation BIST path. ... 58

Figure 4.17: Simulation of digital OBIST mode. ... 59

Figure 4.18: Diagnosis mode.. 60

Figure 4.19: Diagnosis mode simulation.. 61

Figure 4.20: Certification circuit for the target ASIC. ... 62

LIST OF TABLES

Table 1.1: Using a 64-cell library to synthesize benchmark circuits.............................. 16

Table 3.1: Minimum number of cells at the first stage... 31

Table 3.2: Maximum number of cells at the first stage. ... 31

Table 3.3: Number of combinations of the combination sets... 33

Table 3.4: Cells with their selected block and cell inputs combinations........................ 35

Table 3.5: Sample block with 3 cells; C4 with inputs
A1(IN[2]),A2(not_IN[3])) and C4 with inputs
A1(IN[1]),A2(not_IN[3]))... 36

Table 3.6: Block inputs, intermediate vectors and outputs. ... 37

Table 3.7: Second stage functions. ... 37

Table 3.8: Truth table used to synthesize the second stage of a combinational block. .. 39

Table 3.9: Number of combinations tested using NP configuration. 40

Table 3.10: NP configuration report for the set of 64 cells. ... 41

Table 3.11: Number of combinations tested using N configuration............................... 41

Table 3.12: N configuration report for the set of 64 cells. ... 41

Table 3.13: Number of combinations tested using P configuration. 42

Table 3.14: P configuration report for the set of 64 cells. .. 42

Table 4.1: Data of the OBIST mode simulation... 60

Table 4.2: Data of the diagnosis mode simulation. .. 61

ABSTRACT

Cell-based design is the most applied approach in the ASIC market today. This
design approach implies re-using pre-customized cell libraries to build more complex
digital systems. Therefore the ASIC design efficiency turns to be bounded by the library
in use. The use of automatically generated CMOS logic gates in standard cell IC design
flow represents an attractive perspective for ASIC design quality improvement. These
soft IPs (logic cells generated by software) are the key elements for the novelty library-
free technology mapping, already proposed in literature and now being adopted by the
industry. Library-free technology mapping approach, based on the on-the-fly creation of
cells, by software, can provide flexibility to IC designers providing an optimized fit in a
particular application. However, such approach represents an IC design flow based on
logic cells created on-the-fly by software which have not been previously validated in
silicon yet, until the target ASIC is prototyped.

In this work, a specific test circuit (testbench) is proposed to validate the full
functionality of a set of logic cells, as well as to verify timing and power consumption
behaviors, which can be correlated with design timing and power estimations in order to
validate the cell data provided by electrical characterization. The proposed architecture
for the test circuit is composed by combinational blocks that ensure full logic
verification of every library cell. The basic architecture of the test circuit is slightly
modified to allow different operating modes which provide distinct data evaluation
using SPICE electrical simulations. Since this test circuit brings little silicon overhead
to the final design, it can be implemented together with the target ASIC acting as a
‘library certification circuit’.

Keywords: Integrated circuit, ASIC, digital design, standard cell, library-free
technology mapping, soft library, test circuit

Circuito de Teste em Silício para Validação de Bibliotecas de
Células Lógicas Geradas por Software

RESUMO

Projeto baseado em células-padrão é a abordagem mais aplicada no mercado de
ASIC atualmente. Essa abordagem de projeto consiste no reuso de bibliotecas de células
pré-customizadas para gerar sistemas digitais mais complexos. Portanto a eficiência de
um projeto ASIC está relacionado com a biblioteca em uso. A utilização de portas
lógicas CMOS geradas automaticamente no fluxo de projeto de circuito integrado
baseado em células-padrão representa uma perspectiva atraente para melhorar a
qualidade de projeto ASIC. Essas células geradas por software são os elementos-chave
dessa nova abordagem de mapeamento tecnológico livre de biblioteca, já proposto na
literatura e agora adotado pela indústria. O mapeamento tecnológico livre de biblioteca,
baseado na criação de células sob demanda, por software, gera flexibilidade aos
projetistas de circuitos integrados, fornecendo ajuste otimizado em aplicações
específicas. Contudo, tal abordagem representa um fluxo de projeto de circuito
integrado baseado em células lógicas criadas sob demanda por software, as quais não
são previamente validadas em silício até que o ASIC alvo seja prototipado.

Neste trabalho, um circuito de teste específico é proposto para validar a
funcionalidade completa de um conjunto de células lógicas, bem como verificar
comportamentos de atraso e consumo, os quais podem ser correlacionados com as
estimativas de atraso e consumo do projeto, a fim de validar os dados das células
gerados pela caracterização elétrica. A arquitetura proposta para o circuito de teste é
composta por blocos combinacionais que garantem a completa verificação lógica de
cada célula da biblioteca. A estrutura básica do circuito de teste é ligeiramente
modificada para permitir diferentes modos de operação que permitem avaliação de
diferentes dados utilizando simulações elétricas SPICE. Visto que o circuito de teste
gera pequeno acréscimo de silício ao projeto final, ele pode ser implementado junto com
o ASIC alvo, atuando como um ‘circuito de certificação de biblioteca’.

Palavras-Chave: Circuito integrado, ASIC, projeto digital, célula-padrão, mapeamento
tecnológico livre de biblioteca, biblioteca de células geradas por software, circuito de
teste.

13

1 INTRODUCTION

Microelectronics became the key technology of many industry branches like
information technology, telecommunication, medical equipment and consumer
electronics. The ability of microelectronics to process, transport and store data digitally
made many new applications possible. The continuously increasing level of integration
of electronic devices on a single substrate has led to the fabrication of increasingly
complex systems. An Integrated Circuit (IC) is an electronic system consisting of a
number of miniaturized electronic devices, such as transistors, resistors, capacitors and
inductors, built on a monolithic semiconductor substrate. The large majority of the
current ICs are implemented in the Metal-Oxide-Semiconductor (MOS) technology
(WESTE, 2005) (RABAEY, 2003).

The integrated circuit technology has progressed tremendously. The increase in the
number of transistors that can be integrated in a single die has grown exponentially in
the last decades, as predicted by the so called Moore’s law (INTEL, 2007) (MOORE,
1965). The level of integration of chips has been classified as small-scale (up to 10
gates –half a dozen transistors per gate), medium-scale (up to 1,000 gates), large-scale
(up to 10,000) and very large-scale integration (VLSI). The term VLSI is used to
describe most integrated circuits from the 1980s onward.

At present, many electronic systems require integrated and dedicated components
that are specialized to perform a task or a limited set of tasks. These are called
Application Specific Integrated Circuits, or ASICs.

Electronic design automation (EDA) is the category of tools for designing and
producing electronic systems. This is sometimes referred to as CAD (computer-aided
design). The modern ASIC design flow has evolved and increased in complexity just as
the devices that are being designed have dramatically increased in complexity. This
design flow is now heavily dependent on EDA tools and many of the tasks that were
once carried out manually are now automated by EDA tools with little or no manual
intervention.

Cell-based design is definitely the most applied approach in the ASIC market today.
This design approach implies re-using pre-customized cell libraries to build more
complex digital systems. A typical standard cell design environment includes timing
and power analysis, as well as automatic generation of circuit layout. In standard cell
libraries, three groups of logic cells co-exist: (1) inverters/buffers; (2) combinational
and (3) sequential gates. Especially due to the large number of different logic functions
and driving strength options needed in typical designs, the largest of the three
aforementioned groups turns to be the combinational cells. The creation of handcrafted

14

standard cell libraries needs skilled designers and requires long development times,
even when simply dealing with technology migration for the same set of cells. Each cell
is carefully defined and characterized for different input slopes, output loads, and design
corners. This practice usually limits the number of cells in libraries due to the high
engineering costs involved.

More recently, the library-free technology mapping has been addressed by EDA
platforms (GAVRILOV, 1997). It automatically generates on-the-fly the cells required
(or identified) by the mapping task. This new technology is based on virtual libraries,
whose original cells are not previously designed and physically verified. It means that
such virtual libraries are, in fact, tested together with the target ASIC.

Since in a standard IC design flow, the technology mapping is based on pre-
designed and pre-characterized cells, the ASIC design efficiency turns to be bounded by
the library in use. The more cells and drive strength options are available, the larger is
the variety of logic functions and circuit performances the designer can implement.
Only a library-free technology mapping approach, capable of creating on-the-fly cells
that perfectly fit a particular application, can provide such flexibility to IC designers
(DEDOOD, 2003) (GAVRILOV, 1997) (KAGARIS, 2007) (MARQUES, 2007) (ROY,
2005) (SCHNEIDER, 2005). The enrichment of a library can be done by adding only
new drive strengths (DEDOOD, 2003) or through the addition of new functions with
standard series/parallel implementation (GAVRILOV, 1997) or with special transistor
topologies (KAGARIS, 2007) (MARQUES, 2007) (SCHNEIDER, 2005) and adding
new cells for in-place optimization combining new topology and IPO (in place
optimization) sizing (ROY, 2005).

A cell library is usually an ensemble of hundreds of each individual cell. If it is
going to function as a whole to provide building blocks for larger designs, not only
should each individual cell be correctly designed, but also the synthesized designs based
on these library cells should be absent from errors. However, designing a cell library
requires carrying out many complex tasks and involving design efforts from a number
of engineers. Errors are easily made in this situation. In order to uncover the leftover
errors of a cell library, benchmark circuits are usually designed to fulfill this mission.
Thus, the quality of a cell library can be substantially improved (LIN, 1999).

Without accurate library validation, ASIC customers cannot be assured that their
design will perform to specifications using simulation results alone. The need to
correlate simulation precisely to silicon demands the manufacturing, testing and
characterization of test circuits specifically designed for that purpose.

In the past, designing of a cell library was usually thought as a discipline in
industrial community where the advancement in cell library design is largely made.
Since a viable cell library will strengthen a company’s competitiveness, the know-how
with regard to designing a high quality cell library is not often seen in open literature
(AGASTEIN, 1990) (MARTINEZ, 1995) (SCOTT, 1994). However, with ever
increasing availability of semiconductor foundry and commercial CAD tools to the
university community and advancement in cell-based synthesis technology, more
activities in cell library design within university community have been carried out (LIN,
1999) (CHONG, 1992).

There are certainly many interpretations for “high quality cell libraries”. A cell
library regarded as high quality by one company may not be considered as viable by

15

another company. However, high quality cell libraries possess many common
characteristics. Here are listed some of them (LIN, 1999):

(1) the functionality of each individual cell should be correct in the models for logic
synthesis and simulation,

(2) the timing performance figures of each individual cell claimed in the data sheet
or models should be accurate enough,

(3) the layout of each cell should be free of design rule violations,
(4) the cells should be best utilized by a synthesis tool, and
(5) the cells should be able to optimize placement and route of a large design.

The testbench (test circuit) developed in this work enforces (1) and (2) which are
essential to a high quality cell library.

The computing evolution, including parallel and distributed processing, allows
nowadays the automatic generation and electrical characterization of a huge number of
cells in a few minutes, although some design aspects like cell layout compaction are still
challenging programmers. However, even if complete back-annotation and design
verification are already feasible in a library-free approach, designers are sometimes still
skeptical and reluctant to develop products based on software-generated cells that are
not previously validated on silicon. This skepticism results from simple things like the
lack of knowledge about the reliability of the circuit with respect to degradation due to
electromigration (CHRISTIANSEN, 2006) and negative-bias temperature instability
(NBTI) (KUMAR, 2007) effects.

The validation and physical characterization of the set of cells, included in a library,
are usually done through specific structures and benchmark circuits. Such test structures
are composed by ring oscillators, delay chains, counters, and others (LONG, 1984)
(BHUSHAN, 2006). They are generally designed in full custom style, and must be
carefully built for a specific process.

Benchmark circuits, such as ISCAS’89, MCNC’90, ITC’99 and IWLS’05
benchmarks, on the other hand, correspond to different applications and architectures in
order to represent commercial circuits and system blocks, such as purely combinational
circuits, finite state machines, arithmetic blocks, and so on. The use of benchmarks for
validation and physical characterization of standard cell libraries may lead to two
situations: (a) not all cells from the library are used in the benchmark circuit design, and
(b) the cells used in this circuit are not stimulated by all possible input combinations,
not guaranteeing the complete functionality of these cells. For instance, in Table 1.1, the
use of different cells from a library, which contains 64 combinational cells, in the
ISCAS benchmark circuit synthesis is observed. Note that, only the ‘tv80_core’
benchmark used the entire set of available cells.

16

Table 1.1: Using a 64-cell library to synthesize benchmark circuits.

ISCAS Benchmarks* # cells in the circuit # used cells from library

c7552 1,311 41

i2c_master_top 679 42

iu 9,203 43

mc_top 6,245 58

tv80_core 5,594 64

wb_conmax_top 28,089 43

*Benchmarks source: http://www.fm.vslib.cz/~kes/asic/iscas, last access on Sep.20th,
2007.

Within this context, a naive manner to achieve library verification consists in
designing a circuit that connects all cells in such a way that the primary inputs are
shared and individual output signals are multiplexed to reduce the number of circuit
primary outputs. This strategy can obviously achieve the desired verification of cell
logic behavior but, in addition to multiplexing the cell outputs, it requires buffering to
compensate the high capacitance on input nodes, making it difficult to obtain timing and
power dissipation data.

An efficient approach to generate a testbench for testing a set of new cells, possibly
created on-the-fly, should cover the following aspects:

(1) to ensure complete functionality test for the instantiated cells;
(2) to ensure coverage (instantiation) of all the cells to be tested;
(3) to allow the verification of the accuracy of the models used in the design

process;
(4) to provide means to perform long and medium term reliability tests (needed for

electromigration, sufficiency of contacts, NBTI degradation, etc) without
additional equipment;

(5) to have a feasible number of cell instances compared to the set of cells to be
tested.

The goal of this work is to propose a methodology to automatically generate
testbench circuits for on-silicon soft-library validation meeting the aspects above.

Some works related to this propose can be found in the literature (LIN, 1999)
(AGASTEIN, 1990) (MARTINEZ, 1995) (SCOTT, 1994) (CHONG, 1992). The most
similar related work, presented by Rung-Bin Lin (LIN, 1999), creates benchmarks to
improve the quality of a standard cell library, but such benchmarks are not viable for
virtual libraries. It focuses on fixed libraries, not regarding the benchmark size and the
automatic generation. It also uses specific structures (ring oscillators, delay chains,
counters, and others) to compound the benchmark. Therefore, to the best of our
knowledge, previous approaches fail to cope efficiently with this goal.

In this work, a straightforward and efficient testbench methodology is proposed
aiming the validation of an entire set of soft-cells in terms of logic and electrical
behavior. The presented solution merges well-established design and test concepts to

17

cope with the five aspects mentioned above. A specific combinational block is built to
guarantee the logic coverage (aspect 1) of a sub-set of the cells to be validated, and to
provide at the output the same bit vector received at its inputs, allowing thus to cascade
long chains with these blocks. The use of several blocks allows to instantiate all the
cells (aspect 2). The circuit architecture is then composed of such combinational chain
in a ring configuration, synchronized by a register barrier. Both synchronous and
asynchronous operating modes provide different features for the proposed goals. The
ring configuration allows verifying the accuracy of the models, by comparing with the
predicted circuit behavior (aspect 3). The oscillation BIST technique is also included in
the circuit operation for a wide range of different paths, and allows medium and long
term tests (aspect 4). In case of an eventual error, the circuit diagnostic is facilitated
through an arrangement of multiplexers. Finally, as the ring oscillator is composed of a
variety of cells, the number of instances is not very expensive compared to the initial set
of cells (aspect 5), as shown in the overhead section.

From a business model point-of-view, the methodology presented herein is useful
for the soft-library vendor and to the ASIC designer client. For the vendor, it is quite
important to dispose of a physical testbench in order to guarantee the correctness of its
EDA environment, as well as to verify the quality of the generated cells in terms of
performance and reliability, including design-for-manufacturability issues. This is
essential for the continuous improvement of the library generation CAD tool. For the
ASIC designer, a circuit that validates all distinct cells created on-the-fly to be used in a
specific circuit provides means to exclude those errors on silicon due to the cell
generators. If this test circuit is fabricated in the same die of the ASIC, it can act as a
kind of ‘certification circuit’ for the soft-library, in different design corners and
operating conditions. In this case, the overhead in terms of area and I/O pins is a
compromise in fabricating together the test circuit and the ASIC, and the low cost
approach presented here is very attractive.

The main concepts related to the work are presented in Chapter 2. In Chapter 3, the
basic combinational block is presented. Chapter 4 presents the circuit architecture and
its operation modes. Finally, the conclusions are discussed in Chapter 5.

18

2 BACKGROUND & MOTIVATION

In this chapter, the required concepts to the comprehension of this document, such
as standard cell design, library-free technology mapping, testing, testability and design-
for-testability are briefly explained.

2.1 ASIC Flow

Designing ICs as complex as the ones available nowadays requires engineers
working with different levels of abstraction on a system design perspective. Figure 2.1
shows a diagram illustrating these different levels of abstraction known as Y-chart
(GAJSKI, 1988). The Y-diagram can be used to illustrate each domain and the
transformations between domains at varying levels of design abstraction. The radial
lines on the Y-chart represent three distinct design domains: behavioral, structural, and
physical. That is a classical tentative, among others, to demonstrate and classify such
different working levels.

Figure 2.1: Levels of design abstraction (GAJSKI, 1988).

19

At the behavioral domain, the operation of the system is captured without having to
specify the physical implementation. The design starts with a specification. From the
specification a behavioral description of the design is then generated. The behavioral
synthesis transforms a RTL behavioral description in a hardware description language
(HDL), such as VHDL or Verilog. The design is then simulated and tested by applying
testbenches to verify the correct behavior as defined by the specification.

The next step is to synthesize the behavioral description. This involves converting
the RTL to generic gates and registers, then optimizing the logic to improve speed and
area. The behavioral code is synthesized into a structural code using a generic gate
library.

The step known as logic synthesis transforms a design from the behavioral to the
structural domain. In the logic synthesis the task called technology mapping or library
mapping takes a generic HDL gate-level description (boolean network) and translates it
to a netlist (cell network) that specifies particular gates in the target library. Thus, the
mapping task transforms the generic gate-level description into a gate-level description
in the target ASIC technology.

Layout generation is the last step in the procedure of turning a design into a
manufacturable database. It transforms a design from the structural to the physical
domain. This step is called physical synthesis when the structural netlist is manipulated
as physical layout is generated (WESTE, 2005). Figure 2.2 shows a diagram illustrating
the ASIC design flow.

Figure 2.2: ASIC design flow diagram (WESTE, 2005) (MARQUES, 2007a).

20

2.2 Design Styles

The economic viability of a microelectronics design depends upon a number of
conflicting factors, such as production volume, cost, and circuit performance required to
be competitive. These economic considerations have stimulated the development of a
number of distinct implementation approaches that range from high-performance
handcrafted design to fully programmable, medium-to-low performance designs
(RABAEY, 2003).

Under these circumstances, different implementation approaches, often called design
styles or even methodologies, have been used for microelectronic circuits. They are
usually classified as full-custom (custom) and semicustom design styles (MICHELI,
1994). Figure 2.3 provides an overview of the design styles.

Figure 2.3: Overview of IC design styles (MICHELI, 1994) (RABAEY, 2003).

Full-custom design was popular in the early years of microelectronics. Today, the
design complexity has confined custom design techniques to specific portions of a
limited number of projects, such as processors, chip-sets, and arithmetic units
(MICHELI, 1994).

In full-custom design one does logic and physical synthesis in order to attain the
highest performance or smallest size, making use of the most advanced technologies
(CHEN, 2000).

The benefits of full-custom design in general include reduced area (and therefore
recurring component cost), performance improvements and also the ability to integrate
(include) analog components and other pre-designed (and thus fully verified)
components such as microprocessor cores that form a System-on-Chip (SoC).

The disadvantages of this design style can include increased manufacturing and
design time, increased non-recurring engineering (NRE) costs and a much higher skill
requirement on the part of the design team.

However, for digital designs only, cell-based semi-custom design together with
modern CAD systems can offer considerable performance/cost benefits with much
lower risk. Automated layout tools are quick and easy to use, and also can offer the
possibility to manually handcraft and optimize any performance limiting aspect of the
design.

21

Semicustom designs can be partitioned in two major classes: cell-based design and
array-based design. These classes further subdivide into subclasses, as shown in Figure
2.3. Cell-based design leverages the use of library cells, that can be designed once and
stored, or the use of cell generators that synthesize macro-cell layouts from their
functional specifications. Array-based design exploits the use of a matrix of
configurable elements to implement the logic. Array-based circuits can be classified as
pre-diffused and pre-wired, also called mask programmable and field programmable
gate arrays, respectively (MPGAs and FPGAs) (MICHELI, 1994).

This work is included in the context of the standard-cell design which is a cell-
based design style. The idea behind cell-based design is to reduce the implementation
effort by reusing a library of cells. The advantage of this approach is that the cells only
need to be designed and verified once for a given technology, and can be reused many
times, thus amortizing the design cost. The disadvantage is that the constrained nature
of the library (especially due to the limited number of cells) reduces the possibility of
fine-tuning the design (RABAEY, 2003).

The standard-cell approach standardizes the design entry-level at the logic gate
(functional blocks). A library containing a wide selection of logic gates over a range of
number of inputs and drive strengths is provided. Besides the basic logic functions, such
as inverter, AND/NAND, OR/NOR, XOR/XNOR and flip-flops, a typical library also
contains more complex functions such as AOI/OAI (AND/OR-OR/AND-INVERTER),
MUX, full-adder, comparator, counter, decoder, encoder, and so on.

The layout of each cell in a specific library has a fixed height, while its width may
vary. Thus, the cell can be placed side-by-side, in such a way that their power rails and
well regions properly connect to neighbor cells. Standard-cell design uses these
functional blocks to achieve high gate density and good electrical performance. The
quality of a synthesized design based on standard-cells depends on three components:
the synthesis tool, the place and route tools and the target cell library (SCOTT, 1994).

Library-free Technology Mapping

Technology mapping is the choice of the elements from a technology (typically cells
from a library) that will be effectively used to implement a given circuit. Technology
mapping then transforms the network of functions into a gate level netlist by trying to
find an optimal network covering of library gates, with respect to some cost function
(CORREIA, 2004).

The library gates used by a technology mapper can be specified using functionality
(also known as library-based mapping) or parameters such as the number of inputs and
series/parallel devices (also known as library-free mapping).

Figure 2.4 shows the digital circuit design flow regarding the library-based
methodology for the technology mapping. In this methodology the quality of the
mapped circuit has a directly relation with the library richness. Static libraries usually
are not so big, because the cells characterization cost is too elevated (SECHEN, 2003).
A commercial library contains no much more than one hundred cells that implement
different boolean functions (MARQUES, 2007). The great advantage of this approach is
the pre-characterization of the cells and the set of information associated to each cell of
the library, which is considered as design cost in the map matching. Usually, this
information is about area, delay, input capacitances and power consumption.

22

Figure 2.4: ASIC design flow with library-based technology mapping (MARQUES,

2007).

Figure 2.5, in turn, shows the digital circuit design flow regarding the methodology
library-free for the technology mapping. In this approach, the mapping defines a set of
cells that will be used to implement the circuit. This list of cells is then used by an
automatic cell generator in order to obtain the implementation of cells to use in the
circuit layout.

Figure 2.5: ASIC design flow with library-free technology mapping (MARQUES,

2007).

23

Thus, the concept of library-free design is based on using a virtual library available
through a layout generator instead of using a set of pre-designed cells, like in the
library-based design. The set of available cells is given by a user-defined constraint in
the number of series transistors. This constraint in the number of series transistors is
done for electrical reasons. As the cells are generated on-the-fly, a virtual library
contains a great number of poorly characterized cells when compared to a pre-designed
standard cell library (REIS, 1998) (REIS, 1999). Therefore, the fact of the cells not
being previously designed and physically verified is the main drawback of the library-
free technologic mapping and it means that such virtual libraries are, in fact, tested
together with the target ASIC. In this work, a circuit for on-silicon verification and
validation of digital cell libraries is proposed. This solution uses test concepts that will
be presented next.

2.3 Testing

2.3.1 Defect, fault, failure and error

A defect in an electronic system is the unintended difference between the
implemented hardware and its intended design. A fault is a representation of a “defect”
at the abstracted function level, reflecting a physical condition that causes a circuit to
fail to perform in a required manner. A failure is a deviation in the performance of a
circuit or system from its specified behavior and represents an irreversible state of a
component such that it must be repaired in order to provide the intended design
function. A circuit error is a wrong output signal produced by a defective circuit. A
circuit defect may lead to a fault, a fault can cause a circuit error, and a circuit error can
result in a system failure (BUSHNELL, 2000) (WANG, 2006).

2.3.2 Test Generation, Functional and Structural Testing

In order to test a circuit, a set of input patterns is applied to the circuit under test
(CUT), and its responses are compared to the known good responses of a fault-free
circuit. Each input pattern is called a test vector. The goal of test generation is to find an
efficient set of test vectors that detects all faults considered for that circuit (WANG,
2006).

Traditionally, manufacturing test has been done using functional testing. Functional
test patterns verify that the model or logic behaves as it was intended. Every entry in the
truth table for the combinational logic circuit is tested to determine whether it produces
the correct response. Therefore, functional testing is measured by the logic committing
the correct action to the applied stimuli. Full functional correctness is the standard
expectation and this should be verified at behavioral (RTL) or at gate level of the design
with a simulation process (GIZOPOULOS, 2006).

A more practical approach is to select specific test patterns based on circuit
structural information and a set of fault models. This approach is called structural
testing. Structural testing is used to verify the topology of the manufactured chip
(GIZOPOULOS, 2006). Such testing relies on fault models, which assume that the
physical defect will represent itself in a certain way. Structural testing saves time and
improves test efficiency, as the total number of test patterns is decreased because the
test vectors target specific faults that would result from defects in the manufactured
circuit.

24

Structural testing cannot guarantee detection of all possible manufacturing defects,
as the test vectors are generated based on specific fault models. However, the use of
fault models provides a quantitative measure of the fault detection capabilities of a
given set of test vectors for a targeted fault model. This measure is called fault coverage
and is defined as:

fault coverage = (number of detected faults) / (total number of faults)

It may be impossible to obtain a fault coverage of 100% because of the existence of
undetectable faults (WANG, 2006). An undetectable fault means there is no test to
distinguish the fault-free circuit from a faulty circuit containing that fault. As a result,
the fault coverage can be modified and expressed as the fault detection efficiency, also
referred to as the effective fault coverage, which is defined as:

fault detection efficiency = (number of detected faults) / (total number of faults -
number of undetectable faults).

2.3.3 Fault models

Manufacturing faults can be of a wide variety and manifest themselves as short-
circuits between signals, short-circuits to the supply rails, and floating nodes. Because
of the diversity of defects, it is difficult to generate tests for real defects. In order to
evaluate the effectiveness of a test approach, generating and evaluating a set of test
vectors, and qualify a good or bad circuit, these faults must be related to the circuit
model, i.e. derive a fault model.

Generally, a good fault model should satisfy two criteria: (1) it should accurately
reflect the behavior of defects, and (2) it should be computationally efficient in terms of
fault simulation and test pattern generation (WANG, 2006). Many fault models have
been proposed, but no single fault model accurately reflects the behavior of all possible
defects that can occur. As a result, a combination of different fault models is often used.

2.3.3.1 Stuck-At Faults

Stuck-at fault is the most common fault model used in fault simulation. Functional
testing uses the single stuck-at model because of its effectiveness in finding many
common defect types. The stuck-at fault models the behavior that occurs if the terminals
of a gate are stuck at either a high (stuck-at-1, sa1) or low (stuck-at-0, sa0) voltage.

2.3.3.2 Delay Faults

Fault-free operation of a logic circuit requires not only performing the logic function
correctly but also propagating the correct logic signals along paths within a specified
time limit. A delay fault causes excessive delay along a path such that the total
propagation delay falls outside the specified limit.

Timing-related failures may be caused by isolated gate delays or process-related
timing problems that accumulate along logic paths and prevent the circuit from
functioning at-speed. The timing-related malfunction is characterized by defining the
concept of delay faults related to circuit critical paths. Conventional techniques for
delay test require two distinct primary input vectors that provoke a transition signal at
the fault site and propagate the faulty delay effect to a primary output (ARABI, 1998).

Timing related defects have been modeled as different delay fault models. In gate-
delay fault and transition fault models, a delay fault occurs when the time interval taken

25

for a transition from the gate input to its output exceeds its specified range. The other
model is path-delay fault, which considers the cumulative propagation delay along a
signal path through the CUT, i.e. the sum of all gate delays along the path. The
combinational path begins at a primary output or another clocked flip-flop, contains a
connected chain of gates, and ends at a primary input or a clocked flip-flop. The
specified time range can be the duration of the clock period (or phase) or the vector
period. The propagation delay is the time that a signal event (transition) takes to traverse
the path (BUSHNELL, 2000).

In a combinational circuit the path that has the longest propagation time from a
primary input to a primary output, called critical path, determines the operating speed
of the circuit. Also in a sequential circuit, the system is free of timing failures if every
combinational path between two memory elements propagates its signal in less time
than the interval of the operating system clock. In other words, the input signal of every
memory element in the system should have a stable signal before the arrival of the
active clock edge, obviously not forgetting the setup time of such memory point
(registers). To be reliable, at least all critical paths in the system should be tested
(ARABI, 1998).

2.4 Delay test verification

Digital circuits are tested by verifying the state malfunction in logic based on a
standard fault model, the “stuck-at 0 or 1” fault. This fault model successfully describes
most of state malfunction in logic. However, as the structure of logic circuits has
become increasingly complex, system-timing failures occur more frequently.

The timing-related malfunction is characterized by defining the concept of delay
faults related to circuit critical paths. Conventional techniques for delay testing require
two distinct primary input vectors that provoke a transition signal at the fault site and
propagate the faulty delay effect to a primary output.

Timing related defects have been broadly modeled as gate delay faults or as path
delay faults. The gate delay fault model assumes that the incorrect timing behavior of
the circuit is due to excess delays in one or more components in the path. Test vector
generators based on gate delay fault model deal with one fault at a time and try to find a
test which sensitizes some path trough the fault location such that the transition at the
output is affected by the target fault. The path delay fault model considers the
propagation delay through one or more paths exceeding the timing constraint.
Therefore, this model makes no assumption about the individual component delays. To
be reliable, at least all critical paths in the system should be tested.

2.4.1 Characterization

Accurate determination of logic gate propagation delay and its correlation with
processing variables and layout design rules is needed to optimize the high-speed
performance of actual logic circuits (LONG, 1984). However, accurate wafer-level high
speed measurement of timing and delay is limited by the test interface.

Synchronous circuits have been employed for measurement of propagation delay.
The maximum clock frequency at which the circuit presents the proper data signature
can be directly measured. An average propagation delay per gate can be inferred from
the maximum clock frequency through transient simulation or timing analysis.
However, synchronous circuits are often much more difficult to evaluate with accuracy

26

because of the high-speed test interface problems, such as reflections and ground noise
and because the observed maximum frequency of operation is critically dependent on
clock waveform properties such as symmetry, amplitude, and offset. Also, it can be
shown that the maximum clock frequency for a given flip-flop type and implementation
(NAND, NOR, etc.) will be achieved only at a specific clock symmetry or
nonsymmetry.

Therefore, to stay within these limitations, self-test or built-in test circuitry must also
be included on all large-scale high-speed ICs to reduce the total number of off-chip
interfaces needed to verify functionality at speed.

The design of a test structure for propagation delay measurement must facilitate
accuracy and simplicity of measurement and provide correlation between the test
structure and actual logic circuits. The “classic” or default asynchronous test structure
has generally been the ring oscillator, often configured with minimum fan-in, fan-out
and interconnect capacitive loading. Measurement of this circuit is very simple,
requiring only power supply, ground, and output connections.

2.4.2 Delay fault testing

The maximum allowable clock rate is determined by the propagation delays of the
combinational logic block between latches. To observe delay defects, it is necessary to
create and propagate transitions in the circuit running at-speed (at its specified operating
frequency).

Creating transitions requires application of a vector pair, V= <v1, v2>, at the inputs of
the combinational part of the circuit. The first vector initializes the relevant internal
signals to desired initial logic values, while the second vector causes the desired
transitions and sensitizes the transition from the target fault site to an output. The test
application scheme for combinational circuits is shown in Figure 2.6.

In normal operation, only one clock, the system clock, is used to control the input
and output latches and its period is Tc. In this illustration, the input and output latches
are controlled by two different clocks in the test mode: the input and output clocks,
respectively. The period of these clocks, Ts, is assumed to be larger than Tc. The input
and output clocks are skewed by an amount equal to Tc.

The first vector, v1, is applied to primary inputs at time t0. The second vector, v2, is
applied at time t1. Time Ts = t1 – t0 is assumed to be sufficient for all signals in the
circuit to stabilize under the first vector. After the second vector is applied, the circuit is
allowed to settle down only until time t2, where t2 – t1 = Tc. At time t2, the primary
output values are observed and compared to a prestored response of a fault-free circuit
to determine if there is a defect.

27

Figure 2.6: Delay fault testing.

Transition fault model, gate fault model and path delay fault modes are the classical
fault models that have been used to represent delay defects.

2.5 Testability and Design-for-Testability

Testability is a relative measure of the effort or cost of testing a logic circuit. When
considering the testability of designs, two properties are important: controllability and
observability. (1) Controllability is the ability to establish a specific signal value at
each node in a circuit by setting values on the circuit inputs. (2) Observability is the
ability to determine the signal value at any node in a circuit by controlling the circuit
inputs and observing its outputs (ABRAMOVICI, 1990).

The correctness of a combinational circuit can be validated by exhaustively applying
all possible input patterns and observing the responses. A more feasible testing
approach is based on the following premises. Firstly, an exhaustive enumeration of all
possible input patterns contains a substantial amount of redundancy, that is, a single
fault in the circuit is covered by a number of input patterns. Detection of that fault
requires only one of those patterns, while the other ones are superfluous. Secondly, a
substantial reduction in the number of patterns can be obtained by relaxing the condition
that all faults must be detected. For instance, detecting the last single percentage of
possible faults might require a huge number of extra patterns, and the cost of detecting
them might be larger than the eventual replacement cost. Typical test procedures only
attempt 95-99% fault coverage.

By eliminating redundancy and providing reduced fault coverage, it is possible to
test most combinational logic blocks with a limited set of input vectors. However, this
does not solve the sequential problem. To test a given fault in a state machine, it is not
sufficient to apply the correct input excitation since the engine must be brought to the
desired state first. This requires a sequence of inputs to be applied. Propagating the
circuit response to one of the output pins might require another sequence of vectors.

One way to address the problem is to turn the sequential network into a
combinational one by breaking the feedback loop in the course of the test. This is one of
the key concepts behind the scan-test methodology (ABRAMOVICI, 1990). Another
approach is to let the circuit test itself. Such a test, called self-test, does not require
external vectors and can proceed at a higher speed (RABAEY, 2003).

28

Design-for-testability – DFT represents design techniques that are required in order
to improve the testability of the design for achieving quality and reducing the test cost
of the digital circuit, while at the same time simplifying the test, debug and diagnose
tasks. By considering testing from the early phases of the design process, it is possible
to simplify the whole validation process. Scan design and built-in self-test (BIST) are
examples of design techniques to improve testability. Later these concepts will be better
explained in the context of this work.

2.6 How to test a library?

The main question of the work presented herein is “How to test a digital cell
library”. In particular, when such cells are automatically generated by software, they are
directly applied to the target ASIC, and this set of cells tends to be composed by a huge
number of different combinational logic gates.

Instead of verifying the correctness of a specific circuit, the objective of this work is
to propose a circuit, whose main goal is the verification and validation of each cell
presented in a standard cell library. It represents, in fact, a new issue in the test domain
where usually test methods are applied to test the functionality of application circuits
and systems. In this particular case, the proposed circuit is not useful for any specific
application or electronic product, but to test a set of logic cells generated by software to
their use in a particular ASIC design.

Before discussing the circuit architecture, the structure of the combinational blocks
are presented. The combinational blocks represent the basic components of the proposed
test circuit.

29

3 COMBINATIONAL BLOCK

This chapter presents the description of the combinational blocks which are the basic
structures of the proposed circuit.

In terms of logic cell functionality, three main groups may be identified: (1)
inverters and buffers; (2) sequential cells; (3) combinational cells. Group (1) is easily
verified since such a kind of cell presents only one input signal. Group (2), in turn, has
generally a small and limited number of different latches and flip-flops, facilitating its
verification. Moreover, in this group the timing performance is usually more important
than the logic functionality that is somewhat trivial in the pass and storage modes. In the
case of group (3), the number of cells is generally more expressive than the other ones.
Moreover, the number of input nodes in these cells makes the functional test a more
complex task due to the 2n different input combinations, being n the number of input
nodes.

The most naïve strategy to test the group (3) consists in placing all cells connected
in parallel to the same input bus, where all input combinations are applied
simultaneously. However, in doing so, input buffering must be considered due to the
high node capacitances (great number of inputs connected to the same node).
Furthermore, multiplexers should be used at the output signals to reduce the number of
output pads. In this approach, timing and power consumption characteristics are not
easily verified since the signals propagate only through single cells in testing.

The proposed architecture consists in building combinational blocks that receive an
input bus, where all signal combinations are provided, and produce a sequence of output
vectors also presenting all possible signal combinations, to be then applied to the next
combinational block. The combinational block is illustrated in Figure 3.1.

Figure 3.1: Combinational block illustration.

30

In order to ensure full logic verification of every library cell, the combinational
blocks used in our verification circuit are built according to the following principles:

- a cell from the library is declared verified if it is instantiated such that inputs of
the cell consume primary inputs of a combinational block. Polarity is indifferent
and the cell can consume the input signals through an inverter or directly;

- every library cell is instantiated at the primary inputs of at least one
combinational block, to ensure it is verified;

- block creation continues while there are cells from the library that are not yet
declared as verified cells;

- every block instantiates a non-empty subset of non-verified cells at the block
inputs, so that more cells receive the verified label. Indeed, the creation of a
block is done in a way to maximize the number of cells that passes from the
unverified to verified status.

From a block instantiation point of view, the combinational blocks obey to the
following principles:

- all possible input combinations are applied to every block;
- every block reproduces the input signals at its outputs, providing thus all

possible signal combinations for the next block.

Each combinational block is built using two cascaded stages. The minimum number

of signals at the input bus is determined by the greatest number of inputs of a single cell
used in the first stage.

The first stage is built with instances of cells placed in one-logic level exercised by
all possible input combinations. The number of cells used in the first stage is the
sufficient number to create 2n logic combinations at the output nodes of the first stage.

The output signals of verified cells are used as inputs to the second stage, which
regenerates the primary inputs. The second stage is composed of synthesized functions
with additional cells instances in a multi-logic level.

3.1 First stage

To generate the first stage, the whole set of cells in the library is ordered according
to a given criterion; for example alphabetic order, number of inputs, number of 0s and
1s at the output of the logic function, random order, or any other. Once the cells are
ordered, non verified cells are picked one-by-one to create a verified instance.

Assuming an n-input block, the goal is to choose a number m of cells in the first
stage sufficiently large to produce at least 2n different m-bit output vectors at the first
stage. The 2n intermediate different combinations (m-bit vectors) are required to
reconstruct the original 2n input vectors (combinations) with a one-to-one
correspondence. To achieve this goal, the instance of a new cell considers all possible
direct and inverted connections between the block primary inputs and the inputs of each
newly selected cell are tried.

For a library where only single-output cells are available, the smallest circuit
possible for the first stage has n cells, while the worst case is a first stage containing
2n-1 cells. Verified selected cells may or may not re-appear in the second stage or in
other combinational blocks.

31

An example for generation of a 3-bit output vector with the smallest circuit possible
for the first stage is shown in Table 3.1. In this case, all cells have the same number of
logic values ‘0’ and ‘1’.

Table 3.1: Minimum number of cells at the first stage.

A B C
XOR3_X1
(A,B,C)

XOR2_X1
(B,C)

XOR2_X2
(A,C)

0 0 0 0 0 0
0 0 1 1 1 1
0 1 0 1 1 0
0 1 1 0 0 1
1 0 0 1 0 1
1 0 1 0 1 0
1 1 0 0 1 1
1 1 1 1 0 0

This maximum limit of necessary cells is explained by the worst case of a block
constitution. If a block must generate 3-bit output vector and has only cells with one
logic value ‘1’ available to use, it will be needed at most 7 cells to generate 8 distinct
vectors at the output of the first stage as shown in Table 3.2.

Table 3.2: Maximum number of cells at the first stage.

A B C
NOR3_X1
(A,B,C)

AND3_X2
(B,A,!C)

NOR3_X2
(!C,A,B)

AND3_X1
(C,B,!A)

NOR3_X4
(A,C,!B)

OR3_X4
(!C,!B,!A)

NAND3_X1
(C,!B,A)

0 0 0 1 0 0 0 0 1 1
0 0 1 0 0 1 0 0 1 1
0 1 0 0 0 0 0 1 1 1
0 1 1 0 0 0 1 0 1 1
1 0 0 0 0 0 0 0 1 1
1 0 1 0 0 0 0 0 1 0
1 1 0 0 1 0 0 0 1 1
1 1 1 0 0 0 0 0 0 1

3.1.1 Implementation

In general, it is possible to briefly describe the test circuit generation flow as
follows. Firstly, a parsing of a library is done for the identification of the existing cells.
Thus, these cells are sorted in a list and the construction of the first part of the block
begins with the search of cells in the list. In the search task, the cells are tested with
some or all inputs combinations in order to target a certain number of output vectors
combinations.

The first part of a block is complete when the desired number of distinct output
vectors combinations is achieved and then the construction of another one starts. This
process continues until all cells of the library have been used at the first stage of one of
the blocks.

After the first stage is complete in every block, the functions that will recreate the
input vector will be generated. These functions represent the second part of each block.

32

In this work, the generation of combinational blocks was automated by a specific
CAD tool, with parameters to configure the cell list sorting criterion, the number of
input/output nodes of the block and the enabling/disabling of the NP equivalences for
the cells in the first stage of the blocks. Next, the implementation of this CAD tool will
be detailed.

(a) Parse

The generation of the combinational blocks starts with the parsing of a Liberty
library file or an Eqn file, which is loaded into the tool data structure.

(b) Sort

The initial stage consists in sorting the available cells. This choice will influence on
the order in which they will be used later. Cells can be sorted through five methods: (i)
alphabetical ordering; (ii) input number; (iii) quantity of minterms; (iv) random
ordering; (v) difference between the quantity of zeros and ones of the cell function.

(c) Search

Having the set of cells sorted as desired, the construction of the first stage for a
block begins. The order in which the cells are picked from the available list can be set in
three different manners: sequentially, alternately (first-last) and randomly.

(d) Combinations testing

The first picked cell is put in the block with its original inputs. So, each picked cell,
except the first one of the block, is tested with all the combinations of the block and cell
inputs – if no stopping criterion is used regarding the number of combinations; or it is
tested with some of the block and cell inputs – if using a stopping criterion.

The goal is to achieve the maximum number of different combinations with the
addition of each cell. A cell is added to the block, only if its addition creates a new
output combination and the combination of cell inputs that generates more different
output combination will be selected. Although, if the cell input combination in test
generates the maximum number of possible combinations for the given number of cells,
the combinations testing stop and the actual combination is used as the cell input
combination.

The block inputs combinations are defined as the arrange of the block inputs that can
be used as cell inputs.

Defined the block input arrange which will be used as cell input, the permutations
and/or inversions of this arrange are defined as the cell inputs combinations.

There are three sets of combinations that can be tested as cell inputs, given a block
input combination:

- N: combinations considering negations.

- P: combinations considering permutations.

- NP: combinations considering negations and permutations.

Given the set of combinations that will be tested as inputs for each cell, the software
can follow the standard sequence of the combinations list to test or it is possible to
select a combination from the list randomly in order to test. Also for the block inputs
combinations, the test can follow the standard sequence of combinations or the
combination to test can be selected randomly.

33

(e) Number of test combinations

Being b the number of block inputs and c the number of cell inputs, Table 3.3 shows
how to calculate the number of combinations for each combination set.

Table 3.3: Number of combinations of the combination sets.

combinations N P NP

block
!!)(

!

ccb

b

−

!!)(

!

ccb

b

−

!!)(

!

ccb

b

−

cell c2 !c cc 2!

block and cell
c

ccb

b
2

!!)(

!
×

−

!)(

!

cb

b

−

 c

cb

b
2

!)(

!
×

−

block and cell

(b=c)
cc

ccb

b
22

!!)(

!
=×

−

 !
!)(

!
c

cb

b
=

−

 cc c
cb

b
2!2

!)(

!
×=×

−

One of the biggest problems in the blocks construction arises at this point. There
may have too many inputs combinations to testing for each cell, and the exhaustive
search for the best combination can become impracticable for a library with cells that
have more than 7 inputs.

(f) Stopping criteria for combinations testing

To solve such problem, some stopping criteria have been implemented, besides
exhaustive search (which would be up to the user to try). The first one is the number x
of tests performed for cell inputs combinations and the number y of tests performed for
block inputs combinations. The x cell inputs combinations are tested with all the y
blocks inputs combinations. The cell is put into the block with its best input order after
xy tests.

Another method is stopping when the combinations number is increased by one. If
there are currently z different combinations, when z+1 is reached tests will stop.

These methods are important because they guarantee the completion of the blocks
building task in a short time.

Whenever the desired number of distinct output vectors combinations, i.e. the 2n
different signal combinations, is achieved, a block is complete and the construction of
another one starts. Until all cells in library have been used at the first stage of one of the
blocks, the generation continues.

(g) Cell usage repetition

The algorithm tries to use cells that have not been used. However, a cell is added to
the block, only if its addition creates a new output combination. So, if it does not occur
and all the cells not used have already been tested with the possible inputs
combinations, the algorithm tries to use a cell already used. Consequently, the last
blocks in the structure may have to use in the first stage one or more cells that have
already been used before, because they may be needed to complete the number of
distinct output vectors required.

(h) Second stage functions

34

After the first stage is complete in every block, it is necessary to generate the
equations which will generate the n-output vector. If we have an n-input block with m
cells, there will be 2n expected output vectors from the first stage, and 2m-2n vectors that
are not supposed to happen; the first ones are used to recreate the desired signals, while
the invalid output vectors are assigned to zero logic value for synthesis purpose.

(i) Output

The output file is the description of the first stage of each combinational block in
mapped Verilog and the description of the functions of the second stage of each
combinational block in non-mapped Verilog. The functions of the second stage of the
blocks are mapped through script with RTLCompiler Cadence tool and ABC Berkeley
tool. The Verilog description of all blocks are simulated with ModelSim Mentor tool
and converted to SPICE format also through script. The testbench flow is illustrated in
Figure 3.2.

Figure 3.2: Testbench flow.

35

3.1.2 Sample block

Supposing a block with 3-bit input vector in which it is desired to generate a 3-bit
output vector. For that, 23 distinct signal combinations must be identified at the outputs
of the first stage i.e. it will be necessary at least 3 cells in the first stage of this block.

The cells were searched alternately (first-last). Starting the process, the first cell was
picked with its normal inputs (without trying permutations and inversions). When the
second cell is picked it is tested with all block inputs combinations and cell inputs
combinations, i.e. in this block generation, no stopping criterion for combinations
testing was used. Both block and cell inputs combinations were selected randomly. The
combination of inputs which generated more distinct output signal combinations will be
fixed as the input of that cell. The cells of a sample block are shown in Table 3.4 with
their selected block and cell inputs combinations.

Table 3.4: Cells with their selected block and cell inputs combinations.

cell
cell

inputs

block input

combination

cell input

combination
function

XNOR2_X2 A1A2 IN1 IN2 A1A2 IN1 IN2
NAND2_X1 A1A2 IN1 IN3 A2A1 IN3 IN1
XNOR2_X1 A1A2 IN1 IN3 !A1!A2 not_IN1 not_ IN3
NAND2_X2 A1A2 IN1 IN3 A1!A2 IN1 not_IN3

Figure 3.3 shows the sample block with the following Verilog description for its first
stage:

module Block1_block(input[3:1] IN, output[4:1] W);
 wire not_IN[1];
 wire not_IN[3];
 INV_X1 I1 (.A(IN[1]), .Q(not_IN[1]));
 INV_X2 I3 (.A(IN[3]), .Q(not_IN[3]));
 XNOR2_X2 C1 (.A1(IN[1]), .A2(IN[2]), .Q(W[1]));
 NAND2_X1 C2 (.A1(IN[3]), .A2(IN[1]), .Q(W[2]));
 XNOR2_X1 C3 (.A1(not_IN[1]), .A2(not_IN[3]), .Q(W[3]));
 NAND2_X2 C4 (.A1(IN[1]), .A2(not_IN[3]), .Q(W[4]));
Endmodule

Figure 3.3: Sample block.

36

The gray vectors in Table 3.5 are repeated combinations. In the generation of this
block the tree first cells were selected and fixed, but it was not possible generate the 23
output signal combinations. As shown in Table 3.5, 6 distinct combinations were
generated. So, the fourth cell was added. Considering this cell C4 with A1(IN[2]),
A2(not_IN[3])as inputs, only 7 distinct 4-bit vectors values are identified. Trying a
new configuration, C4 with A1(IN[1]),A2(not_IN[3])as inputs, 8 distinct 4-bit
vectors values are produced and, at this point, the generation of the first stage of this
block is completed. Note that, although C1 and C3 (similar to C2 and C4) have the same
functionality, they are, in fact, different cells due to their distinct drive strengths
(indicated by X1 and X2 in Figure 3.3). Some approaches for enrichment of a library
work exclusively by adding new drive strengths (DEDOOD, 2003).

Table 3.5: Sample block with 3 cells; C4 with inputs A1(IN[2]),A2(not_IN[3])) and
C4 with inputs A1(IN[1]),A2(not_IN[3])).

Inputs 3 cells
C4

A1(IN[2]),A2(not_IN[3])
C4

A1(IN[1]),A2(not_IN[3])
IN1 IN2 IN3 W1 W2 W3 W1 W2 W3 W4 W1 W2 W3 W4
0 0 0 1 1 1 1 1 1 1 1 1 1 1
0 0 1 1 1 0 1 1 0 1 1 1 0 1
0 1 0 0 1 1 0 1 1 0 0 1 1 1
0 1 1 0 1 0 0 1 0 1 0 1 0 1
1 0 0 0 1 0 0 1 0 1 0 1 0 0
1 0 1 0 0 1 0 0 1 1 0 0 1 1
1 1 0 1 1 0 1 1 0 0 1 1 0 0
1 1 1 1 0 1 1 0 1 1 1 0 1 1

3.2 Second stage

The second stage re-creates the block inputs at the output of the whole block from
the 2n distinct intermediate m-bit vectors of the first stage. This synthesis process can be
performed using standard synthesis tools. For the example in Figure 3.3 and Table 3.5,
it is necessary to generate 3 combinational functions which combined reproduce input
vectors applied to the first stage. Although the first stage of this block has 4 output bits,
it produces only 23 distinct 4-bit vectors. This way, 24-23 vectors are not supposed to
happen as depicted in the white lines of Table 3.6 and 3.7. The valid output vectors of
the first stage (gray lines in Table 3.6 and 3.7) are used to recreate the input signals of
the first stage and invalid outputs are considered don’t cares, as shown in Table 3.6.
Table 3.7 shows the same information of the Table 3.6, but sorted according with the
cells output vectors.

37

Table 3.6: Block inputs, intermediate vectors and outputs.

IN1 IN2 IN3 W1 W2 W3 W4 f1 f2 f3
0 0 0 1 1 1 1 0 0 0
0 0 1 1 1 0 1 0 0 1
0 1 0 0 1 1 1 0 1 0
0 1 1 0 1 0 1 0 1 1
1 0 0 0 1 0 0 1 0 0
1 0 1 0 0 1 1 1 0 1
1 1 0 1 1 0 0 1 1 0
1 1 1 1 0 1 1 1 1 1

No vector 0 0 0 0 X X X
No vector 0 0 0 1 X X X
No vector 0 0 1 0 X X X
No vector 0 1 1 0 X X X
No vector 1 0 0 0 X X X
No vector 1 0 0 1 X X X
No vector 1 0 1 0 X X X
No vector 1 1 1 0 X X X

Table 3.7: Second stage functions.

IN1 IN2 IN3 W1 W2 W3 W4 f1 f2 f3
No vector 0 0 0 0 X X X
No vector 0 0 0 1 X X X
No vector 0 0 1 0 X X X

1 0 1 0 0 1 1 1 0 1
1 0 0 0 1 0 0 1 0 0
0 1 1 0 1 0 1 0 1 1

No vector 0 1 1 0 X X X
0 1 0 0 1 1 1 0 1 0

No vector 1 0 0 0 X X X
No vector 1 0 0 1 X X X
No vector 1 0 1 0 X X X

1 1 1 1 0 1 1 1 1 1
1 1 0 1 1 0 0 1 1 0
0 0 1 1 1 0 1 0 0 1

No vector 1 1 1 0 X X X
0 0 0 1 1 1 1 0 0 0

Therefore, considering C1, C2, C3, C4 as input[4:1] and the output of each block
(OUT) representing a second stage function, it is possible to have the following Verilog
description.

module Block1_F1(input[4:1] IN, output OUT);
 assign OUT = IN[2]&!IN[3]&!IN[4]|!IN[2]&IN[3]&IN[4];
endmodule

38

module Block1_F2(input[4:1] IN, output OUT);
 assign OUT =
IN[2]&(!IN[1]&IN[4]|IN[1]&!IN[4]&!IN[3])|IN[1]&!IN[2]&IN[4]&IN[3];
endmodule

module Block1_F3(input[4:1] IN, output OUT);
 assign OUT = IN[4]&(IN[2]&!IN[3]|!IN[2]&IN[3]);
endmodule

Since the invalid output vectors of the first stage are assigned to zero logic value for
synthesis purpose, these invalid vectors may produce eventual redundancies in the
synthesized second stage. These redundancies may prevent faults affecting the cells of
the first stage from being observable at the output of the second stage. A straightforward
way to overcome this problem consists in synthesizing the second stage including an
additional signal ‘check’ (see Figure 3.4) that identifies at the stage output, all valid
output vectors of the first stage. An additional input signal called ‘en_check’ (see Figure
3.4) is included in the combinational block to ensure that the logic generating the signal
‘check’ is able to detect an invalid vector. This signal emulates the occurrence of an
invalid vector and exercises the detection capability of the ‘check’ signal. The truth
table of the synthesized ‘check’ logic is given in Table 3.8, and is a function of the first
stage outputs and the external signal ‘en_check’.

NAND2_X2
!(A1*A2)

XNOR2_X2
!((A1*!A2)+(!A1*A2))

A2

A1

IN1

IN2

IN3

W1

W2

W3

W4

OUT f1

OUT f2

OUT f3

A1

A2

A2

A1

A2

A1

C1

C2

C3

C4

XNOR2_X1
!((A1*!A2)+(!A1*A2))

NAND2_X1
!(A1*A2)

en-check check

Figure 3.4: Combinational block with ‘check’ signal.

The combinational block, designed as described above, ensures that all single stuck-
at faults in the cells of the first stage are detected at the output of the second stage.
Additional redundancies may still exist and prevent that some stuck-at faults affecting
the second stage are detected at the combinational block output. However, since the full
fault coverage in the first stage is just enough to prove the correctness of the set of cells
in the library under verification, no other action is taken here to eliminate the remaining
redundancies in the second stage.

39

Table 3.8: Truth table used to synthesize the second stage of a combinational block.

W1 W2 W3 W4 f1 f2 f3 en-check
0 0 0 0 X X X 0
0 0 0 1 X X X 0
0 0 1 0 X X X 0
0 0 1 1 1 0 1 1
0 1 0 0 1 0 0 1
0 1 0 1 0 1 1 1
0 1 1 0 X X X 0
0 1 1 1 0 1 0 1
1 0 0 0 X X X 0
1 0 0 1 X X X 0
1 0 1 0 X X X 0
1 0 1 1 1 1 1 1
1 1 0 0 1 1 0 1
1 1 0 1 0 0 1 1
1 1 1 0 X X X 0
1 1 1 1 0 0 0 1

Using a library with 64 combinational cells, eight combinational blocks were
automatically generated to build a verification circuit that embedded all library cells in
the first stage of blocks. Fault coverage analysis was performed in each block with and
without the ‘check’ signal using Flextest Mentor tool. Results show that redundant
faults presented in the first stage of some blocks were eliminated with the addition of
the ‘check’ signal as described in the following reports.

Block2 – first stage

CMD> report faults /bBlock2/C1 /bBlock2/C2 /bBlock2/C3 /bBlock2/C4
/bBlock2/C5 /bBlock2/C6 /bBlock2/C7 /bBlock2/C8 /bBlock2/C9 -class
REDUNDANT
 1 RE /bBlock2/C6/and2/IN0
 1 RE /bBlock2/C6/or1/OUT
 1 RE /bBlock2/C6/or1/IN0
 1 RE /bBlock2/C6/or1/IN1

Block2 – first stage (with checker)

CMD> report faults /bBlock2/C1 /bBlock2/C2 /bBlock2/C3 /bBlock2/C5
/bBlock2/C4 /bBlock2/C6 /bBlock2/C7 /bBlock2/C8 /bBlock2/C9 -class
REDUNDANT
// WARNING: No faults reported

Block5 – first stage

CMD> report faults /bBlock5/C1 /bBlock5/C2 /bBlock5/C3 /bBlock5/C4
/bBlock5/C5 /bBlock5/C6 /bBlock5/C7 /bBlock5/C8 /bBlock5/C9
/bBlock5/C10 -class REDUNDANT
 0 RE /bBlock5/C2/or3/IN1

40

Block5 – first stage (with checker)

CMD> report faults /bBlock5/C1 /bBlock5/C2 /bBlock5/C3 /bBlock5/C4
/bBlock5/C5 /bBlock5/C6 /bBlock5/C7 /bBlock5/C8 /bBlock5/C9
/bBlock5/C10 -class REDUNDANT
// WARNING: No faults reported

Block8 – first stage

CMD> report faults /bBlock8/C1 /bBlock8/C2 /bBlock8/C3 /bBlock8/C4
/bBlock8/C5 /bBlock8/C6 /bBlock8/C7 /bBlock8/C8 /bBlock8/C9
/bBlock8/C10 /bBlock8/C11 -class REDUNDANT
 0 RE /bBlock8/C5/or3/IN0

Block8 – first stage (with checker)

CMD> report faults /bBlock8/C1 /bBlock8/C2 /bBlock8/C3 /bBlock8/C4
/bBlock8/C5 /bBlock8/C6 /bBlock8/C7 /bBlock8/C8 /bBlock8/C9
/bBlock8/C10 /bBlock8/C11 -class REDUNDANT
// WARNING: No faults reported

3.3 Combinational blocks stage analysis

3.3.1 First stage analysis

Blocks may be constructed using N, P or NP combination sets on the cell input
combinations (AGOSTA, 2007). Each of these configurations generates different
amount of blocks with distinct sizes.

A library with 64 cells up to 4 inputs was used to test the software with (a) NP, (b) N
and (c) P combination sets. The blocks were constructed without restriction, i.e. testing
all the block and cell combinations. The tool tries to use each library cell once (new
cells), but sometimes it is necessary to use a cell already used (reused cells) in order to
complete the last block(s). If a chosen cell does not produce at least one different output
signal combination, this cell is discarded (discarded cells) and another is chosen to test.

(a) Cell combinations: NP

Table 3.9 shows the number of NP combinations used to test a cell when the block
presents 4 inputs and cells have 2, 3 or 4 inputs.

Table 3.9: Number of combinations tested using NP configuration.

block inputs cell inputs Block combs Cell combs Total combs
4 2 6 8 48
4 3 4 48 192
4 4 1 384 384

Table 3.10 reports the structure of the first stage of each combinational block
generated using NP combinations. It is possible to observe the total cells, new cells,
reused cells, discarded cells and build time of each block first stage.

41

Table 3.10: NP configuration report for the set of 64 cells.

NP
 total cells new cells reused cells discarded cells build time (ms)

block1 5 5 0 0 121
block2 9 9 0 0 300
block3 8 8 0 0 150
block4 8 8 0 0 130
block5 10 10 0 0 261
block6 8 8 0 0 120
block7 8 8 0 0 160
block8 11 8 3 0 130
total 67 64 3 0 1372

(b) Cell combinations: N

Table 3.11 shows the number of N combinations used to test a cell when the block
presents 4 inputs and cells have 2, 3 or 4 inputs.

Table 3.11: Number of combinations tested using N configuration.

block inputs cell inputs Block combs Cell combs Total combs
4 2 6 4 24
4 3 4 8 32
4 4 1 16 16

Table 3.12 reports the structure of the first stage of each combinational block
generated using N combinations. It is possible to observe the total cells, new cells,
reused cells, discarded cells and build time of each block first stage.

Table 3.12: N configuration report for the set of 64 cells.

N
 total cells new cells reused cells discarded cells build time (ms)

block1 5 5 0 0 100
block2 8 8 0 0 50
block3 9 9 0 0 40
block4 8 8 0 0 30
block5 10 10 0 0 40
block6 8 8 0 0 30
block7 9 9 0 0 20
block8 10 7 3 0 31
total 67 64 3 0 341

(c) Cell combinations: P

Table 3.13 shows the number of P combinations used to test a cell when the block
presents 4 inputs and cells have 2, 3 or 4 inputs.

42

Table 3.13: Number of combinations tested using P configuration.

block inputs cell inputs Block combs Cell combs Total combs
4 2 6 2 12
4 3 4 6 24
4 4 1 24 24

Table 3.14 reports the structure of the first stage of each combinational block
generated using P combinations. It is possible to observe the total cells, new cells,
reused cells, discarded cells and build time of each block first stage.

Table 3.14: P configuration report for the set of 64 cells.

P
 total cells new cells reused cells discarded cells build time (ms)

block1 7 7 0 0 60
block2 11 11 0 4 70
block3 10 10 0 7 80
block4 9 9 0 4 30
block5 12 12 0 4 80
block6 10 7 3 8 20
block7 11 4 7 10 40
block8 11 2 9 5 40
block9 12 1 11 3 30
block10 11 1 10 5 30
total 104 64 40 50 480

Figure 3.5 shows the total number of cells used in the first stage of the
combinational blocks using NP, N and P set of combinations.

Total Cells

0

50

100

150

NP N P

combination set

to
ta

l
c
e
ll
s

total cells

Figure 3.5: Total cells / combination set.

43

Figure 3.6 shows the number of reused cells in the first stage of the combinational
blocks using NP, N and P classes.

Reused Cells

0

10

20

30

40

50

NP N P

combination set

c
e
ll
s

reused cells

Figure 3.6: Reused cells / combination set.

Figure 3.7 shows the distribution of cells in the first stages of the combinational
blocks using NP, N and P set of combinations.

Distribution of Cells in Blocks

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10

blocks

c
e
ll
s

NP

N

P

Figure 3.7: Distribution of cells in blocks.

Figure 3.8 shows the build time of the first stages of the combinational blocks using
NP, N and P set of combinations.

44

Build Time

0

500

1000

1500

NP N P

combination set

ti
m

e
 (
m

s
)

build time

Figure 3.8: Build time / combination set.

Tests show the following results:

- NP set has the biggest number of combinations to test, following by the N set and
P set (Tables 3.9, 3.11 and 3.13).

- NP and N set generate similar structures of blocks, while P set uses more cells
(Figure 3.5), generates more and bigger blocks (Figure 3.7) and reuses more cells
(Figure 3.6) and also discards more tested cells (Table 3.14).

-NP set presents the greatest blocks total build time (Figure 3.8).

Other test was performed using the library 44-6.genlib with 208 cells up to 7 (Figure
3.9), 92 cells up to 6 (Figure 3.10) and 38 cells up to 5 (Figure 3.11) inputs, for all three
sets of combinations. Figures 3.9, 3.10 and 3.11 show the number of blocks and the
amount of cells used in the blocks. Results show that NP equivalence usually generates
more blocks with similar sizes and fewer cells per block than N and P equivalencies.

In Figure 3.12 it is possible to observe that the total cells used in the first stage of the
blocks is less sensitive to the combination set used.

5

10

15

20

25

30

35

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15

#
 C

e
lls

NP

N

P

Figure 3.9: Number of cells per block (first stage) for the combination set using the

library 44-6.genlib with 208 cells up to 7 inputs.

45

5

7

9

11

13

15

17

19

21

23

25

B1 B2 B3 B4 B5 B6 B7 B8

#
 C

e
ll
s

NP

N

P

Figure 3.10: Number of cells per block (first stage) for the combination set using the

library 44-6.genlib with 92 cells up to 6 inputs.

8

9

10

11

12

13

14

15

B1 B2 B3 B4

#
 C

e
ll
s

NP

N

P

 Figure 3.11: Number of cells per block (first stage) for the combination set using the

library 44-6.genlib with 38 cells up to 5 inputs.

0

50

100

150

200

250

7in 6in 5in

#
 C

e
ll
s

NP

N

P

Figure 3.12: Total cells in the first stage considering the combination set for libraries

with different maximum number of cell inputs.

46

3.3.2 Second stage analysis

The maximum number of cell inputs of a given library has a significant impact in
the amount of cells required by the proposed approach. The relation between the cells
used in the second stage, and the cells used on the first stage is used as a measure of
area overhead. Tests have shown that an increase of one cell input duplicates the area
overhead. Figure 3.13 reports the area overhead measurements using libraries with
different cell input size.

0

20

40

60

80

100

120

8in 7in 6in 5in 4in 3in

maximum number of cell inputs

2
n
d
/1

s
t
s
ta

g
e

Figure 3.13: Area overhead measurements: 2nd / 1st stage, versus number of cell inputs.

Another test was performed using the library 44-6.genlib with 16 cells up to 4
(Figure 3.14), and 38 cells up to 5 (Figure 3.15) inputs for NP combination set. In this
test the intention was to show the total number of cells in the first and second stage
when the number of block inputs is increased. In Figures 3.14 and 3.15, it is possible to
verify that in each input block increase, there is a significant increase in the number of
cells used in the second stage.

Block Inputs Number Variation

44-6.genlib (cells up to 4 inputs)

24 21 26 30
105

204

371

615

0

100

200

300

400

500

600

700

4 inputs 5 inputs 6 inputs 7 inputs

block inputs

c
e
ll
s 1st Stage

2nd Stage

Figure 3.14: Number of cells used in the 1st and 2nd stages for different number of block

inputs using library 44-6.genlib (16 cells up to 4 inputs).

47

Block Inputs Number Variation

44-6.genlib (cells up to 5 inputs)

39 39 47 51

311

601

1330

2256

0

500

1000

1500

2000

2500

5 inputs 6 inputs 7 inputs 8 inputs

block inputs

c
e
ll
s 1st Stage

2nd Stage

Figure 3.15: Number of cells used in the 1st and 2nd stages for different number of block

inputs using library 44-6.genlib (38 cells up to 5 inputs).

Other test was performed using the library 44-6.genlib with 92 cells up to 6 (Figure
3.16), and 208 cells up to 7 (Figure 3.17) inputs, for all three set of combinations.
Figures 3.16 and 3.17 show the number of blocks and the amount of cells used in the
blocks. Results show that NP equivalence usually generates more blocks with similar
sizes and fewer cells per block than N and P equivalencies. Also NP equivalence uses
less total cells in second stage than N and P equivalencies. These same results have
been obtained in the first stage analysis.

6in_genlib

Cells Second Stage

0

100

200

300

400

500

B1 B2 B3 B4 B5 B6 B7 B8

block

#
 c

e
ll
s NP

N

P

Figure 3.16: Number of cells per block (second stage) for the combination set using the

library 44-6.genlib with 92 cells up to 6 inputs.

48

7in_genlib

Cells Second Stage

0

200

400

600

800

1000

1200

1400

1600

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15

block

#
 c

e
ll
s NP

N

P

Figure 3.17: Number of cells per block (second stage) for the combination set using the

library 44-6.genlib with 208 cells up to 7 inputs.

3.4 Last considerations

Some specifications were used in the construction of the test circuit. For instance,
the number of inputs is the same of the block outputs. This specification allows the
blocks and also the testbench circuit to present the property of the reversible logic
(SHENDE, 2002), so they can be called as a reversible circuit. Reversible circuits
(gates) have the same number of inputs and outputs and have one-to-one mappings
between input and output vectors; thus the vector of the input states can be uniquely
reconstructed from the vector of the output states (PERKOWSKI, 2001).

Besides, the sequence of the block output signals should be the same as the block
input sequence and consequently, the sequence of the output signals in the last cascaded
block should be the same as the input sequence in the first block.

In the second stage of an n-input block with m cells, the 2m-2n vectors that are not
supposed to happen were assigned to zero logic value for synthesis purpose

Since the combinational blocks, which are the basic structures of the proposed test
circuit were described, in the next chapter the test circuit architecture and its operation
modes will be presented and discussed.

49

4 CIRCUIT ARCHITECTURE AND OPERATION
MODES

In this chapter the architecture of the test circuit and its operation modes are
described. The architecture was described in Verilog and verified with ModelSim
Mentor tool and HSPICE Synopsys tool.

As mentioned previously, the test circuit must verify and validate a cell library. In
order to do that, the test circuit must also guarantee its correctness, testing itself, i.e., the
circuit needs to be auto testable. It also means that the generation of test vectors must be
simplified. In order to obtain an auto testable circuit, the faults have to be verified and
identified. These faults may be either functional or temporal faults.

4.1 Circuit Architecture

As described in previous chapter, the combinational blocks guarantee the functional
validation of the entire set of logic cells since each cell has been placed at least once in
the first stage of such blocks, and the 2n input combinations are applied at n inputs of
each block. Once the block outputs reproduce the same input signal, they can be
arranged in different ways creating the test circuit architecture. Long paths can be built,
for instance, by cascading the combinational blocks in chain configuration using the
output signals from one circuit as inputs of the subsequent block. Doing so, the primary
chain input values should be observed at the chain output nodes in the case of fault free
behavior. Figure 4.1 shows the combinational blocks in chain and its simulation can be
observed in Figure 4.2.

Figure 4.1: Combination blocks in chain.

50

Figure 4.2: Simulation of combination blocks in chain.

The ‘check’ signal can also be cascaded with the block signals as shown in Figure
4.3. Once the ‘check’ is able in the beginning of the chain, invalid vectors could be
detected.

Figure 4.3: Combination blocks in chain with ‘check signal’.

In order to reduce the use of input pins, it means provide a sequence of test vector
with minimum external intervention, the signals at the end of the chain are reconnected
to primary inputs in a finite state machine (ring) configuration. In this configuration a
register barrier, composed by D-type flip-flops, is added to the feedback path to avoid
racing. The configuration is represented in Figure 4.4.

Figure 4.4: Combination blocks with flip-flop barrier.

However, since the feedback signals should be modified to provide the chain input
variation, an adder is used to increment the binary vector and make the finite state
machine works as a counter as shown in Figure 4.5. It can perform sums by ‘K’

51

allowing thus other than just a counting 1-by-1 operation, providing different vector
transitions that are important to check some charging and discharging conditions in
internal nodes intra- and inter-cells.

Figure 4.5: Combination blocks in finite state machine configuration.

4.2 Operation Modes

The basic architecture of the testbench circuit is slightly modified to allow different
operating modes which provide distinct data evaluation. Notice that the aim of this
circuit is to validate the full functionality of the entire set of cells, as well as evaluate the
accuracy of the electrical characterization values of each cell (timing and power
dissipation data) through the correlation of the static timing analysis (STA) and power
analysis with some experimental measures. The following circuit operation modes and
their benefits are discussed in this section.

• synchronous mode;
• asynchronous mode;
• oscillation BIST mode;
• diagnosis mode.

4.2.1 Synchronous Mode

In the synchronous mode, the barrier register is controlled by an external clock
signal. The adder is used to increment the vector in the ring, acting as a synchronous
counter +K. The correct behavior of the counter demonstrates the correct functionality
of the combinational blocks and, consequently, of the whole set of cells under testing.

The maximum operation frequency for the circuit, which indicates the worst case
path delay, is obtained by decreasing the clock period until the ring counter gives an
erroneous result. Such critical path delay is probably different by changing the
increment value K. Figure 4.5 shows the synchronous operation mode and its simulation
is presented in Figure 4.6.

52

Figure 4.6: Simulation of synchronous mode.

The main contribution of the synchronous mode is the evaluation of the power
dissipation, including its dynamic and static components. The external control of the
clock signal imposes the frequency operation for switching, and the dynamic power
consumption can be related to that. The static power, on the other hand, could be
measured at low frequencies as illustrated in Figure 4.7 and simulated in Figure 4.8. At
each new input state in the chain the static consumption should be obtained since such
power dissipation component depends strongly on the steady state. The extracted
information should then be correlated to design power analysis data, obtained
considering the electrical simulation values from the cell characterization process.

Figure 4.7: Power consumption in synchronous mode.

53

i(vdd)

CK

Figure 4.8: Power consumption in the synchronous mode simulation.

4.2.2 Asynchronous Mode

In this architecture the concept of self-timed ring (WILLIAMS, 1992) is applied. If
an application uses a pipeline to solve an iterative problem requiring a sequence of
internal computation operations, then the pipeline can take input from its own output. A
looped self-timed pipeline forms a self-timed ring. If a given problem is fully specified
by its initial operands, then the ring’s performance is not limited by a need for
additional external data inputs during its iterations. Since the ring is composed of self-
timed pipeline stages, which communicate locally, its performance is also independent
of an external clock.

Thus, in the asynchronous mode, or self-timed ring, the clock signal in the barrier
register is provided by the comparator that checks whether or not the input vector
In(n..1) has already propagated to the end of the chain Out(n..1). When the same values
applied to the circuit inputs get to the end of the chain, the comparator switches from ‘0’
to ‘1’, clocking the register. The new data is retrieved in the register and passed to the
adder. The adder increments the register output and applies the new vector to the chain.
At this moment, since In(n..1) is no longer equals to Out(n..1), the comparator output is
back to ‘0’ and remains at this state until the new vector propagates through the whole
chain of combinational blocks. Figure 4.9 shows the asynchronous operation mode. In
Figure 4.10 it is possible to observe when the Ctrl_CK changes from ‘0’ to ‘1’, i.e. from
the synchronous to the asynchronous mode.

54

Figure 4.9: Asynchronous mode.

CK

In(1)

In(2)

In(3)

In(4)

i(vdd)

Ctrl_CK

Figure 4.10: Simulation of synchronous and asynchronous mode.

At this operation mode, just an input signal transition is enough to start the self-
timed counting, and the right operation keeps the circuit running. It means, for instance,
the starting of the self-timed operation is obtained by modifying an external adder input
bit ‘Ki’. In case an error occurs, the data at the end of the chain will not be equal to the
data at the circuit inputs, the comparator will not switch to ‘1’ and the self-timed
execution will stop.

The ‘check’ signal from the last block can also be considered in the comparator
evaluation. If an error is detected through the chain, ‘check’ is set to ‘0’, propagates and

55

disables the comparator, freezing the verification circuit in the erroneous state. The self-
checking property of the asynchronous mode makes it appropriate for functional cell
verification. Clock signal monitoring is used to check the right logic operation. Figure
4.11 illustrates the simulation of a fault occurrence during the asynchronous mode,
demonstrating that the self-timed counting stops when the right signal vector does not
propagate through the combinational block chain.

Figure 4.11: Electrical simulation of fault occurrence during the self-timed counting

(asynchronous mode).

Timing information can be extracted from complete counting +K, which means the
average logic path delay since in a self-timed circuit the speed is as fast as possible
according to the delay of each transition, or the time to finish a calculation. This mode
is not appropriated to analyze power consumption since it is quite impossible to control
the counter state transition since it is not synchronized by a clock signal.

Furthermore, since the calculation is continuous in time, i.e. once a calculation is
finished the new one starts immediately, it is not possible to observe the static
dissipation. On the other hand, the dynamic power consumption can be related to the
complete counter computation but not related to a given frequency like in the
synchronous mode as illustrated in Figure 4.12 and simulated in Figure 4.13.

56

Figure 4.12: Power consumption in asynchronous mode.

CK

In(1)

In(2)

In(3)

In(4)

i(vdd)

Ctrl_CK

Figure 4.13: Power consumption in asynchronous mode simulation.

Notice that a set of circuits working continuously in this mode can be used to verify
library reliability and robustness against degradations coming from continuous
utilization caused by effects like electromigration (CHRISTIANSEN, 2006), NBTI
(KUMAR, 2007), or other causes. NBTI is a degradation of PMOS transistors that
depends on the amount of time the output of the cell is connected to Vdd. These circuits
after being continuously stressed for a period of timing can be used, even if the circuit
does not fail, to test performance degradation caused by NBTI.

4.2.3 Digital OBIST Mode

In high-complexity mixed-signal circuits, there are severe restrictions on
accessibility to the various parts of the CUT and also a serious limitation on the number
of test pins. Several design-for-testability techniques have been developed to increase
observability and controllability, and to minimize the number of test pins. The
alternative approach is the BIST (Built-in Self-Test) in which control, test stimulus
generator and measurement circuitry are placed on the same chip and should be able to
present a binary pass or fail result.

In (ARABI, 1997) a vectorless digital-output BIST technique for mixed-signal
integrated circuits based on the oscillation-test methodology (TONER, 1993) (ARABI,
1995) (ARABI, 1996) is proposed. The oscillation-test method for analog and mixed-
signal circuits consists of first partitioning the complex analog circuit into functional
building blocks such as amplifier, op-amp, comparator, filter, and data converter and
then converting each building block to an oscillating circuit. Faults in the initial circuit
related to components (or specifications) that are involved in the oscillator structure

57

manifest themselves as a deviation of the oscillation frequency. Therefore, the loss or
the deviation of the oscillation frequency from its nominal value can be employed to
test the initial circuit. This test method has proven to be very efficient in terms of fault
coverage and area overhead (ARABI,1998) (ARABI, 1996) (ARABI, 1996a).

In (ARABI, 1998) (ARABI, 1998a), a method and associated circuitry for testing
delay and stuck-at faults in digital integrated circuits are presented. The method is an
extension of oscillation-test method already proposed for analog and mixed-signal
circuits to digital systems. However, there is a significant difference between the
application of the oscillation-test to analog and digital circuits due to the different nature
of these circuits.

In order to introduce this test concept for digital circuits, consider a well-known
digital ring oscillator in which oscillations occur when there is an odd number of
inverters in the ring. The oscillation frequency is determined by the sum of 0 to 1 and 1
to 0 propagation delays in the loop. Therefore, the propagation delay through the chain
of inverters constructing the oscillator can be obtained by measuring the oscillation
frequency. Any fault that affects the propagation delay varies the oscillation frequency.
Besides, any stuck-at 0 or 1 fault in the circuit will stop the oscillation frequency. If the
circuit under test was a chain of inverters, it will be possible to test the circuit for all
stuck-at and path delay faults by simply connecting its output to its input and observing
the oscillation frequency.

Considering this special case we introduce the test methodology called Digital
oscillation-test which consists of first sensitizing a path in the digital circuit under test
and then incorporating it into a ring oscillator to test for delay and stuck-at faults. As the
oscillation frequency is determined by the propagation delay through the path, it can be
used to measure the path propagation delay. Any faults that can stop the oscillations,
such as stuck-at faults in the loop, can be detected by observing the oscillation
frequency. This procedure should be exercised for all, or at least critical paths in the
circuit. If the target path is inverting, we establish a non-inverting feedback from its
output to its input to convert it to an oscillator. For a non-inverting path, an inverting
feedback should be established by connecting its output to its input via an inverter. In
other words, we should make sure that there is an odd number of inverters in the loop to
guarantee oscillations. To sensitize a path in the circuit, off-path inputs of all gates
directly involved in the path should be set to non-controlling values by properly setting
the primary inputs.

In synchronous or asynchronous mode, the same binary value of an i-index input is
expected to re-appear at the corresponding i-index output of the verification circuit. This
property is ensured by construction of the combinational blocks. If, while closing the
feedback loop, i-output is directly connected to i-input, i-path is kept in steady state.
But, if i-output is complemented before connecting to i-input (oscillating bit), a positive
feedback will result and i-path will oscillate. According to this principle, in oscillation
mode the feedback loop is closed such that at least one of the primary inputs of the
chain receives the complement of its previous value, as depicted in Figure 4.14. The
MUX used to perform such operation is illustrated in Figure 4.15. The bit inversion
necessary to ensure the oscillation condition is implemented through the inverter placed
at the input of the multiplexing system in Figure 4.16. If a single input-output pair is
considered, just the associated path will oscillate, and all others are kept in steady state.

58

Figure 4.14: Digital OBIST mode.

Figure 4.15: Multiplexer for oscillations BIST mode.

Figure 4.16: Oscillation BIST path.

59

The main contribution of the oscillation BIST mode to the verification process is
that it makes it possible to measure the signal delay propagation through different
logical paths involving different library cells. These delay results are then compared to
those obtained from a previous static timing analysis, which took into account the cell
timing data got from simulations carried out for electrical library characterization. The
simulation of the OBIST mode is presented in Figure 4.17.

Individual cell data obtained from the library characterization only make sense if
timing and power analysis, performed during the IC design flow, provide good
correlation to the actual behavior of fabricated circuits. This correlation may be
investigated for different voltages and temperatures (LASBOUYGUES, 2007).
Dedicated structures, like ring oscillators and cell chains, can be applied to perform this
correlation (HANRIAT, 2001). In this case, however, the number of test structures to
guarantee the validation of the entire set of cells becomes unacceptable. The three
operation modes described previously are such that timing and power of fabricated
circuits can be easily measured and checked against the simulated behavior, also for
power supply variation.

Figure 4.17: Simulation of digital OBIST mode.

Table 4.1 shows the period obtained from a bit oscillation, according to the different
state of the fixed inputs and consequently different logic paths.

60

Table 4.1: Data of the OBIST mode simulation.

Interval (ns) (In(1),In(2),In(3),In(4)) Period (ns)
5-10 (In(1),1,1,1) 1.76
10-15 (In(1),0,1,1) 1.47
15-20 (In(1),1,0,1) 1.35
20-25 (In(1),0,0,1) 1.49
25-30 (In(1),1,1,0) 1.65
30-35 (In(1),0,1,0) 1.59
35-40 (In(1),1,0,0) 1.58
40-45 (In(1),0,0,0) 1.75
45-50 (0,1, In(3),1) 1.74

4.2.4 Diagnosis Mode

Additional multiplexers can be included in the circuit architecture, at no significant
penalty in area, to select part of the combinational chain. Multiplexers at the input of
each combinational block can select the signal from the previous block or directly from
the beginning of the chain, removing the influence of the previous blocks in the ring
loop. Similarly, multiplexers at the output of the blocks can send the data in the middle
of the chain directly to the end of that. Making so, the chain can be easily reduced until
a single block or even no one, allowing in this case the verification of the counter and
the register barrier without the influence of the combinational chain. This mode,
illustrated in Figure 4.18, provides the diagnosis of a faulty block, as well as allows the
circuit operation at different modes, described above, running through part of the entire
chain.

Figure 4.18: Diagnosis mode.

61

Figure 4.19: Diagnosis mode simulation.

Considering the architecture of the Figure 4.18, Figure 4.19 shows the simulation of
the diagnosis mode with ‘In(1)’ as the oscillation bit. When ‘r’ MUX control selects the
signal from the beginning of the chain, it removes the two first blocks and the
oscillation bit presents a smaller period since the chain have been reduced. The period is
even smaller when now the ‘s’ MUX control selects the signal of the CB3 and the
architecture presents only one block. The data of the diagnosis mode simulation can be
observed in Table 4.2.

Table 4.2: Data of the diagnosis mode simulation.

Interval (ns) Active blocks Period (ns)
15-35 complete chain 4.07
35-45 half-chain 2.52
45-60 one-fourth chain 1.64

The multiplexer used to provide the oscillation BIST mode can also be applied to
interrupt the ring configuration, with no additional circuit. This open chain mode allows
the stimuli of the combinational blocks chain directly by external signals. It is useful for
functional verification as well as for power dissipation data extraction.

4.3 Overhead Analysis

The testbench circuit proposed here can be integrated in the same die with an ASIC,
resulting in an area overhead as illustrated in Figure 4.20. Two experiments have been
done to evaluate this overhead.

62

Figure 4.20: Certification circuit for the target ASIC.

In the first experiment, the 64 cells library previously used in this work was targeted.
It is composed of cells with at most 4 inputs. The number of input/output nodes for the
generation of combinational blocks was kept at four to ensure the instantiation of all
library cells. Eight combinational blocks were automatically generated to build a
verification circuit that embedded all library cells in the first stage of blocks. In terms of
circuit complexity, the whole circuit used around 500 cells of the library to implement
the chain of combinational blocks and the additional circuitry to implement the
synchronous, asynchronous and oscillation modes of operation. The circuit ensures the
verification of all the 64 cells in the library, and it uses an average of 7.03 circuit
instances per cell from the library. Note that, in Table I the ‘tv80_core’ benchmark, that
used all 64 cells of the library for its implementation, uses 5,597 cells in total. If the
verification circuit generated here was the test vehicle to verify the library used to
implement the ‘tv80_core’ benchmark, an area overhead of 8% logic cells would result.
However, if ‘wb_conmax_top’ was chosen to validate the library, a circuit with 28,089
instances would be produced and yet not all the cells from the library would be
instantiated.

The second experiment was produced to test a library containing 208 cells, mainly
CMOS complex gates, with up to 7 inputs. This example resulted in a verification
circuit composed of around 8,000 instances, in order to verify the complete set of 208
cells. The number of instances per cell library is around 16, which is still acceptable.
This is a very small circuit to test such a huge library, considering that a cell based
ASIC can easily have more than 100K cell instances.

Therefore, the test circuit brings little silicon overhead to the final design, allowing
the fabrication embedded with the target ASIC, as illustrated in Figure 4.20.

The overhead in terms of I/O pins is described in the following, considering n-bit
combinational blocks. The value ‘n’ represents the maximum number of inputs in a
single cell to be validated. In this case, the final validation circuit presents:

• ‘n’ input signals – K(n..1);
• ‘n’ output signals – Out(n..1);
• one external clock signal;
• one D-type flip-flop reset signal;
• some multiplexer control signals, being that the number can be reduced by using

a decoder circuit since some multiplexers are dependent on each others.

63

Depending on the complexity of the target ASIC, such a pin overhead may prove
unaffordable for certification at the chip level. In this case, considering its little silicon
overhead, the testbech could be though as a certification vehicle at the wafer-level and
be used to validate sets of neighbouring ASICs.

From this analysis, one can conclude that the testbench methodology represents a
low cost solution for validating all soft-cells included in an ASIC, and may act as a
library certification circuit at chip or wafer-level. In terms of EDA vendor interest, the
proposed methodology represents an efficient way to validate soft-libraries by using
very compact circuits.

64

5 CONCLUSIONS

In this work, a test circuit was proposed to validate the full functionality of a set of
logic cells, as well as to verify timing and power consumption behaviors which can be
correlated with design timing and power estimations in order to validate the cell data
provided by electrical characterization.

 The methodology to generate such circuit is based in combinational blocks that
ensure full logic verification of a set of cells. The proposed architecture consists in
building combinational blocks that use all cells from the target library and receive an
input bus, where all signal combinations are provided, producing a sequence of output
vectors also presenting all possible signal combinations, to be then applied to the next
combinational block. Each combinational block is built using two cascaded stages. The
first stage is built with instances of cells placed in one-logic level exercised by all
possible input combinations. The output signals of verified cells are used as inputs to
the second stage, which regenerates the primary inputs. The second stage is composed
of synthesized functions with additional cells instances in a multi-logic level.

A specific CAD tool was developed in Java in order to automate the generation of
combinational blocks. The software presents parameters to configure the cell list sorting
criterion, the number of input/output nodes of the block and the enabling/disabling of
the NP equivalences for the cells in the first stage of the blocks. Tests were performed
with different tool configurations in order to analyze the blocks characteristics using
such configurations.

The tool output files are the descriptions of the first stage of each combinational
block in mapped Verilog and the description of the functions of the second stage of each
combinational block in non-mapped Verilog. The functions of the second stage of the
blocks were mapped through script with RTLCompiler Cadence tool and ABC Berkeley
tool. The Verilog description of the blocks was simulated with ModelSim Mentor tool
and converted to SPICE format also through script. The basic architecture of the test
circuit was slightly modified to allow different operating modes which provided distinct
data evaluation using SPICE electric simulations. Also a fault coverage analysis of the
blocks was performed through DFT Mentor Graphics tools.

The proposed circuit represents an efficient circuit for on-silicon verification and
validation of digital cell libraries. This solution merges well established design and test
concepts. The circuit functionality is verified through synchronous/asynchronous ring
architecture and by applying the oscillation BIST (Built-In Self-Test) technique for
different circuit paths. Also, fault diagnosis can be analyzed with the addition of
multiplexers as shown in the diagnosis mode. The test circuit is easily run with few

65

external interventions and the output verification turns out to be quite simple. Besides
functional cell evaluation, timing and power consumption can also be extracted for
comparisons to high-level estimations performed in the IC design flow, validating the
cell electrical characterization data.

Additionally, since this verification circuit brings little silicon overhead to the final
design, it can be implemented together with the target ASIC acting as a sort of ‘library
certification circuit’. Although software-generated cells are the main target of the
proposed approach, due to the need of verifying logic gates not taped out before their
use in ASIC design, pre-customized standard cell libraries can also benefit from this
approach.

In future works, different configurations for the construction of the combinational
blocks should be evaluated such as searching, sorting, inputs and outputs tested
combinations and so on. Furthermore, different configurations in the architecture should
be considered. For instance, the inputs and outputs of the combinational blocks could
not be necessarily equal. Also some blocks could be parallelized taking into account the
number of block cells inputs.

Diagnosis techniques should be considered in future works for cell error
identification, by applying scan test techniques, for example. Another related study is
the noise analysis in order to diagnose hazards (spikes) in block signals.

66

REFERENCES

ABRAMOVICI, M.; BREUER, M.; FRIEDMAN, A. Digital Systems Testing and
Testable Design. New York, USA: IEEE, 1990.

AGASTEIN, W.; MCFAUL, K.; THEMINS, P. Validating an ASIC Standard Cell
Library. In: ANNUAL IEEE ASIC SEMINAR AND EXHIBIT, 3.,1990., Rochester,
USA. Proceedings… New York, USA: IEEE, 1990. p. 12(6.1)-12(6.5).

AGOSTA, G. et al. A unified approach to canonical form-based Boolean matching. In:
DESIGN AUTOMATION CONFERENCE, DAC, 44., 2007, San Diego, USA.
Proceedings... New York: ACM, 2007. p. 841-846.

ARABI, K. et al. Digital Oscillation-Test Method for Delay and Stuck-at Fault Testing
of Digital Circuits. In: INTERNATIONAL TEST CONFERENCE, ITC, 28., 1998,
Washington, USA. Proceedings… New York: IEEE, 1998. p. 91-100.

ARABI, K. et al. Dynamic digital integrated circuit testing using oscillation-test
method. Electronics Letters, [S.l.], v. 34, n. 8, Apr. 1998.

ARABI, K.; KAMINSKA, B. Oscillation Built-In Self Test (OBIST) Scheme for
Functional and Structural Testing of Analog and Mixed-Signal Integrated Circuits. In:
INTERNATIONAL TEST CONFERENCE, ITC, 27., 1997, Washington, USA.
Proceedings… New York: IEEE, 1997.

ARABI, K.; KAMINSKA, B.; SUNTER, S. Design for testability of integrated
operational amplifiers using oscillation-test strategy. In: INTERNATIONAL
CONFERENCE ON COMPUTER DESIGN, ICCD, 1996, Austin, USA.
Proceedings… New York: IEEE, 1996.

ARABI, K.; KAMINSKA, B. Oscillation-test strategy for analog and mixed-signal
integrated circuits. In: IEEE VLSI TEST SYMPOSIUM, VTS, 14., 1996, Princeton,
USA. Proceedings… New York: IEEE, 1996.

ARABI, K.; B. KAMINSKA. Oscillation-Based Test Strategy (OBTS) for Analog
and Mixed-Signal Circuits. [S.l.: s.n.], Oct. 1995.

BHUSHAN, M. et al. Ring Oscillator Based Technique for Measuring Variability
Statistics. In: IEEE INTERNATIONAL CONFERENCE ON MICROELECTRONIC
TEST STRUCTURES, ICMTS, 20., 2006, Austin Texas. Proceedings… New York:
IEEE, 2006.

BUSHNELL, M. L.; AGRAWAL, V. D. Essentials of Electronic Testing for Digital,
Memory and Mixed-Signal VLSI Circuits. Boston: Kluwer Academic, 2000.

CHEN, W.-K. The VLSI Handbook. Boca Raton, USA: CRC Press, 2000.

67

CHONG, J.W.W.; FORBES, R.G. Design of basic CMOS cell library. IEE
Proceedings G Circuits, Devices and Systems, [S.l.], v. 139, n. 2, p. 256-260, Apr.
1992.

CHRISTIANSEN, C.J. et al. Via-depletion electromigration in copper interconnects.
IEEE Transactions on Device and Materials Reliability, Piscataway, USA, v. 6, n. 2,
p. 163-168, June 2006.

CORREIA, V.; REIS, A. Advanced technology mapping for standard-cell generators.
In: SYMPOSIUM ON INTEGRATED CIRCUITS AND SYSTEM DESIGN, SBCCI,
17., 2004, Porto de Galinhas, Brasil. Proceedings…Los Alamitos: IEEE, 2004. p. 254-
259.

DEDOOD, P.; LEE, B.; ALBERS, D. Optimization of circuit designs using a
continuous spectrum of library cells. [S.l.: s.n.], Sept. 2006. (US Patent 7107551,
May 2003)

GAJSKI, D.D. Silicon Compilation. Reading, USA: Addison-Wesley, 1988.

GAVRILOV, S. et al. Library-less Synthesis for Static CMOS Combinational Logic
Circuits. In: INTERNATIONAL CONFERENCE ON COMPUTER AIDED DESIGN,
ICCAD, 1997, San Jose. Digest of Technical Papers. New York, USA: IEEE, 1997. p.
658-662.

GIZOPOULOS, D. Advances in Electronic Testing: Challenges and Methodologies.
Dordrecht: Springer, 2006.

HANRIAT, S.; SCHOELLKOPF, J.P. Circuit for validating simulation models. [S.l.:
s.n.], June 2001. (US Patent 6253352, July 1998).

INTEL CORPORATION. Moore’s Law, The Future - Technology & Research at
Intel. Available at: <http://www.intel.com/technology/mooreslaw/index.htm>. Visited
on: June 2007.

KAGARIS, D.; HANIOTAKIS, T. A Methodology for Transistor-Efficient Supergate
Design. IEEE Transactions on VLSI Systems, New York, USA, v.15, n.4, p. 488-492,
Apr. 2007.

KUMAR, S.V.; KIM, C.H.; SAPATNEKAR, S.S. NBTI-Aware Synthesis of Digital
Circuits. In: DESIGN AUTOMATION CONFERENCE, DAC, 44., 2007, San Diego,
USA. Proceedings... New York: ACM, 2007. p. 370-375.

LASBOUYGUES, B. et al. Temperature- and Voltage-Aware Timing Analysis. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, New
York, USA, v. 26, n. 4, p. 801-815, Apr. 2007.

LIN, C.J.; REDDY, S.M. On Delay Fault Testing in Logic Circuits. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, New
York, USA, v. 6, n. 5, Sept. 1987.

LIN, R.B.; CHOU, S.H.; TSAI, C.M. Benchmark Circuits Improve the Quality of a
Standard Cell Library. In: ASIA AND SOUTH PACIFIC DESIGN AUTOMATION
CONFERENCE, ASP-DAC, 4., 1999, Wanchai, Hong Kong. Proceedings… New
York: IEEE, 1999. p. 173-176.

68

LONG, S. Test Structures for Propagation Delay Measurements on High-Speed
Integrated Circuits. IEEE Transactions on Electron Devices, New York, USA, v. 31,
n. 8, Aug. 1984.

MARQUES, F.S.; ROSA, L.S.; RIBAS, R.P.; SAPATNEKAR, S.S.; REIS, A.I. DAG
Based Library-Free Technology Mapping. In: ACM GREAT LAKES SYMPOSIUM
ON VLSI, GLSVLSI, 17., 2007, Lago Maggiore, Italy. Proceedings…[S.l.]: ACM,
2007.

MARQUES, F. S. Mapeamento Tecnológico para Bibliotecas Virtuais Baseado em
DAGs. Proposta de Tese. 2007a. (Doutorado em Ciência da Computação) - Instituto de
Informática, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.

MARTINEZ, A.A.; BHANDIA, A.S.; LIE, H.H.W. Benchmark Standards for ASIC
Technology Evaluation. Hewlett-Packard Journal, [S.l.], v. 46, n. 4, Aug. 1995.

MICHELI, G. Synthesis and Optimization of Digital Circuits. New York: McGraw-
Hill, 1994.

MOORE, G.E. Cramming more Components into Integrated Circuits. Electronics,
[S.l.], v. 38, n. 8, Apr. 1965.

PERKOWSKI, M. et al. Regular realization of symmetric functions using reversible
logic. In: EUROMICRO SYMPOSIUM ON DIGITAL SYSTEMS, EURO-DSD, 4.,
2001, Warsaw, Poland. Proceedings…New York: IEEE, 2001. p. 245-252.

RABAEY, J.M.; CHANDRAKASAN. A.; NIKOLIC, B. Digital Integrated Circuits:
A Design Perspective. 2nd ed. Upper Saddle River: Prentice Hall, 2005.

REIS, A.; REIS, R. Covering strategies for library free technology mapping. In:
INTERNATIONAL WORKSHOP LOGIC SYNTHESIS, 1999, Granlibakken, USA.
Workshop Handouts. [S.l.:s.n.], 1999. p.50-53.

REIS, A.; REIS, R.; ROBERT, M. Topological Parameters for Library Free Technology
Mapping. In: SYMPOSIUM ON INTEGRATED CIRCUITS AND SYSTEM DESIGN,
SBCCI, 11., 1998, Rio de Janeiro, Brasil. Proceedings… New York: IEEE, 1998.

ROY, R.; BHATTACHARYA, D.; BOPPANA, V. Transistor-level optimization of
digital designs with flex cells. IEEE Transactions on Computers, New York, v. 38, n.
2, p. 53-61, Feb. 2005.

SCHNEIDER, F.R.; RIBAS, R.P.; SAPATNEKAR, S.S. Exact lower bound for the
number of switches in series to implement a combinational logic cell. In:
INTERNATIONAL CONFERENCE ON COMPUTER DESIGN, ICCD, 23., 2005, San
Jose, USA. Proceedings… New York: IEEE, 2005. p. 357-362.

SCOTT, K.; KEUTZER, K. Improving Cell Libraries for Synthesis. In: IEEE CUSTOM
INTEGRATED CIRCUITS CONFERENCE, CICC, 1994, San Diego, USA.
Proceedings... New York: IEEE, 1994. p. 128-131.

SECHEN, C. Libraries: lifejacket or straitjacket. In: DESIGN AUTOMATION
CONFERENCE, DAC, 40., 2003, Anaheim, USA. Proceedings... New York: ACM,
2003. p. 642-643.

SHENDE, V.V. et al. Reversible logic circuit synthesis. In: INTERNATIONAL
CONFERENCE ON COMPUTER AIDED DESIGN, ICCAD, 2002, San Jose, USA.
Proceedings… New York: ACM, 2002.

69

TONER, M.F.; ROBERTS, G.W. A BIST scheme for an SNR test of a sigma-delta
ADC. In: INTERNATIONAL TEST CONFERENCE, 1993, Baltimore, USA.
Proceedings... New York: IEEE, 1993. p. 805-814.

WANG, L.; WU, C.; WEN, X. VLSI Test Principles and Architectures: Design for
Testability. Amsterdam: Elsevier, 2006.

WESTE, N.H.E.; HARRIS, D. CMOS VLSI Design: A Circuits and Systems
Perspective. 3rd ed. Boston: Pearson/Addison Wesley, 2005.

WILLIAMS, T.E. Analyzing and improving the latency and throughput performance of
self-timed pipelines and rings. In: IEEE INTERNATIONAL SYMPOSIUM ON
CIRCUITS AND SYSTEMS, ISCAS, 1992, San Diego, USA. Proceedings... New
York: IEEE, 1992.

70

APPENDIX A CIRCUITO DE TESTE EM SILÍCIO PARA
VALIDAÇÃO DE BIBLIOTECAS DE CÉLULAS LÓGICAS
GERADAS POR SOFTWARE

Projeto baseado em células é definitivamente a abordagem mais aplicada no
mercado de ASIC atualmente. Essa abordagem de projeto implica o reuso de células de
biblioteca para construir circuitos digitais mais complexos. Como a etapa do
mapeamento tecnológico no fluxo de projeto padrão é baseado nos dados pré-
caracterizados de células pré-projetadas, o espaço do projeto de ASIC e a eficiência do
mesmo tende a ser limitado pela biblioteca em uso. Quanto mais opções de células e
tamanhos disponíveis, maiores são as possibilidades de melhorar o projeto do circuito.
O enriquecimento de uma biblioteca pode ser feito apenas adicionando novos tamanhos,
ou através da adição de novas funções com implementação série/paralelo padrão, ou
mesmo com topologias de transistor especiais. Devido a essa adição de flexibilidade no
espaço de projeto, há um aumento no interesse comercial por abordagens que
consideram geração de células sob demanda. Essas abordagens são também
referenciadas como ‘livre de biblioteca’ ou ‘células geradas por software’. A principal
desvantagem da técnica de mapeamento tecnológico livre de biblioteca é o uso de um
conjunto de células não validadas em silício. Esse fato torna clientes conservadores
relutantes em adotar essa técnica de projeto.

A maneira mais intuitiva de projetar um circuito de teste para o conjunto de células
consiste em instanciar todas as células compartilhando as entradas primárias para
controlabilidade do teste, enquanto os sinais individuais de saída são multiplexados a
fim de reduzir o número de pinos de E/S do circuito, mantendo-se a observabilidade do
teste. Essa estratégia fornece a validação funcional completa de cada porta lógica.
Contudo, informações de tempo são difíceis de ser obtidas através de um circuito com
apenas um nível lógico de profundidade. Adicionalmente, os multiplexadores na saída e
eventual buferização para compensar as altas capacitâncias nos nodos de entrada, bem
como a estrutura de encapsulamento, tornam essa metodologia impraticável para medir
características temporais de uma porta lógica. Esse é um dos motivos para se utilizar
osciladores em anel e estruturas oscilantes de teste na caracterização de atraso e teste,
respectivamente.

Entretanto, o uso extensivo de osciladores em anel pode resultar em um grande
número de instâncias de cada célula a serem validadas, o que seria impraticável para
bibliotecas com um grande número de células. Outra desvantagem dessa abordagem de
validação de bibliotecas é que o teste de confiabilidade (suficiência de contatos,
eletromigração, etc), baseado na contínua aplicação de vetores de entrada e no

71

monitoramento das saídas, requer um equipamento de teste automático para aplicar os
vetores e checar os resultados, aumentando o custo do teste. Outra possibilidade para
validar uma biblioteca seria projetar um circuito de aplicação cuja funcionalidade
pudesse ser facilmente verificada. Contudo, é importante perceber que nem todas as
células disponíveis em uma biblioteca são necessariamente usadas pela ferramenta de
mapeamento tecnológico para um dado circuito.

Esse trabalho propõe uma metodologia de validação para testar em silício um
conjunto de células lógicas geradas automaticamente. Essa metodologia de validação
garante a completa funcionalidade das células e fornece dados de atraso e consumo que
são úteis para validar e ajustar os modelos de dados das células derivados de
caracterização elétrica. Um método para gerar automaticamente o circuito de validação
específico para um dado conjunto de células é também proposto.

A solução apresentada combina um projeto estável com conceitos de teste. Um
bloco combinacional específico é construído para garantir a cobertura da lógica do
conjunto de células a ser validado e fornecer na saída o mesmo vetor aplicado na
entrada, permitindo assim, cascatear longas cadeias com esses blocos. O uso de vários
blocos permite instanciar todas as células. A arquitetura do circuito é então composta
por tal cadeia combinacional em uma configuração de anel, sincronizada por um
barreira de registradores. Diferentes modos de operação são usados para extrair dados
do circuito.

As descrições detalhadas dos blocos combinacionais, da arquitetura e modos de
operação do circuito de teste proposto são apresentadas nas próximas seções.

1. Blocos combinacionais

Os blocos combinacionais são construídos de forma que garantam o completo e
correto comportamento lógico de todas as células. A fim de atingir esta meta, cada
bloco combinacional é composto por dois sub-blocos ou estágios. O primeiro estágio é
constituído pelas células em um único nível de profundidade, todas excitadas pelas
entradas primárias do bloco, como ilustrado na Figura 1. Essa células são conectadas às
entradas do bloco para garantir o exercício lógico. Os sinais de saída das células do
primeiro estágio são então utilizados como entradas para o segundo estágio, o qual
recalcula o mesmo vetor aplicado como entrada primária no primeiro estágio. Como
resultado, as entradas primárias o primeiro estágio são iguais às saídas primárias do
segundo estágio. A interface interna dos dois estágios pode ser vista como um código
intermediário com o qual as entradas primárias são traduzidas e então recuperadas.

Figura 1 – Exemplo de bloco combinacional.

72

Antes de detalhar cada estágio dos blocos combinacionais, os seguintes princípios e
requerimentos são apresentados:

1) todos os blocos apresentam o mesmo número de nodos de entrada e saída, o qual
deve ser igual ou maior do que o maior número de entradas que um célula da biblioteca
possui;

2) vetores de entrada e saída possuem o mesmo valor lógico;

3) cada célula deve ser instanciada pelo menos uma vez no primeiro estágio de um
bloco combinacional;

4) o número total de blocos combinacionais depende do tamanho do conjunto de
células e também da quantidade de células necessárias para compor o primeiro estágio
de cada bloco;

5) o segundo estágio dos blocos combinacionais é sintetizado somente com as
células da biblioteca a ser validada.

Para gerar o primeiro estágio de um bloco, todo o conjunto de células é inicialmente
ordenado de acordo com um dos seguintes critérios: ordem alfabética, número de
entradas da célula, quantidade de 0s e 1s fornecidos pela função lógica ou ordem
randômica. Tendo as células ordenadas, elas são selecionadas uma a uma para criar o
circuito do primeiro estágio. Considerando ‘n’ o número de sinais de entrada e de saída
da interface do bloco, a meta é minimizar o tamanho do código intermediário na
interface dos dois sub-blocos, sendo que o tamanho do código intermediário
corresponde ao número de células usadas no primeiro estágio, se apenas células com
uma única saída forem utilizadas. O processo de minimização deve escolher um número
de células ‘m’ que produz pelo menos 2n diferentes valores na saída de ‘m’ bits do
primeiro estágio. Os 2n valores de código intermediário (distintos valores de m bits) da
saída do primeiro estágio representam o mínimo necessário pra reconstruir as 2n
combinações de entrada nos ‘n’ sinais de saída do segundo estágio do bloco, com uma
correspondência de um para um.

A razão para minimizar o tamanho do código intermediário (representado pelo
número de células do primeiro estágio) é devida ao fato de que a complexidade do
segundo estágio do bloco é proporcional ao tamanho (número de bits) do código
intermediário. Portando, reduzir o número de bits no código intermediário, reduz o
acréscimo de área do segundo estágio. Uma forma de realizar esta minimização é a
seguinte. A primeira célula selecionada fornece um cógido de comprimento de 1 bit,
onde os códigos ‘0’ e ‘1’ são possíveis. A seguir, as células adicionam um bit cada uma
e um certo número de vetores distintos. O critério para selecionar novas células é
escolhê-las de forma a maximizar o número de diferentes vetores intermediários a cada
nova instanciação (que adiciona um bit ao código intermediário). Para aumentar o
número de novos vetores no código intermediário, os sinais de entrada de cada célula
podem ser permutados (P) e/ou negados (N), e a melhor opção é então selecionada.
Células que são incluídas no primeiro estágio de um bloco não serão consideradas na
geração dos blocos subseqüentes. Células que não aumentam o número de vetores
intermediários diferentes não são instanciadas e permanecem para serem utilizadas na
geração do bloco subseqüente. A geração do bloco combinational termina quando todas
as células forem utilizadas. Células já utilizadas podem ser reusadas durante a geração
do último bloco, já que há poucas células não utilizadas ainda disponíveis. Suponha-se

73

uma biblioteca onde células de apenas uma saída estão disponíveis e onde o circuito de
validação é composto pode blocos de n bits (n entradas e n saídas). O número mínimo
de células no primeiro estágio é igual a n, uma vez que o código intermediário não pode
ter um tamanho menor do que o código de entrada/saída do bloco. O pior caso é
composto de no máximo 2n-1 células, já que a primeira célula fornece dois vetores
distintos e as células subseqüentes devem introduzir pelo menos um novo vetor.

O segundo estágio recria os vetores de entrada na saída do bloco a partir dos códigos
intermediários representados por Wi. Os sinais de saída do primeiro estágio são usados
como entradas do segundo estágio, como mostra a Figura 1 e a Tabela I. Como o
tamanho do código intermediário pode ser maior do que o tamanho dos códigos de
entrada e saída, algumas combinações Wi nunca ocorrerão. Dessa forma, ‘don’t cares’
são usados para otimizar a síntese do segundo estágio.

Nesse trabalho, a geração do primeiro estágio de cada bloco foi automatizada pelo
uso de uma ferramenta de CAD específica, desenvolvida na plataforma Java. O segundo
estágio, por sua vez, foi sintetizado com ferramentas padrão de mapeamento
tecnológico.

Tabela I – Tabela-verdade utilizada para sintetizar o segundo estágio do bloco
combinacional ilustrado na Figura 1.

In(3) In(2) In(1) W4 W3 W2 W1 Out(3) Out(2) Out(1)

Sem vetor 0 0 0 0 X X X

Sem vetor 0 0 0 1 X X X

1 0 0 0 0 1 0 1 0 0

1 1 0 0 0 1 1 1 1 0

Sem vetor 0 1 0 0 X X X

Sem vetor 0 1 0 1 X X X

Sem vetor 0 1 1 0 X X X

Sem vetor 0 1 1 1 X X X

Sem vetor 1 0 0 0 X X X

Sem vetor 1 0 0 1 X X X

0 1 1 1 0 1 0 0 1 1

0 0 1 1 0 1 1 0 0 1

1 0 1 1 1 0 0 1 0 1

1 1 1 1 1 0 1 1 1 1

0 1 0 1 1 1 0 0 1 0

0 0 0 1 1 1 1 0 0 0

Utilizando as ferramentas de análise de cobertura de falhas da Mentor Graphics,
verificou-se que todas as falhas simples nas células do primeio estágio são observáveis
na saída do bloco, através de blocos projetados como descrito acima. Algumas falhas no
segundo estágio podem não ser observadas na saída do bloco. Entretanto, já que a
completa cobertura de falhas no primeiro estágio é suficiente para provar que o conjunto
de células da biblioteca sob verificação estão corretas, não há necessidade de garantir
esta propriedade para o segundo estágio.

2. Arquitetura e Modos de Operação

74

A arquitetura global do circuito é apresentada na Figura 2. A fim de fornecer uma
seqüência de vetores de teste com a mínima intervenção externa, os sinais do fim da
cadeia são reconectados às entradas primárias. Uma barreira de registradores, composta
por flip-flops do tipo D, é adicionada. Um somador é utilizado para incrementar o vetor
binário e fazer o circuito atuar como um contador, fornecendo variação na entrada da
cadeia. O somador pode realizar somas de K, permitindo outras operações e não só a
contagem de 1 em 1. Assim, é possível obter diferentes transições de vetores que são
importantes para checar as condições de carga e descarga nos nodos das intra- e inter-
células.

Figura 2 – Diagrama de blocos da arquitetura do circuito proposto.

A arquitetura básica do circuito é ligeiramente modificada, adicionando-se um
comparador e multiplexadores para permitir diferentes modos de operação que
proporcionam formas distintas de avaliação de dados. Os modos de operação síncrono,
assíncrono, BIST oscilante e de diagnóstico são apresentados a seguir.

Modo Síncrono

No modo de operação síncrono, a barreira de registradores é controlada por um sinal
de clock externo, o sinal ‘Ext_CK’ indicado na Figura 2. O somador é usado para
incrementar o vetor no anel, atuando como um contador ‘+K’ síncrono. O
comportamento correto da seqüência de contagem demonstra a correta funcionalidade
dos blocos combinacionais e, conseqüentemente, de todo conjunto de células que está
sendo testado. A máxima freqüência de operação do circuito, que indica o atraso no
caminho crítico, pode ser obtido aumentando-se a freqüência do clock até que o
contador em anel apresente um resultado errôneo. Outro benefício significante do modo
síncrono é a avaliação da dissipação de energia, incluindo suas componentes, dinâmica
e estática. O controle externo do sinal de clock impõe a freqüência de operação e o
consumo dinâmico pode ser relacionado a isto. O consumo estático, por sua vez, pode
ser medido em baixas freqüências ou mesmo usando um clock externo controlado
manualmente. A cada novo estado de entrada na cadeia, o consumo estático pode ser
obtido já que tal componente de dissipação de energia depende fortemente do estado
estável do circuito.

Modo Assíncrono

75

No modo assíncrono ou anel auto-temporizado, o sinal de clock dos flip-flops é
fornecido pelo comparador que verifica se o vetor de entrada In(n..1) já foi ou não
propagado ao final da cadeia Out(n..1) (Figura 2). Quando o mesmo vetor aplicado na
entrada do circuito chega ao final da cadeia, o comparador muda de ‘0’ para ‘1’,
chaveando o registrador. O novo dado é armazenado no registrador e passado para o
somador. O somador incrementa a saída do registrador e aplica o novo vetor na cadeia.
Neste momento, como In(n..1) não é mais igual a Out(n..1), a saída do comparador
volta para ‘0’ e permanece neste estado até o novo vetor propagar-se através da cadeia
completa de blocos combinacionais.

Nesse modo de operação, uma única transição de sinal externa é suficiente para
iniciar o contador auto-temporizado e a operação correta mantém o circuito em
funcionamento. Por exemplo, o começo da operação do circuito pode ser atingida
modificando-se o bit ‘Ki’ da entrada externa do somador. Se uma célula está com
defeito, o dado obtido no final da cadeia não será igual ao dado da entrada da cadeia.
Dessa forma, o comparador não mudará para ‘1’ e execução auto-temporizada
terminará. A propriedade de auto-verificação do modo assíncrono torna-lhe bastante
apropriado para realizar a verificação funcional da célula com a menor intervenção
possível. A correta operação lógica pode ser checada pelo monitoramento do sinal do
clock interno ou de um bit de dado no caminho realimentado.

Informações temporais podem ser extraídas dos ciclos de contagem ‘+K’ completos.
Essa medida representa o atraso médio do caminho lógico, já que em um circuito auto-
temporizado a velocidade é tão alta quanto possível de acordo com o atraso de cada
transição ou o tempo para terminar uma computação. Essas medidas podem ser usadas
para validar os modelos se a simulação é feita no mesmo modo de operação.

Note-se que um conjunto de circuitos funcionando continuamente nesse modo pode
ser usado para checar a confiabilidade e a robustez da biblioteca contra degradações. A
contínua operação sem erros prova a confibilidade das células contra aspectos como
insuficiência de contatos, eletromigração, NBTI (negative bias temperature instability)
e outras causas. NBTI é a degradação dos transistores PMOS que depende de quanto
tempo a saída da célula fica conectada a Vdd. Percebe-se que os circuitos não
necessitam equipamentos caros para serem monitorados, uma vez que defeitos são auto-
monitorados. Mesmo que os circuitos não falhem depois de serem continuamente
estressados por um longo período de tempo, eles podem ser usados para medir a
degradação causada pela NBTI.

Modo BIST oscilante

Nos modos síncrono e assíncrono, o mesmo valor binário de uma entrada i-indexada
é esperado reaparecer na correspondente saída i-indexada do circuito de teste. Essa
propriedade é garantida pela construção dos blocos combinacionais. Se a i-ésima saída é
diretamente conectada à i-ésima entrada, o i-ésimo caminho é mantido fixo em um
estado durante a realimentação. Entretanto, quando a i-ésima saída é invertida antes de
conectá-la à i-ésima entrada, a polaridade lógica negativa ocorre e o i-ésimo caminho
oscila. De acordo com esse princípio, no modo de oscilação a realimentação é conectada
de tal forma que pelo menos uma das entradas primárias da cadeia receba o seu valor
prévio negado, como ilustrado na Figura 3.

A inversão do bit é necessária para garantir que a condição de oscilação que é
implementada através de um inversor inserido na entrada do multiplexador, indicado

76

por um ‘*’ na Figura 2. Esse multiplexador é detalhado na Figura 4. Percebe-se que
somente um bit do vetor Out(n..1) é selecionado de cada vez para fornecer somente a
oscilação de um bit. Os outros bits são fixados aos valores fornecidos na entrada
In(n..1). Isso é, se um para entrada-saída é considerado, somente o caminho associado
oscila enquanto os outros são mantidos no mesmo estado.

Figura 3 – Caminho do BIST em oscilação.

Figura 4 – Multiplexador utilizado no modo BIST em oscilação.

Percebe-se que o caminho interno percorrido pelo sinal em oscilação através da
cadeia de blocos combinacionais dependerá dos valores binários estáticos aos quais as
entradas do primeiro bloco são fixadas. Essa característica permite configurar uma
grande quantidade de diferentes caminhos que oscilam. A principal contribuição do
modo de oscilação para o processo de validação é que ele permite medir a propagação
do sinal de atraso através de diferentes caminhos lógicos que envolvem instâncias de
células distintas. Esses resultados de atraso são então comparados aos obtidos de uma
prévia análise estática de tempo, que leva em conta a caracterização dos dados de tempo
da célula (possivelmente obtidos através de simulações elétricas). Dessa forma é
possível correlacionar os modelos utilizados pelo projeto com o comportamento real em
silício.

Modo de Diagnóstico

A fim de fazer o diagnóstico de defeitos, multiplexadores podem ser adicionados na
arquitetura do circuito, sem penalidade significante em área, para selecionar partes da
cadeia combinacional. Multiplexadores nas entradas de cada bloco combinacional
podem selecionar o sinal do bloco anterior ou diretamente do começo da cadeia,
removendo a influência dos blocos anteriores na realimentação do anel. Da mesma
forma, multiplexadores na saída dos blocos podem mandar o dado do meio da cadeia
diretamente para o fim da mesma. Dessa forma, a cadeia pode ser facilmente reduzida a
um simples bloco ou mesmo a nenhum bloco, permitindo nesse caso a verificação do
contador da barreira de registradores sem influência da cadeia combinacional.

77

Esse modo fornece o diagnóstico de um bloco com falhas e também permite os
diferentes modos de operação do circuito descritos acima funcionarem em partes da
cadeia completa. O diagnóstico também pode ser realizado na configuração de cadeia
aberta, já que o multiplexador usado para fornecer o modo BIST oscilante também pode
ser aplicado para interromper a configuração em anel sem circuito adicional. O modo de
cadeia aberta permite o controle externo dos sinais de estímulo que são aplicados na
cadeia de blocos combinacionais. Esse modo é bastante útil para a identificação de uma
célula defeituosa.

4. Conclusões

Nesse trabalho foi proposto uma metodologia para validar em silício um conjunto de
células geradas automaticamente. Essa validação testa completamente a funcionalidade
das células e fornece meios de comparar os modelos de dados das células derivados da
caracterização elétrica com o desempenho em silício. Um método para automaticamente
gerar os circuitos de validação a partir de um conjunto de células inicial também foi
proposto. O circuito de teste proposto apresenta pequeno acréscimo de área e diferentes
modos de operação.

78

APPENDIX B WORK PRESENTATION

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

APPENDIX C PAPER SUBMITED TO ITC’08

On-Silicon Testbench to Validate Soft Logic Cell Libraries

R. P. Ribas
1
, S. Bavaresco

1
, M. Lubaszewski

1
, A. I. Reis

2

1Instituto de Informática – UFRGS, Av. Bento Gonçalves, 9500, CEP 91501-970, Porto Alegre, Brazil
2Nangate Inc., Menlo Park, CA, 94025, USA

rpribas@inf.ufrgs.br, simoneb@inf.ufrgs.br, luba@ece.ufrgs.br, are@nangate.com

Abstract

This work proposes a validation methodology to
silicon-prove a set of logic cells generated by
software. It also presents an approach for the
automatic design of testbenches to validate the
cells in the set.

1. Introduction

Cell-based design is definitely the most applied
approach in the ASIC market today. This design
approach implies in re-using library cells to
build more complex digital circuits. A typical
standard cell design environment includes
timing and power analysis, as well as automatic
assembling of circuit layout through place and
route tools. In standard cell libraries, three
groups of cells co-exist: (1) inverters/buffers;
(2) combinational cells and (3) sequential ones.
Mainly due to the large number of different
logic functions and driving strength options
needed in typical designs, the largest of the
three aforementioned groups is the set of
combinational logic gates. The handcraft
creation of standard cell libraries demands
skilled designers and long development times,
even when simply dealing with technology
migration for the same set of cells. Each cell
must be carefully designed and characterized for
different input slopes, output loads and design
corners. In practice, the high engineering costs
of these tasks imposes a limitation on the

number of available combinational cells in
libraries.

As the technology mapping step in standard IC
design flow is based on pre-characterized data
of pre-designed cells, the ASIC design space
and efficiency turns to be bounded by the
library in use. The more cells and drive strength
options are available, the larger are the
possibilities to improve the circuit design. The
enrichment of a library can be done by adding
only new drive strengths [1], or through the
addition of new functions with standard
series/parallel implementation [2], or even with
special transistor topologies [3-5]. New
topologies can also be considered for in-place
optimization (IPO), including in-context cell
sizing [6]. The use of extended libraries leads to
an optimized fit for particular applications. Due
to this added flexibility to the design space,
there is an increasing commercial interest for
approaches that consider on-the-fly generation
of cells, like [1, 6-9]. These approaches are
sometimes referred as library-free or as soft-cell
or liquid library based.

The main drawback of library-free technology
mapping technique is the use of such soft IPs or
non-silicon-validated set of cells in the ASIC
design. This fact makes conservative customers
reluctant in adopting this design technique.

This work proposes a validation methodology to
silicon-prove the set of automatically designed

102

logic cells. This validation methodology covers
the full functionality of the cells and provides
timing and power consumption data useful to
validate and fine tune cell data models derived
from electrical characterization. Notice that, the
circuit speed and consumption estimation tasks,
during the design flow, are performed based on
cell data from electrical characterization,
available in a LibertyTM file, for instance.
Indeed, the on-silicon testbench for soft
libraries, proposed herein, allows checking
whether data used in the performance estimation
during the circuit design flow produces good
prediction of silicon behavior. A method to
automatically generate the validation circuit
specific for a given initial set of cells is also
proposed.
The remainder of this paper is organized as
follows. In Section 2, the motivations for this
work are further discussed. The way the library
cells are used to build the basic combinational
blocks of the testbench is described in Section
3. In Section 4, the circuit architecture is then
presented and its operating modes are shown
pointing out their goals. The overhead analysis
is given in Section 5, and conclusions are
outlined in Section 6.

2. Problem Statement and Goal of
Work

ASIC designs are usually bounded by the
standard cell library in use. For this reason,
there are a number of commercial and academic
efforts that take advantage of on-the-fly creation
of cells. The method proposed by DeDood et al.
[1] creates new drive strengths for existing cells
(from a starting cell library), in order to save
power and reduce delay in a target ASIC. A
method that creates dedicated complex cells to
reduce delay in applications needing high-speed
ASICs is introduced in [6, 8]. Jones et al. [9]
proposed a method to optimize a design by
changing transistor sizes in the available cells
and then redesigns the original library to
accommodate these new cells. For advanced
technology nodes, research initiatives by
leading semiconductor companies are
considering the importance of the target library
as part of the design space [10]. The use of
more complex gates can reduce the overall
number of transistors and provide layouts that
are less dense in transistors/mm2 but denser in
terms of logic/mm2. This idea has been pointed
as part of a regular layout solution for process
variability [11]. The use of such complex gates
can also bring advantage to the regular ASIC
world. Indeed, several methods to generate
efficient transistor networks [3, 5, 7, 11] and to

perform technology mapping targeting complex
gates [2, 4, 6, 8] have been recently proposed.

Conservative customers feel uncomfortable with
the idea of using a ‘non silicon-proven’ library.
The silicon proof should address two main
issues. First, it has to guarantee that the models
used during the synthesis flow represent
adequately the final silicon performance.
Second, it has to prove that the cells are reliable
under the expected working conditions. This
aspect guarantees that the cells present a
sufficient number of contacts, do not have latch-
up problems, and so on. Notice that this proof
has to be done properly by library providers
every time a new technology node is available.

The most straightforward way to design a test
circuit for a set of cells consists in instantiating
all cells using shared primary inputs (for test
controllability), while individual output signals
could be multiplexed in order to reduce the
number of circuit I/O pins, while maintaining
test observability. This strategy can obviously
provide full functionality validation of each
logic gate. However, cell timing information is
somewhat difficult to obtain through a circuit
with only one-level of logic depth. Additionally,
the multiplexers at the output and eventual
buffering to compensate the high capacitance on
input nodes, as well as the packaging structure,
make this approach impractical to measure the
timing characteristics of a single gate. That is
one of the reason for using ring oscillators and
oscillation test structures in delay
characterization and testing, respectively [12,
13].

However, the extensive use of ring oscillators
would result into a large number of instances of
each cell to be validated, which is impractical
for libraries with a large number of cells.
Another drawback of this library validation
approach is that the test for reliability
(sufficiency of contacts, electromigration, etc),
based on the continuous application of input
vectors and the monitoring of the outputs,
requires an automatic test equipment (ATE) to
apply the vectors and check the results,
increasing the test cost. Therefore, an approach
that can make these tests viable without
additional ATE is strongly desirable. One
possibility for this would be to design an
application circuit whose functionality could be
easily verified. However, it is important to
notice that not all the cells available in a library
are necessarily used by the technology mapping
tool for a given circuit. This fact is shown in
Table I, where it is possible to see that out of a
set of 64 available gates not all of them were

103

instantiated after a given circuit was mapped,
with exception of circuit ‘tv80_core’, which
used all the cells. For these reasons, more
efficient testbenches for testing a set of cells
may be proposed.

Table I – Mapped circuits showing the number

of effectively used cells out of a set of 64
different available combinational logic gates.

ISCAS
Benchmarks*

Number of cells
instances

Number of
distinct cells

c7552 1,311 41
i2c_master_top 679 42
Iu 9,203 43
mc_top 6,245 58
tv80_core 5,594 64
wb_conmax_top 28,089 43

* Benchmarks source:
http://www.fm.vslib.cz/~kes/asic/iscas, last access on
Sep.20th, 2007.

An efficient approach to generate a testbench
for testing a set of new cells, possibly created
on-the-fly, should cover the following aspects:

1) to ensure complete functionality test
for the instantiated cells;

2) to ensure coverage (instantiation) of all
the cells to be tested;

3) to allow the verification of the
accuracy of the models used in the
design process;

4) to provide means to perform long and
medium term reliability tests (needed
for electromigration, sufficiency of
contacts, NBTI degradation, etc)
without additional equipment;

5) to have a feasible number of cell
instances compared to the set of cells
to be tested.

The goal of this work is to propose a
methodology to automatically generate
testbench circuits for on-silicon soft-library
validation meeting the aspects above. To the
best of our knowledge, previous approaches fail
to cope efficiently with this goal.

In this work, a straightforward and efficient
testbench methodology is proposed aiming the
validation of an entire set of soft-cells in terms
of logic and electrical behavior. The presented
solution merges well-established design and test
concepts to cope with the five aspects
mentioned above. A specific combinational
block is built to guarantee the logic coverage
(aspect 1) of a sub-set of the cells to be
validated, and to provide at the output the same
bit vector received at its inputs, allowing thus to
cascade long chains with these blocks. The use
of several blocks allows to instantiate all the

cells (aspect 2). The circuit architecture is then
composed of such combinational chain in a ring
configuration, synchronized by a register
barrier. Both synchronous and asynchronous
operating modes provide different features for
the proposed goals. The ring configuration
allows verifying the accuracy of the models, by
comparing with the predicted circuit behavior
(aspect 3). The oscillation BIST technique is
also included in the circuit operation for a wide
range of different paths [13], and allows
medium and long term tests (aspect 4). In case
of an eventual error, the circuit diagnostic is
facilitated through an arrangement of
multiplexers. Finally, as the ring oscillator is
composed of a variety of cells, the number of
instances is not very expensive compared to the
initial set of cells (aspect 5), as shown in the
overhead section.

From a business model point-of-view, the
methodology presented herein is useful for the
soft-library vendor and to the ASIC designer
client. For the vendor, it is quite important to
dispose of a physical testbench in order to
guarantee the correctness of its EDA
environment, as well as to verify the quality of
the generated cells in terms of performance and
reliability, including design-for-
manufacturability issues [14]. This is essential
for the continuous improvement of the library
generation CAD tool. For the ASIC designer, a
circuit that validates all distinct cells created on-
the-fly to be used in a specific circuit provides
means to exclude that errors on silicon due to
the cell generators. If this test circuit is
fabricated in the same die of the ASIC, it can
act as a kind of ‘certification circuit’ for the
soft-library, in different design corners and
operating conditions. In this case, the overhead
in terms of area and I/O pins is a compromise in
fabricating together the test circuit and the
ASIC, and the low cost approach presented here
is very attractive.

The detailed descriptions of the combinational
blocks, overall architecture and operation modes
of the testbench are given in next sections.

3. Testbench: the Combinational
Blocks

The combinational blocks are built in a way to
guarantee the complete and correct logic
behavior of all cells included in the soft-library
under test. To attain this, each combinational
block is composed by two sub-blocks or stages.
The first one is built by cells in a single logic

104

depth level, all of them excited by the (shared)
primary inputs. This is similar to the
straightforward arrangement to allow test
controllability and observability, discussed in
the previous section, but now including only a
small sub-set of cells. These cells, in the first
stage, are connected to the block inputs for full
logic exercising. The output signals of the cells
in the first stage are then used as inputs to the
second stage, which recomputes the same bit
vector applied at the first sub-block primary
inputs. As a result, the primary inputs of the
first sub-block are equal to the primary outputs
of the second sub-block. The internal interface
of the two sub-blocks can be viewed as an
intermediate code for which primary inputs are
translated and then recovered.

Before detailing each stage of the combinational
blocks, the following principles and
requirements might be pointed out:
1) all blocks present the same number of input
and output nodes, which must be equal or
higher than the biggest number of inputs in a
single cell;
2) input and output vectors have equal steady
state logic values.
3) every cell has to be instantiated at least
once in the first stage of a combinational block;
4) the total number of combinational blocks
depend on the size of the cells set and also the
quantity of cells necessary to compose the first
stage of each block;
5) the second stage of the combinational
blocks is synthesized taking into account only
the cells present in the soft-library to be
validated.

To generate the first stage of a block, the whole
set of cells is initially ordered according to one
of the following criteria: alphabetic order;
number of cell inputs; quantity (or rate) of 0s
and 1s provided by the logic function; or
random order. Once the cells are ordered, they
are taken one-by-one to create the circuit in this
first stage. Assuming ‘n’ the number of signals
at both the input and output block interface, the
goal is to minimize the length of the internal
intermediate code in the interface of the two
sub-blocks. Notice that the length of the
intermediate code corresponds to the number of
cells used in the first stage, if single output cells
are assumed. The minimization procedure has to
choose a number of cells (‘m’) that produces at
least 2n different values at the m-bit output of
the first stage. The 2n different intermediate
code values (distinct m-bit values) at the output
of the first stage represent the minimum
required to reconstruct the original 2n input
combinations at the n-output signals at the

second stage of the block, with a one-to-one
correspondence.

The reason to minimize the length of the
intermediate code (represented by the number of
cells in the first stage) is that the complexity of
the second stage of the block is proportional to
the size (number of bits) of the intermediate
code. Thus, reducing the number of bits in the
intermediate code reduces the area overhead of
the second stage. One way to perform this
minimization is the following. The first selected
cell will give a 1-bit length code where the
codes ‘0’ and ‘1’are possible. Next, cells will
add one bit each and a given number of distinct
vectors. The criterion to select new cells it to
choose them to maximize the number of
different intermediate vectors at each new
instantiation (that adds one bit to the
intermediate code). To increase the number of
new vectors in the intermediate code, the input
signals of each cell can be permutated (P)
and/or negated (N), and the best option is then
selected. Cells that are included in a firsts stage
sub-block will not be considered in the
generation of subsequent ones. Cells that do not
increase the number of different intermediate
vectors are not instantiated and remain to be
used by a subsequent first stage sub-block
generation. The combinational block generation
stops when there is no unused cell remaining.
Already used cells can be reused during the
generation of the last block, as few options of
unused cells are available. Consider a soft-
library where only single-output cells are
available and where the validation circuit is
composed of n-bit blocks (n-inputs and n-
outputs). The minimum number of cells at the
first stage is equal to ‘n’, as the intermediate
code cannot have a smaller length than the
input/output codes for the block. The worst case
is composed by maximum 2n-1 cells, as the first
cell gives two distinct vectors and subsequent
cells are required to introduce at least one new
vector.

To illustrate the construction of the first stage,
consider a 3-input combinational block, as
shown in Fig. 1. The intermediate code
composed of ‘Wi’ bits requires 23 distinct
vectors, necessary to rebuild the 3-bits input
vectors at the 3-bits block outputs. This
requirement was not attained with the three first
selected cells, as illustrated in Table II (second
column). Thus, at least one additional cell C4
must be added to the first stage. The third and
the fourth columns in Table II show two
alternative C4 input connections where only one
provides the 23 necessary distinct vectors. At

105

this point, the first stage of this combinational
block is concluded.

Figure 1 - 3-bits combinational block: example.

The second stage re-creates the input vectors at
the output of the block, from the intermediate
codes represented at ‘Wi’. The output signals of
the first stage are used as inputs to the second
stage, as shown in Table III. Since the length of
the intermediate code can be larger than the
length of I/O codes, some ‘Wi’ combinations
will never occur. This way, don’t cares are used
to optimize the synthesis of the second stage.

In this work, the generation of the first stage of
each block was automated by using a specific
CAD tool, developed in Java platform. The
second stage, in turn, is synthesized with
standard technology mapping engines.

The construction of the combinational blocks
has been exercised for different set of cells in
order to evaluate the complexity (size) of the
circuits generated with this methodology. Fig. 2
shows the block building considering a set of
208 cells, with up to 7 inputs, obtained from the
‘genlib_44-6’ library [15]. Only logically
distinct functions are included in this set. The
possibility of applying permutations (P) and
negations (N), or both (NP), at the inputs during
the cell instantiation was also evaluated.

In Fig. 2a, the X-axis represents the number of
blocks generated and the Y-axis shows the
number of cells in the first stage of each block,
which is equivalent to the length of the
intermediate code. As it can be observed, the
possibility to consider the permutation and
negation (NP) of the cell inputs resulted in
smaller circuits at the first stage. Consequently,
more blocks are necessary to instantiate all
cells. The total number of instances with P-
variants was 10,538 (232 for the first stages +
10,306 for second stages), while it decreased to
8,074 (214 + 7,860) with N-variants and to
7,680 (208 + 7472) with NP-variants. The
conclusion is that the extra flexibility given by

the use of NP-variants allows obtaining a more
efficient intermediate code, which minimizes
the overall number of instances. Additionally,
no cells were repeated to conclude the last block
in the NP-version; while in the N- and P-
versions, 6 and 24 cells were re-used to finish
this task, respectively.

106

Table II – Construction of the first stage of the combinational block in Fig. 1.

Inputs 3 cells
C4

A1(IN(1)),A2(not_IN(2))

C4

A1(IN0),A2(not_IN(2))

IN(3) IN(2) IN(1) W3 W2 W1 W4 W3 W2 W1 W4 W3 W2 W1

0 0 0 1 1 1 1 1 1 1 1 1 1 1

0 0 1 0 1 1 1 0 1 1 1 0 1 1

0 1 0 1 1 0 0 1 1 0 1 1 1 0

0 1 1 0 1 0 1 0 1 0 1 0 1 0

1 0 0 0 1 0 1 0 1 0 0 0 1 0

1 0 1 1 0 0 1 1 0 0 1 1 0 0

1 1 0 0 1 1 0 0 1 1 0 0 1 1

1 1 1 1 0 1 1 1 0 1 1 1 0 1

Table III - Truth table used to synthesize the second stage of the combinational block, illustrated in Fig.1
and Table II.

In(3) In(2) In(1) W4 W3 W2 W1 Out(3) Out(2) Out(1)

No vector 0 0 0 0 X X X
No vector 0 0 0 1 X X X

1 0 0 0 0 1 0 1 0 0
1 1 0 0 0 1 1 1 1 0

No vector 0 1 0 0 X X X
No vector 0 1 0 1 X X X
No vector 0 1 1 0 X X X
No vector 0 1 1 1 X X X
No vector 1 0 0 0 X X X
No vector 1 0 0 1 X X X

0 1 1 1 0 1 0 0 1 1
0 0 1 1 0 1 1 0 0 1
1 0 1 1 1 0 0 1 0 1
1 1 1 1 1 0 1 1 1 1
0 1 0 1 1 1 0 0 1 0
0 0 0 1 1 1 1 0 0 0

107

0

5

10

15

20

25

30

35

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15

#
 c

e
ll
s

NP

N

P

0

200

400

600

800

1000

1200

1400

1600

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15

#
 c

e
ll
s

NP

N

P

(a) (b)

Figure 2 - Number of cells per block according to the permutation (P) and negation (N), or both (NP)
procedures in the logic gate inputs, considering a set of 208 cells, with up to 7 inputs: (a) first and (b)

second stage complexity.

108

The computation time for block generation was
25,087 sec for the NP variants, 15 sec for the N
variants and 432 sec for the P variants, by using a
1.8GHz dual-core processor, with 4Gb SRAM
and 1Mb cache.

The number of cells in the second stage can be
observed in Fig. 2b. It was mapped using the ABC
tool [15]. This stage can be considered as the
overhead to re-create the block input vectors from
the intermediate code. Notice that increasing the
quantity of cells at the first stage (length of the
intermediate code) increases significantly the size
of the second stage, generating an area overhead.
This is the motivation to reduce the number of
cells while generating the first stage. Also, the
number of input/output pins in the block should
be the minimum required, which is the largest
number of inputs in a single cell in the set. This
requirement is necessary to provide test
controllability for the cell.

4. Testbench: Overall Architecture and
Operation Modes

The combinational blocks, described in the
previous section, guarantee the functional
validation of the entire set of logic cells if each
cell has been instantiated at least once in the first
stage of a block, and the 2n input combinations are
applied at ‘n’ inputs of each block. Once the block
outputs reproduce the same input signals, they can
then be arranged in different ways to create the
circuit architecture. Long paths can be built, for
instance, by cascading the combinational blocks
in chain configuration. This way, the primary
input values should be observed at the output of
chain in the case of fault free behavior.

The global circuit architecture is presented in Fig.
3. To provide a sequence of test vectors with
minimum external intervention, the signals at the
end of the chain are reconnected to the primary
inputs. A register barrier, composed by D-type
flip-flops, is added to the feedback path to avoid
racing. An adder is available to increment the
binary vector and make the circuit act as a counter
to modify the feedback signals and provide the
chain input variation. The adder can perform sums
by ‘K’ allowing other than just a counting 1-by-1
operation, allowing thus different vector
transitions that are important to check charging
and discharging conditions at internal nodes intra-
and inter-cells.

DFF

M

U

X
=

M

U

X
CK

D

+

M

U

X

Q

Ext_CK

n

n

n

K(n..1)

1

1

n

Reset

CBCB
M

U

X
CB

M

U

X
CB

M

U

X

M

U

X

M

U

X

M

U

X

M

U

X

n

n

Out(n..1)

In(n..1)

*

Figure 3 – Block diagram of the proposed circuit
architecture.

The basic architecture is slightly modified by
adding a comparator and multiplexers to allow
different operating modes which provide distinct
forms of data evaluation. Notice that, the aim of
this circuit is to validate the full functionality of
the entire set of cells, as well as evaluate the
accuracy of the electrical characterization values
of the cells (timing and power dissipation data)
through the correlation of the static timing
analysis (STA) and power analysis with
experimental measures.

The circuit operating modes and their individual
contributions to meet the five requirements
described in Section 2 are discussed in detail in
the next sub-sections. They are:

• synchronous mode;
• asynchronous mode;
• oscillation BIST mode;
• diagnosis mode.

4.1 Synchronous Mode

In the synchronous operating mode, the register
barrier is controlled by an external clock signal,
i.e. the ‘Ext_CK’ signal indicated in Fig. 3. The
adder is used to increment the vector in the ring,
acting as a synchronous ‘+K’ counter. The right
behavior of the counting sequence demonstrates
the correct functionality of the combinational
blocks and, consequently, the whole set of cells
under test.

The maximum operation frequency of the circuit,
which indicates the worst case path delay, can be
obtained by increasing the clock frequency until
the ring counter gives an erroneous result. Such
critical path delay will be probably different by
changing the increment value ‘K’.

Another significant benefit of the synchronous
mode is the evaluation of the power dissipation,

109

including its dynamic and static components. The
external control of the clock signal imposes the
frequency operation for switching, and the
dynamic power consumption can be related to
that. The static power, on the other hand, can be
measured at low frequencies or even by using an
external clock manually controlled. At each new
input state in the chain the static consumption can
be obtained since such power dissipation
component depends strongly on the circuit steady
state.

Fig. 4 shows the electrical simulation of the
circuit for both synchronous (before 100ns) and
asynchronous (after 100ns) modes. According to
Fig. 3, the ‘CK’ waveform is the internal clock
signal; the ‘ctrl_CK’ signal is the multiplexer
control to switch between an external clock signal
and the comparator output (asynchronous clock);
the ‘In(1)’ to ‘In(4)’ signals represent the 4-bit
data in the ring counter; and the ‘I(vdd)’
waveform shows the power supply current. Notice
that in the synchronous mode the supply current
allows the identification of dynamic and static
dissipation components, while in the
asynchronous mode the circuit is always in
dynamic operation.

Figure 4 – Circuit behavior at synchronous and

asynchronous modes.

4.2 Asynchronous Mode

In the asynchronous mode, or self-timed ring
configuration, the clock signal of the flip-flops is
provided by the comparator that checks whether
or not the input vector In(n..1) has already
propagated to the end of the chain Out(n..1) (Fig.
3). When the same vector applied to the circuit
inputs get to the end of the chain, the comparator
switches from ‘0’ to ‘1’, clocking the register. The
new data is stored in the register and passed to the
adder. The adder increments the register output
and applies the new vector to the chain. At this

moment, since In(n..1) no longer equals Out(n..1),
the comparator output is back to ‘0’ and remains
at this state until the new vector propagates
through the whole chain of combinational blocks.
This behavior can be observed at the right side of
Fig. 4.

In this operation mode, just an external signal
transition is enough to start the self-timed
counting, and the right operation keeps the circuit
running. For instance, the starting of the self-
timed operation can be achieved by modifying an
external adder input bit ‘Ki’. If a cell is defective,
the data at the end of the chain will not be equal to
the data at the circuit inputs. This way, the
comparator will not switch to ‘1’ and the self-
timed execution will stop, as verified in Fig. 5.

The self-checking property of the asynchronous
mode makes it quite appropriate for functional
cell verification with least external intervention.
The correct logic operation can be checked by just
monitoring the internal clock signal or only one
data bit in the loop path.

Timing information can be extracted from
complete ‘+K’ counting cycles. This measure
represents the average logic path delay since in a
self-timed circuit the speed is as fast as possible
according to the delay of each transition, or the
time to finish a computation. These measures can
be used to validate the models if a simulation is
done in the same operating mode.

Notice that a set of circuits working continuously
in this mode can be used to check the library
reliability and robustness against degradations. A
continuous operation without errors proves the
reliability of the cells against a number of issues
like insufficiency of contacts, electromigration
[17], negative bias temperature instability (NBTI)
[18, 19], or other causes. NBTI is a degradation of
PMOS transistors that depends on the amount of
time the output of the cell is connected to Vdd;
see [18, 19] for details. Notice that the circuits
will not need expensive equipments to be
monitored, once defects are self monitored, as
shown in Fig. 5. Even if the circuits do not fail
after being continuously stressed for a long period
of time, they can be used to measure performance
degradation caused by NBTI.

110

Figure 5 – Electrical simulation of fault

occurrence during the self-timed counting
(asynchronous mode).

4.3 Oscillation BIST

In synchronous or asynchronous mode, the same
binary value of an i-index input is expected to re-
appear at the corresponding i-index output of the
testbench circuit. This property is ensured by
construction of the combinational blocks. If the
ith-output is directly connected to the ith-input, the
ith-path is kept in steady state, while closing the
feedback loop. However, when the ith-output is
inverted before connecting to ith-input, a negative
polarity logic feedback occurs and the ith-path
oscillates. According to this principle, in
oscillation mode the feedback loop is closed such
that at least one of the primary inputs of the chain
receives the negation of its previous value, as
illustrated in Fig. 6.

The bit inversion necessary to ensure the
oscillation condition is implemented through the
inverter placed at the input of the multiplexer in
Fig. 3, indicated by an ‘*’. This multiplexer is
depicted in Fig. 7. Note that only one bit from the
vector Out(n..1) is selected at a time to provide
only one bit oscillation. The other ones are then
fixed by the value provided in the input In(n..1).
That is, if a single input-output pair is considered,
just the associated path will oscillate, and all
others are kept in steady state.

Figure 6 – Oscillation BIST path.

Figure 7 – Multiplexer for oscillations BIST
mode.

Notice that, the internal path followed by the
oscillating signal through the chain of
combinational blocks will depend on the static
binary values to which the steady-state inputs of
the first block are set. This feature allows
configuring a wide range of different oscillating
paths. Fig. 8 shows the electrical simulation of the
circuit in oscillation BIST mode. While the bit
‘In(1)’ is kept oscillating, the others are modified
at lower frequency to cover all the eight possible
combinations. At the end of this exercise, the
oscillation is switched to the bit ‘In(3)’. Table IV
gives the signal period of the oscillating bit for all
different states illustrated in Fig. 8.

The main contribution of the oscillation BIST
mode to the validation process is that it makes
possible to measure the signal delay propagation
through different logic paths involving different
cell instances. These delay results are then
compared to those obtained from a previous static
timing analysis, which took into account cell
timing data from characterization (possibly done
by electrical simulations). This way it is possible
to correlate the models used for design with real
silicon behavior.

111

Figure 8 – Electrical simulation of oscillation
BIST.

Table IV - Data of the oscillation BIST mode
simulation, illustrated in Fig. 8.

Interval (ns) (b1,b2,b3,b4) Period (ns)
5-10 (b1,1,1,1) 1.76
10-15 (b1,0,1,1) 1.47
15-20 (b1,1,0,1) 1.35
20-25 (b1,0,0,1) 1.49
25-30 (b1,1,1,0) 1.65
30-35 (b1,0,1,0) 1.59
35-40 (b1,1,0,0) 1.58
40-45 (b1,0,0,0) 1.75
45-50 (0,1,b3,1) 1.74

4.4 Diagnosis Mode

To perform defect diagnosis, additional
multiplexers can be included in the circuit
architecture, at no significant penalty in area, to
select part of the combinational chain.
Multiplexers at the inputs of each combinational
block can select the signal from the previous
block or directly from the beginning of the chain,
removing the influence of the previous blocks in
the ring loop. Similarly, multiplexers at the output
of the blocks can send the data from the middle of
the chain directly to its end. This way, the chain
can be easily reduced to a single block or even
none, allowing in this case the verification of the
counter and the register barrier without the
influence of the combinational chain.

This mode provides the diagnosis of a faulty
block, and it also allows the different circuit
operation modes, described above, to run through
part of the entire chain. To exemplify this mode,
the oscillation BIST was exercised for three
conditions: (1) the complete chain; (2) half of the
chain; and (3) one-fourth of the chain. Table V
shows the data for these oscillation conditions.

The diagnosis can also be performed in open ring
configuration, as the multiplexer used to provide
the oscillation BIST mode (see Fig. 7) can also be
applied to interrupt the ring configuration without
additional circuitry. The open chain mode allows
the external control of the signal stimuli that are
sent to the combinational blocks chain. It is quite
useful for the identification of a faulty cell.

Table V – Electrical simulation data of the
diagnosis mode, considering one data bit in

oscillation mode.
Interval (ns) Chain configuration Period (ns)

15-35 complete chain 4.07
35-45 half-chain 2.52
45-60 one-fourth chain 1.64

5. Overhead Analysis

The testbench circuit proposed here can be
integrated in the same die with an ASIC, resulting
in an area overhead as illustrated in Fig. 9. Two
experiments have been done to evaluate this
overhead.

Figure 9 – ‘Certification circuit’ prototyped in the

same die of the target ASIC.

In the first experiment, the set of 64 cells
previously mentioned in Table I was considered.
This set is composed of cells with up to 4 inputs.
The number of input/output bits for the generation
of combinational blocks was kept at four bits to
ensure the controllability of the instantiated cells.
Eight combinational blocks were automatically
generated to build a circuit having all library cells
instantiated in the first stage of blocks. The
complete circuit used around 500 instances. The
testbench circuit ensures the verification of all 64
cells in the library, with an average of 7.03
instances per cell from the library. Notice that, the
‘tv80_core’ circuit in Table I, which used all 64
cells of the library on its implementation, has
5,597 cell instances. Suppose that the verification
circuit generated here was the test vehicle to
verify the library used to implement the
‘tv80_core’ circuit. In this case, an overhead of
8% in terms of cell instances would be produced.
However, if ‘wb_conmax_top’ was chosen to
validate the library, a circuit with 28,089 instances
would be produced and yet not all the cells from
the library would be instantiated.

The second experiment was the design of a
testbench circuit to test a library containing 208
cells, mainly CMOS complex gates, with up to 7

112

inputs. This example resulted in a testbench
composed of around 8,000 instances, to validate
the complete set of cells. The number of instances
per cell library is around 16, which is still
acceptable. This can be considered a very small
circuit to test such a huge group of cells once an
ASIC requiring such amount of cells can easily
have more than 100k instances.

Therefore, the test circuit brings little silicon
overhead to the final design, allowing the
fabrication embedded with the target ASIC, as
illustrated in Fig. 9.

The overhead in terms of I/O pins is described in
the following, considering n-bit combinational
blocks. The value ‘n’ represents the maximum
number of inputs in a single cell to be validated.
In this case, the final validation circuit presents:

• ‘n’ input signals – K(n..1);
• ‘n’ output signals – Out(n..1);
• one external clock signal;
• one D-type flip-flop reset
signal;
• some multiplexer control
signals, being that the number can be
reduced by using a decoder circuit since
some multiplexers are dependent on each
others.

Depending on the complexity of the target ASIC,
such a pin overhead may prove unaffordable for
certification at the chip level. In this case,
considering its little silicon overhead, the testbech
could be though as a certification vehicle at the
wafer-level and be used to validate sets of
neighbouring ASICs.

From this analysis, one can conclude that the
testbench methodology represents a low cost
solution for validating all soft-cells included in an
ASIC, and may act as a library certification circuit
at chip or wafer-level. In terms of EDA vendor
interest, the proposed methodology represents an
efficient way to validate soft-libraries by using
very compact circuits.

6. Conclusions

The use of automatically generated CMOS logic
gates in standard cell IC design flow represents an
attractive perspective for ASIC design quality
improvement. Automatic cell generators can be
considered as soft IPs and represent the key
elements for the library-free technology mapping
approach, already proposed in literature and now
being adopted by the industry. This methodology
leads to an IC design flow based on logic cells
which are created on-the-fly by software, which

have not been previously validated on silicon yet,
until the target ASIC is prototyped. This fact
makes conservative customers reluctant in
adopting this design technique. This work
proposed a validation methodology to silicon
prove the set of automatically designed logic
cells. The validation covers the full functionality
of the cells and provides means to compare cell
data models derived from electrical
characterization against silicon performance. This
methodology allows verifying the reliability of the
cell models to be used in the performance
estimation during the circuit design. A method to
automatically generate the validation circuits from
an initial set of cells was also proposed. The
method has low area overhead and the several
operation modes. Medium and long term
standalone runs allow verifying the circuits for
degradation effects like NBTI and
electromigration. Self-testing modes allow
performing medium and long term reliability
certification without depending on ATE, which
allows to reduce costs and to increase the number
of samples under test.

References

[1] P. de Dood, B. Lee and D. Albers.
“Optimization of circuit designs using a
continuous spectrum of library cells”. US Patent
7107551. 2003.
[2] S. Gavrilov, A. Glebov, S. Pullela, S.C.
Moore, A. Dharchoudhury, R. Panda, G. Vijayan
and D. T. Blaauw, “Library-less synthesis for
static CMOS combinational logic circuits”,
ICCAD 1997, pp.658-662.
[3] D. Kagaris and T. Haniotakis. “Methodology
for transistor-efficient supergate design”. IEEE
Trans. VLSI, Apr. 2007, vol. 15, no. 4, pp. 488-
492.
[4] F. S. Marques, L. S. Rosa Jr, R. P. Ribas, S.
S. Sapatnekar and A. I. Reis. “DAG based library-
free technology mapping”. GLSVLSI 2007, pp.
293-298.
[5] F. R. Schneider, R. P. Ribas, S. S. Sapatnekar
and A. I. Reis, “Exact lower bound for the number
of switches in series to implement a
combinational logic cell”. ICCD 2005, pp.357-
362.
[6] R. Roy, D. Bhattacharya and V. Boppana.
“Transistor-level optimization of digital designs
with flex cells”. IEEE Computer, Feb. 2005, vol.
38, no. 2, pp. 53- 61.
[7] A. I. Reis, F. R. Schneider and R. P. Ribas.
“Methods of deriving switch networks”. US
Patent Application #20070214439.
[8] D.Bhattacharya, V.Boppana, R.Roy and
J.Roy. “Method for automated design of
integrated circuits with targeted quality objectives

113

using dynamically generated building blocks”. US
Patent 7,225,423. May 29, 2007.
[9] L.G.Jones, D.T.Blaauw, R.L.Maziasz and M.
Guruswamy. “Method and apparatus for
designing an integrated circuit”. US Patent
5,666,288. Sep. 9, 1997.
[10] EEtimes. “NXP adopts Nangate's tool for 32-
nm research”. By: A.-F.Pele, EE Times Europe,
02/19/2008, available on: http://www.eetimes.eu/
france/206800280?cid=RSSfeed_eetimesEU_fran
ce.
[11] H. Yoshida, M. Ikeda, and K. Asada. “A
structural approach for transistor circuit
synthesis”. IEICE Trans. Fundam. Electron.
Commun. Comput. Sci. E89-A, 12 (Dec. 2006),
3529-3537.
[12] S. Long, “Test structures for propagation
delay measurements on high-speed integrated
circuits”, IEEE Trans. Electron Devices, vol. ED-
31, no. 8, Aug. 1984.
[13] E. Arabi , H.n Ihs I, C. Dufaza and B.
Kaminska, “Digital oscillation-test method for
delay and stuck-at fault testing of digital circuits”,
ITC 1998, pp. 91-100.
[14] J. Kibarian, “Overcoming the process
variability crisis via proactive DFM”. Keynote
talk at ICCAD 2007.
[15] Berkeley Logic Synthesis and Verification
Group. “ABC: A system for sequential synthesis
and verification”. Dec. 2005 Release. Berkeley.
http://www-cad.eecs.berkeley.edu/-alanmi/abc
[16] Mentor Graphics Design-for-Test (DFT)
Tools. http://www.mentor.com/products/dft/
[17] C. J. Christiansen, B. Li, J. Gill, R. Filippi
and M. Angyal. “Via-depletion electromigration
in copper interconnects”. IEEE Trans. Device and
Materials Reliability, vol. 6, no.2, pp. 163–168.
[18] S. V. Kumar, C. H. Kim, S. S. Sapatnekar,
“NBTI-aware synthesis of digital circuits”. DAC
2007. pp. 370-375.
[19] D.K.Schroder. “Negative bias temperature
instability: What do we understand?”
Microelectronics Reliability, Volume 47, Issue 6,
June 2007, Pages 841-852.

