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ABSTRACT 

Cell-based design is the most applied approach in the ASIC market today. This 
design approach implies re-using pre-customized cell libraries to build more complex 
digital systems. Therefore the ASIC design efficiency turns to be bounded by the library 
in use. The use of automatically generated CMOS logic gates in standard cell IC design 
flow represents an attractive perspective for ASIC design quality improvement. These 
soft IPs (logic cells generated by software) are the key elements for the novelty library-
free technology mapping, already proposed in literature and now being adopted by the 
industry. Library-free technology mapping approach, based on the on-the-fly creation of 
cells, by software, can provide flexibility to IC designers providing an optimized fit in a 
particular application. However, such approach represents an IC design flow based on 
logic cells created on-the-fly by software which have not been previously validated in 
silicon yet, until the target ASIC is prototyped. 

In this work, a specific test circuit (testbench) is proposed to validate the full 
functionality of a set of logic cells, as well as to verify timing and power consumption 
behaviors, which can be correlated with design timing and power estimations in order to 
validate the cell data provided by electrical characterization. The proposed architecture 
for the test circuit is composed by combinational blocks that ensure full logic 
verification of every library cell. The basic architecture of the test circuit is slightly 
modified to allow different operating modes which provide distinct data evaluation 
using SPICE electrical simulations. Since this test circuit brings little silicon overhead 
to the final design, it can be implemented together with the target ASIC acting as a 
‘library certification circuit’. 
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Circuito de Teste em Silício para Validação de Bibliotecas de 
Células Lógicas Geradas por Software 

RESUMO 

Projeto baseado em células-padrão é a abordagem mais aplicada no mercado de 
ASIC atualmente. Essa abordagem de projeto consiste no reuso de bibliotecas de células 
pré-customizadas para gerar sistemas digitais mais complexos. Portanto a eficiência de 
um projeto ASIC está relacionado com a biblioteca em uso. A utilização de portas 
lógicas CMOS geradas automaticamente no fluxo de projeto de circuito integrado 
baseado em células-padrão representa uma perspectiva atraente para melhorar a 
qualidade de projeto ASIC. Essas células geradas por software são os elementos-chave 
dessa nova abordagem de mapeamento tecnológico livre de biblioteca, já proposto na 
literatura e agora adotado pela indústria. O mapeamento tecnológico livre de biblioteca, 
baseado na criação de células sob demanda, por software, gera flexibilidade aos 
projetistas de circuitos integrados, fornecendo ajuste otimizado em aplicações 
específicas. Contudo, tal abordagem representa um fluxo de projeto de circuito 
integrado baseado em células lógicas criadas sob demanda por software, as quais não 
são previamente validadas em silício até que o ASIC alvo seja prototipado. 

Neste trabalho, um circuito de teste específico é proposto para validar a 
funcionalidade completa de um conjunto de células lógicas, bem como verificar 
comportamentos de atraso e consumo, os quais podem ser correlacionados com as 
estimativas de atraso e consumo do projeto, a fim de validar os dados das células 
gerados pela caracterização elétrica. A arquitetura proposta para o circuito de teste é 
composta por blocos combinacionais que garantem a completa verificação lógica de 
cada célula da biblioteca. A estrutura básica do circuito de teste é ligeiramente 
modificada para permitir diferentes modos de operação que permitem avaliação de 
diferentes dados utilizando simulações elétricas SPICE. Visto que o circuito de teste 
gera pequeno acréscimo de silício ao projeto final, ele pode ser implementado junto com 
o ASIC alvo, atuando como um ‘circuito de certificação de biblioteca’.  

 

 

 

 

 

 

Palavras-Chave: Circuito integrado, ASIC, projeto digital, célula-padrão, mapeamento 
tecnológico livre de biblioteca, biblioteca de células geradas por software, circuito de 
teste. 
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1 INTRODUCTION 

Microelectronics became the key technology of many industry branches like 
information technology, telecommunication, medical equipment and consumer 
electronics. The ability of microelectronics to process, transport and store data digitally 
made many new applications possible. The continuously increasing level of integration 
of electronic devices on a single substrate has led to the fabrication of increasingly 
complex systems. An Integrated Circuit (IC) is an electronic system consisting of a 
number of miniaturized electronic devices, such as transistors, resistors, capacitors and 
inductors, built on a monolithic semiconductor substrate. The large majority of the 
current ICs are implemented in the Metal-Oxide-Semiconductor (MOS) technology 
(WESTE, 2005) (RABAEY, 2003). 

The integrated circuit technology has progressed tremendously. The increase in the 
number of transistors that can be integrated in a single die has grown exponentially in 
the last decades, as predicted by the so called Moore’s law (INTEL, 2007) (MOORE, 
1965). The level of integration of chips has been classified as small-scale (up to 10 
gates –half a dozen transistors per gate), medium-scale (up to 1,000 gates), large-scale 
(up to 10,000) and very large-scale integration (VLSI). The term VLSI is used to 
describe most integrated circuits from the 1980s onward. 

At present, many electronic systems require integrated and dedicated components 
that are specialized to perform a task or a limited set of tasks. These are called 
Application Specific Integrated Circuits, or ASICs. 

Electronic design automation (EDA) is the category of tools for designing and 
producing electronic systems. This is sometimes referred to as CAD (computer-aided 
design). The modern ASIC design flow has evolved and increased in complexity just as 
the devices that are being designed have dramatically increased in complexity. This 
design flow is now heavily dependent on EDA tools and many of the tasks that were 
once carried out manually are now automated by EDA tools with little or no manual 
intervention. 

Cell-based design is definitely the most applied approach in the ASIC market today. 
This design approach implies re-using pre-customized cell libraries to build more 
complex digital systems. A typical standard cell design environment includes timing 
and power analysis, as well as automatic generation of circuit layout. In standard cell 
libraries, three groups of logic cells co-exist: (1) inverters/buffers; (2) combinational 
and (3) sequential gates. Especially due to the large number of different logic functions 
and driving strength options needed in typical designs, the largest of the three 
aforementioned groups turns to be the combinational cells. The creation of handcrafted 
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standard cell libraries needs skilled designers and requires long development times, 
even when simply dealing with technology migration for the same set of cells. Each cell 
is carefully defined and characterized for different input slopes, output loads, and design 
corners. This practice usually limits the number of cells in libraries due to the high 
engineering costs involved. 

More recently, the library-free technology mapping has been addressed by EDA 
platforms (GAVRILOV, 1997). It automatically generates on-the-fly the cells required 
(or identified) by the mapping task. This new technology is based on virtual libraries, 
whose original cells are not previously designed and physically verified. It means that 
such virtual libraries are, in fact, tested together with the target ASIC. 

Since in a standard IC design flow, the technology mapping is based on pre-
designed and pre-characterized cells, the ASIC design efficiency turns to be bounded by 
the library in use. The more cells and drive strength options are available, the larger is 
the variety of logic functions and circuit performances the designer can implement. 
Only a library-free technology mapping approach, capable of creating on-the-fly cells 
that perfectly fit a particular application, can provide such flexibility to IC designers 
(DEDOOD, 2003) (GAVRILOV, 1997) (KAGARIS, 2007) (MARQUES, 2007) (ROY, 
2005) (SCHNEIDER, 2005). The enrichment of a library can be done by adding only 
new drive strengths (DEDOOD, 2003) or through the addition of new functions with 
standard series/parallel implementation (GAVRILOV, 1997) or with special transistor 
topologies (KAGARIS, 2007) (MARQUES, 2007) (SCHNEIDER, 2005) and adding 
new cells for in-place optimization combining new topology and IPO (in place 
optimization) sizing (ROY, 2005). 

A cell library is usually an ensemble of hundreds of each individual cell. If it is 
going to function as a whole to provide building blocks for larger designs, not only 
should each individual cell be correctly designed, but also the synthesized designs based 
on these library cells should be absent from errors. However, designing a cell library 
requires carrying out many complex tasks and involving design efforts from a number 
of engineers. Errors are easily made in this situation. In order to uncover the leftover 
errors of a cell library, benchmark circuits are usually designed to fulfill this mission. 
Thus, the quality of a cell library can be substantially improved (LIN, 1999). 

Without accurate library validation, ASIC customers cannot be assured that their 
design will perform to specifications using simulation results alone. The need to 
correlate simulation precisely to silicon demands the manufacturing, testing and 
characterization of test circuits specifically designed for that purpose.  

In the past, designing of a cell library was usually thought as a discipline in 
industrial community where the advancement in cell library design is largely made. 
Since a viable cell library will strengthen a company’s competitiveness, the know-how 
with regard to designing a high quality cell library is not often seen in open literature 
(AGASTEIN, 1990) (MARTINEZ, 1995) (SCOTT, 1994). However, with ever 
increasing availability of semiconductor foundry and commercial CAD tools to the 
university community and advancement in cell-based synthesis technology, more 
activities in cell library design within university community have been carried out (LIN, 
1999) (CHONG, 1992).  

There are certainly many interpretations for “high quality cell libraries”. A cell 
library regarded as high quality by one company may not be considered as viable by 
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another company. However, high quality cell libraries possess many common 
characteristics. Here are listed some of them (LIN, 1999): 

(1) the functionality of each individual cell should be correct in the models for logic 
synthesis and simulation, 

(2) the timing performance figures of each individual cell claimed in the data sheet 
or models should be accurate enough, 

(3) the layout of each cell should be free of design rule violations, 
(4) the cells should be best utilized by a synthesis tool, and 
(5) the cells should be able to optimize placement and route of a large design. 

The testbench (test circuit) developed in this work enforces (1) and (2) which are 
essential to a high quality cell library. 

The computing evolution, including parallel and distributed processing, allows 
nowadays the automatic generation and electrical characterization of a huge number of 
cells in a few minutes, although some design aspects like cell layout compaction are still 
challenging programmers. However, even if complete back-annotation and design 
verification are already feasible in a library-free approach, designers are sometimes still 
skeptical and reluctant to develop products based on software-generated cells that are 
not previously validated on silicon. This skepticism results from simple things like the 
lack of knowledge about the reliability of the circuit with respect to degradation due to 
electromigration (CHRISTIANSEN, 2006) and negative-bias temperature instability 
(NBTI) (KUMAR, 2007) effects. 

The validation and physical characterization of the set of cells, included in a library, 
are usually done through specific structures and benchmark circuits. Such test structures 
are composed by ring oscillators, delay chains, counters, and others (LONG, 1984) 
(BHUSHAN, 2006). They are generally designed in full custom style, and must be 
carefully built for a specific process.  

Benchmark circuits, such as ISCAS’89, MCNC’90, ITC’99 and IWLS’05 
benchmarks, on the other hand, correspond to different applications and architectures in 
order to represent commercial circuits and system blocks, such as purely combinational 
circuits, finite state machines, arithmetic blocks, and so on. The use of benchmarks for 
validation and physical characterization of standard cell libraries may lead to two 
situations: (a) not all cells from the library are used in the benchmark circuit design, and 
(b) the cells used in this circuit are not stimulated by all possible input combinations, 
not guaranteeing the complete functionality of these cells. For instance, in Table 1.1, the 
use of different cells from a library, which contains 64 combinational cells, in the 
ISCAS benchmark circuit synthesis is observed. Note that, only the ‘tv80_core’ 
benchmark used the entire set of available cells. 
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Table 1.1: Using a 64-cell library to synthesize benchmark circuits. 

ISCAS Benchmarks* # cells in the circuit # used cells from library 

c7552 1,311 41 

i2c_master_top 679 42 

iu 9,203 43 

mc_top 6,245 58 

tv80_core 5,594 64 

wb_conmax_top 28,089 43 

*Benchmarks source: http://www.fm.vslib.cz/~kes/asic/iscas, last access on Sep.20th, 
2007. 

Within this context, a naive manner to achieve library verification consists in 
designing a circuit that connects all cells in such a way that the primary inputs are 
shared and individual output signals are multiplexed to reduce the number of circuit 
primary outputs. This strategy can obviously achieve the desired verification of cell 
logic behavior but, in addition to multiplexing the cell outputs, it requires buffering to 
compensate the high capacitance on input nodes, making it difficult to obtain timing and 
power dissipation data. 

An efficient approach to generate a testbench for testing a set of new cells, possibly 
created on-the-fly, should cover the following aspects: 

(1) to ensure complete functionality test for the instantiated cells; 
(2) to ensure coverage (instantiation) of all the cells to be tested; 
(3) to allow the verification of the accuracy of the models used in the design 

process; 
(4) to provide means to perform long and medium term reliability tests (needed for 

electromigration, sufficiency of contacts, NBTI degradation, etc) without 
additional equipment; 

(5) to have a feasible number of cell instances compared to the set of cells to be 
tested. 

The goal of this work is to propose a methodology to automatically generate 
testbench circuits for on-silicon soft-library validation meeting the aspects above.  

Some works related to this propose can be found in the literature (LIN, 1999) 
(AGASTEIN, 1990) (MARTINEZ, 1995) (SCOTT, 1994) (CHONG, 1992). The most 
similar related work, presented by Rung-Bin Lin (LIN, 1999), creates benchmarks to 
improve the quality of a standard cell library, but such benchmarks are not viable for 
virtual libraries. It focuses on fixed libraries, not regarding the benchmark size and the 
automatic generation. It also uses specific structures (ring oscillators, delay chains, 
counters, and others) to compound the benchmark. Therefore, to the best of our 
knowledge, previous approaches fail to cope efficiently with this goal. 

In this work, a straightforward and efficient testbench methodology is proposed 
aiming the validation of an entire set of soft-cells in terms of logic and electrical 
behavior. The presented solution merges well-established design and test concepts to 
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cope with the five aspects mentioned above. A specific combinational block is built to 
guarantee the logic coverage (aspect 1) of a sub-set of the cells to be validated, and to 
provide at the output the same bit vector received at its inputs, allowing thus to cascade 
long chains with these blocks. The use of several blocks allows to instantiate all the 
cells (aspect 2). The circuit architecture is then composed of such combinational chain 
in a ring configuration, synchronized by a register barrier. Both synchronous and 
asynchronous operating modes provide different features for the proposed goals. The 
ring configuration allows verifying the accuracy of the models, by comparing with the 
predicted circuit behavior (aspect 3). The oscillation BIST technique is also included in 
the circuit operation for a wide range of different paths, and allows medium and long 
term tests (aspect 4). In case of an eventual error, the circuit diagnostic is facilitated 
through an arrangement of multiplexers. Finally, as the ring oscillator is composed of a 
variety of cells, the number of instances is not very expensive compared to the initial set 
of cells (aspect 5), as shown in the overhead section. 

From a business model point-of-view, the methodology presented herein is useful 
for the soft-library vendor and to the ASIC designer client. For the vendor, it is quite 
important to dispose of a physical testbench in order to guarantee the correctness of its 
EDA environment, as well as to verify the quality of the generated cells in terms of 
performance and reliability, including design-for-manufacturability issues. This is 
essential for the continuous improvement of the library generation CAD tool. For the 
ASIC designer, a circuit that validates all distinct cells created on-the-fly to be used in a 
specific circuit provides means to exclude those errors on silicon due to the cell 
generators. If this test circuit is fabricated in the same die of the ASIC, it can act as a 
kind of ‘certification circuit’ for the soft-library, in different design corners and 
operating conditions. In this case, the overhead in terms of area and I/O pins is a 
compromise in fabricating together the test circuit and the ASIC, and the low cost 
approach presented here is very attractive. 

The main concepts related to the work are presented in Chapter 2. In Chapter 3, the 
basic combinational block is presented. Chapter 4 presents the circuit architecture and 
its operation modes. Finally, the conclusions are discussed in Chapter 5. 
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2 BACKGROUND & MOTIVATION 

In this chapter, the required concepts to the comprehension of this document, such 
as standard cell design, library-free technology mapping, testing, testability and design-
for-testability are briefly explained. 

2.1 ASIC Flow 

Designing ICs as complex as the ones available nowadays requires engineers 
working with different levels of abstraction on a system design perspective. Figure 2.1 
shows a diagram illustrating these different levels of abstraction known as Y-chart 
(GAJSKI, 1988). The Y-diagram can be used to illustrate each domain and the 
transformations between domains at varying levels of design abstraction. The radial 
lines on the Y-chart represent three distinct design domains: behavioral, structural, and 
physical. That is a classical tentative, among others, to demonstrate and classify such 
different working levels. 

 
Figure 2.1: Levels of design abstraction (GAJSKI, 1988). 
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At the behavioral domain, the operation of the system is captured without having to 
specify the physical implementation. The design starts with a specification. From the 
specification a behavioral description of the design is then generated. The behavioral 
synthesis transforms a RTL behavioral description in a hardware description language 
(HDL), such as VHDL or Verilog. The design is then simulated and tested by applying 
testbenches to verify the correct behavior as defined by the specification. 

The next step is to synthesize the behavioral description. This involves converting 
the RTL to generic gates and registers, then optimizing the logic to improve speed and 
area. The behavioral code is synthesized into a structural code using a generic gate 
library. 

The step known as logic synthesis transforms a design from the behavioral to the 
structural domain. In the logic synthesis the task called technology mapping or library 
mapping takes a generic HDL gate-level description (boolean network) and translates it 
to a netlist (cell network) that specifies particular gates in the target library. Thus, the 
mapping task transforms the generic gate-level description into a gate-level description 
in the target ASIC technology. 

Layout generation is the last step in the procedure of turning a design into a 
manufacturable database. It transforms a design from the structural to the physical 
domain. This step is called physical synthesis when the structural netlist is manipulated 
as physical layout is generated (WESTE, 2005). Figure 2.2 shows a diagram illustrating 
the ASIC design flow. 

 
Figure 2.2: ASIC design flow diagram (WESTE, 2005) (MARQUES, 2007a). 
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2.2 Design Styles 

The economic viability of a microelectronics design depends upon a number of 
conflicting factors, such as production volume, cost, and circuit performance required to 
be competitive. These economic considerations have stimulated the development of a 
number of distinct implementation approaches that range from high-performance 
handcrafted design to fully programmable, medium-to-low performance designs 
(RABAEY, 2003). 

Under these circumstances, different implementation approaches, often called design 
styles or even methodologies, have been used for microelectronic circuits. They are 
usually classified as full-custom (custom) and semicustom design styles (MICHELI, 
1994). Figure 2.3 provides an overview of the design styles. 

 
Figure 2.3: Overview of IC design styles (MICHELI, 1994) (RABAEY, 2003). 

 

Full-custom design was popular in the early years of microelectronics. Today, the 
design complexity has confined custom design techniques to specific portions of a 
limited number of projects, such as processors, chip-sets, and arithmetic units 
(MICHELI, 1994). 

In full-custom design one does logic and physical synthesis in order to attain the 
highest performance or smallest size, making use of the most advanced technologies 
(CHEN, 2000).  

The benefits of full-custom design in general include reduced area (and therefore 
recurring component cost), performance improvements and also the ability to integrate 
(include) analog components and other pre-designed (and thus fully verified) 
components such as microprocessor cores that form a System-on-Chip (SoC). 

The disadvantages of this design style can include increased manufacturing and 
design time, increased non-recurring engineering (NRE) costs and a much higher skill 
requirement on the part of the design team. 

However, for digital designs only, cell-based semi-custom design together with 
modern CAD systems can offer considerable performance/cost benefits with much 
lower risk. Automated layout tools are quick and easy to use, and also can offer the 
possibility to manually handcraft and optimize any performance limiting aspect of the 
design. 
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Semicustom designs can be partitioned in two major classes: cell-based design and 
array-based design. These classes further subdivide into subclasses, as shown in Figure 
2.3. Cell-based design leverages the use of library cells, that can be designed once and 
stored, or the use of cell generators that synthesize macro-cell layouts from their 
functional specifications. Array-based design exploits the use of a matrix of 
configurable elements to implement the logic. Array-based circuits can be classified as 
pre-diffused and pre-wired, also called mask programmable and field programmable 
gate arrays, respectively (MPGAs and FPGAs) (MICHELI, 1994). 

This work is included in the context of the standard-cell design which is a cell-
based design style. The idea behind cell-based design is to reduce the implementation 
effort by reusing a library of cells. The advantage of this approach is that the cells only 
need to be designed and verified once for a given technology, and can be reused many 
times, thus amortizing the design cost. The disadvantage is that the constrained nature 
of the library (especially due to the limited number of cells) reduces the possibility of 
fine-tuning the design (RABAEY, 2003). 

The standard-cell approach standardizes the design entry-level at the logic gate 
(functional blocks). A library containing a wide selection of logic gates over a range of 
number of inputs and drive strengths is provided. Besides the basic logic functions, such 
as inverter, AND/NAND, OR/NOR, XOR/XNOR and flip-flops, a typical library also 
contains more complex functions such as AOI/OAI (AND/OR-OR/AND-INVERTER), 
MUX, full-adder, comparator, counter, decoder, encoder, and so on. 

The layout of each cell in a specific library has a fixed height, while its width may 
vary. Thus, the cell can be placed side-by-side, in such a way that their power rails and 
well regions properly connect to neighbor cells. Standard-cell design uses these 
functional blocks to achieve high gate density and good electrical performance. The 
quality of a synthesized design based on standard-cells depends on three components: 
the synthesis tool, the place and route tools and the target cell library (SCOTT, 1994). 

 

Library-free Technology Mapping 

Technology mapping is the choice of the elements from a technology (typically cells 
from a library) that will be effectively used to implement a given circuit. Technology 
mapping then transforms the network of functions into a gate level netlist by trying to 
find an optimal network covering of library gates, with respect to some cost function 
(CORREIA, 2004). 

The library gates used by a technology mapper can be specified using functionality 
(also known as library-based mapping) or parameters such as the number of inputs and 
series/parallel devices (also known as library-free mapping). 

Figure 2.4 shows the digital circuit design flow regarding the library-based 
methodology for the technology mapping. In this methodology the quality of the 
mapped circuit has a directly relation with the library richness. Static libraries usually 
are not so big, because the cells characterization cost is too elevated (SECHEN, 2003). 
A commercial library contains no much more than one hundred cells that implement 
different boolean functions (MARQUES, 2007). The great advantage of this approach is 
the pre-characterization of the cells and the set of information associated to each cell of 
the library, which is considered as design cost in the map matching. Usually, this 
information is about area, delay, input capacitances and power consumption. 
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Figure 2.4: ASIC design flow with library-based technology mapping (MARQUES, 

2007). 

Figure 2.5, in turn, shows the digital circuit design flow regarding the methodology 
library-free for the technology mapping. In this approach, the mapping defines a set of 
cells that will be used to implement the circuit. This list of cells is then used by an 
automatic cell generator in order to obtain the implementation of cells to use in the 
circuit layout. 

 
Figure 2.5: ASIC design flow with library-free technology mapping (MARQUES, 

2007). 
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Thus, the concept of library-free design is based on using a virtual library available 
through a layout generator instead of using a set of pre-designed cells, like in the 
library-based design. The set of available cells is given by a user-defined constraint in 
the number of series transistors. This constraint in the number of series transistors is 
done for electrical reasons. As the cells are generated on-the-fly, a virtual library 
contains a great number of poorly characterized cells when compared to a pre-designed 
standard cell library (REIS, 1998) (REIS, 1999). Therefore, the fact of the cells not 
being previously designed and physically verified is the main drawback of the library-
free technologic mapping and it means that such virtual libraries are, in fact, tested 
together with the target ASIC. In this work, a circuit for on-silicon verification and 
validation of digital cell libraries is proposed. This solution uses test concepts that will 
be presented next. 

2.3 Testing 

2.3.1 Defect, fault, failure and error 

A defect in an electronic system is the unintended difference between the 
implemented hardware and its intended design. A fault is a representation of a “defect” 
at the abstracted function level, reflecting a physical condition that causes a circuit to 
fail to perform in a required manner. A failure is a deviation in the performance of a 
circuit or system from its specified behavior and represents an irreversible state of a 
component such that it must be repaired in order to provide the intended design 
function. A circuit error is a wrong output signal produced by a defective circuit. A 
circuit defect may lead to a fault, a fault can cause a circuit error, and a circuit error can 
result in a system failure (BUSHNELL, 2000) (WANG, 2006). 

 

2.3.2 Test Generation, Functional and Structural Testing 

In order to test a circuit, a set of input patterns is applied to the circuit under test 
(CUT), and its responses are compared to the known good responses of a fault-free 
circuit. Each input pattern is called a test vector. The goal of test generation is to find an 
efficient set of test vectors that detects all faults considered for that circuit (WANG, 
2006). 

Traditionally, manufacturing test has been done using functional testing. Functional 
test patterns verify that the model or logic behaves as it was intended. Every entry in the 
truth table for the combinational logic circuit is tested to determine whether it produces 
the correct response. Therefore, functional testing is measured by the logic committing 
the correct action to the applied stimuli. Full functional correctness is the standard 
expectation and this should be verified at behavioral (RTL) or at gate level of the design 
with a simulation process (GIZOPOULOS, 2006). 

A more practical approach is to select specific test patterns based on circuit 
structural information and a set of fault models. This approach is called structural 
testing. Structural testing is used to verify the topology of the manufactured chip 
(GIZOPOULOS, 2006). Such testing relies on fault models, which assume that the 
physical defect will represent itself in a certain way. Structural testing saves time and 
improves test efficiency, as the total number of test patterns is decreased because the 
test vectors target specific faults that would result from defects in the manufactured 
circuit. 
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Structural testing cannot guarantee detection of all possible manufacturing defects, 
as the test vectors are generated based on specific fault models. However, the use of 
fault models provides a quantitative measure of the fault detection capabilities of a 
given set of test vectors for a targeted fault model. This measure is called fault coverage 
and is defined as:  

fault coverage = (number of detected faults) / (total number of faults) 

It may be impossible to obtain a fault coverage of 100% because of the existence of 
undetectable faults (WANG, 2006). An undetectable fault means there is no test to 
distinguish the fault-free circuit from a faulty circuit containing that fault. As a result, 
the fault coverage can be modified and expressed as the fault detection efficiency, also 
referred to as the effective fault coverage, which is defined as: 

fault detection efficiency = (number of detected faults) / (total number of faults - 
number of undetectable faults). 

 

2.3.3 Fault models 

Manufacturing faults can be of a wide variety and manifest themselves as short-
circuits between signals, short-circuits to the supply rails, and floating nodes. Because 
of the diversity of defects, it is difficult to generate tests for real defects. In order to 
evaluate the effectiveness of a test approach, generating and evaluating a set of test 
vectors, and qualify a good or bad circuit, these faults must be related to the circuit 
model, i.e. derive a fault model. 

Generally, a good fault model should satisfy two criteria: (1) it should accurately 
reflect the behavior of defects, and (2) it should be computationally efficient in terms of 
fault simulation and test pattern generation (WANG, 2006). Many fault models have 
been proposed, but no single fault model accurately reflects the behavior of all possible 
defects that can occur. As a result, a combination of different fault models is often used. 

2.3.3.1 Stuck-At Faults 

Stuck-at fault is the most common fault model used in fault simulation. Functional 
testing uses the single stuck-at model because of its effectiveness in finding many 
common defect types. The stuck-at fault models the behavior that occurs if the terminals 
of a gate are stuck at either a high (stuck-at-1, sa1) or low (stuck-at-0, sa0) voltage. 

2.3.3.2 Delay Faults 

Fault-free operation of a logic circuit requires not only performing the logic function 
correctly but also propagating the correct logic signals along paths within a specified 
time limit. A delay fault causes excessive delay along a path such that the total 
propagation delay falls outside the specified limit.  

Timing-related failures may be caused by isolated gate delays or process-related 
timing problems that accumulate along logic paths and prevent the circuit from 
functioning at-speed. The timing-related malfunction is characterized by defining the 
concept of delay faults related to circuit critical paths. Conventional techniques for 
delay test require two distinct primary input vectors that provoke a transition signal at 
the fault site and propagate the faulty delay effect to a primary output (ARABI, 1998). 

Timing related defects have been modeled as different delay fault models. In gate-
delay fault and transition fault models, a delay fault occurs when the time interval taken 
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for a transition from the gate input to its output exceeds its specified range. The other 
model is path-delay fault, which considers the cumulative propagation delay along a 
signal path through the CUT, i.e. the sum of all gate delays along the path. The 
combinational path begins at a primary output or another clocked flip-flop, contains a 
connected chain of gates, and ends at a primary input or a clocked flip-flop. The 
specified time range can be the duration of the clock period (or phase) or the vector 
period. The propagation delay is the time that a signal event (transition) takes to traverse 
the path (BUSHNELL, 2000).  

In a combinational circuit the path that has the longest propagation time from a 
primary input to a primary output, called critical path, determines the operating speed 
of the circuit. Also in a sequential circuit, the system is free of timing failures if every 
combinational path between two memory elements propagates its signal in less time 
than the interval of the operating system clock. In other words, the input signal of every 
memory element in the system should have a stable signal before the arrival of the 
active clock edge, obviously not forgetting the setup time of such memory point 
(registers). To be reliable, at least all critical paths in the system should be tested 
(ARABI, 1998). 

2.4 Delay test verification 

Digital circuits are tested by verifying the state malfunction in logic based on a 
standard fault model, the “stuck-at 0 or 1” fault. This fault model successfully describes 
most of state malfunction in logic. However, as the structure of logic circuits has 
become increasingly complex, system-timing failures occur more frequently. 

The timing-related malfunction is characterized by defining the concept of delay 
faults related to circuit critical paths. Conventional techniques for delay testing require 
two distinct primary input vectors that provoke a transition signal at the fault site and 
propagate the faulty delay effect to a primary output.  

Timing related defects have been broadly modeled as gate delay faults or as path 
delay faults. The gate delay fault model assumes that the incorrect timing behavior of 
the circuit is due to excess delays in one or more components in the path. Test vector 
generators based on gate delay fault model deal with one fault at a time and try to find a 
test which sensitizes some path trough the fault location such that the transition at the 
output is affected by the target fault. The path delay fault model considers the 
propagation delay through one or more paths exceeding the timing constraint. 
Therefore, this model makes no assumption about the individual component delays. To 
be reliable, at least all critical paths in the system should be tested. 

2.4.1 Characterization 

Accurate determination of logic gate propagation delay and its correlation with 
processing variables and layout design rules is needed to optimize the high-speed 
performance of actual logic circuits (LONG, 1984). However, accurate wafer-level high 
speed measurement of timing and delay is limited by the test interface. 

Synchronous circuits have been employed for measurement of propagation delay. 
The maximum clock frequency at which the circuit presents the proper data signature 
can be directly measured. An average propagation delay per gate can be inferred from 
the maximum clock frequency through transient simulation or timing analysis. 
However, synchronous circuits are often much more difficult to evaluate with accuracy 
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because of the high-speed test interface problems, such as reflections and ground noise 
and because the observed maximum frequency of operation is critically dependent on 
clock waveform properties such as symmetry, amplitude, and offset. Also, it can be 
shown that the maximum clock frequency for a given flip-flop type and implementation 
(NAND, NOR, etc.) will be achieved only at a specific clock symmetry or 
nonsymmetry. 

Therefore, to stay within these limitations, self-test or built-in test circuitry must also 
be included on all large-scale high-speed ICs to reduce the total number of off-chip 
interfaces needed to verify functionality at speed. 

The design of a test structure for propagation delay measurement must facilitate 
accuracy and simplicity of measurement and provide correlation between the test 
structure and actual logic circuits. The “classic” or default asynchronous test structure 
has generally been the ring oscillator, often configured with minimum fan-in, fan-out 
and interconnect capacitive loading. Measurement of this circuit is very simple, 
requiring only power supply, ground, and output connections. 

2.4.2 Delay fault testing 

The maximum allowable clock rate is determined by the propagation delays of the 
combinational logic block between latches. To observe delay defects, it is necessary to 
create and propagate transitions in the circuit running at-speed (at its specified operating 
frequency). 

Creating transitions requires application of a vector pair, V= <v1, v2>, at the inputs of 
the combinational part of the circuit. The first vector initializes the relevant internal 
signals to desired initial logic values, while the second vector causes the desired 
transitions and sensitizes the transition from the target fault site to an output. The test 
application scheme for combinational circuits is shown in Figure 2.6. 

In normal operation, only one clock, the system clock, is used to control the input 
and output latches and its period is Tc. In this illustration, the input and output latches 
are controlled by two different clocks in the test mode: the input and output clocks, 
respectively. The period of these clocks, Ts, is assumed to be larger than Tc. The input 
and output clocks are skewed by an amount equal to Tc. 

The first vector, v1, is applied to primary inputs at time t0. The second vector, v2, is 
applied at time t1. Time Ts = t1 – t0 is assumed to be sufficient for all signals in the 
circuit to stabilize under the first vector. After the second vector is applied, the circuit is 
allowed to settle down only until time t2, where t2 – t1 = Tc. At time t2, the primary 
output values are observed and compared to a prestored response of a fault-free circuit 
to determine if there is a defect. 
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Figure 2.6: Delay fault testing. 

Transition fault model, gate fault model and path delay fault modes are the classical 
fault models that have been used to represent delay defects. 

2.5 Testability and Design-for-Testability 

Testability is a relative measure of the effort or cost of testing a logic circuit. When 
considering the testability of designs, two properties are important: controllability and 
observability.  (1) Controllability is the ability to establish a specific signal value at 
each node in a circuit by setting values on the circuit inputs. (2) Observability is the 
ability to determine the signal value at any node in a circuit by controlling the circuit 
inputs and observing its outputs (ABRAMOVICI, 1990). 

The correctness of a combinational circuit can be validated by exhaustively applying 
all possible input patterns and observing the responses. A more feasible testing 
approach is based on the following premises. Firstly, an exhaustive enumeration of all 
possible input patterns contains a substantial amount of redundancy, that is, a single 
fault in the circuit is covered by a number of input patterns. Detection of that fault 
requires only one of those patterns, while the other ones are superfluous. Secondly, a 
substantial reduction in the number of patterns can be obtained by relaxing the condition 
that all faults must be detected. For instance, detecting the last single percentage of 
possible faults might require a huge number of extra patterns, and the cost of detecting 
them might be larger than the eventual replacement cost. Typical test procedures only 
attempt 95-99% fault coverage. 

By eliminating redundancy and providing reduced fault coverage, it is possible to 
test most combinational logic blocks with a limited set of input vectors. However, this 
does not solve the sequential problem. To test a given fault in a state machine, it is not 
sufficient to apply the correct input excitation since the engine must be brought to the 
desired state first. This requires a sequence of inputs to be applied. Propagating the 
circuit response to one of the output pins might require another sequence of vectors. 

One way to address the problem is to turn the sequential network into a 
combinational one by breaking the feedback loop in the course of the test. This is one of 
the key concepts behind the scan-test methodology (ABRAMOVICI, 1990). Another 
approach is to let the circuit test itself. Such a test, called self-test, does not require 
external vectors and can proceed at a higher speed (RABAEY, 2003). 
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Design-for-testability – DFT represents design techniques that are required in order 
to improve the testability of the design for achieving quality and reducing the test cost 
of the digital circuit, while at the same time simplifying the test, debug and diagnose 
tasks. By considering testing from the early phases of the design process, it is possible 
to simplify the whole validation process. Scan design and built-in self-test (BIST) are 
examples of design techniques to improve testability. Later these concepts will be better 
explained in the context of this work. 

2.6 How to test a library? 

The main question of the work presented herein is “How to test a digital cell 
library”. In particular, when such cells are automatically generated by software, they are 
directly applied to the target ASIC, and this set of cells tends to be composed by a huge 
number of different combinational logic gates.  

Instead of verifying the correctness of a specific circuit, the objective of this work is 
to propose a circuit, whose main goal is the verification and validation of each cell 
presented in a standard cell library. It represents, in fact, a new issue in the test domain 
where usually test methods are applied to test the functionality of application circuits 
and systems. In this particular case, the proposed circuit is not useful for any specific 
application or electronic product, but to test a set of logic cells generated by software to 
their use in a particular ASIC design. 

Before discussing the circuit architecture, the structure of the combinational blocks 
are presented. The combinational blocks represent the basic components of the proposed 
test circuit. 
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3 COMBINATIONAL BLOCK 

This chapter presents the description of the combinational blocks which are the basic 
structures of the proposed circuit. 

In terms of logic cell functionality, three main groups may be identified: (1) 
inverters and buffers; (2) sequential cells; (3) combinational cells. Group (1) is easily 
verified since such a kind of cell presents only one input signal. Group (2), in turn, has 
generally a small and limited number of different latches and flip-flops, facilitating its 
verification. Moreover, in this group the timing performance is usually more important 
than the logic functionality that is somewhat trivial in the pass and storage modes. In the 
case of group (3), the number of cells is generally more expressive than the other ones. 
Moreover, the number of input nodes in these cells makes the functional test a more 
complex task due to the 2n different input combinations, being n the number of input 
nodes. 

The most naïve strategy to test the group (3) consists in placing all cells connected 
in parallel to the same input bus, where all input combinations are applied 
simultaneously. However, in doing so, input buffering must be considered due to the 
high node capacitances (great number of inputs connected to the same node). 
Furthermore, multiplexers should be used at the output signals to reduce the number of 
output pads. In this approach, timing and power consumption characteristics are not 
easily verified since the signals propagate only through single cells in testing. 

The proposed architecture consists in building combinational blocks that receive an 
input bus, where all signal combinations are provided, and produce a sequence of output 
vectors also presenting all possible signal combinations, to be then applied to the next 
combinational block. The combinational block is illustrated in Figure 3.1. 

 
Figure 3.1: Combinational block illustration. 
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In order to ensure full logic verification of every library cell, the combinational 
blocks used in our verification circuit are built according to the following principles: 

- a cell from the library is declared verified if it is instantiated such that inputs of 
the cell consume primary inputs of a combinational block. Polarity is indifferent 
and the cell can consume the input signals through an inverter or directly;  

- every library cell is instantiated at the primary inputs of at least one 
combinational block, to ensure it is verified; 

- block creation continues while there are cells from the library that are not yet 
declared as verified cells;  

- every block instantiates a non-empty subset of non-verified cells at the block 
inputs, so that more cells receive the verified label. Indeed, the creation of a 
block is done in a way to maximize the number of cells that passes from the 
unverified to verified status. 

From a block instantiation point of view, the combinational blocks obey to the 
following principles: 

- all possible input combinations are applied to every block; 
- every block reproduces the input signals at its outputs, providing thus all 

possible signal combinations for the next block. 
 
Each combinational block is built using two cascaded stages. The minimum number 

of signals at the input bus is determined by the greatest number of inputs of a single cell 
used in the first stage. 

The first stage is built with instances of cells placed in one-logic level exercised by 
all possible input combinations. The number of cells used in the first stage is the 
sufficient number to create 2n logic combinations at the output nodes of the first stage. 

The output signals of verified cells are used as inputs to the second stage, which 
regenerates the primary inputs. The second stage is composed of synthesized functions 
with additional cells instances in a multi-logic level. 

3.1 First stage 

To generate the first stage, the whole set of cells in the library is ordered according 
to a given criterion; for example alphabetic order, number of inputs, number of 0s and 
1s at the output of the logic function, random order, or any other. Once the cells are 
ordered, non verified cells are picked one-by-one to create a verified instance. 

Assuming an n-input block, the goal is to choose a number m of cells in the first 
stage sufficiently large to produce at least 2n different m-bit output vectors at the first 
stage. The 2n intermediate different combinations (m-bit vectors) are required to 
reconstruct the original 2n input vectors (combinations) with a one-to-one 
correspondence. To achieve this goal, the instance of a new cell considers all possible 
direct and inverted connections between the block primary inputs and the inputs of each 
newly selected cell are tried.  

For a library where only single-output cells are available, the smallest circuit 
possible for the first stage has n cells, while the worst case is a first stage containing   
2n-1 cells. Verified selected cells may or may not re-appear in the second stage or in 
other combinational blocks. 
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An example for generation of a 3-bit output vector with the smallest circuit possible 
for the first stage is shown in Table 3.1. In this case, all cells have the same number of 
logic values ‘0’ and ‘1’. 

Table 3.1: Minimum number of cells at the first stage. 

A B C 
XOR3_X1 
(A,B,C) 

XOR2_X1 
(B,C) 

XOR2_X2 
(A,C) 

0 0 0 0 0 0 
0 0 1 1 1 1 
0 1 0 1 1 0 
0 1 1 0 0 1 
1 0 0 1 0 1 
1 0 1 0 1 0 
1 1 0 0 1 1 
1 1 1 1 0 0 

 

This maximum limit of necessary cells is explained by the worst case of a block 
constitution. If a block must generate 3-bit output vector and has only cells with one 
logic value ‘1’ available to use, it will be needed at most 7 cells to generate 8 distinct 
vectors at the output of the first stage as shown in Table 3.2. 

Table 3.2: Maximum number of cells at the first stage. 

A B C 
NOR3_X1 
(A,B,C) 

AND3_X2 
(B,A,!C) 

NOR3_X2 
(!C,A,B) 

AND3_X1 
(C,B,!A) 

NOR3_X4 
(A,C,!B) 

OR3_X4 
(!C,!B,!A) 

NAND3_X1 
(C,!B,A) 

0 0 0 1 0 0 0 0 1 1 
0 0 1 0 0 1 0 0 1 1 
0 1 0 0 0 0 0 1 1 1 
0 1 1 0 0 0 1 0 1 1 
1 0 0 0 0 0 0 0 1 1 
1 0 1 0 0 0 0 0 1 0 
1 1 0 0 1 0 0 0 1 1 
1 1 1 0 0 0 0 0 0 1 

 

3.1.1 Implementation 

In general, it is possible to briefly describe the test circuit generation flow as 
follows. Firstly, a parsing of a library is done for the identification of the existing cells. 
Thus, these cells are sorted in a list and the construction of the first part of the block 
begins with the search of cells in the list. In the search task, the cells are tested with 
some or all inputs combinations in order to target a certain number of output vectors 
combinations. 

The first part of a block is complete when the desired number of distinct output 
vectors combinations is achieved and then the construction of another one starts. This 
process continues until all cells of the library have been used at the first stage of one of 
the blocks. 

After the first stage is complete in every block, the functions that will recreate the 
input vector will be generated. These functions represent the second part of each block. 
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In this work, the generation of combinational blocks was automated by a specific 
CAD tool, with parameters to configure the cell list sorting criterion, the number of 
input/output nodes of the block and the enabling/disabling of the NP equivalences for 
the cells in the first stage of the blocks. Next, the implementation of this CAD tool will 
be detailed. 

(a) Parse 

The generation of the combinational blocks starts with the parsing of a Liberty 
library file or an Eqn file, which is loaded into the tool data structure.   

(b) Sort 

The initial stage consists in sorting the available cells. This choice will influence on 
the order in which they will be used later. Cells can be sorted through five methods: (i) 
alphabetical ordering; (ii) input number; (iii) quantity of minterms; (iv) random 
ordering; (v) difference between the quantity of zeros and ones of the cell function.  

(c) Search 

Having the set of cells sorted as desired, the construction of the first stage for a 
block begins. The order in which the cells are picked from the available list can be set in 
three different manners: sequentially, alternately (first-last) and randomly. 

(d) Combinations testing 

The first picked cell is put in the block with its original inputs. So, each picked cell, 
except the first one of the block, is tested with all the combinations of the block and cell 
inputs – if no stopping criterion is used regarding the number of combinations; or it is 
tested with some of the block and cell inputs – if using a stopping criterion. 

The goal is to achieve the maximum number of different combinations with the 
addition of each cell. A cell is added to the block, only if its addition creates a new 
output combination and the combination of cell inputs that generates more different 
output combination will be selected. Although, if the cell input combination in test 
generates the maximum number of possible combinations for the given number of cells, 
the combinations testing stop and the actual combination is used as the cell input 
combination. 

The block inputs combinations are defined as the arrange of the block inputs that can 
be used as cell inputs. 

Defined the block input arrange which will be used as cell input, the permutations 
and/or inversions of this arrange are defined as the cell inputs combinations. 

There are three sets of combinations that can be tested as cell inputs, given a block 
input combination: 

- N: combinations considering negations.  

- P: combinations considering permutations. 

- NP: combinations considering negations and permutations. 

Given the set of combinations that will be tested as inputs for each cell, the software 
can follow the standard sequence of the combinations list to test or it is possible to 
select a combination from the list randomly in order to test. Also for the block inputs 
combinations, the test can follow the standard sequence of combinations or the 
combination to test can be selected randomly. 
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(e) Number of test combinations 

Being b the number of block inputs and c the number of cell inputs, Table 3.3 shows 
how to calculate the number of combinations for each combination set. 

Table 3.3: Number of combinations of the combination sets. 
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One of the biggest problems in the blocks construction arises at this point. There 
may have too many inputs combinations to testing for each cell, and the exhaustive 
search for the best combination can become impracticable for a library with cells that 
have more than 7 inputs. 

(f) Stopping criteria for combinations testing 

To solve such problem, some stopping criteria have been implemented, besides 
exhaustive search (which would be up to the user to try). The first one is the number x 
of tests performed for cell inputs combinations and the number y of tests performed for 
block inputs combinations. The x cell inputs combinations are tested with all the y 
blocks inputs combinations. The cell is put into the block with its best input order after 
xy tests. 

Another method is stopping when the combinations number is increased by one. If 
there are currently z different combinations, when z+1 is reached tests will stop. 

These methods are important because they guarantee the completion of the blocks 
building task in a short time. 

Whenever the desired number of distinct output vectors combinations, i.e. the 2n 
different signal combinations, is achieved, a block is complete and the construction of 
another one starts. Until all cells in library have been used at the first stage of one of the 
blocks, the generation continues. 

(g) Cell usage repetition 

The algorithm tries to use cells that have not been used. However, a cell is added to 
the block, only if its addition creates a new output combination. So, if it does not occur 
and all the cells not used have already been tested with the possible inputs 
combinations, the algorithm tries to use a cell already used. Consequently, the last 
blocks in the structure may have to use in the first stage one or more cells that have 
already been used before, because they may be needed to complete the number of 
distinct output vectors required. 

(h) Second stage functions 
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After the first stage is complete in every block, it is necessary to generate the 
equations which will generate the n-output vector. If we have an n-input block with m 
cells, there will be 2n expected output vectors from the first stage, and 2m-2n vectors that 
are not supposed to happen; the first ones are used to recreate the desired signals, while 
the invalid output vectors are assigned to zero logic value for synthesis purpose.  

(i) Output 

The output file is the description of the first stage of each combinational block in 
mapped Verilog and the description of the functions of the second stage of each 
combinational block in non-mapped Verilog. The functions of the second stage of the 
blocks are mapped through script with RTLCompiler Cadence tool and ABC Berkeley 
tool. The Verilog description of all blocks are simulated with ModelSim Mentor tool 
and converted to SPICE format also through script. The testbench flow is illustrated in 
Figure 3.2. 

 
Figure 3.2: Testbench flow. 
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3.1.2 Sample block 

Supposing a block with 3-bit input vector in which it is desired to generate a 3-bit 
output vector. For that, 23 distinct signal combinations must be identified at the outputs 
of the first stage i.e. it will be necessary at least 3 cells in the first stage of this block. 

The cells were searched alternately (first-last). Starting the process, the first cell was 
picked with its normal inputs (without trying permutations and inversions). When the 
second cell is picked it is tested with all block inputs combinations and cell inputs 
combinations, i.e. in this block generation, no stopping criterion for combinations 
testing was used. Both block and cell inputs combinations were selected randomly. The 
combination of inputs which generated more distinct output signal combinations will be 
fixed as the input of that cell. The cells of a sample block are shown in Table 3.4 with 
their selected block and cell inputs combinations. 

Table 3.4: Cells with their selected block and cell inputs combinations. 

cell 
cell 

inputs 

block input 

combination 

cell input 

combination 
function 

XNOR2_X2 A1A2 IN1 IN2 A1A2 IN1 IN2 
NAND2_X1 A1A2 IN1 IN3 A2A1 IN3 IN1 
XNOR2_X1 A1A2 IN1 IN3 !A1!A2 not_IN1 not_ IN3 
NAND2_X2 A1A2 IN1 IN3 A1!A2 IN1 not_IN3 

 

Figure 3.3 shows the sample block with the following Verilog description for its first 
stage: 

module Block1_block(input[3:1] IN, output[4:1] W); 
  wire not_IN[1]; 
  wire not_IN[3]; 
  INV_X1 I1 ( .A(IN[1]), .Q(not_IN[1]) ); 
  INV_X2 I3 ( .A(IN[3]), .Q(not_IN[3]) ); 
  XNOR2_X2 C1 ( .A1(IN[1]), .A2(IN[2]), .Q(W[1]) ); 
  NAND2_X1 C2 ( .A1(IN[3]), .A2(IN[1]), .Q(W[2]) ); 
  XNOR2_X1 C3 ( .A1(not_IN[1]), .A2(not_IN[3]), .Q(W[3]) ); 
  NAND2_X2 C4 ( .A1(IN[1]), .A2(not_IN[3]), .Q(W[4]) ); 
Endmodule 

 
Figure 3.3: Sample block. 
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The gray vectors in Table 3.5 are repeated combinations. In the generation of this 
block the tree first cells were selected and fixed, but it was not possible generate the 23 
output signal combinations. As shown in Table 3.5, 6 distinct combinations were 
generated. So, the fourth cell was added. Considering this cell C4 with A1(IN[2]), 
A2(not_IN[3])as inputs, only 7 distinct 4-bit vectors values are identified. Trying a 
new configuration, C4 with A1(IN[1]),A2(not_IN[3])as inputs, 8 distinct 4-bit 
vectors values are produced and, at this point, the generation of the first stage of this 
block is completed. Note that, although C1 and C3 (similar to C2 and C4) have the same 
functionality, they are, in fact, different cells due to their distinct drive strengths 
(indicated by X1 and X2 in Figure 3.3). Some approaches for enrichment of a library 
work exclusively by adding new drive strengths (DEDOOD, 2003). 

Table 3.5: Sample block with 3 cells; C4 with inputs A1(IN[2]),A2(not_IN[3])) and 
C4 with inputs A1(IN[1]),A2(not_IN[3])). 

Inputs 3 cells 
C4 

A1(IN[2]),A2(not_IN[3]) 
C4 

A1(IN[1]),A2(not_IN[3]) 
IN1 IN2 IN3 W1 W2 W3 W1 W2 W3 W4 W1 W2 W3 W4 
0 0 0 1 1 1 1 1 1 1 1 1 1 1 
0 0 1 1 1 0 1 1 0 1 1 1 0 1 
0 1 0 0 1 1 0 1 1 0 0 1 1 1 
0 1 1 0 1 0 0 1 0 1 0 1 0 1 
1 0 0 0 1 0 0 1 0 1 0 1 0 0 
1 0 1 0 0 1 0 0 1 1 0 0 1 1 
1 1 0 1 1 0 1 1 0 0 1 1 0 0 
1 1 1 1 0 1 1 0 1 1 1 0 1 1 

 

3.2 Second stage 

The second stage re-creates the block inputs at the output of the whole block from 
the 2n distinct intermediate m-bit vectors of the first stage. This synthesis process can be 
performed using standard synthesis tools. For the example in Figure 3.3 and Table 3.5, 
it is necessary to generate 3 combinational functions which combined reproduce input 
vectors applied to the first stage. Although the first stage of this block has 4 output bits, 
it produces only 23 distinct 4-bit vectors. This way, 24-23 vectors are not supposed to 
happen as depicted in the white lines of Table 3.6 and 3.7. The valid output vectors of 
the first stage (gray lines in Table 3.6 and 3.7) are used to recreate the input signals of 
the first stage and invalid outputs are considered don’t cares, as shown in Table 3.6. 
Table 3.7 shows the same information of the Table 3.6, but sorted according with the 
cells output vectors. 
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Table 3.6: Block inputs, intermediate vectors and outputs. 

IN1 IN2 IN3 W1 W2 W3 W4 f1 f2 f3 
0 0 0 1 1 1 1 0 0 0 
0 0 1 1 1 0 1 0 0 1 
0 1 0 0 1 1 1 0 1 0 
0 1 1 0 1 0 1 0 1 1 
1 0 0 0 1 0 0 1 0 0 
1 0 1 0 0 1 1 1 0 1 
1 1 0 1 1 0 0 1 1 0 
1 1 1 1 0 1 1 1 1 1 

No vector 0 0 0 0 X X X 
No vector 0 0 0 1 X X X 
No vector 0 0 1 0 X X X 
No vector 0 1 1 0 X X X 
No vector 1 0 0 0 X X X 
No vector 1 0 0 1 X X X 
No vector 1 0 1 0 X X X 
No vector 1 1 1 0 X X X 

 

Table 3.7: Second stage functions.  

IN1 IN2 IN3 W1 W2 W3 W4 f1 f2 f3 
No vector 0 0 0 0 X X X 
No vector 0 0 0 1 X X X 
No vector 0 0 1 0 X X X 

1 0 1 0 0 1 1 1 0 1 
1 0 0 0 1 0 0 1 0 0 
0 1 1 0 1 0 1 0 1 1 

No vector 0 1 1 0 X X X 
0 1 0 0 1 1 1 0 1 0 

No vector 1 0 0 0 X X X 
No vector 1 0 0 1 X X X 
No vector 1 0 1 0 X X X 

1 1 1 1 0 1 1 1 1 1 
1 1 0 1 1 0 0 1 1 0 
0 0 1 1 1 0 1 0 0 1 

No vector 1 1 1 0 X X X 
0 0 0 1 1 1 1 0 0 0 

 

Therefore, considering C1, C2, C3, C4 as input[4:1] and the output of each block 
(OUT) representing a second stage function, it is possible to have the following Verilog 
description. 

module Block1_F1(input[4:1] IN, output OUT); 
   assign OUT = IN[2]&!IN[3]&!IN[4]|!IN[2]&IN[3]&IN[4]; 
endmodule 
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module Block1_F2(input[4:1] IN, output OUT); 
   assign OUT = 
IN[2]&(!IN[1]&IN[4]|IN[1]&!IN[4]&!IN[3])|IN[1]&!IN[2]&IN[4]&IN[3]; 
endmodule 
 
module Block1_F3(input[4:1] IN, output OUT); 
   assign OUT = IN[4]&(IN[2]&!IN[3]|!IN[2]&IN[3]); 
endmodule 

 

Since the invalid output vectors of the first stage are assigned to zero logic value for 
synthesis purpose, these invalid vectors may produce eventual redundancies in the 
synthesized second stage. These redundancies may prevent faults affecting the cells of 
the first stage from being observable at the output of the second stage. A straightforward 
way to overcome this problem consists in synthesizing the second stage including an 
additional signal ‘check’ (see Figure 3.4) that identifies at the stage output, all valid 
output vectors of the first stage. An additional input signal called ‘en_check’ (see Figure 
3.4) is included in the combinational block to ensure that the logic generating the signal 
‘check’ is able to detect an invalid vector. This signal emulates the occurrence of an 
invalid vector and exercises the detection capability of the ‘check’ signal. The truth 
table of the synthesized ‘check’ logic is given in Table 3.8, and is a function of the first 
stage outputs and the external signal ‘en_check’.  
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Figure 3.4: Combinational block with ‘check’ signal. 

 

The combinational block, designed as described above, ensures that all single stuck- 
at faults in the cells of the first stage are detected at the output of the second stage. 
Additional redundancies may still exist and prevent that some stuck-at faults affecting 
the second stage are detected at the combinational block output. However, since the full 
fault coverage in the first stage is just enough to prove the correctness of the set of cells 
in the library under verification, no other action is taken here to eliminate the remaining 
redundancies in the second stage. 
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Table 3.8: Truth table used to synthesize the second stage of a combinational block. 

W1 W2 W3 W4 f1 f2 f3 en-check 
0 0 0 0 X X X 0 
0 0 0 1 X X X 0 
0 0 1 0 X X X 0 
0 0 1 1 1 0 1 1 
0 1 0 0 1 0 0 1 
0 1 0 1 0 1 1 1 
0 1 1 0 X X X 0 
0 1 1 1 0 1 0 1 
1 0 0 0 X X X 0 
1 0 0 1 X X X 0 
1 0 1 0 X X X 0 
1 0 1 1 1 1 1 1 
1 1 0 0 1 1 0 1 
1 1 0 1 0 0 1 1 
1 1 1 0 X X X 0 
1 1 1 1 0 0 0 1 

 

Using a library with 64 combinational cells, eight combinational blocks were 
automatically generated to build a verification circuit that embedded all library cells in 
the first stage of blocks. Fault coverage analysis was performed in each block with and 
without the ‘check’ signal using Flextest Mentor tool. Results show that redundant 
faults presented in the first stage of some blocks were eliminated with the addition of 
the ‘check’ signal as described in the following reports.  

Block2 – first stage 

CMD> report faults /bBlock2/C1 /bBlock2/C2 /bBlock2/C3 /bBlock2/C4 
/bBlock2/C5 /bBlock2/C6 /bBlock2/C7 /bBlock2/C8 /bBlock2/C9 -class 
REDUNDANT 
  1     RE    /bBlock2/C6/and2/IN0 
  1     RE    /bBlock2/C6/or1/OUT 
  1     RE    /bBlock2/C6/or1/IN0 
  1     RE    /bBlock2/C6/or1/IN1 

 

Block2 – first stage (with checker) 

CMD> report faults /bBlock2/C1 /bBlock2/C2 /bBlock2/C3 /bBlock2/C5 
/bBlock2/C4 /bBlock2/C6 /bBlock2/C7 /bBlock2/C8 /bBlock2/C9 -class 
REDUNDANT 
//  WARNING: No faults reported 

 

Block5 – first stage 

CMD> report faults /bBlock5/C1 /bBlock5/C2 /bBlock5/C3 /bBlock5/C4 
/bBlock5/C5 /bBlock5/C6 /bBlock5/C7 /bBlock5/C8 /bBlock5/C9 
/bBlock5/C10 -class REDUNDANT 
  0     RE    /bBlock5/C2/or3/IN1 
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Block5 – first stage (with checker) 

CMD> report faults /bBlock5/C1 /bBlock5/C2 /bBlock5/C3 /bBlock5/C4 
/bBlock5/C5 /bBlock5/C6 /bBlock5/C7 /bBlock5/C8 /bBlock5/C9 
/bBlock5/C10 -class REDUNDANT 
//  WARNING: No faults reported 

 

Block8 – first stage 

CMD> report faults /bBlock8/C1 /bBlock8/C2 /bBlock8/C3 /bBlock8/C4 
/bBlock8/C5 /bBlock8/C6 /bBlock8/C7 /bBlock8/C8 /bBlock8/C9 
/bBlock8/C10 /bBlock8/C11 -class REDUNDANT 
  0     RE    /bBlock8/C5/or3/IN0 

 

Block8 – first stage (with checker) 

CMD> report faults /bBlock8/C1 /bBlock8/C2 /bBlock8/C3 /bBlock8/C4 
/bBlock8/C5 /bBlock8/C6 /bBlock8/C7 /bBlock8/C8 /bBlock8/C9 
/bBlock8/C10 /bBlock8/C11 -class REDUNDANT 
//  WARNING: No faults reported 

 

3.3 Combinational blocks stage analysis 

3.3.1 First stage analysis 

Blocks may be constructed using N, P or NP combination sets on the cell input 
combinations (AGOSTA, 2007). Each of these configurations generates different 
amount of blocks with distinct sizes. 

A library with 64 cells up to 4 inputs was used to test the software with (a) NP, (b) N 
and (c) P combination sets. The blocks were constructed without restriction, i.e. testing 
all the block and cell combinations. The tool tries to use each library cell once (new 
cells), but sometimes it is necessary to use a cell already used (reused cells) in order to 
complete the last block(s). If a chosen cell does not produce at least one different output 
signal combination, this cell is discarded (discarded cells) and another is chosen to test. 

(a) Cell combinations: NP 

Table 3.9 shows the number of NP combinations used to test a cell when the block 
presents 4 inputs and cells have 2, 3 or 4 inputs. 

Table 3.9: Number of combinations tested using NP configuration.  

block inputs cell inputs Block combs Cell combs Total combs 
4 2 6 8 48 
4 3 4 48 192 
4 4 1 384 384 

 

Table 3.10 reports the structure of the first stage of each combinational block 
generated using NP combinations. It is possible to observe the total cells, new cells, 
reused cells, discarded cells and build time of each block first stage. 
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Table 3.10: NP configuration report for the set of 64 cells. 

NP 
 total cells new cells reused cells discarded cells build time (ms) 

block1 5 5 0 0 121 
block2 9 9 0 0 300 
block3 8 8 0 0 150 
block4 8 8 0 0 130 
block5 10 10 0 0 261 
block6 8 8 0 0 120 
block7 8 8 0 0 160 
block8 11 8 3 0 130 
total 67 64 3 0 1372 

 

(b) Cell combinations: N  

Table 3.11 shows the number of N combinations used to test a cell when the block 
presents 4 inputs and cells have 2, 3 or 4 inputs. 

Table 3.11: Number of combinations tested using N configuration.  

block inputs cell inputs Block combs Cell combs Total combs 
4 2 6 4 24 
4 3 4 8 32 
4 4 1 16 16 

 

Table 3.12 reports the structure of the first stage of each combinational block 
generated using N combinations. It is possible to observe the total cells, new cells, 
reused cells, discarded cells and build time of each block first stage.  

Table 3.12: N configuration report for the set of 64 cells. 

N  
 total cells new cells reused cells discarded cells build time (ms) 

block1 5 5 0 0 100 
block2 8 8 0 0 50 
block3 9 9 0 0 40 
block4 8 8 0 0 30 
block5 10 10 0 0 40 
block6 8 8 0 0 30 
block7 9 9 0 0 20 
block8 10 7 3 0 31 
total 67 64 3 0 341 

 

(c) Cell combinations: P  

Table 3.13 shows the number of P combinations used to test a cell when the block 
presents 4 inputs and cells have 2, 3 or 4 inputs. 
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Table 3.13: Number of combinations tested using P configuration.  

block inputs cell inputs Block combs Cell combs Total combs 
4 2 6 2 12 
4 3 4 6 24 
4 4 1 24 24 

 

Table 3.14 reports the structure of the first stage of each combinational block 
generated using P combinations. It is possible to observe the total cells, new cells, 
reused cells, discarded cells and build time of each block first stage.  

Table 3.14: P configuration report for the set of 64 cells. 

P  
 total cells new cells reused cells discarded cells build time (ms) 

block1 7 7 0 0 60 
block2 11 11 0 4 70 
block3 10 10 0 7 80 
block4 9 9 0 4 30 
block5 12 12 0 4 80 
block6 10 7 3 8 20 
block7 11 4 7 10 40 
block8 11 2 9 5 40 
block9 12 1 11 3 30 
block10 11 1 10 5 30 
total 104 64 40 50 480 

 

Figure 3.5 shows the total number of cells used in the first stage of the 
combinational blocks using NP, N and P set of combinations. 
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Figure 3.5: Total cells / combination set. 
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Figure 3.6 shows the number of reused cells in the first stage of the combinational 
blocks using NP, N and P classes. 
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Figure 3.6: Reused cells / combination set. 

 

Figure 3.7 shows the distribution of cells in the first stages of the combinational 
blocks using NP, N and P set of combinations. 
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Figure 3.7: Distribution of cells in blocks. 

 

Figure 3.8 shows the build time of the first stages of the combinational blocks using 
NP, N and P set of combinations. 
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Figure 3.8: Build time / combination set. 

Tests show the following results: 

- NP set has the biggest number of combinations to test, following by the N set and 
P set (Tables 3.9, 3.11 and 3.13). 

- NP and N set generate similar structures of blocks, while P set uses more cells 
(Figure 3.5), generates more and bigger blocks (Figure 3.7) and reuses more cells 
(Figure 3.6) and also discards more tested cells (Table 3.14). 

-NP set presents the greatest blocks total build time (Figure 3.8). 

Other test was performed using the library 44-6.genlib with 208 cells up to 7 (Figure 
3.9), 92 cells up to 6 (Figure 3.10) and 38 cells up to 5 (Figure 3.11) inputs, for all three 
sets of combinations. Figures 3.9, 3.10 and 3.11 show the number of blocks and the 
amount of cells used in the blocks. Results show that NP equivalence usually generates 
more blocks with similar sizes and fewer cells per block than N and P equivalencies. 

In Figure 3.12 it is possible to observe that the total cells used in the first stage of the 
blocks is less sensitive to the combination set used. 
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Figure 3.9: Number of cells per block (first stage) for the combination set using the 

library 44-6.genlib with 208 cells up to 7 inputs.
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Figure 3.10: Number of cells per block (first stage) for the combination set using the 

library 44-6.genlib with 92 cells up to 6 inputs. 
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 Figure 3.11: Number of cells per block (first stage) for the combination set using the 

library 44-6.genlib with 38 cells up to 5 inputs. 
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Figure 3.12: Total cells in the first stage considering the combination set for libraries 

with different maximum number of cell inputs. 
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3.3.2 Second stage analysis 

The maximum number of cell inputs of a given library has a significant impact in 
the amount of cells required by the proposed approach. The relation between the cells 
used in the second stage, and the cells used on the first stage is used as a measure of 
area overhead. Tests have shown that an increase of one cell input duplicates the area 
overhead. Figure 3.13 reports the area overhead measurements using libraries with 
different cell input size. 
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Figure 3.13: Area overhead measurements: 2nd / 1st stage, versus number of cell inputs. 

Another test was performed using the library 44-6.genlib with 16 cells up to 4 
(Figure 3.14), and 38 cells up to 5 (Figure 3.15) inputs for NP combination set. In this 
test the intention was to show the total number of cells in the first and second stage 
when the number of block inputs is increased. In Figures 3.14 and 3.15, it is possible to 
verify that in each input block increase, there is a significant increase in the number of 
cells used in the second stage. 
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Figure 3.14: Number of cells used in the 1st and 2nd stages for different number of block 

inputs using library 44-6.genlib (16 cells up to 4 inputs). 



 

 

47 

 

 

Block Inputs Number Variation
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Figure 3.15: Number of cells used in the 1st and 2nd stages for different number of block 

inputs using library 44-6.genlib (38 cells up to 5 inputs). 

 

Other test was performed using the library 44-6.genlib with 92 cells up to 6 (Figure 
3.16), and 208 cells up to 7 (Figure 3.17) inputs, for all three set of combinations. 
Figures 3.16 and 3.17 show the number of blocks and the amount of cells used in the 
blocks. Results show that NP equivalence usually generates more blocks with similar 
sizes and fewer cells per block than N and P equivalencies. Also NP equivalence uses 
less total cells in second stage than N and P equivalencies. These same results have 
been obtained in the first stage analysis. 
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Figure 3.16: Number of cells per block (second stage) for the combination set using the 

library 44-6.genlib with 92 cells up to 6 inputs. 
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Figure 3.17: Number of cells per block (second stage) for the combination set using the 

library 44-6.genlib with 208 cells up to 7 inputs. 

 

3.4 Last considerations 

Some specifications were used in the construction of the test circuit. For instance, 
the number of inputs is the same of the block outputs. This specification allows the 
blocks and also the testbench circuit to present the property of the reversible logic 
(SHENDE, 2002), so they can be called as a reversible circuit. Reversible circuits 
(gates) have the same number of inputs and outputs and have one-to-one mappings 
between input and output vectors; thus the vector of the input states can be uniquely 
reconstructed from the vector of the output states (PERKOWSKI, 2001). 

Besides, the sequence of the block output signals should be the same as the block 
input sequence and consequently, the sequence of the output signals in the last cascaded 
block should be the same as the input sequence in the first block. 

In the second stage of an n-input block with m cells, the 2m-2n vectors that are not 
supposed to happen were assigned to zero logic value for synthesis purpose 

Since the combinational blocks, which are the basic structures of the proposed test 
circuit were described, in the next chapter the test circuit architecture and its operation 
modes will be presented and discussed.  
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4 CIRCUIT ARCHITECTURE AND OPERATION 
MODES 

In this chapter the architecture of the test circuit and its operation modes are 
described. The architecture was described in Verilog and verified with ModelSim 
Mentor tool and HSPICE Synopsys tool. 

As mentioned previously, the test circuit must verify and validate a cell library. In 
order to do that, the test circuit must also guarantee its correctness, testing itself, i.e., the 
circuit needs to be auto testable. It also means that the generation of test vectors must be 
simplified. In order to obtain an auto testable circuit, the faults have to be verified and 
identified. These faults may be either functional or temporal faults.  

4.1 Circuit Architecture 

As described in previous chapter, the combinational blocks guarantee the functional 
validation of the entire set of logic cells since each cell has been placed at least once in 
the first stage of such blocks, and the 2n input combinations are applied at n inputs of 
each block. Once the block outputs reproduce the same input signal, they can be 
arranged in different ways creating the test circuit architecture. Long paths can be built, 
for instance, by cascading the combinational blocks in chain configuration using the 
output signals from one circuit as inputs of the subsequent block. Doing so, the primary 
chain input values should be observed at the chain output nodes in the case of fault free 
behavior. Figure 4.1 shows the combinational blocks in chain and its simulation can be 
observed in Figure 4.2. 

 
Figure 4.1: Combination blocks in chain. 

 



 

 

50 

 
Figure 4.2:  Simulation of combination blocks in chain. 

 

The ‘check’ signal can also be cascaded with the block signals as shown in Figure 
4.3. Once the ‘check’ is able in the beginning of the chain, invalid vectors could be 
detected. 

 
Figure 4.3: Combination blocks in chain with ‘check signal’. 

 

In order to reduce the use of input pins, it means provide a sequence of test vector 
with minimum external intervention, the signals at the end of the chain are reconnected 
to primary inputs in a finite state machine (ring) configuration. In this configuration a 
register barrier, composed by D-type flip-flops, is added to the feedback path to avoid 
racing. The configuration is represented in Figure 4.4. 

 
Figure 4.4: Combination blocks with flip-flop barrier. 

 

However, since the feedback signals should be modified to provide the chain input 
variation, an adder is used to increment the binary vector and make the finite state 
machine works as a counter as shown in Figure 4.5. It can perform sums by ‘K’ 
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allowing thus other than just a counting 1-by-1 operation, providing different vector 
transitions that are important to check some charging and discharging conditions in 
internal nodes intra- and inter-cells. 

  

Figure 4.5: Combination blocks in finite state machine configuration. 

 

4.2 Operation Modes 

The basic architecture of the testbench circuit is slightly modified to allow different 
operating modes which provide distinct data evaluation. Notice that the aim of this 
circuit is to validate the full functionality of the entire set of cells, as well as evaluate the 
accuracy of the electrical characterization values of each cell (timing and power 
dissipation data) through the correlation of the static timing analysis (STA) and power 
analysis with some experimental measures. The following circuit operation modes and 
their benefits are discussed in this section. 

• synchronous mode; 
• asynchronous mode; 
• oscillation BIST mode; 
• diagnosis mode. 
 

4.2.1 Synchronous Mode 

In the synchronous mode, the barrier register is controlled by an external clock 
signal. The adder is used to increment the vector in the ring, acting as a synchronous 
counter +K. The correct behavior of the counter demonstrates the correct functionality 
of the combinational blocks and, consequently, of the whole set of cells under testing. 

The maximum operation frequency for the circuit, which indicates the worst case 
path delay, is obtained by decreasing the clock period until the ring counter gives an 
erroneous result. Such critical path delay is probably different by changing the 
increment value K. Figure 4.5 shows the synchronous operation mode and its simulation 
is presented in Figure 4.6. 
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Figure 4.6: Simulation of synchronous mode. 

 

The main contribution of the synchronous mode is the evaluation of the power 
dissipation, including its dynamic and static components. The external control of the 
clock signal imposes the frequency operation for switching, and the dynamic power 
consumption can be related to that. The static power, on the other hand, could be 
measured at low frequencies as illustrated in Figure 4.7 and simulated in Figure 4.8. At 
each new input state in the chain the static consumption should be obtained since such 
power dissipation component depends strongly on the steady state. The extracted 
information should then be correlated to design power analysis data, obtained 
considering the electrical simulation values from the cell characterization process. 

 
Figure 4.7: Power consumption in synchronous mode. 
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i(vdd)

CK

 
Figure 4.8: Power consumption in the synchronous mode simulation. 

 

4.2.2 Asynchronous Mode 

In this architecture the concept of self-timed ring (WILLIAMS, 1992) is applied. If 
an application uses a pipeline to solve an iterative problem requiring a sequence of 
internal computation operations, then the pipeline can take input from its own output. A 
looped self-timed pipeline forms a self-timed ring. If a given problem is fully specified 
by its initial operands, then the ring’s performance is not limited by a need for 
additional external data inputs during its iterations. Since the ring is composed of self-
timed pipeline stages, which communicate locally, its performance is also independent 
of an external clock. 

Thus, in the asynchronous mode, or self-timed ring, the clock signal in the barrier 
register is provided by the comparator that checks whether or not the input vector 
In(n..1) has already propagated to the end of the chain Out(n..1). When the same values 
applied to the circuit inputs get to the end of the chain, the comparator switches from ‘0’ 
to ‘1’, clocking the register. The new data is retrieved in the register and passed to the 
adder. The adder increments the register output and applies the new vector to the chain. 
At this moment, since In(n..1) is no longer equals to Out(n..1), the comparator output is 
back to ‘0’ and remains at this state until the new vector propagates through the whole 
chain of combinational blocks. Figure 4.9 shows the asynchronous operation mode. In 
Figure 4.10 it is possible to observe when the Ctrl_CK changes from ‘0’ to ‘1’, i.e. from 
the synchronous to the asynchronous mode. 
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Figure 4.9: Asynchronous mode. 
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Figure 4.10: Simulation of synchronous and asynchronous mode. 

At this operation mode, just an input signal transition is enough to start the self-
timed counting, and the right operation keeps the circuit running. It means, for instance, 
the starting of the self-timed operation is obtained by modifying an external adder input 
bit ‘Ki’. In case an error occurs, the data at the end of the chain will not be equal to the 
data at the circuit inputs, the comparator will not switch to ‘1’ and the self-timed 
execution will stop. 

The ‘check’ signal from the last block can also be considered in the comparator 
evaluation. If an error is detected through the chain, ‘check’ is set to ‘0’, propagates and 
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disables the comparator, freezing the verification circuit in the erroneous state. The self-
checking property of the asynchronous mode makes it appropriate for functional cell 
verification. Clock signal monitoring is used to check the right logic operation. Figure 
4.11 illustrates the simulation of a fault occurrence during the asynchronous mode, 
demonstrating that the self-timed counting stops when the right signal vector does not 
propagate through the combinational block chain. 

 
Figure 4.11: Electrical simulation of fault occurrence during the self-timed counting 

(asynchronous mode). 

Timing information can be extracted from complete counting +K, which means the 
average logic path delay since in a self-timed circuit the speed is as fast as possible 
according to the delay of each transition, or the time to finish a calculation. This mode 
is not appropriated to analyze power consumption since it is quite impossible to control 
the counter state transition since it is not synchronized by a clock signal. 

Furthermore, since the calculation is continuous in time, i.e. once a calculation is 
finished the new one starts immediately, it is not possible to observe the static 
dissipation. On the other hand, the dynamic power consumption can be related to the 
complete counter computation but not related to a given frequency like in the 
synchronous mode as illustrated in Figure 4.12 and simulated in Figure 4.13. 
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Figure 4.12: Power consumption in asynchronous mode. 
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Figure 4.13: Power consumption in asynchronous mode simulation. 

 

Notice that a set of circuits working continuously in this mode can be used to verify 
library reliability and robustness against degradations coming from continuous 
utilization caused by effects like electromigration (CHRISTIANSEN, 2006), NBTI 
(KUMAR, 2007), or other causes. NBTI is a degradation of PMOS transistors that 
depends on the amount of time the output of the cell is connected to Vdd. These circuits 
after being continuously stressed for a period of timing can be used, even if the circuit 
does not fail, to test performance degradation caused by NBTI. 

 

4.2.3 Digital OBIST Mode 

In high-complexity mixed-signal circuits, there are severe restrictions on 
accessibility to the various parts of the CUT and also a serious limitation on the number 
of test pins. Several design-for-testability techniques have been developed to increase 
observability and controllability, and to minimize the number of test pins. The 
alternative approach is the BIST (Built-in Self-Test) in which control, test stimulus 
generator and measurement circuitry are placed on the same chip and should be able to 
present a binary pass or fail result. 

In (ARABI, 1997) a vectorless digital-output BIST technique for mixed-signal 
integrated circuits based on the oscillation-test methodology (TONER, 1993) (ARABI, 
1995) (ARABI, 1996) is proposed. The oscillation-test method for analog and mixed-
signal circuits consists of first partitioning the complex analog circuit into functional 
building blocks such as amplifier, op-amp, comparator, filter, and data converter and 
then converting each building block to an oscillating circuit. Faults in the initial circuit 
related to components (or specifications) that are involved in the oscillator structure 
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manifest themselves as a deviation of the oscillation frequency. Therefore, the loss or 
the deviation of the oscillation frequency from its nominal value can be employed to 
test the initial circuit. This test method has proven to be very efficient in terms of fault 
coverage and area overhead (ARABI,1998) (ARABI, 1996) (ARABI, 1996a). 

In (ARABI, 1998) (ARABI, 1998a), a method and associated circuitry for testing 
delay and stuck-at faults in digital integrated circuits are presented. The method is an 
extension of oscillation-test method already proposed for analog and mixed-signal 
circuits to digital systems. However, there is a significant difference between the 
application of the oscillation-test to analog and digital circuits due to the different nature 
of these circuits. 

In order to introduce this test concept for digital circuits, consider a well-known 
digital ring oscillator in which oscillations occur when there is an odd number of 
inverters in the ring. The oscillation frequency is determined by the sum of 0 to 1 and 1 
to 0 propagation delays in the loop. Therefore, the propagation delay through the chain 
of inverters constructing the oscillator can be obtained by measuring the oscillation 
frequency. Any fault that affects the propagation delay varies the oscillation frequency. 
Besides, any stuck-at 0 or 1 fault in the circuit will stop the oscillation frequency. If the 
circuit under test was a chain of inverters, it will be possible to test the circuit for all 
stuck-at and path delay faults by simply connecting its output to its input and observing 
the oscillation frequency. 

Considering this special case we introduce the test methodology called Digital 
oscillation-test which consists of first sensitizing a path in the digital circuit under test 
and then incorporating it into a ring oscillator to test for delay and stuck-at faults. As the 
oscillation frequency is determined by the propagation delay through the path, it can be 
used to measure the path propagation delay. Any faults that can stop the oscillations, 
such as stuck-at faults in the loop, can be detected by observing the oscillation 
frequency. This procedure should be exercised for all, or at least critical paths in the 
circuit. If the target path is inverting, we establish a non-inverting feedback from its 
output to its input to convert it to an oscillator. For a non-inverting path, an inverting 
feedback should be established by connecting its output to its input via an inverter. In 
other words, we should make sure that there is an odd number of inverters in the loop to 
guarantee oscillations. To sensitize a path in the circuit, off-path inputs of all gates 
directly involved in the path should be set to non-controlling values by properly setting 
the primary inputs. 

In synchronous or asynchronous mode, the same binary value of an i-index input is 
expected to re-appear at the corresponding i-index output of the verification circuit. This 
property is ensured by construction of the combinational blocks. If, while closing the 
feedback loop, i-output is directly connected to i-input, i-path is kept in steady state. 
But, if i-output is complemented before connecting to i-input (oscillating bit), a positive 
feedback will result and i-path will oscillate. According to this principle, in oscillation 
mode the feedback loop is closed such that at least one of the primary inputs of the 
chain receives the complement of its previous value, as depicted in Figure 4.14. The 
MUX used to perform such operation is illustrated in Figure 4.15. The bit inversion 
necessary to ensure the oscillation condition is implemented through the inverter placed 
at the input of the multiplexing system in Figure 4.16. If a single input-output pair is 
considered, just the associated path will oscillate, and all others are kept in steady state. 



 

 

58 

 

Figure 4.14: Digital OBIST mode. 

 

 
Figure 4.15: Multiplexer for oscillations BIST mode. 

 

 
Figure 4.16: Oscillation BIST path. 

 



 

 

59 

 

The main contribution of the oscillation BIST mode to the verification process is 
that it makes it possible to measure the signal delay propagation through different 
logical paths involving different library cells. These delay results are then compared to 
those obtained from a previous static timing analysis, which took into account the cell 
timing data got from simulations carried out for electrical library characterization. The 
simulation of the OBIST mode is presented in Figure 4.17. 

Individual cell data obtained from the library characterization only make sense if 
timing and power analysis, performed during the IC design flow, provide good 
correlation to the actual behavior of fabricated circuits. This correlation may be 
investigated for different voltages and temperatures (LASBOUYGUES, 2007). 
Dedicated structures, like ring oscillators and cell chains, can be applied to perform this 
correlation (HANRIAT, 2001). In this case, however, the number of test structures to 
guarantee the validation of the entire set of cells becomes unacceptable. The three 
operation modes described previously are such that timing and power of fabricated 
circuits can be easily measured and checked against the simulated behavior, also for 
power supply variation.  

 
Figure 4.17: Simulation of digital OBIST mode. 

 

Table 4.1 shows the period obtained from a bit oscillation, according to the different 
state of the fixed inputs and consequently different logic paths. 
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Table 4.1: Data of the OBIST mode simulation.  

Interval (ns) (In(1),In(2),In(3),In(4)) Period (ns) 
5-10 (In(1),1,1,1) 1.76 
10-15 (In(1),0,1,1) 1.47 
15-20 (In(1),1,0,1) 1.35 
20-25 (In(1),0,0,1) 1.49 
25-30 (In(1),1,1,0) 1.65 
30-35 (In(1),0,1,0) 1.59 
35-40 (In(1),1,0,0) 1.58 
40-45  (In(1),0,0,0) 1.75 
45-50 (0,1, In(3),1) 1.74 

 

4.2.4 Diagnosis Mode 

Additional multiplexers can be included in the circuit architecture, at no significant 
penalty in area, to select part of the combinational chain. Multiplexers at the input of 
each combinational block can select the signal from the previous block or directly from 
the beginning of the chain, removing the influence of the previous blocks in the ring 
loop. Similarly, multiplexers at the output of the blocks can send the data in the middle 
of the chain directly to the end of that. Making so, the chain can be easily reduced until 
a single block or even no one, allowing in this case the verification of the counter and 
the register barrier without the influence of the combinational chain. This mode, 
illustrated in Figure 4.18, provides the diagnosis of a faulty block, as well as allows the 
circuit operation at different modes, described above, running through part of the entire 
chain. 

 
Figure 4.18: Diagnosis mode. 
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Figure 4.19: Diagnosis mode simulation. 

Considering the architecture of the Figure 4.18, Figure 4.19 shows the simulation of 
the diagnosis mode with ‘In(1)’ as the oscillation bit. When ‘r’ MUX control selects the 
signal from the beginning of the chain, it removes the two first blocks and the 
oscillation bit presents a smaller period since the chain have been reduced. The period is 
even smaller when now the ‘s’ MUX control selects the signal of the CB3 and the 
architecture presents only one block. The data of the diagnosis mode simulation can be 
observed in Table 4.2. 

Table 4.2: Data of the diagnosis mode simulation.  

Interval (ns) Active blocks Period (ns) 
15-35 complete chain 4.07 
35-45 half-chain 2.52 
45-60 one-fourth chain 1.64 

 

The multiplexer used to provide the oscillation BIST mode can also be applied to 
interrupt the ring configuration, with no additional circuit. This open chain mode allows 
the stimuli of the combinational blocks chain directly by external signals. It is useful for 
functional verification as well as for power dissipation data extraction. 

4.3 Overhead Analysis 

The testbench circuit proposed here can be integrated in the same die with an ASIC, 
resulting in an area overhead as illustrated in Figure 4.20. Two experiments have been 
done to evaluate this overhead. 
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Figure 4.20: Certification circuit for the target ASIC. 

In the first experiment, the 64 cells library previously used in this work was targeted. 
It is composed of cells with at most 4 inputs. The number of input/output nodes for the 
generation of combinational blocks was kept at four to ensure the instantiation of all 
library cells. Eight combinational blocks were automatically generated to build a 
verification circuit that embedded all library cells in the first stage of blocks. In terms of 
circuit complexity, the whole circuit used around 500 cells of the library to implement 
the chain of combinational blocks and the additional circuitry to implement the 
synchronous, asynchronous and oscillation modes of operation. The circuit ensures the 
verification of all the 64 cells in the library, and it uses an average of 7.03 circuit 
instances per cell from the library. Note that, in Table I the ‘tv80_core’ benchmark, that 
used all 64 cells of the library for its implementation, uses 5,597 cells in total. If the 
verification circuit generated here was the test vehicle to verify the library used to 
implement the ‘tv80_core’ benchmark, an area overhead of 8% logic cells would result. 
However, if ‘wb_conmax_top’ was chosen to validate the library, a circuit with 28,089 
instances would be produced and yet not all the cells from the library would be 
instantiated.  

The second experiment was produced to test a library containing 208 cells, mainly 
CMOS complex gates, with up to 7 inputs. This example resulted in a verification 
circuit composed of around 8,000 instances, in order to verify the complete set of 208 
cells. The number of instances per cell library is around 16, which is still acceptable. 
This is a very small circuit to test such a huge library, considering that a cell based 
ASIC can easily have more than 100K cell instances. 

Therefore, the test circuit brings little silicon overhead to the final design, allowing 
the fabrication embedded with the target ASIC, as illustrated in Figure 4.20. 

The overhead in terms of I/O pins is described in the following, considering n-bit 
combinational blocks. The value ‘n’ represents the maximum number of inputs in a 
single cell to be validated. In this case, the final validation circuit presents: 

• ‘n’ input signals – K(n..1); 
• ‘n’ output signals – Out(n..1); 
• one external clock signal; 
• one D-type flip-flop reset signal; 
• some multiplexer control signals, being that the number can be reduced by using 

a decoder circuit since some multiplexers are dependent on each others. 
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Depending on the complexity of the target ASIC, such a pin overhead may prove 
unaffordable for certification at the chip level. In this case, considering its little silicon 
overhead, the testbech could be though as a certification vehicle at the wafer-level and 
be used to validate sets of neighbouring ASICs.  

From this analysis, one can conclude that the testbench methodology represents a 
low cost solution for validating all soft-cells included in an ASIC, and may act as a 
library certification circuit at chip or wafer-level. In terms of EDA vendor interest, the 
proposed methodology represents an efficient way to validate soft-libraries by using 
very compact circuits. 
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5 CONCLUSIONS 

In this work, a test circuit was proposed to validate the full functionality of a set of 
logic cells, as well as to verify timing and power consumption behaviors which can be 
correlated with design timing and power estimations in order to validate the cell data 
provided by electrical characterization. 

 The methodology to generate such circuit is based in combinational blocks that 
ensure full logic verification of a set of cells. The proposed architecture consists in 
building combinational blocks that use all cells from the target library and receive an 
input bus, where all signal combinations are provided, producing a sequence of output 
vectors also presenting all possible signal combinations, to be then applied to the next 
combinational block. Each combinational block is built using two cascaded stages. The 
first stage is built with instances of cells placed in one-logic level exercised by all 
possible input combinations. The output signals of verified cells are used as inputs to 
the second stage, which regenerates the primary inputs. The second stage is composed 
of synthesized functions with additional cells instances in a multi-logic level. 

A specific CAD tool was developed in Java in order to automate the generation of 
combinational blocks. The software presents parameters to configure the cell list sorting 
criterion, the number of input/output nodes of the block and the enabling/disabling of 
the NP equivalences for the cells in the first stage of the blocks. Tests were performed 
with different tool configurations in order to analyze the blocks characteristics using 
such configurations. 

The tool output files are the descriptions of the first stage of each combinational 
block in mapped Verilog and the description of the functions of the second stage of each 
combinational block in non-mapped Verilog. The functions of the second stage of the 
blocks were mapped through script with RTLCompiler Cadence tool and ABC Berkeley 
tool. The Verilog description of the blocks was simulated with ModelSim Mentor tool 
and converted to SPICE format also through script. The basic architecture of the test 
circuit was slightly modified to allow different operating modes which provided distinct 
data evaluation using SPICE electric simulations. Also a fault coverage analysis of the 
blocks was performed through DFT Mentor Graphics tools. 

The proposed circuit represents an efficient circuit for on-silicon verification and 
validation of digital cell libraries. This solution merges well established design and test 
concepts. The circuit functionality is verified through synchronous/asynchronous ring 
architecture and by applying the oscillation BIST (Built-In Self-Test) technique for 
different circuit paths. Also, fault diagnosis can be analyzed with the addition of 
multiplexers as shown in the diagnosis mode. The test circuit is easily run with few 
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external interventions and the output verification turns out to be quite simple. Besides 
functional cell evaluation, timing and power consumption can also be extracted for 
comparisons to high-level estimations performed in the IC design flow, validating the 
cell electrical characterization data.  

Additionally, since this verification circuit brings little silicon overhead to the final 
design, it can be implemented together with the target ASIC acting as a sort of ‘library 
certification circuit’. Although software-generated cells are the main target of the 
proposed approach, due to the need of verifying logic gates not taped out before their 
use in ASIC design, pre-customized standard cell libraries can also benefit from this 
approach. 

In future works, different configurations for the construction of the combinational 
blocks should be evaluated such as searching, sorting, inputs and outputs tested 
combinations and so on. Furthermore, different configurations in the architecture should 
be considered. For instance, the inputs and outputs of the combinational blocks could 
not be necessarily equal. Also some blocks could be parallelized taking into account the 
number of block cells inputs. 

Diagnosis techniques should be considered in future works for cell error 
identification, by applying scan test techniques, for example. Another related study is 
the noise analysis in order to diagnose hazards (spikes) in block signals.  
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APPENDIX A    CIRCUITO DE TESTE EM SILÍCIO PARA 
VALIDAÇÃO DE BIBLIOTECAS DE CÉLULAS LÓGICAS 
GERADAS POR SOFTWARE 

Projeto baseado em células é definitivamente a abordagem mais aplicada no 
mercado de ASIC atualmente. Essa abordagem de projeto implica o reuso de células de 
biblioteca para construir circuitos digitais mais complexos. Como a etapa do 
mapeamento tecnológico no fluxo de projeto padrão é baseado nos dados pré-
caracterizados de células pré-projetadas, o espaço do projeto de ASIC e a eficiência do 
mesmo tende a ser limitado pela biblioteca em uso. Quanto mais opções de células e 
tamanhos disponíveis, maiores são as possibilidades de melhorar o projeto do circuito. 
O enriquecimento de uma biblioteca pode ser feito apenas adicionando novos tamanhos, 
ou através da adição de novas funções com implementação série/paralelo padrão, ou 
mesmo com topologias de transistor especiais. Devido a essa adição de flexibilidade no 
espaço de projeto, há um aumento no interesse comercial por abordagens que 
consideram geração de células sob demanda. Essas abordagens são também 
referenciadas como ‘livre de biblioteca’ ou ‘células geradas por software’. A principal 
desvantagem da técnica de mapeamento tecnológico livre de biblioteca é o uso de um 
conjunto de células não validadas em silício. Esse fato torna clientes conservadores 
relutantes em adotar essa técnica de projeto. 

A maneira mais intuitiva de projetar um circuito de teste para o conjunto de células 
consiste em instanciar todas as células compartilhando as entradas primárias para 
controlabilidade do teste, enquanto os sinais individuais de saída são multiplexados a 
fim de reduzir o número de pinos de E/S do circuito, mantendo-se a observabilidade do 
teste. Essa estratégia fornece a validação funcional completa de cada porta lógica. 
Contudo, informações de tempo são difíceis de ser obtidas através de um circuito com 
apenas um nível lógico de profundidade. Adicionalmente, os multiplexadores na saída e 
eventual buferização para compensar as altas capacitâncias nos nodos de entrada, bem 
como a estrutura de encapsulamento, tornam essa metodologia impraticável para medir 
características temporais de uma porta lógica. Esse é um dos motivos para se utilizar 
osciladores em anel e estruturas oscilantes de teste na caracterização de atraso e teste, 
respectivamente. 

Entretanto, o uso extensivo de osciladores em anel pode resultar em um grande 
número de instâncias de cada célula a serem validadas, o que seria impraticável para 
bibliotecas com um grande número de células. Outra desvantagem dessa abordagem de 
validação de bibliotecas é que o teste de confiabilidade (suficiência de contatos, 
eletromigração, etc), baseado na contínua aplicação de vetores de entrada e no 
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monitoramento das saídas, requer um equipamento de teste automático para aplicar os 
vetores e checar os resultados, aumentando o custo do teste. Outra possibilidade para 
validar uma biblioteca seria projetar um circuito de aplicação cuja funcionalidade 
pudesse ser facilmente verificada. Contudo, é importante perceber que nem todas as 
células disponíveis em uma biblioteca são necessariamente usadas pela ferramenta de 
mapeamento tecnológico para um dado circuito. 

Esse trabalho propõe uma metodologia de validação para testar em silício um 
conjunto de células lógicas geradas automaticamente. Essa metodologia de validação 
garante a completa funcionalidade das células e fornece dados de atraso e consumo que 
são úteis para validar e ajustar os modelos de dados das células derivados de 
caracterização elétrica. Um método para gerar automaticamente o circuito de validação 
específico para um dado conjunto de células é também proposto. 

A solução apresentada combina um projeto estável com conceitos de teste. Um 
bloco combinacional específico é construído para garantir a cobertura da lógica do 
conjunto de células a ser validado e fornecer na saída o mesmo vetor aplicado na 
entrada, permitindo assim, cascatear longas cadeias com esses blocos. O uso de vários 
blocos permite instanciar todas as células. A arquitetura do circuito é então composta 
por tal cadeia combinacional em uma configuração de anel, sincronizada por um 
barreira de registradores. Diferentes modos de operação são usados para extrair dados 
do circuito. 

As descrições detalhadas dos blocos combinacionais, da arquitetura e modos de 
operação do circuito de teste proposto são apresentadas nas próximas seções. 

 

1. Blocos combinacionais 

Os blocos combinacionais são construídos de forma que garantam o completo e 
correto comportamento lógico de todas as células. A fim de atingir esta meta, cada 
bloco combinacional é composto por dois sub-blocos ou estágios. O primeiro estágio é 
constituído pelas células em um único nível de profundidade, todas excitadas pelas 
entradas primárias do bloco, como ilustrado na Figura 1. Essa células são conectadas às 
entradas do bloco para garantir o exercício lógico. Os sinais de saída das células do 
primeiro estágio são então utilizados como entradas para o segundo estágio, o qual 
recalcula o mesmo vetor aplicado como entrada primária no primeiro estágio. Como 
resultado, as entradas primárias o primeiro estágio são iguais às saídas primárias do 
segundo estágio. A interface interna dos dois estágios pode ser vista como um código 
intermediário com o qual as entradas primárias são traduzidas e então recuperadas. 

 
Figura 1 – Exemplo de bloco combinacional. 
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Antes de detalhar cada estágio dos blocos combinacionais, os seguintes princípios e 
requerimentos são apresentados: 

1) todos os blocos apresentam o mesmo número de nodos de entrada e saída, o qual 
deve ser igual ou maior do que o maior número de entradas que um célula da biblioteca 
possui; 

2) vetores de entrada e saída possuem o mesmo valor lógico; 

3) cada célula deve ser instanciada pelo menos uma vez no primeiro estágio de um 
bloco combinacional; 

4) o número total de blocos combinacionais depende do tamanho do conjunto de 
células e também da quantidade de células necessárias para compor o primeiro estágio 
de cada bloco; 

5) o segundo estágio dos blocos combinacionais é sintetizado somente com as 
células da biblioteca a ser validada. 

Para gerar o primeiro estágio de um bloco, todo o conjunto de células é inicialmente 
ordenado de acordo com um dos seguintes critérios: ordem alfabética, número de 
entradas da célula, quantidade de 0s e 1s fornecidos pela função lógica ou ordem 
randômica. Tendo as células ordenadas, elas são selecionadas uma a uma para criar o 
circuito do primeiro estágio. Considerando ‘n’ o número de sinais de entrada e de saída 
da interface do bloco, a meta é minimizar o tamanho do código intermediário na 
interface dos dois sub-blocos, sendo que o tamanho do código intermediário 
corresponde ao número de células usadas no primeiro estágio, se apenas células com 
uma única saída forem utilizadas. O processo de minimização deve escolher um número 
de células ‘m’ que produz pelo menos 2n diferentes valores na saída de ‘m’ bits do 
primeiro estágio. Os 2n valores de código intermediário (distintos valores de m bits) da 
saída do primeiro estágio representam o mínimo necessário pra reconstruir as 2n 
combinações de entrada nos ‘n’ sinais de saída do segundo estágio do bloco, com uma 
correspondência de um para um. 

A razão para minimizar o tamanho do código intermediário (representado pelo 
número de células do primeiro estágio) é devida ao fato de que a complexidade do 
segundo estágio do bloco é proporcional ao tamanho (número de bits) do código 
intermediário. Portando, reduzir o número de bits no código intermediário, reduz o 
acréscimo de área do segundo estágio. Uma forma de realizar esta minimização é a 
seguinte. A primeira célula selecionada fornece um cógido de comprimento de 1 bit, 
onde os códigos ‘0’ e ‘1’ são possíveis. A seguir, as células adicionam um bit cada uma 
e um certo número de vetores distintos. O critério para selecionar novas células é 
escolhê-las de forma a maximizar o número de diferentes vetores intermediários a cada 
nova instanciação (que adiciona um bit ao código intermediário). Para aumentar o 
número de novos vetores no código intermediário, os sinais de entrada de cada célula 
podem ser permutados (P) e/ou negados (N), e a melhor opção é então selecionada. 
Células que são incluídas no primeiro estágio de um bloco não serão consideradas na 
geração dos blocos subseqüentes. Células que não aumentam o número de vetores 
intermediários diferentes não são instanciadas e permanecem para serem utilizadas na 
geração do bloco subseqüente. A geração do bloco combinational termina quando todas 
as células forem utilizadas. Células já utilizadas podem ser reusadas durante a geração 
do último bloco, já que há poucas células não utilizadas ainda disponíveis. Suponha-se 
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uma biblioteca onde células de apenas uma saída estão disponíveis e onde o circuito de 
validação é composto pode blocos de n bits (n entradas e n saídas). O número mínimo 
de células no primeiro estágio é igual a n, uma vez que o código intermediário não pode 
ter um tamanho menor do que o código de entrada/saída do bloco. O pior caso é 
composto de no máximo 2n-1 células, já que a primeira célula fornece dois vetores 
distintos e as células subseqüentes devem introduzir pelo menos um novo vetor. 

O segundo estágio recria os vetores de entrada na saída do bloco a partir dos códigos 
intermediários representados por Wi. Os sinais de saída do primeiro estágio são usados 
como entradas do segundo estágio, como mostra a Figura 1 e a Tabela I. Como o 
tamanho do código intermediário pode ser maior do que o tamanho dos códigos de 
entrada e saída, algumas combinações Wi nunca ocorrerão. Dessa forma, ‘don’t cares’ 
são usados para otimizar a síntese do segundo estágio. 

Nesse trabalho, a geração do primeiro estágio de cada bloco foi automatizada pelo 
uso de uma ferramenta de CAD específica, desenvolvida na plataforma Java. O segundo 
estágio, por sua vez, foi sintetizado com ferramentas padrão de mapeamento 
tecnológico. 

Tabela I – Tabela-verdade utilizada para sintetizar o segundo estágio do bloco 
combinacional ilustrado na Figura 1. 

In(3) In(2) In(1) W4 W3 W2 W1 Out(3) Out(2) Out(1) 

Sem vetor 0 0 0 0 X X X 

Sem vetor 0 0 0 1 X X X 

1 0 0 0 0 1 0 1 0 0 

1 1 0 0 0 1 1 1 1 0 

Sem vetor 0 1 0 0 X X X 

Sem vetor 0 1 0 1 X X X 

Sem vetor 0 1 1 0 X X X 

Sem vetor 0 1 1 1 X X X 

Sem vetor 1 0 0 0 X X X 

Sem vetor 1 0 0 1 X X X 

0 1 1 1 0 1 0 0 1 1 

0 0 1 1 0 1 1 0 0 1 

1 0 1 1 1 0 0 1 0 1 

1 1 1 1 1 0 1 1 1 1 

0 1 0 1 1 1 0 0 1 0 

0 0 0 1 1 1 1 0 0 0 

 

Utilizando as ferramentas de análise de cobertura de falhas da Mentor Graphics,  
verificou-se que todas as falhas simples nas células do primeio estágio são observáveis 
na saída do bloco, através de blocos projetados como descrito acima. Algumas falhas no 
segundo estágio podem não ser observadas na saída do bloco. Entretanto, já que a 
completa cobertura de falhas no primeiro estágio é suficiente para provar que o conjunto 
de células da biblioteca sob verificação estão corretas, não há necessidade de garantir 
esta propriedade para o segundo estágio. 

 

 

2. Arquitetura e Modos de Operação 
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A arquitetura global do circuito é apresentada na Figura 2. A fim de fornecer uma 
seqüência de vetores de teste com a mínima intervenção externa, os sinais do fim da 
cadeia são reconectados às entradas primárias. Uma barreira de registradores, composta 
por flip-flops do tipo D, é adicionada. Um somador é utilizado para incrementar o vetor 
binário e fazer o circuito atuar como um contador, fornecendo variação na entrada da 
cadeia. O somador pode realizar somas de K, permitindo outras operações e não só a 
contagem de 1 em 1. Assim, é possível obter diferentes transições de vetores que são 
importantes para checar as condições de carga e descarga nos nodos das intra- e inter-
células. 

 
Figura 2 – Diagrama de blocos da arquitetura do circuito proposto. 

A arquitetura básica do circuito é ligeiramente modificada, adicionando-se um 
comparador e multiplexadores para permitir diferentes modos de operação que 
proporcionam formas distintas de avaliação de dados. Os modos de operação síncrono, 
assíncrono, BIST oscilante e de diagnóstico são apresentados a seguir. 

 

Modo Síncrono 

No modo de operação síncrono, a barreira de registradores é controlada por um sinal 
de clock externo, o sinal ‘Ext_CK’ indicado na Figura 2. O somador é usado para 
incrementar o vetor no anel, atuando como um contador ‘+K’ síncrono. O 
comportamento correto da seqüência de contagem demonstra a correta funcionalidade 
dos blocos combinacionais e, conseqüentemente, de todo conjunto de células que está 
sendo testado. A máxima freqüência de operação do circuito, que indica o atraso no 
caminho crítico, pode ser obtido aumentando-se a freqüência do clock até que o 
contador em anel apresente um resultado errôneo. Outro benefício significante do modo 
síncrono é a avaliação da dissipação de energia, incluindo suas componentes, dinâmica 
e estática. O controle externo do sinal de clock impõe a freqüência de operação e o 
consumo dinâmico pode ser relacionado a isto. O consumo estático, por sua vez, pode 
ser medido em baixas freqüências ou mesmo usando um clock externo controlado 
manualmente. A cada novo estado de entrada na cadeia, o consumo estático pode ser 
obtido já que tal componente de dissipação de energia depende fortemente do estado 
estável do circuito. 

 

Modo Assíncrono 
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No modo assíncrono ou anel auto-temporizado, o sinal de clock dos flip-flops é 
fornecido pelo comparador que verifica se o vetor de entrada In(n..1) já foi ou não 
propagado ao final da cadeia Out(n..1) (Figura 2). Quando o mesmo vetor aplicado na 
entrada do circuito chega ao final da cadeia, o comparador muda de ‘0’ para ‘1’, 
chaveando o registrador. O novo dado é armazenado no registrador e passado para o 
somador. O somador incrementa a saída do registrador e aplica o novo vetor na cadeia. 
Neste momento, como In(n..1) não é mais igual a Out(n..1), a saída do comparador 
volta para ‘0’ e permanece neste estado até o novo vetor propagar-se através da cadeia 
completa de blocos combinacionais. 

Nesse modo de operação, uma única transição de sinal externa é suficiente para 
iniciar o contador auto-temporizado e a operação correta mantém o circuito em 
funcionamento. Por exemplo, o começo da operação do circuito pode ser atingida 
modificando-se o bit ‘Ki’ da entrada externa do somador. Se uma célula está com 
defeito, o dado obtido no final da cadeia não será igual ao dado da entrada da cadeia. 
Dessa forma, o comparador não mudará para ‘1’ e execução auto-temporizada 
terminará. A propriedade de auto-verificação do modo assíncrono torna-lhe bastante 
apropriado para realizar a verificação funcional da célula com a menor intervenção 
possível. A correta operação lógica pode ser checada pelo monitoramento do sinal do 
clock interno ou de um bit de dado no caminho realimentado. 

Informações temporais podem ser extraídas dos ciclos de contagem ‘+K’ completos. 
Essa medida representa o atraso médio do caminho lógico, já que em um circuito auto-
temporizado a velocidade é tão alta quanto possível de acordo com o atraso de cada 
transição ou o tempo para terminar uma computação. Essas medidas podem ser usadas 
para validar os modelos se a simulação é feita no mesmo modo de operação. 

Note-se que um conjunto de circuitos funcionando continuamente nesse modo pode 
ser usado para checar a confiabilidade e a robustez da biblioteca contra degradações. A 
contínua operação sem erros prova a confibilidade das células contra aspectos como 
insuficiência de contatos, eletromigração, NBTI (negative bias temperature instability) 
e outras causas. NBTI é a degradação dos transistores PMOS que depende de quanto 
tempo a saída da célula fica conectada a Vdd. Percebe-se que os circuitos não 
necessitam equipamentos caros para serem monitorados, uma vez que defeitos são auto-
monitorados. Mesmo que os circuitos não falhem depois de serem continuamente 
estressados por um longo período de tempo, eles podem ser usados para medir a 
degradação causada pela NBTI. 

 

Modo BIST oscilante 

Nos modos síncrono e assíncrono, o mesmo valor binário de uma entrada i-indexada 
é esperado reaparecer na correspondente saída i-indexada do circuito de teste. Essa 
propriedade é garantida pela construção dos blocos combinacionais. Se a i-ésima saída é 
diretamente conectada à i-ésima entrada, o i-ésimo caminho é mantido fixo em um 
estado durante a realimentação. Entretanto, quando a i-ésima saída é invertida antes de 
conectá-la à i-ésima entrada, a polaridade lógica negativa ocorre e o i-ésimo caminho 
oscila. De acordo com esse princípio, no modo de oscilação a realimentação é conectada 
de tal forma que pelo menos uma das entradas primárias da cadeia receba o seu valor 
prévio negado, como ilustrado na Figura 3. 

A inversão do bit é necessária para garantir que a condição de oscilação que é 
implementada através de um inversor inserido na entrada do multiplexador, indicado 
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por um ‘*’ na Figura 2. Esse multiplexador é detalhado na Figura 4. Percebe-se que 
somente um bit do vetor Out(n..1) é selecionado de cada vez para fornecer somente a 
oscilação de um bit. Os outros bits são fixados aos valores fornecidos na entrada 
In(n..1). Isso é, se um para entrada-saída é considerado, somente o caminho associado 
oscila enquanto os outros são mantidos no mesmo estado. 

 

Figura 3 – Caminho do BIST em oscilação. 

 

 
 

Figura 4 – Multiplexador utilizado no modo BIST em oscilação. 

Percebe-se que o caminho interno percorrido pelo sinal em oscilação através da 
cadeia de blocos combinacionais dependerá dos valores binários estáticos aos quais as 
entradas do primeiro bloco são fixadas. Essa característica permite configurar uma 
grande quantidade de diferentes caminhos que oscilam. A principal contribuição do 
modo de oscilação para o processo de validação é que ele permite medir a propagação 
do sinal de atraso através de diferentes caminhos lógicos que envolvem instâncias de 
células distintas. Esses resultados de atraso são então comparados aos obtidos de uma 
prévia análise estática de tempo, que leva em conta a caracterização dos dados de tempo 
da célula (possivelmente obtidos através de simulações elétricas). Dessa forma é 
possível correlacionar os modelos utilizados pelo projeto com o comportamento real em 
silício. 

 

Modo de Diagnóstico 

A fim de fazer o diagnóstico de defeitos, multiplexadores podem ser adicionados na 
arquitetura do circuito, sem penalidade significante em área, para selecionar partes da 
cadeia combinacional. Multiplexadores nas entradas de cada bloco combinacional 
podem selecionar o sinal do bloco anterior ou diretamente do começo da cadeia, 
removendo a influência dos blocos anteriores na realimentação do anel. Da mesma 
forma, multiplexadores na saída dos blocos podem mandar o dado do meio da cadeia 
diretamente para o fim da mesma. Dessa forma, a cadeia pode ser facilmente reduzida a 
um simples bloco ou mesmo a nenhum bloco, permitindo nesse caso a verificação do 
contador da barreira de registradores sem influência da cadeia combinacional. 
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Esse modo fornece o diagnóstico de um bloco com falhas e também permite os 
diferentes modos de operação do circuito descritos acima funcionarem em partes da 
cadeia completa. O diagnóstico também pode ser realizado na configuração de cadeia 
aberta, já que o multiplexador usado para fornecer o modo BIST oscilante também pode 
ser aplicado para interromper a configuração em anel sem circuito adicional. O modo de 
cadeia aberta permite o controle externo dos sinais de estímulo que são aplicados na 
cadeia de blocos combinacionais. Esse modo é bastante útil para a identificação de uma 
célula defeituosa. 

 

4. Conclusões 

Nesse trabalho foi proposto uma metodologia para validar em silício um conjunto de 
células geradas automaticamente. Essa validação testa completamente a funcionalidade 
das células e fornece meios de comparar os modelos de dados das células derivados da 
caracterização elétrica com o desempenho em silício. Um método para automaticamente 
gerar os circuitos de validação a partir de um conjunto de células inicial também foi 
proposto. O circuito de teste proposto apresenta pequeno acréscimo de área e diferentes 
modos de operação. 
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Abstract 

 

This work proposes a validation methodology to 
silicon-prove a set of logic cells generated by 
software. It also presents an approach for the 
automatic design of testbenches to validate the 
cells in the set. 
 
1. Introduction 
 
Cell-based design is definitely the most applied 
approach in the ASIC market today. This design 
approach implies in re-using library cells to 
build more complex digital circuits. A typical 
standard cell design environment includes 
timing and power analysis, as well as automatic 
assembling of circuit layout through place and 
route tools. In standard cell libraries, three 
groups of cells co-exist: (1) inverters/buffers; 
(2) combinational cells and (3) sequential ones. 
Mainly due to the large number of different 
logic functions and driving strength options 
needed in typical designs, the largest of the 
three aforementioned groups is the set of 
combinational logic gates. The handcraft 
creation of standard cell libraries demands 
skilled designers and long development times, 
even when simply dealing with technology 
migration for the same set of cells. Each cell 
must be carefully designed and characterized for 
different input slopes, output loads and design 
corners. In practice, the high engineering costs 
of these tasks imposes a limitation on the 

number of available combinational cells in 
libraries. 
 
As the technology mapping step in standard IC 
design flow is based on pre-characterized data 
of pre-designed cells, the ASIC design space 
and efficiency turns to be bounded by the 
library in use. The more cells and drive strength 
options are available, the larger are the 
possibilities to improve the circuit design. The 
enrichment of a library can be done by adding 
only new drive strengths [1], or through the 
addition of new functions with standard 
series/parallel implementation [2], or even with 
special transistor topologies [3-5]. New 
topologies can also be considered for in-place 
optimization (IPO), including in-context cell 
sizing [6]. The use of extended libraries leads to 
an optimized fit for particular applications. Due 
to this added flexibility to the design space, 
there is an increasing commercial interest for 
approaches that consider on-the-fly generation 
of cells, like [1, 6-9]. These approaches are 
sometimes referred as library-free or as soft-cell 
or liquid library based. 
 
The main drawback of library-free technology 
mapping technique is the use of such soft IPs or 
non-silicon-validated set of cells in the ASIC 
design. This fact makes conservative customers 
reluctant in adopting this design technique. 
 
This work proposes a validation methodology to 
silicon-prove the set of automatically designed 



 

 

102 

logic cells. This validation methodology covers 
the full functionality of the cells and provides 
timing and power consumption data useful to 
validate and fine tune cell data models derived 
from electrical characterization. Notice that, the 
circuit speed and consumption estimation tasks, 
during the design flow, are performed based on 
cell data from electrical characterization, 
available in a LibertyTM file, for instance. 
Indeed, the on-silicon testbench for soft 
libraries, proposed herein, allows checking 
whether data used in the performance estimation 
during the circuit design flow produces good 
prediction of silicon behavior. A method to 
automatically generate the validation circuit 
specific for a given initial set of cells is also 
proposed. 
The remainder of this paper is organized as 
follows. In Section 2, the motivations for this 
work are further discussed. The way the library 
cells are used to build the basic combinational 
blocks of the testbench is described in Section 
3. In Section 4, the circuit architecture is then 
presented and its operating modes are shown 
pointing out their goals. The overhead analysis 
is given in Section 5, and conclusions are 
outlined in Section 6. 
 
2. Problem Statement and Goal of 
Work 
 
ASIC designs are usually bounded by the 
standard cell library in use. For this reason, 
there are a number of commercial and academic 
efforts that take advantage of on-the-fly creation 
of cells. The method proposed by DeDood et al. 
[1] creates new drive strengths for existing cells 
(from a starting cell library), in order to save 
power and reduce delay in a target ASIC. A 
method that creates dedicated complex cells to 
reduce delay in applications needing high-speed 
ASICs is introduced in [6, 8]. Jones et al. [9] 
proposed a method to optimize a design by 
changing transistor sizes in the available cells 
and then redesigns the original library to 
accommodate these new cells. For advanced 
technology nodes, research initiatives by 
leading semiconductor companies are 
considering the importance of the target library 
as part of the design space [10]. The use of 
more complex gates can reduce the overall 
number of transistors and provide layouts that 
are less dense in transistors/mm2 but denser in 
terms of logic/mm2. This idea has been pointed 
as part of a regular layout solution for process 
variability [11]. The use of such complex gates 
can also bring advantage to the regular ASIC 
world. Indeed, several methods to generate 
efficient transistor networks [3, 5, 7, 11] and to 

perform technology mapping targeting complex 
gates [2, 4, 6, 8] have been recently proposed. 
 
Conservative customers feel uncomfortable with 
the idea of using a ‘non silicon-proven’ library. 
The silicon proof should address two main 
issues. First, it has to guarantee that the models 
used during the synthesis flow represent 
adequately the final silicon performance. 
Second, it has to prove that the cells are reliable 
under the expected working conditions. This 
aspect guarantees that the cells present a 
sufficient number of contacts, do not have latch-
up problems, and so on. Notice that this proof 
has to be done properly by library providers 
every time a new technology node is available. 
 
The most straightforward way to design a test 
circuit for a set of cells consists in instantiating 
all cells using shared primary inputs (for test 
controllability), while individual output signals 
could be multiplexed in order to reduce the 
number of circuit I/O pins, while maintaining 
test observability. This strategy can obviously 
provide full functionality validation of each 
logic gate. However, cell timing information is 
somewhat difficult to obtain through a circuit 
with only one-level of logic depth. Additionally, 
the multiplexers at the output and eventual 
buffering to compensate the high capacitance on 
input nodes, as well as the packaging structure, 
make this approach impractical to measure the 
timing characteristics of a single gate. That is 
one of the reason for using ring oscillators and 
oscillation test structures in delay 
characterization and testing, respectively [12, 
13]. 
 
However, the extensive use of ring oscillators 
would result into a large number of instances of 
each cell to be validated, which is impractical 
for libraries with a large number of cells. 
Another drawback of this library validation 
approach is that the test for reliability 
(sufficiency of contacts, electromigration, etc), 
based on the continuous application of input 
vectors and the monitoring of the outputs, 
requires an automatic test equipment (ATE) to 
apply the vectors and check the results, 
increasing the test cost. Therefore, an approach 
that can make these tests viable without 
additional ATE is strongly desirable. One 
possibility for this would be to design an 
application circuit whose functionality could be 
easily verified. However, it is important to 
notice that not all the cells available in a library 
are necessarily used by the technology mapping 
tool for a given circuit. This fact is shown in 
Table I, where it is possible to see that out of a 
set of 64 available gates not all of them were 
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instantiated after a given circuit was mapped, 
with exception of circuit ‘tv80_core’, which 
used all the cells. For these reasons, more 
efficient testbenches for testing a set of cells 
may be proposed. 
 
Table I – Mapped circuits showing the number 

of effectively used cells out of a set of 64 
different available combinational logic gates.  

ISCAS 
Benchmarks* 

Number of cells 
instances 

Number of 
distinct cells 

c7552 1,311 41 
i2c_master_top 679 42 
Iu 9,203 43 
mc_top 6,245 58 
tv80_core 5,594 64 
wb_conmax_top 28,089 43 

* Benchmarks source: 
http://www.fm.vslib.cz/~kes/asic/iscas, last access on 
Sep.20th, 2007. 

 
An efficient approach to generate a testbench 
for testing a set of new cells, possibly created 
on-the-fly, should cover the following aspects: 

1) to ensure complete functionality test 
for the instantiated cells; 

2) to ensure coverage (instantiation) of all 
the cells to be tested; 

3) to allow the verification of the 
accuracy of the models used in the 
design process; 

4) to provide means to perform long and 
medium term reliability tests (needed 
for electromigration, sufficiency of 
contacts, NBTI degradation, etc) 
without additional equipment; 

5) to have a feasible number of cell 
instances compared to the set of cells 
to be tested. 

 
The goal of this work is to propose a 
methodology to automatically generate 
testbench circuits for on-silicon soft-library 
validation meeting the aspects above. To the 
best of our knowledge, previous approaches fail 
to cope efficiently with this goal. 
 
In this work, a straightforward and efficient 
testbench methodology is proposed aiming the 
validation of an entire set of soft-cells in terms 
of logic and electrical behavior. The presented 
solution merges well-established design and test 
concepts to cope with the five aspects 
mentioned above. A specific combinational 
block is built to guarantee the logic coverage 
(aspect 1) of a sub-set of the cells to be 
validated, and to provide at the output the same 
bit vector received at its inputs, allowing thus to 
cascade long chains with these blocks. The use 
of several blocks allows to instantiate all the 

cells (aspect 2). The circuit architecture is then 
composed of such combinational chain in a ring 
configuration, synchronized by a register 
barrier. Both synchronous and asynchronous 
operating modes provide different features for 
the proposed goals. The ring configuration 
allows verifying the accuracy of the models, by 
comparing with the predicted circuit behavior 
(aspect 3). The oscillation BIST technique is 
also included in the circuit operation for a wide 
range of different paths [13], and allows 
medium and long term tests (aspect 4). In case 
of an eventual error, the circuit diagnostic is 
facilitated through an arrangement of 
multiplexers. Finally, as the ring oscillator is 
composed of a variety of cells, the number of 
instances is not very expensive compared to the 
initial set of cells (aspect 5), as shown in the 
overhead section. 
 
From a business model point-of-view, the 
methodology presented herein is useful for the 
soft-library vendor and to the ASIC designer 
client. For the vendor, it is quite important to 
dispose of a physical testbench in order to 
guarantee the correctness of its EDA 
environment, as well as to verify the quality of 
the generated cells in terms of performance and 
reliability, including design-for-
manufacturability issues [14]. This is essential 
for the continuous improvement of the library 
generation CAD tool. For the ASIC designer, a 
circuit that validates all distinct cells created on-
the-fly to be used in a specific circuit provides 
means to exclude that errors on silicon due to 
the cell generators. If this test circuit is 
fabricated in the same die of the ASIC, it can 
act as a kind of ‘certification circuit’ for the 
soft-library, in different design corners and 
operating conditions. In this case, the overhead 
in terms of area and I/O pins is a compromise in 
fabricating together the test circuit and the 
ASIC, and the low cost approach presented here 
is very attractive. 
 
The detailed descriptions of the combinational 
blocks, overall architecture and operation modes 
of the testbench are given in next sections. 
 
 
3. Testbench: the Combinational 
Blocks 
 
The combinational blocks are built in a way to 
guarantee the complete and correct logic 
behavior of all cells included in the soft-library 
under test. To attain this, each combinational 
block is composed by two sub-blocks or stages. 
The first one is built by cells in a single logic 
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depth level, all of them excited by the (shared) 
primary inputs. This is similar to the 
straightforward arrangement to allow test 
controllability and observability, discussed in 
the previous section, but now including only a 
small sub-set of cells. These cells, in the first 
stage, are connected to the block inputs for full 
logic exercising. The output signals of the cells 
in the first stage are then used as inputs to the 
second stage, which recomputes the same bit 
vector applied at the first sub-block primary 
inputs. As a result, the primary inputs of the 
first sub-block are equal to the primary outputs 
of the second sub-block. The internal interface 
of the two sub-blocks can be viewed as an 
intermediate code for which primary inputs are 
translated and then recovered. 
 
Before detailing each stage of the combinational 
blocks, the following principles and 
requirements might be pointed out: 
1) all blocks present the same number of input 
and output nodes, which must be equal or 
higher than the biggest number of inputs in a 
single cell; 
2) input and output vectors have equal steady 
state logic values. 
3) every cell has to be instantiated at least 
once in the first stage of a combinational block; 
4) the total number of combinational blocks 
depend on the size of the cells set and also the 
quantity of cells necessary to compose the first 
stage of each block; 
5) the second stage of the combinational 
blocks is synthesized taking into account only 
the cells present in the soft-library to be 
validated. 
 
To generate the first stage of a block, the whole 
set of cells is initially ordered according to one 
of the following criteria: alphabetic order; 
number of cell inputs; quantity (or rate) of 0s 
and 1s provided by the logic function; or 
random order. Once the cells are ordered, they 
are taken one-by-one to create the circuit in this 
first stage. Assuming ‘n’ the number of signals 
at both the input and output block interface, the 
goal is to minimize the length of the internal 
intermediate code in the interface of the two 
sub-blocks. Notice that the length of the 
intermediate code corresponds to the number of 
cells used in the first stage, if single output cells 
are assumed. The minimization procedure has to 
choose a number of cells (‘m’) that produces at 
least 2n different values at the m-bit output of 
the first stage. The 2n different intermediate 
code values (distinct m-bit values) at the output 
of the first stage represent the minimum 
required to reconstruct the original 2n input 
combinations at the n-output signals at the 

second stage of the block, with a one-to-one 
correspondence.  
 
The reason to minimize the length of the 
intermediate code (represented by the number of 
cells in the first stage) is that the complexity of 
the second stage of the block is proportional to 
the size (number of bits) of the intermediate 
code. Thus, reducing the number of bits in the 
intermediate code reduces the area overhead of 
the second stage. One way to perform this 
minimization is the following. The first selected 
cell will give a 1-bit length code where the 
codes ‘0’ and ‘1’are possible. Next, cells will 
add one bit each and a given number of distinct 
vectors. The criterion to select new cells it to 
choose them to maximize the number of 
different intermediate vectors at each new 
instantiation (that adds one bit to the 
intermediate code). To increase the number of 
new vectors in the intermediate code, the input 
signals of each cell can be permutated (P) 
and/or negated (N), and the best option is then 
selected. Cells that are included in a firsts stage 
sub-block will not be considered in the 
generation of subsequent ones. Cells that do not 
increase the number of different intermediate 
vectors are not instantiated and remain to be 
used by a subsequent first stage sub-block 
generation. The combinational block generation 
stops when there is no unused cell remaining. 
Already used cells can be reused during the 
generation of the last block, as few options of 
unused cells are available. Consider a soft-
library where only single-output cells are 
available and where the validation circuit is 
composed of n-bit blocks (n-inputs and n-
outputs). The minimum number of cells at the 
first stage is equal to ‘n’, as the intermediate 
code cannot have a smaller length than the 
input/output codes for the block. The worst case 
is composed by maximum 2n-1 cells, as the first 
cell gives two distinct vectors and subsequent 
cells are required to introduce at least one new 
vector. 
 
To illustrate the construction of the first stage, 
consider a 3-input combinational block, as 
shown in Fig. 1. The intermediate code 
composed of ‘Wi’ bits requires 23 distinct 
vectors, necessary to rebuild the 3-bits input 
vectors at the 3-bits block outputs. This 
requirement was not attained with the three first 
selected cells, as illustrated in Table II (second 
column). Thus, at least one additional cell C4 
must be added to the first stage. The third and 
the fourth columns in Table II show two 
alternative C4 input connections where only one 
provides the 23 necessary distinct vectors. At 
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this point, the first stage of this combinational 
block is concluded. 
 

 

Figure 1 - 3-bits combinational block: example. 
 
The second stage re-creates the input vectors at 
the output of the block, from the intermediate 
codes represented at ‘Wi’. The output signals of 
the first stage are used as inputs to the second 
stage, as shown in Table III. Since the length of 
the intermediate code can be larger than the 
length of I/O codes, some ‘Wi’ combinations 
will never occur. This way, don’t cares are used 
to optimize the synthesis of the second stage.  
 
In this work, the generation of the first stage of 
each block was automated by using a specific 
CAD tool, developed in Java platform. The 
second stage, in turn, is synthesized with 
standard technology mapping engines. 
 
The construction of the combinational blocks 
has been exercised for different set of cells in 
order to evaluate the complexity (size) of the 
circuits generated with this methodology. Fig. 2 
shows the block building considering a set of 
208 cells, with up to 7 inputs, obtained from the 
‘genlib_44-6’ library [15]. Only logically 
distinct functions are included in this set. The 
possibility of applying permutations (P) and 
negations (N), or both (NP), at the inputs during 
the cell instantiation was also evaluated. 
 
In Fig. 2a, the X-axis represents the number of 
blocks generated and the Y-axis shows the 
number of cells in the first stage of each block, 
which is equivalent to the length of the 
intermediate code. As it can be observed, the 
possibility to consider the permutation and 
negation (NP) of the cell inputs resulted in 
smaller circuits at the first stage. Consequently, 
more blocks are necessary to instantiate all 
cells. The total number of instances with P-
variants was 10,538 (232 for the first stages + 
10,306 for second stages), while it decreased to 
8,074 (214 + 7,860) with N-variants and to 
7,680 (208 + 7472) with NP-variants. The 
conclusion is that the extra flexibility given by 

the use of NP-variants allows obtaining a more 
efficient intermediate code, which minimizes 
the overall number of instances. Additionally, 
no cells were repeated to conclude the last block 
in the NP-version; while in the N- and P- 
versions, 6 and 24 cells were re-used to finish 
this task, respectively. 
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Table II – Construction of the first stage of the combinational block in Fig. 1. 

Inputs 3 cells 
C4 

A1(IN(1)),A2(not_IN(2)) 

C4 

A1(IN0),A2(not_IN(2)) 

IN(3) IN(2) IN(1) W3 W2 W1 W4 W3 W2 W1 W4 W3 W2 W1 

0 0 0 1 1 1 1 1 1 1 1 1 1 1 

0 0 1 0 1 1 1 0 1 1 1 0 1 1 

0 1 0 1 1 0 0 1 1 0 1 1 1 0 

0 1 1 0 1 0 1 0 1 0 1 0 1 0 

1 0 0 0 1 0 1 0 1 0 0 0 1 0 

1 0 1 1 0 0 1 1 0 0 1 1 0 0 

1 1 0 0 1 1 0 0 1 1 0 0 1 1 

1 1 1 1 0 1 1 1 0 1 1 1 0 1 

 

Table III - Truth table used to synthesize the second stage of the combinational block, illustrated in Fig.1 
and Table II. 

In(3) In(2) In(1) W4 W3 W2 W1 Out(3) Out(2) Out(1) 

No vector 0 0 0 0 X X X 
No vector 0 0 0 1 X X X 

1 0 0 0 0 1 0 1 0 0 
1 1 0 0 0 1 1 1 1 0 

No vector 0 1 0 0 X X X 
No vector 0 1 0 1 X X X 
No vector 0 1 1 0 X X X 
No vector 0 1 1 1 X X X 
No vector 1 0 0 0 X X X 
No vector 1 0 0 1 X X X 

0 1 1 1 0 1 0 0 1 1 
0 0 1 1 0 1 1 0 0 1 
1 0 1 1 1 0 0 1 0 1 
1 1 1 1 1 0 1 1 1 1 
0 1 0 1 1 1 0 0 1 0 
0 0 0 1 1 1 1 0 0 0 
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(a)        (b) 

Figure 2 - Number of cells per block according to the permutation (P) and negation (N), or both (NP) 
procedures in the logic gate inputs, considering a set of 208 cells, with up to 7 inputs: (a) first and (b) 

second stage complexity. 
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The computation time for block generation was 
25,087 sec for the NP variants, 15 sec for the N 
variants and 432 sec for the P variants, by using a 
1.8GHz dual-core processor, with 4Gb SRAM 
and 1Mb cache. 
 
The number of cells in the second stage can be 
observed in Fig. 2b. It was mapped using the ABC 
tool [15]. This stage can be considered as the 
overhead to re-create the block input vectors from 
the intermediate code. Notice that increasing the 
quantity of cells at the first stage (length of the 
intermediate code) increases significantly the size 
of the second stage, generating an area overhead. 
This is the motivation to reduce the number of 
cells while generating the first stage. Also, the 
number of input/output pins in the block should 
be the minimum required, which is the largest 
number of inputs in a single cell in the set. This 
requirement is necessary to provide test 
controllability for the cell. 
 
4. Testbench: Overall Architecture and 
Operation Modes  
 
The combinational blocks, described in the 
previous section, guarantee the functional 
validation of the entire set of logic cells if each 
cell has been instantiated at least once in the first 
stage of a block, and the 2n input combinations are 
applied at ‘n’ inputs of each block. Once the block 
outputs reproduce the same input signals, they can 
then be arranged in different ways to create the 
circuit architecture. Long paths can be built, for 
instance, by cascading the combinational blocks 
in chain configuration. This way, the primary 
input values should be observed at the output of 
chain in the case of fault free behavior. 
 
The global circuit architecture is presented in Fig. 
3. To provide a sequence of test vectors with 
minimum external intervention, the signals at the 
end of the chain are reconnected to the primary 
inputs. A register barrier, composed by D-type 
flip-flops, is added to the feedback path to avoid 
racing. An adder is available to increment the 
binary vector and make the circuit act as a counter 
to modify the feedback signals and provide the 
chain input variation. The adder can perform sums 
by ‘K’ allowing other than just a counting 1-by-1 
operation, allowing thus different vector 
transitions that are important to check charging 
and discharging conditions at internal nodes intra- 
and inter-cells. 
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Figure 3 – Block diagram of the proposed circuit 
architecture. 

 
The basic architecture is slightly modified by 
adding a comparator and multiplexers to allow 
different operating modes which provide distinct 
forms of data evaluation. Notice that, the aim of 
this circuit is to validate the full functionality of 
the entire set of cells, as well as evaluate the 
accuracy of the electrical characterization values 
of the cells (timing and power dissipation data) 
through the correlation of the static timing 
analysis (STA) and power analysis with 
experimental measures. 
 
The circuit operating modes and their individual 
contributions to meet the five requirements 
described in Section 2 are discussed in detail in 
the next sub-sections. They are: 

• synchronous mode; 
• asynchronous mode; 
• oscillation BIST mode; 
• diagnosis mode. 

 
4.1 Synchronous Mode 
 
In the synchronous operating mode, the register 
barrier is controlled by an external clock signal, 
i.e. the ‘Ext_CK’ signal indicated in Fig. 3. The 
adder is used to increment the vector in the ring, 
acting as a synchronous ‘+K’ counter. The right 
behavior of the counting sequence demonstrates 
the correct functionality of the combinational 
blocks and, consequently, the whole set of cells 
under test. 
 
The maximum operation frequency of the circuit, 
which indicates the worst case path delay, can be 
obtained by increasing the clock frequency until 
the ring counter gives an erroneous result. Such 
critical path delay will be probably different by 
changing the increment value ‘K’. 
 
Another significant benefit of the synchronous 
mode is the evaluation of the power dissipation, 
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including its dynamic and static components. The 
external control of the clock signal imposes the 
frequency operation for switching, and the 
dynamic power consumption can be related to 
that. The static power, on the other hand, can be 
measured at low frequencies or even by using an 
external clock manually controlled. At each new 
input state in the chain the static consumption can 
be obtained since such power dissipation 
component depends strongly on the circuit steady 
state. 
 
Fig. 4 shows the electrical simulation of the 
circuit for both synchronous (before 100ns) and 
asynchronous (after 100ns) modes. According to 
Fig. 3, the ‘CK’ waveform is the internal clock 
signal; the ‘ctrl_CK’ signal is the multiplexer 
control to switch between an external clock signal 
and the comparator output (asynchronous clock); 
the ‘In(1)’ to ‘In(4)’ signals represent the 4-bit 
data in the ring counter; and the ‘I(vdd)’ 
waveform shows the power supply current. Notice 
that in the synchronous mode the supply current 
allows the identification of dynamic and static 
dissipation components, while in the 
asynchronous mode the circuit is always in 
dynamic operation. 
 

 
Figure 4 – Circuit behavior at synchronous and 

asynchronous modes. 
 
4.2 Asynchronous Mode 
 
In the asynchronous mode, or self-timed ring 
configuration, the clock signal of the flip-flops is 
provided by the comparator that checks whether 
or not the input vector In(n..1) has already 
propagated to the end of the chain Out(n..1) (Fig. 
3). When the same vector applied to the circuit 
inputs get to the end of the chain, the comparator 
switches from ‘0’ to ‘1’, clocking the register. The 
new data is stored in the register and passed to the 
adder. The adder increments the register output 
and applies the new vector to the chain. At this 

moment, since In(n..1) no longer equals Out(n..1), 
the comparator output is back to ‘0’ and remains 
at this state until the new vector propagates 
through the whole chain of combinational blocks. 
This behavior can be observed at the right side of 
Fig. 4. 
 
In this operation mode, just an external signal 
transition is enough to start the self-timed 
counting, and the right operation keeps the circuit 
running. For instance, the starting of the self-
timed operation can be achieved by modifying an 
external adder input bit ‘Ki’. If a cell is defective, 
the data at the end of the chain will not be equal to 
the data at the circuit inputs. This way, the 
comparator will not switch to ‘1’ and the self-
timed execution will stop, as verified in Fig. 5.  
 
The self-checking property of the asynchronous 
mode makes it quite appropriate for functional 
cell verification with least external intervention. 
The correct logic operation can be checked by just 
monitoring the internal clock signal or only one 
data bit in the loop path. 
 
Timing information can be extracted from 
complete ‘+K’ counting cycles. This measure 
represents the average logic path delay since in a 
self-timed circuit the speed is as fast as possible 
according to the delay of each transition, or the 
time to finish a computation. These measures can 
be used to validate the models if a simulation is 
done in the same operating mode. 
 
Notice that a set of circuits working continuously 
in this mode can be used to check the library 
reliability and robustness against degradations. A 
continuous operation without errors proves the 
reliability of the cells against a number of issues 
like insufficiency of contacts, electromigration 
[17], negative bias temperature instability (NBTI) 
[18, 19], or other causes. NBTI is a degradation of 
PMOS transistors that depends on the amount of 
time the output of the cell is connected to Vdd; 
see [18, 19] for details. Notice that the circuits 
will not need expensive equipments to be 
monitored, once defects are self monitored, as 
shown in Fig. 5. Even if the circuits do not fail 
after being continuously stressed for a long period 
of time, they can be used to measure performance 
degradation caused by NBTI. 
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Figure 5 – Electrical simulation of fault 

occurrence during the self-timed counting 
(asynchronous mode). 

 
4.3 Oscillation BIST 
 
In synchronous or asynchronous mode, the same 
binary value of an i-index input is expected to re-
appear at the corresponding i-index output of the 
testbench circuit. This property is ensured by 
construction of the combinational blocks. If the 
ith-output is directly connected to the ith-input, the 
ith-path is kept in steady state, while closing the 
feedback loop. However, when the ith-output is 
inverted before connecting to ith-input, a negative 
polarity logic feedback occurs and the ith-path 
oscillates. According to this principle, in 
oscillation mode the feedback loop is closed such 
that at least one of the primary inputs of the chain 
receives the negation of its previous value, as 
illustrated in Fig. 6.  
 
The bit inversion necessary to ensure the 
oscillation condition is implemented through the 
inverter placed at the input of the multiplexer in 
Fig. 3, indicated by an ‘*’. This multiplexer is 
depicted in Fig. 7. Note that only one bit from the 
vector Out(n..1) is selected at a time to provide 
only one bit oscillation. The other ones are then 
fixed by the value provided in the input In(n..1). 
That is, if a single input-output pair is considered, 
just the associated path will oscillate, and all 
others are kept in steady state.  
 

 
 

Figure 6 – Oscillation BIST path. 
 

 

 
 

Figure 7 – Multiplexer for oscillations BIST 
mode. 

 
Notice that, the internal path followed by the 
oscillating signal through the chain of 
combinational blocks will depend on the static 
binary values to which the steady-state inputs of 
the first block are set. This feature allows 
configuring a wide range of different oscillating 
paths. Fig. 8 shows the electrical simulation of the 
circuit in oscillation BIST mode. While the bit 
‘In(1)’ is kept oscillating, the others are modified 
at lower frequency to cover all the eight possible 
combinations. At the end of this exercise, the 
oscillation is switched to the bit ‘In(3)’. Table IV 
gives the signal period of the oscillating bit for all 
different states illustrated in Fig. 8. 
 
The main contribution of the oscillation BIST 
mode to the validation process is that it makes 
possible to measure the signal delay propagation 
through different logic paths involving different 
cell instances. These delay results are then 
compared to those obtained from a previous static 
timing analysis, which took into account cell 
timing data from characterization (possibly done 
by electrical simulations). This way it is possible 
to correlate the models used for design with real 
silicon behavior. 
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Figure 8 – Electrical simulation of oscillation 
BIST. 

 
 
 
 

Table IV - Data of the oscillation BIST mode 
simulation, illustrated in Fig. 8.  

Interval (ns) (b1,b2,b3,b4) Period (ns) 
5-10 (b1,1,1,1) 1.76 
10-15 (b1,0,1,1) 1.47 
15-20 (b1,1,0,1) 1.35 
20-25 (b1,0,0,1) 1.49 
25-30 (b1,1,1,0) 1.65 
30-35 (b1,0,1,0) 1.59 
35-40 (b1,1,0,0) 1.58 
40-45  (b1,0,0,0) 1.75 
45-50 (0,1,b3,1) 1.74 

 
4.4 Diagnosis Mode 
 
To perform defect diagnosis, additional 
multiplexers can be included in the circuit 
architecture, at no significant penalty in area, to 
select part of the combinational chain. 
Multiplexers at the inputs of each combinational 
block can select the signal from the previous 
block or directly from the beginning of the chain, 
removing the influence of the previous blocks in 
the ring loop. Similarly, multiplexers at the output 
of the blocks can send the data from the middle of 
the chain directly to its end. This way, the chain 
can be easily reduced to a single block or even 
none, allowing in this case the verification of the 
counter and the register barrier without the 
influence of the combinational chain. 
 
This mode provides the diagnosis of a faulty 
block, and it also allows the different circuit 
operation modes, described above, to run through 
part of the entire chain. To exemplify this mode, 
the oscillation BIST was exercised for three 
conditions: (1) the complete chain; (2) half of the 
chain; and (3) one-fourth of the chain. Table V 
shows the data for these oscillation conditions. 
 
The diagnosis can also be performed in open ring 
configuration, as the multiplexer used to provide 
the oscillation BIST mode (see Fig. 7) can also be 
applied to interrupt the ring configuration without 
additional circuitry. The open chain mode allows 
the external control of the signal stimuli that are 
sent to the combinational blocks chain. It is quite 
useful for the identification of a faulty cell. 
 

Table V – Electrical simulation data of the 
diagnosis mode, considering one data bit in 

oscillation mode.  
Interval (ns) Chain configuration Period (ns) 

15-35 complete chain 4.07 
35-45 half-chain 2.52 
45-60 one-fourth chain 1.64 

 
 
5. Overhead Analysis  
 
The testbench circuit proposed here can be 
integrated in the same die with an ASIC, resulting 
in an area overhead as illustrated in Fig. 9. Two 
experiments have been done to evaluate this 
overhead. 
 

 
Figure 9 – ‘Certification circuit’ prototyped in the 

same die of the target ASIC. 
 
In the first experiment, the set of 64 cells 
previously mentioned in Table I was considered. 
This set is composed of cells with up to 4 inputs. 
The number of input/output bits for the generation 
of combinational blocks was kept at four bits to 
ensure the controllability of the instantiated cells. 
Eight combinational blocks were automatically 
generated to build a circuit having all library cells 
instantiated in the first stage of blocks. The 
complete circuit used around 500 instances. The 
testbench circuit ensures the verification of all 64 
cells in the library, with an average of 7.03 
instances per cell from the library. Notice that, the 
‘tv80_core’ circuit in Table I, which used all 64 
cells of the library on its implementation, has 
5,597 cell instances. Suppose that the verification 
circuit generated here was the test vehicle to 
verify the library used to implement the 
‘tv80_core’ circuit. In this case, an overhead of 
8% in terms of cell instances would be produced. 
However, if ‘wb_conmax_top’ was chosen to 
validate the library, a circuit with 28,089 instances 
would be produced and yet not all the cells from 
the library would be instantiated.  
 
The second experiment was the design of a 
testbench circuit to test a library containing 208 
cells, mainly CMOS complex gates, with up to 7 
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inputs. This example resulted in a testbench 
composed of around 8,000 instances, to validate 
the complete set of cells. The number of instances 
per cell library is around 16, which is still 
acceptable. This can be considered a very small 
circuit to test such a huge group of cells once an 
ASIC requiring such amount of cells can easily 
have more than 100k instances. 
 
Therefore, the test circuit brings little silicon 
overhead to the final design, allowing the 
fabrication embedded with the target ASIC, as 
illustrated in Fig. 9. 
 
The overhead in terms of I/O pins is described in 
the following, considering n-bit combinational 
blocks. The value ‘n’ represents the maximum 
number of inputs in a single cell to be validated. 
In this case, the final validation circuit presents: 

• ‘n’ input signals – K(n..1); 
• ‘n’ output signals – Out(n..1); 
• one external clock signal; 
• one D-type flip-flop reset 
signal; 
• some multiplexer control 
signals, being that the number can be 
reduced by using a decoder circuit since 
some multiplexers are dependent on each 
others. 

 
Depending on the complexity of the target ASIC, 
such a pin overhead may prove unaffordable for 
certification at the chip level. In this case, 
considering its little silicon overhead, the testbech 
could be though as a certification vehicle at the 
wafer-level and be used to validate sets of 
neighbouring ASICs.  
 
From this analysis, one can conclude that the 
testbench methodology represents a low cost 
solution for validating all soft-cells included in an 
ASIC, and may act as a library certification circuit 
at chip or wafer-level. In terms of EDA vendor 
interest, the proposed methodology represents an 
efficient way to validate soft-libraries by using 
very compact circuits. 
 
6. Conclusions 
 
The use of automatically generated CMOS logic 
gates in standard cell IC design flow represents an 
attractive perspective for ASIC design quality 
improvement. Automatic cell generators can be 
considered as soft IPs and represent the key 
elements for the library-free technology mapping 
approach, already proposed in literature and now 
being adopted by the industry. This methodology 
leads to an IC design flow based on logic cells 
which are created on-the-fly by software, which 

have not been previously validated on silicon yet, 
until the target ASIC is prototyped. This fact 
makes conservative customers reluctant in 
adopting this design technique. This work 
proposed a validation methodology to silicon 
prove the set of automatically designed logic 
cells. The validation covers the full functionality 
of the cells and provides means to compare cell 
data models derived from electrical 
characterization against silicon performance. This 
methodology allows verifying the reliability of the 
cell models to be used in the performance 
estimation during the circuit design. A method to 
automatically generate the validation circuits from 
an initial set of cells was also proposed. The 
method has low area overhead and the several 
operation modes. Medium and long term 
standalone runs allow verifying the circuits for 
degradation effects like NBTI and 
electromigration. Self-testing modes allow 
performing medium and long term reliability 
certification without depending on ATE, which 
allows to reduce costs and to increase the number 
of samples under test. 
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