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ABSTRACT

Software-Defined Networking (SDN) aims to alleviate the limitations imposed by traditional IP
networks by decoupling network tasks performed on each device in particular planes. This ap-
proach offers several benefits, such as standard communication protocols, centralized network
functions, and specific network elements, such as controller devices. Despite these benefits,
there is still a lack of adequate support for performing tasks related to traffic classification, be-
cause (i) the native flow features available in OpenFlow, such as packet and byte counts, do
not convey sufficient information to accurately distinguish between some types of flows; (ii)
there is a lack of support to determine what is the optimal set of flow features to characterize
different types of traffic profiles; (iii) there is a need for a flexible way of composing different
mechanisms to detect, classify and mitigate network anomalies using software abstractions; (iv)
there is a need of online traffic monitoring using lightweight/low-cost techniques; (v) there is
no framework capable of managing anomaly detection, classification and mitigation in a coor-
dinated manner and considering all these demands. Additionally, it is well-known that anomaly
traffic detection and classification mechanisms need to be flexible and easy to manage in or-
der to detect the ever growing spectrum of anomalies. Detection and classification are difficult
tasks because of several reasons, including the need to obtain an accurate and comprehensive
view of the network, the ability to detect the occurrence of new attack types, and the need to
deal with misclassification. In this dissertation, we argue that Software-Defined Networking
(SDN) form propitious environments for the design and implementation of more robust and
extensible anomaly classification schemes. Different from other approaches from the literature,
which individually tackle either anomaly detection or classification or mitigation, we present
a management framework to perform these tasks jointly. Our proposed framework is called
ATLANTIC and it combines the use of lightweight techniques for traffic monitoring and heavy-

weight, but accurate, techniques to classify traffic flows. As a result, ATLANTIC is a flexible
framework capable of categorizing traffic anomalies and using the information collected to han-
dle each traffic profile in a specific manner, e.g., blocking malicious flows.

Keywords: Anomaly detection. Traffic classification. Traffic monitoring. Management frame-
work. Machine learning.





ATLANTIC: Um Framework para Detecção, Classificação e Mitigação de Tráfego
Anômalo em SDN

RESUMO

Software-Defined Networking (SDN) objetiva aliviar as limitações impostas por redes IP tra-
dicionais dissociando tarefas de rede executadas em cada dispositivo em planos específicos.
Esta abordagem oferece vários benefícios, tais como a possibilidade de uso de protocolos de
comunicação padrão, funções de rede centralizadas, e elementos de rede mais específicos e
modulares, tais como controladores de rede. Apesar destes benefícios, ainda há uma falta de
apoio adequado para a realização de tarefas relacionadas à classificação de tráfego, pois (i) as
características de fluxo nativas disponíveis no protocolo OpenFlow, tais como contadores de
bytes e pacotes, não oferecem informação suficiente para distinguir de forma precisa fluxos
específicos; (ii) existe uma falta de suporte para determinar qual é o conjunto ótimo de carac-
terísticas de fluxo para caracterizar um dado perfil de tráfego; (iii) existe uma necessidade de
estratégias flexíveis para compor diferentes mecanismos relacionados à detecção, classificação
e mitigação de anomalias de rede usando abstrações de software; (iv) existe uma necessidade
de monitoramento de tráfego em tempo real usando técnicas leves e de baixo custo; (v) não
existe um framework capaz de gerenciar detecção, classificação e mitigação de anomalias de
uma forma coordenada considerando todas as demandas acima. Adicionalmente, é sabido que
mecanismos de detecção e classificação de anomalias de tráfego precisam ser flexíveis e fáceis
de administrar, a fim de detectar o crescente espectro de anomalias. Detecção e classificação
são tarefas difíceis por causa de várias razões, incluindo a necessidade de obter uma visão pre-
cisa e abrangente da rede, a capacidade de detectar a ocorrência de novos tipos de ataque, e
a necessidade de lidar com erros de classificação. Nesta dissertação, argumentamos que SDN
oferece ambientes propícios para a concepção e implementação de esquemas mais robustos e
extensíveis para detecção e classificação de anomalias. Diferentemente de outras abordagens
na literatura relacionada, que abordam individualmente detecção ou classificação ou mitigação
de anomalias, apresentamos um framework para o gerenciamento e orquestração dessas tarefas
em conjunto. O framework proposto é denominado ATLANTIC e combina o uso de técnicas
com baixo custo computacional para monitorar tráfego e técnicas mais computacionalmente
intensivas, porém precisas, para classificar os fluxos de tráfego. Como resultado, ATLANTIC é
um framework flexível capaz de categorizar anomalias de tráfego utilizando informações cole-
tadas da rede para lidar com cada perfil de tráfego de um modo específico, como por exemplo,
bloqueando fluxos maliciosos.
Palavras-chave: Detecção de anomalias, classificação de tráfego, monitoramento de tráfego,
framework de gerenciamento, aprendizagem de máquina.
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1 INTRODUCTION

Resilience is the ability of the network to maintain an acceptable level of service when
confronted with operational challenges (STERBENZ et al., 2010). A challenge is an atyp-
ical event that hinders the expected normal network operation (CETINKAYA; STERBENZ,
2013) (SCHAEFFER-FILHO et al., 2014). When a network challenge arises, resilience mech-
anisms should be activated, ideally without human intervention, to rapidly protect a network
and the services it supports. However, the broad range of potential challenges that could befall
a network requires sophisticated network (resilience) management systems that can detect and
mitigate their effects (SCHAEFFER-FILHO et al., 2014). Existing management systems have
limitations, including a lack of flexibility with respect to challenge identification and classifica-
tion, which has encouraged research that considers this problem in the context of new network
architectures (A. LANDA R.; GEORGE, 2014).

In particular, traffic classification assists network resilience mechanisms in guaranteeing
quality of service (QoS), detecting malicious attacks, reallocating network resources, and per-
forming traffic modeling (NGUYEN; MINH; YAMADA, 2013a). Traffic classification tech-
niques can be broken down into several domains, including Internet application protocol clas-
sification (i.e., classifying transport flows according to their corresponding application layer
protocol), packet classification (i.e., categorizing packets into transport flows), and traffic clas-
sification for anomaly detection (i.e., separating malicious and non-malicious flows). In order to
achieve more accurate traffic classification, it is important to retrieve precise information about
individual traffic flows features, which include, for example, the average packet transmission
time.

Typically, systems for anomaly traffic detection and classification need to be flexible and
easy to manage in order to be able to detect a growing spectrum of anomalies. However, the
majority of network functions in traditional IP networks are coupled with network forwarding
devices, thus creating a distributed control plane. This approach presents limitations when we
consider management requirements, such as programmability, flexibility and evolution, because
even simple changes would require several network devices to be updated. These limitations
result in a significant impact on the performance, accuracy and management of anomaly traffic
classification solutions (KIM et al., 2008). Due to their critical importance, anomaly traffic
detection and classification have demanded considerable attention in the past few years (STER-
BENZ et al., 2010). Part of these previous research efforts have concentrated on mechanisms for
monitoring and shaping network traffic. Others have proposed mechanisms to mitigate anoma-
lies by restoring the network to normal operation (CHANDOLA; BANERJEE; KUMAR, 2009).

Software-Defined Networking (SDN) offers a reformulation of the network control logic
and alleviate the limitations imposed by traditional IP networks (WICKBOLDT et al., 2015b).
In SDN, the control plane is decoupled from the data plane, i.e., part of the control logic is
moved from the forwarding devices to a logically centralized device often referred to as the
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network controller. In this approach, every control decision is taken by the network controller,
while network devices become simple packet forwarders, programmable through a standard-
ized protocol, such as OpenFlow (MCKEOWN et al., 2008). SDN can facilitate the design
of anomaly detection and traffic classification systems because of several reasons: (i) SDN
offers a more comprehensive view of the network, (ii) SDN supports the easy collection of
flow statistics, and (iii) SDN includes a dedicated management plane to coordinate dynamic
reconfiguration actions. However, despite the benefits brought by SDN, there is still a lack of
adequate research on traffic classification in OpenFlow-based networks, because: (i) the native
flow features available in OpenFlow, such as packet and byte counts, do not convey sufficient
information to accurately distinguish between some types of flows; (ii) there is a lack of sup-
port to determine what is the optimal set of flow features to characterize different types of
traffic profiles; (iii) there is a need for a flexible way of composing different mechanisms to
detect, classify and mitigate network anomalies using software abstractions; (iv) there is a need
of online traffic monitoring using lightweight/low-cost techniques; (v) there is no framework
capable of managing anomaly detection, classification and mitigation in a coordinated manner
and considering all these demands.

To address these issues, we introduce the ATLANTIC (Anomaly deTection and machine

LeArNing Traffic classifICation for software-defined networking) framework for detection, clas-
sification, and mitigation of traffic anomalies in SDN-based networks. We perform anomaly
detection and classification in two complementary phases: (i) a lightweight phase, in which low
computation cost methods are executed more frequently to quickly spot potentially malicious
flows, and (ii) a heavyweight phase, where such spotted flows are analyzed and classified ac-
cording to their abnormal behavior. To instantiate our framework, we employ an information
theory method based on entropy analysis (GIOTIS et al., 2014a) in the lightweight phase. In
the heavyweight phase, a set of machine learning algorithms, based on Support Vector Ma-
chines (SVM), Naïve Bayes and Neural Networks (YUAN et al., 2010a), are used to leverage
historical knowledge about past anomalies and to classify the abnormal traffic. To the best of
our knowledge, there is no framework capable of managing anomaly detection, classification
and mitigation in a coordinated manner in SDN environments. We advocate that such a frame-
work should perform these tasks jointly, be fully extensible to accommodate different types of
anomalies, and rely on modular software abstractions.

Our main contributions are: (i) a strategy that obtains global network information without
additional costs to network administrators, such as additional sensors; (ii) an architecture to
combine several types of anomaly detection, classification, and mitigation techniques in a flex-
ible manner, while avoiding high resource utilization; (iii) a publicly available application of
how SDN can provide sophisticated software-based management solutions (represented by the
lightweight and heavyweight phases) to tackle legacy network problems, such as managing clas-
sification techniques. We also have developed a prototype system as a proof-of-concept. Our
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prototype has been implemented in Python and is publicly available in GitHub1. We evaluate the
instantiation of the ATLANTIC framework to manage an SDN-based environment consisting
of 12 switches organized according to the topology of a campus network. In our experimen-
tal evaluation, we observed performance, accuracy, and overhead of ATLANTIC, considering
distributed denial of service (DDoS) and port scanning attacks.

The remaining of this dissertation is organized as follows. In Chapter 2, we present the
background and review the related work. We show basic concepts related to Software-Defined
Networking, the OpenFlow protocol and issues related to network traffic classification. Ad-
ditionally, we review some important related work in the anomaly detection field discussing
techniques and lessons learned in the past. In Chapter 3, we introduce ATLANTIC and show
a description and overview of its architectural components, as well as describe the operation
of its lightweight and heavyweight phases. In Chapter 4, we outline the implementation of
ATLANTIC showing how each component communicates with others and internal details of
its architecture, and in Chapter 5 we present our evaluation and associated results, including
a performance analysis of the framework. Finally, in Chapter 6, we conclude this dissertation
presenting final remarks and future work.

1https://github.com/AndersonSanSilva/ATLANTIC
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2 BACKGROUND AND RELATED WORK

This chapter presents some basic concepts for the understanding of this work. Software-
Defined Networking, the OpenFlow protocol and the notion of Feature Selection are introduced,
along with concepts related to traffic classification. After that, the related work is presented and
discussed, exposing the major differences in comparison with the ATLANTIC framework.

2.1 Software-Defined Networking

Software-Defined Networking (SDN) is an architecture for computer networks aimed at
decoupling the network control functions (control plane) from the forwarding devices (data

plane) (FEAMSTER; REXFORD; ZEGURA, 2013a). The control plane is responsible for
determining the network control logic, such as implementing routing protocols. The aim of the
SDN architecture is to simplify the deployment of new control plane functions, such as routing
strategies, when compared to traditional networks (JARRAYA; MADI; DEBBABI, 2014; CUI
et al., 2014), in which the control and data planes are more tightly coupled and typically operate
in an entirely distributed fashion.

2.1.1 Architecture Overview

The SDN architecture defines four conceptual planes and communication interfaces as de-
picted in Figure 2.1.

Figure 2.1: SDN architecture: conceptual planes and communication interfaces
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• The application plane is responsible for executing applications that run over the network
infrastructure. Generally, these applications perform modifications regarding network
aspects, such as network policies and routing behavior, with some degree of human in-
tervention (JARRAYA; MADI; DEBBABI, 2014). Examples of network applications
deployed in this plane are network visualization, path reservation and network provision-
ing;

• The control plane defines the control logic, such as routing schemes. Additionally, the
control plane can manage the information collected by switches at the data plane, such
as flow statistics, to orchestrate the traffic behavior. This plane has a global network
view, being able to offer mechanisms for fault diagnosis, make decisions over current
traffic distributions and enforce QoS policies. Usually, the control plane is physically
distributed into controller devices, but logically centralized (BERDE et al., 2014);

• The data plane includes the devices that are responsible for forwarding data, which are
generally referred to as switches. An OpenFlow switch offers the notion of programmable
flow tables, i.e.tables that define an action for each packet associated with a specified flow.
A flow table can be dynamically configured by the control plane. When a new packet
arrives in a given switch it can be (i) dropped; (ii) flooded through all output ports; (iii)
sent to a specific output port; or (iv) sent to the network controller (Open Networking
Foundation, 2009). For every flow the switches involved in this communication store
statistical information that can be accessed by the control plane.

• The management plane is responsible for monitoring, configuring and maintaining the be-
havior of network elements in each plane. The management focuses on the configuration
of these network elements. Consequently, some human intervention may be necessary for
the managed applications in this plane. Examples of applications are resource allocation,
enforcing access control policies and VNF (Virtual Network Function) managers.

Furthermore, the communication between the different planes occurs through the following
interfaces:

• Northbound API: Implements the communication interface between the control plane and
the application plane. This API enables the programmability of the network controller
by exposing network data abstractions to the application plane. Currently, the most used
protocol for this communication is REST (REpresentational State Transfer);

• Southbound API: Implements the communication interface between the control plane

and the data plane. Through this interface it is possible for the control plane to configure
switches with forwarding actions according to received notifications of incoming packets
from the data plane (FARHADI; DU; NAKAO, 2014). This is typically standardized
and implemented by the OpenFlow protocol (MCKEOWN et al., 2008; AMAZONAS;
SANTOS-BOADA; SOLÉ-PARETA, 2014).

• Management Interface: is responsible for providing information exchange between net-
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work management solutions and the elements in all other planes. Examples of protocols
to do this task are OF-Config and NETCONF (WICKBOLDT et al., 2015a).

It can be seen that through these interfaces the SDN architecture introduces a great deal of
flexibility in flow management, impacting directly in areas such as security, traffic management
and performability (NAKAYAMA et al., 2014; PANTUZA et al., 2014). Also, SDN has the
potential to reduce the cost of network deployment, because simplified data plane switches are
relatively inexpensive components, when compared to more complex routers (GREENBERG
et al., 2008). Furthermore, OpenFlow has proven to be ideal for the development of proto-
type network applications (LARA; KOLASANI; RAMAMURTHY, 2014); based on this suc-
cess, research in this field has increased (SCHIFF; BOROKHOVICH; SCHMID, 2014). These
characteristics generated enthusiasm in both industry and academia. Many surveys covering
historical aspects, architecture and challenges related to SDN have been published and further
discussions can be found in (CASADO et al., 2012; CARAGUAY et al., 2013; HU; HAO; BAO,
2014; JARRAYA; MADI; DEBBABI, 2014).

2.1.2 OpenFlow Protocol

The OpenFlow protocol was proposed as a platform to enable innovation in computer net-
works. This protocol provides the communication between the control and the data plane
(OpenFlow switch). An OpenFlow switch offers the notion of programmable flow tables, i.e.,
tables that define an action for each packet associated with a specified flow. A flow table can
be dynamically configured by the control plane. When a new packet arrives in a given switch
it can be (i) dropped; (ii) flooded through all output ports; (iii) sent to a specific output port;
or (iv) sent to the network controller (Open Networking Foundation, 2009). For every flow the
switches involved in this communication store statistical information that can be accessed by the
control plane. Consequently, the OpenFlow switch is a device that is responsible for forwarding
data, however can do additional tasks such as the collection of flow counters. The basic set of
flow counters defined by the OpenFlow specification (Open Networking Foundation, 2009) is
represented by:

〈packet_count, duration, byte_count〉1

The Openflow protocol is the key implementation of SDN ideas and enables the handling
of traffic flows with a massive use of wildcards to efficiently configure switches with the for-
warding behavior for incoming packets. These wildcards are used to specify don’t care packet
header fields to filter or match a subset of network packets. A benefit of this practice is the low
TCAM memory usage since several traffic flows can use the same switch forwarding policy,
which enhances performance issues in SDN networks (CURTIS et al., 2011).

1OpenFlow protocol version 1.0. New flow counters can be added in future versions of this protocol.
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However, traffic flow information, such as individual IP address, can be lost in this process,
thus hindering the detection of malicious activities and facilitating its propagation. Still, despite
all the benefits that the OpenFlow protocol represents, the reduced number of flow counters,
the absence of conditional match rules, and the inability to force TLS encryption in its com-
munication with the network controller are examples of current limitations that this protocol
faces.

2.2 Traffic Classification

Traffic classification techniques are capable of identifying patterns in the sampled network
traffic. Their purpose ranges from the identification of malicious traffic up to the categorization
of Internet traffic for QoS support. However, with the increasing sophistication of applications,
protocols and traffic profiles, strategies based on port numbers do not offer reliable classifica-
tion. Further, strategies based on payload inspection can be very accurate if packets are not
encrypted, but at a high processing cost.

2.2.1 Classification techniques

Because of the emergence of new traffic behaviors, strategies to detect and classify anoma-
lous traffic are necessary so to protect the network against malicious attacks. In traditional
networks, machine learning has been widely used for traffic classification and anomaly detec-
tion (NGUYEN; ARMITAGE, 2008). These techniques can be divided into two main classes:

• Supervised learning: supervised learning techniques, such as Naive Bayes (MOORE;
ZUEV, 2005a) and Support Vector Machine (SVM) (YUAN et al., 2010b), are suitable
for classifying data samples into a range of known attacks because these techniques use a
data model that describes the known classes to classify data. However, supervised learn-
ing is unable to handle new types of attacks when the model used does not have a sample
of these attacks. SVM typically achieves high classification accuracy (NGUYEN; AR-
MITAGE, 2008) and thus it is commonly chosen to compose anomaly detection systems.

• Unsupervised learning: unsupervised learning techniques, such as K-means (ERMAN;
ARLITT; MAHANTI, 2006) and Expectation Maximization (NGUYEN; ARMITAGE,
2008), are suitable for detecting new types of attacks. This occurs because these tech-
niques do not use historical information or a data model to produce the data clustering,
but only the similarities observed in the data. In this way, a new data profile can be clus-
tered with similar old data samples or be clustered in a single group. However, in general,
they need human input to determine the classes of the clustered data.

Despite the high accuracy and performance obtained with these techniques, machine learn-
ing algorithms tend to suffer from several limitations: (i) the difficulty of determining the best
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set of discriminators to classify flows (MOORE; ZUEV, 2005a); (ii) the availability of labeled
training data for classification (ERMAN; ARLITT; MAHANTI, 2006) (WILLIAMS; ZAN-
DER; ARMITAGE, 2006); (iii) the trade-offs between different machine learning algorithms
regarding accuracy and performance (WILLIAMS; ZANDER; ARMITAGE, 2006); (iv) the
sheer amount of traffic data that makes it difficult to handle and to promptly detect malicious
activities (LAKHINA; CROVELLA; DIOT, 2005) (WANG; GOMBAULT, 2008); (v) the need
of a high amount of resources, such as management systems and middleboxes, to collect traffic
information (YU et al., 2011). Further discussion on machine learning and its use for network
traffic classification is presented by Nguyen and Armitage (NGUYEN; ARMITAGE, 2008).

Additionally, techniques based on Information Theory have also been used in traditional
networks for anomaly traffic detection (LAKHINA; CROVELLA; DIOT, 2005) (GIOTIS et al.,
2014b). These techniques use probability and statistic theory to model the entropy, i.e., the
mean information present in some set of traffic features, to detect when disturbances occur in
the network. In particular, entropy can be used to model a high-level view of the flows ob-
served in the network, and enables the monitoring of distributions of flow features with reduced
computational cost. By analyzing the entropy information within a time interval it is possi-
ble to detect deviations that indicate an anomaly. Past research efforts indicate that entropy is
a suitable, low-cost, and accurate technique to monitor traffic behavior changes (NYCHIS et
al., 2008). Moreover, the combination of entropy and machine learning can be used for traffic
classification (AGARWAL; MITTAL, 2012).

2.2.2 Feature Selection

In the context of machine learning, the problem of discovering the optimal set of features
to describe input data has been studied for several years (KLOFT et al., 2008). This process
is named feature selection and often represents a problem because (i) there is a lack of a priori
information about the relevance of features collected to describe some data, thus leading to inac-
curate classifications; (ii) the excessive number of collected features can lead to a classification
with high computational cost; (iii) there is a lack of information on the combination between
different data features, thus encouraging the study of their joint influence. Further, there is a
wide range of applications that can benefit from this process, such as anomaly detection sys-
tems and QoS enforcement applications, which have boosted the study of strategies to solve this
problem.

It is desirable that irrelevant or redundant features should be removed in the feature selec-
tion process and the remaining set should represent enough information for an accurate traffic
classification. Strategies for selecting flow characteristics are the subject of intense study, as
evidenced by (PASCOAL et al., 2012; MANTERE; SAILIO; NOPONEN, 2012). The work
of Blum et al. (BLUM; LANGLEY, 1997) summarizes several solutions to the feature selec-
tion problem, such as heuristic search, filter-based strategies and solutions based on assigning
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weights to each feature.

The techniques for feature selection can be broken down in the following classes:

• Filter methods: use variable ranking techniques such as Principal Component Analysis
(PCA) to determine a feature ordering. In this way, these methods can determine the set
of less relevant features that can be ignored in the feature selection process.

• Wrapper methods: use a predictor, such as a machine learning classifier, to evaluate
each subset of features generated. The task of evaluating all possible subsets of features
is impracticable, thus this type of method in general generates a suboptimal feature set.
Examples are Sequential Selection algorithms and Heuristic Search methods.

• Embedded methods: aim to reduce the computation time used in wrapper methods. The
idea behind this is to incorporate feature selection in the training process of Wrapper
methods. The strategies for this can use greedy algorithms or the assignment of weights
for the classifier and its subset of features.

The work of Fahad et al. (FAHAD et al., 2013) studies algorithms based on mathematical
concepts, such as eigenvalues and eigenvectors for selecting data features. For example, algo-
rithms, such as gain information (IF), gain ratio (GR), principal component analysis (PCA),
correlation based feature selection (CBFS), Chi- square, consistency-based-search (CBS) can
be used to provide feature selection. The quality of each algorithm is generally studied using
metrics such as stability (select the same set of characteristics even in the studied traffic vari-
ations) and similarity (how similar are the sets of optimal characteristics found by each algo-
rithm). Fahad et al. still concludes that the use of these techniques together increases the quality
of the final set of features achieved. In the class of feature selection strategies using heuristic
methods, the work of Lanzi et al. (LANZI, 1997) is intended to resolve the feature selection
problem using heuristic algorithms, such as the genetic algorithm, whose optimal solution is
found in an indeterminate number of controlled iterations.

2.3 Related Work

Recent research efforts have indicated that SDN is suitable for the implementation of so-
phisticated software solutions and that anomaly detection schemes can benefit from the SDN
architecture (BRAGA; MOTA; PASSITO, 2010) (ZHANG, 2013) (SHIN et al., 2013). How-
ever, some key issues still remain open, such as the limited number of traffic features offered
by OpenFlow, the orchestration of classification mechanisms to avoid network performance
degradation, and the need of an extensible anomaly detection mechanism that can evolve and
be modified to treat new types of network anomalies. In the next subsections, we show the
principal studies on these topics.
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2.3.1 Existing Solutions for Anomaly Detection and Traffic Classification in SDN

According to Mehdi et al. (MEHDI; KHALID; KHAYAM, 2011), the deployment of an
anomaly detection system in the traditional network core is difficult mainly due to the low de-
tection rate that these systems can provide with limited network information. In SDN, however,
the control plane has a comprehensive view of the network, which facilitates the implemen-
tation of detection mechanisms. Mehdi et al. (MEHDI; KHALID; KHAYAM, 2011) presents
an overview of attack detection possibilities using SDN. The authors discuss four well-known
algorithms: TRW-CB, MaxEnt, RateLimit and NETAD. Their study suggests that SDN is a
platform suitable for the mitigation of DDoS attacks, mainly because of the use of standard
protocols, services and interfaces, thus facilitating the deployment of new solutions.

Braga et al. (BRAGA; MOTA; PASSITO, 2010) investigate the mitigation of DDoS attacks
using Self-Organizing-Maps (SOM), a machine learning algorithm already used in traditional
networks but with limited effects due to the restrictions of that architecture. The authors pro-
pose a solution based on flow collection, feature extraction and flow classification. The traffic
features used are the average number of packets per flow, average bytes per flow, average du-

ration per flow, percentage of pair-flows, and growth of single-flows. However, the feature
selection step is not performed. In the concluding remarks, the authors highlight that the de-
tection rate obtained is remarkably good and that the flexible composition/communication of
different detectors is an aspect needed in this context.

McHale et al. (MCHALE et al., 2014) propose a packet classification scheme based on
prefix match and flow cache techniques to avoid the repeated classification of traffic flows.
Its classification scheme is based on the idea of flow locality, i.e., the idea that 35% of flows
contain 95% of the incoming packets and that SDN is an environement that will increase the
stress on packet classification. Using these assumptions, they take advantage of flow locality
to provide an stochastic flow classification mechanism using flow caches and strategies for
pre-classification. They conclude that the use of flow cache mininizes the effect of repeatedly
classifying high-throughput flows and that the pre-classification prioritizes known traffic. This
research represents an example of the need for flexible schemes to monitor traffic in real-time.

The use of information theory for packet classification has been investigated by Giotis et

al. (GIOTIS et al., 2014a), who use entropy analysis for monitoring deviations in network
behavior. The authors propose an sFlow-based mechanism to obtain information from the
network. This mechanism is coupled with a modular architecture that separates data collec-
tion from other processing overloads that the centralized control-plane should perform, such
as routing. The architecture is composed of a flow collector, an anomaly detection compo-
nent responsible for analyzing flow statistics/anomaly identification, and an anomaly mitigation
component responsible for changing flow rules in order to block malicious flows.
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2.3.2 Discussion

As described in the previous section, there is a number of research efforts investigating
anomaly detection and traffic classification in SDN environments. However, as pointed out in
Chapter 1, SDN/Openflow lacks support to:

• An extended set of flow features to convey sufficient information to accurately distinguish
between some types of flows. This extended set of flow features can be generated through
traffic information collected from the data plane and the use of statistical techniques over
primitive traffic counters collected;

• Feature selection schemes to determine what is the optimal set of flow features to charac-
terize different types of traffic profiles;

• Flexible composition of several mechanisms to detect, classify and mitigate network

anomalies using software abstractions;

• The easy implementation of lightweight/low-cost techniques for online traffic monitoring

in order to alleviate the overhead imposed on the network;

• A framework capable of managing anomaly detection, classification and mitigation in a
coordinated manner and considering all these demands;

Table 2.1 compares the related work discussed in the previous section and the criteria above.
Note that the related work does not include research about Feature Selection.

Table 2.1: Anomaly detection requirements and related work

Feature Mehdi et al. Braga et al. McHale et al. Giotis et al.
Extended flow features X X X x
Feature selection x x x x
Flexible composition of several mechanisms to
detect, classify and mitigate network anomalies

X x X X

Lightweight/low-cost online traffic monitoring x X x X
Framework capable of managing anomaly de-
tection, classification and mitigation

X X x X

Source: by author (2015).

Differently from the related work discussed in this section, we propose a framework that
jointly coordinates anomaly detection, classification and mitigation tasks and assists the net-
work administrator with traffic classification related tasks, such as feature selection. These
issues are addressed by the ATLANTIC framework, which will be described in the next chap-
ter.
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3 ATLANTIC: CONCEPTUAL SOLUTION

We advocate that anomaly detection and traffic classification can take advantage of the pro-
grammability offered by SDN/OpenFlow. To demonstrate this, we introduce ATLANTIC, an
anomaly detection, classification and mitigation framework that allows an administrator to flex-
ibly reconfigure the operation of its building-block components and algorithms. In this chapter,
we discuss the general principles behind our framework. In addition, we present ATLANTIC
in details and describe its main components. In particular, we show an overview of our traffic
classification process and discuss our proposed architecture.

3.1 Framework General Principles

A framework for anomaly detection and traffic classification should be capable of orches-
trating several different modules, such as those responsible for traffic monitoring, classification,
and mitigation. We argue that the required functionality for such a framework can be placed in
the management plane of the SDN architecture, and take into account the following aspects:

• Comprehensive view of the network - To perform traffic monitoring and analysis, the
framework must be able to retrieve detailed and unrestricted information about the net-
work and traffic flows. As opposed to applications sitting in the application plane of SDN
– which makes use of the Northbound API to request network resources to the controller
– our framework uses the Management Interface to gain access to information about flows
from all applications, and uses this information to manage traffic anomalies.

• Human intervention - The network administrator must be able to interact and monitor
the operation of the anomaly detection and traffic classification framework, observing
logs and reconfiguring its operation whenever necessary. For example, an administrator
might update parameters or replace some component functionality to increase perfor-
mance or accuracy of classification.

• Flexible network configuration - Several types of configurations can assist the task of
anomaly mitigation, such as the definition of proactive and reactive path instantiation,
deployment of specific or generic flow rules in flow tables, and management of flow
parameters such as timeout and data rate. Our framework must be able to instruct the
network controller to change its behavior regarding certain events and flows as they are
deemed anomalous.

We anticipate that our management framework must be modular and support customization,
i.e., it should be possible to update components with a more sophisticated algorithm or strategy
whenever needed. For example, a network driver (see Section 3.3) may need to be customized
to collect information from different types of individual network controllers or from a large
set of distributed controllers. Using the management plane, these decisions can be taken by
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administrators to achieve more appropriate configurations.

3.2 Lightweight and Heavyweight Processing

ATLANTIC comprises two operational phases: a lightweight processing phase, responsible
for traffic monitoring and anomaly detection; and a more heavyweight processing phase, con-
sisting of anomaly classification and mitigation. Next, we explain these phases in details and
how they are combined to support robust anomaly management. Figure 3.1 summarizes the
interplay between the lightweight and heavyweight processing phases.

Figure 3.1: Framework management process
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Source: by author (2015).

3.2.1 Lightweight Processing Phase

Several techniques can be used to extract network traffic profiles, for example, by perform-
ing packet sampling using sFlow (GIOTIS et al., 2014b). A limitation of this approach is the
high memory consumption to obtain fine-grained traffic information and packet inspection. To
rapidly perform lightweight anomaly detection, our framework benefits from the characteris-
tics of SDN and uses the control plane to obtain a snapshot of existing traffic flows, including
information about traffic counters and matched packet headers. Based on the traffic snapshot
collected (arrow 1 in Figure 3.1), lightweight anomaly detection mechanisms are employed to
detect deviations from the “normal” traffic pattern.

We apply entropy analysis to detect variations in the distribution of certain flow features
observed along consecutive traffic snapshots. For example, consider two consecutive snapshots
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t1 and t2. If the entropy of the flow features in t1 is approximately equal to the entropy of
the same features observed in t2, then it is safe to assume that no significant traffic changes
have occurred between the two consecutive snapshots. However, if there is a large difference
in the entropy calculated for a given flow feature between two snapshots, this might indicate
an anomaly (arrow 2). If by subtracting the flows in t2 from the flows in t1 we obtain a non-
empty result, this indicates which flows are responsible for the entropy change. Flows that are
responsible for the entropy change in this stage can only be considered suspicious, and are thus
selected for further categorization using a proper classification scheme (arrow 3). It is important
to emphasize that our framework is designed so that any snapshot-based anomaly detection
scheme can be employed. We chose to use entropy analysis for the Lightweight Processing

Phase because it can be executed very often and permits fast detection of disturbances in the
network (GIOTIS et al., 2014b).

Considering that information is associated with a process of symbol selection, the amount
of information associated with one symbol should be inversely proportional to the symbol oc-
currence (NYCHIS et al., 2008). As the logarithm function fits the restriction showed above,
the equation to represent information is:

I(xi) = log2
1

pi
(3.1)

If we consider the quantity of information Q associated with one message M with k sym-
bols, this is represented by the following equation:

Q(M) =
k∑

i=1

−log2pi (3.2)

Where pi represents the probability of occurrence of symbol i. One alphabet is a set of
symbols, and the mean information associated with an alphabet X is called entropy, which is
calculated as follow:

H(X) = −
N∑

i=1

pi ∗ log2pi (3.3)

The higher the entropy of an alphabet, the higher the average information generated. Thus
the quantity of information associated with one source depends on the entropy of the alphabet
used.

We use the following information from the traffic snapshot to calculate the entropy associ-
ated with a flow:

〈srcip, dstip, srcport, dstport, protocol〉

We chose to calculate the entropy based on IP address and transport port features because
they have been demonstrated to be accurate for the detection of DDoS attacks and worm prop-
agations (BRAGA; MOTA; PASSITO, 2010).
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3.2.2 Heavyweight Processing Phase

Our framework comprises the occasional need to execute complementary heavy processing
classification mechanisms to categorize traffic flows. We consider traffic classification mech-
anisms based on machine learning, which indeed take a considerable amount of resources to
execute but can produce very accurate results in terms of traffic classification (NGUYEN; AR-
MITAGE, 2008). Our framework allows both supervised and unsupervised machine learning
mechanisms. With supervised mechanisms, a model is generated to internally organize data
obtained from previous malicious activity to automatically categorize traffic flows as either ma-
licious or benign. Unsupervised mechanisms, on the other hand, are interesting to be used to
analyze and organize information about traffic features, even if they cannot identify whether
there is a threat or not. As a result, the framework allows flows to be categorized into either
malicious, benign, or unknown, according to their traffic profiles. Malicious flows are sent for
mitigation, whereas unknown flows need to be manually analyzed by a human administrator (ar-
row 4, Figure 3.1).

For every flow that is signalized as malicious, an action must be taken so to avoid network
disruption or performance degradation. For example, commands can be sent back to the net-
work control plane to instruct the devices closer to the source of the malicious traffic to drop
packets of flows deemed malicious. After mitigation actions are performed, the framework re-
turns to its initial traffic monitoring and snapshot collection step (arrow 5, Figure 3.1). For flows
signalized as unknown, the administrator can use the information obtained during classification,
for example, to create new models for the supervised mechanisms to identify the new traffic pat-
tern in a future round of anomaly detection. Note that this heavyweight phase is expected to be
executed less frequently than the lightweight one. In addition, heavy classification mechanisms
only need to deal with a subset of the full traffic snapshot, because of the subtraction performed
in the lightweight phase. The more the administrator interacts with the framework inserting new
information about traffic patterns to be automatically identified, the more efficient the detection
will be.

3.3 ATLANTIC Architectural Components

The basic components of our anomaly traffic classification framework are depicted in Fig-
ure 3.2. The Statistical Layer is responsible for collecting traffic flow statistics and comprises
the following components: Statistics Manager, Features Selector, and Network Driver. The
information generated by the Statistical Layer is delivered to the Classification Layer, which
comprises the following components: Traffic Monitor, Flow Classifier, and Flow Manager.
Next, we describe these components in details. In particular, we highlight that the components
traffic monitor and network driver have their operation related to the lightweight phase and the
components features selector, statistics manager, flow classifier, and flow manager are related
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to the heavyweight phase.

Figure 3.2: Overview of the anomaly classification framework
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3.3.1 Network Driver

We named this component as "driver" due to its similarity with existing drivers in the archi-
tectures of personal computers. Its primary function is to abstract the implementation details of
a broad range of network controllers in order to allow their interoperation with the ATLANTIC
framework. The network driver should perform all the communication between ATLANTIC
and the network. Consequently, this component can (i) deal with several network controllers or
a single one; (ii) communicate with the management plane or directly with the control plane;
(iii) be extended with several kinds of functionalities, such as routines to convert network infor-
mation into a specific format.

The communication between the network driver and the controller is based on the exchange
of three types of messages. The first one (Traffic flows request) is responsible for collecting
network traffic information, the second one (Traffic flows reply) is responsible for receiving
the information about the traffic, and the third one (Block action) is responsible for installing
policies on the network in order to treat flows that deserve attention.

Consequently, the Network Driver operates by sending a request to the network controller
every time that other modules need to query the status of flows in the data plane. After receiving
flow information from the network, the Network Driver parses and organizes relevant data, such
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as the flow identifier, packet headers, and flow counters. The result of one request produces a
traffic snapshot, i.e., a data structure summarizing all flows currently existing in the network.
Note that we construct a flow-id using the following 5-tuple, which is also used as our flow
definition:

〈srcip, dstip, srcport, dstport, protocol〉

We consider this flow as a 5-tuple consisting of source IP address, destination IP address,
TCP/UDP source port, TCP/UDP destination port, and transport protocol identification. It is
important to emphasize that this tuple can be adjusted according to the needs of each network
infrastructure. Thus, some approaches can ignore information such as destination TCP/UDP
port when the network infrastructure performs only one type of service, e.g., HTTP.

A traffic snapshot conveys information about flows as exemplified below:

Table 3.1: Traffic Snapshot main information

Flow Switch
priority 0
duration nanoseconds 484000000
hard timeout 0
idle timeout 5
actions drop or send to controller or ...
duration seconds 4
byte count 196
table id 0
packet count 0
cookie 900071..
match src ip, dst ip,...
... ...

Source: by author (2015).

Note that the match entry has the header information of packets belonging to this flow.

3.3.2 Statistics Manager

After receiving the last saved traffic snapshot produced by the Network Driver, the Statistics

Manager extracts a primitive set of flow features that describe the profile of network flows, i.e.,
all types of traffic features that can be obtained from the network without additional process-
ing. It comprises a main internal procedures responsible for handling network information and
for computing additional flow features. Note that the implementation of this component does
not require modifications to the SDN controller. Further, this component can communicate
with other SDN applications (e.g., monitoring or management systems) in order to export its
information.

The process behind its execution is as follows. The Network Driver sends to the controller
a request for traffic information. Note that the time interval for this request can be configured
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on demand. For example, flows with short duration and frequent bursts require a smaller time
interval between requests, while a longer time interval can be used for flows with longer duration
and more constant behavior. Triggered by the traffic information request, the control plane then
gathers the traffic information from the flow tables of each switch and replies to the Network
Driver. The traffic snapshot information is then sent to the Statistics Manager to select only the
native counters, i.e., byte and packet counters. The Statistics Manager uses the native counters
gathered from the switches to calculate new flow features (e.g., packet length mean), extend the
flow features, and store these in a data structure that we call Flow Feature Set.

The extended set of flow features is classified into three categories: (i) statistical features –

mean, variance, first, and third quartiles; (ii) scalar features – maximum and minimum values,
flow size, and flow duration; and (iii) complex feature – Discrete Fourier Transform (DFT) of
packet inter-arrival-time. We advocate that these extended flow features can improve the perfor-
mance of classification schemes in SDN. First, the statistical features are suitable to summarize
the temporal behavior of traffic profiles. For example, the mean packet count represents the cen-
tral value of a set of observations. Thus, they are better descriptors in comparison to SDN native
packet counters. Second, scalar features are convenient to indicate the instantaneous profile of
traffic flows, such as duration. As a result, they are important in the detection of short-lived
communications or packet bursts, since statistical features alone are not sensitive to these traffic
profiles. Finally, complex features are useful to anticipate the need for more sophisticated traffic
information. Different from the previous categories, complex features can be used to compress
a wide range of traffic observations. For example, Discrete Fourier Transform can be used to
refine several measurements of packet’s inter-arrival-time into a set of frequency components,
which is a more distinguished representation. Some of these features were investigated by Auld
et al. (AULD; MOORE; GULL, 2007) and Moore et al. (MOORE; ZUEV, 2005b).

The main reason for calculating these extended traffic flow features is that OpenFlow is cur-
rently the most important protocol for SDN implementation (FEAMSTER; REXFORD; ZE-
GURA, 2013b), however it offers a limited number of flow features to describe traffic behavior.
Although traffic classification can be performed using the native traffic counters provided by
OpenFlow (e.g., packet counts), this approach presents several limitations, since these counters
do not allow detecting atypical traffic behavior, such as packet bursts. Because of the wide range
of possible traffic profiles, more descriptive traffic discriminators are necessary. For example,
we introduce a third type of counter, named samples counter, which indicates the number of
times each flow appears during feature polling. This counter is maintained by the Statistics
Manager and is essential to compute some of the more advanced flow features, as discussed
below.

Consequently, OpenFlow’s native counters were used as the basis for deriving two new flow
features, namely packet length Pl and packet inter-arrival-time1 Pit. These are estimations of

1We use packet length and packet inter-arrival-time statistics because individual values do not usually give
substantial information about the traffic profile.
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the real packet length and real inter-arrival-time, since calculating their precise values would
require deep packet inspection and the monitoring of every packet in the network, which are
expensive tasks. Consequently, we apply sampling strategies to estimate these features and
use Equation 3.4 and Equation 3.5 to calculate packet length and inter-arrival, respectively. Bc

represents byte count, Pc represents packet count between two requests, and T is the time-
interval between two requests.

Pl =
Bc

Pc
(3.4)

Pit =
T

Pc
(3.5)

To calculate mean and variance, the Statistics Manager updates the mean µ and the variance
σ2 for the flow features every time a new information request is processed. Mean is calculated
using Equation 3.6, where µn is the updated mean, µo is the old mean, θ is the new sample, and
n is the samples counter.

µn =
n ∗ µo + θ

n+ 1
(3.6)

The updated variance σ2
n is calculated using Equation 3.7, where σ2

o is the old variance.

σ2
n =

n

n+ 1
∗ (σ2

o +
(θ − µn) ∗ (θ − µo)

n
) (3.7)

We calculate DFT of packet inter-arrival-time samples and use the top ten components as
flow features according to Auld et al. (AULD; MOORE; GULL, 2007) work. DFT represents
the samples of a variable in the frequency domain. It is defined by Equation 3.8, where N is the
number of samples, xn is a sample, and Xk is the resulting component.

Xk =
N−1∑

n=0

xn.e
−2πikn/N , k ε Z (3.8)

The final result is an an extended set of flow features as depicted in Table 3.2

3.3.3 Features Selector

The Features Selector summarizes all data collected by the Network Driver and by the Statis-

tics Manager in order to determine the optimal set of flow features to use in traffic classification.
In this component the process of analyzing the full set of features and selecting the optimal fea-
tures subset is started. First, the Features Selector receives the flow feature set sent by the
Statistics Manager, and performs two operations: (i) it creates a training and a test set that will
be used by the Flow Classifier; and (ii) it organizes the full flow feature set in the specific format
employed by the Features Selector. The formatted data is used as input to the feature selection
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Table 3.2: Extended set comprising 33 new flow features.

Statistical Features Scalar Features Complex Features
Bytes per second mean Bytes per second maximum value Packet inter-arrival-time Fourier

Transform 1st Component
Bytes per second variance Bytes per second minimum value Packet inter-arrival-time Fourier

Transform 2nd Component
Packets per second mean Packets per second maximum

value
Packet inter-arrival-time Fourier
Transform 3rd Component

Packets per second variance Packets per second minimum
value

Packet inter-arrival-time Fourier
Transform 4th Component

Packets length mean Packets length maximum value Packet inter-arrival-time Fourier
Transform 5th Component

Packets length variance Packets length minimum value Packet inter-arrival-time Fourier
Transform 6th Component

Packets length 1st quartiles Packets inter-arrival-time maxi-
mum value

Packet inter-arrival-time Fourier
Transform 7th Component

Packets length 3rd quartiles Packets inter-arrival-time mini-
mum value

Packet inter-arrival-time Fourier
Transform 8th Component

Packet inter-arrival-time mean Flow duration Packet inter-arrival-time Fourier
Transform 9th Component

Packet inter-arrival-time variance Flow size in packets Packet inter-arrival-time Fourier
Transform 10th Component

Packet inter-arrival-time 1st quar-
tiles

Flow size in bytes

Packet inter-arrival-time 3rd quar-
tiles

Source: by author (2015).

algorithms implemented in this module, which are able to identify the most meaningful fea-
tures for flow classification. Finally, the Flow Classifier module classifies the flows using the
feature subset yielded by the Feature Selector to evaluate the fitness of each subset for some
traffic profile. Similarly to the Feature Selector module, the Flow Classifier also supports the
implementation of a range of different algorithms.

In our proof-of-concept implementation, the Features Selector is instantiated with (i) Prin-

cipal Component Analysis (PCA) and (ii) Genetic Algorithm (GA). The PCA algorithm (PEAR-
SON., 1901) evaluates the relationships between a set of variables, determining the variability
associated with each of them. PCA is used as a strategy to reduce the number of variables by
removing correlated values. The result of PCA is a subset of the original variables, called prin-
cipal component, which accounts for the most significant variance in the original dataset. The
Genetic Algorithm mimics natural evolution and combines current best solutions for producing
new solutions, which are then analyzed to assess their quality. Briefly, the algorithm creates
an initial population representing a set of solutions. During each iteration, called generation,
it selects the fittest solutions and creates new ones through a combination (crossover) or mu-
tation (OH; LEE; MOON, 2004). A series of parameters must be determined a priori, such as
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population size and mutation probability. Although we used two well-known algorithms for
realizing the Feature Selector module, we emphasize that this module can support a wide-range
of other algorithms.

3.3.4 Traffic Monitor

This component is responsible for implementing the Lightweight Phase of the ATLANTIC
framework. Consequently, the main objective of this component is to monitor traffic flows us-
ing their information in a lightweight way. Note that this component can use all the information
collected by other components to decide network configurations. To exemplify how this com-
ponent can behave, we use entropy analysis to detect changes in traffic features. In particular,
this is calculated according to Shannon’s entropy definition. Considering that a traffic snapshot
is an alphabet, then the mean information H(X) for some subset of features can be calculated
using the available flows.Every time that a new entropy E is calculated for a given snapshot, it
can be classified as anomalous in the following way: considering that M represents the mean
entropy observed in the network and S the standard deviation associated, then E will be an
anomalous entropy if it is not within the interval [M − S,M + S].

For example, consider the following example of traffic snapshot:

flow A: { ..., match = ip_src_a, ip_dst_a, ... }

flow B: { ..., match = ip_src_b, ip_dst_b, ... }

flow C: { ..., match = ip_src_c, ip_dst_c, ... }

flow D: { ..., match = ip_src_d, ip_dst_d, ... }

...

The Traffic Monitor will collect only the information about the 5-tuple present in a match
rule and will calculate the entropy associated with every field. If this traffic snapshot has the
entropy associated with the src_ip field equals to k and this value is not within the standard
deviation S, an anomaly exists in the network and is associated with src_ip field.

Every time a sudden change in the calculated entropy is identified, the Traffic Monitor re-
ports this situation to the Flow Manager component. This action instructs the Flow Classifier to
analyze/classify network flows in order to determine if the anomaly is malicious or not.

3.3.5 Flow Classifier

This component is responsible for implementing the Heavyweight Phase of the ATLANTIC
framework. Different algorithms can be used for flow classification. When this component
receives a set of feature statistics, a range of classification schemes (i.e., machine learning algo-
rithms) can run independently over the flow features. Note that this component is responsible
for defining the class of each specific flow, by deciding which class is the most frequent when
considering all algorithm outputs. Currently, we apply K-means (ERMAN; ARLITT; MA-
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HANTI, 2006) for clustering and Support Vector Machine (SVM) (JAIN; DUBES, 1988) for
classification. We consider these algorithms suitable to implement our classifier because one
can complement the results offered by the other, and the union of their outputs can be eas-
ily performed. Still, the Flow Classifier is customizable and can be extended with additional
algorithms.

Several techniques can be used to combine traffic classifiers (XU; KRZYZAK; SUEN, 1992;
KITTLER et al., 1998a). For example, meta-learning means learning about learning. In prac-
tice, meta-learning takes as input results produced by learning methods and generalizes a con-
cept over them. Meta-learning research covers the following questions: (i) how to select the
most appropriate learner in a static way, (ii) how to perform this selection dynamically, and (iii)
how to combine the predictions of base-level classifiers. One way to combining classifiers is
using Naïve Bayes. Another way is called stacking, which is the process of using a classifier to
learn an output class by using the classes that are the output of other classifiers. The combina-
tion of classifiers should not rely necessarily on different classification strategies. An alternative
is the use of a single classification strategy, such as SVM, and to use different parameter values
in order to generate alternate classifiers. A typical solution to decide about several classifiers
outputs (and at the same time intuitive) is to use voting (KITTLER et al., 1998b). In future
work, we intend to study how these techniques can impact on our framework.

3.3.6 Flow Manager

Events from the Traffic Monitor and Flow Classifier are sent to the Flow Manager to indicate
if an anomaly has been identified for a specific flow-id. Thus, the Flow Manager is responsible
for deciding the mitigation actions to be taken when a malicious flow is identified. We consider
that a ‘Malicious flow identifier’ message is sent to the Network Driver, indicating that the flow
identified as malicious should be blocked. The Network Driver component further uses the
‘Block action’ message to install firewall rules in the data plane and then modify how this plane
handles the malicious flow. An example of action that could be taken by the Network Driver, as
an alternative to dropping packets associated with malicious flows, is to forward such packets
to another component (e.g., a deep-packet inspector).
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4 FRAMEWORK IMPLEMENTATION

In this chapter, we discuss the implementation choices for the ATLANTIC framework. In
particular, we explain how the main architectural components and their interactions are imple-
mented, including a discussion on traffic monitoring and traffic snapshot.

4.1 Testbed Implementation

Next we show some details about the main tools used in the implementation and execution
of the ATLANTIC framework.

• Network controller: As network controller, we chose Floodlight1. Floodlight provides a
modified and extended REST API that exports new types of network information, such as
routing rules expiration time. Additionally, the Floodlight controller has an active com-
munity of developers that have extended the controller with communication protocols,
such as new versions of OpenFlow. For these reasons, we consider Floodlight a suit-
able alternative for obtaining traffic snapshots in the ATLANTIC framework. Still, our
traffic snapshot is exported to ATLANTIC via REST in the JSON format. This choice
was driven by several reasons. First, network controllers such as Floodlight and Beacon
use this format to export information. Second, REST is the most used communication
interface between the application plane and the control plane (SEZER et al., 2013).

• Network Emulator: The Mininet2 emulator was developed in order to offer to researchers
a realistic and reliable simulation environment for implementing ideas in SDN. Widely
accepted and recognized, the Mininet emulator offered the ideal simulation environment
for routing solution with multiple paths.

• OpenFlow protocol 1.0: Although other versions of the OpenFlow protocol has been
recently proposed, such as the OpenFlow 1.5, the majority of network controllers avail-
able does not provide support for these new versions. Additionally, these new versions
have not proposed extensions to the basic flow counters introduced by the first version
of the protocol. For this reason, we chose version 1.0 for the base implementation of the
ATLANTIC framework, although other versions of the protocol might be supported with
small customizations of the Network Driver component.

• R tool: In order to obtain a reliable implementation of machine learning algorithms we
chose the R tool, a popular and broad tool for mathematical scientific analysis. The
implementation of ATLANTIC relies on the following libraries of the R tool to provide
data classification:

• Support Vector Machine (SVM): library e1071;

1http://www.projectfloodlight.org/floodlight/
2http://mininet.org/
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• Random Forests: library randomForest, miscTools;

• Naive Bayes: library e1071;

• K-means: library cluster;

• Expectation Maximization: library mclust;

• Neural Networks: library nnet;

• Principal Component Analysis (PCA): library psych;

• Genetic Algorithm: library genalg;

4.2 Implementation Choices

In this section, some high-level implementation choices related to the development of AT-
LANTIC are discussed. In particular we clarify aspects related to the network request polling
time, the definition of traffic snapshots, and the use of data logs to keep track of suspicious
flows.

• Polling time: The most critical operational aspect related to the implementation of the
Network Driver component is the polling time used to obtain information from the net-
work controller. According to Giotis et al. (GIOTIS et al., 2014a) an adequate time to
obtain network information in an accurate and precise design is 30 seconds. However,
this is an estimative reported by the authors and depend on several environmental aspects,
such as communication delay, network topology, and traffic. For this reason, ATLANTIC
provides the customization of this aspect.

• Traffic snapshot: The traffic snapshot represents all the information obtained from the
network control plane. ATLANTIC does not require the modification of the network in-
frastructure being monitored, i.e., does not require the insertion of any additional device,
protocol or system in the original network substrate. Due to the popularity and intense
research using the OpenFlow protocol, we chose this technology to obtain information
from the network without imposing any changes on this. The OpenFlow switch enables
the access of the following information about the data plane: (i) network topology pro-
vided with identifiers for hosts, switches and communication links; (ii) flows that are
active and inactive on the network including packet header information; (iii) flow statis-
tics such as transmitted packets, (iv) network device information such as, MAC addresses,
IP addresses, transport layer information and others.

• Data logs: Even using known techniques for anomaly detection and traffic classifica-
tion, we anticipate that in some cases ATLANTIC can face an unknown type of network
anomaly that goes unnoticed by the models used. In this case, ATLANTIC stores log files
where information of suspicious traffic, but not malicious, are reported to the network ad-
ministrator. Later on, he or she can decide how to treat these flows, for example, updating
the classification model with new classification information. The specific format of data
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log is the same that identify a flow:

unknown_flow : (srcip, dstip, srcport, dstport, protocol) :

(pkt_count, byte_count, duration, ....)

4.3 Component Interactions

In this section we describe each ATLANTIC component, discussing implementation details
and the main interactions between each component. In the diagrams below, blue boxes represent
entry/exit points for each component being discussed.

4.3.1 Network Driver Interactions

The Network Driver comprises three internal components responsible for collecting network
information, as depicted in Figure 4.1:

Figure 4.1: Network Driver internal procedures
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traffic_filter.py
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Traffic Snapshot

Network
snapshot

Traffic 
snapshot
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Source: by author (2015).

• parser.py: it is a parsing procedure able to understand and organize the network infor-
mation exported by the Floodlight controller that uses the JSON format. Note that this
parser can be extended to understand and organize other formats;

• traffic_filter.py: it is a filtering procedure able to remove irrelevant information exported
within the network information parsed. For example, in the current implementation of
ATLANTIC, the VLAN id information is not necessary for classification purposes, thus
this information can be ignored;

• Traffic Snapshot: it is the output of this component with information about traffic flows in
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a compact way regarding low memory usage. In our implementation, we use a hash-table
data structure indexed by the flow id;

4.3.2 Statistics Manager and Feature Selector Interactions

The Statistics Manager operates jointly with the Feature Selector. Firstly, the statistics ma-
nager main procedures will be explained as depicted in Figure 4.2:

Figure 4.2: Statistics manager internal procedures
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Source: by author (2015).

• feature_filter.py: this procedure is responsible for extracting only traffic counters from a
traffic snapshot. Note that the OpenFlow 1.0 protocol only provides three traffic counters
(packet count, byte count and duration), thus this information is collected from every flow
generating a data structure with the following shape:

〈(srcip, dstip, srcport, dstport, protocol) : (pkt_count, byte_count, duration)〉

• statistics_generator.py this procedures extends the basic flow counter generating the ex-
tended flow features proposed in Chapter 3. The computation of these procedures applies
the equations presented in Chapter 3, thus generating as final result an extended set of
flow features with 33 entries.

〈(srcip, dstip, srcport, dstport, protocol) :
(pkt_count, byte_count, duration, inter − arrival − time, packet_length...)〉

After the Statistics Manager creates the extended set of flow features, the feature selector
component performs the selection of the best traffic features that should be used to classify
flows. Note that this component access the configuration data defined by the network adminis-
trator in order to determine (i) the set of traffic profiles that already have been analized by this
component and (ii) the traffic profile that the network administrator is interested in analyzing.
Anytime that a traffic with interest arrives in the network, the feature selection should perform
the following procedures:
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• features_formatter.py: a procedure able to convert the Flow Feature Set data structure
into other formats suitable to be used as input to different types of machine learning
algorithms. For example, the SVM algorithm implemented in R should receive as input a
.csv file including the flow identifier and its features;

• feature_selection.py: this procedure performs the feature selection process as explained
in Chapter 3. The algorithms PCA and Genetic are used jointly to determine the best
subset of features to classify some kind of flow;

• Best flow features Set: it is an output that saves in the configuration data file which fea-
tures are better to classify each type of flow;

Figure 4.3: Feature Selection internal procedures
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Source: by author (2015).

4.3.3 Flow Classifier Interactions

The flow classifier internal components include the combination of several types of super-
vised and unsupervised machine learning algorithms. We use the R tool to provide a reliable
implementation of machine learning algorithms.

The main procedures involving this component are:

• cluster.py: Uses algorithms such as k-means to optimize the classification process group-
ing traffic samples for classification. Note that this procedure can be activated or not ac-
cording to the network administrator desire and uses three unsupervised machine learning
algorithms (K-means, Expectation Maximization and Neural Networks);

• Classifiers: three implementations of supervised machine learning algorithms (SVM,
Naïve Bayes and Random Forest) are used in this procedure;

• meta_learning.py: a procedure that chooses the output that has the highest accuracy for
traffic classification. It is configurable and ATLANTIC uses as default the output of SVM
algorithm due to its high accuracy as reported by related work and our experiments. Note
that any sort of meta-learning technique can be implemented;
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Figure 4.4: Flow classifier internal procedures
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4.3.4 Traffic Monitor Interactions

The traffic monitor component uses three main procedures to implement a lightweigth traffic
monitoring scheme:

• snapshot_parser.py: it is a procedure able to collect only the header fields present in a
traffic snapshot;

• entropy_calculator: it is a procedure responsible for calculating the entropy associated
with a traffic snapshot. The entropy calculation follows what is described in Chapter 3;

• entropy analysis: it is a procedure responsible for detecting deviations on the mean en-
tropy value collected in the network;

It is an initial step to collect traffic information and determine what is the normal entropy
associated with the network. This step was made using simulations that do not have an attack. In
this way, the normal network entropy can be obtained. In real environments where the absense
of malicious acitvites is not guaranteed in the time of entropy training, the historical mean
entropy can be used. In this case, some network monitoring period should be used only to
collect entropy information and eliminate the deviations on the mean value observed in the
network.
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Figure 4.5: Traffic monitor internal procedures
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Source: by author (2015).

4.3.5 Flow Manager Interactions

The flow manager component handles network anomalies. It includes procedures to treat
normal flows, procedures to treat anomalies and procedures to treat unkown flows. In the fol-
lowing, a brief description is provided:

• snapshot_analysis.py: it is the main procedure of the Flow Manager. Note that all traffic
snapshots are delivery to the Flow Manager, however only when an anomaly notifica-
tion arrives, this procedure analyzes the traffic snapshot. This analysis begins with the
subtraction between the current traffic snapshot and the last one. The choice of using a
hash-table indexed by the flow 5-tuple facilitates this subtraction because the hash keys
in the intersection of two snapshots can be easily deleted. This subtraction is a necessary
optimization step because the previous traffic snapshot is considered free from anomalies,
so the anomaly should be a new flow in the current traffic snapshot. After this subtrac-
tion, the Flow Classifier component performs the traffic classification and delivers to this
procedure a classified traffic snapshot.

• traffic_filter.py: this procedure receives a classified traffic snapshot and sorts its data struc-
ture in order to determine which flow needs mitigation actions. Flows that are considered
benign do not require any action. However malicious or unknown flows need some treat-
ment.

• flow_identification.py: this procedure is responsible for notifying the network adminis-
trator about unknown types of flows and for applying advanced techniques regarding flow
mitigation. Currently, this procedure implements a firewall application able to identify a
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Figure 4.6: Flow manager internal procedures
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specific traffic flow and instruct the network to block malicious flows.

• block_malicious_flows.py: it is a procedure able to communicate with the Network Driver
in order to configure block rules.
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5 EXPERIMENTAL EVALUATION

In this chapter, we present an experimental evaluation of ATLANTIC. The evaluation pro-
cess was divided into three steps. Firstly, we evaluate the performance of the lightweight phase
(including the evaluation of aspects related to traffic snapshot request time/memory usage) and
the performance of the heavyweight phase (including the evaluation of the classification accu-
racy of machine learning algorithms). Secondly, we show the experimental evaluation of the
feature selection process, which is a significant step in the ATLANTIC framework. Finally, we
present an overall framework evaluation, including a discussion on aspects related to mitigation
strategies.

5.1 Simulation Profile

We ran the experiments using the Mininet emulator. We used a topology of a campus net-
work. It consists of a partial mesh topology comprising 100 hosts and 11 switches, illustrated
in Figure 5.1. We chose this scenario because of recent malicious attempts to attack similar
environments (SANTANNA et al., 2015).

Figure 5.1: Network topology used in our experiments.
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Source: by author (2015).

Table 5.1 describes the background traffic used in our experiments. When the simulation is
set up, two services are configured: a video streaming server (whose service requests follow a
lognormal distribution) and a Web server (whose service requests follow a exponential distribu-
tion) (ISOLANI et al., 2015). These services enable hosts to receive streaming over HTTP or
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send requests for Web pages, thus generating traffic related to file transfer. These traffic profiles
have been validated in (ISOLANI et al., 2015). We generate these traffic profiles using VLC1

for video streaming and SimpleHttpServer2 to emulate an HTTP server.

Table 5.1: Background traffic profile used in the experiments

Parameter Value
Number of hosts 100
Number of switches 11
Number of servers 2 (HTTP and Streaming)
Number of attack flows 3500
Traffic profile Video: 75 %, Web: 25 %
Host behavior Web Server Exponential Distribution (λ = 0.033,mean = 30 s)
Host behavior Video Streaming Lognormal Distribution (µ = 11.75,mean = 324 KBytes, std dev = 762 KBytes)

Source: by author (2015).

In order to simulate the user behavior, we set up a scenario where users watch a video for a
certain amount of time, pause it, and then access a few Web pages. For each group of 6 hosts
requesting HTTP traffic, there is 1 host requesting video streaming traffic. Network anomalies
related to malicious activities are generated with the scapy tool3, which enables the generation of
realistic malicious attacks, such as port scanning and DDoS. The importance of these attacks has
increased due to recent uses of DDoS to compromise campus communications (SANTANNA
et al., 2015). Next, we explain the behavior of our simulated attacks.

• Port scanning - A malicious host can use port scanning to discover a set of open ports
in a remote host. Open ports can be used to exploit vulnerabilities in a target system
or be used in worm propagations (SCHAEFFER-FILHO et al., 2013). We simulate a
malicious user that chooses a random host to start its attack to a server in the network.
The attack consists of sending several TCP connection packets to ports ranging from 0 to
65536. When an open port is found, a notification is generated and this port can be used
for worm propagations. Typically, port scanning generates packets in the network with a
fixed IP address, but with varying transport protocol port.

• DDoS attack - We also defined a DDoS attack (BRAGA; MOTA; PASSITO, 2010) sce-
nario. A DDoS attack in SDN can be used to overflow with a large amount of spurious
flows a specific switch’s flow table or to overload the network controller by producing
several packet_in messages. Frequently, these attacks result in a range of source IP
addresses accessing a single target IP. In this case-study, we create a SYN flood attack,
i.e., a malicious machine chooses a server (HTTP or streaming) to send multiple TCP
SYN packets to service ports offered by this machine (8080 for the VLC streaming and
8000 for the HTTP server). Given that there are services running in those ports, the server

1http://www.videolan.org/vlc/
2https://docs.python.org/2/library/simplehttpserver.html
3http://www.secdev.org/projects/scapy/
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will process a request, allocate resources to handle it, and send an ACK to the requesting
machine. Further, the attacker simulated in our experiments uses source IP spoofing, i.e.,
he or she sends TCP SYN packets with the source IP address of another machine, thus
causing the erroneous receipt of an unsolicited ACK and leaving the server with an open
TCP connection.

5.2 Lightweight Anomaly Detection Evaluation

In this section we demonstrate the operation of the lightweight phase when it is instantiated
with an entropy-based anomaly detection scheme to monitor the network in the presence of
malicious anomalies. Additionally, we analyze the performance of this phase regarding memory
usage and processing time.

Initially, the Network Driver communicates with the controller to request traffic information.
There are two possible bottlenecks in this approach: the traffic snapshot transmission time
and the amount of memory needed to store this information. To understand these issues, we
monitored the number of flows generated in the network while users were accessing HTTP
pages and video streaming during a few minutes. Next, we started a DDoS attack and monitored
the amount of new traffic flows. The transmission time required to export this information to
our framework and the amount of memory needed were observed. The polling interval was set
to 5s in order to obtain a fine-grained view of the network traffic. According to Figure 5.3(a),
the transmission time related to traffic snapshot when an attack is not happening remains under
1.07s. Around the 180th snapshot, the DDoS attack starts and increases this transmission time to
1.28s in the worst case. Furthermore, according to Figure 5.3(b), the size of network snapshots
increases from 32 to 600 kilobytes with approximately 4,400 flows, including malicious and
benign.

Figure 5.2: Resources usage to request and store a traffic snapshot.
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Figure 5.3: Processing time of entropy calculation.
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We argue that our simulations can realistically reflect the size of a large-scale campus sce-
nario. In particular, it has been shown in (ISOLANI et al., 2015) a similar evaluation in campus
scenarios comprising around 800 traffic flows on average. We also analyzed individual flow
rules in ATLANTIC and verified that a single flow rule uses around 136 bytes and takes less than
0.8ms to be transmitted. Thus, in order to simulate the campus scenario presented in (ISOLANI
et al., 2015), ATLANTIC would use 108,800 bytes (106.25 Kb) to store a traffic snapshot and
0.64s to transmit this information.

Entropy mean values associated with traffic features can be used to detect network anoma-
lies. The performance of the Flow Monitor itself is related to entropy calculation time, which
presents a logarithm fashion accordingly to the number of flows in a specific traffic snapshot.
Figure 5.3 indicates that the entropy calculation time for 4,000 flows is 0.075s. We conclude
that this type of traffic monitoring is suitable for ATLANTIC mainly because it is fast and ac-
curate for detecting traffic deviations when we analyze, for example, the source IP entropy of
a traffic snapshot. Figure 5.5(a) illustrates the variation in entropy of the destination port when
a port scanning attack occurs. Around the 180th snapshot, the average entropy that was around
0.55 rises to almost 1, indicating an anomaly. It is also possible to observe in Figure 5.5(b) the
changes in the entropy of the destination IP address caused by the DDoS attack. Around the
280th simulation snapshot, the DDoS attack stops, thus causing the entropy to revert back to
normal (between 0.8 and 0.9).

When changes in the entropy of a specific feature are detected, the Flow Classifier compo-
nent needs to determine the nature of existing flows in the network. The performance of this
component is discussed in the next sub-section.
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Figure 5.4: Entropy observed including benign and malicious flow.
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5.3 Heavyweight Anomaly Classification Evaluation

Each time a sudden change in the measured entropy of a specific feature is detected, a
notification is generated and the ATLANTIC framework enters into its heavyweight phase. The
first action taken by the Flow Classifier is the classification of all remaining flows after the
subtraction of the current traffic snapshot from the last one.

To classify flows into separate classes representing DDoS and normal traffic, we instantiate
the Flow Classifier with the following supervised machine learning algorithms: Support Vector
Machines (SVM), Naïve Bayes and Neural Networks. When we analyze the classification ac-
curacy as depicted in Figure 5.5, Figure 5.6, and Figure 5.7 we confirm that SVM is the best
choice for traffic classification.

We highlight that the metrics used to evaluate the performance of the Flow Classifier com-
ponent are the classical metrics used in machine learning (NGUYEN; ARMITAGE, 2008). We
summarize them below:

• TPR : sensitivity or true positive rate;

• SPC : specificity or true negative rate;

• PPV : precision;

• NPV: negative predictive value;

• FPR: false positive rate;

• FDR: false discovery rate;

• FNR: false negatives rate;

• ACC: accuracy;

• F1-score: harmonic mean of precision and specificity;
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Figure 5.5: Machine Learning metrics for SVM.
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Source: by author (2015).

Figure 5.6: Machine Learning metrics for Naïve Bayes.
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Source: by author (2015).

Additionally, ATLANTIC can use K-means, Random Forests and Expectation Maximiza-
tion (JAIN; DUBES, 1988) as unsupervised machine learning algorithms. Our evaluation of
unsupervised machine learning algorithms uses different metrics, in particular because these
algorithms do not classify data. Instead, they are typically used to group data to optimize the
use of supervised machine learning. For example, if 500 flow samples should be classified, then
500 executions of a supervised machine learning should be performed. However, initially using
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Figure 5.7: Machine Learning metrics for Neural Networks.
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Source: by author (2015).

unsupervised machine learning to group these flows by similarity, resulting, for example, in
50 different groups can reduce the number of executions necessary for a supervised algorithm.
The performance gain using the SVM algorithm in combination with a clusterization algorithm
(K-means) can be viewed in Figure 5.9(a) and Figure 5.9(b).

Figure 5.8: Resources usage to request and store a traffic snapshot
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Source: by author (2015).

Based on the joint classification offered by K-means and SVM, we calculate the value of
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metrics such as precision (PPV) and accuracy (ACC), which allow assessing the quality of the
classification achieved by these algorithms. In particular, it is possible to apply K-means using
different values of k in order to find the optimal configuration and, jointly with SVM, find which
combination achieves better classification metrics. Figure 5.9 illustrates our results. It can be
observed that SVM presents accuracy of 88.7% and precision of 82.3%. The simulations were
executed 35 times until the error rate was less than 0.01. The results obtained are very similar
to the values expected from traditional networks, as presented in (LI et al., 2011). Note that
the classification accuracy of SVM algorithm is around 90.2% and SVM jointly with K-means
is around 88.7%. This decrease of accuracy occurs because in some cases K-means groups
outliers flows in a particular cluster, generating the misclassification. However, the overall
values of machine learning metrics remain very similar with the SVM without K-means, thus
encouraging the jointly use of these algorithms.

Figure 5.9: Machine Learning metrics for SVM and K-means.
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Source: by author (2015).

After obtaining the classification, the Flow Manager is notified and then it is able to block
malicious flows and restore the entropy back to normal. To block these malicious occurrences
in the network, the Flow Manager can instruct the Network Driver to use a firewall application
or to use the OpenFlow drop action installed on the data plane.

Note that each traffic snapshot may contain HTTP and streaming flows with different pro-
files, such as short-lived HTTP flows and long-term video streaming flows. Figure 5.11(a) and
Figure 5.11(b) summarize the amount of active flows in the simulation, as well as the flows,
signalized as malicious and subsequently blocked.

The heavyweight phase lasts around 3 seconds in our simulations (Figure 5.11). When
we compare this with the processing time of the lightweight phase (which takes around 0.07
seconds), we can more clearly appreciate the benefits of using more frequently the lightweight
phase instead of always using the heavyweight phase to classify every traffic snapshot.
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Figure 5.10: Number of simulation flows
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Figure 5.11: Processing time of Heavyweight Phase.
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5.4 Feature Selection Component Performance

In this section, we show the feature selection results in ATLANTIC. We evaluate this specific
aspect because of its importance for accurate traffic classification and the lack of adequate
research on this field in OpenFlow networks.

5.4.1 Experimental Results

Our main goal is to measure the accuracy of the resulting traffic classification using specific
subsets of traffic features, discovered via the Genetic Algorithm (GA) and the Principal Com-
ponent Analysis (PCA), as opposed to using the full-blown set of features. Note that accuracy is
defined as the percentage of correctly classified instances among the total number of instances
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(NGUYEN; MINH; YAMADA, 2013b). We defined four types of traffic profiles in our exper-
iments: (i) DDoS attack, (ii) FTP traffic, (iii) video streaming using VLC Media Player, and
(iv) background traffic generated using Scapy. We composed these types of traffic into three
scenarios defined in Table 5.2. For each scenario we use the traffic classification accuracy as
metric to define the optimal flow feature set. For comparison purposes, we use as benchmark
the classification accuracy for each scenario obtained by using the complete set of flow features:
94.67% (scenario DDoS), 92% (scenario FTP), and 85.33% (scenario Video Streaming).

Table 5.2: Experimental scenarios.

Scenario Type of flow
DDoS DDoS attacks (60%) with Scapy flow

(40%)
FTP FTP traffic (35%) with Scapy flows

(65%)
Video Streaming Video streaming (50%) with Scapy

flows (50%)

Source: by author (2015).

In order to produce more accurate results, the Genetic Algorithm (GA) must be initialized
with a few parameters. We set the population size to 200 individuals randomly generated and
the crossover percentage to 20%. We also must configure two other parameters: (i) number

of iterations and (ii) mutation probability. In order to do so, we analyzed the classification
accuracy for a number of iterations, namely 10, 50, 75, 100, 150, and 200, until the accuracy
stabilized. Figure 5.12 presents the resulting accuracy obtained for a given number of iterations.
As a result, we set the number of iterations to 100, since it is the smallest value with the highest
accuracy.

As can be observed in Figure 5.13, the mutation probability did not have an impact in clas-
sification accuracy, and we use 0.01 as standard mutation probability. Because of the amount of
time taken to execute this algorithm (nearly 88 minutes), we chose scenario Video Streaming to
set these parameters, since it has the lowest classification accuracy when using all flow features.
The classification accuracies obtained by using GA to find the optimal subset of flow features
for each scenario were: 98% (scenario DDoS), 94.67% (scenario FTP), and 91.33% (scenario
Video Streaming).

To find the optimal subset of flow features, we also applied PCA. PCA determines the most
important features by creating one principal component to match each variable (feature), i.e.,
in our experiments it creates 33 principal components. It works as follows: initially, only the
components that jointly represent 90% of the features variability are chosen, resulting in 11
components; then, since a principal component is created as a weighed sum of the features, a
subset is created for each component including the features with higher weight than a specific
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Figure 5.12: Accuracy for each number of iterations.
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Figure 5.13: Accuracy for each mutation probability.
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factor. In our experiments, we used 0.025, 0.05, and 0.1 as factors. As a result, we have three
different subsets for each component. Figure 5.14 shows the classification accuracy for each
subset in scenario DDoS. We can draw several conclusions from this: (i) not all subsets lead
to a higher accuracy compared to the accuracy obtained by using the complete flow feature
set (94.67%); (ii) factor 0.025 seems to lead to the best solutions in most cases, although the
optimal solution is a subset of features selected using factor 0.05 in the 10th principal component
(97.33%); and (iii) factor 0.1 cannot be ruled out because it leads to the highest accuracy in the
1st principal component, thus can also result in high accuracy in a different scenario. Based on
these three observations, it is not possible to identify which factor gives the best subset for any
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Figure 5.14: Accuracy of the 11 most meaningful principal components selected by PCA (for
each factor) in scenario DDoS.
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Figure 5.15: Ten most meaningful flow features according to PCA analysis in Scenario DDoS.
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Source: by author (2015).

given scenario, consequently all three factor must be considered.

Because of space constraints, we illustrate only the 10 most meaningful features (in order of
importance) selected through PCA in each scenario, depicted in Figure 5.15, Figure 5.16, and
Figure 5.17. In each scatter plot, the vertical line separates the types of traffic being simulated:
the left side represents the background traffic, and the right side represents DDoS traffic (in
Figure 5.15), FTP flows (in Figure 5.16), and Video Streaming (in Figure 5.17). Classification
accuracies for the optimal subset of features selected with PCA for each scenario were: 97.33%
(scenario DDoS), 94% (scenario FTP), and 88.67% (scenario Video Streaming).

Figure 5.18 summarizes the classification accuracy in each scenario using all features, as
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Figure 5.16: Ten most meaningful flow features according to PCA analysis in Scenario FTP.
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Source: by author (2015).

Figure 5.17: Ten most meaningful flow features according to PCA analysis in Scenario Video
Streaming.
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well as using the optimal subsets selected with PCA and GA. In all scenarios, the accuracy was
improved by using the optimal feature subsets generated by GA and PCA, when compared with
the accuracy obtained by using the complete set of flow features. Table 5.3 details the feature
subsets selected by PCA and GA in each scenario.

5.5 Discussion: Overall Framework Evaluation

We advocate that ATLANTIC meets the management requirements listed in Chapter 1. The
lightweight step performs traffic monitoring using a global network view demonstrating that
detailed traffic information can be easily achieved. This property contributes toward the com-
prehensive network view requirement needed for accurate anomaly detection.
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Table 5.3: Optimal flow features subsets selected for each experiment.

Scenario DDoS Scenario FTP Scenario Video Streaming
PCA GA PCA GA PCA GA

Bytes per second mean Bytes per second mean Bytes per second mean Bytes per second variance Bytes per second Minimum
value

Bytes per second variance

Bytes per second Minimum
value

Bytes per second variance Bytes per second variance Bytes per second Maximum
value

Packets per second mean Bytes per second Maximum
value

Packets per second Minimum
value

Bytes per second Maximum
value

Bytes per second Maximum
value

Minimum value of Bytes per
second

Packets per second variance Bytes per second Minimum
value

Packets Length mean Bytes per second Minimum
value

Bytes per second Minimum
value

Packets per second Mean Packets per second Maximum
value

Packets per second variance

Packets Length variance Packets per second mean Packets per second mean Packets per second Variance Packets per second Minimum
value

Packets per second Minimum
value

Packet Length Maximum
value

Packets per second Maximum
value

Packets per second variance Packets per second Maximum
value

Packet Length variance Packet Length mean

Packet Length Minimum
value

Packets per second Minimum
value

Packet per second Maximum
value

Packet per second Minimum
value

Packet Length Minimum
value

Packet Length variance

Packet Inter-arrival time
mean

Packet Length mean Packet per second Minimum
value

Packet Length Mean Packet Inter-arrival time
mean

Packet Length Maximum
value

Packet Inter-arrival time vari-
ance

Packet Length variance Packet Length mean Packet Length Maximum
value

Packet Inter-arrival time vari-
ance

Packet Length Minimum
value

Packet Inter-arrival time
Maximum value

Packet Length Maximum
value

Packet Length variance Packet Length Minimum
value

Packet Inter-arrival time
Maximum value

Packet Inter-arrival time
mean

Packet Inter-arrival time 1st

quartile
Packet Length Minimum
value

Packet Length Maximum
value

Packet inter-arrival time
Mean

Packet Inter-arrival time Min-
imum value

Packet Inter-arrival time
Maximum value

Packet Length 1st quartile Packet Inter-arrival time
mean

Packet Length Minimum
value

Packet inter-arrival time Vari-
ance

Flow Size in Packets Flow Size in Bytes

Packet Length 3rd quartile Packet Inter-arrival time Min-
imum value

Packet Inter-arrival time vari-
ance

Flow Size in Bytes Packet Inter-arrival time 1st

quartile
Packet Inter-arrival time 1st

quartile
Fourier Transform 2nd Com-
ponent

Flow Duration Packet Inter-arrival time
Maximum value

Flow Size in packets Packet Inter-arrival time 3rd

quartile
Packet Inter-arrival time 3rd

quartile
Fourier Transform 3rd Com-
ponent

Flow Size in Bytes Packet Inter-arrival time Min-
imum value

Packet inter-arrival time 1st

quartile
Packet Length 1st quartile Packet Length 3rd quartile

Fourier Transform 6th Com-
ponent

Flow Size in Packets Flow Size in Bytes Packet Length 1st quartile Fourier Transform 1st Com-
ponent

Fourier Transform 1st Com-
ponent

Packet Inter-arrival time 3rd

quartile
Packet Inter-arrival time 1st

quartile
Packet Length 3rd quartile Fourier Transform 2nd Com-

ponent
Fourier Transform 2nd Com-
ponent

Packet Length 1st quartile Packet Inter-arrival time 3rd

quartile
Fourier Transform 2nd com-
ponent

Fourier Transform 4th Com-
ponent

Fourier Transform 3rd Com-
ponent

Fourier Transform 1st Com-
ponent

Packet Length 1st quartile Fourier Transform 4th com-
ponent

Fourier Transform 5th Com-
ponent

Fourier Transform 4th Com-
ponent

Fourier Transform 2nd Com-
ponent

Packet Length 3rd quartile Fourier Transform 5th com-
ponent

Fourier Transform 6th Com-
ponent

Fourier Transform 5th Com-
ponent

Fourier Transform 3rd Com-
ponent

Fourier Transform 2nd Com-
ponent

Fourier Transform 7th com-
ponent

Fourier Transform 7th Com-
ponent

Fourier Transform 8th Com-
ponent

Fourier Transform 4th Com-
ponent

Fourier Transform 3rd Com-
ponent

Fourier Transform 10th Com-
ponent

Fourier Transform 8th Com-
ponent

Fourier Transform 9th Com-
ponent

Fourier Transform 5th Com-
ponent

Fourier Transform 4th Com-
ponent

Fourier Transform 9th Com-
ponent

Fourier Transform 10th Com-
ponent

Fourier Transform 6th Com-
ponent

Fourier Transform 5th Com-
ponent

Fourier Transform 10th Com-
ponent

Fourier Transform 9th Com-
ponent

Fourier Transform 7th Com-
ponent
Fourier Transform 8th Com-
ponent
Fourier Transform 9th Com-
ponent
Fourier Transform 10th Com-
ponent

Source: by author (2015).

The design of ATLANTIC allows the network administrator to easily monitor and modify
the operation of the components involved in the framework heavyweight phase using its con-
figuration files. This characteristic contributes to a more tailored anomaly classification, which
can rely on human intervention when the automated components are not able to protect the net-
work. Additionally, ATLANTIC can use the network controller to orchestrate all flows in the
network, sampling or eventually blocking a particular flow whenever needed.

The ATLANTIC framework can be extended with more sophisticated strategies for anomaly
mitigation. For example, we list some alternatives to the use of blocking strategies:
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Figure 5.18: Traffic classification accuracy for each flow feature set in all three scenarios.
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• Rate Limit: malicious flows related to DDoS attacks can be rate limited by the Flow
Manager configuration rules using queue strategies to handle new packet_in in the net-
work;

• Generic Rules Filter: When flow tables are populated with generic flow rules in such
a way that several different types of flows can match the same forwarding behavior, a
filtering strategy is necessary to isolate only the malicious flows. In this case, a list of
dst_ip addresses can be used to insert specific flow rules to get flows directed to some
critical server and, in this case, the malicious entry can be blocked;

• Distributed ATLANTIC: multiple instances of the Flow Manager can be responsible
for handling network slices with different types of networks and controllers;
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6 CONCLUDING REMARKS

Mechanisms related to anomaly detection are an important component in strategies used to
ensure network resiliency against, for example, malicious attacks. Classification allows cate-
gorizing the network traffic in a number of classes enabling the detection of these activities.
Further, as result of the classification, traffic belonging to a particular class can be treated dif-
ferently (e.g., dropped or rate limited).

In this dissertation we presented ATLANTIC, a framework for anomaly traffic detection,
classification and mitigation. Our framework comprises a lightweight phase responsible for
monitoring traffic flows and a heavyweight phase responsible for anomaly classification and
mitigation. As a result, traffic anomalies can be categorized and the information collected can
be used to handle each traffic profile in a specific manner, such as blocking malicious flows.
Next, we highlight some conclusions and key contributions about our research.

6.1 Summary of Contributions

The main contributions of our research are the following:

• A lightweight monitoring scheme that enables ATLANTIC to detect malicious activities
without overloading the network, taking about 0.075s to collect and analyze traffic infor-
mation consisting of 4400 flows in a topology with 100 switches;

• A heavyweight phase using machine learning algorithms, such as SVM, which took less
than 3s to classify traffic flows, demonstrating that ATLANTIC performs well even in the
presence of DDoS attacks;

• An architecture that enables ATLANTIC to execute the lightweight phase more frequently
than the heavyweight phase, thus minimizing the overhead of the overall anomaly detec-
tion scheme;

• An illustration of how a sophisticated anomaly detection framework can be built over
SDN;

• An architecture to collect, extend, and select a set of flow features for traffic classification
in Software-Defined Networking (SDN) using a large set of traffic features indeed more
meaningful than the native flow counters provided by OpenFlow;

• An evaluation demonstrating that for particular types of traffic, an optimal subset of flow
features can be selected using both principal component analysis and genetic algorithm;

To the best of our knowledge, ATLANTIC is the only framework that does anomaly detec-
tion, classification and mitigation tasks jointly, and can assist the understanding of how a broad
range of research can be used to classify network traffic in SDN. We use the best techniques
to instantiate ATLANTIC and propose a combination not seen before: it is the first time that
entropy analysis is used jointly with machine learning to detect malicious flows in SDN.
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6.2 Final Remarks and Future Work

As part of our future work, we aim to evaluate the use of different algorithms for traffic
classification and entropy analysis to enforce network protection. Also, we intend to investigate
new mitigation strategies, such as the use of rate limiters, and new classification schemes, such
as the combination of several network classifiers using meta-learning techniques (e.g., stacking,
and bayesian networks). Finally, we will investigate additional flow features, and insert routines
to enforce QoS policies over network anomalies. The insertion of QoS policies will treat flows
that are not malicious, but degrade the network normal operation.
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Abstract—Resilience is the ability of the network to maintain
acceptable levels of operation in face of anomalies, such as
malicious attacks, operational overload or misconfigurations.
Techniques for anomaly traffic classification are often used
for characterising suspicious network traffic, thus supporting
anomaly detection schemes in network resilience strategies. In
this paper, we extend the PReSET toolset to allow the investiga-
tion, comparison and analysis of algorithms for anomaly traffic
classification based on machine learning. PReSET was designed to
allow the simulation-based evaluation of resilience strategies, thus
enabling the comparison of optimal configurations and policies
for combating different types of attacks (e.g., DDoS attacks,
worm propagations) and other anomalies. In such resilience
strategies, policies written in the Ponder2 language can be used
to activate/reconfigure traffic classification modules and other
mechanisms (e.g., traffic shaping), depending on monitored results
in the simulation environment. Our results show that PReSET
can be a valuable tool for network operators to evaluate anomaly
traffic classification techniques in terms of standard performance
metrics.

I. INTRODUCTION

Computer and communication networks are becoming in-
creasingly important in supporting business, leisure and ev-
eryday activities in general. Network resources, such as band-
width, need to be carefully dimensioned with respect to the
demands of applications and characteristics of network traffic.
Moreover, due to the possibility of cyber-attacks and security
threats, there is a growing need for resilience to become a key
property in computer networks. Resilience is the ability of the
network to maintain acceptable levels of operation, in the face
of anomalies such as malicious attacks, operational overload,
configuration problems or equipment failures [1].

Resilience strategies can be defined in terms of the con-
figuration of mechanisms for detection and remediation. On
the one hand, detection mechanisms such as link monitors,
anomaly detection systems and traffic classifiers allow the
identification and characterisation of network conditions. On
the other hand, remediation mechanisms such as traffic limiters
are used in the subsequent mitigation of undesirable char-
acteristics in the network. Resilience management requires
the configuration of these mechanisms to be dynamically
refined when new information about the network becomes
available in response to, for example, high resource utilisation,
performance degradation or application specific alarms.

In particular, traffic classification corresponds to a set of

techniques and algorithms that aim to categorise network
traffic. These techniques can be broken down into several
domains, including Internet application protocol classification
(i.e., classifying transport flows according to their correspond-
ing application layer protocol), packet classification (i.e., cate-
gorising packets into transport flows), and traffic classification
for anomaly detection (i.e., separating malicious and non-
malicious flows). According to the result of the classification,
traffic belonging to a given class can be treated differently.
Due to the variety of applications, protocols and traffic profiles
involved, an approach that can adapt and learn from past
experiences is desirable. With this in mind, machine learning
techniques show a promising trend in this field [2].

As part of an integrated framework [3] for network re-
silience, PReSET [4] was designed in order to allow the off-line
evaluation of resilience strategies, through a simulation envi-
ronment. It allows network operators to analyse and identify
optimal configurations to combat different types of attacks and
other anomalies. PReSET (Policy-driven Resilience Strategy
Evaluation Toolset) comprises a series of network components
implementing resilience functions and services, integrated into
a policy-based management (PBM) framework. PBM [5] can
be used to control the operation of these mechanisms, and
to specify how they should be reconfigured dynamically as
information about the state of the network is obtained.

In this paper, we extend PReSET to allow the evaluation
of anomaly traffic classification techniques based on machine
learning. Our primary contribution is to offer to network opera-
tors and administrators a toolset for the simulation and analysis
of a variety of anomaly classification algorithms, thus allowing
the easy identification of the best configuration parameters and
network policies, when different types of attacks and anomalies
are simulated. Furthermore, policies written in the Ponder2 [6]
language can then be used to enable/disable classification
modules, or replace the algorithm being used, depending on
the quality of the monitored results in PReSET. As a result,
network operators can be more confident when deploying the
actual mechanisms and configuration policies in the physical
network. We focus on two algorithms that have been broadly
used for the classification of network traffic [2]: K-means
and Naı̈ve Bayes, which are used to categorise malicious and
benign network traffic behaviour.

This paper is organised as follows: Section II presents an
overview of PReSET. Section III describes the general problem
of network traffic classification, as well as K-means and Naı̈ve
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Bayes. Section IV describes our implementation and evaluation
results. Section V outlines some related work, while Section VI
concludes the paper.

II. PRESET: A NETWORK RESILIENCE SIMULATOR

PReSET [4] has been developed to allow the simulation of
policy-based resilience strategies. It is based on the integration
of the OMNeT++ network simulator [7] and the Ponder2
policy framework [6]. PReSET supports the simulation of
network attacks and anomalies, and the evaluation of the
corresponding resilience strategies. Ponder2 policies can be
used to orchestrate the behaviour of resilience mechanisms,
e.g., components for intrusion detection and rate limiting,
which are implemented as OMNeT++ modules. The coupling
of these two technologies enables optimal resilience strategies,
configuration parameters and policies to be identified, which
can then be easily ported to physical devices.

Events generated by resilience mechanisms running within
OMNeT++ are sent to the policy framework using a socket
connection. These events indicate conditions observed, such
as the detection of an attack. An event can trigger one or
more event-condition-action (ECA) policies, and the actions
specified by a policy will determine which resilience mecha-
nism, running in the simulation, should be reconfigured and
how. For this, OMNeT++ modules are instrumented with an
XML-RPC server, which registers and exports a management
interface for each resilience mechanism available. Ponder2 can
then use these interfaces to invoke management actions to
adapt the operation of simulated components, for example, to
adjust the parameters of a traffic classification algorithm. The
measurement capabilities of the simulator allow the prompt
evaluation of management actions, for example, in terms of key
performance indicators. A number of mechanisms have been
implemented as OMNeT++ modules, including: LinkMonitor,
FlowExporter, RateLimiter and EntropyDetection [8]. PReSET
is described in details in [4].

III. NETWORK TRAFFIC CLASSIFICATION

Traffic classification techniques are capable of identify-
ing patterns in the sampled network traffic. Their purpose
ranges from the identification of malicious traffic up to the
categorisation of Internet traffic for QoS support. However,
with the increasing sophistication of applications, protocols
and traffic profiles, strategies based on port numbers do not
offer reliable classification. Furthermore, strategies based on
payload inspection can be very accurate but at a high process-
ing cost [9]. An alternative is the use of machine learning.
Traffic classification based on machine learning can be used
as part of anomaly detection schemes, in order to separate
flows into classes. Although we only show in this paper binary
anomaly classification – malicious and non-malicious classes
– the same principles can be used to separate network traffic
into different classes of anomalies.

In the following we describe the two algorithms used in
this study: K-means and Naı̈ve Bayes. We chose these due
to their simplicity and broad use in several investigations [2].
However, PReSET is extensible and other algorithms can be
used instead, as discussed in Section IV.

A. K-means

K-means is a clustering algorithm that considers that data
can be described by n general features. The grouping of these
features into a tuple of size n represents a point in an n-
dimensional space. A centroid is determined from the average
of the m closest points. Each centroid is represented as ci for
i = 0, ..., k, where k is the maximum number of centroids that
can be created during the clustering process. Each sample p
has its centroid cp defined by the following equation:

cp = mink
i=0

√∑n
j=0(pj − (ci)j)2

When a point is associated with the nearest centroid, the
centroid coordinates will be updated, which in turn will trigger
the recalculation of the closest centroid for all the existing
samples. Due to its simplicity, K-means is frequently used for
traffic classification, and typically few features are needed to
describe a flow in K-means [2].

After all centroids have been calculated, it is still necessary
to label the clusters, since K-means is only able to group
similar data with respect to certain features. Although K-means
can be used for Internet traffic classification in general (e.g.,
VoIP, P2P), we focus on separating benign from malicious
traffic because of the impact it has in network resilience.

B. Naı̈ve Bayes

Naı̈ve Bayes uses the theory of conditional probability of
a sample s belonging to class t. It is calculated as:

P (t|s) = P (s|t)∗P (t)
P (s)

Where P (t|s) is the conditional probability of class t
given the occurrence of sample s, P (s|t) is the conditional
probability of a sample s given the occurrence of class t, and
P (t) and P (s) are the probabilities of occurrence of class t
and sample s, respectively. Assuming a set of classes and s as
a data sample, a bayesian classifier estimates the most likely
class CML considering the si constituent features of sample
s, where i = 0, ..., n in the following manner:

CML = argmaxt∈T
P (s1,s2,s3,...,sn|t)∗P (t)

P (s)

Naı̈ve Bayes uses the naı̈ve hypothesis that the probability
associated with each flow feature is independent from the
others for a given class t. It is a supervised algorithm, which
means it must be provided with a classification model called
training set. The training set is a database where each entry
has a sample value for a given flow feature and a class label.
Our training set is based on the attack traces obtained from
simulations in PReSET.

IV. IMPLEMENTATION AND EXPERIMENTAL RESULTS

K-means and Naı̈ve Bayes have been implemented and
integrated in PReSET. We analyse two main aspects regarding
the use of these algorithms: (a) which flow features are
necessary for the classification; (b) what are the performance
metrics of these algorithms. We chose these algorithms to
illustrate how accurate flow classification can be observed
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with the proposed classifier in the PReSET toolset, rather than
showing an exhaustive list of machine learning algorithms.

A. Prototype Implementation

Figure 1 presents an overview of our Classifier
implementation and its integration within PReSET. The
Classifier module runs alongside other resilience com-
ponents (e.g., FlowExporter) deployed in the simulated
topology. It receives periodically (customised via a policy)
flow records from the FlowExporter component. The
Classifier pre-processes the received flows, by extracting
the relevant features (feature selection is discussed in Sec-
tion IV-B) and calculating their statistics. The Classifier
is extensible and a range of anomaly classification algorithms
can be used. Whenever a decision about a malicious flow is
made, an event is published into Ponder2, and ECA policies
will be used to decide how the network should be reconfigured
(e.g., specify that packets belonging to the malicious flow
must be dropped). To support the invocation of reconfiguration
actions by policies, XMLRPC adaptors are used to interface
with simulated components.
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Fig. 1. Overview of the Classifier implementation and PReSET integration

The scenario simulated was a Distributed Denial of Service
(DDoS) attack, which is based on the set of programs Tribe
Flood Network [10]. The general characteristics of this sim-
ulation scenario are summarised in Table I. In this scenario,
some parameters of the simulation were changed (such as start
time of the attack), generating sub-scenarios of interest.

TABLE I. SIMULATION AND ATTACK TRAFFIC PARAMETERS

Parameter Value
simulation total time 160 s
attack start time 40 s
malicious packet size 64 bytes
port to attack 80
probability of attack 0.1

To simulate large-scale IP networks and attacks, PReSET
relies on ReaSE [3], which permits the creation of realistic
topologies and the generation of background and attack traffic.

The simulation in our experiments included 912 hosts, 82
web servers and 188 routers. The traffic profile used in our
experiments is described in Table II.

TABLE II. TRAFFIC PROFILE PARAMETERS

Parameter Value
type Web Traffic
request length 200 bytes
requests per session 10
reply length 1000 bytes
time between requests 2 s
time to respond 0.5 s
time between sessions 3 s

In total, 843 flows were observed, of which 32 were ma-
licious. Malicious flows come from malicious hosts launching
the DDoS attack. It is noteworthy that each flow is considered
unidirectional.
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(d) Mean inter-arrival-time per flow

Fig. 2. All features distribution

B. Preliminary analysis and feature selection

Each flow is represented by the 5-tuple 〈destination IP,
source IP, destination port, source port, protocol〉. During the
simulation, the following four traffic features were collected
for each flow: packet count, byte count, flow duration and
mean packet inter-arrival-time. Although feature selection is
typically a challenging issue, it is still possible to find a set
of relevant features by inspection. Based on the data collected
from the simulator, a two-dimensional plot on each feature was
produced, and the distribution of data was observed. These
results can be seen in Figure 2, which shows all flows with
their respective feature values. Observing the distributions, the
packet count and byte count features seem to more clearly
distinguish different flow samples. In order to validate the
classification given by the learning algorithms in this paper,
all the malicious flows were manually identified. This was
possible due to the ease of customisation offered by PReSET.
This manual classification could then be used to benchmark the
performance of the algorithms analysed in the next sections.

C. K-means analysis

The K-means implementation for the Classifier was
executed on all 843 flows involved in the PReSET simulation.
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Fig. 3. K-means classification k=2
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Fig. 4. K-means classification k=3
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Fig. 5. K-means classification k=5

The primary goal of this experiment was to identify malicious
flows, by separating them in a specific centroid. In a first
analysis, we used K-means configured with two centroids
(k = 2), representing malicious and benign traffic. The result
of this clustering is illustrated in Figure 3. In total, all flow
features defined in Section IV-B were used and all possible
2 by 2 combinations for plotting the data were considered.
However, due to space limitations, Figure 3 presents only the
cases in which a better separation of clusters was observed. In
particular, we confirmed that byte count and packet count were
good discriminators for the flow nature. By using manual flow

labelling we benchmarked the results in Figure 3. We noted
that K-means clustered the benign flows in centroid 1, and
the malicious flows in centroid 2. However, it also wrongly
assigned a few benign flows to centroid 2.

The use of K-means with a larger number of centroids en-
ables an increase in the degree of clustering, thereby allowing
more homogeneous centroids. For 3 centroids (k = 3), flows
that were previously misclassified now belong to a specific
centroid. The final clustering in this case is shown in Figure 4,
demonstrating that the isolation of the centroids representing
malicious flows is achieved (in centroid 3, data type 1). Since
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Fig. 6. Classification performance metrics for K-means with 3 centroids

K-means groups flows using feature information, the centroids
generated should represent flows that share a similar profile.

For the execution of K-means with three centroids, Fig-
ure 6 summarises our results with respect to the standard
performance metrics for classification algorithms [11]. The
performance metrics commonly used are true positive rate
(TPR), specificity (SPC), precision (p), negative predictive
value (NPV), false positive rate (FPR), false discovery rate
(FDR), accuracy (ACC) and F1-score. False positive flows are
those that should have been marked as benign, but were marked
as malicious. In contrast, false negatives are flows that should
have been classified as malicious, but were marked as benign.
According to Figure 6, 0.2% of the flows were misclassified
(FDR) using the K-means implementation.

However, the use of K-means poses some difficulties. The
first issue is to determine the optimal number of centroids. To
illustrate this, we extended our analysis. Figure 5 illustrates
the result when we run K-means with five centroids (k = 5).
Notice that new traffic classes arise even within the centroid
representing only the group of malicious flows, which is due
to overfitting the model. Also, there is an issue in defining the
optimal set of features to use, and in our case this decision
was made by analysing the results of clustering through the
manual inspection of the plots. Finally, K-means requires an
oracle to provide the labelling and the nature of a centroid; this
is because at the end of a run all centroids are determined, but
the information they represent is not known.

D. Naı̈ve Bayes analysis

Naı̈ve Bayes has been implemented as a complementary
approach to the classification provided by K-means, mainly to
assist in the labelling of the centroids produced. A training set
containing samples of malicious traffic manually classified and
other general samples was used. This training set consisted of
562 flows, divided into malicious and non-malicious samples.
During the test phase, all 843 flows were used.

The algorithm calculates the conditional probability of a
given flow being malicious or not using the training set. Given
a flow f with a feature value v, an interval threshold t (defined
a priori) is used such that all entries that are within the interval
[v − t, v + t] are considered candidates for labelling f . These
entries are separated in malicious and non-malicious and used

to calculate the most likely class for f using the conditional
probability for every feature. The results of this classification
can be seen in Figure 7 where each flow has a likelihood
of being malicious and non-malicious. Notice that every flow
has two probabilities calculated: malicious and non-malicious
probability1. The final step of the Naı̈ve Bayes algorithm, after
calculating the probabilities for each class, chooses the most
probable class for a flow and outputs this class. When the
training set is unable to provide sufficient information for the
classification, a zero probability is returned and in case of tied
probabilities, none of the classes is returned and the PReSET
classifier module assumes that the flow is non-malicious.
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Fig. 7. Classification of Naı̈ve Bayes for probability involved

Figure 8 summarises the standard classification perfor-
mance metrics for the Naı̈ve Bayes algorithm. According to
Moore and Zuev [12], a precision of about 60% is expected
for an implementation of Naı̈ve Bayes without advanced
techniques, such as kernel estimation. Therefore, the results
obtained with this implementation are as expected.

TPR SPC p NPV FPR FDR ACC F1−score

metric

pe
rc

en
ta

ge

0
10

20
30

40
50

60
70

80
90

10
0 100

96.1

59.2

100

1.58

40.7

98.4

74.4

Fig. 8. Classification performance metrics for the Naive Bayes algorithm

E. Discussion

New flows could be captured by K-means and assigned
to a centroid. In this case, it would be enough for the Naı̈ve
Bayes algorithm to classify at least one flow within the centroid

1Naı̈ve Bayes can be used to classify flows. However, it also provides
classification of individual messages. In this case, a flow can be considered
malicious when a certain limit of messages classified as malicious is exceed.
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to identify all other remaining flows in this cluster. Samples
that could not be classified by Naı̈ve Bayes could be clus-
tered by K-means and thereby have their class inferred from
other flows within the same cluster. Given the complementary
characteristics of K-means and Naı̈ve Bayes, their joint use
seems to be a viable option. As part of our future work, we
will investigate how PReSET can be used to combine different
classification techniques. A key feature of PReSET is that it
allows the use of policies written in Ponder2 to dynamically
reconfigure resilience mechanisms in response to monitored
events in the simulation. Future work will also investigate
how the algorithms analysed in this paper can be reconfigured
through policies [8] (e.g., dynamically altering the parameters
of the algorithms or recorded traffic features, according to the
performance of the classifier). Furthermore, more complete
resilience strategies will be evaluated, by having policies to
block or limit malicious traffic that is identified.

V. RELATED WORK

Gamer and Mayer [13] describe the use of OMNeT++ to
evaluate the detection of large-scale network attacks, such as
DDoS and worm propagations. In particular, OMNeT++ has
been integrated with Distack [14], a framework for evaluating
detection mechanisms. These mechanisms are based on a
combination of shared libraries for basic functions, such as
packet inspection, filtering, and sampling. PReSET itself uses
some of the functionality provided by Distack. Further, Lam
et al. [15] present techniques for the evaluation of resilience
strategies against a variety of attacks also in OMNeT++. The
authors demonstrate metrics to assign scores, which identify
the parameters that influence the performance of resilience
strategies. While these investigations have similarities with
the theme of our paper (evaluation of resilience strategies in
simulation environments), our work differs in the sense that it
focuses specifically on the evaluation of traffic classification
mechanisms. The contributions presented in this paper not
only complement the work in [13], [14] and [15], but also
extend PReSET with the ability to allow the development and
evaluation of strategies for anomaly traffic classification.

VI. CONCLUSIONS

Traffic classification is an important component in strate-
gies used to ensure network resilience against, for exam-
ple, malicious attacks. Classification allows categorising the
network traffic in a number of classes. Further, as result
of the classification, traffic belonging to a particular class
can be treated differently (e.g., dropped or rate limited). In
this paper, two algorithms for network traffic classification
based on machine learning were investigated, compared and
implemented in PReSET.

Our main goal with this paper is to offer to network opera-
tors a toolset for the simulation and analysis of anomaly traffic
classification algorithms, thus allowing the easy identification
of the best algorithms, configuration parameters and network
policies, when different types of attacks and anomalies are
simulated. The toolset supports the analysis and comparison
of classification techniques. By using characteristics observed
in the simulation, for example, the required sampling rate,
the computational cost, the classification accuracy and the
percentage of false positives, PReSET permits the execution of
reconfiguration mechanisms. As future work, we will evaluate

policies written in Ponder2 to enable/reconfigure classification
modules, depending on the quality of the results. We also plan
to extend PReSET with alternative classification algorithms,
including Support Vector Machine (SVM) and AutoClass [2].
This will permit a more systematic and comprehensive com-
parison of classification techniques.
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Abstract—Software-Defined Networking (SDN) aims to alle-
viate the limitations imposed by traditional IP networks by
decoupling network tasks performed on each device in particular
planes. This approach offers several benefits, such as standard
communication protocols, centralized network functions, and
specific network elements, for example, controller devices. Despite
these benefits, there is still a lack of adequate support for
performing tasks related to traffic classification, because (i)
there are traffic profiles that are very similar, which makes
their classification difficult (e.g., both HTTP and DNS flows are
characterized by packet bursts); (ii) OpenFlow, the key SDN
implementation today, only offers native flow features, such as
packet and byte count, that do not describe intrinsic traffic
profiles; and (iii) there is a lack of support to determine what
is the optimal set of flow features to characterize different types
of traffic profiles. In this paper, we introduce an architecture to
collect, extend, and select flow features for traffic classification in
OpenFlow-based networks. The main goal of our solution is to
offer an extensive set of flow features that can be analyzed and
refined and to be capable of finding the optimal subset of features
to classify different types of traffic flows. The experimental
evaluation of our proposal shows that some features emerge as
meaningful, occupying the top positions for the classification of
distinct flows in different experimental scenarios.

Keywords—Flow Feature; Feature selection; Traffic Classifica-
tion; Software-Defined Networking.

I. INTRODUCTION

Traffic classification assists network providers in guaran-
teeing quality of service (QoS), detecting malicious attacks,
reallocating network resources, and performing traffic model-
ing [1]. In order to achieve more accurate traffic classification,
it is important to retrieve precise information about individual
traffic flows features, which include, for example, the average
packet transmission time. Retrieving relevant network infor-
mation in traditional IP networks presents several challenges.
First, heterogeneous network devices, such as switches and
routers, often expose flow information through proprietary
management interfaces. Second, to tune how monitoring data
is handled internally to devices, one needs to configure each
device individually. Finally, because of the distributed control
state in forwarding devices, the features of a flow can be
changed along its transmission, e.g., ending up with modi-
fications on TCP/IP header fields or facing packet drops, thus
causing unanticipated network behavior in subsequent hops.

Software-Defined Networking (SDN) offers a reformula-
tion of the network control logic and alleviate the limitations
imposed by traditional IP networks [2]. In SDN, the control
plane is decoupled from the forwarding plane, i.e., part of

the control logic is moved from the forwarding devices to a
logically centralized device often referred to as the network
controller. In this approach, every control decision is taken by
the network controller, while network devices become simple
packet forwarders, programmable through a standardized pro-
tocol, such as OpenFlow [3]. However, despite the benefits
brought by SDN, there is still an important lack of adequate
support for performing tasks related to traffic classification in
OpenFlow-based networks. Achieving high accuracy of traffic
classification in SDN is difficult for several reasons: (i) there
are traffic profiles that are very similar, which makes their
classification difficult, e.g., both HTTP and DNS flows are
characterized by packet bursts; (ii) the native flow features
available in OpenFlow, such as packet and byte counts, do
not convey sufficient information to accurately distinguish
between some types of flows; and (iii) there is a lack of
support to determine what is the optimal set of flow features
to characterize different types of traffic profiles.

Considering the aforementioned issues, we introduce in
this paper an architecture to identify, extend, and select sets
of flow features derived from native OpenFlow counters as
well as from mathematical statistics, e.g., mean, variance,
maximum and minimum values, 1st and 3rd quartiles, and
Fourier Transform. Our main objective is to offer an architec-
ture capable of defining the optimal subset of flow features
to identify different types of flows, thus helping to improve
the accuracy of network tasks, such as anomaly detection and
QoS enforcement. The contribution of this paper is threefold:
(i) to devise a module capable of gathering and identifying
network flow characteristics; (ii) to create a set of advanced
flow features to characterize traffic profiles; and (iii) to inves-
tigate the use of two different feature selection techniques,
the Principal Component Analysis (PCA) and the Genetic
Algorithm (GA), to determine the subset of flow features that
is more appropriate for classifying a particular traffic profile.
Some of the traffic features proposed in this paper are indeed
more meaningful than the native flow counters provided by
OpenFlow, and allow a more accurate classification of different
types of traffic. Further, our experimental results show that
different subsets of flow features can yield a more accurate
traffic classification depending on the traffic profile.

The remainder of this paper is organized as follows.
In Section II, we discuss the related work. In Section III,
we present our proposed solution for the identification and
selection of traffic flow features in OpenFlow-based networks.
In Section IV, we describe in details the experiments and initial
results. Finally, in Section V, we present concluding remarks
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and outline the future work.

II. BACKGROUND AND RELATED WORK

Traffic classification algorithms use as input the flows to be
classified as well as flows’ descriptive features. The accuracy
of classification algorithms depends not only on the quality of
collected features but also on the amount of features considered
too. Too few features hinders more precise classifications;
too many features hinders that as well, because of noise
caused by an excessive number of variables (i.e., features)
being considered. As such, there is an optimal number of
features that should be taken into account, and finding such an
optimal number is a research challenge per se. To achieve that,
feature selection techniques are necessary, and they have been
investigated for many years already [4] [5]. However, network
applications change continuously and new traffic profiles are
hard to predict. As a result, traffic classification and feature
selection become even more challenging.

Blum et al. [6] describe several solutions to deal with large
amounts of irrelevant features. The authors discuss solutions
for feature selection based on (i) heuristics methods, (ii) filter-
ing of irrelevant data, and (iii) weight assignment to features.
Fahad et al. [7] investigate the advantages of using techniques
to select traffic features, such as information gain (IG), gain
ratio (GR), principal component analysis (PCA), correlation
based feature selection (CBFS), Chi-square, and consistency-
based-search (CBS). The performance of each technique was
evaluated using metrics such as stability (i.e., selection of the
same set of flow features despite producing variations in traffic
classification) and similarity (i.e., how similar is each subset
of features generated by a technique). Finally, Lanzi et al. [8]
present feature selection using heuristics, including a solution
based on genetic algorithms.

Previous research on feature selection investigated the use
of techniques and algorithms to assist traffic classification
in traditional IP networks. These research efforts suffered
from numerous limitations imposed by traditional IP networks,
such as (i) distributed control state in forwarding devices,
(ii) proprietary decision-making logic, and (iii) heterogeneous
protocols and interfaces. These limitations have an impact on
solutions that aim, for example, to obtain an overall view of
the network traffic since it is difficult and expensive to collect
decentralized and non-standard information. The emergence
of the SDN paradigm brought new possibilities to assist
traffic classification and feature selection. As an example, flow
statistics from each switch can be gathered through standard
interfaces and protocols, such as OpenFlow. However, specific
solutions to feature selection specifically in SDN environments
have not been investigated yet. Thus, our goal is to explore the
native collection of flow statistics and extend it to obtain more
appropriate features for traffic classification.

III. AN ARCHITECTURE FOR FLOW FEATURE
IDENTIFICATION AND SELECTION IN SDN

In this section, we propose an architecture to collect,
extend, and select flow features for traffic classification in
Software-Defined Networking (SDN). Its main goal is to offer
an extensive set of flow features that can be analyzed and
refined, and to be capable of finding the optimal subset of

features to classify different types of traffic flows. We consider
a flow as a 5-tuple consisting of source IP address, destination
IP address, TCP/UDP source port, TCP/UDP destination port,
and transport protocol identification. It is important to empha-
size that this tuple can be adjusted according to the needs
of each network infrastructure. Thus, some approaches can
ignore information such as destination TCP/UDP port when
the network infrastructure performs only one type of service,
e.g., HTTP.

A. Architecture Overview

Our proposed architecture is depicted in Figure 1. It
comprises two main components: (i) Flow Feature Manager,
which is responsible for handling network information and
for computing additional flow features; and (ii) Flow Feature
Selector, which is responsible for analyzing each flow feature
exposed by the Flow Feature Manager, and for selecting the
most meaningful ones to be applied in traffic classification.
Note that the implementation of these components, which
execute in the Application Plane, does not require modifi-
cations to the SDN controller implementation. Further, these
components can communicate with other SDN applications
(e.g., monitoring or management systems) regardless of the
SDN controller implementation.
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Fig. 1: Architecture for feature identification and selection.

In the following, we describe these components in details:

• Flow Feature Manager comprises three modules:
(i) the Network Monitor, responsible for gathering
network information from the network through re-
quests sent to the controller; (ii) the Flow Feature
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Filter, which filters the information received from
the Network Monitor and sends it to the Statistics
Generator; and (iii) the Statistics Generator, which
extends the information gathered in a set of more
complex flow features, as discussed later on in this
section.

• Flow Feature Selector comprises three modules: (i)
the Flow Feature Formatter, which organizes the data
for the feature selection algorithms and automatically
creates the training and testing sets for the traffic
classification algorithms; (ii) the Feature Selector,
which is responsible for creating the optimal subset of
flow features using a specific technique, e.g., Principal
Component Analysis (PCA); and (iii) the Flow Clas-
sifier that evaluates the flow feature subsets created
using traffic classification accuracy as metric.

These components operate as follows. Periodically, the Net-
work Monitor sends to the controller a request for traffic infor-
mation. The time interval for this request can be configured on
demand. For example, flows with short duration and frequent
bursts require a smaller time interval between requests, while a
longer time interval can be used for flows with longer duration
and more constant behavior. The controller then gathers the
traffic information from the flow tables of each switch1 and
replies to the Network Monitor. This information is then sent
to the Flow Feature Filter, selecting only the native counters,
i.e., byte and packet counters. The Statistics Generator uses
the native counters gathered from the switches to calculate
new flow features (e.g., packet length mean), extend the flow
features, and store these in a data structure that we call Flow
Feature Set.

Subsequently, the process of analyzing the full set of fea-
tures and selecting the optimal features subset is started. First,
the Flow Feature Formatter receives the flow feature set sent
by the Flow Feature Manager, and performs two operations:
(i) it creates a training and a test set that will be used by the
Flow Classifier; and (ii) it organizes the full flow feature set
in the specific format employed by the Flow Feature Selector.
The formatted data is used as input to the feature selection
algorithms implemented in this module, which are able to
identify the most meaningful features for flow classification.
Finally, the Flow Classifier module classifies the flows using
the feature subset yielded by the Feature Selector to evaluate
the fitness of each subset for some traffic profile. Similarly to
the Feature Selector module, the Flow Classifier also supports
the implementation of a range of different algorithms.

In our proof-of-concept implementation, the Flow Feature
Selector is instantiated with (i) Principal Component Analysis
(PCA) and (ii) Genetic Algorithm (GA). The PCA algorithm
[10] evaluates the relationships between a set of variables,
determining the variability associated with each of them. PCA
is used as a strategy to reduce the number of variables by
removing correlated values. The result of PCA is a subset
of the original variables, called principal component, which
accounts for the most significant variance in the original
dataset. The Genetic Algorithm mimics natural evolution and

1In the OpenFlow switch, the flow table stores actions for every incoming
packet [9]. The flow table is organized in a structure containing a subset of
packets headers associated with each flow information.

combines current best solutions for producing new solutions,
which are then analyzed to assess their quality. Briefly, the
algorithm creates an initial population representing a set of
solutions. During each iteration, called generation, it selects the
fittest solutions and creates new ones through a combination
(crossover) or mutation [11]. A series of parameters must
be determined a priori, such as population size and mutation
probability. Although we used two well-known algorithms for
realizing the Flow Feature Selector module, we emphasize that
this module can support a wide-range of other algorithms.

B. Extended Flow Features

OpenFlow is currently the most important protocol for
SDN implementation [12]. Although traffic classification can
be performed using the native traffic counters provided by
OpenFlow (e.g., packet counts), this approach presents sev-
eral limitations, since these counters do not allow detecting
atypical traffic behavior, such as packet bursts. Because of
the wide range of possible traffic profiles, more descriptive
traffic discriminators are necessary. In this paper, we propose
an extension of the native OpenFlow counters through statistics
analysis, with the goal of producing more descriptive infor-
mation about the traffic behavior, such as bytes per second
mean and packets per second variance. More specifically, we
rely on the standard byte and packet counts retrieved from the
network controller, but create an enhanced flow feature set.
We introduce a third type of counter, named samples counter,
which indicates the number of times each flow appears during
feature polling. This counter is maintained by the Statistics
Generator and is essential to compute some of the more
advanced flow features, as discussed below.

The extended set of flow features introduced in this paper
is classified into three categories: (i) statistical features –
mean, variance, first, and third quartiles; (ii) scalar features –
maximum and minimum values, flow size, and flow duration;
and (iii) complex feature – Discrete Fourier Transform (DFT)
of packet inter-arrival-time. Table I presents the complete set
comprising 33 new flow features. We advocate that these
extended flow features can improve the performance of clas-
sification schemes in SDN. First, the statistical features are
suitable to summarize the temporal behavior of traffic profiles.
For example, the mean packet count represents the central
value of a set of observations. Thus, they are better descriptors
in comparison to SDN native packet counters. Second, scalar
features are convenient to indicate the instantaneous profile of
traffic flows, such as duration. As a result, they are important in
the detection of short-lived communications or packet bursts,
since statistical features alone are not sensitive to these traffic
profiles. Finally, complex features are useful to anticipate
the need for more sophisticated traffic information. Different
from the previous categories, complex features can be used to
compress a wide range of traffic observations. For example,
Discrete Fourier Transform can be used to refine several mea-
surements of packet’s inter-arrival-time into a set of frequency
components, which is a more distinguished representation.
Some of these features were investigated by Auld et al.[13]
and Moore et al. [14].

OpenFlow’s native counters were used as the basis for
deriving two new flow features, namely packet length Pl and
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TABLE I: Extended set comprising 33 new flow features.

Statistical Features Scalar Features Complex Features
Bytes per second mean Bytes per second maximum value Packet inter-arrival-time Fourier Trans-

form 1st Component
Bytes per second variance Bytes per second minimum value Packet inter-arrival-time Fourier Trans-

form 2nd Component
Packets per second mean Packets per second maximum value Packet inter-arrival-time Fourier Trans-

form 3rd Component
Packets per second variance Packets per second minimum value Packet inter-arrival-time Fourier Trans-

form 4th Component
Packets length mean Packets length maximum value Packet inter-arrival-time Fourier Trans-

form 5th Component
Packets length variance Packets length minimum value Packet inter-arrival-time Fourier Trans-

form 6th Component
Packets length 1st quartiles Packets inter-arrival-time maximum

value
Packet inter-arrival-time Fourier Trans-
form 7th Component

Packets length 3rd quartiles Packets inter-arrival-time minimum
value

Packet inter-arrival-time Fourier Trans-
form 8th Component

Packet inter-arrival-time mean Flow duration Packet inter-arrival-time Fourier Trans-
form 9th Component

Packet inter-arrival-time variance Flow size in packets Packet inter-arrival-time Fourier Trans-
form 10th Component

Packet inter-arrival-time 1st quartiles Flow size in bytes
Packet inter-arrival-time 3rd quartiles

packet inter-arrival-time2 Pit. These are estimations of the real
packet length and real inter-arrival-time, since calculating their
precise values would require deep packet inspection and the
monitoring of every packet in the network, which are expensive
tasks. Consequently, we apply sampling strategies to estimate
these features and use Equation 1 and Equation 2 to calculate
packet length and inter-arrival, respectively. Bc represents byte
count, Pc represents packet count between two requests, and
T is the time-interval between two requests.

Pl =
Bc
Pc

(1)

Pit =
T

Pc
(2)

To calculate mean and variance, the Statistics Generator
updates the mean µ and the variance σ2 for the flow features
every time a new information request is processed. Mean is
calculated using Equation 3, where µn is the updated mean,
µo is the old mean, θ is the new sample, and n is the samples
counter.

µn =
n ∗ µo + θ

n+ 1
(3)

The updated variance σ2
n is calculated using Equation 4,

where σ2
o is the old variance.

2We use packet length and packet inter-arrival-time statistics because
individual values do not usually give substantial information about the traffic
profile.

σ2
n =

n

n+ 1
∗ (σ2

o +
(θ − µn) ∗ (θ − µo)

n
) (4)

In this work, we calculate DFT of packet inter-arrival-
time samples and use the top ten components as flow features
according to Auld et al. [13] work. DFT represents the samples
of a variable in the frequency domain. It is defined by Equation
5, where N is the number of samples, xn is a sample, and Xk

is the resulting component.

Xk =
N−1∑

n=0

xn.e
−2πikn/N , k ε Z (5)

IV. PROTOTYPE AND EXPERIMENTAL EVALUATION

In this section, we describe a proof-of-concept implemen-
tation, comprising the actual algorithms used to instantiate the
modules described in the previous section. We also present our
experimental evaluation and discuss initial results.

A. Prototype Implementation

We developed a prototype for the Flow Feature Manager
and the Flow Feature Selector components in Python. The sets
of flow features are stored in a dictionary data structure. To
select the optimal flow feature subset, the Feature Selector
module implements two distinct algorithms: Principal Compo-
nent Analysis (PCA) [10] and Genetic Algorithm (GA) [11].
In addition, to analyze the classification accuracy of each
subset of flow features, the Flow Classifier module implements
the well-known Support Vector Machine (SVM) algorithm
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for traffic classification [15]. The PCA, GA, and SVM were
implemented using R3 libraries (psych, genalg, and e1071,
respectively). Still, each module can be customized with other
classification algorithms and feature selection techniques as
needed. Finally, for managing and monitoring the network
infrastructure, we chose the Floodlight Controller4 version 1.0,
as it offers a suitable communication interface between our
application and the controller through a REST API.

B. Experiments and Initial Results

Our goal is to measure the accuracy of the resulting
traffic classification using specific subsets of traffic features,
discovered via the Genetic Algorithm (GA) and the Principal
Component Analysis (PCA), as opposed to using the full-
blown set of features. Accuracy is defined as the percentage
of correctly classified instances among the total number of
instances [1]. To evaluate the proposed architecture, we used a
standard tree topology with three levels comprising seventeen
switches, and sixty-four hosts. We defined four types of traffic
profiles in our experiments: (i) DDoS attack, (ii) FTP traffic,
(iii) video streaming using VLC Media Player5, and (iv)
background traffic generated using Scapy6. We composed these
types of traffic into three scenarios defined in Table II. For each
scenario we use the traffic classification accuracy as metric to
define the optimal flow feature set. For comparison purposes,
we use as benchmark the classification accuracy for each
scenario obtained by using the complete set of flow features:
94.67% (scenario A), 92% (scenario B), and 85.33% (scenario
C).

TABLE II: Experimental scenarios.

Scenario Type of flow
A DDoS attacks (60%) with Scapy flow (40%)
B FTP traffic (35%) with Scapy flows (65%)
C Video streaming (50%) with Scapy flows (50%)

In order to produce more accurate results, the Genetic
Algorithm (GA) must be initialized with a few parameters. We
set the population size to 200 individuals randomly generated
and the crossover percentage to 20%. We also must configure
two other parameters: (i) number of iterations and (ii) mutation
probability. In order to do so, we analyzed the classification
accuracy for a number of iterations, namely 10, 50, 75,
100, 150, and 200, until the accuracy stabilized. Figure 2
presents the resulting accuracy obtained for a given number
of iterations. As a result, we set the number of iterations to
100, since it is the smallest value with the highest accuracy.

As can be observed in Figure 3, the mutation probability
does not have an impact in classification accuracy, and we use
0.01 as standard mutation probability. Because of the amount
of time taken to execute this algorithm (nearly 88 minutes),
we chose scenario C to set these parameters, since it has the
lowest classification accuracy when using all flow features.
The classification accuracies obtained by using GA to find the

3www.r-project.com
4http://www.projectfloodlight.org/
5http://www.videolan.org/vlc/index.html
6http://www.secdev.org/projects/scapy/
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Fig. 2: Accuracy for each number of iterations.

optimal subset of flow features for each scenario were: 98%
(scenario A), 94.67% (scenario B), and 91.33% (scenario C).
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Fig. 3: Accuracy for each mutation probability.
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Fig. 4: Accuracy of the 11 most meaningful principal compo-
nents selected by PCA (for each factor) in scenario A.

To find the optimal subset of flow features, we also applied
PCA. PCA determines the most important features by creating
one principal component to match each variable (feature), i.e.,
in our experiments it creates 33 principal components. It works
as follows: initially, only the components that jointly represent
90% of the features variability are chosen, resulting in 11
components; then, since a principal component is created as
a weighed sum of the features, a subset is created for each
component including the features with higher weight than a
specific factor. In our experiments, we used 0.025, 0.05, and
0.1 as factors. As a result, we have three different subsets for
each component. Figure 4 shows the classification accuracy for
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Fig. 5: Ten most meaningful flow features according to PCA analysis in Scenario A (DDoS).
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Fig. 6: Ten most meaningful flow features according to PCA analysis in Scenario B (FTP).
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Fig. 7: Ten most meaningful flow features according to PCA analysis in Scenario C (Video Streaming).

each subset in scenario A. We can draw several conclusions
from this: (i) not all subsets lead to a higher accuracy compared
to the accuracy obtained by using the complete flow feature set
(94.67%); (ii) factor 0.025 seems to lead to the best solutions in

most cases, although the optimal solution is a subset of features
selected using factor 0.05 in the 10th principal component
(97.33%); and (iii) factor 0.1 cannot be ruled out because it
leads to the highest accuracy in the 1st principal component,
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TABLE III: Optimal flow features subsets selected for each experiment.

Scenario A Scenario B Scenario C
PCA GA PCA GA PCA GA

Bytes per second
mean

Bytes per second
mean

Bytes per second
mean

Bytes per second
variance

Bytes per second
Minimum value

Bytes per second
variance

Bytes per second
Minimum value

Bytes per second
variance

Bytes per second
variance

Bytes per second
Maximum value

Packets per second
mean

Bytes per second
Maximum value

Packets per second
Minimum value

Bytes per second
Maximum value

Bytes per second
Maximum value

Minimum value of
Bytes per second

Packets per second
variance

Bytes per second
Minimum value

Packets Length mean Bytes per second
Minimum value

Bytes per second
Minimum value

Packets per second
Mean

Packets per second
Maximum value

Packets per second
variance

Packets Length vari-
ance

Packets per second
mean

Packets per second
mean

Packets per second
Variance

Packets per second
Minimum value

Packets per second
Minimum value

Packet Length Maxi-
mum value

Packets per second
Maximum value

Packets per second
variance

Packets per second
Maximum value

Packet Length vari-
ance

Packet Length mean

Packet Length Mini-
mum value

Packets per second
Minimum value

Packet per second
Maximum value

Packet per second
Minimum value

Packet Length Mini-
mum value

Packet Length vari-
ance

Packet Inter-arrival
time mean

Packet Length mean Packet per second
Minimum value

Packet Length Mean Packet Inter-arrival
time mean

Packet Length Maxi-
mum value

Packet Inter-arrival
time variance

Packet Length vari-
ance

Packet Length mean Packet Length Maxi-
mum value

Packet Inter-arrival
time variance

Packet Length Mini-
mum value

Packet Inter-arrival
time Maximum
value

Packet Length Maxi-
mum value

Packet Length vari-
ance

Packet Length Mini-
mum value

Packet Inter-arrival
time Maximum
value

Packet Inter-arrival
time mean

Packet Inter-arrival
time 1st quartile

Packet Length Mini-
mum value

Packet Length Maxi-
mum value

Packet inter-arrival
time Mean

Packet Inter-arrival
time Minimum value

Packet Inter-arrival
time Maximum
value

Packet Length 1st

quartile
Packet Inter-arrival
time mean

Packet Length Mini-
mum value

Packet inter-arrival
time Variance

Flow Size in Packets Flow Size in Bytes

Packet Length 3rd

quartile
Packet Inter-arrival
time Minimum value

Packet Inter-arrival
time variance

Flow Size in Bytes Packet Inter-arrival
time 1st quartile

Packet Inter-arrival
time 1st quartile

Fourier Transform
2nd Component

Flow Duration Packet Inter-arrival
time Maximum
value

Flow Size in packets Packet Inter-arrival
time 3rd quartile

Packet Inter-arrival
time 3rd quartile

Fourier Transform
3rd Component

Flow Size in Bytes Packet Inter-arrival
time Minimum value

Packet inter-arrival
time 1st quartile

Packet Length 1st

quartile
Packet Length 3rd

quartile
Fourier Transform
6th Component

Flow Size in Packets Flow Size in Bytes Packet Length 1st

quartile
Fourier Transform
1st Component

Fourier Transform
1st Component

Packet Inter-arrival
time 3rd quartile

Packet Inter-arrival
time 1st quartile

Packet Length 3rd

quartile
Fourier Transform
2nd Component

Fourier Transform
2nd Component

Packet Length 1st

quartile
Packet Inter-arrival
time 3rd quartile

Fourier Transform
2nd component

Fourier Transform
4th Component

Fourier Transform
3rd Component

Fourier Transform
1st Component

Packet Length 1st

quartile
Fourier Transform
4th component

Fourier Transform
5th Component

Fourier Transform
4th Component

Fourier Transform
2nd Component

Packet Length 3rd

quartile
Fourier Transform
5th component

Fourier Transform
6th Component

Fourier Transform
5th Component

Fourier Transform
3rd Component

Fourier Transform
2nd Component

Fourier Transform
7th component

Fourier Transform
7th Component

Fourier Transform
8th Component

Fourier Transform
4th Component

Fourier Transform
3rd Component

Fourier Transform
10th Component

Fourier Transform
8th Component

Fourier Transform
9th Component

Fourier Transform
5th Component

Fourier Transform
4th Component

Fourier Transform
9th Component

Fourier Transform
10th Component

Fourier Transform
6th Component

Fourier Transform
5th Component

Fourier Transform
10th Component

Fourier Transform
9th Component

Fourier Transform
7th Component
Fourier Transform
8th Component
Fourier Transform
9th Component
Fourier Transform
10th Component
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thus can also result in high accuracy in a different scenario.
Based on these three observations, it is not possible to identify
which factor gives the best subset for any given scenario,
consequently all three factor must be considered.

Because of space constraints, we illustrate only the 10 most
meaningful features (in order of importance) selected through
PCA in each scenario, depicted in Figure 5, Figure 6, and
Figure 7. In each scatter plot, the vertical line separates the
types of traffic being simulated: the left side represents the
background traffic, and the right side represents DDoS traffic
(in Figure 5), FTP flows (in Figure 6), and Video Streaming
(in Figure 7). Classification accuracies for the optimal subset
of features selected with PCA for each scenario were: 97.33%
(scenario A), 94% (scenario B), and 88.67% (scenario C).

Figure 8 summarizes the classification accuracy in each
scenario using all features, as well as using the optimal subsets
selected with PCA and GA. In all scenarios, the accuracy was
improved by using the optimal feature subsets generated by
GA and PCA, when compared with the accuracy obtained by
using the complete set of flow features. Table III details the
feature subsets selected by PCA and GA in each scenario.
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Fig. 8: Traffic classification accuracy for each flow feature set
in all three scenarios.

V. CONCLUDING REMARKS

In this paper, we introduced an architecture to collect,
extend, and select a set of flow features for traffic classification
in Software-Defined Networking (SDN). We also demonstrated
that for particular types of traffic, an optimal subset of flow
features can be selected using both principal component anal-
ysis and genetic algorithm.

Our experimental results show that some of the traffic
features proposed in this paper are indeed more meaningful
than the native flow counters provided by OpenFlow, and allow
a more accurate classification of different types of traffic. Also,
our results show that these features can be combined, according
to each type of flow, and be used for indicating the profile of a
particular flow. Furthermore, in all scenarios the subset of flow
features selected by either GA or PCA allows a more accurate
traffic classification when compared to classification accuracy
obtained with the complete set of flow features.

As future work, we will investigate additional flow features,
and analyze other types of flow services. Finally, we plan

to explore and apply other algorithms and mechanisms for
traffic classification and compare them with the results we have
collected so far.
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Abstract

Software-Defined Networking (SDN) is an architecture for computer networking that provides a clear separation
between network control functions and forwarding operations. The abstractions supported by this architecture are
intended to simplify the implementation of several tasks that are critical to network operation, such as routing and
network management. Computer networks have an increasingly important societal role, requiring them to be resilient
to a range of challenges. Previously, research into network resilience has focused on the mitigation of several types
of challenges, such as natural disasters and attacks. Capitalizing on its benefits, including increased programmability
and a clearer separation of concerns, significant attention has recently focused on the development of resilience mech-
anisms that use software-defined networking approaches. In this article, we present a survey that provides a structured
overview of the resilience support that currently exists in this important area. We categorize the most recent research
on this topic with respect to a number of resilience disciplines. Additionally, we discuss the lessons learned from this
investigation, highlight the main challenges faced by SDNs moving forward, and outline the research trends in terms
of solutions to mitigate these challenges.

Keywords: Software-defined networking; network resilience; OpenFlow; network challenges.

1. Introduction

Computer networks are important for businesses and
to support the operation of societally critical infrastruc-
tures, such as future (smart) electrical grids and gov-
ernment services. The growth in number and variety
of end-to-end services that networks must support has
led to a great deal of heterogeneity in the way net-
works are implemented, resulting in (i) complex pro-
tocols to handle the communication between network
devices [1], (ii) difficult deployment of network policies
by network administrators [2] and (iii) limited routing
scalability [3, 4, 5]. Additionally, challenges to normal
network operation, such as malicious attacks and pro-
hibitive communication delay, demonstrate that com-
puter networks have long-standing resilience require-
ments [6].

Resilience is the ability of the network to maintain
an acceptable level of service when confronted with

∗Corresponding author.
Email addresses: assilva@inf.ufrgs.br (Anderson Santos

da Silva), paul.smith@ait.ac.at (Paul Smith),
a.mauthe@lancaster.ac.uk (Andreas Mauthe),
alberto@inf.ufrgs.br (Alberto Schaeffer-Filho)

operational challenges [7]. A challenge is an atypical
event that hinders the expected normal network opera-
tion [6, 8]. In order to deal with a wide range of chal-
lenges, network resilience encompasses six major dis-
ciplines: security, survivability (including fault toler-
ance), performability, traffic tolerance, disruption toler-
ance and dependability [7]. When a network challenge
arises, mitigation mechanisms should be activated, ide-
ally without human intervention, to rapidly protect a
network and the services it supports. However, the
broad range of potential challenges that could befall
a network requires sophisticated network (resilience)
management systems that can detect and mitigate their
effects [8]. Existing management systems have limita-
tions, including a lack of flexibility with respect to chal-
lenge identification and mitigation, which has encour-
aged research that considers this problem in the context
of new network architectures [9].

In both the research and industry communities,
Software-Defined Networking (SDN) [10] has recently
gained significant attention. The main characteristic of
the SDN architecture is that it decouples the implemen-
tation of network control logic from forwarding oper-

Preprint submitted to Computer Networks July 30, 2015
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ations, thus enabling more flexible network control and
management. In this context, a centralized control plane
determines how forwarding devices, such as switches,
will behave by configuring them using standardized pro-
tocols, such as OpenFlow [11]. The SDN architecture
and the OpenFlow protocol, as its canonical implemen-
tation, offer (i) a comprehensive view of the network
that is centralized in the control plane, (ii) high-levels of
programmability of network applications, and (iii) fine-
grained flow monitoring. These properties can be used
to support the implementation of resilience mechanisms
and help to minimize the complexity of managing them
for network operators. Despite these benefits, new re-
silience challenges can arise because of the use of SDN,
e.g., with respect to the fault tolerance of the control
plane; research into addressing these issues is currently
a major concern.

This paper presents a survey on the support for net-
work resilience in software-defined networking. Re-
search into this topic has recently intensified, as illus-
trated in Figure 1, which summarizes the number of re-
search papers addressing resilience aspects in SDN in-
cluded in this survey, according to their year of publi-
cation. We organize the literature surveyed using the
resilience taxonomy proposed by Sterbenz et al. [7],
thus enabling a reliable categorization of the existing
research efforts on SDN. Our survey discusses aspects
such as existing solutions for resilience challenges, cur-
rent open issues and research trends in this field. The
aim of the survey is to present to the reader a com-
prehensive and structured view of network resilience in
the SDN spectrum, and how resilience aspects are sup-
ported in these architectures.

We have observed that solutions related to fault man-
agement, infrastructure planning, routing and security
applications, network measurement and anomaly detec-
tion are frequently used to address resilience challenges
in the SDN context. However, we have identified sev-
eral open issues in this research space, including the
protection of the communication channel between net-
work controller and forwarding devices; adequate sup-
port for sophisticated QoS solutions to enhance per-
formability; and the need to detect novel malicious at-
tacks targeting network devices.

The remainder of this paper is organized as follows.
Section II presents necessary background material on
SDN and network resilience. Section III discusses the
proposed categorization of SDN efforts, with respect to
different resilience disciplines. Section IV shows a sum-
mary of the main research topics studied, topics already
solved and others under investigation. Finally, Section
V presents the concluding remarks.
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Figure 1: Number of research papers included in this survey, accord-
ing to their year of publication

2. Background

This section discusses the basic concepts and ter-
minology used in this work. In particular, Software-
defined networking and network resilience are contex-
tualized.

2.1. Software-Defined Networking

Software-Defined Networking (SDN) is an architec-
ture for computer networks aimed at decoupling the
network control functions (control plane) from the for-
warding devices (data plane) [10]. The control plane is
responsible for determining the network control logic,
such as implementing routing protocols. The aim of the
SDN architecture is to simplify the deployment of new
control plane functions, such as routing strategies, when
compared to traditional networks [12, 13], in which the
control and data planes are more tightly coupled and
typically operate in an entirely distributed fashion.

The SDN architecture defines three conceptual planes
and communication interfaces as depicted in Figure 2:

• The application plane is responsible for executing
applications that run over the network infrastruc-
ture. Generally, these applications perform modifi-
cations regarding network aspects, such as network
policies and routing behavior, with some degree of
human intervention [12]. Examples of network ap-
plications deployed in this plane are network visu-
alization, path reservation and network provision-
ing;
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Figure 2: SDN architecture: conceptual planes and communication interfaces

• The control plane defines control logic, such as
routing schemes. Additionally, the control plane
can manage the information collected by switches
at the data plane, such as flow statistics, to orches-
trate the traffic behavior. This plane has a global
network view, being able to offer mechanisms for
fault diagnosis, make decisions over current traffic
distributions and enforce QoS policies. Usually,
the control plane is physically distributed into con-
troller devices, but logically centralized [14];

• The data plane includes the devices that are re-
sponsible for forwarding data, which are generally
referred to as switches. An OpenFlow switch of-
fers the notion of programmable flow tables, i.e.,
tables that define an action for each packet associ-
ated with a specified flow. A flow table can be dy-
namically configured by the control plane. When
a new packet arrives in a given switch it can be
(i) dropped; (ii) flooded through all output ports;
(iii) sent to a specific output port; or (iv) sent to
the network controller [15]. For every flow the
switches involved in this communication store sta-
tistical information that can be accessed by the
control plane.

Furthermore, the communication between the differ-
ent planes occurs through the following interfaces:

• Northbound API: Implements the communication
interface between the control plane and the appli-
cation plane. This API enables the programmabil-
ity of the network controller by exposing network
data abstractions to the application plane. Cur-

rently, the most used protocol for this communi-
cation is REST (REpresentational State Transfer);

• Southbound API: Implements the communication
interface between the control plane and the data
plane. Through this interface it is possible for the
control plane to configure switches with forward-
ing actions according to received notifications of
incoming packets from the data plane [16]. This
is typically standardized and implemented by the
OpenFlow protocol [11, 17].

It can be seen that through these interfaces the SDN
architecture introduces a great deal of flexibility in flow
management, impacting directly in areas such as se-
curity, traffic management and performability [18, 19].
Also, SDN has the potential to reduce the cost of
network deployment, because simplified data plane
switches are relatively inexpensive components, when
compared to more complex routers [20]. Furthermore,
OpenFlow has proven to be ideal for the development of
prototype network applications [21]; based on this suc-
cess, research in this field has increased [22]. These
characteristics generated enthusiasm in both industry
and academia. Many surveys covering historical as-
pects, architecture and challenges related to SDN have
been published and further discussions can be found
in [23, 24, 25, 12].

2.2. Network Resilience

Computer networks support many societally critical
functions such as business transactions, military opera-
tions and electricity supply. However, a wide range of
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challenges such as malicious attacks, operational over-
load and mis-configurations can occur, which could re-
sult in failures. Additionally, networked systems can in-
clude hardware and software faults that could similarly
result in failures, if triggered. Approaches to network
resilience aim to protect the network and overcome a
degradation in the performance of services when con-
fronted with challenges and faults.

2.2.1. General Principles
There are a number of different ways in which a net-

work can fail to provide a desired level of service, such
as a given end-to-end delay or level of availability. Fail-
ures can be caused by so-called challenges, such as a
malicious attack or natural disaster, or a fault. For ex-
ample, critical failures resulting from natural disasters
like Hurricane Katrina [26], in 2005, destroyed much
of the network infrastructure on the east coast of the
United States. The damage was such that communica-
tion links were interrupted and the electrical distribution
system was compromised. Furthermore, our increasing
dependence on network infrastructures has attracted the
attention of cyber criminals. These individuals aim to
disrupt the operation of large corporations or even na-
tions through cyber-attacks that are targeted at the com-
munication infrastructure [27]. In this case, a failure
is the result of deliberate malicious activities that can
compromise a target network service.

The variety of ways that networks can be challenged
creates the need for a wide range of resilience mecha-
nisms, which should be deployed across systems, net-
work layers and infrastructures, as necessary. Unfor-
tunately, an ideal resilience system that is capable of
protecting the network from any challenge in any envi-
ronment is difficult to achieve and expensive. A trade-
off between the complexity of the mechanisms and their
cost exists, and this restriction defines what can be de-
ployed in practice [28]. Consequently, prohibitive costs
can make ideal resilience solutions, such as fully fault
tolerant systems, infeasible [20].

In general, a number of stages can be implemented
to ensure the resilience of networks [7, 29]. Initially a
set of defense mechanisms should be deployed that ad-
dress the known challenges a network may face; these
might include firewalls or redundant network paths, for
example. In some cases, these defense measures will
fail, e.g., because new challenges emerge or they are in-
sufficiently provisioned. Consequently, it is important
to detect challenges and service degradation, and subse-
quently diagnose the root cause of a challenge. Using
the outcomes from these stages, mechanisms to remedi-
ate the challenge can be used to adapt the system oper-

ation, in order to ensure continued or graceful degrada-
tion of service. For example, suspicious network traf-
fic can be subjected to deep-packet inspection (a form
of detection and diagnosis), while malicious traffic can
be blocked (a remedial action). Finally, when a chal-
lenge has abated, the network should recover to normal
operation by disengaging remediation mechanisms, for
example.

2.2.2. Resilience Disciplines
In this section, we discuss the resilience disciplines

that are related to networked systems. According to
Sterbenz et al. [7], a number of existing disciplines ad-
dress aspects of network resilience, which can be placed
into two categories: (i) disciplines that provide mech-
anisms to address different classes of challenges and
faults; and (ii) those specifying measurable properties
that indicate the resilience of a network. We summarize
these disciplines:

• Survivability: is a superset of fault tolerance,
which addresses small numbers of random uncor-
related faults, by considering numerous correlated
failures that could be caused by challenges such
as malicious attacks and large-scale natural disas-
ters. While redundancy is often considered suffi-
cient for fault tolerance, ensuring the survivability
of networks requires approaches to diversity to be
implemented;

• Traffic tolerance: enables the network to toler-
ate unusual traffic load without interrupting its op-
eration. It deals with legitimate traffic manage-
ment, e.g., flash crowds, largely via traffic engi-
neering mechanisms. However, DDoS attacks can
behave similarly to legitimate traffic, thus creating
the need to identify and treat this type of traffic in
a specific manner;

• Disruption tolerance: enables the network to tol-
erate weak and episodic connectivity that is typi-
cal of mobile and wireless networks. Approaches
to disruption tolerance can include error correc-
tion schemes, multi-path routing and in extreme
cases (e.g., for mobile ad hoc networks) store-
carry-forward schemes. Often in this context, there
are energy trade-offs that need to be addressed;

• Dependability: quantifies the reliance that can be
placed on the service delivered by a system. Con-
sequently, this definition encompasses concepts re-
lated to availability – an indicator of whether a ser-
vice will be present when requested – and reliabil-
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Table 1: SDN research efforts on Fault Tolerance and Survivability
SDN Planes Fault Tolerance Survivability
Application plane Reitblatt et al. [30] Chandrasekaran et al. [31]

Heller et al. [32]
Canini et al. [33]
Scott et al. [34]

Control plane Jain et al. [35] Williams et al. [36]
Botelho et al. [37] Liu et al. [38]
Jian et al. [39] Kempf et al. [40]
Fonseca et al. [41] Chandrasekaran et al. [31]
Tootoonchina et al. [42] Muller et al. [43]
Zhang et al. [44]

Data plane Jain et al. [35] Liu et al. [38]
Botelho et al. [37] Kempf et al. [40]

ity – a measure of continued operation for a spec-
ified period of time. Also, dependability relates to
measures of safety, integrity and maintainability;

• Security: is a property and set of measures that
relate to unauthorized access to a networked sys-
tem, and includes notions of self-protection. It in-
cludes concepts such as confidentiality, nonrepu-
diality and AAA (auditability, authorizability, au-
thenticity). Additionally, security properties inter-
sect with the dependability concepts of availability
and integrity, with subtly different semantics – for
security, these properties typically relate to infor-
mation assets, rather than services.

• Performability: metrics describe the network’s
ability to deliver the performance required by its
users; these requirements are normally expressed
in Quality of Service (QoS) agreements. Typ-
ical performability metrics include delay, jitter,
throughput and goodput, for example.

3. State-of-art in SDN Resilience

This section discusses the main research efforts that
have addressed resilience aspects in the context of SDN.
The methodology employed to produce this survey is as
follows. First, a total of 142 research papers and techni-
cal reports on SDN and resilience were gathered, based
on criteria such as date and relevance. Second, the pub-
lications were categorized into the different resilience
disciplines that are proposed by Sterbenz et al. [7] (see
Sec. 2). Third, these works were arranged into one or
more SDN planes (Figure 2), in order to provide a high-
level view of the intended resilience support over the
different planes. In the following, for each resilience

discipline, we discuss the main challenges and the so-
lutions used to protect the network in SDN environ-
ments. Despite our efforts to accurately categorize the
publications within the several resilience disciplines, we
acknowledge that in some cases the same publication
could be classified differently according to the assess-
ment of the reader.

3.1. Fault Tolerance and Survivability

A natural concern about the SDN architecture is the
survivability of the network controller, forwarding de-
vices in the data plane and applications that monitor and
change the network operation. To achieve the protec-
tion of these components, survivability encompasses the
treatment of fault tolerance in the face of uncorrelated
failures that are caused by faults, and multiple corre-
lated failures that are caused by natural disasters and at-
tacks, for example. Table 1 presents the major research
efforts addressing survivability in SDN. In the following
we discuss these works in detail.

Fault tolerance: is the ability of a system to provide
continued operation or degrade gracefully in the pres-
ence of faults. The classical approach to fault tolerance
is to introduce redundancy into the system, e.g., through
the use of replicas to protect critical components in the
network [45]. In the SDN context, redundancy can be
used to (i) protect the network controller from service
failures, (ii) to protect the forwarding devices and com-
munication links from link disruption, and (iii) to pro-
tect network applications from misconfiguration [44].
Despite the benefits of fault tolerance, a fully fault toler-
ant system brings complex issues that are related to the
management of replicated components and equipment
costs. SDN can help to address these issues because its
architecture can accommodate the control of complex
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network functions. For example, the control plane can
be used to orchestrate the behavior of active and redun-
dant devices, eliminating the need for new devices to
perform such tasks [41].

Jain et al. [35] relate experience with the use of fault
tolerant approaches to address network outages and fail-
ures with B4, a private WAN that connects the Google’s
data center. They used OpenFlow to manage individual
switches that implement several fault tolerance tasks,
such as multipath routing regarding flow priority and
dynamic reallocation of bandwidth when link failures
occur. The redundancy is achieved using software repli-
cas to protect individual and control processes in the
control plane. These replicas are placed on different
physical servers and, in case of network faults, a con-
sensus algorithm can be used to elect the replica that
will assume the demand of the network. All the configu-
rations and communications used to protect the network
are assisted by an SDN-based architecture.

Botelho et al. [37] treats the consistency between a
network controller and their redundant backups, focus-
ing on performance aspects. The main conclusion of the
authors is that strict consistency and fault tolerant sys-
tems can operate with acceptable performance. How-
ever, issues related to latency were shown to limit the
responsiveness of the system. Jian et al. [39] confirm
this observation and show that the performance of the
network controller can be critical to link failure detec-
tion, even in fault tolerant systems.

We understand that a large number of applications
that are related to fault tolerance running in the control
plane can reduce its capacity to process network traf-
fic. A solution to tackle this limitation is moving the
majority of these applications to the application plane,
which is more scalable and suitable for running these
tasks mainly because this plane is designed exclusively
to support the execution of general SDN applications.
Using the programmability offered by the SDN archi-
tecture, Reitblatt et al. [30] propose FatTire, a language
for writing fault-tolerant systems. The idea behind this
approach is to offer an abstraction for network paths,
such that the forwarding behavior of network packets
can be orchestrated though regular expressions that are
converted into primitive switch rules. This is an ap-
plication plane solution, and can be updated according
to the need of new resilience requirements. Further-
more, Fonseca et al. [41] investigate the redundancy
of network controllers. Related to this is the work by
Tootoonchian et al. [42], which deals with the distribu-
tion of controller state over the network, in order to offer
a logically centralized network controller.

A recent concern involves the programmability of-

fered by SDN and the challenges related to software
debugging. In our understanding these issues also
bear some relationship to Fault Tolerance. Heller et
al. [32] discuss the overall problem space regarding
troubleshooting in SDN but the authors do not propose
any system or framework. Scott et al. [34] also deal with
this aspect and in addition propose a troubleshooting
system (called STS), which aims to alleviate the time-
consuming nature of debugging by eliminating events
that are not causally related to the source of a fail-
ure. Further, Canini et al. [33] are also concerned with
troubleshooting issues, and apply model-checking tech-
niques to represent the state space of the network. This
strategy is useful to detect design flaws, a frequent type
of software bug.

Survivability: multiple, uncorrelated failures can be
unpredictable and difficult to diagnose, and in this case
redundancy may not be enough. A typical strategy to
handle this kind of failures is diversity, i.e., to use a set
of distinct resilience schemes to determine and treat the
source of failure. This increases the success of detec-
tion/mitigation schemes because a wide-range of net-
work challenges can be addressed.

For example, diversity can be typically employed
to withstand catastrophic faults, such as natural disas-
ters. Muller et al. [43] highlight that even if the control
and data planes are compromised, different placement
strategies of the network controller, path diversity and
distinct recovery mechanisms can be used to ensure that
the network can still function. Note that similar tech-
niques can be used not only to improve aspects related
to Survivability but also to Disruption Tolerance.

Chandrasekaran et al. [31] discuss how to handle
challenges at the application and control planes. Their
focus is to treat Byzantine failures, fail-stop crashes
and other uncorrelated failures. They propose two ab-
stractions for improving the network controller avail-
ability and diagnose network application faults: a mod-
ule used for fault isolation and another to deal with net-
work transactions. The joint operation of these com-
ponents enables the orchestration of high-level applica-
tions, such as fault alerts and the specification of poli-
cies to enforce actions when failures occur. The pro-
posed framework still enables the distribution of net-
work events to different SDN applications, in order to
tolerate multiple, uncorrelated failures.

SDN is a suitable environment to investigate diver-
sity of automatic recovery mechanisms. For example,
mechanisms used to plan for failure can be placed in
distinct network controllers [36], and control plane ap-
plications can be used to ensure path reservation in
the data plane [38]. Related to these ideas, Kempf et
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Table 2: SDN research efforts on Dependability
SDN Planes Reliability Availability
Application plane N/A N/A

Control plane Veisllari et al. [46] Heller et al. [47]
Deguo et al. [48] Hock et al. [49]
Ros et al.[50] Beheshti et al. [51]
Santos et al. [52]
Dixit et al. [53]

Data plane N/A N/A

al. [40] highlight that fault management in SDN cannot
be left to be fully implemented in the control plane, and
instead delegates these tasks to the OpenFlow switches.
They advocate that some control functions, such as con-
nectivity monitoring, can be placed in the data plane.
Consequently, diversity can be attained if different re-
silience mechanisms are implemented in these switches.

3.2. Dependability

Even if a system fails, it can be considered de-
pendable if failures occur with an expected probability.
Thus, dependability quantifies the reliance that can be
placed on the service delivered by a system. In this
sense, dependability encompasses concepts involving
reliability and maintainability. It is also sometimes re-
lated to safety, availability and integrity1. Table 2 cate-
gorizes the major research efforts related to dependabil-
ity in SDN. These are discussed in the following. Note
that the research papers discussed in this section are all
related to the control plane.

Reliability: Deguo et al. [48] state that the data
plane cannot detect failures in the control plane and
the number of control messages lost when a failure oc-
curs can compromise the forwarding behavior of the
network. A solution broadly accepted to deal with this
challenge is to delegate some network control logic to
the forwarding devices, such as rule cloning and mul-
tipath support [54]. A single point of failure is an-
other reason that contributes to the decentralization of
the control plane [52, 53].

Ros et al. [50] investigate the controller placement
problem with respect to network reliability. The authors
propose a metric called k-terminal-reliability, which is
the probability of having at least one operational path
in the network. The authors can optimize the solution

1Safety and maintainability are rather general properties and to
the best of our knowledge, there are no research efforts in SDN solely
concentrated on these fields. Integrity is related to security and will
be discussed in the next section.

for reliability by formulating the controller placement
problem as a graph optimization problem, and inserting
the k-terminal-reliability as a restriction when searching
for the optimal solution.

The reliability of the data plane can be related to
switches and link state. Metrics such as communica-
tion delay, throughput and latency are frequently used
as indicators of reliability, as these represent expected
values that can or cannot be satisfied at any time.

Availability: this is the probability of a system to
be in a correct state in a given instant. New metrics
that are related to this issue are not currently the focus
intense study, however the controller placement prob-
lem is a research question that is related to availability.
This problem investigates (i) how many controllers are
needed to control a given network and (ii) what is the
best place to position the controller regarding metrics
of availability [47]. The most commonly used metrics
measure the average-case latency, worst-case latency
and the maximization of number of nodes with latency
bound. Hock et al. [49] propose more elaborate metrics,
using latency during controller failures, load imbalance
and inter-controller latency. Beheshti et al. [51] pro-
pose metrics such as the number of protected switches
(switches that can use backup links for the control traf-
fic) and the number of unprotected switches.

3.3. Security

Historically the deployment of complex security
functions (e.g., intrusion detection systems and fire-
walls) has required the installation of dedicated security
appliances. For some organizations the costs and man-
agement issues related to these deployments can be pro-
hibitive. Additionally, in traditional networks the lack
of a centralized control of these security functions can
further complicate their deployment [61]. In contrast,
SDN enables the implementation of applications that
have the ability to support similar security functions in
a much more flexible manner, and it offers a suitable
place for the implementation of more accurate, reliable
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Table 3: SDN research efforts on Security
SDN Planes Confidentiality Availability Integrity Nonrepudiality
Application plane N/A Chen et al. [55] N/A N/A

Wang et al. [56]
Seeber et al. [57]
Tasch et al. [58]

Control plane Benton et al. [59] Li et al. [60] Zaalouk et al. [61] Nayak et al. [62]
Schehlmann et al. [63] Zaalouk et al. [61] Schehlmann et al. [63]
Kreutz et al. [64] Schehlmann et al. [63] Ye et al. [65]
Porras et al. [66] Mazieres et al. [67] Collings et al. [68]
Anwer et al. [69] Chen et al. [55] Hu et al. [70]
Fayazbakhsh et al. [71] Wang et al. [56] Xing et al. [72]
Naous et al. [73] Seeber et al. [57] Kampanakis et al. [74]
Silva et al. [75] Jafarian et al. [76]
Ballard et al. [77] Smeliansky et al. [78]
Schlesinger et al. [79] Abaid et al. [80]

Benton et al. [59]
Shin et al. [81]
Kumar et al. [82]
Li et al. [83]
Qazi et al. [84]
Son et al. [85]

Data plane Kreutz et al. [64] Chen et al. [55] Hu et al. [70] N/A
Shin et al. [81] Wang et al. [56] Xing et al. [72]
Naous et al. [73] Seeber et al. [57] Smeliansky et al. [78]
Qazi et al. [84]

and efficient security solutions. Table 3 presents the ma-
jor research efforts addressing security in SDN. In the
following we discuss these in detail.

Availability: Schehlmann et al. [63] state that the
availability of the network controller can compromise
the correct operation of network functions. To address
the availability aspects of the network controller with re-
spect to security, Li et al. [60] propose a novel SDN ar-
chitecture based on BFT (Byzantine Fault Tolerant) [67]
mechanisms to withstand malicious attacks on the con-
trol plane. The authors state that a distributed control
plane can assist in protecting the network mainly be-
cause a single point of attack is avoided. Also, the au-
thors highlight that the additional protection strategies,
such as the use of BFT, can ensure the correct operation
of critical network functions (e.g., flow tables updates).

With a distributed control plane, it is natural to con-
sider the distributed placement of security applications.
However, this can increase the communication delay in
security traversal routing, i.e., the traversal of a given
flow through secure devices to enforce security inspec-
tion. Chen et al. [55] address the security traversal prob-
lem with shortest path solutions, including the ability to

dynamically select the optimal security traversal path.
Cloud environments, for example, can benefit from so-
lutions of this type, since security issues related to com-
munication is critical [57, 56].

It is possible that not only the network controller but
also the network applications will be target of attacks.
In line with this, the availability of security applica-
tions is addressed by Tasch et al. [58]. The authors
state that even consolidated applications such as RESO-
NANCE [62] can have security problems, such as iden-
tity spoofing and repudiation when TLS is not available
to protect the control communication.

Integrity: several works suggest that firewalls are
more concerned with (the integrity aspects of) secu-
rity. Despite all functions that these systems can per-
form, their main goal is to maintain the integrity of the
communication link and network devices, i.e., protect
the network from illegitimate attempts to gain access to
its services [68]. Firewalls are an example of network
application that can be fully assisted by SDN because:
(i) the need of additional middleboxes to enforce poli-
cies in the network is reduced because this functionality
can be placed in the SDN control plane; (ii) the con-
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trol plane has a comprehensive view of the network;
and (iii) the management of heterogeneous devices is
abstracted by the control plane. Also, Qazi et al. [84]
present a policy security monitoring layer for efficient
middlebox-specific traffic steering. Another work that
goes in this direction is proposed by Son et al. [85].

Resolution of firewall policy violations and conflicts
are addressed by Hu et al. [70]. The authors propose the
FlowGuard framework to monitor and check network
flows in order to detect firewall policy changes when
the network state is updated. However, they identified
the following challenges with respect to the implemen-
tation of firewalls in SDN: (i) as the network state is dy-
namically changed, new configurations are frequent and
simple packet-in monitoring will not be effective for de-
tecting flow policy violations; (ii) the set-field actions
of the OpenFlow protocol enable the dynamic change
of packet headers, creating an opportunity for malicious
users to attack the network; (iii) as OpenFlow enables
the use of wildcards to match only partial header fields
of packets in these security policies, the elimination of a
flow policy can affect benign traffic; (iv) the data plane
is unable to monitor flow status, depending heavily on
the control plane, thus it is challenging to perform state-
ful packet inspection.

Intrusion Detection Systems, such as Snort2, have
been used to protect the integrity of the network in
traditional environments. SnortFlow [72] is an exten-
sion to Snort with SDN capabilities that enables the de-
tection of intrusions and malicious activities in cloud
environments. Detection mechanisms are traditionally
based on Machine Learning [86], Signatures [87] and
Entropy [88]. Shin et al. [81] group several security
needs and deliver a complete framework for security
implementation, sharing and composition of detection
modules and mitigation in a SDN. This effort enables
the evaluation of optimal mechanisms to protect the net-
work, being able to detect and manage malicious ac-
tivities. Another example of IDS with these respon-
sibilities is presented by Kumar et al. [82]. Solutions
based on packet classification using SDN are presented
by Smeliansky et al. [78] and the detection of malware
is discussed in the work of Abaid et al. [80]. Further, the
PROTOGENI framework is presented by Li et al. [83]
and serves as a tool for creating and evaluating different
types of network attacks.

However, other solutions to protect the network from
intrusions and malicious attacks are possible. Kam-
panakis et al. [74] advocate the use of moving target de-
fense (MTD) in order to protect network services when

2http://www.snort.org

malicious traffic try to compromise their integrity. The
authors conclude that SDN makes the implementation
of MTD techniques more practical, customizable and
easier to deploy. Jafarian et al. [76] present a study re-
lated to this problem and propose a technique named
random host mutation, i.e., the path between source and
target is randomized to avoid the effects of malicious
traffic.

Security threats can also compromise the integrity of
configuration messages sent by the control plane to the
data plane by modifying or introducing errors in their
content [65]. A simple solution for this challenge is
to use encryption protocols, such as TLS. Benton et
al. [59] state that the biggest concern related to secu-
rity in SDN is the protection of the communication be-
tween the control plane and the data plane. The authors
point out that the TLS protocol in the OpenFlow speci-
fication may sometimes be used incorrectly, because in
order to put TLS in practice, the network operator must
achieve security certificates for each of the devices in-
volved in the communication and manually configure
each of them. In contrast, to use plain text communica-
tion without any encryption, the network operator only
needs to configure the network controller address in the
data plane. Thus, the difficulty in deploying TLS can
discourage its use.

Confidentiality: related to the issues discussed
above, another challenge pointed out in the work of
Benton et al. [59], and uniquely related to SDN, is
called the listener mode. This existing functionality in
many switches allows the establishment of a data con-
nection in a pre-configured port without authentication.
Although it is used primarily for debugging reasons,
this connection can be used to modify rules in switches
and discover information about the network. If TLS
is not used correctly, an attacker can intercept packets
and perform network discovery based on communica-
tions observed between the control plane and the data
plane. Additionally, a switch can change rules with-
out notifying the control plane. Clearly, the issues re-
lated to TLS deployment represent a major challenge
to security in the SDN context. A possible solution to
such problems is the use of middleboxes to perform the
communication between the data plane and the con-
trol plane. Sherwood et al. [89] propose a virtualiza-
tion platform called FlowVisor that intermediates the
communication between the network controller and the
switches. Other examples of middleboxes used to en-
hance security are presented by Anwer et al. [69] and
Fayazbakhsh et al. [71]. In particular, Kreutz et al. [64]
present the vectors of the most common threats in SDN,
such as DDoS attacks, and comment on the TLS chal-
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lenges above.
Silva et al. [75] describe the use of an anti-

eavesdropping technique based on multipath routing for
SDN-based SCADA systems used in electrical smart
grids. Centered on the confidentiality of the OpenFlow
protocol, Kloti et al. [90] consider attacks that exploit
flow aggregation to discover information about the net-
work state and topology, which would not be visible
otherwise. The authors use two modeling techniques,
namely Microsoft’s STRIDE and attack trees, to iden-
tify and explore threats to SDNs. Schlesinger et al. [79]
analyze the problem of dividing the network in slices,
thereby allowing traffic isolation, which can guarantee
confidentiality in the communication.

Frequently, the mitigation mechanisms used should
install firewall rules in the data plane. Porras et al. [66]
propose a software extension to the NOX controller
called FortNOX, which is intended to avoid conflicting
rules to be installed in the data plane. FortNOX is also
used as a security policy management tool. Also in the
context of security policies, Naous et al. [73] propose
the protocol ident++ that allows the search for informa-
tion or rules placed on hosts. Ballard et al. [77] propose
the OPENSAFE and ALARMS languages to simplify
the specification of security policies using the Open-
Flow protocol. Jafarian et al. [76] present an elegant
solution for the mitigation of malicious activities and
protection of IP addresses against spoofing by enabling
the network to randomly modify the IP addresses used.

Nonrepudiality and AAA: very few works have ad-
dressed exclusively these aspects. Some firewalls deal
with these issues, but it is possible that SDN can ensure
these properties using TLS in its communication. Fur-
ther reading can be found in [91], which presents a sur-
vey discussing interesting aspects of security in SDN.

3.4. Performability
In recent years, the performability of the control

plane has been a main concern. Despite the benefits
of a centralized control logic in the SDN/OpenFlow ar-
chitecture, Curtis et al. [54] point out that the current
OpenFlow specification does not meet the demands of
high performance networks. This is mainly due to the
following reasons: (i) there is a high dependence on a
central logic and on the global view of the network; (ii)
it is possible that path latency can slow down the com-
munication between the control and data planes during
flow setup; and (iii) there is an excessive dependence on
the control plane, demanding considerable resources to
maintain this feature. To address these challenges, the
authors present DevoFlow, a modification of OpenFlow
that reduces the amount of communication between the

Table 4: SDN research efforts on Performability
SDN Planes QoS
Application plane Wei et al. [93]

Control plane Curtis et al. [54]
Veisllari et al. [46]
Egilmez et al. [94]
Akella et al. [95]
Huang et al. [96]
Xiong et al. [97]
Wang et al. [98]
Machado et al. [99]

Data plane Zhang et al. [92]
Egilmez et al. [94]
Wang et al. [98]
Machado et al. [99]

control and data planes, thereby reducing its overhead.
DevoFlow achieves this goal by handling flows in the
data plane. Additionally, Veisllari et al. [46] investigate
the performability of the control plane with respect to
scalability. Scalability is related to performance when
we consider metrics such as delay, latency and through-
put. The authors conclude that the current Internet flow
definitions have high requirements on the processing
rate of the SDN controller.

One of these requirements is the consistent popula-
tion of flow tables regarding performance in traffic man-
agement. Zhang et al. [92] address the problem of
redundant rules that can appear after successive inser-
tions of flow rules. The authors discuss a compression
method based on the combination of similar entries us-
ing techniques such as Huffman coding. Internet ap-
plications over the network have performance require-
ments with respect to the communication with the con-
trol plane. Efforts focusing on the performability of the
Northbound API are presented by Wei et al. [93], who
propose the use of caches to speed up the service of this
interface. Table 4 categorizes the major research efforts
related to performability in SDN, and next we discuss
these efforts with respect to QoS (Quality of Service).

QoS: Sonkoly et al. [100] state that SDN developed
slowly with respect to QoS support and that the current
result is “even worse” than expected. In part this oc-
curs due to several limitations of the devices present in
the data plane, which is the same reason that makes the
implementation of QoS difficult in traditional networks.
The current version of the OpenFlow protocol supports
only simple mechanisms to address QoS queues. Some
counters provided by the data plane, e.g., the number of
packets received or flow duration, can be used to pro-

10

103



vide QoS on existing packets in the network, but are
limited and inflexible. Additionally, the manipulation of
existing switch queues is difficult because there is a lack
of advanced interfaces to access their information. One
solution is to use protocols such as OF-config, which of-
fers a management interface with NETCONF features.

Egilmez et al. [94] propose an architecture for QoS
called OpenQoS, which is used for grouping data
streams and multimedia flows in sets of traffic classes
allowing differential treatment for each type of class.
Note that QoS-based approaches are inherently depen-
dent on the queue concept and prioritization, which can
be assisted by the programmability of the control plane.
Egilmez et al. [101] address QoS for video streaming
and deal with routing issues, such as packet loss. The
authors consider large networks controlled by clusters
of network controllers, and all the controllers decide
jointly the best policy to enforce QoS in the network.

Other examples of QoS support in SDN are:

• Cloud: Akella et al. [95] address the problem of
guaranteeing QoS requirements for cloud users,
such as low delay. The most used QoS solution
for multimedia applications is to differentiate the
way in which different types of packets are for-
warded. Also, the authors study bandwidth allo-
cation for QoS using queuing techniques. The per-
formance metrics used are response time and num-
ber of hops. Another effort towards QoS in clouds
is presented by Huang et al. [96], which provide
a theoretical and experimental analysis for end-to-
end QoS provisioning;

• Data Stores: Xiong et al. [97] advocate the use
of SDN to manage the performance of distributed
queries in data stores. The authors discuss how
to control the priority of network traffic or make
bandwidth reservations using queuing theory;

• Servers: Wang et al. [98] propose an autonomic
QoS management mechanism for SDN by ex-
tending the OpenFlow and OF-Config protocols.
The authors introduce a packet context-aware QoS
model (PCaQoS) to provide self-configuration;

• Policy Based Management: Machado et al. [99]
propose a policy refinement approach for QoS
management. The authors propose a method capa-
ble of identifying QoS requirements and use PBM
(Policy Based Management) mechanisms and nat-
ural language to translate these requirements into
primitive switch configurations.

3.5. Traffic Tolerance

Traffic tolerance enables the network to withstand un-
usual traffic profiles without compromising its expected
behavior [7]. This discipline deals with traffic related
questions, such as malicious attacks and legitimate traf-
fic management. In the following, the most important
studies in this topic are discussed. Table 5 summarizes
the work presented in this section.

3.5.1. Legitimate traffic
Although protocols such as SCTCP and MP-TCP del-

egate traffic resilience to the network core, it is a some-
what limited approach because global network protec-
tion is difficult to achieve due to the lack of flexibility
of traditional architectures. An alternative is to trans-
fer this responsibility to the edge of the network, i.e.,
to improve routing algorithms in order to make traffic
management more resilient. Despite this seems more
appealing and flexible, even a simple change to routing
paths can lead to inappropriate solutions with respect to
network performance and communication delay. Tra-
ditional, non-SDN network architectures do not offer
support for advanced routing solutions, however, within
an SDN architecture, software abstractions can be cre-
ated to improve legitimate traffic resilience and complex
routing schemes can be easily deployed.

A broad discussion on routing in SDN can be seen
in the work of Rothenberg et al. [102]. According to
the authors, the OpenFlow protocol represents a real op-
portunity for the deployment and evaluation of routing
strategies. Typically, these solutions are implemented
in the control plane, i.e., the SDN controller is extended
to deal with problems such as link failure, communi-
cation delay and load distribution. Agarwal et al. [5]
deal with traffic engineering issues, but in the context
of delay and packet losses. The work supports adaptive
routing based on performance metrics, such as delay.
The authors rely on the global network view to create
a graph that represents all links available. After this, a
mathematical formulation of the routing problem con-
sidering these metrics is produced, and a Fully Polyno-
mial Time Approximation Scheme (FPTAS) is used to
find the best solution for the problem. One advantage of
this work is that it does not require protocol changes and
can be used in scenarios where SDN is not completely
deployed. Akyildiz et al. [105] deal with similar traf-
fic issues. In general, the programmability offered by
SDN encourages the use of classical algorithms, such
as graph-based algorithms, to solve routing problems.

INFLEX is a framework that extends the network
controller to create multiple routing planes that can be
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Table 5: SDN research efforts on Traffic Tolerance
SDN Planes Legitimate Traffic DDoS Attacks
Application plane N/A N/A

Control plane Taveira et al. [9] Braga et al. [86]
Rothenberg et al. [102] Shin et al.[103]
Agarwal et al. [5] Michale et al. [104]
Akyildiz et al. [105] Giotis et al.[106]
Taveira et al. [9] Benton et al.[59]
Ramos et al. [107] Alcorn et al. [108]
Benson et al. [109] Belyaev et al. [110]
Raza et al. [111] Wang et al. [112]
Venmani et al. [113] Passito et al. [114]
Qazi et al.[84] Li et al. [115]
Shimim et al. [116] Shtern et al. [117]
Silva et al. [118]
Laga et al. [119]
Xiaogang et al. [120]
Rodrigues et al. [121]
Bennesby et al. [122]

Data plane Taveira et al. [9] Braga et al. [86]
Ramos et al. [107] Krishnan et al. [123]
Bensom et al. [109] Michale et al. [104]
Venmani et al. [113] Benton et al. [59]
Sgambelluri et al. [124]

switched when a challenge is observed, for example, a
link failure [9]. The core of the architecture lies on the
Differentiated Services (DS) field of the IP protocol to
create the notion of a routing plane for every packet in
the network. Every host sets the DS field properly to
guarantee that its packets will follow the same route.
Additionally, hosts can request a new plane when a fault
is observed (e.g., if no response is received after a few
seconds). Other authors, e.g., Ramos et al. [107], sim-
ilarly exploit the programmability of SDN to support
alternative communication paths.

Benson et al. [109] address new traffic engineering
strategies in data center networks to efficiently accom-
modate various types of traffic. Although the research
area of traffic engineering is not focused exclusively on
resilience, some of its concepts can be used to sup-
port resilience objectives, e.g., prioritization of traf-
fic profiles. In order to handle conflicting constraints,
such as conflicting QoS requirements, the MeasuRout-
ing framework presented by Raza et al. [111] can en-
force QoS using traffic monitors that guarantee the de-
mand of the network traffic.

With respect to link congestion, Venmani et al. [113]
use OpenFlow to provide improvements to flow routing
in backbone networks. These improvements include the

use of the network controller to generate high-level poli-
cies to notify link failures. In this case, the controller
can run a routine to recover the network back to its nor-
mal operation (e.g., calculation of new paths and link
failure detection). Sgambelluri et al. [124] remove this
responsibility from the network controller and pass it to
the data plane. The idea is to install backup rules with
low priority, thus in case an error occurs the data plane
itself can change the path used for communication. In
scenarios where the network controller is usually over-
loaded, such solutions serve as an efficient alternative
to avoid communication latency. To enforce capabili-
ties related to policy management in the performance
context, Qazi et al.[84] propose the use of middleboxes
orchestrated by SIMPLE, a policy enforcement layer
in the control plane. Additionally, the specification
of packet-forwarding policies can be assisted by high-
level languages, such as those proposed by Voellmy et
al. [125] and Foster et al. [126].

Given that one of the main benefits of SDN is to al-
low flexibility in routing, several solutions for routing
challenges have been investigated. Shimim et al. [116]
and Silva et al. [118] deal primarily with multicast rout-
ing. They suggest the use of applications on the control
plane to orchestrate flow behavior in order to provide
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multicast routing. Video routing is addressed by Laga
et al. [119] and issues related to MPLS are discussed in
the work of Xiaogang et al. [120]. Rodrigues et al. [121]
discuss the optimization of network utilization across
layers using bandwidth virtualization. The authors show
that inefficiencies exist in links of data center WANs, but
SDN can assist in addressing these restrictions. Ben-
nesby et al. [122] address the problem of inter-domain
routing with SDN support. The authors present perfor-
mance and scalability results to demonstrate that SDN
can help to mitigate the limitations of rigid BGP deploy-
ments, such as the difficulty in supporting architectural
innovation. Additionally, an overview of transport net-
works in the context of SDN is provided by Alvizu et
al. [127].

3.5.2. DDoS Attacks
According to Mehdi et al. [87], the deployment of

an anomaly detection system in the traditional network
core is difficult mainly due to the low detection rate
that these systems can provide with limited network in-
formation. In SDN, however, the control plane has a
comprehensive view of the network, which facilitates
the implementation of detection mechanisms. Mehdi et
al. [87] presents an overview of attack detection pos-
sibilities using SDN. The authors discuss four well-
known algorithms: TRW-CB, MaxEnt, RateLimit and
NETAD. Their study suggests that SDN is a platform
suitable for the mitigation of DDoS attacks, mainly be-
cause of the use of standard protocols, services and in-
terfaces, thus facilitating the deployment of new solu-
tions.

Several strategies can be used to detect and mitigate
DDoS attacks. Belyaev et al. [110] state that existing
solutions to mitigate DDoS attacks can be classified as
active (e.g., based on the use of machine learning for
detection) or survival (e.g., trying to tolerate a DDoS
attack). The latter is concerned with solutions based
on load balancing. As pure load balancing is not ef-
fective during a DDoS attack, an iterative splitting of
traffic paths where the network is overloaded may be
necessary. This can increase the chances of tolerating a
DDoS attack. For example, Wang et al. [112] present
a mechanism to protect the control path against DDoS
attacks by scaling the control channel capacity. This al-
lows the network to handle a large number of flows, and
makes the control plane more resilient.

Braga et al. [86] investigate the mitigation of DDoS
attacks using Self-Organizing-Maps (SOM), a machine
learning algorithm already used in traditional networks
but with limited effects due to the restrictions of that
architecture. Frequently, well-known solutions for tra-

ditional networks are implemented in the SDN context,
as in the work of Ramadas et al. [157]. Further, Shin et
al. [103] propose the insertion of triggers to control and
change flow dynamics in the data plane. This can be
used to expose the malicious flows for the detection and
mitigation of DDoS attacks. For example, Krishnan et
al. [123] present several detection methods and discuss
which methods can be implemented in the data plane.
Michale et al. [104] propose packet classification based
on techniques such as prefix match and flow caches, to
avoid the repeated classification of flows. Alcorn et
al. [108] present a framework to model and simulate
DoS and DDoS attacks in SDN/OpenFlow networks.

More recently, the use of information theory for
packet classification has been investigated by Giotis et
al. [106], who use entropy analysis for monitoring de-
viations in network behavior. Additionally, man-in-the-
middle attacks are discussed by Benton et al. [59], who
indicate that the adoption of TLS as a secure commu-
nication channel can present vulnerabilities. Passito et
al. [114] present a solution that allows SDN domains
to cooperate in the mitigation of DDoS attacks. Li et
al. [115] use traffic engineering techniques to reduce
the impact of a DDoS attack, and Shtern et al. [117]
address the mitigation of Low and Slow Distributed De-
nial of Service (LSDDoS), a variant of traditional DDoS
that can compromise network applications by simulat-
ing their behavior.

3.6. Disruption Tolerance
The distributed nature of network devices contributes

to the unpredictability of delay in their communication.
In addition, natural disasters, e.g., hurricanes and earth-
quakes, often compromise links, preventing communi-
cation in the affected region and causing communication
delays in other parts. Power outages and intermittent
connection can also leave part of the network without
operation. Issues related to these challenges, summa-
rized in Table 6, comprise the disruption tolerance dis-
cipline. These are discussed in the following.

Connectivity: a threat constantly faced by networks
is the disruption of the connectivity between its com-
ponents. Link disruptions due to natural disasters or
human interaction require the rapid establishment of al-
ternative routes to restore in part the services affected.
These new routes can generate bottlenecks in network
devices that face an excessive demand for data process-
ing. This might result in the delivery of degraded ser-
vices to network users. Menth et al. [158] deal with link
disruption issues and rerouting of packets in traditional
networks, and illustrate how critical these questions are
to the resilience of networks in general.
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Table 6: SDN research efforts on Disruption Tolerance
SDN Planes Connectivity Mobility Delay Energy
Application plane N/A Pupatwibul et al. [128] N/A N/A

Namal et al. [129]
Yuhong et al. [130]
SchulzZander et al. [131]

Control plane Yeganeh et al. [132] Pupatwibul et al. [128] Yeganeh et al. [132] Heller et al. [133]
Heller et al. [47] Sabbagh et al. [134] Heller et al. [47] Wang et al. [135]
Zhang et al. [92] Namal et al. [129] Hock et al. [49] Pfeiffenberger et al. [136]
Beheshti et al. [51] Sahri et al. [137] Phemius et al. [138]
Hock et al. [49] Zhipu et al. [139] Cai et al. [140]
Nguyen et al. [141] Guolin et al. [142] Rotsos et al. [143]
Stephens et al. [144] Jeon et al. [145] Mahmoodi et al. [146]
Borokhovich et al. [147] Yuhong et al. [130]

Shengli et al. [148]
Ding et al. [149]
SchulzZander et al. [131]
Lara et al. [150]
Jagadeesan et al. [151]
Sperotto et al. [152]
Giust et al. [153]
Kyoungjae et al. [154]
Hyunsik et al. [155]

Data plane N/A Guolin et al. [142] N/A Heller et al. [133]
Shengli et al. [148]
Lara et al. [150]
SeongMun et al. [156]

Despite the fact that SDN is appropriate for innova-
tion of the network control tasks, the problems faced by
traditional IP networks persist even when we consider
the full potential of this new approach [132]. A cen-
tralized control plane with an overview of the network
topology has instigated studies that focus on new solu-
tions for legacy problems in distributed systems, such
as link failure. However, as in SDN the responsibility
for defining the communication paths between network
components lies with the network controller, a new cat-
egory of problems arises that are related to the availabil-
ity of this component.

The controller is responsible for defining how packets
will be forwarded at the data plane. Thus, the protec-
tion of the controller is the first critical point to address.
Heller et al. [47] and Zhang et al. [92] deal with the
controller placement problem. Their objective is to en-
sure there is connectivity between the controller and the
switches. Beheshti et al. [51] also tackle this problem,
but additionally deal with traffic control issues, such as
link disruption and component failure. Hock et al. [49]
present a framework with the same objectives, but also

considering metrics such as latency, component failures
and load balancing. Their major conclusion is the im-
possibility of finding an optimal solution to place the
controller that satisfies various different criteria, e.g.,
latency and backup communication. Note that this re-
silience discipline is strongly related to dependability.

Several studies focused on links and routing protec-
tion are available. Nguyen et al. [141] define algorithms
for finding alternative paths if a link disruption occurs in
the network; Stephens et al. [144] present an architec-
ture called Plinko, which is provably resilient to t link
failures when the size of flow tables in the data plane
is sufficiently large to accommodate backup flow rules;
Borokhovich et al. [147] use graph theory to model the
network as a graph and run algorithms such as Depth-
first search (DFS) and Breadth-first search (BFS) to an-
alyze the routing problem and ensure connectivity when
a failure occurs.

Delay: communication delays can occur due to the
rupture of intermediate links and, to ensure connectivity,
alternative communication paths can be used. Link de-
lays resulting from congestion due to the intensive use
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of network resources may be difficult to conceal [159].
When the problem is less severe, routing algorithms
may solve part of the problem, as shown by Heller
et al. [47] and Hock et al. [49]. These efforts inves-
tigate the influence that the position of the controller
has on the communication latency between controller
and switch. Phemius et al. [138] point out that switch
buffers in the data plane play an important role in the
overall performance of the network.

Another possible solution is to exploit parallelism to
avoid network delay, as proposed by Cai et al. [140].
Their system implements a middlebox that handles re-
quests to the controller in parallel and uses alternative
paths to communicate. The same principle can be used
in the OFLOPS platform [143], which offers support for
the rapid development and test of network components.
Further, in order to reduce the impact of communication
delay on the performance of the network, Mahmoodi et
al. [146] propose a modular redesign of the intermediate
links between the core and mobile networks to handle
increasing traffic volumes.

Mobility: in the context of wireless networks, mo-
bility is an important characteristic for the convenience
of users. Resilience strategies may use the concept of
mobility in the face of a challenge, e.g., a device may
need to temporarily migrate to another region until nor-
mal service is re-established. Challenges related to user
mobility are summarized in the work of Pupatwibul et
al. [128], where the authors recognize that OpenFlow is
a suitable technology for dealing with mobility issues.
Sabbagh et al. [134] propose a solution based on re-
programming OpenFlow switches to solve the problem
of relocation rules in order to maintain communication
when the user moves from one point to another in net-
work.

Namal et al. [129] present an architecture called
OpenFlow Host Identity Protocol (OFHIP), which pro-
vides a mechanism for switches to change their IP ad-
dresses due to malicious attacks. Further, Sahri et
al. [137] study failures of network components mov-
ing in the communication path. Despite the fact that
these solutions are not exclusively focused on mobility,
they use related concepts to mitigate failures. A few
works address mobility in different contexts. Guolin et
al. [142] define an architecture for heterogeneous radio
access networks and deal with aspects of mobility, e.g.,
QoS. Other examples are the works of Jeon et al. [145],
Yuhong et al. [130], Shengli et al. [148] and Ding et
al. [149], which advocate that SDN can be used for mo-
bility. SchulzZander et al. [131] discuss the feasibil-
ity of Wi-Fi deployments in the SDN context. Lara et
al. [150] propose MobileFirst, a clean-slate monitoring

architecture that addresses concepts such as communi-
cation delay using routing based on VLAN tags. Fur-
ther information about wireless and SDN can be found
in the work of Jagadeesan et al. [151] and SeongMun et
al. [156].

SDN offers an opportunity to facilitate the treatment
of challenges in mobile networks, such as mobility man-
agement. Traditional solutions present limitations re-
lated to, for example, routing and continuity of active
sessions. The use of decentralized device anchors repre-
sents an alternative to address these limitations. Further,
the use of DMM (Distributed Mobility Management) in
SDN has been advocated by Sperotto et al. [152] and in
IETF proposals [153, 154, 155]. SDN can assist in mit-
igating these issues as it provides a flexible architecture
for the deployment of network protocols and applica-
tions.

Energy: computer networks often demand scalable
and massive services, which can give rise to challenges
related to energy. Current data centers consume a large
amount of energy and according to [133], energy is-
sues in data centers are an important research topic.
Briefly, the authors use techniques to dynamically adapt
the power consumption in a data center network. One
trend observed with respect to energy in the SDN con-
text is that few studies are focused purely on energy is-
sues. Some references are related to dependability when
equipment failure is related to lack of power. These
works were discussed in previous sections, since they
are covered by other resilience disciplines.

Another study addressing energy aspects is presented
by Wang et al. [135], which optimizes energy consump-
tion by using different routing algorithms. The knowl-
edge about the amount of energy spent by each device in
the network to enforce QoS can also be used for energy
saving purposes. Also, Pfeiffenberger et al. [136] advo-
cate that SDN can be used to improve the management
of energy aspects in communication networks.

The most studied topics about energy include opti-
mization of energy consumption in the network and net-
work resilience when power outages occur. The con-
sequence of challenges associated with energy issues
is link disruption. Thus, although energy issues are
relevant in other disciplines discussed in this survey,
these aspects are mostly related to ensuring connectivity
among devices and disruption tolerance [7].

4. SDN Resilience: Solutions and Challenges

The number of papers and research efforts that ad-
dress different aspects of resilience in SDN is rapidly
growing. This section discusses specific challenges and
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Figure 3: Summary of resilience disciplines, major challenges and areas of interest, and concrete techniques

some of the major issues current research addresses.
This is done with a focus on the identified areas and re-
silience disciplines that were introduced earlier. Subse-
quently, we present a summary of open research issues
and areas that need further work.

4.1. Summary of challenges and current solutions

Figure 3 summarizes the set of identified problems
and challenges, according to the different areas and re-
silience disciplines. At the top of the diagram, the cir-
cles represent the six general resilience disciplines, and
at the level below the major challenges and prominent
research areas that are related to each resilience disci-
pline are depicted. Under each of the challenges, ex-
amples of the various techniques, approaches, and con-
crete instantiations indicate the specific research focus
related to the different challenges. They represent the
issues most commonly addressed within the discussed
literature.

The modular architecture of SDN enables more flex-
ible ways to manage traffic flows [10]. Consequently,
resilience solutions based on Routing Applications are
employed in several disciplines (e.g., they are being
used in the context of Performability, Traffic Tolerance
and Disruption Tolerance). For instance, backup paths
and multipath routing can be used to protect the commu-
nication network from link disruption and energy out-
ages [136]. Performability also relies on traffic engi-
neering techniques and load balancing to enforce QoS
requirements [96]. Further, Policy Based Management

can be used to add flexibility to these solutions [99].
Such schemes are usually implemented through exten-
sions of the control plane with applications that can
monitor and manage traffic via the OpenFlow protocol.
Software abstractions, such as topology graphs, can be
used to simplify the management of traffic flows and
routing [19], thus enabling the use of shortest paths and
minimum spanning trees to find optimal solutions for
traffic routing.

In the context of Infrastructure Planning the con-
troller placement problem plays an important role.
Since it shares similarity with the classic facility loca-
tion optimization problem [160], several proposed solu-
tions use a graph representations of the network topol-
ogy to determine the optimal placement of network
controllers [47, 49]. Also, solutions based on hard-
ware and software redundancy have been widely inves-
tigated [35]. This is due to the fact that SDN offers a
flexible architecture to manage redundant devices [30].
Further, schemes such as consensus algorithms to elect
a new replica in case of a failure help to maintain con-
sistency between components and their replicas [161].
In wireless networks, research indicates that SDN can
assist with the implementation of solutions to guarantee
connectivity between devices, e.g., through software ab-
stractions to change IP addresses of devices that migrate
and re-route flows to guarantee communication [76].

In the investigated papers Fault Management of-
ten exploits the programmability features offered by
the control plane, which enables the implementation
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Table 7: Key findings observed about the current research on resilience in SDN
Discipline Key aspects observed
Survivability (i) there are cost issues that prevent the deployment of fully fault tolerant systems; (ii) management requirements

of redundant devices can be high, for example, to maintain their consistency;

Dependability (i) controller placement is the most studied problem in this area; (ii) maintainability is an uncovered field that
can give rise to interesting research, for example, with the addition of a dedicated management plane to the SDN
architecture;

Security (i) several works focus on porting solutions used in traditional networks (e.g., firewalls, IDSes) to SDN. Their
main goal is to implement these techniques with more flexibility; (ii) mis-configurations and human-dependence
in the use of TLS between the controller and switches can compromise the integrity and confidentiality of the
communication;

Performability (i) although QoS support in SDN is far from optimal, several solutions are more flexible than existing ones in
traditional networks; (ii) the controller placement is an issue that can impact communication delay, latency and
throughput of the network;

Traffic Tolerance (i) this is the most developed resilience discipline because the SDN architecture has been traditionally concerned
with the innovation of routing protocols; (ii) well-known solutions to mitigate DDoS attacks can be successfully
implemented in SDN;

Disruption Tolerance (i) again, controller placement is critical for protecting the network from disruption; (ii) solutions related to
survivability are frequently used, such as path redundancy and link redundancy;

of network applications related to software debug-
ging [33]. Also, there are sophisticated monitoring ap-
plications capable of collecting information about topol-
ogy changes, device crashes and link disruptions. These
applications might also perform fault isolation, thereby
creating a reliable environment for fault detection and
mitigation. The use of group tables [162] in an Open-
Flow switch is an example of how SDN can simplify
capacity planning, by enabling the definition of backup
flow rules in the switch.

Resilience approaches that rely upon Network Mea-
surement are the most effective when they focus on
measuring latency, throughput and delay. These met-
rics can be used for assessing QoS and the degree of
dependability that the network can offer.

The work on Security Applications can be divided
into two broad sets: (i) security solutions built on top
of SDN and (ii) security of the SDN architecture itself.
Within the first group, there are several implementations
of firewalls and IDSes that can perform their functions
more flexibly and with lower management cost [70].
Within the second group, research is focused on mit-
igating intrusions in the control plane; vulnerabilities
in the TLS protocol; and protecting the control plane
against malicious attacks using network-wide policies
and moving target defense [74].

Finally, there is a large amount of work on Anomaly
Detection, which has a strong relationship with the
Security discipline, but also plays an important role
in the Traffic Tolerance discipline. Anomaly detec-
tion schemes specific to SDN rely on a global network
view to collect flow statistics and perform packet sam-

pling. Most of these solutions rely on machine learning,
information theory and digital signal processing tech-
niques [163].

Ultimately, the resilience challenges observed can be
divided into two classes. The first class refers to chal-
lenges related to the SDN architecture itself indepen-
dently of any given implementation (e.g., related to in-
frastructure planning and network measurement). For
example, the controller placement is a theoretical prob-
lem that is relevant regardless of the controller imple-
mentation. The second class subsumes resilience chal-
lenges that depend on specific SDN implementations
(e.g., routing and security applications). In this case,
the solutions in the literature are frequently based on
the OpenFlow specification or highly dependent on the
functionality provided by the controller implementa-
tion.

4.2. Open research questions and lessons learned

Several research questions related to resilience in
SDN remain open. For example, high hardware costs
related to fully fault tolerant systems can be partially
mitigated in this scenario through the use of virtualized
infrastructures. In this context, Network Functions Vir-
tualization (NFV) [164] in the application plane can as-
sist the development of new solutions in this area. There
is also no real resilience metrics related to software im-
plementations and their quality. Thus, Software Engi-
neering practices could be a source for such new met-
rics to ensure a methodology for software implemen-
tations. Additionally, emerging types of traffic profiles
suggest that applications related to traffic classification
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will be very useful for future SDN environments. This
should be an active area of research for the next years,
as well as the development of monitoring applications
that rely on the global network view supported by the
SDN architecture. Finally, the initial proposal of the
OpenFlow protocol supports limited QoS capabilities,
but the development of new protocols can create novel
ways to tag flows, enabling sophisticated applications
to enforce QoS in the network. Table 7 highlights these
points and summarizes the main lessons learned from
this study. Note that in addition to specific issues re-
lated to these individual disciplines, there is also the
need to address resilience challenges that span across
several disciplines. This might require the co-ordination
of resilience mechanisms that operate at different layers
and systems elements (i.e., multi-level resilience), cor-
relating data and also taking coordinated actions. Ulti-
mately, an overall resilience architecture would then be
able to discover network and systems anomalies more
quickly, and enforce countermeasures at the most ap-
propriate locations.

5. Concluding Remarks

Resilience in Software-Defined Networking (SDN) is
the subject of intense investigation by the academic and
industrial community in general. As SDN is a rela-
tively new concept, a wide range of solutions to clas-
sical network problems have been revisited using this
architecture, and many problems continue to be chal-
lenging. In this article, we have presented a comprehen-
sive survey on the support for resilience in the SDN ar-
chitecture, categorizing the existing research efforts on
resilience across the different SDN conceptual planes.
Furthermore, this survey has presented an overall view
of resilience research, describing the trends and key as-
pects observed, as well as the evolution of this area since
2008, when the widely-adopted OpenFlow protocol was
proposed.

The number of research projects that address re-
silience aspects in SDN has grown significantly. This
can be observed by the number of papers included in
our survey, and also by the number of research calls
issued in this topic recently. The main result of our
survey is a comprehensive view of the research space
in SDN resilience demonstrating that (i) the data plane
can be protected against link disruption, device failures
and malicious attacks using applications placed in the
control or application planes; (ii) the control plane has
resilience requirements related to the consistency be-
tween several network controller instances, the security
of these devices and general fault management over the

entire network. There are several ways to decide where
network controllers will be placed and this decision is
critical for network operation. Additional controllers
may be deployed according to security and survivability
requirements; (iii) the application plane can accommo-
date several types of network applications, thus promot-
ing research on more sophisticated resilience systems to
protect the network against a wide range of challenges.
High-level policy languages, such as Procera [125] and
Pyretic [126], and troubleshooting systems can also be
used to facilitate these tasks.

We emphasize that many of the resilience challenges
are due to limitations in the implementation of the com-
ponents used to realize the SDN paradigm. For exam-
ple, (i) the OpenFlow protocol can be unsafe if TLS is
not set up correctly; (ii) the Floodlight controller ex-
poses almost all of its functionality through a REST API
(possibly allowing illegitimate applications to gather
network data); and (iii) the listener mode functional-
ity (present in many OpenFlow switches) may allow
the establishment of connections in a pre-configured
port without authentication. Despite the efforts re-
ported in this survey, there are still a number of open
issues related to the resilience disciplines investigated,
such as the co-ordination of different types of resilience
schemes regarding performance and consistency. Con-
sequently, research that takes a more systematic view
of resilience systems is required (e.g., considering re-
silience aspects across different system layers). This
article assists in the identification of these aspects that
demand further research.
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Abstract—Anomaly traffic detection and classification mecha-
nisms need to be flexible and easy to manage in order to detect the
ever growing spectrum of anomalies. Detection and classification
are difficult tasks because of several reasons, including the need
to obtain an accurate and comprehensive view of the network,
the ability to detect the occurrence of new attack types, and
the need to deal with misclassification. In this paper, we argue
that Software-Defined Networking (SDN) form propitious envi-
ronments for the design and implementation of more robust and
extensible anomaly classification schemes. Different than other
approaches from the literature, which individually tackle either
anomaly detection or classification or mitigation, we present
a management framework to perform these tasks jointly. Our
proposed framework is called ATLANTIC and it combines the
use of information theory to calculate deviations in the entropy
of flow tables and a range of machine learning algorithms
to classify traffic flows. As a result, ATLANTIC is a flexible
framework capable of categorizing traffic anomalies and using
the information collected to handle each traffic profile in a specific
manner, e.g., blocking malicious flows.

Keywords—Software-Defined Networking, Network Manage-
ment, OpenFlow, Anomaly detection

I. INTRODUCTION

Computer networks must be resilient and properly deliver
the communication services expected by their users [1]. The
detection of an ever increasing number of anomalies in network
traffic is the key task to achieve resilience. Anomaly detection
in traditional computer networks is difficult to achieve because
the points of observation are spread along distributed forward-
ing devices. With the advent of Software-Defined Networking
(SDN) [2] [3], however, anomaly detection can be performed
at the logically centralized spot created by the SDN controller.
SDN in general and the OpenFlow protocol [4] in particu-
lar allow building more reliable, extensible, and manageable
networks where new network functions can be more easily
deployed. However, SDN-based networks are not free of
abnormal traffic that can affect the resilience of the network.
Still, SDN can facilitate the design of anomaly detection and
traffic classifications systems because of several reasons: (i)
SDN offers a more comprehensive view of the network, (ii)
SDN supports the easy collection of flow statistics, and (iii)
SDN includes a dedicated management plane to coordinate
dynamic reconfiguration actions.

To the best of our knowledge, there is no framework
capable of managing anomaly detection, classification and
mitigation in a coordinated manner in SDN environments.
We advocate that such a framework should perform these

tasks jointly, be fully extensible to accommodate different
types of anomalies, and rely on modular software abstractions.
To address these issues, in this paper, we introduce the AT-
LANTIC (Anomaly deTection and machine LeArNing Traffic
classifICation for software-defined networking) framework for
detection, classification, and mitigation of traffic anomalies
in SDN-based networks. Anomaly detection and classification
are performed in two complementary phases: (i) a lightweight
phase, in which low computation cost methods are executed
more frequently to quickly spot potentially malicious flows,
and (ii) a heavyweight phase, where such flows are analyzed
and classified according to their abnormal behavior. To in-
stantiate our framework, we employ an information theory
approach based on entropy analysis [5] in the lightweight
phase, whereas in the heavyweight phase a machine learning
algorithm based on Support Vector Machine (SVM) [6] is used
to leverage historical knowledge about past anomalies and to
classify the abnormal traffic.

Our main contributions are: (i) a strategy that obtains
global network information without additional costs to network
administrators, such as additional sensors; (ii) an architecture
to combine several types of anomaly detection, classifica-
tion, and mitigation techniques in a flexible manner, while
avoiding high resource utilization; (iii) a publicly available
application of how SDN can provide sophisticated software-
based management solutions (represented by the lightweight
and heavyweight phases) to tackle legacy network problems,
such as managing classification techniques. We have developed
a prototype system as a proof-of-concept. Our prototype has
been implemented in Python and is publicly available in
GitHub1. We evaluate the instantiation of our ATLANTIC
framework to manage an SDN-based environment consisting
of 11 switches organized according to the topology of the
Federal University of Rio Grande do Sul campus network.
In our experimental evaluation, we observed performance,
accuracy, and overhead of ATLANTIC, considering distributed
denial of service (DDoS) and port scanning attacks.

The remaining of this paper is organized as follows. In
Section II, we present background and review related work.
In Section III, we introduce ATLANTIC. In Section IV, we
present our evaluation and associated results, including a
performance analysis of the framework. In Section V, we
conclude this paper presenting final remarks and future work.

1https://github.com/AndersonSanSilva/ATLANTIC
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II. BACKGROUND AND RELATED WORK

Anomaly detection and traffic classification in traditional
networks are research areas that have been intensively investi-
gated for years [7] [8] [9]. In SDN-based networks, however,
the amount of work on this subject is still much less prominent.
SDN-based as well as traditional networks are susceptible to
abnormal traffic that can harm network operations and manage-
ment, e.g., Distributed Denial of Service (DDoS) attacks [10],
[11]. As such, abnormal traffic must be detected, classified,
and mitigated. Before introducing the ATLANTIC framework,
we first present in this section background information on the
key anomaly detection techniques and the related work.

Because of the emergence of new traffic behaviors, strate-
gies to detect and classify anomalous traffic are necessary so
to protect the network against malicious attacks. In traditional
networks, machine learning has been widely used for traffic
classification and anomaly detection [12]. These techniques
can be divided into two main classes: supervised learning and
unsupervised learning. Supervised learning techniques, such
as Naive Bayes [13] and Support Vector Machine (SVM)
[6], are suitable for classifying data samples into a range
of known attacks. However, supervised learning is unable to
handle new types of attacks. SVM typically achieves high
classification accuracy [12] and thus it is commonly chosen
to compose anomaly detection systems. On the other hand,
unsupervised learning techniques, such as K-means [8] and
Expectation Maximization [12], are suitable for detecting
new types of attacks. However, in general, they need human
input to determine the classes of the sampled data, which is
generally grouped by similarity. Despite the high accuracy
and performance obtained with some techniques, machine
learning algorithms tend to suffer from several limitations:
(i) the difficulty of determining the best set of discriminators
to classify flows [13]; (ii) the availability of labeled training
data for classification [8] [14]; (iii) the trade-offs between
different machine learning algorithms regarding accuracy and
performance [14]; (iv) the sheer amount of traffic data that
makes it difficult to handle and to promptly detect malicious
activities [15] [10]; (v) the availability of a high amount of
resources, such as management systems and middleboxes, to
collect traffic information [16]. Further discussion on machine
learning and its use for network traffic classification is pre-
sented by Nguyen and Armitage [12].

Further, techniques based on Information Theory have also
been used in traditional networks for anomaly traffic detection
[15] [17]. These techniques use probability and statistic theory
to model the entropy, i.e., the mean information present in
some set of traffic features, to detect when disturbances occur
in the network. In particular, entropy can be used to model
a high-level view of the flows observed in the network, and
enables the monitoring of distributions of flow features with
reduced computational cost. By analyzing the entropy informa-
tion within a time interval it is possible to detect deviations that
indicate an anomaly. Past research efforts indicate that entropy
is a suitable, low-cost, and accurate technique to monitor traffic
behavior changes [5]. Moreover, the combination of entropy
and machine learning can be used for traffic classification [18].

Recent research efforts have indicated that SDN is suitable
for the implementation of sophisticated software solutions
and that anomaly detection schemes can benefit from the

SDN architecture [11] [19] [20]. However, different than
these works, we propose a framework that jointly coordinates
anomaly detection, classification and mitigation tasks. SDN
can assist to overcome legacy challenges related to anomaly
detection, classification and mitigation because its software ab-
stractions enhance the network visibility and management [21].
More concretely, (i) the OpenFlow protocol can natively
collect primitive traffic statistics about traffic flows; and (ii)
the network controller can be aware of network topology,
traffic profiles, and forwarding behavior without relying on
middleboxes. Our work is encouraged by the lack of an
integrated framework that combines and manages a large set
of techniques related to detection, classification and mitigation
of network anomalies.

III. A FRAMEWORK FOR ANOMALY DETECTION,
CLASSIFICATION AND MITIGATION IN SDN

In this paper, we advocate that anomaly detection and
traffic classification can take advantage of SDN/OpenFlow
characteristics. To demonstrate this, we introduce ATLANTIC,
an anomaly detection, classification and mitigation framework
that allows an administrator to flexibly reconfigure the opera-
tion of its building-block components and algorithms. In this
section, we discuss the requirements of our framework and
explain the main principles behind it. In addition, we present
ATLANTIC in details and describe its main components. In
particular, we show an overview of our traffic classification
process and discuss our proposed architecture.

A. Framework Requirements

A framework for anomaly detection and traffic classifi-
cation should be capable of orchestrating several different
modules, such as those responsible for traffic monitoring,
classification, and mitigation. We argue that the required
functionality for such a framework should be placed in the
management plane of the SDN architecture, and take into
account the following aspects:

• Comprehensive view of the network - To perform
traffic monitoring and analysis, the framework must be
able to retrieve detailed and unrestricted information
about the network and traffic flows. As opposed to
applications sitting in the application plane of SDN
– which make use of the Northbound API to request
network resources to the controller – our framework
uses the Management Interface to gain access to
information about flows from all applications, and uses
this information to manage traffic anomalies.

• Human intervention - The network administrator
must be able to interact and monitor the operation of
the anomaly detection and traffic classification frame-
work, observing logs and reconfiguring its operation
whenever necessary. For example, an administrator
might update parameters or replace some component
functionality to increase performance or accuracy of
classification.

• Flexible network configuration - Several types of
configurations can assist the task of anomaly mitiga-
tion, such as the definition of proactive and reactive
path instantiation, deployment of specific or generic
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flow rules in flow tables, and management of flow
parameters such as timeout and data rate. Our frame-
work must be able to instruct the network controller to
change its behavior regarding certain events and flows
as they are deemed anomalous.

We anticipate that our management framework must be
modular and support customization, i.e., it should be possible
to update components with a more sophisticated algorithm or
strategy whenever needed. For example, a network driver (see
Section III-C) may need to be customized to collect informa-
tion from different types of individual network controllers or
from a large set of distributed controllers. Using the manage-
ment plane, these decisions can be taken by administrators to
achieve more appropriate configurations.

B. Lightweight and Heavyweight Processing

ATLANTIC comprises two operational phases: a
lightweight processing phase, responsible for traffic monitoring
and anomaly detection; and a more heavyweight processing
phase, consisting of anomaly classification and mitigation.
Next, we explain these phases in details and how they are
combined to support robust anomaly management. Figure 1
summarizes the interplay between the lightweight and
heavyweight processing phases.

Heavyweight Phase

Anomaly 
Detection

Traffic 
Snapshot

Is there an 
anomaly?

no

Lightweight Phase

yes

Anomaly 
Classification

Anomaly
Mitigation

(1) (2)

(3)

(4)

(5)

Snapshot
Subtraction

Malicious
Flows

Admin 
Interface

Unknown
Flows

(4)

Administrator

Fig. 1. Framework management process

1) Lightweight Processing Phase : Several techniques can
be used to extract network traffic profiles, for example, by
performing packet sampling using sFlow [17]. A limitation of
this approach is the high memory consumption to obtain fine-
grained traffic information and packet inspection. To rapidly
perform lightweight anomaly detection, our framework ben-
efits from the characteristics of SDN and uses the control
plane to obtain a snapshot of existing traffic flows, including
information about traffic counters and matched packet headers.
Based on the traffic snapshot collected (arrow 1 in Figure 1),
lightweight anomaly detection mechanisms are employed to
detect deviations from the “normal” traffic pattern.

We apply entropy analysis to detect variations in the
distribution of certain flow features observed along consec-
utive traffic snapshots. For example, consider two consecutive
snapshots t1 and t2. If the entropy of the flow features in t1
is approximately equal to the entropy of the same features
observed in t2, then it is safe to assume that no significant
traffic changes have occurred between the two consecutive

snapshots. However, if there is a large difference in the entropy
calculated for a given flow feature between two snapshots,
this might indicate an anomaly (arrow 2). If by subtracting
the flows in t2 from the flows in t1 we obtain a non-
empty result, this indicates which flows are responsible for
the entropy change. Flows that are responsible for the entropy
change in this stage can only be considered suspicious, and
are thus selected for further categorization using a proper
classification scheme (arrow 3). It is important to emphasize
that our framework is designed so that any snapshot-based
anomaly detection scheme can be employed. We chose to use
entropy analysis for the Lightweight Processing Phase because
it can be executed very often and permits fast detection of
disturbances in the network [17].

2) Heavyweight Processing Phase: Our framework com-
prises the occasional need to execute complementary heavy
processing classification mechanisms to categorize traffic
flows. In this paper, we consider traffic classification mech-
anisms based on machine learning, which indeed take a
considerable amount of resources to execute but can produce
very accurate results in terms of traffic classification [12]. Our
framework allows both supervised and unsupervised machine
learning mechanisms. With supervised mechanisms, a model
is generated to internally organize data obtained from previous
malicious activity to automatically categorize traffic flows as
either malicious or benign. Unsupervised mechanisms, on the
other hand, are interesting to be used to analyze and organize
information about traffic features, even if they cannot identify
whether there is a threat or not. As a result, the framework
allows flows to be categorized into either malicious, benign,
or unknown, according to their traffic profiles. Malicious flows
are sent for mitigation, whereas unknown flows need to be
manually analyzed by a human administrator (arrow 4).

For every flow that is signalized as malicious, an action
must be taken so to avoid network disruption or performance
degradation. For example, commands can be sent back to
the network control plane to instruct the devices closer to
the source of the malicious traffic to drop packets of flows
deemed malicious. After mitigation actions are performed, the
framework returns to its initial traffic monitoring and snapshot
collection step (arrow 5). For flows signalized as unknown, the
administrator can use the information obtained during classi-
fication, for example, to create new models for the supervised
mechanisms to identify the new traffic pattern in a future round
of anomaly detection. Note that this heavyweight phase is
expected to be executed less frequently than the lightweight
one. In addition, heavy classification mechanisms only need
to deal with a subset of the full traffic snapshot, because of
the subtraction performed in the lightweight phase. The more
the administrator interacts with the framework inserting new
information about traffic patterns to be automatically identified,
the more efficient the detection will be.

C. Anomaly Traffic Classification

The basic components of our anomaly traffic classification
framework are depicted in Figure 2. The Statistical Layer
is responsible for collecting traffic flow statistics and com-
prises the following components: Statistics Manager, Features
Selector, and Network Driver. The information generated by
the Statistical Layer is delivered to the Classification Layer,
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which comprises the following components: Anomaly Monitor,
Flow Classifier, and Flow Manager. Next, we describe these
components in details.
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Fig. 2. Overview of the anomaly classification framework

1) Network Driver: The Network Driver operates by send-
ing a request to the network controller every p seconds in
order to query the status of all flows in the data plane. The
parameter p can be adjusted accordingly, to avoid degrading
network performance. After receiving flow information from
the network controller, the Network Driver parses and orga-
nizes relevant data, such as the flow identifier, packet headers,
and flow counters. The result of one request produces a traffic
snapshot, i.e., a data structure summarizing all flows currently
existing in the network. Note that we construct a flow-id using
the following 5-tuple, which is also used as our flow definition:

〈srcip, dstip, srcport, dstport, protocol〉

2) Features Selector: After receiving the last saved traf-
fic snapshot produced by the Network Driver, the Features
Selector extracts basic flow features that describe the profile
of network flows. The basic set of features is defined by the
OpenFlow specification [4] and is represented by:

〈packet count, byte count, duration〉

This component initiates the selection of relevant features.
Frequently, the best choice for a flow profile model is a set
of features that can accurately be used to discriminate a flow
class with minimum computational cost. The issue of finding
the optimal set of features to describe a flow can be addressed
by manual inspection, or with the assistance of techniques
such as PCA (Principal Component Analysis) and genetic
algorithms [12]. This component can benefit from extensions
to the controller API, which may enable additional information
about flows to be exported.

3) Statistics Manager: The Statistics Manager summarizes
all data collected by the Network Driver and by the Features
Selector in order to derive statistical information that is used
by the classification algorithms. In general, raw features have

limited contribution to classification schemes without post-
processing and statistical interpretation. After the features
for one traffic snapshot are obtained, the Statistics Manager
calculates (i) mean, (ii) standard deviation, (iii) coefficient
of variance, and (iv) minimum and (v) maximum values as
statistical discriminators to describe the data collected for each
flow.

4) Anomaly Monitor: The main objective of this compo-
nent is to monitor traffic flows using their statistics and basic
flow features to detect potential anomalies. To exemplify how
this component can behave, we use entropy analysis to detect
changes in traffic features. In particular, this is calculated
according to Shannon’s entropy definition. Considering that
a traffic snapshot is an alphabet, then the mean information
H(X) for some subset of features can be calculated using the
available flows. We chose to calculate the entropy based on
IP address and transport port features because they have been
demonstrated to be accurate for the detection of DDoS attacks
and worm propagations [11]. Every time that a new entropy
E is calculated for a given snapshot, it can be classified as
anomalous in the following way: considering that M represents
the mean entropy observed in the network and S the standard
deviation associated, then E will be an anomalous entropy if
it is not within the interval [M − S,M + S].

5) Flow Classifier: Different algorithms can be used for
flows classification. When this component receives a set of
feature statistics, a range of classification schemes (e.g., ma-
chine learning algorithms) can run independently over the flow
features. Note that this component is responsible for defining
the class of each specific flow, by deciding which class is
the most frequent when considering all algorithm outputs.
Currently, we apply K-means [8] for clustering and Support
Vector Machine (SVM) [22] for classification. We consider
these algorithms suitable to initially exemplify our classifier
because one can complement the results offered by the other,
and the union of their outputs can be easily performed. Still,
the Flow Classifier is customizable and can be extended with
additional algorithms2.

6) Flow Manager: Events from the Anomaly Monitor and
Flow Classifier are sent to the Flow Manager to indicate if
an anomaly has been identified for a specific flow-id. Thus,
the Flow Manager is responsible for deciding the mitigation
actions to be taken when a malicious flow is identified. In this
paper, we consider that a ‘Malicious flow identifier’ message is
sent to the Network Driver, indicating that the flow identified as
malicious should be blocked. The Network Driver component
further uses the ‘Block action’ message to install firewall rules
in the data plane and then modify how this plane handles
the malicious flow. An example of action that could be taken
by the Network Driver, as an alternative to dropping packets
associated with malicious flows, is to forward such packets to
another component (e.g., a deep-packet inspector).

2In our implementation, the training phase for SVM is performed using
simulated attack traces (∼100 malicious flows) in order to provide a range of
samples to the classification schemes. Also, we use the R tool (https://www.r-
project.org) to provide a reliable implementation of such machine learning
algorithms.

123



IV. FRAMEWORK EVALUATION

In this section, we present an experimental evaluation of
ATLANTIC. The experiments were divided in two scenarios
featuring different attacks: a worm propagation and a large-
scale DDoS attack. We analyzed the amount of memory used
by ATLANTIC and the processing time needed to provide
anomaly detection, classification and mitigation. Our evalua-
tion includes the study of (i) the performance of the lightweight
phase; (ii) the performance of the heavyweight phase; and (iii)
the classification accuracy of the overall framework.

A. Testbed and Simulation Profile

ATLANTIC was implemented on top of the Floodlight
controller3. Floodlight provides a JSON-based REST API that
is suitable for implementing the communication between the
network controller and ATLANTIC. We run the experiments
using the Mininet emulator. We used a topology of a campus
network. It is a partially mesh topology consisting of 100 hosts
and 11 switches. We chose this scenario because of recent
malicious attempts to attack similar environments [23].

Table I describes the background traffic used in our ex-
periments. When the simulation is set up, two services are
configured: a video streaming server (following a lognormal
distribution) and a Web server (following an exponential distri-
bution) [24]. These services enable hosts to receive streaming
over HTTP or send requests for Web pages, thus generating
traffic related to file transfer. These traffic profiles have been
validated in [24]. We generate these traffic profiles using VLC4

for video streaming and SimpleHttpServer5 to emulate an
HTTP server.

TABLE I. BACKGROUND TRAFFIC PROFILE USED IN THE EXPERIMENTS

Parameter Value
Number of hosts 100
Number of switches 11
Number of servers 2 (HTTP and Streaming)
Number of attack flows 3500
Traffic profile Video: 75 %, Web: 25 %
Host behavior Exponential Distribution (λ = 0.033,mean = 30 s)

In order to simulate the user behavior, we set up a scenario
where users watch a video for a certain amount of time,
pause it, and then access a few Web pages. For each group
of 6 hosts requesting HTTP traffic, there is 1 host requesting
video streaming traffic. Network anomalies related to ma-
licious activities are generated with the scapy tool,6 which
enables the generation of realistic malicious attacks, such as
port scanning and DDoS. The importance of these attacks
has increased thanks to recent uses of DDoS to compromise
campus communications [23]. Next, we explain the behavior
of our simulated attacks.

• Port scanning - A malicious host can use port scan-
ning to discover a set of open ports in a remote host.
Open ports can be used to exploit vulnerabilities in a
target system or be used in worm propagations [25].
We simulate a malicious user that chooses a random

3http://www.projectfloodlight.org/
4http://www.videolan.org/vlc/
5https://docs.python.org/2/library/simplehttpserver.html
6http://www.secdev.org/projects/scapy/

host to start its attack to a server in the network.
The attack consists of sending several TCP connection
packets to ports ranging from 0 to 65536. When an
open port is found, a notification is generated and this
port can be used for worm propagations. Typically,
port scanning generates packets in the network with
a fixed IP address, but with varying transport protocol
port.

• DDoS attack - We also defined a DDoS attack [11]
scenario. A DDoS attack in SDN can be used to
overflow with a large amount of fake flows a specific
switch’s flow table or to overload the network con-
troller by producing several packet_in messages.
Frequently, these attacks result in a range of source
IP addresses accessing a single target IP. In this case-
study, we create a SYN flood attack, i.e., a malicious
machine chooses a server (HTTP or streaming) to send
multiple TCP SYN packets to service ports offered
by this machine (8080 for the VLC streaming and
8000 for the HTTP server). Given that there are
services running in those ports, the server will process
a request, allocate resources to handle it, and send
an ACK to the requesting machine. Afterwards, the
attacker uses source IP spoofing, i.e., it sends TCP
SYN packets with the source IP address of another
machine, thus causing the erroneous receipt of an
unsolicited ACK and leaving the server with an open
TCP connection.

B. Lightweight Anomaly Detection Evaluation

In this section we demonstrate the operation of the
lightweight phase when it is instantiated with an entropy-
based anomaly detection scheme to monitor the network in
the presence of malicious anomalies. Additionally, we analyze
the performance of this phase regarding memory usage and
processing time.

Initially, the Network Driver communicates with the con-
troller to request traffic information. There are two possible
bottlenecks in this approach: the traffic snapshot transmis-
sion time and the amount of memory needed to store this
information. To understand these issues, we monitored the
number of flows generated in the network while users were
accessing HTTP pages and video streaming during a few
minutes. Next, we started a DDoS attack and monitored the
amount of new traffic flows. The transmission time required to
export this information to our framework and the amount of
memory needed were observed. The polling interval was set
to 0.5s in order to obtain a fine-grained view of the network
traffic. According to Figure 3(a), the transmission time related
to traffic snapshot when an attack is not happening remains
under 1.07s. Around the 180th snapshot, the DDoS attack
starts and increases this transmission time to 1.28s in the
worst case. Furthermore, according to Figure 3(b), the size
of network snapshots increase from 32 to 600 kilobytes with
approximately 4,400 flows, including malicious and benign.

We argue that our simulations can realistically reflect the
size of a large-scale campus scenario. In particular, it has been
shown in [24] that campus scenarios comprise around 800
traffic flows in mean. We also analyzed individual flow rules
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in ATLANTIC and verified that a single flow rule uses around
136 bytes and takes less than 0.0008s to be transmitted. Thus,
in order to simulate the campus scenario presented in [24],
ATLANTIC would use 108,800 bytes (106.25 Kb) to store a
traffic snapshot and 0.64s to transmit this information.

Entropy mean values associated with traffic features7 can
be used to detect network anomalies. The performance of the
Flow Monitor itself is related to entropy calculation time,
which grows linearly accordingly to the number of flows in
a specific traffic snapshot. Figure 4 indicates that the entropy
calculation delay for 4,000 flows is 0.075s. We conclude that
this type of traffic monitoring is suitable for ATLANTIC
mainly because it is fast and accurate for detecting traffic de-
viations when we analyze, for example, the source IP entropy
of a traffic snapshot. Figure 5(a) illustrates the variation in
entropy of the destination port when a port scanning attack
occurs. Around the 180th snapshot, the average entropy that
was around 0.55 rises to almost 1, indicating an anomaly.
It is still possible to observe in Figure 5(b) the changes in
the entropy caused by the DDoS attack. Around the 280th

simulation snapshot, the DDoS attack stops, thus causing the
entropy to revert back to normal (between 0.8 and 0.9).

When changes in the entropy of a specific feature are
detected, the Flow Classifier component needs to determine
the nature of existing flows in the network. The performance

7We performed entropy analysis on all the features of a flow, but due to
space constraints we only show results for destination ports and destination
IP addresses in the first and second case-study, respectively.

of this component is discussed in the next sub-section.

C. Heavyweight Anomaly Classification Evaluation

Each time a traffic deviation is detected, a notification is
generated and the ATLANTIC framework enters into its heavy-
weight phase. The first action taken by the Flow Classifier is
the classification of all remaining flows after the subtraction
of the current traffic snapshot from the last one. Due to space
limitations, we only show the results for the DDoS scenario.

To classify flows into separate classes representing DDoS
and normal traffic, we instantiate the Flow Classifier with two
well-known algorithms: K-means and SVM. Using K-means,
similar flows are clustered together such that each cluster
represents a type of traffic profile observed in the network.
After this, the SVM algorithm can determine the classification
of flows in each cluster. Note that each traffic snapshot may
contain HTTP and streaming flows with different profiles, such
as short-lived HTTP flows and long term video streaming
flows. Figure 6(a) and Figure 6(b) summarize the amount of
active flows in the simulation, as well as the flows signalized
as malicious and subsequently blocked. Based on the joint
classification offered by K-means and SVM, it is possible
to calculate metrics such as precision (PPV) and accuracy
(ACC), which allow assessing the quality of the classification
achieved by these algorithms8. In particular, it is possible to
apply K-means using different values of k in order to find
the optimal configuration and, jointly with SVM, find which
combination achieves better classification metrics. Figure 7
illustrates our results. It can be observed that SVM presents
accuracy of 88.7% and precision of 82.3%. The simulations
were executed 35 times until the error rate was less than 0.01.
The results obtained are very similar to the values expected
from traditional networks, as presented in [26].

After obtaining the classification, the Flow Manager is
notified and then it is able to block malicious flows and
restore the entropy back to normal. To block these malicious
occurrences in the network, the Flow Manager can instruct

8We computed the standard metrics commonly used in the evaluation of
machine learning algorithms – TPR: sensitivity or true positive rate; SPC:
specificity or true negative rate; NPV: negative predictive value; FPR: false
positive rate; FDR: false discovery rate; F1: f1 score (harmonic mean of
precision and sensitivity)
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the Network Driver to use a firewall application or to use the
OpenFlow drop action installed on the data plane. This solution
can block external malicious attacks from other networks.

The heavyweight phase lasts around 3 seconds in our
simulations (Figure 8). When we compare this with the pro-
cessing time of the lightweight phase (which takes around 0.07
seconds), we can more clearly appreciate the benefits of using
more frequently the lightweight phase instead of always using
the heavyweight phase to classify every traffic snapshot.
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D. Discussion

We advocate that ATLANTIC meets the management
requirements listed in Section IV.A. The lightweight step
performs traffic monitoring using a global network view,
demonstrating that detailed traffic information can be easily
obtained. This contributes toward the comprehensive network
view requirement needed for accurate anomaly detection.

The design of ATLANTIC allows the network administra-
tor to monitor and modify the operation of its components.
This characteristic contributes to a more tailored anomaly
classification, which can rely on human intervention when the
automated components are not able to protect the network.
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Additionally, using the network controller, ATLANTIC can
orchestrate all flows in the network, sampling or eventually
blocking a particular flow whenever needed.

V. CONCLUSIONS AND FUTURE WORK

This paper proposed ATLANTIC, a framework for anomaly
detection, classification and mitigation in SDN-based net-
works. Our framework comprises a lightweight phase respon-
sible for monitoring traffic flows and a heavyweight phase
responsible for anomaly classification and mitigation. As a
result, traffic anomalies can be categorized and the information
collected can be used to handle each traffic profile in a specific
manner, such as blocking malicious flows.

In our experiments, the lightweight monitoring scheme
enabled ATLANTIC to detect malicious activities without
overloading the network, taking about 0.075s to collect and
analyze traffic information consisting of 4400 flows in a
topology with 100 switches. The heavyweight phase uses a
machine learning algorithm (i.e., SVM) which took less than
3s to classify traffic flows, demonstrating that ATLANTIC
performs well even in the presence of DDoS attacks. Moreover,
ATLANTIC executes the lightweight phase more frequently
than the heavyweight phase, thus minimizing the overhead of
the overall anomaly detection scheme. Most importantly, our
results show how a sophisticated anomaly detection framework
can be built over SDN.

As part of our future work, we aim to evaluate the use
of different algorithms for traffic classification and entropy
analysis to enforce network protection. We intend to investigate
new mitigation strategies, such as the use of rate limiters, and
new classification schemes, such as the combination of sev-
eral network classifiers using meta-learning techniques (e.g.,
stacking, and bayesian networks).
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