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RESUMO

O problema Dial-a-ride (DARP) é um problema de otimização combinatória NP-difícil

com aplicações práticas em transporte público orientado a usuário. O DARP é um prob-

lema de roteamento de veículos cujas instâncias consistem de um conjunto de veículos e

um conjunto de solicitações para o embarque e desembarque de passageiros. Seu objetivo

é atribuir as solicitações aos veículos e calcular as rotas de cada um destes, minimizando

os custos operacionais e garantindo que todas as restrições, tais como capacidade dos

veículos, janelas de tempo de partida e chegada, e tempo máximo de viagem do usuário,

sejam obedecidas. Esse trabalho apresenta uma formulação matemática do problema e

procura resolvê-lo através do Algoritmo Firefly (FA). O FA é uma nova meta-heurística

baseada na natureza e inspirada no comportamento de vaga-lumes, que aplica o conceito

de inteligência de enxame com o objetivo de otimizar funções matemáticas procurando

por soluções quase ótimas. Com o auxílio dessa técnica nós visamos modelar e implemen-

tar um solucionador para o DARP que explore o enorme espaço de busca combinatorial,

gerado pelas instâncias do problema, de uma maneira eficiente. Por fim, conduzimos uma

comparação de desempenho entre o método proposto e os algoritmos encontrados na lit-

eratura científica, o que mostrou que o primeiro atinge um coeficiente de otimalidade de,

em média, 90% para um conjunto de instâncias específico, e entrega, em alguns casos,

resultados mais rápidos que aqueles entregues por um dos algoritmos da literatura.

Palavras-chave: Problema Dial-a-ride. Algoritmo Firefly. Meta-heurística. Progra-

mação inteira. Roteamento de veículos.



RESUMO ESTENDIDO

Este é um resumo estendido em português para a Universidade Federal do Rio

Grande do Sul. O trabalho de conclusão original, em inglês, foi apresentado na Technis-

che Universität Berlin através do programa de dupla diplomação UNIBRAL II entre as

duas universidades.

1 Introdução

O problema Dial-a-Ride (DARP) é um problema de roteamento de veículos, onde,

dados uma frota e um conjunto de requisições para embarque e desembarque de pas-

sageiros, objetiva-se determinar as rotas desses veículos de maneira a atender todos os

pedidos de transporte, minimizando o tempo total de operação. Na versão do problema

tratada aqui, as instâncias informam a quantidade de veículos da frota, juntamente com

suas capacidades e com os tempos máximos de transporte de um passageiro e de execução

de rota por um veículo. Logo, admite-se que os veículos são homogêneos, ou seja, não

há distinção quanto às características destes. Além disso, é informado também o ponto

único de partida e chegada de todos os veículos, também chamado de terminal, e um con-

junto de pedidos de transporte de passageiros. Cada pedido é composto pelas localizações

de embarque e desembarque; quantidade de passageiros transportados; tempo necessário

para a realização do embarque ou desembarque; e janelas de tempo para ambos os pontos

de embarque e desembarque. Para efeito de simplificação, admite-se que é possível para

um veículo viajar de qualquer ponto de embarque ou desembarque para qualquer outro,

e que o tempo de tal viagem é dado pela distância Euclideana entre os dois pontos. Por

fim, dado uma designação dos pedidos de transporte para os veículos e a determinação

das suas rotas pode-se calcular o tempo total de operação somando os tempos totais da

rota de cada veículo. Assim, o objetivo de um solucionador para o DARP é encontrar tal

configuração de rotas, cujo tempo total de operação é o mínimo possível.

Neste trabalho, duas abordagens foram realizadas para resolver o problema, uma

exata e uma quase-ótima. Na primeira, o problema é modelado matematicamente como

um programa linear inteiro e resolvido por um solucionador genérico. Na segunda, um

programa que implementa a meta-heurística firefly é desenvolvido para resolver o prob-

lema eficientemente buscando soluções próximas de um ótimo. A avaliação da proposta

apresentada é feita de dois modos: (i) comparação das soluções do solucionador genérico



com aquelas da meta-heurística e (ii) comparação das soluções da meta-heurística com as

provenientes da literatura no tema.

2 Revisão da Literatura

Este trabalho se baseia principalmente na revisão literária de (CORDEAU; LA-

PORTE, 2007). Nessa, os autores apresentam três diferentes formulações matemáti-

cas do DARP, dentre as quais uma foi usada na modelagem exata para o solucionador

genérico. Algoritmos exatos têm sido propostos, exemplos são (CORDEAU, 2006),

(ROPKE; CORDEAU; LAPORTE, 2007), (PARRAGH, 2011) e (PARRAGH; SCHMID,

2013), sendo o último o estado-da-arte. Implementações de meta-heurísticas foram tam-

bém propostas, estas incluem algoritmos genéticos por (JORGENSEN; LARSEN; BERG-

VINSDOTTIR, 2007), arrefecimento simulado por (ZIDI et al., 2012) e busca tabu gran-

ular por (KIRCHLER; CALVO, 2013). Adicionalmente, o problema foi demonstrado ser

NP-difícil por (BAUGH JR.; KAKIVAYA; STONE, 1998). As instâncias utilizadas para

benchmark foram criadas por (CORDEAU, 2006).

O Firefly Algotihm (FA), em português algoritmo vaga-lume, foi proposto por

(YANG, 2009) e é uma meta-heurística inspirada na natureza semelhante à particle swarm

optimization. A meta-heurística se baseia na atração sexual desses insetos, a qual ocorre

conforme a intensidade da luz emitida por eles. Nessa técnica, modela-se a posição de

um vaga-lume no espaço como um vetor matemático, que por sua vez corresponde a

uma representação única de uma solução do problema de otimização. A intensidade da

luz emitida por um vaga-lume é diretamente proporcional à qualidade da solução repre-

sentada por ele, ou seja, assumindo um problema de maximização, ao valor da função

objetivo a ser otimizada. Há também uma atração entre qualquer par de insetos, indepen-

dentemente de seus sexos, sendo que um vaga-lume V atrai com maior intensidade outro

vaga-lume quanto maior for a intensidade da luz emitida por V e quanto menor for a dis-

tância entre os dois. Dado tal sistema, é possível simular os movimentos de um conjunto

de vaga-lumes no espaço, de forma que a distância do deslocamento de um inseto Vi em

direção a um outro Vj seja maior quanto maior for a atração de Vj sobre Vi. Idealmente,

há ao fim de diversas iterações uma convergência dos insetos a um conjunto de pontos

ótimos no espaço de busca.



3 Desenvolvimento

Esta seção apresenta as duas abordagens tomadas para a solução do problema:

primeiramente a exata, com a técnica de programação linear inteira, e posteriormente a

meta-heurística, por meio da implementação do algoritmo firefly.

Para a formulação matemática, necessária para a aplicação do método de progra-

mação inteira, foi utilizada a proposta de (CORDEAU, 2006), a assim chamada three-

index formulation. A formulação completa se encontra no anexo deste resumo. O solu-

cionador genérico usado foi o GLPK1, que toma como entrada um modelo do programa

linear inteiro e os valores dos parâmetros da instância a ser resolvida, e entrega a atribuição

ótima das variáveis de decisão junto com o valor da função objetivo a ser otimizada. Por-

tanto, transcreveu-se o modelo matemático para a linguagem AMPL2 e solucionou-se o

problema para um conjunto de instâncias pré-definidas na literatura.

Com respeito à meta-heurística, é de grande importância a representação de uma

solução do DARP. A proposta aqui exposta é representar uma solução como um vetor

n-dimensional v em um espaço discreto, mais especificamente de modo que v ∈ Nn. Há,

portanto, um processo de transformação − descrito por uma função − da representação

vetorial para uma representação expandida e mais intuitiva, onde as rotas são represen-

tadas pelas listas de localizações por onde o respectivo veículo deve viajar.

Representação da solução. Seja k o número de veículos da instância do problema

a resolver, o vetor da representação da solução− ou seja, o vetor de posição do vaga-lume

no espaço de busca− terá k+1 dimensões, onde o primeiro componente do vetor codifica

a atribuição de requisições de transporte para veículos, e os k componentes seguintes

codificam as rotas dos respectivos veículos.

Movimento. No que concerne à descrição do movimento de um vaga-lume, há

três conceitos importantes a serem definidos: (i) a distância entre dois insetos quaisquer

é definida neste modelo como a distância de Manhattan; (ii) a atratividade que um vaga-

lume exerce sobre outro é definida por uma função β(r) = 1
1+γr

, onde r é a distância entre

eles, e γ é um coeficiente de absorção da luz pelo meio. Nota-se que a atratividade será

menor quando a distância entre dois vaga-lumes for maior. (iii) O termo de randomiza-

ção é, simplificadamente, definido como α · ε, onde α é um coeficiente de controle da

influência da estocasticidade no movimento e ε ∼ N(0, 1) é uma variável aleatória que

1GNU Linear Programming Kit. Veja <https://www.gnu.org/software/glpk/>
2A Mathematical Programming Language. Veja <www.ampl.com>

https://www.gnu.org/software/glpk/
www.ampl.com


segue a distribuição normal padrão.

Função de intensidade. Como a função de intensidade deve ser diretamente pro-

porcional à qualidade da solução e este modelo trata de um problema de minimização, a

função de intensidade da luz emitida por um vaga-lume é definida como a translação da

função objetivo negativa, sendo que, complementarmente, para o caso em que o vetor da

solução não represente uma solução factível para o problema Dial-a-ride, o resultado da

função é definido como zero.

Parâmetros. A parametrização implementada segue a proposta de (YANG; HE,

2013). Para tal, dada uma instância, calcula-se a escala L do problema, a partir da qual o

parâmetro γ = 1/
√
L é definido. O parâmetro de escala da estocasticidade no movimento

é definido como α = 0,1 e o número de vaga-lumes é 40. Além disso, a parada do algo-

ritmo se dá após 200 iterações sem melhoria da melhor solução ou após 1000 iterações

totais, o que acontecer primeiro. Finalmente, a população inicial é formada, basicamente,

por soluções aleatórias, ou seja, vetores de números naturais aleatorizados seguindo uma

distribuição uniforme.

4 Avaliação e Discussão

A avaliação das abordagens propostas tem como meta analisar as qualidades das

soluções geradas, os tempos de execução e, no caso da meta-heurística, o progresso das

soluções em relação à inicial. Para isso, foram coletadas 24 instâncias de problema uti-

lizadas por outros trabalhos na literatura sobre o tema. As execuções foram realizadas

em um computador Intel Xeon 2,3 GHz com 15 GB de memória e a meta-heurística foi

implementada em Python 3.

Primeiramente, executou-se o solucionador genérico para um conjunto de instân-

cias pequenas, com um um limite de memória de 7GB, imposto para limitar o tempo de

execução. Na Tabela 1 se pode ver os resultados. Nas colunas Req, Vei e Cap listam

os números de requisições, de veículos e suas capacidades, respectivamente, para cada

instância. As colunas Opt e CPU-GLPK descrevem o valor ótimo para cada instância e

o tempo em minutos necessário para o solucionador resolvê-la. Nas três últimas colunas

estão exibidos os valores comparativos da meta-heurística, sendo eles o valor da solução

encontrada; a otimalidade, isto é, o percentual desse valor em relação ao ótimo; e o tempo

de processamento em minutos, respectivamente.



Tabela 1: Resultados da primeira avaliação
Inst. Req Vei Cap Opt. CPU-GLPK Sol. Firefly % Opt. CPU-Firefly
Test-1 3 2 3 58,05 0,1 69,75 83,2% 7,4
Test-2 4 2 3 68,10 0,9 98,51 69,1% 11,7
Test-3 5 2 3 76,27 2,0 134,29 56,8% 2,5
Test-4 6 2 3 96,54 45,0 149,32 64,6% 3,3
Test-5 8 2 3 - - 158,67 - 5,7

A Tabela 2 apresenta os resultados da avaliação da implementação do algoritmo

firefly, com instâncias maiores, variando de 16 até 60 requisições. Adicionalmente, essa

tabela traz, nas duas últimas colunas, a informação de progresso da otimização em re-

lação à primeira solução factível encontrada no processo. O valor Desv. à Sol. Inicial é

calculado pela seguinte divisão: (Sol. Inicial − Sol. F inal)/Sol. Inicial.

Tabela 2: Resultados da segunda avaliação − Qualidade e progresso
Instância Ótimo Sol. Final Otimalidade Sol. Inicial Desv. à Sol. Inicial
a2-16 294,25 312,96 94,02% 335,85 6,81%
a2-20 344,83 373,89 92,23% 427,48 12,54%
a2-24 431,12 442,85 97,35% 496,92 10,88%
a3-18 300,48 347,10 86,57% 374,20 7,24%
a3-24 344,83 409,73 84,16% 456,86 10,32%
a3-30 494,85 614,13 80,58% 615,99 0,30%
a3-36 583,19 - - - -
a4-16 282,68 310,84 90,94% 354,54 12,33%
a4-24 375,02 481,16 77,94% 567,63 15,23%
a4-32 485,50 639,73 75,89% 665,27 3,84%
a4-40 557,69 780,13 71,49% 841,92 7,34%
a4-48 668,82 956,90 69,89% 1032,38 7,31%
a5-40 498,41 779,32 63,95% 818,14 4,74%
a5-50 686,62 926,23 74,13% 1018,84 9,09%
a5-60 808,42 1195,94 67,60% 1257,38 4,89%
a6-48 604,12 993,08 60,83% 1025,55 3,17%

Com base nessas duas tabelas, fica evidente que a abordagem do solucionador

genérico se mostra ser intratável na prática, pois, embora ele calcule soluções exatas, o

tempo necessário para a computação cresce enormemente com o tamanho das instâncias.

Comparativamente, a solução pelo algoritmo firefly é mais vantajosa quando se trata de

atacar instâncias maiores de problema. Em relação à avaliação da meta-heurística, nota-se

que boas soluções são geradas para os casos relativamente menores, com uma média de

90% de otimalidade para as instâncias a2-16 até a4-16. Contudo, para casos de entradas

maiores, a qualidade das soluções finais é diminuído para uma média de 80%, o que pode



ser explicado devido ao crescimento do número de dimensões do espaço de solução, o

que torna difícil a exploração desse pela busca.

Por fim, a Tabela 3 exibe uma comparação de tempos de execução em minutos

entre a implementação proposta da meta-heurística e outros dois trabalhos, a saber (PAR-

RAGH, 2011), na coluna CPU1, e (PARRAGH; SCHMID, 2013), na coluna CPU2, que

representa o estado-da-arte na resolução do DARP. Entradas marcadas com hífen (-) não

foram informadas pelos autores, os valores em negrito indicam os casos em que a imple-

mentação do algoritmo firefly superou o tempo de (PARRAGH, 2011). Resumidamente,

a proposta apresentada neste trabalho pôde competir com a solução de um dos trabalhos

recentes encontrados na literatura, embora tenha se mostrado distante do estado-da-arte.

Tabela 3: Resultados da segunda avaliação − Tempo de execução
Instância CPU1 CPU2 CPU-Firefly
a2-16 68,2 0,12 63,3
a2-20 133,8 0,28 160,5
a2-24 187,8 0,35 419,3
a3-18 45,4 - 29,5
a3-24 86,8 0,29 77,4
a3-30 105,6 0,50 151,2
a3-36 162,6 0,83 370,6
a4-16 26,0 - 14,5
a4-24 50,8 - 37,0
a4-32 86,0 0,55 129,4
a4-40 130,6 0,78 233,5
a4-48 253,8 1,62 222,3

Para concluir, o método proposto parece ser consistente e ter uma possível apli-

cabilidade por conseguir resolver diversas instâncias e apresentar resultados semelhantes

a outras abordagens presentes na literatura. Poderia ser assunto de pesquisa futura uma

reformulação da representação da solução, de maneira a diminuir o tamanho das regiões

do espaço de busca que não apresentam soluções factíveis, uma vez que essa tem sido a

principal causa do alto tempo de processamento.
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ABSTRACT

The Dial-a-ride problem (DARP) is an NP-hard combinatorial optimization problem

with practical applications in user-oriented public transportation. The DARP is a vehi-

cle routing problem whose instances consist of a set of vehicles and a set of pick-up and

drop-off requests from passengers. Its goal is to assign the requests to the vehicles and

to calculate the routes of each one of them, minimizing the operation costs and ensuring

that all the constraints, such as vehicle capacity, departure and arrival time windows, and

maximal user ride time, are fulfilled. This work presents a mathematical formulation of

the problem and seeks to solve it through the firefly algorithm (FA). The FA is a novel

nature-based metaheuristic inspired by the behavior of fireflies, which applies the concept

of swarm intelligence in order to optimize mathematical functions by looking for near-

optimal solutions. With the aid of this technique we aimed to model and implement a

solver to the DARP which explores the huge combinatorial search space, generated by

the problem instances, in an efficient way. Finally, we carried out a performance compar-

ison between the proposed method and the algorithms found in the scientific literature,

and found that the former achieves an average of 90% of optimality for a specific set of

instances, and delivers, in some experiments, faster results than those delivered by one of

the algorithms from the literature.

Keywords: Dial-a-ride problem. Firefly algorithm. Metaheuristic. Integer programming.

Vehicle routing.



Lösung des Dial-a-Ride-Problems mit der Firefly-Metaheuristik

ZUSAMMENFASSUNG

Das Dial-a-Ride-Problem ist ein NP-schweres kombinatorisches Optimierungsproblem,

das bei benutzerorientiertem öffentlichen Personenverkehr Anwendung findet. Das DARP

ist ein Tourenplanungsproblem, dessen Instanzen aus einer Menge von Fahrzeugen und ei-

ner Menge von von Fahrgästen eingetragenen Aufträgen zum Abholen und zum Absetzen

bestehen. Sein Ziel ist es, den Fahrzeugen die Aufträge zuzuweisen und die Routen jedes

Wagens zu berechnen, sodass die Betriebskosten minimiert werden und alle Nebenbedin-

gungen, wie z.B. Fahrzeugnutzlast, Zeitfenster für Ein- und Ausstieg, maximale Fahrtdau-

er, erfüllt werden. Diese Arbeit stellt eine mathematische Formulierung des Problems vor

und versucht, es durch den Einsatz des Firefly-Algorithmus (FA) zu lösen. Der FA ist eine

neue naturbasierte Metaheuristik, die vom Verhalten von Glühwürmchen inspiriert ist und

das Konzept von Schwarmintelligenz anwendet, um mathematische Funktionen zu opti-

mieren, indem sie quasi-optimale Lösungen sucht. Anhand dieses Verfahrens hat diese

Arbeit einen Löser des DARP modelliert und implementiert, der den riesigen kombina-

torischen, von Probleminstanzen generierten Suchraum effizienterweise erforscht. Letzt-

endlich wurde ein Leistungsvergleich zwischen der vorgeschlagenen Methode und den

Algorithmen aus der wissenschaftlichen Literatur durchgeführt, der zeigte, dass die vor-

geschlagene Methode einen Durchschnitt von 90% von Optimalität für eine bestimmte

Menge von Instanzen erreicht und in einigen Experimenten schnellere Ergebnisse liefert,

als die von einem der Algorithmen, die von der Lietratur stammen, gelieferten Ergebnisse.

Schlagwörter: Dial-a-Ride-Problem. Firefly-Algorithmus. Metaheuristik. Ganzzahlige

Optimierung. Tourenplanung.
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1 INTRODUCTION

In current urban areas, mainly in very populated cities, there is a considerable

number of mobility problems. These problems have been seen with much interest by the

scientific community, which has been strongly contributing to the improvement of trans-

portation and logistic networks, thus promoting advances towards a better urban mobility.

The problem addressed here is referred to as the Dial-a-ride problem (DARP).

Shortly, it consists of a system with a set of requests for pick-up and delivery, that are

entered by passengers, and a fleet of vehicles. The goal is to plan the route of the ve-

hicles and the assignment of requests to them in a feasible way, what means fulfilling

the constraints of both the requests and the vehicles, which a feasible solution is subject

to. These can be several conditions, such as location and time limit for picking up and

delivering, or for how much time each vehicle can operate. Besides, not only a feasible

solution is searched but also an optimal one that minimizes the operation costs, defined

by the so-called objective function. In this work, as in the literature, the total time of

operation represents the objective function to be minimized.

Many difficulties are found when trying to solve the described problem, mainly

because it belongs to the so-called NP-hard class of problems, as proven by Baugh Jr.,

Kakivaya, and Stone (1998). Therefore, the combinatorial nature of its solution space

makes the DARP hard to be solved for large inputs due to its high complexity. As a

consequence, one might find major difficulty in building a scalable application in order to

solve it.

1.1 Definition

Cordeau and Laporte (2007, p. 29) state the problem very briefly in this way:

“The Dial-a-Ride Problem (DARP) consists of designing vehicle routes and
schedules for n users who specify pick-up and delivery requests between ori-
gins and destinations. The aim is to plan a set of m minimum cost vehicle
routes capable of accommodating as many users as possible, under a set of
constraints.”

The author summarizes the subject very well, however, a closer look is to be taken.

The instances of the problem specify the following properties, that are taken as input by

the solver. Firstly, the system has available an amount of homogeneous vehicles, that is

to say, no distinction should be made regarding possible vehicle types. Secondly, there is

a single depot, where the vehicles start from and where they end their routes. Next, the
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cars have the attributes of maximal route duration time and capacity, which tell how

many passengers a vehicle can carry at a time. The passengers have a maximum allowed

travel time, that serves to guarantee their comfort. Finally, there are n requests, which

have the following features:

• Pick-up location;

• Drop-off location;

• Time window for picking up (a time interval in which the vehicle is expected to be

at the site);

• Time window for dropping off;

• Time needed for boarding or alighting;

• Quantity of passengers.

Additionally, it is possible for a car to move from every location to any other

location, and the time needed to travel between any pair is considered to be the linear

distance between these two points. In real-world applications data from the geographical

region and from traffic could be taken into account, but, by reason of abstraction, this

model will not consider this kind of information.

To sum up, the abovementioned parameters form the constraints of the problem,

which a solver shall consider. But, regarding the goal, two concepts are still to be eluci-

dated in order to define it, namely feasible and optimal solution. The former is defined

thusly:

Definition 1 (Feasible solution). Determination of the routes of the vehicles, in such a

way that, every request is picked up, transported and then delivered by one and only one

vehicle, and all the conditions of the problem are fulfilled.

In order to make it clearer, let a route be defined as:

Definition 2 (Route). The order of the locations through which a vehicle travels. The first

and the last location is the depot and a vehicle must be able to execute the whole journey

without breaking the conditions of time windows of the requests assigned to it.

Finally, one can calculate the duration time of the operation for every feasible

solution by basically summing up the duration times of every vehicle route. Based on

this, the optimal solution is defined as follows.

Definition 3 (Optimal solution). A feasible solution whose duration time is less than or

equal to any other feasible solution’s duration time.
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In conclusion, the goal of the Dial-a-ride problem is to find an optimal solution for

a given instance.

1.2 Approach

In this work two approaches shall be taken in order to solve the optimization prob-

lem. The exact approach consists in mathematically modeling the DARP as an integer

linear program and then transcribing it into a mathematical programming language

aiming to execute it with a generic integer programming solver. The near-optimal ap-

proach shall then analyze and develop a program that implements the firefly metaheuris-

tic to efficiently seek near-optimal solutions.

Finally, the goal of the research is: (i) to compare the performance of the two

different models, both through the execution time and through the solution quality as well

as through the possibility of dealing with large inputs; (ii) to conduct an evaluation of the

firefly metaheuristic implementation capabilities when solving the instances used in other

works of the literature.

1.3 Justification

It is expected that the results of this work might bring relevant contributions to

the handling of the presented problem, and even of other ones. By having two distinct

approaches, it is possible to compare results regarding important features of the problem,

such as scalability, feasibility and deviation from an optimal solution. Furthermore, ap-

plying the relatively new firefly algorithm to the problem can show how it performs in a

such a discrete and complex solution space.

In addition to the contributions to the understanding of the behavior of swarm

metaheuristics applied to optimization problems of transportation, the new procedure of

solving the problem serves as a prototype and brings a new perspective to commercial

applications which seek constantly to treat the problem in a more efficient and scalable

way.

With regard to the current cities’ mobility, there is a growing demand for an ef-

ficient alternative to the classical means of transportation. The implementation of such

a system improves the possibility of mobility of the population and makes it more effi-
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cient, since it allows the decrease of the number of cars that drive every day through the

urban network causing traffic jams in big cities. Moreover, it helps to solve a demanding

problem in today’s society where there is an increasing number of elderly or handicapped

people, who have the right to mobility and need assistance to travel in the town.

Also, in an economical view, this research contributes to the winning of new mar-

kets by companies that aim to enter the branch of public transportation since its main goal

is minimizing the operation costs. With a business model based on the reduction of trans-

action costs, a company can take great advantages against competitors in order to capture

marketplace.

At last, the proposed model shows also an ecological concern since it enables the

decrease of greenhouse gases emissions, such as the CO2, in urban areas by two reasons:

Firstly, by minimizing operation costs, thus, minimizing the burning of fossil fuels, and

secondly, by reducing the circulation of taxis and private automobiles.
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2 LITERATURE REVIEW

According to Cordeau and Laporte (2007, p. 30), the Dial-a-ride Problem (DARP)

is very similar to other problems studied by computer scientists, namely the Pickup and

Delivery Vehicle Routing Problem (PDVRP) and the Vehicle Routing Problem with Time

Windows (VRPTW), problems that have application in logistics. The authors point out

that, what basically differs the DARP from these other problems is the human perspec-

tive, by the fact that people are transported. This often appears having two distinct goals,

minimizing operation costs, subject to the constraints, and maximizing the availability

and quality of the service. The quality criteria frequently include aspects like route dura-

tion, customer waiting and ride time, maximum vehicle ride time, among others, and are

usually treated as the constraints of the optimization problem.

Cordeau and Laporte (2007) realized a survey on the subject, wherein they showed

the distinctions between the several approaches and formulations of the problem. Firstly,

the DARP occurs in a static version in which the requests are known beforehand. This is

the one that we treat here. Alternatively, there is a dynamic version, dealt by Berbeglia,

Cordeau, and Laporte (2010), in which requests can be entered during the operation of

the transportation service.

Another distinction to be made is between the homogeneous and the heteroge-

neous Dial-a-ride Problem. The former proceeds on the assumption that every vehicle

is equal. The latter, on the other hand, distinguishes the vehicles either in capacity or in

additionally features, such as space for wheelchair (Parragh et al. 2012, p. 593). In the

same way, the objectives can differ by aiming cost minimization or satisfied demand

maximization (Cordeau and Laporte 2007, p. 30). Urra, Cubillos, and Cabrera-Paniagua

(2015) have succeeded on handling the second one. A last differentiation of the problem

is done regarding the depots, which can be a single one or multiple ones, in this case re-

ferred to as Multi-Depot Heterogeneous Dial-A-Ride Problem (MD-H-DARP) (Braekers,

Caris, and Janssens 2014, p. 166).

In their survey, Cordeau and Laporte (2007) identified in the literature three for-

mulations. Two of them are described as a mathematical linear program and the other

one as a scheduling problem. The three-index mathematical formulation, proposed by

Cordeau (2006), uses binary three-index variables xki,j to assign routes to each vehicle and

then to minimize costs. In addition, Ropke, Cordeau, and Laporte (2007) came up with a

two-index formulation which reduces the number of variables, thus, allowing the exact
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solution approach to be more efficient.

Exact algorithms have been proposed by several researchers, to highlight are the

branch-and-cut by Cordeau (2006), and also by Ropke, Cordeau, and Laporte (2007).

Lately Parragh and Schmid (2013) were successful in solving the DARP with an exact ap-

proach that uses large neighborhood search. However, in order to speed up the running

times, many other methods based on metaheuristics have been suggested in the litera-

ture, among them are the genetic algorithms by Jorgensen, Larsen, and Bergvinsdottir

(2007), the simulated annealing by Zidi et al. (2012) and the granular tabu search by

Kirchler and Wolfler Calvo (2013). Additionally, Urra, Cubillos, and Cabrera-Paniagua

(2015) published a new method with the so-called hyperheuristic.

All in all, none of the studied methods utilizes a swarm-based metaheuristic ap-

proach to solve the problem. Swarm intelligence is a technique applied in computer sci-

ence, more precisely in artificial intelligence and operations research, that is based on

observations of nature patterns and behaviors, particle swarm optimization (PSO), ant

colony and the firefly algorithm (FA) are example of techniques that apply these ideas. In

this point of view, these metaheuristics resemble the genetic algorithms (GA), since GAs

are also nature-based, but they differ by the fact that, genetic algorithms have mutation

and crossover operators and are based on the theory of evolution of the species, whereas

swarm intelligence techniques are purely based on the behavior of swarms (Yang 2012,

p. 189-190).

In this work we apply the firefly metaheuristic, that has been showing good re-

sults in the solution of nonlinear global optimization problems. It was introduced by Yang

(2009), who compares it against the PSO by running simulations in a variety of objective

functions and concludes that the FA can outperform the PSO and that it is also poten-

tially more powerful in solvingNP-hard problems. Additionally, Yang (2012) presents a

theoretical analysis on swarm intelligence having as study cases the firefly algorithm and

the particle swarm optimization. Yang and He (2013) introduce the FA by approaching

parameter settings, complexity and applications with examples. At the end they draw a

conclusion showing a growing applicability of the method in the scientific community

and foreseeing an expansion of the subject and the improvement of the metaheuristic.

The firefly algorithm has also been applied to discrete optimization problems. Jati

and Suyanto (2011) address the classical Traveling Salesman Problem with the help of

the FA. In the same way, Apostolopoulos and Vlachos (2010) deal with another combi-

natorial optimization problem, the Economic Emissions Load Dispatch Problem. At last,
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Sayadi, Ramezanian, and Ghaffari-Nasab (2010) and Sayadi, Hafezalkotob, and Naini

(2013) also utilize this technique in order to solve other NP-hard problems.

2.1 Instances

A set of benchmark instances was created by Cordeau (2006). These have been

extensively used in other works in the literature of the DARP. Therefore, they constitute

the instance dataset for this work. Originally, Cordeau (2006) came up with a collec-

tion of 12 randomly generated problem instances, which were lately expanded by Ropke,

Cordeau, and Laporte (2007), who proposed 12 new larger and harder-to-solve instances.

The same authors provided the optimal solutions for the whole dataset, whereas Parragh

and Schmid (2013) presented the state-of-the-art heuristic approach.

The instances are described in text files which contain the parameters of the prob-

lem. The number of requests varies from 16 until 96 and they always contain the load of

one passenger, i.e. one passenger per request is assumed. Similarly, the boarding time is

considered to be 3 units of time for every request. The number of vehicles varies as well,

between 2 and 8 cars which have a capacity of 3 passengers in every case.

The locations where the requests are to be served are randomly generated in a

plan space inside the range of [−10, 10]× [−10, 10] according to an uniform distribution.

The depot is set in the center of the area, that is, the origin (0,0). The costs of traveling

between any two stops are equal to the travel time between them, which is assumed to be

simply the Euclidean distance between the two points.

In this dataset, the number of requests is always even and they can be partitioned

into two disjoint sets, while half of them are outbound requests the other half are inbound

requests. The former means that the constraint of time window exists only at the arrival

time at the destination, the latter, on the other hand, has this kind of constraints only at the

departure time. To better understand, one can cite the example from Cordeau and Laporte

(2007, p. 29), they compare it with the case of patients who need transportation from

home to the hospital, they suggest that the time window constraint should be set in order

to arrive at the hospital on time, this would be the so-called outbound request, likewise,

patients should be picked up from the hospital in a specific time interval, this would then

characterize an inbound request.

In the dataset considered here, the time window [en+i, ln+i] for dropping off an

outbound request i comprehends a 15 minutes interval. So, let T be the maximal route
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time allowed for the buses, with it, ln+i is randomly picked from the interval [60, T]

and, as a consequence, en+i is calculated by subtracting 15 from the upper limit ln+i, i.e.

en+i = ln+i − 15. Similarly, for an inbound request i, ei is chosen from the interval [0,

T-60] and then li = ei + 15.

Lastly, the maximal route time T, also referred to as planning horizon, varies be-

tween 240 and 720 and the maximal ride time L of a passenger is constantly 30 for every

instance.

Table 2.1 lists all the instances along with their names and properties. The columns

Request and Buses show the quantity of each of these attributes, the column Capacity

tells the maximal load of the buses. The Optimum is the cost of the minimal solution,

which has been calculated by Ropke, Cordeau, and Laporte (2007, p. 270). At last, the

column CPU1 refers to the processing time in minutes provided by an implementation

with variable neighborhood search from Parragh (2011) (executed on a 3.2 GHz Intel

Pentium D CPU with 4 GB of RAM) while CPU2 refers to the running time in minutes of

the state-of-the-art heuristic implementation with large neighborhood search by Parragh

and Schmid (2013) (executed on an Intel Xeon CPU at 2.67 GHz with 24 GB of RAM).
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Table 2.1: Characteristics of the problem instances
Instance Requests Buses Capacity Optimum CPU1 CPU2

a2-16 16 2 3 294.25 68.2 0.12
a2-20 20 2 3 344.83 133.8 0.28
a2-24 24 2 3 431.12 187.8 0.35
a3-18 18 3 3 300.48 45.4 -
a3-24 24 3 3 344.83 86.8 0.29
a3-30 30 3 3 494.85 105.6 0.50
a3-36 36 3 3 583.19 162.6 0.83
a4-16 16 4 3 282.68 26.0 -
a4-24 24 4 3 375.02 50.8 -
a4-32 32 4 3 485.50 86.0 0.55
a4-40 40 4 3 557.69 130.6 0.78
a4-48 48 4 3 668.82 253.8 1.62
a5-40 40 5 3 498.41 - 0.85
a5-50 50 5 3 686.62 - 1.60
a5-60 60 5 3 808.42 - 2.51
a6-48 48 6 3 604.12 - 1.14
a6-60 60 6 3 819.25 - 2.29
a6-72 72 6 3 916.05 - 4.43
a7-56 56 7 3 724.04 - 1.67
a7-70 70 7 3 889.12 - 2.88
a7-84 84 7 3 1033.37 - 7.04
a8-64 64 8 3 747.46 - 2.14
a8-80 80 8 3 945.73 - 5.73
a8-96 96 8 3 1232.61 - 9.92

Source: (Parragh 2011, p. 928) and (Parragh and Schmid 2013, p. 496)
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3 THEORETICAL BASIS

This chapter presents a theoretical framework that configures a background neces-

sary to understand, analyze, design and implement the solution for the problem addressed

in this thesis.

3.1 Linear and Integer Programming

Linear Programming is a technique in mathematics used for optimization of lin-

ear functions. With it, it is possible to model optimization problems in which a linear cost

(or utility) function is to be minimized (or maximized) given a set of constraints which

the function’s independent variables are subject to. In short, it enables the formulation of

optimization problems in a very simple mathematical language.

To formulate a linear program three specifications are required. At first, the so-

called decision variables xi, that are the ones to which values are assigned. Secondly, the

objective function, that is a linear function f(x) to be optimized. Lastly, the constraints,

that are linear inequalities describing relations between the decision variables and the

parameters of the problem instance. Therefore, it is expected from a solver, given a linear

program and data parameters, to deliver the set of assignments of values to the decision

variables that minimize or maximize the objective function respecting the constraints. The

most prominent method for solving linear programming is the simplex method (Shenoy

2007, p. 5-6).

As a result, a linear program with n variables and m constraints for the minimiza-

tion of a function can be written as follows.

minimize
n∑
i=1

cixi,

subject to
n∑
i=1

akixi ≤ bk, ∀k = 1, 2, ...,m,

xi ≥ 0, ∀i = 1, 2, ..., n.

However, there are problems where real values are not allowed to be assigned to

variables because they require integer values. These problems are to be treated differ-

ently by adding an additional integer-value constraint to the domain of the variables (i.e.
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xi ∈ Z). The technique of integer programming, derived from linear programming,

addresses the issue. Although there are other more specific concepts for problems that are

similar to integer programming, such as mixed integer programming and zero-one pro-

gramming, they all can be handled by quite the same principles (Shenoy 2007, p. 175).

As an implication, the simplex method is not able to solve this type of optimization prob-

lem, neither is numerical approximation, generally, a good solution. Nevertheless, in the

literature there are several algorithms for dealing with integer programming problems, for

instance the branch-and-bound and the cutting planes, which are widespread and some

of the most common methods.

The integer-value constraint implies a vast difference regarding the complexity of

the integer problem when compared to the linear one. It is then discussed, whether or

not these problems can be solved in polynomial time. Wolsey and Nemhauser (2014)

point out that there are algorithms capable of solving the problem of linear programming

in polynomial time, whereas no such algorithm is known for the problem of integer pro-

gramming. Moreover, many known NP-complete problems, such as the TSP and the

knapsack problem, can be reduced to the problem of integer programming. In the end,

it turns out that this problem is in the NP-hard class of problems, as well as it is in the

NP-complete class (Schrijver 1998, p. 21).

3.2 Metaheuristics

Osman and Kelly (2012, p. 1) state in their work: “Meta-heuristics are the most re-

cent development in approximate search methods for solving complex optimization prob-

lems”. They claim that a metaheuristic guides the development of algorithms using artifi-

cial intelligence, biological, physical, mathematical and natural phenomena as source of

inspiration. But first, one should understand what heuristics are: According to Carvalho,

Savransky, and Wei (2004, p. 13), there is no common definition for heuristics. Yet they

suggest that “heuristics can be rules, strategies, principles or methods for increasing the

effectiveness of a problem resolution [...]. [They] neither provide direct and definite an-

swers, nor guarantee a solution for a problem”. On the whole, heuristics are a powerful

weapon to attack difficult combinatorial optimization problems.

However, on metaheuristics the concept is more concise, Osman and Kelly (2012,

p. 3) explain in the following way.

“A Meta-heuristic is an interactive generation process which guides a subordi-
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nate heuristic by combining intelligently different concepts for exploring and
exploiting the search space using learning strategies to structure information
in order to find efficiently near-optimal solutions.”

Therefore, metaheuristics do not necessarily deliver an optimal solution, but the

benefit in terms of performance overcomes the possibility of not obtaining a proven op-

timal solution. Even though, the late advances in the field have contributed strongly in

order to obtain very good quality results (ibid.).

As mentioned, metaheuristics give guidance to write algorithms in order to solve

optimization problems. There are four basic criteria, which are common to almost every

metaheuristic and which shape any metaheuristic design. First, a solution representation

is to be determined, this should be able to describe any possible solution and to be eval-

uated by a function which determines its cost or benefit. Secondly, the algorithm should

initialize solutions, it means, there is a procedure to create the so-called initial solutions.

Thirdly, new solutions should be generated from existing ones, in some metaheuristics

this step is called movement, genetic operator, among other terms. Finally, a stopping

criterion is established in order to determine the termination of the method.

The metaheuristics can be classified into two types, the ones based on local search

(or neighborhood search) and the others based on nature observations. The former ex-

plores the solution space in search of an optimal solution by generating, through a move

mechanism, new solutions that lie near the current one. It then requires a selection crite-

rion and an acceptance criterion, which decide whether a new generated solution becomes

the current one in the next iteration. Whereas simpler methods, such as variable neigh-

borhood search, have the drawback of tending to a local optimum, others, like simulated

annealing, tabu search and GRASP, aim to workaround this issue. In contrast, the nature-

inspired metaheuristics are generally based on the behavior of populations of living beings

and on how their members interact. They are characterized by having a set of solutions,

instead of only one, with which local searches are performed in different areas of the

search space (Osman and Kelly 2012, p. 7). Examples of this kind of method are the

genetic algorithms, particle swarm optimization, ant colony optimization and the firefly

algorithm.
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3.3 The Firefly Algorithm

The firefly algorithm (FA), or firefly metaheuristic, was brought forth by Yang

(2009). It is a nature-inspired metaheuristic based on observations of fireflies popula-

tions that resembles other techniques, such as particle swarm optimization and the bacte-

rial foraging algorithm. The following explanations rely on the work of Yang (ibid.).

A firefly is a flying insect that emits flashes of light from its tail. This luminous

signal serves then as a mean of communication between these animals, that is used for

sexual attraction and selection. The main conception in the FA is related to this light

emission. So, let the position of a firefly in the space be a unique representation of a

solution for an optimization problem, this position can be represented through a mathe-

matical vector. Now, for reason of abstraction, let the intensity of the light emitted by

the firefly be proportional to the function to be optimized and assume that the attractive-

ness between the fireflies is stronger when the light intensity is greater. Consequently,

one can construct a model that takes these factors into account in order to simulate the

movements of several fireflies. As a result, due to the tendency of them to converge to a

set of optimal positions (solutions), it is possible to use this mechanism for optimization.

For the abstraction of the natural system three principles are to be considered:

1. The fireflies are attracted to each other regardless of their sex;

2. The attractiveness is proportional to the brightness so that a less bright firefly moves

in the direction of a brighter one. In the same way, the brightness is relative to the

observer, thus, the farther away two fireflies are from each other, the weaker the

attractiveness between them is. If there is no firefly brighter than a particular one, it

moves randomly;

3. The brightness is determined by the landscape of the objective function.

Hence, the firefly algorithm can be described as follows.
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Algorithm 1 Firefly Algorithm
function FIREFLY ALGORITHM

Define a objective function f(x),x = (x1, ..., xd)
T

Generate initial population of fireflies xi(i = 1, 2, ..., n)
Let the intensity Ii be proportional to f(xi)
t← 0
while t < MaxGeneration do

for i = 1 : n do
for j = 1 : i do

if Ij · Attractiveness > Ii then
Move firefly i towards j

end if
end for

end for
if Firefly i did not move then

Move i randomly
end if
Rank the fireflies to determine the current best solution
t← t+ 1

end while
return Best solution

end function

In the algorithm it is assumed that the brightness of a firefly in a position x is de-

termined by the objective function applied to the vector x so that I(x) ∝ f(x). However,

the brightness perception depends on the distance r between the vectors. So, an attrac-

tiveness function β(r) is to be defined. Given a medium absorption coefficient γ and the

brightness β0 in the source, this function varies according to the inverse square law and

can be written as

β(r) = β0e
−γr2 ,

which can be, after a series expansion analysis (see Yang (2009, p. 173), approximated to

β(r) =
β0

1 + γr2
.

Concerning the distance, it can be, as commonly, defined as the euclidean distance

rij =
√

(xi1 − xj1)2 + (xi2 − xj2)2 + · · ·+ (xid − xjd)2 although another distance defi-

nition may be used depending on the type of the problem (Yang 2012, p. 193). At last, the

movement is calculated by a sum of vectors which characterizes the extent and direction

of the firefly’s movement in the search space. Generally, a firefly xi will tend to get closer

to another one xj if the attractiveness β(r) between them is stronger compared to other
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fireflies, in other words, xi moves a larger distance towards xj the closer they are and the

brighter xj is. Hence, one can describe the movement of a firefly xi as

xi
t+1 = xi

t + β0e
−γr2ij · (xt

j − xt
i ) + αtε

t,

where the third term models a stochastic variation and t is the iteration sequence. In the

formula, αt represents the radius which the random variation is limited to and εt is a

vector of numbers sampled from a random distribution. Examples of such distributions

are the uniform and the Gaussian distribution, even though one is not necessarily limited

to these.

Yang (2009, p. 177) carries out a statistical comparison between the FA, PSO and

GA with a set of functions. The firefly algorithm outperformed both in every presented

case. The author states also that “FA is potentially more powerful in solving NP-hard

problems”, which is the case of the DARP. Insights about parameter settings, complexity,

recent applications and efficiency analysis can be found in Yang and He (2013).
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4 DEVELOPMENT

The objective of this chapter is to present in details the design and implementation

of the two approaches taken in order to solve the DARP. Firstly, the integer programming

formulation is explained and discussed. Then, the model for the firefly metaheuristic is

introduced showing the main procedures and decisions.

4.1 Integer Linear Programming Model

As the DARP is an optimization problem, one can define it as a mathematical in-

teger program. On the one hand, this is a powerful way to solve this sort of problem since

it is relatively easy to formulate and quite flexible to add new rules and conditions. On the

other hand, solving by a generic solver or by an algorithm, which seeks an exact solution,

is usually cost-intensive and limited by the strictness of the linear program formulation.

4.1.1 Mathematical Formulation

In this work, we consider the three-index formulation proposed by Cordeau

(2006, p. 574-575). For this purpose, let n be the number of requests of a problem

instance. The DARP can then be defined through a directed graph G(V,A), where V

is the set of vertices representing stop locations and A is the set of edges between these

vertices. The set V can be partitioned in three subsets, (1) the initial and final depot, that

contains the vertices 0 and 2n + 1; (2) the pick-up points comprehending the vertices

P = {1, . . . , n}; (3) the deliver points including the vertices D = {n + 1, . . . , 2n}. This

way, one defines a request as an ordered pair (i, n+ i). Additionally, A is the set of edges

that interconnect the locations to represent the travel time tij and the travel costs ckij for a

vehicle k. With that, G becomes a complete digraph, that is to say, there are exactly two

edges connecting every pair of distinct vertices, one edge in each direction. For reasons

of simplification, one can assume an undirected graph, where the costs of driving from a

stop i to another j are the same as from j to i, for the same reason, one can set the costs

ckij = tij .

Moreover, every vertex has associated to it a load qi, that tells the quantity of

passengers boarding − in the case that qi is positive − or alighting − in the case that
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qi is negative − in the correspondent location, hence, mathematically expressing, we

obtain: qi ≥ 1, (∀i ∈ P ) and qi = −qi−n, (∀i ∈ D) and qi = 0, (∀i ∈ {0, 2n + 1}).

Likewise, the vertices indicate also a duration di, which is a positive number that informs

the time necessary to realize the service at that stop. Furthermore, a time window [ei, li]

is associated to every vertex and represents, respectively, the earliest and the latest time at

which the service may start at the location.

Regarding the vehicle attributes, let K be the quantity of buses at disposal, so,

a vehicle capacity Qk and a maximal route duration Tk can be defined, but, as we are

considering the homogeneous version of the DARP, the indexation by k ∈ K does not

play an important role. At last, the maximal route duration with respect to the passenger

is given by the constant L.

Having considered all these parameters, it is possible to define the set of decision

variables which identify a solution to the addressed problem. So, for each edge (i, j) ∈ A

and vehicle k ∈ K there is a variable xkij which is equal to one if the vehicle passes

through this edge and equal to zero otherwise. Further, let uki be the time at which the car

k starts the boarding at the location i, wki the load of k as leaving that point, and rki the

travel time of the users of the request identified by i. The linear program is then written

as follows.

minimize
∑
k∈K

∑
i∈V

∑
j∈V

ckijx
k
ij, (1)

subject to
∑
k∈K

∑
j∈V

xkij = 1, ∀i ∈ P, (2)

∑
i∈V

xk0i =
∑
i∈V

xki,2n+1 = 1, ∀k ∈ K, (3)

∑
j∈V

xkij −
∑
j∈V

xkn+i,j = 0, ∀i ∈ P, k ∈ K, (4)

∑
j∈V

xkji −
∑
j∈V

xkij = 0, ∀i ∈ P ∪D, k ∈ K, (5)

ukj ≥ (uki + di + tij)x
k
ij, ∀i, j ∈ V, k ∈ K, (6)

wkj ≥ (wki + qj)x
k
ij, ∀i, j ∈ V, k ∈ K, (7)

rki ≥ ukn+i − (uki + di), ∀i ∈ P, k ∈ K, (8)

uk2n+1 − uk0 ≤ Tk, ∀k ∈ K, (9)

ei ≤ uki ≤ li, ∀i ∈ V, k ∈ K, (10)

ti,n+i ≤ rki ≤ L, ∀i ∈ P, k ∈ K, (11)
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max{0, qi} ≤ wki ≤ min{Qk, Qk + qi}, ∀i ∈ V, k ∈ K, (12)

xkij ∈ B, ukj ∈ R≥0, wkj ∈ R≥0, rki ∈ R≥0 ∀i, j ∈ V, k ∈ K. (13)

In the program above, the objective function (1) represents the total operation

costs which is calculated by the sum of the costs of every arc (i, j) where a vehicle travels

through, since the value of xkij , in this case, is equal to 1. The equation (2) ensures that

every request is served by one and only one bus. Equation (3) models the single depot

rule, which says that every vehicle starts and ends at the garage, identified by the vertices

0 and 2n + 1. Equation (4) gives consistency to the assignments of requests to vehicles

since it constraints the solutions, so that the bus k, that picks up a request i, is the same

that delivers it to its final destination n+ i. Analogously, (5) guarantees route consistency,

that means that the bus which arrives at a determined site is the same to departure from it.

In the next constraints, the complementary decision variables are defined. These

are represented in the conditions (6), (7) and (8), which indirectly determine values to

the time in which a vehicle k starts serving i (i.e. uki ), the load of k when leaving the

vertex i (i.e. wki ) and the ride time of the passengers of the request i (i.e. rki ), respectively.

Constraint (9) assures that a vehicle does not ride longer than it is allowed, the underlying

idea is that the subtraction of the route initial time from the time at the terminus yields the

total ride time of a bus. Additionally, the equation (10) guarantees the restriction of time

windows from the requests. In the same way, equation (11) guarantees that the ride time

rki of the passengers of a request i does not exceed the limit L.

Lastly, the consistency of the vehicle load is determined by constraint (12). Note

that, in the case that the vehicle picks passengers up, i.e. qi > 0, this condition ensures a

minimum load of qi and a maximum of the load limit Qk, the integrity of the rule is then

fully covered by the equation (7). In the case that passengers drop off, i.e. qi < 0, the

constraint guarantees, besides a positive load, a superior value according to the load limit

and the number of alighting passengers. Finally, (13) defines the domain restrictions over

the variables xkij , u
k
j , wkj , rki .

4.1.2 Linearization

The formulation proposed above is nevertheless not completely linear because the

constraints (6) and (7) contain a multiplication of variables, respectively: uki · xkij and

wki · xkij . Thus, they should pass through a linearization process which adds the constants
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Mk
ij and W k

ij to the mathematical model. As a result, these two equations are replaced by

the following ones.

ukj ≥ uki + di + tij −Mk
ij(1− xkij) ∀i, j ∈ V, k ∈ K (14)

wkj ≥ wki + qj −W k
ij(1− xkij) ∀i, j ∈ V, k ∈ K (15)

Furthermore, the constants M and W are subject to the conditions presented next,

which ensures correctness to the linearization.

Mk
ij ≥ max{0, li + di + tij − ej} ∀i, j ∈ V, k ∈ K (16)

W k
ij ≥ min{Qk, Qk + qi} ∀i, j ∈ V, k ∈ K (17)

This procedure closely resembles Miller-Tucker-Zemlin subtour elimination con-

straints for the TSP (Cordeau 2006, p. 575). Yet it is to note that the conditions (16)

and (17) are not to be included in the integer programming formulation, since it would

not characterize a linear program. Instead, one should assign a sufficient large positive

number to Mk
ij and W k

ij , such that these two conditions always hold true for any problem

instance that must be solved (Häll et al. 2009, p. 44).

4.1.3 Implementation

As part of the approach of this research, we seek exact solutions for a set of in-

stances available in the literature. The first step in order to achieve that is transcribing the

above detailed mathematical model into a programming language. The chosen language

was AMPL which permits a quasi direct translation of the integer programming descrip-

tion to AMPL’s notation (Fourer, Gay, and Kernighan 1990, p. 520). Additionally, in a

lower level lies the GLPK solver, which stands for GNU Linear Programming Kit and

whose role is to interpret the written program, admit the input, validate the linear model,

execute an optimization algorithm and deliver an optimal solution by outputting the as-

signment of values to decision variables and calculating the objective function. Details of

the experiments are shown in the corresponding Chapter 5.
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4.2 Firefly Metaheuristic Model

This section aims to explain the design of the firefly metaheuristic applied to the

problem treated here. This approach consists in viewing the solutions for the DARP as

vectors in a multidimensional space. These solutions are represented by the fireflies,

which can move themselves in the search space by changing the components of its corre-

sponding vector. There is a function which takes a vector as input and gives a real number

that indicates how bright the firefly is, that is to say, how good the solution is.

The challenge is to fit the problem into this model, so that it can be computed in an

effective and efficient way. This includes defining the vector of a solution, the brightness

function, distance and movements in the space, the parameters, the randomness and the

evolution of the optimization process.

4.2.1 Vector Representation of the Solution

In this model any solution can be represented through a natural number vector

v = (v1, v2, ...), where v1, v2, ... ∈ N. In order to understand its construction, one can

split it into two parts. The first one − explained in Section 4.2.1.1 − has always one

component v1, which describes the assignment of requests to vehicles. The second part

− explained in Section 4.2.1.2 − has as many components as there are vehicles and each

component represents the route that the vehicle executes, that is, a cycle in the requests

graph G, which was introduced in Section 4.1. Hence, every solution belongs to the set

S = N× N× · · · × N︸ ︷︷ ︸
k times

, where k is the number of vehicles.

4.2.1.1 Modeling the Assignment of Requests to Vehicles

The delegation of n requests to k vehicles (or buses) can be represented by an

n-tuple in which every component i represents the identification number of the vehicle

assigned to the i-th request, thus, it varies from 0 to k − 1. Furthermore, with a simple

combinatorial analysis one can show that the number of combinations of values that such

tuple can have is kn. One can also arrange all of these value combinations in the form of

a tree, so that, given a natural number between 0 and kn − 1, which uniquely identifies a

tuple, a computational procedure can generate this tuple in a relatively simple manner.
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We then want to use this unique enumeration of the tuples as the first component

of the vectorial solution representation defined above. For that, the arrangement of the

n-tuples is structured in a full tree with a height n where every non-leaf node represents

a tuple component and has k children, since every component takes k possible values.

Additionally, the leaf nodes are enumerated from 0 to kn, therefore, representing all pos-

sible combinations. Thus, every walk on the tree, from the root node until a leaf, yields a

possible request-bus assignment, in turn, every possibility can then be yielded by a unique

walk.

At last, the process of transforming the first component of the solution vector into

a tuple which describes the assignment of the requests to the vehicles can be specified by

a bijective function illustrated on the following algorithm.

Algorithm 2 Transformation Vector-Solution
function TRANSFORM COMPONENT INTO ASSIGNMENT REQUEST-BUS(v)

Let n be the number of requests and k the number of vehicles
a← v
for i = 1 : n do

Ti ← b
a

kn−i
c

a← a mod kn−i

end for
return T

end function

4.2.1.2 Modeling the Routes of the Vehicles

In the previous section it was shown that the first component of the solution vector

models the assignment of requests to buses. Likewise, this section deals with the k other

vector components, which concern the configuration of the respective vehicle routes. In

order to have a complete representation, we show next how the order in which a bus serves

its requests can be modeled.

For this purpose, an analysis similar to the modeling of the previous section can

be applied to the modeling of the routes of the buses. In this case, with the difference

that the permutation of the boarding and alighting locations of the requests are mainly

taken into consideration. Besides, other constraints are applied to the numerical represen-

tation of a route, namely that an alighting node of a given request cannot occur before the

boarding of the same and that a vehicle is never allowed to carry more passengers than its

capacity.
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To exemplify, Figure 4.1 illustrates an incomplete version of the route tree of a

bus which three requests were assigned to. Each level i of the tree represents the possible

locations where a vehicle can be at its i-th stop, so that every walk starting from the

root, which is the starting point, i.e. the depot, and ending at a leaf node characterizes a

possible route. The nodes are identified by the number of the respective request followed

by a positive sign− indicating a pick-up site− or a negative sign− indicating the request

deliver site.

However, unlike the codification of the request-bus assignment, in which every

node opens k new nodes in the lower level, there are more complex restrictions in the

structure of the tree described here. These are shown in Figure 4.1 through diagonal

strokes, which cut out cases of node repetition in the route, what would not make sense

since every location is accessed only once. In conclusion, every walk from root to leaf

generates a meaningful route, that is to say, it contains no repetitions and every request

pick-up occurs before the respective deliver. Yet, at this point, routes may be infeasible

because they do not consider vehicle load and time windows. These aspects will be treated

later in this section.

Figure 4.1: Route possibilities represented through a tree

2- 3+ 2+3- 2- 3+ 1- 3+ 2- 3- 1- 2+1-2+3-

depot

1+ 2+ 3+

1- 2+ 3+ 1+ 2- 3+ 1+ 2+ 3-

2+ 3+ 1- 2- 3+ 1- 2+ 3- 1- 2- 3+ 1+ 2+ 3+ 1+ 2- 3- 1- 2+ 3- 1+ 2- 3- 1+ 2+ 3+1+

2-3-1-

Nevertheless, in order to build a function that allows us to have a mapping from

each walk to a natural number, thus enumerating all the possible routes of a bus, it is

necessary to know, given a depth in the tree, how many leaves are under each vertex of this

depth. Once this information is available, the transformation function can be computed in

a quite efficient way.

Determining how the tree structure is at each level and altogether how many leaves

there are depends exclusively on the load of the bus in a given vertex, it means, it depends

on how many requests are being carried and how many still remain to be picked up in a

specific moment. Figure 4.2 helps to explain this structure. In this illustration each node
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represents the load of the bus at the respective level, the further down it gets, the greater

its respective depth becomes. The edges under a node tell how many children a vertex

with the respective load yields. In this example, at the first level the vehicle is in the

depot and therefore empty (Q = 0), at the second level, i.e. the first passenger pick-up,

there are three possibilities that generate a bus load of 1, one possibility for each assigned

request. In the next steps, every one of the nodes can either pick up one new passenger,

who has not been picked up yet, or drop one of the q passengers, where q is the current

vehicle load. Note that, in this example, for reason of simplification, it is assumed that

there is only one passenger per request, an expansion to many passengers per request can

be similarly done.

Figure 4.2: Graph describing the structure of the route tree
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From the graph illustrated in Figure 4.2 it is possible to extract two matrices in

order to represent the structure, one for the pick-up cases (edges leaving nodes to the

right) and one for the drop-off cases (edges leaving nodes to the left). Respectively, the

number on these edges are denoted in the following matrices Qin and Qout.

Qin =


3 0 2 0 1 0

0 2 0 1 0 0

0 0 1 0 0 0

0 0 0 0 0 0

 , Qout =


0 0 0 0 0 0

0 1 0 1 0 1

0 0 2 0 2 0

0 0 0 3 0 0


Each row of the matrix maps a car load, starting from the first row with Q = 0.

Additionally, each column maps a level, starting from the one most at left. So, the element

ainij of the matrix Qin equals the number of children created by a node equivalent to a load
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q = i with level j, that lead to an increase of the load (pick-up). Analogously, the element

aoutij of the matrix Qout is equal to the number of children, that have a lesser load, yielded

by every node with q = i in the j-th level (deliver). Once again, for the simplification

of the explanation, the maximal capacity Qk of the vehicle is not being considered, but it

could be done by simply setting every element in a row i > Qk to zero.

As already mentioned before, in order to design an algorithm similar to the one in

Section 4.2.1.1, one would need to know at every node of the tree, i.e. every stop of the

route, how many leaves there are under this node, i.e. how many combinations still can

be done with the rest of the route. For that, a third matrix Q is generated by combining

Qin and Qout inside the following algorithm. This new matrix maps in each element aij

the amount of leaf nodes under a vertex with q = i in the j-th level.

Algorithm 3 Matrix Generation

function GENERATE MATRIX OF NUMBER OF LEAF NODES(Qin, Qout)
Let n be the the number of requests and � the element-wise multiplication

Q2n+1 ←


1
0
...
0


for i = 2n : 1 do

Qi ← Qin
i �

[
Qi+1,1..n−1

0

]
+Qout

i �
[

0
Qi+1,2..n

]
end for
return Q

end function

The result of applying the function for the matrices Qin and Qout is shown below.

The entry Q1,1 provides the total number of leaves in the tree, in other words, the number

of possible routes for a given vehicle. As a route is codified in the correspondent vector

component, the value in Q1,1 gives an upper limit for the number interval in which routes

for the respective vehicle can be represented. Ultimately, it is also useful for constraint

checking and for an easy creation of the initial generation of fireflies.

Q =


90 0 6 0 1 0 1

0 30 0 3 0 1 0

0 0 12 0 2 0 0

0 0 0 6 0 0 0


With help of these three matrices and given a correspondent vector component
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value, the path of a bus can be computed by a transformation function. Below is shown

a function that takes these arguments and delivers a path performed by a bus, where its

elements do not represent the requests themselves, but the vertices of the walk in the

tree represented in Figure 4.1, which is relative to each bus. A mapping to the absolute

requests can be trivially done once the requests assigned to each bus are known.

To summarize, the procedures explained in this section show that every route of

every vehicle can be represented by a unique number. So, the solution vector (i.e. the

firefly vector) stores a possible configuration of the vehicle routes. Consequently, the

extraction of each vehicle’s route from this vector is done by (i) transforming the vector’s

first component into the mapping of requests to vehicles, as shown in Section 4.2.1.1; (ii)

transforming each one of the following components into a walk in the tree of possible

routes, as in the algorithm below; (iii) on the basis of this walk and of the assignment

request-vehicle, composing the routes of each vehicle. At last, after this transformation

of the vectorial representation of a solution of the DARP into vehicle routes, the only

infeasibility that there may exist is concerning time windows and ride time constraints.

This will be discussed in subsequent sections.
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Algorithm 4 Transformation Vector-Solution

function TRANSFORM COMPONENT TO A WALK IN THE TREE(Qin, Qout, Q, v)
Let n be the the number of requests of the bus
Path← []
row ← 0
pointer ← 0
for col = 1 : 2n do

# Each loop determines the next node of the path
numOfPickupChildren ← Qin

row,col

numOfDropoffChildren ← Qout
row,col

# ChildrenSizes has the number of leaf nodes under each children of the cur-
rent node

ChildrenSizes =

[
Qrow−1,col+1︸ ︷︷ ︸

numOfDropoffChildren−times

, Qrow+1,col+1︸ ︷︷ ︸
numOfPickupChildren−times

]
numOfChildren = numOfPickupChildren + numOfDropoffChildren
for child = 1 : numOfChildren do

# Each loop checks whether the child is the next node
if v − pointer < ChildrenSizeschild then

if child < numOfDropoffChildren then
row ← row − 1

else
row ← row + 1

end if
# The next node of the path is determined by the variable child
break

else
pointer ← pointer + ChildrenSizeschild

end if
end for
Pathcol ← child

end for
return Path

end function

4.2.2 Distance

For reasons of efficiency of the implementation and in order to keep the numer-

ical error under control, the Manhattan distance was used to approximate the distance

between two vectors in the search space. Note that, the Manhattan distance is very conve-

nient for combinatorial applications because, if the vectors are composed by only integer

numbers, then its result will be expressed in integer numbers too. The Manhattan distance

between two vectors p and q, both with length n, is defined as follows.
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d(p,q) =‖ p− q ‖=
n∑
i=1

| pi − qi |

4.2.3 Attractiveness

As proposed by Yang (2009, p. 173), the attractiveness is calculated with the

following quotient, which varies with the squared distance between two vectors.

β(r) =
β0

1 + γr2

However, without loss of quality in the method, the attractiveness can vary directly

with the distance, as the search space is too large and concerns with numerical errors play

an important role. Moreover, due to these concerns, we assume that β0 = 1, i.e. the

attractiveness at the light source is 100%, then, we define the inverse function β−1, which

is useful for calculating the displacement of a firefly with a minor error.

β−1(r) = 1 + γr

4.2.4 Randomization Term

The random term of the metaheuristic movement equation is by default α·ε, where

ε ∼ N(0, 1). Though, as stated by Yang (2010, p. 80), “it is a good idea to replace α

by αSk where the scaling parameters Sk(k = 1, ..., d) in the d dimensions should be

determined by the actual scales of the problem of interest”. As the size of each dimension

of the firefly vector is easily obtainable, these sizes are used in this model as scaling

parameters. Moreover, Yang and He (2013, p. 37-38) present an iterative change of the α

parameter, by varying it according to the optimization evolution t. Thus, they introduce a

new variable δ, so α is updated by the equation

αt = αt−1 · δ, (0 < δ < 1),

where α0 is the initial scaling factor. Additionally, the author gives also advice about

setting δ: “δ is essentially a cooling factor. For most applications one can use δ = 0.95 to

0.97”.
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At last, due to the fact that the search space is discrete, we need an integer number

for the randomization term. In order to achieve that, rounding is performed, proper con-

cerns about numerical errors were taken in the implementation, so that they are reduced

at most.

4.2.5 Movement in the Discrete Space

The movement of a firefly i towards j is determined by the following equation.

xt+1
i = xt

i + β(d(xt
i ,x

t
j)) · (xt

j − xt
i ) +RandomTerm(t)

Since the fireflies move in a discrete vector space, the terms of the sum above

should also be vectors of integer numbers. The first and the last one are by definition in

the set of the integers. Despite of that, the second term must be rewritten, so that it delivers

an integer number with the lowest possible error. Thus, we use the β−1 function, defined

in Section 4.2.3, and turn the multiplication into a division. Lastly, rounding should be

performed in the quotient, this is done by applying the floor function. As a result, we

obtain the function below.

xt+1
i = xt

i +

⌊
(xt

j − xt
i )

β−1(d(xt
i ,x

t
j))

⌋
+RandomTerm(t)

It is important however to notice that the movement formula may position a firefly

out of the interval where one can find solutions, since every dimension of the search space

has a range in which meaningful routes can be generated from the firefly vector. On this

issue the so-called saturation arithmetic is applied by clipping the result. In other words,

if the numerical values resulted from the calculation are outside the domain, i.e. greater

than its upper limit or less than zero, then the limit values are taken instead.

Moreover, even if the vector lies inside the mentioned domain, it can still deliver

unfeasible solutions due to the time windows and passenger ride time constraints. Like-

wise, a domain adjustment procedure alters the vector in such a way that it then represents

a similar, but feasible, solution. The operation is abstractly exemplified in Figure 4.3.

The graph illustrates one of the domains of the search space, the gray regions characterize

ranges of values which hold valid solutions, the point Si is a component of a vector and

S ′i is the new component value after the application of the domain correction procedure.



37

Figure 4.3: Illustration of the domain correction procedure

0
Unfeasible solutions Feasible solutionsSi S’i

Domain correction

The domain correction procedure consists in rearranging the routes of every bus,

such that the distance between the new vector and the old one is as low as possible. Figure

4.1 helps clarify the situation. It shows how the routes can be represented by a tree, note

also that a branch from the root to a leaf describes a possible vehicle route. The objective

of the correction function is to find a new branch in the tree, that lies near the unfeasible

one. To solve the problem, one can see it as a constraint satisfaction problem, where

the set of variables are the request locations, their domains are the possible positions in

the route, and the set of constraints are the time window limitations, which tell whether

a location must be accessed before or after another one. In this work, the renowned Arc

Consistency Algorithm #3 by Mackworth (1977) was implemented in order to correct

vectors.

To add a final observation, it is to note that, despite of all the effort to correct

the firefly vector, the adjustment function may not find a valid route if, for instance, the

assignment of requests to vehicles does not make it possible. In this case, the firefly lies

out of domain and should have null intensity.

4.2.6 Intensity Function

The intensity function models the brightness of a firefly and should be directly

proportional to the utility function of the problem to be maximized. Since the problem’s

goal is to minimize the operation costs (or the operation time), one could then think of

using the negative cost function as utility function, what is commonly done when treating

optimization problems. However, the firefly algorithm requires a positive function instead,

since the intensity is by definition non-negative.

Nevertheless, the cost function has an upper limit, that can be estimated by cal-

culating the worst set of vehicle routes. We propose to sum the distance of the m most

distant vertices in the graph G− explained in Section 4.1−whose vertices are the pick-up

and drop-off locations of each passenger and whose edges are the distance between them.
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Hence, m should be twice the number of requests since every request has two correspon-

dent vertices, one for boarding and one for alighting. Once this value is calculated, the

costs of a given solution can be subtracted from it, in order to obtain an utility function.

This process is equivalent to translating the negative cost function, i.e. shifting it upwards

in the Cartesian plane.

So, to start with, assume that the route costs are equal to the route times, then, let

max be the mentioned superior cost limit, n the number of requests and C the adjacency

matrix, which has the costs between any stop location, note that C is a square matrix with

2n+1 rows which include the pick-up and delivery locations plus the depot. Finally, let f

be a function that, given the solution vector x, returns a binary matrix with the same shape

of C and whose elements have the value 1 if a vehicle travels through the respective edge,

and 0 otherwise. Hence, the intensity function I can be defined in the following formula.

I(x) =


0, if x is unfeasible

max−
2n+1∑
i=1

2n+1∑
j=1

f(x)i,j · Ci,j, otherwise

4.2.7 Initial Solution

A set of initial solutions is calculated by simply generating for each component

of the vector a random natural number in a valid interval. Firstly, the first component

is randomized, its range is [0, kn), where n is the number of requests and k the number

of buses. Secondly, the other components are randomized, their domain intervals are

determined based on the assignment of requests to buses resulted from the first component

randomization. In this way, the first generation of fireflies can be efficiently created. Note

that, there is no guarantee that these are feasible solutions, yet it does not pose an issue,

since these vectors will be corrected throughout the algorithm’s iterations.

4.2.8 Parameters

The choice of the parameters is basically based on the work of Yang and He (2013,

p. 37-38). For that, the scale L of the problem is taken into consideration, it represents

namely the size of the search space and is calculated by multiplying the sizes of the
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intervals of each dimension, in which the intensity function is defined. The parameter

gamma is then set γ = 1/
√
L. In order to have a broad exploration of the space, we set

α0 = 0.1, the parameter will be then reduced along the optimization process. Lastly, we

set β0 = 1, δ = 0.95 and the number of fireflies to 40.

Regarding the stopping criteria, the algorithm stops if there is no improvement

of the best solution after 200 iterations or the algorithm has executed 1000 iterations,

whatever comes first.

4.2.9 Two-Phase Optimization

It is to note that, in a regular problem instance, the assignment of requests to

vehicles has a great weight in the cost function. Empirical observations suggest that

this assignment is roughly the most determinant factor in the calculation of the costs.

For instance, grouping requests that are geographically near tends to show better results

regardless of the route configurations. Yet the route of each vehicle plays an important

role in finding an optimal result.

Moreover, as the contribution to the cost function by the vector components that

describe each bus’ route is strongly dependent on which requests each bus is allocated

to, it makes no sense trying to optimize vehicle routes in a stage where the assignment

request-bus shows a large deviation from iteration to iteration.

On the basis of these observations, an optimization process with two phases is

performed. In the model presented here, there is a first stage, where only the first vector

component is optimized by moving the fireflies only in this dimension of the search space.

In a second stage, the other components are optimized by anchoring the first component

and allowing the movement of the fireflies in these other dimensions.

Figure 4.4 displays the evolution of the α parameter − described in Section 4.2.4

− in the two-phase optimization process. The X-axis shows the iteration sequence, while

the Y-axis shows the value of alpha in the respective iteration, which is scaled, in the first

phase, according to the first dimension’s range, and, in the second phase, according to the

range of the other dimensions.
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Figure 4.4: Evolution of the α parameter

4.2.10 Implementation

One of the main difficulties in implementing the algorithm is the magnitude that

the numbers might assume. To workaround the problem the programming language

Python was chosen due to its native implementation of integers with unlimited size. Be-

sides, the proposed model has a considerable quantity of matrix operations, therefore, the

libraries NumPy and Scipy were used for that purpose. To draw the graphs, the Matplotlib

library was chosen, mainly due to its easy-to-use interface for the programmer.

A special concern with the numerical operations and the data types had to be taken

to ensure no integer overflows and a controlled numerical error at the lowest level.

To obtain a better performance and to have the most recent features available, the

implementation was developed and executed on the newest possible tool versions, namely,

the versions 3.4 of Python, 1.10 of NumPy, 0.16 of SciPy and 1.3 of Matplotlib.

Figure 4.5 shows an example of some of the outputs given by the implemented

program. It displays the routes of two vehicles in a xy-plane. In each graph, the black dot

represents the depot and the red dots represent the drop-off stops, while the blue and the
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green dots are pick-up stops.

Figure 4.5: Example of output by the program

Figure 4.6 illustrates how the current best solution evolves along the algorithm’s

execution with a test input. Observe that the Y-axis represents the utility function instead

of the costs.

Figure 4.6: Evolution of the current best solution along the iterations



42

5 EVALUATION

The objective of this chapter is to evaluate the proposed implementation of the

firefly metaheuristic by running it with several problem instances as input. The charac-

teristics that are taken into consideration are the result quality, that is to say, how far

the calculated cost for the best solution found is from the instance’s optimal solution, the

algorithm progress, which tells how better the best solution found is in comparison to

the initial solution, and, at last, the running time.

Two distinct types of experiments are carried out. In the first place, the firefly ap-

proach is compared against the generic solver by executing both programs with the same

inputs. With it, it is expected to assess to what extent the metaheuristic implementation

outperforms the generic solver. In the second place, the near-optimal approach is tested

with instances that are recurrently used in the literature. Similarly, the deviation of the

solution to the optimum and the program processing time are evaluated and compared to

state-of-the-art methods.

In the total, the experiments include 24 instances which are solved in a computa-

tional environment with a 64-bit Intel Xeon CPU at 2.3 GHz, 15 GB of main memory and

a Python interpreter version 3.4 on a Linux operating system.

5.1 Results and Discussion

First of all, we wanted to evaluate the exact approach through the integer program-

ming solver GLPK and how it performs in comparison to the near-optimal implementa-

tion. The instances were then executed with a memory limit of 7 GB. But, as one could

have expected, the generic solver was not able to solve even the smallest instance, a2-16,

neither could a feasible, non-optimal solution be found. Therefore, in order to present re-

sults of comparison, the instance a2-16 was reduced to several smaller ones, with number

of requests between 3 and 8.

The results are shown in Table 5.1, which summarizes the values that we are in-

terested in. In the columns Req, Bus and Cap are listed the features number of requests,

number of buses and vehicle capacity, respectively, for each instance. The columns Opt.

and CPU-GLPK display the costs of the optimal solution found by the generic solver and

the CPU time in minutes, respectively. The columns Firefly Sol. and % Opt. show the

solution found by the metaheuristic approach and its deviation to the optimum, this is
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calculated by simply dividing the value in Opt. by the one in Firefly Sol. Finally, the time

in minutes of the solution through the firefly algorithm can be seen in the last column.

Table 5.1: Results of the first evaluation
Inst. Req Bus Cap Opt. CPU-GLPK Firefly Sol. % Opt. CPU-Firefly
Test-1 3 2 3 58.05 0.1 69.75 83.2% 7.4
Test-2 4 2 3 68.10 0.9 98.51 69.1% 11.7
Test-3 5 2 3 76.27 2.0 134.29 56.8% 2.5
Test-4 6 2 3 96.54 45.0 149.32 64.6% 3.3
Test-5 8 2 3 - - 158.67 - 5.7

Note that, because it had reached the execution limit, the exact approach could not

solve the instance Test-5 of the experiment. This fact together with the growth of CPU

time required by GLPK to solve instances as they become bigger suggest an exponential

increase in use of resources (e.g. processing time and memory) that the exact solver

consumes. All in all, it confirms what one would generally expect in the case that the

growth of the input entails the increase in the number of dimensions of the solution space:

the so-called Bellman’s curse of dimensionality1.

In light of the results, one can conclude that, on the one hand, GLPK is very ef-

fective for small instances, but on the other hand, due to its high complexity of both time

and space, it is not capable of being applied for larger inputs, as in real-world applica-

tions. As opposed to that, the solution with the metaheuristic may be not so effective in

delivering the optimal result. However, due to its robustness, its efficiency when solving

larger instances lies way above the exact approach. This can be clearly seen in the column

CPU-Firefly, whereby the algorithm’s computational time presents a relatively small vari-

ation and appears to have a steady growth as the inputs become larger. This observation

is supported by the subsequent experiments.

The second evaluation analyzed the following three aspects of the problem solver

that implemented the firefly algorithm: (i) how close to the optimum the metaheuristic

approach can reach, i.e. the solution quality; (ii) how the solutions are improved from the

initial feasible solution until the final one, this indicates to what extent the optimization

method in fact helps minimizing the cost function; (iii) how, in a temporal perspective,

the application behaves regarding the increase in the input size.

From the total of 24 instances 15 could be solved, the results regarding the quality

and progress are presented in Table 5.2. The two first columns describe the characteristics

1. See Bellman, Richard E. 2003. Dynamic Programming. Courier Corporation.
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of the data inputs, respectively name and optimal solution. The columns Final Sol. and

Optimality show the best solution found and its proportion with respect to the instance

optimum. The two last columns refer to the progress of the solutions, in Initial Sol. is the

first yielded feasible solution and in Dev. to Initial Sol. is the deviation of the final result to

the initial one, it is calculated by dividing the difference between these two values by the

initial solution, in formula: Dev. to Initial Sol. = (Initial Sol.− Final Sol.)/Initial Sol..

Table 5.2: Results of the second evaluation − Quality and progress
Instance Optimum Final Sol. Optimality Initial Sol. Dev. to Initial Sol.
a2-16 294.25 312.96 94.02% 335.85 6.81%
a2-20 344.83 373.89 92.23% 427.48 12.54%
a2-24 431.12 442.85 97.35% 496.92 10.88%
a3-18 300.48 347.10 86.57% 374.20 7.24%
a3-24 344.83 409.73 84.16% 456.86 10.32%
a3-30 494.85 614.13 80.58% 615.99 0.30%
a3-36 583.19 - - - -
a4-16 282.68 310.84 90.94% 354.54 12.33%
a4-24 375.02 481.16 77.94% 567.63 15.23%
a4-32 485.50 639.73 75.89% 665.27 3.84%
a4-40 557.69 780.13 71.49% 841.92 7.34%
a4-48 668.82 956.90 69.89% 1032.38 7.31%
a5-40 498.41 779.32 63.95% 818.14 4.74%
a5-50 686.62 926.23 74.13% 1018.84 9.09%
a5-60 808.42 1195.94 67.60% 1257.38 4.89%
a6-48 604.12 993.08 60.83% 1025.55 3.17%

Note that it was not possible to find a solution for the instance a3-36. That is

mainly due to the fact that it has a high rate of requests per vehicle. As one can see in

Table 2.1, it implies that, with a higher number of requests in a bus route, it becomes very

often impossible to arrange the locations in an order that fulfills the problem’s constraints.

On this issue, one should take into consideration, that there are two distinct tasks that are

affected by the density of request per bus, firstly, the assignment of requests to buses,

secondly, the arrangement of each bus’ route. Then, as the former is performed merely

randomly, the algorithm of domain correction, which is applied solely to the routes, can

be quite ineffective since the desired effect depends broadly on the assignment of requests

to the route.

When considering the optimality of the results, one can ascertain that the im-

plementation delivers very good solutions to the smaller instances, for example, from the

instance a2-16 until the instance a4-16 the mean value for the optimality is approximately
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90%. The other outcomes, whose optimalities lie below the percentage of 80%, have a

performance that should already be expected, since, in these cases, the search space be-

comes very large due to its high dimensionality. Besides, the sparseness of the regions of

feasible solutions increase in such a way, that the interaction between the fireflies becomes

less and less frequent, thus, almost annulling the optimization process.

Moreover, the balance between exploration and exploitation plays an important

role. A policy of exploration tends to lead the optimization process away from local

optima, avoiding low quality solutions, at the expense of increasing the processing time.

By contrast, a policy of exploitation tends to a local search, delivering impaired solutions,

but in a short period of time. To sum up, whether the solution of an instance has a better

or worse quality depends also on this balance, the optimality can in some cases eventually

be improved, though the price that one have to pay might be unwanted.

At last, the progress from a feasible initial solution to the best solution has pre-

sented a variation at the experiments, namely from 0.3% to over 15%. That is mostly

because of the domain correction procedure performed with the randomly distributed vec-

tors of the initial solutions. Since the set of initial solutions happens to be high probably

invalid, they pass through the domain adjustment algorithm, whose heuristic for forming

the feasible route may eventually be good enough to place the vector very close to the

optimum, causing a low deviation of the final solution.

Table 5.3 compares the computing times taken by the experiments with the com-

puting times of two solvers from the literature. In the columns CPU1 and CPU2 are the

processing times of the solutions by Parragh (2011) and by Parragh and Schmid (2013),

respectively. Some CPU times were not included in the respective papers, these are then

marked with a dash (-) in the respective cell of the table. Finally, the column CPU-Firefly

illustrates the results of the experiments realized by this work. In bold are highlighted the

ones which executed faster than the solution of Parragh (2011).
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Table 5.3: Results of the second evaluation − Running time
Instance CPU1 CPU2 CPU-Firefly
a2-16 68.2 0.12 63.3
a2-20 133.8 0.28 160.5
a2-24 187.8 0.35 419.3
a3-18 45.4 - 29.5
a3-24 86.8 0.29 77.4
a3-30 105.6 0.50 151.2
a3-36 162.6 0.83 370.6
a4-16 26.0 - 14.5
a4-24 50.8 - 37.0
a4-32 86.0 0.55 129.4
a4-40 130.6 0.78 233.5
a4-48 253.8 1.62 222.3
a5-40 - 0.85 156.8
a5-50 - 1.60 366.1
a5-60 - 2.51 323.1
a6-48 - 1.14 146.7
a6-60 - 2.29 279.3
a6-72 - 4.43 648.7
a7-56 - 1.67 186.2
a7-70 - 2.88 348.5
a7-84 - 7.04 553.5
a8-64 - 2.14 101.8
a8-80 - 5.73 203.7
a8-96 - 9.92 477.4

As one can see, concerning processing time, the firefly implementation shows re-

sults equivalent to the approach of Parragh (2011). In comparison, our implementation

outperforms the latter in approximately half of the cases. Unfortunately, the desired effi-

ciency of the state-of-the-art method could not be achieved. A possible reason for that is

the sparseness of the feasible solution in the search space, which is so extreme that almost

every firefly movement operation results in infeasibility, because of that, the domain cor-

rection algorithm ends up by taking a large proportion of execution time. A second cause

for the undesired efficiency is the amount of numerical operations with very large inte-

gers, which are performed due to the designed representation of the solution and which

cannot be natively performed by the computer.

In general, the improvement of the code of the implementation could ultimately

improve the numerical results presented above. However, it would not change the overall

perspective of the approach in comparison with the other ones from the literature.
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6 CONCLUSION

First of all in this research, the state-of-the-art and the approaches proposed in the

literature of the Dial-a-ride problem (DARP) were studied. The so-called two-index math-

ematical formulation was chosen to serve as the definition of the optimization problem,

which was afterwards transcribed into a programming language, namely AMPL, inter-

preted and executed by the generic solver GLPK. Secondly, the firefly algorithm (FA) was

implemented as a metaheuristic approach to solve the DARP with the assumption that it

would outperform the generic solver in cases of larger inputs. Finally, both methods to

solve the problem were evaluated through experiments, which were carried out with the

instances that are utilized in the literature with the purpose of assessing the outcomes.

We started with the premise that the GLPK would not be capable of being applied

in practice due to the combinatorial growth of the solution space that larger instances

of the problem can generate. As expected, the evaluation results corroborates this hy-

pothesis, since the generic solver could merely deliver solutions for very small instances,

smaller than the simplest one of our dataset.

Therefore, we assumed that a metaheuristic implementation was necessary in or-

der to be able to overcome the challenges imposed by the complexity of the DARP. The

recently-conceived firefly algorithm seemed to be suitable for this purpose, mainly be-

cause this technique creates several initial solutions, which are spread over the multi-

dimensional space, and which interact with each other towards the convergence to an

optimal result. The program showed satisfactory answers by solving larger instances than

those GLPK was capable of, and in some cases reaching optimality of over 90%.

In addition, in order to asses our method with the current scientific perspective, we

put its execution time in comparison to state-of-the-art techniques. As a result, it turned

out to deliver some results as fast as one of the considered algorithms, what evidences its

possible applicability.

Concerning the context of the DARP, it has been mostly applied to the transporta-

tion of disabled people by small vehicles, who can use this flexible service instead of

a taxi, what in turn implies significantly higher costs to those people. Working on the

problem contributes towards the improvement of the current public transportation in both

small and large towns. Besides, approaching the DARP as an optimization problem al-

lows the organizations, that act in the branch, to guarantee a good cost-benefit relationship

in the operation of such a service.
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Furthermore, none of the works found in the literature tried to solve the problem

with swarm intelligence. In this sense, this work proposed a novel approach for addressing

the DARP, using the firefly metaheuristic, which had already succeeded in solving the

traveling salesman problem (Jati and Suyanto 2011).

Another contribution to the field is the vectorial representation of the solution,

whose components are directly related to the problem features, such as the routes of each

vehicle or the assignment of requests to vehicles. On the one hand, this makes possible

to easily operate with the vectors, on the other hand, this implies in extra computational

costs by having to transform the vector for every evaluation of the objective function.

Besides, in order to obtain feasible solutions, the problem of correcting the firefly

vectors had to be tackled. The idea of seeing it as a constraint satisfaction problem and

solving it with the AC-3 algorithm was a new way of treating the issues regarding the

many constraints, which arise when designing routes for the vehicles in the DARP.

In summary, the model presents however some bottlenecks, the main one is the

large amount of infeasible regions in the search space, what causes the implemented pro-

gram to spend a lot of time correcting the solutions that fall into such regions. Besides,

because of this, it is extremely hard finding feasible solutions for large instances. The

workaround for this issue would be suitable for further research. A simple suggestion

would be applying a correction not only to the dimensions related to the vehicle routes, as

it was done in this work, but also for the request-vehicle assignment dimension. However,

a more effective approach would actually reinvent the model of the solution space, in such

a way that invalid regions would not exist at all, in this way, both the processing time and

the optimality of the results could be drastically improved.

Furthermore, the evaluation of the objective function for a given solution repre-

sents also a high computational effort, thus, a second point for future research would be

developing an efficient way to realize the vector transformations required to calculate the

route costs, or rather creating a totally new way to evaluate the objective function. Finally,

the method could significantly benefit from a parallel implementation of the FA or from a

multiagent-oriented approach.

To sum up, we presented a model together with a prototype to solve the Dial-a-

ride problem, which showed solutions comparable to state-of-the-art methods. After all,

the knowledge generated from this research seems to be consistent, indeed, with some

betterments it would stay not very far from practical applications.



49

BIBLIOGRAPHY

Apostolopoulos, Theofanis, and Aristidis Vlachos. 2010. “Application of the Firefly Al-

gorithm for Solving the Economic Emissions Load Dispatch Problem”. International

Journal of Combinatorics 2011.

Baugh Jr., JOHN W., Gopala Krishna Reddy Kakivaya, and John R. Stone. 1998. “In-

tractability of the Dial-a-Ride Problem and a Multiobjective Solution Using Simu-

lated Annealing”. Engineering Optimization 30 (2): 91–123.

Berbeglia, Gerardo, Jean-François Cordeau, and Gilbert Laporte. 2010. “Dynamic pickup

and delivery problems”. European Journal of Operational Research 202 (1): 8–15.

Braekers, Kris, An Caris, and Gerrit K. Janssens. 2014. “Exact and meta-heuristic ap-

proach for a general heterogeneous dial-a-ride problem with multiple depots”. Trans-

portation Research Part B: Methodological 67:166–186.

Carvalho, Marco Aurelio de, Semyon D. Savransky, and Tz-Chin Wei. 2004. 121 Heuris-

tics for Solving Problems. Lulu.com.

Cordeau, Jean-François. 2006. “A Branch-and-Cut Algorithm for the Dial-a-Ride Prob-

lem”. Operations Research 54 (3): 573–586.

Cordeau, Jean-François, and Gilbert Laporte. 2007. “The dial-a-ride problem: models and

algorithms”. Annals of Operations Research 153 (1): 29–46.

Fourer, Robert, David M. Gay, and Brian W. Kernighan. 1990. “A Modeling Language

for Mathematical Programming”. Management Science 36 (5): 519–554.

. 2003. AMPL: A Modeling Language for Mathematical Programming. 2nd. Pa-

cific Grove, CA: Cengage Learning.

Gribkovskaia, Irina, Øyvind Halskau sr., Gilbert Laporte, and Martin Vlček. 2007. “Gen-
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