
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

CURSO DE CIÊNCIA DA COMPUTAÇÃO

WILLIAM BOMBARDELLI DA SILVA

Towards Synchronizing Relations Between
Artifacts in the Java Technological Space

Monografia apresentada como requisito parcial
para a obtenção do grau de Bacharel em Ciência
da Computação

Trabalho realizado na Technische Universität
Berlin dentro do acordo de dupla diplomação
UFRGS - TU Berlin.

Orientadora brasileira: Prof.a Dra. Leila Ribeiro
Orientador alemão: Dr.-Ing. Frank Trollmann

Porto Alegre
2016

CIP — CATALOGAÇÃO NA PUBLICAÇÃO

Bombardelli da Silva, William

Towards Synchronizing Relations Between Artifacts in the
Java Technological Space / William Bombardelli da Silva. –
Porto Alegre: CIC da UFRGS, 2016.

10 f.: il.

Trabalho de conclusão (graduação) – Universidade Federal do
Rio Grande do Sul. Curso de Ciência da Computação, Porto Ale-
gre, BR–RS, 2016. Orientador: Leila Ribeiro.

1. Sincronização de Modelos. 2. Metamodelos Java. 3. Rede
de Modelos. 4. Transformação de Modelos. 5. Desenvolvimento
Orientado a Modelos. 6. Engenharia de Software. I. Ribeiro,
Leila. II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos Alexandre Netto
Vice-Reitor: Prof. Rui Vicente Oppermann
Pró-Reitor de Graduação: Prof. Vladimir Pinheiro do Nascimento
Diretor do Instituto de Informática: Prof. Luis da Cunha Lamb
Coordenador do Curso de Ciência de Computação: Prof. Carlos Arthur Lang Lisbôa
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

RESUMO

O uso de modelos em processos de engenharia de software tem crescido nos últimos anos.

Ao passo que o uso cresce, cresce também a relevância de alguns problemas relacionados

à área. Um deles é o problema de sincronização de modelos, que consiste basicamente

em manter todos os modelos de uma aplicação de software consistentes entre si. Em

outras palavras, os modelos de um software tendem a ser mudados ao longo do seu tempo

de vida, e quando isto acontece, estas mudanças têm que ser devidamente despachadas

a todos os modelos. Para aplicações de software de grande porte é inviável realizar tal

procedimento de sincronização manualmente, portanto, é desejada a criação de métodos

automáticos capazes de sincronizar os modelos do software.

Não exploramos este problema para qualquer tipo de software, ao invés disso limitamos

nosso domínio ao espaço tecnológico Java, de maneira que o escopo deste trabalho perma-

neça factível. Procede-se, aqui, portanto (1) identificando e definindo formalmente alguns

modelos do espaço tecnológico Java, (2) identificando e formalizando algumas relações

entre eles, criando uma rede de metamodelos a ser mantida sincronizada, e mostrando

como essas relações trabalham através de um caso representativo, e por fim (3) discutindo

a sincronização desta rede de metamodelos. Os resultados incluem a implementação des-

sas relações e o relatório sobre a experiência do desenvolvimento deste trabalho.

Palavras-chave: Sincronização de Modelos. Metamodelos Java. Rede de Modelos.

Transformação de Modelos. Desenvolvimento Orientado a Modelos. Engenharia de Soft-

ware.

RESUMO ESTENDIDO

Este é um resumo estendido em português para a Universidade Federal do Rio

Grande do Sul. O trabalho de conclusão original, em inglês, foi apresentado na Technis-

che Universität Berlin através do programa de dupla diplomação UNIBRAL II entre as

duas universidades.

1 Introdução

Os últimos avanços relacionados a técnicas de engenharia de software incluem a

assim chamada engenharia orientada a modelos (MDE1), sinônimo para desenvolvi-

mento orientado a modelos (MDD2), onde modelos de software são os artefatos pri-

mários do desenvolvimento do software. Em MDE, um sistema de software tem pos-

sivelmente diversos modelos abstraindo-o, cada um deles representando certos aspectos

de todo o sistema. Esses modelos têm relações entre si, no sentido de que devem des-

crever o sistema consistentemente, não apresentando contradições lógicas. Exemplos de

modelos de software são diagramas de classes UML, diagramas de casos de uso ou até

mesmo código-fonte. Muito embora o uso de modelos pode contribuir positivamente para

o desenvolvimento de aplicações de software, isso também introduz alguns problemas,

entre eles o problema de sincronização de modelos, que consiste basicamente em man-

ter todos os modelos de um software consistentes entre eles mesmos. Em outras palavras,

ao passo que uma aplicação de software evolui, seus modelos sofrem alterações que de-

vem ser encaminhadas corretamente a todos os outros modelos dessa aplicação (DISKIN,

2011).

Propõe-se, então, neste trabalho uma abordagem ao problema baseada na criação

de uma rede de modelos interconectados, que deve ser mantida consistente, i.e. todos

os modelos dessa rede devem estar sincronizados. Para exemplificar, suponha um dia-

grama de classes UML, uma séria de diagramas de sequência UML e um código-fonte.

Se um método tem seu nome alterado no diagrama de classes, todas as ocorrências desse

método devem ter seus nomes atualizados nos diagramas de sequência e no código-fonte.

Acontece, porém, que uma ferramenta automática e genérica para sincronização de mo-

delos capaz de ser aplicada na prática não é conhecida por nós, apesar da existência de

1Model-driven Engineering
2Model-driven Development

pesquisas acadêmicas nessa direção.

O objetivo amplo deste trabalho é explorar o problema de sincronização de mode-

los, analisando modelos e as relações entre eles e estabelecendo técnicas de sincronização.

Todavia, para manter o escopo factível, restringimos o domínio ao espaço tecnológico

Java e fixamos as seguintes metas: (1) apresentar e definir formalmente alguns mode-

los do espaço tecnológico Java; (2) formalizar e explicar algumas relações entre esses

modelos, criando uma rede de metamodelos. e (3) discutir como sincronização pode ser

alcançada nessa rede. Está fora, portanto, do escopo deste trabalho a criação de definições

completas de metamodelos ou a implementação de um algoritmo totalmente funcional de

sincronização, assim como uma análise teórica profunda do problema ou da performance

das relações desenvolvidas. Contudo, os resultados deste trabalho contribuem para um

melhor intendimento do problema de sincronização de modelos de espaços tecnológicos

complexos.

2 Fundamentação

Abaixo está o resumo de algumas definições importantes para o restante do texto.

2.1 Modelos

De acordo com Favre (2004b), um sistema é o elemento de discurso principal ao

falar de MDE. Um modelo é um sistema que representa um outro sistema. Um modelo

é expresso usando uma linguagem de modelagem, que, por sua vez, nada mais é que um

conjunto de todos os modelos expressados naquela linguagem. Por final, um metamodelo

é então um modelo de uma linguagem de modelos, isto é ele especifica o que pode ser

escrito usando uma certa linguagem. Um modelo M está em conformidade com um me-

tamodeloMM , se e somente se,M pertence à linguagem especificada porMM (FAVRE,

2004a).

2.2 Sincronização de Modelos

Uma relação de modelos é definida aqui abstratamente como qualquer relaciona-

mento ou restrição possível de acontecer entre um modelo fonte e um modelo alvo. Sin-

cronização de modelos pode ser vista como uma função s : M×M×∆M×N×N×∆N →

M × N , onde s(m0,m1, δm, n0, n1, δn) = (m2, n2) significa que os modelos sincroniza-

dos m2 e n2 são criados a partir dos modelos inicialmente sincronizados m0 e no e os

modelos modificados não sincronizados m1 e n1, considerando as modificações (respec-

tivamente δm e δn) executadas sobre ambos (DISKIN, 2011). Uma rede de modelos de um

sistema S é um grafo não-direcionado G = (V,E), onde cada vértice vi ∈ V representa

um modelo único i abstraindo S, e uma aresta {vi, vj} existe se, e somente se, há uma

relação entre ambos os modelos i e j.

2.3 Gramática de Grafos Triplos

Com o uso de um grafo triplo, uma relação entre um modelo fonte S e um modelo

alvo T é abstraída em uma tripla (GS, GC , GT) – onde GS é a representação em grafo

dos elementos do modelo fonte, GT é a representação dos elementos do modelo alvo,

e GC representa a correspondência entre os dois conjuntos de elementos – juntamente

com dois mapeamentos sG : GC → GS e tG : GC → GT , que conectam os três grafos

(HERMANN et al., 2011). Nesse caso, uma adição no grafo triplo G = (GS, GC , GT),

que leva a um novo grafo triplo H = (HS, HC , HT), consiste em um morfismo de grafo

triplo m : G→ H , com m = (mS,mC ,mT), de acordo com a Figura 1.

Figura 1: O morfismo m : G→ H é um grafo triplo m = (mS,mC ,mT).

Fonte: (HERMANN et al., 2011)

Uma regra tripla é um morfismo de grafo triplo t = (tS, tC , tT) : L → R. Um

axioma triplo é uma regra tripla ta = (tS, tC , tT) : ∅ → R (EHRIG et al., 2007). Uma

gramática de grafo triplo (TGG3) TGG = (ta, Trules) consiste de um axioma triplo ta

e um conjunto de regras triplas Trules (GIESE; HILDEBRANDT; LAMBERS, 2010, p.

4). Grafos triplos são utilizados neste trabalho como descrição de uma relação entre

dois metamodelos, enquanto que TGGs descrevem uma espécie de linguagem da relação

consistente entre estes dois metamodelos. Entretanto, regras extras podem ser derivadas

3Triple Graph Grammar

de uma TGG para criar a semântica operacional do procedimento de sincronização da

relação (GIESE; HILDEBRANDT; LAMBERS, 2010).

3 Relações de Metamodelos no Espaço Tecnológico Java

Foi selecionado neste trabalho um conjunto de metamodelos típicos do espaço

tecnológico Java e foram identificadas relações entre eles, criando-se assim uma rede de

metamodelos. Dessa rede, quatro metamodelos e suas relações são trabalhadas mais pro-

fundamente, a saber Java, UMLClassDiagram, UMLSequenceDiagram e UMLContract.

Um modelo Java (i.e. o código-fonte) contem informações tanto estruturais quanto

comportamentais, e por isso se relaciona com os outros três metamodelos analisados. O

metamodelo Java criado não é completo, pois não modela toda a gramática da linguagem

Java, entretanto aspectos arquiteturais de um programa orientado a objetos (e.g. classes,

interfaces, métodos, atributos, etc.) são representados. O metamodelo UMLClassDia-

gram é construído a partir dos conceitos de classe, propriedade, operação, interface e

pacote. Ele é usado para descrever a estrutura de um programa orientado a objetos e sua

relação com o metamodelo Java é dado por uma tradução quase direta entre seus elemen-

tos.

Para representar alguns aspectos comportamentais, UMLSequenceDiagram é

usado, dado que um diagrama de sequência representa tempos-de-vida de objetos e men-

sagens trocadas entre eles. No modelo Java isto pode ser representado por chamadas de

métodos entre classes ou por anotações sobre métodos, representando a ordem em que as

trocas de mensagens ocorrem. Portanto, na nossa abordagem, cada linha-de-vida (life-

line) representa o comportamento de um método Java e cada mensagem enviada a partir

desta linha-de-vida é traduzida por uma anotação (Java annotation) sobre o respectivo

método, codificando, assim, a metainformação da ordem de chamadas a outros métodos.

O metamodelo UMLContract é baseado nas ideias de programação por contrato,

onde operações têm restrições (constraints) de pré e pós-condição assim como de invari-

ante. Sua relação com Java é que cada restrição dos contratos pode ser (1) testada atra-

vés de asserções (assertions) e (2) expressa por anotações no modelo Java. Além disso,

pode-se ter métodos de checagem de consistência interna de classe que verificam as res-

trições da classe e, que, portanto, devem ser mantidas sincronizadas com os modelos de

UMLContract (i.e. os contratos). Desta maneira, as relações desenvolvidas neste traba-

lho estabelecem que cada restrição de UMLContract corresponde a uma anotação (sobre

um método ou atributo) de Java, assim como uma asserção pertencente a um método de

checagem da classe.

As três relações comentadas acima (UMLClassDiagram2Java, UMLSequence-

Diagram2Java e UMLContract2Java) foram desenvolvidas usando TGGs e avaliadas

através de alguns cenários de exemplo, onde o plug-in Eclipse MoTE utiliza as TGGs

para executar transformações para a frente (forward transformations) entre os modelos-

exemplo. As relações escritas não são completas, porém oferecem soluções para algumas

situações, o que parece ser contributivo para a pesquisa com TGGs. A relação UML-

Contract2Java mostra como transformações entre contratos podem ser transformados em

anotações e asserções em Java. A relação UMLSequenceDiagram2Java mostra como a

informação de sequência de trocas de mensagens entre classes pode ser transformada em

meta-informação no modelo Java através de anotações que codificam a ordem em que

as respectivas chamadas a métodos devem ser executadas. E, finalmente, a relação UML-

ClassDiagram2Java apresenta a transformação quase um-para-um entre os elementos dos

respectivos metamodelos.

4 Sincronização de Modelos no Espaço Tecnológico Java

Cada TGG da seção anterior representa uma aresta da rede de metamodelos cons-

truída neste trabalho e cada aresta pode ser vista como um problema de sincronização in-

dependente entre dois metamodelos. Grande parte da pesquisa acadêmica atual lida com

tal problema. Porém, para a nossa abordagem é necessário que toda a rede seja mantida

atualizada. Isto é, necessita-se um algoritmo de sincronização para uma rede de modelos.

Portanto, este trabalho propõe um algoritmo para a sincronização de toda uma rede de

modelos que utiliza um método de sincronização entre dois modelos já existente.

O algoritmo netsync proposto realiza, portanto, a partir de uma rede de mode-

los sincronizada (V0, E0) e um modelo s0, cujas modificações δs geram s1, a alteração

de s0 por s1, assim como as devidas alterações dos vizinhos N(s0) de s0, conforme as

regras definidas na respectiva TGG. A natureza recursiva de netsync garante que essas

alterações sejam propagadas ao longo da rede (V0, E0).

Garantidas as suposições de que (1) apenas um modelo é modificado por vez em

(V0, E0), (2) uma sincronização tem apenas uma direção (ou para frente ou para trás), (3)

a rede de entrada (V0, E0) é finita e acíclica e (4) sync não modifica o modelo alvo, se

esse já está sincronizado, então netsync (1) sempre termina, (2) é determinístico e (3) tem

complexidade temporal no pior dos casos polinomial, se, e somente se, a sincronização

entre dois modelos (sync) tem complexidade polinomial.

5 Conclusão

Este trabalho desenvolve a definição formal de alguns metamodelos do espaço tec-

nológico Java, contribuindo com disponibilização de tais metamodelos para uso futuro em

pesquisas acadêmicas e na industria; a definição de algumas relações entre esses metamo-

delos usando TGGs, demonstrando lados positivos e negativos do uso de TGGs para tal

fim; uma nova visão do problema de sincronização de modelos através da assim chamada

rede de metamodelos, que representa as interdependências entre artefatos de software; a

avaliação dos resultados através da demonstração de transformações de modelos no es-

paço tecnológico Java; e, por fim, a proposta de um algoritmo determinístico e que sempre

para para a sincronização de uma rede de metamodelos.

Os metamodelos não são completos, como por exemplo o metamodelo Java, que

não codifica informações comportamentais da gramática Java (e.g. statements), porém

são de tamanho suficiente para este trabalho. As relações, por sua vez, poderiam ser

mais extensivas, como a relação UMLSequenceDiagram2Java, que poderia capturar mais

informação do diagrama de sequência, que não somente a ordem da ocorrência das men-

sagens, porém também condições de guarda e restrições de tempo (vide OMG (2007)). O

algoritmo proposto netsync é claramente uma sugestão inicial, mas que apresenta uma

visão inédita do problema. A restrição de que a rede de entrada não pode ter ciclos, reduz

seu poder, porém a presença de ciclos requiriria um algoritmo capaz de lidar com modifi-

cações de mais de um modelo da rede. Evidencia-se aí uma oportunidade para trabalhos

futuros consequentes dos resultados apresentado neste texto.

Enfim, este trabalho se mostra contributivo em direção à aplicação de conceitos

teóricos de TGG em um caso prático de sincronização de modelos e relata a experiência

de desenvolver sincronização no espaço tecnológico Java.

REFERÊNCIAS

DISKIN, Z. Model synchronization: Mappings, tiles, and categories. In: Generative and
Transformational Techniques in Software Engineering III. [S.l.]: Springer, 2011. p.
92–165.

EHRIG, H. et al. Information preserving bidirectional model transformations. In:
Fundamental Approaches to Software Engineering. [S.l.]: Springer, 2007. p. 72–86.

FAVRE, J.-M. Foundations of meta-pyramids: languages vs. metamodels. In:
CITESEER. Episode II. Story of Thotus the Baboon, Procs. Dagstuhl Seminar. [S.l.],
2004. v. 4101.

FAVRE, J.-M. Foundations of model (driven)(reverse) engineering: Models.
In: Proceedings of the International Seminar on Language Engineering for
Model-Driven Software Development, Dagstuhl Seminar 04101. [S.l.: s.n.], 2004.

GIESE, H.; HILDEBRANDT, S.; LAMBERS, L. Toward bridging the gap between
formal semantics and implementation of triple graph grammars. In: IEEE. Model-Driven
Engineering, Verification, and Validation (MoDeVVa), 2010 Workshop on. [S.l.],
2010. p. 19–24.

HERMANN, F. et al. Correctness of model synchronization based on triple graph
grammars. In: Model Driven Engineering Languages and Systems. [S.l.]: Springer,
2011. p. 668–682.

OMG, O. Unified modeling language (omg uml). Superstructure, 2007.

TECHNISCHE UNIVERSITÄT BERLIN
FAKULTÄT IV ELEKTROTECHNIK UND INFORMATIK

BACHELORSTUDIENGANG INFORMATIK

WILLIAM BOMBARDELLI DA SILVA

Towards Synchronizing Relations Between
Artifacts in the Java Technological Space

Work presented in partial fulfillment
of the requirements for the degree of
Bachelor in Computer Science

Advisor: Dr.-Ing. Frank Trollmann
Reviewer: Prof. Dr. Dr. h.c. Sahin Albayrak
Reviewer: Prof. Dr. habil. Odej Kao

Berlin
March 2016

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig und eigenhändig sowie
ohne unerlaubte fremde Hilfe und ausschließlich unter Verwendung der aufgeführten
Quellen und Hilfsmittel angefertigt habe.

Berlin, den

...
Unterschrift

ABSTRACT

The use of models in software engineering processes has grown in the last few years. And

as it grows, grows also the relevance of some problems related to the realm. One of them

is the model synchronization problem, that basically consists in keeping all the models

of a software application consistent between themselves. In other words, the models of a

software tend to be changed over its lifetime, and as it happens, these changes have to be

properly forwarded to all the models regarding this software. For large software applica-

tions it is clearly inviable to perform such synchronization procedure manually, therefore,

it is desired the creation of automatic methods able to synchronize the software’s models.

We do not explore this problem for any kind of software, instead we limit our domain to

the Java technological space, so that the scope of this thesis still remains feasible. This

thesis thus proceeds by (1) identifying and formally defining some models of the Java

technological space, (2) identifying and formalizing some relations between them, cre-

ating a network of metamodels supposed to be kept synchronized, and showing through

a representative showcase how these relations work, and finally (3) discussing the syn-

chronization of this network of metamodels. The outcomes include the implementation

of these relations plus the report about the experience of developing it in this thesis.

Keywords: Model Synchronization. Java Metamodels. Network of Models. Iterative

Model Transformation. Model Transformation. Model-driven Engineering. Software

Engineering.

Zur Synchronisation von Relationen Zwischen Artefakten im Java Technologischen

Raum

ZUSAMMENFASSUNG

Die Anwendung von Modellen in Softwaretechnikprozessen ist in der letzten Jahren er-

heblich gewachsen. Als es zunimmt, nimmt auch die Relevanz eigener auf den Bereich be-

zogenen Probleme zu. Eines davon ist das Modell-Synchronisationsproblem, das grund-

sätzlich in dem konsistenten Bewahren von allen Modellen eines Softwaresystems be-

steht. Anders ausgedrückt tendieren die Modelle einer Software dazu, im Laufe der Zeit

verändert zu werden. Wenn das vorkommt, müssen diese Veränderungen richtig an alle

Modelle weitergeleitet werden. Für größere Anwendungen ist es offensichtlich unmög-

lich, solches Synchronisationsverfahren manuell zu unternehmen. Daher ist die Schaf-

fung von automatischen Verfahren, die in der Lage sind, Synchronisation durchzuführen,

wünschenswert.

Wir untersuchen dieses Problem nicht für jede Art von Software, stattdessen beschränken

wir unsere Domäne auf den technologischen Raum von Java derart, dass der Umfang die-

ser Arbeit immer noch realisierbar bleibt. Die vorliegende Arbeit geht in folgender Weise

vor: (1) Einige Modelle des Java technologischen Raums werden identifiziert und defi-

niert; (2) Einige Relationen zwischen denen werden identifiziert und formalisiert, sodass

ein Netzwerk von Metamodellen aufgebaut wird, das synchronisiert aufbewahrt werden

soll, und ein repräsentatives Beispiel gezeigt wird; und letztendlich (3) wird die Synchro-

nisation dieses Netzwerkes von Modellen diskutiert. Die Ergebnisse umfassen sowohl die

Implementation dieser Relationen, als auch den Bericht über die Erfahrung der vorliegen-

den Bachelorarbeit.

Schlagwörter: Modell-Synchronisation, Java-Metamodelle, Netzwerk von Modellen, Ite-

rative Modell-Transformation, Modell-Transformation, Modellorientierte Technik, Soft-

waretechnik.

LIST OF FIGURES

Figure 2.1 The summary of the definitions of system, model, metamodel, meta-
metamodel and modeling language ..14

Figure 2.2 An example of a network of models very similar to the one developed
in this work ...16

Figure 2.3 The morphism m : G→ H is a triple graph m = (mS,mC ,mT).16
Figure 2.4 An example of two triple rules ..17
Figure 2.5 Illustration of the terms of model relation, transformation and synchro-

nization and triple graph grammars (TGG) ..18

Figure 4.1 A network of metamodels in the Java technological space22
Figure 4.2 Simplification of the UMLClassDiagram metamodel25
Figure 4.3 An example of a model UMLClassDiagram visualized in two different

ways ..25
Figure 4.4 Simplification of the UMLSequenceDiagram metamodel.............................26
Figure 4.5 An example of a model UMLSequenceDiagram visualized in two dif-

ferent ways ..27
Figure 4.6 Simplification of the UMLContract metamodel ..28
Figure 4.7 The expanded version of the model from the picture 4.3 as an example

for UMLContract. Only abstract syntax is used for this example.28
Figure 4.8 The Java metamodel created..30
Figure 4.9 The equivalent Java version of the UML models from the Figures 4.3,

4.7 and 4.5 in abstract syntax..31
Figure 4.10 A more comprehensive Java model based on the Figure 4.9, but de-

picted in plain-text form, expressing the Java concrete syntax...............................31
Figure 4.11 The triple type graph for UMLClassDiagram and Java33
Figure 4.12 The triple rule uClassAttribute2jClassField ..34
Figure 4.13 The triple rule uInterfaceRealization2jInterfaceImplementation34
Figure 4.14 The triple type graph for UMLSequenceDiagram and Java36
Figure 4.15 The triple rule uLifeline2jMethodAnnotation ..36
Figure 4.16 The triple rule uMessageSequence2jInteractionAnnotation........................37
Figure 4.17 The triple rule uMessageSequence2jInteractionAnnotation_2....................37
Figure 4.18 The triple type graph for UMLContract and Java38
Figure 4.19 The triple rule uClassInvariant2jClassInvariant ...39
Figure 4.20 The triple rule uOperationPreInterval2jMethodPreAssert..........................39
Figure 4.21 Example of forward synchronization from a UMLClassDiagram model

(left) and a Java model (right) ..40
Figure 4.22 Example of forward synchronization from a UMLSequenceDiagram

model (left) and a Java model (right) ...42
Figure 4.23 Example of forward synchronization from a UMLContract model (left)

and a Java model (right) ...43

Figure 5.1 Synchronization scheme of the MoTE tool..44

LIST OF ABBREVIATIONS AND ACRONYMS

ATL Atlas Transformation Language

EMF Eclipse Modeling Framework

HTML Hypertext Markup Language

IDE Integrated Development Environment

LHS Left-hand Side

MDE Model-driven Engineering

MDSD Model-driven Software Development

MOF Meta Object Facility

RHS Right-hand Side

SUS System Under Study

TGG Triple Graph Grammar

UML Unified Modeling Language

CONTENTS

1 INTRODUCTION...8
1.1 Background ...8
1.2 Motivation..9
1.3 Objective ..10
1.4 Methodology ..10
2 FOUNDATIONS ...12
2.1 Models and MDE ..12
2.2 Model Synchronization...14
2.3 Triple Graph Grammar ...16
3 STATE OF THE ART...19
4 METAMODEL RELATIONS IN THE JAVA TECHNOLOGICAL SPACE21
4.1 Network of Metamodels ...21
4.2 Metamodel Definitions..23
4.2.1 UML Class Diagram..24
4.2.2 UML Sequence Diagram ...26
4.2.3 UML Contract..28
4.2.4 Java...29
4.3 Metamodel Relations ..32
4.3.1 Relations between UMLClassDiagram and Java ..33
4.3.2 Relations between UMLSequenceDiagram and Java ..35
4.3.3 Relations between UMLContract and Java ...38
4.4 Evaluation..40
5 SYNCHRONIZATION OF MODELS IN THE JAVA TECHNOLOGICAL

SPACE...44
5.1 Synchronization of a Network of Models..45
6 DISCUSSION ..48
7 CONCLUSION ...51
REFERENCES...53

8

1 INTRODUCTION

The techniques for software development has changed in the course of time since

the rise of general-purpose programmable computers and specially in the second half of

the 20th century with the rise of digital computers (Ceruzzi, 2003). In the beginning of

digital computer programming, machine code was used to describe algorithms, but as the

complexity and the size of such algorithms got bigger, this technique soon became im-

practicable, what evoked the need for a more sophisticated way of programming digital

machines. The assembly languages (also known as low-level programming languages)

came to solve this problem, but clearly the complexity kept increasing as well as the

need for new techniques and technologies for software programming. The popularization

of computing and the increasing application of computers in the practice urged the cre-

ation of high-level programming languages (e.g. Cobol, Fortran), which kept evolving

mainly in regard to the needs of the software market (Ceruzzi, 2003). More sophisticated

languages (e.g. C, Pascal) and new paradigms (e.g. modular and object-oriented program-

ming) also arose in the late 20th century. But the evolution of software development does

not seem to stop, evidenced by the lately increasing research on new software engineering

techniques such as the Model-driven Engineering.

The newest characteristics of the information system market, like the constant

evolution of the software systems, the interoperability between them and the large number

of developers working in a common software artifact have required the use of models in

software engineering, what is referred to as Model-driven Engineering (MDE) or Model-

driven Software Development (MDSD) (France & Rumpe, 2007). Although the use of

models may contribute positively to this new context, it also introduces new problems.

One of them is the model synchronization problem, that consists basically of keeping

all the models of a software system consistent between themselves. In other words, the

models of a software tend to be changed over its lifetime, and as it happens, these changes

have to be forwarded properly to all the models regarding this software.

1.1 Background

According to Czarnecki & Helsen (2006, p. 21), “models are system abstractions

that allow developers and other stakeholders to effectively address concerns, such as an-

swering a question about the system or effecting a change”. By defining a model as a

9

system abstraction, it becomes clear, that a software system might have several models

abstracted from it, each one representing certain aspects of the whole system. These mod-

els also have relations between them, in the sense that they are all supposed to describe

the actual system consistently by not presenting logical contradictions. Here, examples

of models are UML class diagram, Use Cases, or even the source-code itself. The terms

model and artifact will be used interchangeably throughout this document.

The constant evolving nature of current large-scale software systems causes their

models to be constantly changed (Diskin, 2011). But in order to maintain this whole

network of interconnected models consistent, the changes have to be forwarded through

the network, i.e. all models have to be synchronized. To exemplify, suppose one has a

UML Class Diagram, a series of UML Sequence Diagrams and the source-code. If a

method has its name changed in the class diagram, all occurrences of this method have to

have their names updated in the sequence diagrams and in the source-code. It turns out,

though, that a generic and automatic model synchronization tool able to be applied in the

practice is not known by us to exist, even though an expressive effort has been made by

the academic community to create solutions for this problem.

1.2 Motivation

In general, synchronized models enhance the documentation quality, since many

of them are used for documentation purposes; ease the act of evolving software, by bridg-

ing the gap between problem (abstract) and implementation (concrete) levels; and support

the debugging processes, since models are used to consult information about the system

under study. On the other hand, if one model is not kept consistent with another, it may

lose its validity, since the information it addresses cannot be trusted anymore, and con-

sequently the user cannot rely on it anymore. If the number of inconsistencies between

models is large enough, the user runs the risk of not being able to use a big part of their set

of models, what in turn lowers the quality of the software. This discussion points out to

the motivation of synchronization methods that allow the network of models of a system

to be kept consistent. In fact, the synchronization could be done manually by the users,

since they can a priori update all models related to the one under changes, but this man-

ual process usually requires much time from expensive workforce and it is error-prone.

Automated (or at least partially-automated) model synchronization endeavors to reach a

higher reliability on the models, as well as lower costs for the software maintainer.

10

Generally, the amount of inconsistencies tend to increase as the size of a program

grows. The complexity of the network of models as well as of the synchronization task

increases therefore too, what also gives reason to the application of more robust synchro-

nization techniques.

1.3 Objective

Based on these facts, the general goal of this thesis would be explore the problem

of model synchronization for complex technological spaces by analyzing the models con-

tained in them and the relations between these models, and establishing synchronization

techniques for them. Nonetheless, to work with a reasonable scope we restrict our domain

to the Java technological space, mainly due to the popularity of the technology and the

existence of well-established standard models like the UML.

More specifically, this bachelor thesis aims to (1) present and define formally some

models from the Java technological space, that might require synchronization, explaining

their objectives and some of their basic elements; (2) formalize and explain some rela-

tions between these models, creating a network of metamodels, so that synchronization

is possible; and finally (3) discuss how synchronization may be accomplished in this

network.

This thesis presents the documentation of the three objectives mentioned before.

Furthermore, the report of the difficulties and experiences found during the work process

and an examination of possible future development and challenges of the realm is also a

goal.

1.4 Methodology

In order to achieve the goals, the following procedure is taken. Firstly, a collection

of common metamodels used in the Java technological space is identified, this is done

through a state-of-the-art research. Then the formal definition of some of these metamod-

els are presented. So for example, in this phase the choice of the used metamodels (i.e.

UML Class Diagram, Java Code, etc.) is done and their formal definitions are shown.

Later on, given these defined metamodels, relations between them can be written.

So for example, in this phase the inherent relations between the UML Class Diagram

11

metamodel and the Java Code metamodel are written. Analogously, the relations between

Java Code and other metamodels of the Java technological space are also to be defined.

All of these relations are developed during the work of this thesis and constitute our

developed network of metamodels.

After having this network of metamodels ready, a showcase using a transforma-

tion method from the current academic literature is applied to illustrate how the relations

between the metamodels work. We work therefore with the hypothesis, that the meta-

models can be found or defined; that some relations between them can be written in some

language; and that some of these relations can be transformed using a tool or technique

available in the current literature.

It is out of the scope of this work the creation of complete metamodel definitions,

as well as the implementation of a full-working synchronization algorithm. A deep theo-

retic analysis about the problem or about the performance of the relations is also excluded

from this scope. Nevertheless, the results of this thesis contribute to a better understanding

of the problem of model synchronization of complex technological spaces.

The remainder of this document is structured as follows. Chapter 2 presents a

literature review comprising the basic definitions necessary for the further development

of the text. Chapter 3 shows the current stage of scientific research related to the field of

this work. Chapter 4 presents the developed metamodels and the relations between them

and the Chapter 5 proposes an algorithm for the synchronization of a network of models.

Finally, Chapter 6 and 7 discuss the results and give an overview of the work.

12

2 FOUNDATIONS

Before describing the development of this thesis, it is important to review some

important definitions regarding Model-driven Engineering. Below is a list of necessary

basic concept definitions that will be used throughout this document. Some of these

definitions are rather narrower than they could be, but for the scope of this thesis they

seem to be suitable.

2.1 Models and MDE

The items below introduce general definitions of terms regarding MDE.

• Technological Space: According to the definition from Kurtev et al. (2002, p. 1),

“A technological space is a working context with a set of associated concepts, body

of knowledge, tools, required skills, and possibilities. It is often associated to a

given user community with shared know-how, educational support, common liter-

ature and even workshop and conference meetings”. By Java technological space

it is meant the set of commonly used models, practices, techniques and technolo-

gies in Java software development. For instance, object-oriented development, unit

tests, code documentation and the Java Virtual Machine are items of the Java tech-

nological space.

• System: “A system is the primary element of discourse when talking about MDE.”

(Favre, 2004b, p. 13). One example of a system, according to this definition, is

a Java program, since it can be the primary handled element in a certain software

engineering context. Nevertheless, this definition is wide enough to affirm that a

UML Class Diagram is a system, since it can be the primary handled element in a

certain context. This fact allows an easier-to-understand definition of model.

• Model: According to Favre (2004b), a model is a possible role that a system can

play. A system plays the role of a model when it represents another system (system

under study, or SUS). By being so, when one refers to a model M , it is meant a

system that represents (or abstracts) another system S. Moreover, Seidewitz (2003)

affirms that models can be used (1) to describe a system, in this case the model

makes statements about the SUS, an example is an UML sequence diagram em-

ployed to help understand the behavior of a Java program. But models can also be

13

used (2) to specify a system, in this case it is used in the validation of the system, an

example is a UML class diagram employed as design specification of a Java system.

Further examples of models, according to this definition, are a relational database

diagram, the documentation of a system in Java Doc or even a Java source-code.

• Modeling Language: A model is expressed, using a modeling language. “A mod-

eling language (L) is a set of models” (Favre, 2004b, p. 13), that contains all the

models Mi expressed in that language, i.e. L 3 Mi. Examples of modeling lan-

guages are the UML, the diagram notation for relational database diagram or the

Java language.

• Metamodel: Favre (2004a, p. 14) affirms also: “A metamodel is a model of a mod-

elling language”. In other words, a metamodel specifies what can be written using a

certain modeling language. One certain model M is conform to a meta-metamodel

MM , if and only if, M belongs to the language specified by MM . Examples of

metamodels are UML specification document (OMG, 2007), the entity-relationship

metamodel (Chen, 1976) or the Java metamodel − one example is to be found in

Heidenreich et al. (2009). Finally, Seidewitz (2003, p. 29) also claims: “Because

a metamodel is a model, we express it in some modeling language”. One example

of a modeling language for metamodels is the EMF Ecore1 (which is the modeling

language for metamodels used in this thesis and is explained further below).

• Meta-metamodel: Analogously to the metamodel definition, one can go forth and

define meta-metamodel, which is a model that specifies a modelling language for

metamodels. An example of meta-metamodel is the Meta Object Facility (MOF)

(OMG, 2015), which the EMF Ecore is supposedly conform to. It is to note also that

such derivation can be done iteratively in the sense that a meta3model definition is

also possible, although it is not useful for the scope of this thesis.

• Meta Object Facility: “The Meta Object Facility (MOF) provides an open and

platform-independent metadata management framework and associated set of meta-

data services to enable the development and interoperability of model and metadata

driven systems” (OMG, 2015). According to our definition, the MOF is a meta-

metamodel, that inherits much from the UML and deals with the ideas of classes,

properties and associations, providing an extensible but simple fashion to define

metamodels.

1https://eclipse.org/modeling/emf

14

• EMF Ecore: The EMF Ecore2 is the modeling language utilized in this thesis to

describe all the used metamodels (e.g the Java metamodel). This is an initiative

of the EMF Project and aims to provide not only a modeling language but a set of

tools for creating metamodels, such as an Eclipse plug-in generation feature, that

enables the model developer to easily test and debug its metamodels. The EMF

Ecore meta-metamodel is supposedly very similar to the essential MOF standard.

This is one reason why it is applied here. A proof of such compliance is not known

by us though.

The Figure 2.1 illustrates our understanding of the definitions above. On the left is

a depiction of the theoretical definitions of system, model, metamodel, meta-metamodel

and modeling language. Like stated before, a system is represented by models, which

themselves are expressed in languages and are conform to metamodels. A more concrete

and practical illustration of the definitions is on the right. This example shows a scenario

very close to the implementation made in Chapter 4.

Figure 2.1: The summary of the definitions of system, model, metamodel, meta-
metamodel and modeling language

2.2 Model Synchronization

The items below introduce terms regarding the relation between models and the

model synchronization.

• Model Relation: Model relation is abstractly defined here as every relationship or

2https://eclipse.org/modeling/emf

15

constraint possible to happen between one source model and one target model. For

instance, the models UML class diagram and Java code have a relation, because

once a new class is created in the class diagram, the correspondent class has to be

created in the Java code. Moreover, a UML class diagram with contract definitions

(pre and post-conditions) has a relation to the JUnit model, since the former has to

be correspondingly tested by the latter.

• Model Transformation: Model transformation can be viewed as common data

transformation – very common in computer science – with the specificity of dealing

with models (Czarnecki & Helsen, 2006). More specifically, model transformation

is defined here as a function t : M → N , where t(m) = n means that a target

model n ∈ N is created from a source model m ∈M , M and N being respectively

the modeling languages of the metamodels ΦM and ΦN . Practical example: Cre-

ation of Java code from UML class diagram. Note that, model transformation is by

nature unidirectional and does not preserve the information of the target model (e.g.

comments in the Java code).

• Model Synchronization: The goal of model synchronization is to maintain all

relations between the models of a system consistent, as updates are performed

over them (Diskin, 2011). More specifically, model synchronization is defined

here as a function s : M × M × ∆M × N × N × ∆N → M × N , where

s(m0,m1, δm, n0, n1, δn) = (m2, n2) means that final synchronized models m2 and

n2 are created from the initial synchronized models m0 and no and the modified

non-synchronized models m1 and n1, considering the modifications (respectively

δm and δn) performed over both. Practical example: Modification of a method

name (δm) in the UML class diagram (m0) has to be forwarded to the Java code

(n0), without losing extra information of it (e.g. comments). Other terms for model

synchronization are iterative or information preserving bidirectional model trans-

formation.

• Network of Models: A network of models of a system S is an undirected graph

G = (V,E), where each vertex vi ∈ V represents a unique model i abstracting S,

and an edge {vi, vj} exists if, and only if, there is a relation defined between both

models i and j. In the Figure 2.2 is an example of a network of models, illustrating

the possible complexity of such network. More discussion is to find in Mens &

Van Gorp (2006).

16

Figure 2.2: An example of a network of models very similar to the one developed in this
work

2.3 Triple Graph Grammar

The items below introduce terms regarding the theory used to code the relations

developed in this work, namely triple graph grammars (TGG).

• Triple Graph: With the use of a triple graph a relation between a source model S

and a target model T are abstracted into a triple (GS, GC , GT) – where GS is the

graph representation of source model elements, GT is the graph representation of

target model elements, and GC represents the correspondence between the two set

of model elements – together with two mappings sG : GC → GS and tG : GC →

GT , which bind the three graphs together (Hermann et al. , 2011).

In this case, an addition in the triple graph G = (GS, GC , GT), that leads to a new

triple graph H = (HS, HC , HT), consists in a triple graph morphism m : G→ H ,

with m = (mS,mC ,mT). According to the Figure 2.3.

Figure 2.3: The morphism m : G→ H is a triple graph m = (mS,mC ,mT).

Source: (Hermann et al. , 2011)

• Triple Rule: A triple rule is a triple graph morphism t = (tS, tC , tT) : L → R,

where L and R are called respectively the left-hand the right-hand sides (respec-

tively, LHS and RHS) (Ehrig et al. , 2007).

• Triple Axiom: A triple axiom is a triple rule ta = (tS, tC , tT) : ∅ → R. In order

to represent triple graphs, it is common to use attributed graphs together with an

easier-to-read diagram scheme, that comprises three columns (left model domain,

correspondence domain, and right model domain) each one representing, respec-

17

tively, the source model elements, the correspondence between source and target

and, finally, the target model elements. A triple rule in turn is represented by a

triple graph in black (left-hand side) plus a triple graph in green (right-hand side)

(see 2.4b). Because an axiom is a triple rule with empty left-hand side, only green

graph occurs in an axiom (see 2.4a).

Figure 2.4: An example of two triple rules

(a) Triple axiom example for a relation between UML and Java

(b) Triple rule example for a relation between UML and Java

• Triple Graph Grammar: A triple graph grammar TGG = (ta, Trules) consists of

a triple axiom ta and a set of triple rules Trules (Giese et al. , 2010b, p. 4). While

one triple graph can be used as a description of a relation between two metamodels,

one TGG describes the language of these two related models and serves rather as

description of consistency. Nevertheless, extra rules can be derived from a TGG in

order to create the operational semantic of a transformation procedure (Giese et al.

, 2010b).

Figure 2.5 summarizes the definitions of model relation, transformation and syn-

chronization as well as triple graph grammars (TGG). The concept of modeling language

18

is pictured as red lines.

Figure 2.5: Illustration of the terms of model relation, transformation and synchronization
and triple graph grammars (TGG)

Source: Adapted from Czarnecki & Helsen (2006, p. 623)

19

3 STATE OF THE ART

Some endeavors have been made in order to code relations between some meta-

models and mainly to develop theoretical results and synchronization methods. Heiden-

reich et al. present in (2009) and (2010) a Java metamodel using EMF Ecore, what

influences considerably the development of our work, although it is not directly used by

us because of its size and unnecessary comprehensiveness for our needs. Greenyer et al.

(2008) come up with a transformation between UML activity diagrams and CSP diagrams

using TGG. Foss et al. (2011) define the translation between UML and Simulink using

graph grammars. Blouin et al. (2014) report about the synchronization between some

specific metamodels of the automotive standards and influence our work through the use

of the same modeling language and transformation method as us, namely EMF Ecore

(Steinberg et al. , 2008) and MoTE (Giese et al. , 2010b). Finally, Giese et al. (2010a)

introduce their approach to the synchronization of two automotive industry metamodels,

lightening in the paper the MoTE tool and its algorithm for synchronization.

We judge that the MoTE tool is the most adequate option for our needs, since

literature about the subject is widely available (see also Giese & Hildebrandt, 2009 and

Hildebrandt et al. , 2012). Nevertheless, there are other attempts to build a model syn-

chronization tool, such as the ATL Eclipse Plug-in (Jouault et al. , 2008), which uses the

Atlas Transformation Language to code the relations between models; the Medini QVT
1, which claims to implement the Query/View/Transformation Language to code the re-

lations; and the FUJABA(Nickel et al. , 2000), in which relations are coded using TGG.

Hildebrandt et al. (2013) also published a survey on synchronization tools based on TGG.

Other publications aim to solve specific problems, like the ones in Hermann et al. (2011),

Xiong et al. (2007), Giese & Wagner (2006), Ivkovic & Kontogiannis (2004), or Song

et al. (2011), where advanced algorithms for bidirectional synchronization have been

proposed.

A research road-map for model synchronization found in France & Rumpe (2007)

gives an overview on the realm, and together with Mattsson et al. (2009) show an interest-

ing point of view about the challenges. Seidewitz (2003) writes an interesting reflection

about what models mean and how to interpret them, similarly, in Mens & Van Gorp (2006)

a taxonomy for model transformation is proposed, what helps to carry out more precise

analysis. In Czarnecki & Helsen (2006) a survey was undertaken and a framework for

1http://projects.ikv.de/qvt

20

classification of model transformation approaches was presented. In Diskin et al. (2014)

and (2016) a taxonomy for a network of models is presented and in Diskin (2011) a theo-

retical algebraic basis is proposed.

Additionally, one can judge by the date of publication of these works, that the

topic of model synchronization is extremely active and is indeed on the edge of current

academic research, what motivates even more the development of this thesis. All in all,

differently from the other approaches, this thesis proposes the implementation of a whole

network of metamodels for the Java technological space with formalized relations written

in TGG, plus an evaluation of such implementation and, finally, a discussion about how

synchronization may be done in this network.

21

4 METAMODEL RELATIONS IN THE JAVA TECHNOLOGICAL SPACE

With the terms and the theoretical basis clarified, the report of the main develop-

ment phase of the thesis is shown below. The idea here is to present the selected network

of metamodels in the Chapter 4.1, by describing what each model represents and how they

relate to each other. Then, each developed metamodel definition is exposed through dia-

grams and examples in the Chapter 4.2, and, ultimately, the formalization of the relations

between them are partially shown in the Chapter 4.3, where an overview of the relations

is given and some representative triple rules are presented. Attached to this thesis is the

digital version of these metamodels and all the definitions of the relations.

4.1 Network of Metamodels

The choice of which models are used in a certain Java program may consider-

ably vary depending on the context of the development and on the software requirements,

which themselves can range from high dependability (e.g. airplane software) to contin-

uous evolution (e.g. applications for cellphones), for example. Nevertheless, we select

a few typical models plus the relations between them and create a network of metamod-

els. The Figure 4.1 depicts this network. The bold printed vertices and edges repre-

sent respectively the metamodels and the relations that are treated more deeply in this

thesis, namely Java, UMLClassDiagram, UMLSequenceDiagram and UMLContract,

whereas the other vertices are by virtue of the scope of this thesis some rather more briefly

discussed metamodels, namely UMLUseCaseDiagram, RequirementDiagram, JavaDoc,

UnitTest, UMLStateMachine, ERDiagram, FormalSpecification.

The central element of the network is the Java metamodel. A Java model (or,

Java code) contains both structural and behavioral information about the system, which is

represented among other elements through classes, fields, methods and statements.

Since a metamodel might be relatively big and comprise a huge number of ele-

ments, it is interesting to split it into smaller pieces for a specific set of relations. Take

for example the UML, that includes a large number of different concerns (e.g. classi-

fiers, state machines, activities, interaction, etc.) and may be split into sub-metamodels

in order to ease the writing of the relations. For this reason, we separate the UML into

UMLClassDiagram, UMLSequenceDiagram, UMLContract, UMLUseCaseDiagram and

UMLStateMachineDiagram. The UMLClassDiagram is constructed around the concepts

22

of class, property, operation, interface and package. This metamodel is usually used

to describe the structure of an object-oriented Java program through a class diagram,

representing the definition of its classes, fields and methods, but leaving out behavioral

aspects. The relations between UMLClassDiagram and Java is then given by an almost

direct translation between their elements. A class in the former is transformed into a class

in the latter, a property in a field, an operation in a method and so on.

Figure 4.1: A network of metamodels in the Java technological space

To represent some behavioral aspects, UMLSequenceDiagram is used instead.

The elements of this metamodel are usually reproduced with sequence diagrams, where

lifelines and messages provide information about the sequence of event occurrences. In

a Java program it may correspond to the sequence of calls inside a specific method. This

means, the semantical information of each sequence diagram could be brought to the

correspondent method in the Java model.

UMLContract is based on the ideas of design-by-contract, whose main goal is

to improve reliability of object-oriented software (Meyer, 1992), and where operations

have pre and postconditions as well as invariants. Its relation with Java is basically that

each constraint of the contracts can (1) be tested through assertions and (2) expressed in

terms of annotations in the Java source-code. Moreover, one can have check methods in

Java, which serve to verify the constraints of the class and, therefore, are supposed to be

updated as soon as the contracts undergo changes. Related to contracts are also Formal

Specifications, these taking several different forms, among them is the Z Notation (Spivey

& Abrial, 1992), which itself also refers to pre and postconditions.

The UnitTest endeavors to enhance the software quality by means of tests. It tests

small units of code, by basically verifying the pre and postconditions as well as invariants

23

of each method. Because unit tests for Java programs are usually written in Java, we use

the same metamodel for the vertices Java and UnitTests of our network. Anyways, the

relation between both of them is based on creating test cases in the latter according to the

contract annotations (e.g pre and postconditions, invariants, etc.) present in the methods

of the former.

Moreover, UMLUseCasesDiagrams are used to relate actors (basically, users of

the program) and use cases (specifications of behavior), and therefore have a relation-

ship with RequirementDiagrams, a very common tool in information system analysis

for description of features of a system, and also with UMLSequenceDiagrams (discussed

before) and UMLStateMachineDiagrams, two artifacts aiming to describe the behaviors

specified by the use cases (OMG, 2007, p. 637). UMLStateMachines are well-known

means for modeling functionalities of Java programs, rely on states and transitions and

have relations with the UMLUseCasesDiagrams, in the sense that it describes the behav-

ior of a use case. For this reason, one may argue that the behavior expressed by UML-

StateMachines may also be synchronized with the implementation of methods in the Java

model.

The linking from RequirementDiagrams to UnitTests has been proposed by Noack

(2013) and by Post et al. (2009) and a kind of linking to source-code has been proposed

by Antoniol et al. (2002). JavaDoc models play an important role as well, as they serve as

program documentation for the developers. A transformation from the Java source-code

to a JavaDoc model is currently achievable through the JavaDoc Tool 1, which transforms

comments from the source-code into HTML documentation.

Finally, there is the ERDiagram (Entity-relationship model, see Chen, 1976),

which is used to construct data models and which is specially applied to describe database

schemes through basically entities, that often correspond to Java classes, as well as to the

relationships between them, that may be seen as Java attributes.

4.2 Metamodel Definitions

As stated in the last section, the vertices highlighted in the Figure 4.1, namely

UMLClassDiagram, UMLSequenceDiagram, UMLContract, and Java, have its meta-

models defined below with help of a running example.

The modeling language used to write these metamodels is the EMF Ecore and the

1http://www.oracle.com/technetwork/articles/java/index-jsp-135444.html

24

tool used is the special version for model development of the Eclipse Mars 4.5.1 IDE2,

which eases the creations of models and their diagrams as well as the generation of plug-

ins necessary for running the transformations. For this reason, the Eclipse IDE seems to

be more suitable than the alternatives Netbeans IDE3 or FUJABA (Nickel et al. , 2000),

whose support or popularity in the community are not so widely available. The EMF

Ecore language is chosen not only for its extensible documentation and popularity in the

community, but also for its ease to use in the Eclipse IDE. The metamodels are listed in

the sections below.

4.2.1 UML Class Diagram

The metamodel utilized for UMLClassDiagram (also for UMLSequenceDiagram,

UMLContract) represents the version 2.0 of the UML standard, is provided by the EMF

plug-in4 for Eclipse, integrates easily with the IDE and seems to be suitable for our needs.

Alternatively, we could use the metamodel provided by the OMG, but then unnecessary

work of adaption could late our progress. The Figure 4.2 addresses a simplified view

of the UMLClassDiagram. Elements in blue are EMF Ecore abstract elements, whilst

elements in yellow are concrete ones. Some features like operations and some relations

between elements were omitted for a better visualization.

The Model (on the left top of Figure 4.2) represents the whole model and is the root

element of a class diagram, in the sense that every other element is contained by it. Model

inherits Package, and thus may contain PackageableElements. Because Packages inherit

PackageableElements, they may be contained by the Model, what is the most common

case. An example of a UMLClassDiagram model (not the metamodel) is depicted in

the Figure 4.3 in two forms: In abstract and in concrete syntax. There, a Model named

Example01 contains a Package named main.

A Package may contain, according to this scheme, other Packages as well as a

Classifier (center on Figure 4.2) because the latter inherits PackageableElement. The

two classifiers handled in the figure are Class and Interface. The model in our running

example (Figure 4.3) contains one Model (Example01), one Package (main), three Classes

(Person, Drive and Car), and one Interface, namely Drivable.

2https://projects.eclipse.org/releases/mars
3https://netbeans.org
4https://eclipse.org/modeling/emf

25

Figure 4.2: Simplification of the UMLClassDiagram metamodel

Source: Image created using the Eclipse IDE. Metamodel from EMF plug-in.

Figure 4.3: An example of a model UMLClassDiagram visualized in two different ways

(a) Abstract Syntax (b) Concrete Syntax

Source: Diagram created using the Astah Software.

According to the metamodel, a Classifier may have a Generalization (i.e. inher-

itance), illustrated with a straight arrow from Driver to Person in the example on the

Figure 4.3b, or an InterfaceRealization illustrated with a dashed arrow from Car to Driv-

able. Moreover, a Class is allowed to have not only Properties (through the aggrega-

tion ownedAttribute), but also Operations (through the ownedOperation attribute), which

26

themselves may have Parameters. This characteristic is analogous to Interfaces. In the

running example the Person has the Property name, as well as the Driver has the Property

driverLicense and the Operation drive(Drivable):void.

4.2.2 UML Sequence Diagram

The UMLSequenceDiagram is essentially based on the elements Interaction, Life-

line, and Messages. A simplified view of the metamodel is given on the Figure 4.4.

According to OMG (2007, p. 563), “Interactions [...] are used to get a better grip of an

interaction situation” (OMG, 2007, p. 563), by being so, the important aspect of sequence

diagrams are the exchange of messages between objects (i.e. interaction). Sequence di-

agrams are quite flexible in regard to its semantics, so developers interpret the exchange

of messages in different ways. Nevertheless, they are interpreted in this thesis in a rather

simpler manner. An Interaction models one scenario, in which an Operation of a Class is

executed and contains one or more Lifelines, that express the life of an instance of a class.

A concrete illustration of these elements is to find in the example in the Figure 4.5b.

Figure 4.4: Simplification of the UMLSequenceDiagram metamodel

Source: Image created using the Eclipse IDE. Metamodel from EMF plug-in.

A Lifeline is connected to a Class through the attribute selector and is covered by

one ActionExecutionSpecification, which in a sequence diagram is depicted by a rectan-

gle over the Lifeline and symbolize the time, during which the respective class’ code is

executed. An ActionExecutionSpecification has then a MessageOccurenceSpecification

as start point, which itself is related to a Message. Finally, each Message is linked to two

MessageOccurenceSpecifications − one receiveEvent that lies on the beginning and one

sendEvent that lies on the end of the Message− and has a signature of an Operation. The

27

comprehension of this interpretation over UMLSequenceDiagrams requires the reader to

grasp the Figure 4.5 containing one Interaction (Interaction01), two Lifelines (:Driver

and :Drivable), and four Messages.

Figure 4.5: An example of a model UMLSequenceDiagram visualized in two different
ways

(a) Abstract Syntax

(b) Concrete Syntax

Source: Image created using the Astah Software.

To model the order in which the Messages occur, a GeneralOrdering establishes an

order between two MessageOccurenceSpecifications, by signalizing which of them occur

before or after the other. So, in the running example there is a GeneralOdering instance

holding the MessageOccurenceSpecifications related to the Message 1 as happening be-

fore the one related to the Message 1.1 (that is held as after).

As stated before, developers tend to interpret and utilize sequence diagrams in

different fashions. For this thesis, a set of assumptions is made in regard to that. Among

them, lifelines represent only classes (excluding thus representation of actors); and only

synchronous message are handled.

28

4.2.3 UML Contract

The UMLContract is a slice of the UML metamodel, that aims, basically, to pro-

vide constraints to Operations and Properties of Classes. Operations may have pre and

postconditions as well as Invariants, which are modeled through the EMF Ecore class

Constraint (on the top of the Figure 4.6).

Figure 4.6: Simplification of the UMLContract metamodel

Source: Image created using the Eclipse IDE. Metamodel from EMF plug-in.

Figure 4.7: The expanded version of the model from the picture 4.3 as an example for
UMLContract. Only abstract syntax is used for this example.

Source: Image created using the Eclipse IDE.

A Constraint may have constrainedElements, which in the scope of this thesis are

29

either Properties or Parameters. In addition, it also has a ValueSpecification, defining

the constraint itself, that in this thesis may be an OpaqueExpression or an Interval. The

former is a free definition of the constraint that is composed by a String (see lines 16

to 19 in Figure 4.7). The latter defines an interval of values, in which the constrained

element must lie. Therefore, it has one ValueSpecification for the minimal and one for the

maximal value. Here, only Intervals with one ValueSpecification for the minimal value

will be handled, see an example in the lines 6 to 7 in Figure 4.7, that includes elements

from UMLContract, namely lines 6 to 7 and 14 to 15 (Constraint with Interval), and lines

16 to 19 (Constraint with OpaqueExpression).

4.2.4 Java

A Java model is usually the main artifact of a network of models, since it com-

prises much information (both structural and behavioral) about the system under study.

It can be visualized either as the digram in the Figure 4.9 or as plain-text as in the Figure

4.10. The first option is used here, since it seems to be more suitable than a plain-text

source-code format, when handling the model for synchronization. Nevertheless, there

are techniques5 to transform one format into another.

There are currently some Java metamodels available in literature. Among them are

the metamodel6 provided by the Eclipse IDE, whose excess of simplicity hinders its use;

or the one found in Heidenreich et al. (2010), which happens to be so extensive that could

bring unnecessary complexity to this thesis. Therefore, a brand new metamodel for Java is

designed in regard to the necessities of this work and includes not only structural elements

(e.g. Packages, Classes, Fields, etc.), but also some behavioral aspects (e.g. Statements),

the latter being very shallowly modeled here, even though it could be further developed

in future works. The Figure 4.8 reports this whole Java metamodel created. Elements in

blue are EMF Ecore abstract elements, whilst elements in yellow are concrete ones.

The root element is the System (on the left top of the Figure 4.8) and represents the

whole Java program. It contains Packages, which, because of the Container inheritance,

contain Classifiers (through the Contained inheritance). The example on the Figure 4.9

illustrates concrete types of Classifiers in the lines 3, 5 and 48 (Class) and 44 (Interface).

One Classifier may contain Fields (lines 4, 6, 10, 11, 49), Methods (lines 12, 28,

5https://eclipse.org/modeling/m2t
6http://www.eclipse.org/modeling/emf/downloads

30

31, 33, 35, 37), Imports (lines 40 to 43), InterfaceImplementations (line 54)− that refer to

one Interface− and one Generalization (line 39), also known as inheritance or extension,

which refers to another Classifier as its general.

Figure 4.8: The Java metamodel created

Source: Image created using the Eclipse IDE.

A Method may have zero or more Arguments − also known as parameters − as

well as zero or more Statements (to find on the left bottom of the Figure 4.8). In this

imperative perspective of the Java metamodel, each method has thus an ordered list of

Statements, usually representing commands that carve the behavior of the program. In a

full representation of the Java metamodel, they could be of several kinds (e.g. arithmetic

expression, logic expression, method call, control structure like if), but for the scope

of this bachelor thesis only AssertStatements are modeled, since they are useful in the

relation between Java and UMLContract. An AssertStatement basically tests a logical

expression. If it does not hold, than an exception is thrown. The only logical expression

supported here is the greater-or-equal expression (GETExpression, left bottom on the

Figure 4.8), but, again, the construction of a more complete metamodel shall be possible

in a wider scope. An example of a Method with AssertStatement is to find on the lines 28

31

to 30 and 33 to 36 of the Figure 4.9.

Figure 4.9: The equivalent Java version of the UML models from the Figures 4.3, 4.7 and
4.5 in abstract syntax.

Source: Image created using the Eclipse IDE.

Figure 4.10: A more comprehensive Java model based on the Figure 4.9, but depicted in
plain-text form, expressing the Java concrete syntax.

To finish the description of the metamodel, there is the Annotation, which is also

32

a kind of Classifier. An AnnotationInstance is then contained by an Annotable element

(i.e. Classifier, Field, or Method) and may contain AnnotationInstanceParameters, which

themselves may contain AnnotationInstanceValues. The Figure 4.9 contains examples of

annotations on the lines 7 to 9 and 13 to 26.

The Figure 4.10 shows the plain-text view over the class Driver of the previous ex-

ample of model with some small differences. In fact, this plain-text view has two elements

that are not modeled in our Java metamodel, namely expansion of logical expressions

(line 21) and method calls (lines 36 to 46), but, anyway, it exposes the ideas behind the

use of Annotations (lines 9 and 29 to 34) and their relation with UMLSequenceDiagrams

and UMLContracts. More details are shown in the next chapter.

4.3 Metamodel Relations

With all the metamodels defined, the definition of the relations between their

elements can be made. In order to accomplish it, triple graph grammar (TGG) is used

with the MoTE tool to code such relations, due to the extensive use of TGG in current

academic research and to its wide support by several synchronization tools. Other options

included the ATL (Jouault et al. , 2008), which does not seem to be ripe enough for our

purpose; or Graph Transformation (see an implementation in Arendt et al. , 2010), which

is not widely supported for the best synchronization tools (Hildebrandt et al. , 2013). A

theoretical basis of TGG has been given in Chapter 2.

In order to introduce the general ideas of each relation, the respective triple type

graphs are shown first, superficially presenting how each element in the source meta-

model relates to elements in the target metamodel. The the most representative triple

rules, developed with the MoTE tool, are shown afterwards. It is important to note that

these triple rules diverge slightly from the theoretical definitions used here, anyhow, they

serve to discuss some issues found out during the development of this work. The com-

plete explanation of the implementation details are not included in this thesis, since we

intend to focus on the general ideas over the rules. The complete version of the TGGs are

attached to this thesis in digital form.

33

4.3.1 Relations between UMLClassDiagram and Java

Figure 4.11 shows the triple type graph for the relations between the UMLClass-

Diagram (left) and the Java (right) domains, with the correspondence domain being in

the middle. In this graph, elements from the left domain are connected to the elements

on the right domain, which they have a relation with. So, the element Model in UML-

ClassDiagram has a relation to the element System in Java; analogously, a Property in

UMLClassDiagram is related to a Field in Java, to be specific, whenever the former is

created, the correspondent latter has to be created according to the former’s characteristics

(i.e. name, type, the class it belongs, etc.).

Figure 4.11: The triple type graph for UMLClassDiagram and Java

The triple rules describing the relation between Model and System, as well as

Package (UML) and Package (Java) is available on Figure 2.4b. The triple rule encoding

the relation between an Attribute of a Class in UMLClassDiagram and a Field of a Class

in Java is shown on the Figure 4.12. In essence, this rule formalizes the fact that for every

Class Attribute (uAttribute) in UMLClassDiagram a correspondent Class Field (jField)

in Java is supposed to exist with corresponding values for the respective meta-attributes.

These are name, default, isStatic, isLeaf and visibility in uAttribute, which correspond,

respectively, to name, default, isStatic, isFinal and visibility in jField.

34

Figure 4.12: The triple rule uClassAttribute2jClassField

Source: Image created using the Eclipse IDE.

Figure 4.13: The triple rule uInterfaceRealization2jInterfaceImplementation

Source: Image created using the Eclipse IDE.

Note that, the MoTE tool uses a more relaxed definition of triple graphs, allowing

elements of the correspondence model to map more than one element from the source to

more than one element from the target model. Moreover, for this tool it is not necessary

to distinguish elements of the correspondence model using types. As a consequence, the

35

types CorrRule and CorrAxiom are enough for our implementation.

Analogously, the Figure 4.13 shows the triple rule (LS, LC , LT)→ (RS, RC , RT)

for UML InterfaceRealization and Java InterfaceImplementation. In this case, Interface-

Realizations have none meta-attributes to be described besides the associations with Class

and Interface. This rule could be read as follows: Given a state Si with a triple graph

(LS, LC , LT) (LHS) containing all the color-filled elements of Figure 4.13, the creation

of a UML InterfaceRealization (uInterfaceRealization ∈ RS) implies the creation of

a Java InterfaceImplementation (uInterfaceImplementation ∈ RT) connected by an

element of the correspondence domain (uIR2jII ∈ RC) in the state Si+1 and vice-versa.

4.3.2 Relations between UMLSequenceDiagram and Java

Figure 4.14 shows the triple type graph for the relations between the UMLSe-

quenceDiagram (left) and the Java (right) domains, with the correspondence domain

being in the middle. A Lifeline and its respective ActionExecutionSpecification are re-

lated to an AnnotationInstance and its respective AnnotationInstanceParameter. So, ev-

ery Lifeline with regard to a specific Method is related to one AnnotationInstance over this

method, responsible for representing in the Java model the sequence of method calls mod-

eled by the sequence diagram. An example of such annotation may be seen in the line 32

of the Figure 4.10. The rule responsible for this relation is depicted in Figure 4.15. Briefly,

each Lifeline (uLifeline), together with related elements uAExecSpecification, uMOSSpec

and uMessage, is connected to an AnnotationInstance (jAnnInstance) and an Annotation-

InstanceParameter (jAnnInstParam) belonging to an already existing method (jMethod)

and referencing an already existing Annotation (InteractionSequenceAnnotation named

Interaction).

Furthermore, for each MessageOccurenceSpecification and its respective Message

(i.e. a method call in the sequence diagram) exists one AnnotationInstanceValue contain-

ing the name of the invoked method in the Java model (see line 33 of Figure 4.10). In

our implementation this is done by two rules. The first rule is in Figure 4.16 and is re-

sponsible for the first MessageOccurenceSpecification in the Lifeline (e.g. the Message

1.1: start(): void in Figure 4.5b). The second rule is in Figure 4.17 and is responsible for

further MessageOccurenceSpecifications in the Lifeline (e.g. the Message 1.2: drive():

void or 1.3: stop(): void in Figure 4.5b). The relation is split, because in the first rule a

GeneralOrdering (uOrdering) links the start message (uStartMessage) of uLifeline to the

36

first Message leaving uLifeline, whereas in the second rule, uOrdering links two ordinary

Messages leaving uLifeline, namely uMsgBefore and uMsgAfter.

Figure 4.14: The triple type graph for UMLSequenceDiagram and Java

Figure 4.15: The triple rule uLifeline2jMethodAnnotation

Source: Image created using the Eclipse IDE.

The rule uMessageSequence2jInteractionAnnotation encodes the fact that every

Message (uMOSAfter) coming right after the initial Message (uStartMessage) of uLifeline

has a correspondent AnnotationInstanceValue (jAnnInstValue) containing the same name

as uOparationAfter, and being child of an AnnotationInstanceParameter (jAnnInstParam)

named interactionSequence.

37

Figure 4.16: The triple rule uMessageSequence2jInteractionAnnotation

Source: Image created using the Eclipse IDE.

Figure 4.17: The triple rule uMessageSequence2jInteractionAnnotation_2

Source: Image created using the Eclipse IDE.

The occurrence order of the Messages is handled by the rule uMessageSequence2j-

InteractionAnnotation_2 through the attribute id in the AnnotationInstanceValue objects.

More specifically, jAnnInstV alueAfter.id = jAnnInstV alueBefore.id + 1. This

field is used in the Java model to indicate the order of the respective objects.

38

4.3.3 Relations between UMLContract and Java

The Figure 4.18 shows the triple type graph for the relations between the UML-

Contract (left) and the Java (right) domains, with the correspondence domain being in the

middle. Here, a Constraint may contain (1) an OpaqueExpression or (2) an Interval and is

connected always to an AnnotationInstance. Examples of OpaqueConstraints are shown

in the lines 29 and 31 of the Figure 4.10. The triple rule for the case of an OpaqueCon-

straint over a Property is presented in Figure 4.19. This rule, basically, formalizes that

every OpaqueExpression (uOpaqueSpecification) specifying a Constraint (uConstraint),

which itself constraints a Property (uAttribute), has an AnnotationInstanceValue (contain-

ing the same specification as uOpaqueSpecification), an AnnotationInstanceParameter,

and an AnnotationInstance, which itself belongs to the Field jField related to the respec-

tive constrained uAttribute and references the already existing Annotation Inv named Inv.

Figure 4.18: The triple type graph for UMLContract and Java

The triple rule for the case of an IntervalConstraint over a Parameter is presented

in Figure 4.20. The difference to the previous figure, is that now on the source domain, an

Interval (uInterval) is used to specify uConstraint, which is a precondition to uOperation

and has a LiteralInteger (uLiteralInt) as minimal value. Moreover, the creation of these el-

ements creates not only Annotation elements in the Java model, but also AssertStatements

in the form of GETExpressions belonging to a previously created check Method.

In our implementation, every Method of the Java model has three check Methods,

namely checkPreConstraint, checkPosConstraint and checkInvConstraint. By being so,

the rule uOperationPreInterval2jMethodPreAssert is able to transform UML interval pre-

conditions into Java GETExpression, by using the attribute uConstrained.name as left

side and the uLiteralInt.value as right side of the target expression jGETExpression.

39

Figure 4.19: The triple rule uClassInvariant2jClassInvariant

Source: Image created using the Eclipse IDE.

Figure 4.20: The triple rule uOperationPreInterval2jMethodPreAssert

Source: Image created using the Eclipse IDE.

40

4.4 Evaluation

The three TGGs (umlClassDiagram2java, umlSequenceDiagram2java and uml-

Contract2java) developed in this thesis have been tested separately through some example

scenarios of forward transformation. This means, synchronization is not applied in this

evaluation, instead, only forward transformations using the three developed TGGs are ex-

ecuted. We used a set of example cases, some of which are shown in this section. The Fig-

ure 4.21 shows the result of a forward transformation from UMLClassDiagram to Java ex-

ecuted by the MoTE transformation tool based on the TGG umlClassDiagram2java. This

TGG includes the rules presented above (uClassAttribute2jClassField, uInterfaceReal-

ization2jInterfaceImplementation) plus the following rules, all comprised in digital form,

attached to this thesis: uModel2jSystem (relation between UML Model to Java System),

uPackage2jPackage (relation between UML Package to Java Package), uClass2jClass

(relation between UML Class to Java Class), uClassOperation2jClassMethod (relation

between UML Operation to Java Method), uInterface2jInterface (relation between UML

Interface to Java Interface), uInterfaceAttribute2jInterfaceField (relation between UML

Property of an Interface to Java Field of an Interface), uInterfaceOperation2jInterfaceMe-

thod (relation between UML Operation of an Interface to Java Method of an Interface)

and uCGeneralization2jCGeneralization (relation between UML Generalization to Java

Generalization). In the example, uModel2jSystem is applied in line 1; uPackage2jPackage

in line 2; uInterface2jInterface in line 3; uInterfaceOperation2jInterfaceMethod in line 4,

5 and 6; uClass2jClass in line 7; uClassAttribute2jClassField in line 8; uInterfaceRealiza-

tion2jInterfaceImplementation in line 9; and uClassOperation2jClassMethod in line 10.

Figure 4.21: Example of forward synchronization from a UMLClassDiagram model (left)
and a Java model (right)

Source: Image created using the Eclipse IDE.

The problem with the TGG umlClassDiagram2java is that it does not encode the

41

fact that the implementing class Car should contain the 3 methods defined by the interface

Drivable in Java. A possible solution would be the creation of a new rule including

an object (uMethod) contained by (uInterface) in Ls (LHS) linked with the respective

jMethod contained in jClass in Rt (RHS). This new rule should then be evaluated m

times by the transformation engine (for the creation of the m methods in jClass), but in

fact it can be executed only once, since each element in Ls can be transformed only once

in the operational semantic scheme proposed by Giese et al. (2010b, p. 9) and used by

MoTE. In the same scheme, the creation of such rule would entail a critical pair, given

that two different rules have the same object uInterfaceRealization in the Rs. A definite

solution is not known by us, therefore, this synchronization task ends up being left to the

developer. Moreover, umlClassDiagram2java is not complete, as it (1) does not comprise

a rule for the Parameter element of the UML metamodel − by being so, a Method would

not have its Parameters synchronized − and (2) nested Packages are not supported.

Figure 4.22 shows the result of a forward transformation from UMLSequenceDi-

agram to Java based on the TGG umlSequenceDiagram2java, which comprises the rules

shown above (uLifeline2jMethodAnnotation, uMessageSequence2jInteractionAnnotation,

uMessageSequence2jInteractionAnnotation_2) plus an axiom umlInteraction2javaAxiom

responsible for linking an Interaction object in UML to an Annotation object in Java. In

the example, the axiom is used in the lines 1 and 2 of the left and 1, 2, 3 and 4 of the

right model; uLifeline2jMethodAnnotation is applied for the lines 6, 8, 9 and 19 of the

left model, and 8 and 9 of the right model; uMessageSequence2jInteractionAnnotation is

applied for the lines 3, 11, 20 of the left, and 10 of the right model; finally, uMessage-

Sequence2jInteractionAnnotation_2 is applied once for the lines 4, 14 and 21 of the left,

and 11 of the right model; and once more for the lines 5, 17 and 22 of the left, and 12 of

the right model. The rest of the elements, like the Package main, the Class Driver and the

Operations are handled by extra rules based on the TGG umlClassDiagram2java. This is

made in order to build this richer scenario. Observe that, in a real world synchronization

situation these extra rules would not be necessary, since the respective elements would

have been created by the umlClassDiagram2java.

This TGG makes several assumptions that narrow the possibilities of sequence

diagrams. In general, only simple synchronous messages are supported, so create, delete

or reply messages are not supported; actor, entity or other types of lifelines cannot occur;

furthermore, it is supposed that further features like InteractionUse or CombinedFragment

(see OMG, 2015, p. 621 and p. 630) also do not happen in the sequence diagrams. In a

42

Figure 4.22: Example of forward synchronization from a UMLSequenceDiagram model
(left) and a Java model (right)

Source: Image created using the Eclipse IDE.

broader view, one could say, that the rule is too simple, since it only captures the order

of the message occurrences and transforms it into annotations in the Java model (and

vice-versa). Indeed, it exposes the problem of TGGs to deal with non MOF-appropriate

models, since more powerful tools to handle method calls inside a Java method would be

desired to build a more comprehensive transformation from sequence diagrams to Java,

for instance. Nevertheless, for the simplified scenario of this thesis the implemented TGG

seems to work properly. A transformation rule that encodes the order of elements in the

left and right domain were not known by us to exist in the current literature, thus, in this

sense, this feature is novel and contributive.

Figure 4.23 shows the result of a forward transformation from UMLContract to

Java using the TGG umlContract2java. Beyond the two rules exposed in the previous sec-

tion (uClassInvariant2jClassInvariant, uOperationPreInterval2jMethodPreAssert), this

TGG comprises basically one Axiom; three more rules that encode the relation between

UML Opaque Constraints and Java Annotations (uOPPre2jMAPre, uOPPos2jMAPos,

uOInv2jMAInv, respectively, for pre, post and invariant constraints); and two more rules

that encode the relation between UML Interval Constraints and Java Annotations plus

Assertions (uOPPosInt2jMAPosAssert, uCInvInt2jCInvAssert, respectively, for post and

invariant constraints). In the example, the axiom is used on the line 1 of the left, and 1 to

43

5 of the right model and creates constraint Annotations; uCInvInt2jCInvAssert is used on

the lines 4 and 5 of the left, and 9 to 11, as well as 15 to 16 of the right model; uOpera-

tionPreInterval2jMethodPreAssert is used on the lines 10 and 11 of the left, and 19 to 20,

as well as 27 to 29 of the right model; uOInv2jMAInv is used on the lines 12 and 13 of the

left, and 30 to 32 of the right model; finally, uOPPos2jMAPos is used on the lines 14 and

15 of the left, and 24 to 26 of the right model. The rest of the elements are transformed

by other rules, just like in the TGG umlClassDiagram2java.

Figure 4.23: Example of forward synchronization from a UMLContract model (left) and
a Java model (right)

Source: Image created using the Eclipse IDE.

To summarize, this TGG does not seem to present big problems, except that it is

not complete, since neither invariant interval constraints for methods, nor non-integer

interval constraints have been developed. Moreover, the implemented rules for interval

constraints support only great-or-equal-than expression. On the other hand, the extension

of the current TGG version towards completeness seems to be possible, so is the extension

in the direction of building unit test cases based on the contracts.

44

5 SYNCHRONIZATION OF MODELS IN THE JAVA TECHNOLOGICAL SPACE

In the last chapter, the relations between some metamodels of the Java technolog-

ical space were presented in terms of triple graphs, organized as triple rules and, conse-

quently, in triple graph grammars. Each TGG was presented in a different section (namely

4.3.1 for the TGG umlClassDiagram2java, 4.3.2 for the TGG umlSequenceDiagram2java

and 4.3.3 for the TGG umlContract2java) and each one represents a different edge of the

network of metamodels built (see Figure 4.1). By being so, each edge corresponds to a

different synchronization problem and can be solved, generally speaking, independently

from the others. Most of the research in the realm deals with such situation, therefore,

there are several approaches attempting to solve the problem of model synchronization

between two models using TGG.

Between them are the FUJABA (Nickel et al. , 2000), a standalone application that

uses TGG to code the relations; the CoWolf, an extensible framework based on Eclipse

Plug-ins that supports several metamodels and that uses Henshin (Arendt et al. , 2010) to

encode the relations (Getir et al. , 2015); and, finally, there is the MoTE tool, a series of

Eclipse Plug-ins for creating TGGs, both graphically and textually, and for transforming

models based on these TGGs. We deem MoTE the most adequate option for our needs,

mainly due to the extensive literature about the subject (Giese & Hildebrandt, 2009 and

Hildebrandt et al. , 2012) and the easy integration with other technologies, like the EMF

Ecore or other useful Eclipse Plug-ins.

Figure 5.1: Synchronization scheme of the MoTE tool

Source: Adapted from Giese et al. (2010a).

The Figure 5.1 summarizes how the MoTE tool works. Basically, the input TGG

is used to derive the operational semantics of the transformation between the source and

target models, which are read and written by the synchronization tool. Only these four

first components (highlighted in the picture) are treated in this thesis. Note, however,

that the final practical application of the synchronization is only possible through the

45

adaptation of the logical models (presented so far in form of abstract syntax, e.g. Figure

4.9) to physical models (presented so far in form of concrete syntax, e.g. Figure 4.10).

Such situation is out of the scope of this thesis.

As stated before, there exists one instance of the synchronization scheme in Fig-

ure 5.1 for each edge of our network of models. But as the whole network have to be

maintained, it raises the problem of synchronizing not only two models separately, but

instead a whole set of models. In this scenario, each modification on a specific model

has to be propagated through the network. For that, a theoretical analysis of the problem

followed by an algorithm is presented below. The goal of this chapter is not the definition

of the synchronization algorithm or the implementation of a tool such as MoTE, but the

definition of an algorithm for the synchronization of a whole network of models that

uses a synchronization method already proposed.

5.1 Synchronization of a Network of Models

As stated in the Chapter 2, a network of models is a graph G = (V,E), with V

being the models and E the edges linking each pair of related models. When one of these

vertices v ∈ V undergoes changes, all its direct neighbors N(v) have to be updated (syn-

chronized) accordingly. As they possibly undergo changes in the process, their neighbors

have to be synchronized too, as well as the next neighbors and so on. The preoccupation

here is to describe and analyze an algorithm to propagate such modifications.

A synchronization is then defined as a function sync : S×S×∆S×T → T×∆T ,

where sync(s0, s1, δs, t0) = (t1, δt) means that, given a source model s0 synchronized

with the target model t0; a new updated source model s1; and δs representing the mod-

ifications over s0 that produced s1; a new model t1 synchronized with s1 is produced

together with the modifications δt necessary for such process. Here two important as-

sumptions were made:

Assumption 1 Only one model can be modified at a time, this means only one vertex can

be modified at a time in the whole network − two models are not allowed to be modified

simultaneously.

This restriction may be treated with help of a version control system, that main-

tains models centralized, dealing with eventual problems such as conflicts, and observing

them for changes.

46

Assumption 2 A synchronization execution has a direction: Whether forward or back-

ward, but not both at the same time.

In the first case, the source model (that underwent user changes) updates the target

model, but does not have side effects, meaning that the synchronization does not provoke

extra modifications in s1 besides the user’s ones. To put in other words, in one step the

synchronization effects do not ripple back to the source, instead they go only further.

Corollary 1 One single execution of sync(s0, s1, δs, t0) is enough to synchronize s1 with

t0.

This synchronization is performed through a function netsync : (V,E) × V ×

V × ∆S → (V,E), where netsync((V0, E0), s0, s1, δs) = (V1, E1) means that, for the

synchronized network (V0, E0) containing the vertex s0 ∈ V0, whose model underwent δs

modifications, resulting in s1, a new network of synchronized models (V1, E1) is deliv-

ered. The netsync algorithm is defined as follows.

Algorithm 1 netsync Algorithm

1: function NEYSYNC((V0, E0), s0, s1, δs)
2: (Vi, Ei)← ((V0 \ s0) ∪ s1, E0) . New net with first modification
3: for all ni = N(s0) do
4: (ninew , δn)← sync(s0, s1, δs, ni) . Update neighbor
5: if δn not empty then . If modified the neighbor
6: (Vi, Ei)← netsync((Vi, Ei), ni, ninew , δn) . Update net starting from it
7: end if
8: end for
9: return (Vi, Ei)

10: end function

Firstly, the initial network is updated with the new vertex s1, then every neighbor

ni of s0 is synchronized according to the modifications δs. If it causes modifications on ni,

then the network is recursively further synchronized starting from ni. Extra assumptions

were made by this algorithm:

Assumption 3 The input network of models (V0, E0) is finite.

Assumption 4 The input network of models (V0, E0) has no cycles.

Assumption 5 s1 is synchronized to t0 if, and only if, sync(s0, s1, δs, t0) = t0. To put in

words, if s1 is synchronized with respect to t0, then sync returns the unmodified t0 (and

vice-versa).

47

This implies the following three theorems:

Theorem 1 The algorithm always terminates.

Because Assumption 2 is made, it suffices only one call to sync on line 4, rep-

resenting the synchronization of s0 and ni − i.e. the edge {s0, ni}, to synchronize both

models (see Corollary 1). Furthermore, every edge synchronization is followed by at most

one recursive call on line 6− in the case that the synchronization of ni entails the need for

synchronization of neighbor vertices of ni. Because the set of edges is finite (Assumption

3) and there is no cycle in the input graph (Assumption 4), the amount of recursive calls

(line 6) and of loops iterating over any vertex’s neighbors (lines 3 to 8) are also finite.

Hence, the termination of the algorithm is guaranteed.

Theorem 2 When a sync call is taken as elementary operation, the time complexity of

netsync((V0, E0), s0, s1, δs) is, in the worst case, O(∆(V0, E0)|V0|), i.e. the maximum

degree of the graph (V0, E0) times the amount of vertices of the same graph.

Theorem 3 The algorithm is deterministic.

This means that the definition of the result of netsync((V0, E0), s0, s1, δv)) =

(V1, E1) depends only on the inputs (V0, E0), s0, s1, δv. As E1 = E0, then E1 is triv-

ially deterministic. V1 can also be determined, since (1) for v0 ∈ V1 holds that v0 = s1

(i.e. the first modification of the network, line 2 of the algorithm); (2) ∀vi ∈ V1, i > 0 :

vi = sync(sj, sjnew, δj, si) (further modifications of the network); and (3) sync is deter-

ministic. The affirmation (2) is true, because vi is either "not modified" − in the case that

condition on line 5 never holds true for any call sync(si, sinew, δs, vi) − or vi is assigned

the deterministic value sync(sj, sjnew, δj, si) on line 2 − note that, this assignment is ex-

ecuted only once in the whole execution of the synchronization. Therefore V1 and E1 can

be deterministically defined and, thus, netsync is deterministic.

48

6 DISCUSSION

In the previous chapters the development of this work is shown, so in this chapter

this development is discussed in regard to what was achieved, what are the handicaps,

and what is required to use the suggested approach. Firstly, the creation of a Java meta-

model usable for writing TGG seems to be a promising result, despite its simplifications

and incompleteness. For instance, this metamodel does not properly deal with behavioral

aspects, like source-code statements. The careful reader should notice the possible diffi-

culties to write triple rules that deal with control and conditional structures (e.g. while,

if).

In regard to the relations, in general, they should be rather more extensive for the

practical use, however they might serve as basis for further developments. For the relation

umlClassDiagram2java, it can be said that it is simple, as it does not span all elements of

the metamodels − e.g. Parameters are not covered − but, generally speaking, it works

properly and conveys most of the relationship ideas between the two metamodels. The

relation umlSequenceDiagram2java innovates, by transmitting the order of messages in

a sequence diagram to the order of annotations in the Java source-code. On the other

hand, it does not encompass the whole set of possibilities offered by sequence diagrams

(explained in Chapter 4.3.2). Lastly, the relation umlContract2java is also not complete,

although it might be helpful for the enhancing of the network of metamodels towards the

use of unit tests, for example.

The proposed netsync algorithm is clearly an initial suggestion, yet it works prop-

erly for our simple showcase. An important assumption of netsync is the absence of cy-

cles in the input network of models, what hinders its use in practice, including the use for

the complete network presented in the Figure 4.1. In fact, the presence of cycles requires

a whole new netsync algorithm, able to deal with bigger problems, like synchronization

of two models with modifications in both sides. It is notable here also the need for more

theoretical works able to deal with the problem of synchronizing a network. One alter-

native approach for this problem could be the application of Graph Diagram Grammars

(Trollmann & Albayrak, 2015), that consists, basically, of a generalization of TGG for

multiple models, in which one single triple rule may describe the relation between more

than only two metamodels.

In general, the approach proposed in this thesis does not solve the whole problem

of synchronization of models in the Java technological space, neither does it synchroniza-

49

tion of network in the practice. However, it can treat transformations of pairs of models

(source and target) separately. For this case, our approach requires that (1) the input mod-

els be in conformity to our simplified metamodels, (2) they be in the EMF Ecore format,

and (3) the Eclipse IDE be installed with the respective MoTE plug-ins and the plug-

ins generated by MoTE representing our TGGs. Therewith, it is expected that the input

models be transformed analogously to what was showcased in Chapter 4.4.

Some difficulties were found along this work, but they did not obstruct the success

of the final result. The first one was the lack of openly available metamodels in the litera-

ture or from the vendors. For instance, Oracle does not publish any standard metamodel

for Java, nor are they easy to find in the literature. One might find alternative versions in

the source code of IDE’s, but it still requires some effort. Moreover, they are sometimes

incompatible with the tool employed, what also impedes the desired progress of the work.

The result of this thesis may be a partial solution for that, considering that metamodels of

other technological spaces still lack a similar work. Another complication is the insuffi-

ciency of documentation of some tools − in special the MoTE, that makes both the flow

of the development and eventual debug tasks sometimes troublesome. MoTE might have

publications about it and also a good reputation in the community, but an extensive and

broad documentation of the plug-in for the Eclipse IDE is still needed. At last, but not

least, is the performance problem of such tools. Both the EMF and MoTE plug-ins need

to generate Java code in order to run the synchronization procedure, and with big models

this process happens to cost a considerable computation time.

Some points become therefore remarkable for future work. Firstly, an easy-to-

find and accessible tutorial or instructions for the theoretic and practical basis of TGG is

valuable in order to make the use of models synchronization popular among engineers

or software developers, who are in many cases not familiarized with the area and, thus,

might express a big rejection to apply such technique in their projects.

Secondly, the work of this thesis can be naturally continued and expanded, by

completing the identification of relation between the metamodels, expanding the created

network of metamodels, or by developing metamodels that satisfy completeness. Not to

mention that such relations could be expressed in other languages (e.g. ATL) and the same

work extended to other technological spaces (e.g. COBOL, C#).

Furthermore, an Eclipse plug-in that implements the suggested synchronization

algorithm netsync, able to synchronize a network of models and comprise the whole

synchronization scheme (see Figure 5.1) for each edge of the network, could be devel-

50

oped in further research. MoTE could be similarly helpful for such task, since it already

generates a plug-in for the execution of model transformation based on the TGG of the

input.

Lately, a relatively big issue is the use of TGGs for non-MOF-compliant meta-

models− or metamodels that are not naturally seen as MOF-compliant, e.g. the complete

Java metamodel − because, under certain conditions, it could be interesting to analyze

such models from another point of view, rather than the MOF. A clear example is source-

code, which may be treated in an easier way with abstract syntax trees. Angyal et al.

(2008) suggests a method to treat this case, but, anyways, it still remains an open problem

and a future challenge.

51

7 CONCLUSION

A network of metamodels of the Java technological space was developed in the

Chapter 4 of this thesis, comprising a set of common metamodels used in Java software

and the respective relations between them. These relations were showcased through a

practical example, where a scenario with models were built, forward transformations were

executed, and their results were evaluated. This evaluation showed their weaknesses and

strengths by describing the issues that we tried to deal with and the issues that are still to be

solved. The Chapter 5 endeavors to propose an algorithm for synchronization of a whole

network of models based on existing synchronization methods between two models. The

Chapter 6 closes the work with a critical discussion about the contributions of this thesis

and points to the need for future works.

In the first phase a discussion about some metamodels of the Java technological

space is presented, followed by the definition of some of them, which are dealt more care-

fully in this work, namely UML Class Diagram, UML Sequence Diagram, UML Contract

and Java. In the second phase the three relations between these four metamodel were

coded (umlClassDiagram2java, umlSequenceDiagram2java, umlContract2java). In re-

gard to these both steps, the main legacy are (1) the definition of a Java metamodel suit-

able for the use in synchronization with TGG, and (2) the novel relations between some

elements of some metamodels, like the rules between UML contracts and Java assertions,

that encode the relation between pre and post-conditions of the former and assertions and

annotations of the latter.

The third phase serves to briefly demonstrate the application of transformation of

these relations in order to clarify how they work, evaluate them, and show the contribu-

tions that they bring. This is done through a representative example and the use of the

MoTE transformation/synchronization tool. Therewith, we demonstrate that the imple-

mented relation rules work properly for some cases, and that it leads towards the syn-

chronization of such relations. The synchronization of a whole network of models is then

broadly handled after the showcase of the transformations, where we suggest an algorithm

for synchronization of a network of model, analyze some of its theoretical properties and

conclude that, for the assumptions made, it always terminates and it is deterministic.

Despite the fact that the results of this thesis are not complete and we do not be-

lieve that the implemented artifacts are ripe enough to be put in practice, the total product

including novel ideas, a summary of the state-of-the-art and the discussion of difficul-

52

ties and problems found during the work are valuable and contributing. The success of

this thesis brings the contribution towards the definition of a network of interconnected

metamodels useful to both research and industry community. Therefore, the availabil-

ity of such a network might finally allow the extensive use of Model-driven Engineering

in practice − helping bridging the gap between system abstractions and their concrete

form − and foster the further development of more sophisticated model synchronization

methods.

53

REFERENCES

Angyal, László, Lengyel, László, & Charaf, Hassan. 2008. Novel techniques for model-

code synchronization. Electronic Communications of the EASST, 8.

Antoniol, Giuliano, Canfora, Gerardo, Casazza, Gerardo, De Lucia, Andrea, & Merlo,

Ettore. 2002. Recovering traceability links between code and documentation. Software

Engineering, IEEE Transactions on, 28(10), 970–983.

Arendt, Thorsten, Biermann, Enrico, Jurack, Stefan, Krause, Christian, & Taentzer,

Gabriele. 2010. Henshin: advanced concepts and tools for in-place EMF model trans-

formations. Pages 121–135 of: Model Driven Engineering Languages and Systems.

Springer.

Blouin, Dominique, Plantec, Alain, Dissaux, Pierre, Singhoff, Frank, & Diguet, Jean-

Philippe. 2014. Synchronization of Models of Rich Languages with Triple Graph

Grammars: An Experience Report. Pages 106–121 of: Theory and Practice of Model

Transformations. Springer.

Ceruzzi, Paul E. 2003. A history of modern computing. MIT press.

Chen, Peter Pin-Shan. 1976. The entity-relationship model—toward a unified view of

data. ACM Transactions on Database Systems (TODS), 1(1), 9–36.

Czarnecki, Krzysztof, & Helsen, Simon. 2006. Feature-based survey of model transfor-

mation approaches. IBM Systems Journal, 45(3), 621–645.

Diskin, Zinovy. 2011. Model synchronization: Mappings, tiles, and categories. Pages

92–165 of: Generative and Transformational Techniques in Software Engineering III.

Springer.

Diskin, Zinovy, Wider, Arif, Gholizadeh, Hamid, & Czarnecki, Krzysztof. 2014. Towards

a rational taxonomy for increasingly symmetric model synchronization. Pages 57–73

of: Theory and Practice of Model Transformations. Springer.

Diskin, Zinovy, Gholizadeh, Hamid, Wider, Arif, & Czarnecki, Krzysztof. 2016. A three-

dimensional taxonomy for bidirectional model synchronization. Journal of Systems

and Software, 111, 298–322.

54

Ehrig, Hartmut, Ehrig, Karsten, Ermel, Claudia, Hermann, Frank, & Taentzer, Gabriele.

2007. Information preserving bidirectional model transformations. Pages 72–86 of:

Fundamental Approaches to Software Engineering. Springer.

Favre, Jean-Marie. 2004a. Foundations of meta-pyramids: languages vs. metamodels. In:

Episode II. Story of Thotus the Baboon, Procs. Dagstuhl Seminar, vol. 4101. Citeseer.

Favre, Jean-Marie. 2004b. Foundations of model (driven)(reverse) engineering: Models.

In: Proceedings of the International Seminar on Language Engineering for Model-

Driven Software Development, Dagstuhl Seminar 04101.

Foss, Luciana, Costa, S, Bisi, Nicolas, Brisolara, Lisane, & Wagner, Flávio. 2011. From

UML to SIMULINK: a Graph Grammar Specification. Pages 37–42 of: 14th Brazilian

Symposium on Formal Methods: Short Papers.

France, Robert, & Rumpe, Bernhard. 2007. Model-driven development of complex soft-

ware: A research roadmap. Pages 37–54 of: 2007 Future of Software Engineering.

IEEE Computer Society.

Getir, Sinem, Grunske, Lars, Bernasko, Christian Karl, Käfer, Verena, Sanwald, Tim, &

Tichy, Matthias. 2015. CoWolf–A Generic Framework for Multi-view Co-evolution

and Evaluation of Models. Pages 34–40 of: Theory and Practice of Model Transfor-

mations. Springer.

Giese, Holger, & Hildebrandt, Stefan. 2009. Efficient model synchronization of large-

scale models. Universitätsverlag Potsdam.

Giese, Holger, & Wagner, Robert. 2006. Incremental model synchronization with triple

graph grammars. Pages 543–557 of: Model Driven Engineering Languages and Sys-

tems. Springer.

Giese, Holger, Hildebrandt, Stephan, & Neumann, Stefan. 2010a. Model synchronization

at work: keeping SysML and AUTOSAR models consistent. Pages 555–579 of: Graph

transformations and model-driven engineering. Springer.

Giese, Holger, Hildebrandt, Stephan, & Lambers, Leen. 2010b. Toward bridging the

gap between formal semantics and implementation of triple graph grammars. Pages

19–24 of: Model-Driven Engineering, Verification, and Validation (MoDeVVa), 2010

Workshop on. IEEE.

55

Greenyer, Joel, Kindler, Ekkart, Rieke, Jan, & Travkin, Oleg. 2008. TGGs for Trans-

forming UML to CSP: Contribution to the AGTIVE 2007 Graph Transformation Tools

Contest. Tech. rept. Department of Computer Science, University of Paderborn Pader-

born, Germany.

Heidenreich, Florian, Johannes, Jendrik, Seifert, Mirko, & Wende, Christian. 2009.

Jamopp: The java model parser and printer. Tech. rept. Fakultät Informatik, Tech-

nological University of Dresden, Germany.

Heidenreich, Florian, Johannes, Jendrik, Seifert, Mirko, & Wende, Christian. 2010. Clos-

ing the gap between modelling and java. Pages 374–383 of: Software Language Engi-

neering. Springer.

Hermann, Frank, Ehrig, Hartmut, Orejas, Fernando, Czarnecki, Krzysztof, Diskin, Zi-

novy, & Xiong, Yingfei. 2011. Correctness of model synchronization based on triple

graph grammars. Pages 668–682 of: Model Driven Engineering Languages and Sys-

tems. Springer.

Hildebrandt, Stephan, Lambers, Leen, & Giese, Holger. 2012. The MDELab tool frame-

work for the development of correct model transformations with triple graph grammars.

Pages 33–34 of: Proceedings of the First Workshop on the Analysis of Model Transfor-

mations. ACM.

Hildebrandt, Stephan, Lambers, Leen, Giese, Holger, Rieke, Jan, Greenyer, Joel, Schäfer,

Wilhelm, Lauder, Marius, Anjorin, Anthony, & Schürr, Andy. 2013. A survey of triple

graph grammar tools. Electronic Communications of the EASST, 57.

Ivkovic, Igor, & Kontogiannis, Kostas. 2004. Tracing evolution changes of software

artifacts through model synchronization. Pages 252–261 of: Software Maintenance,

2004. Proceedings. 20th IEEE International Conference on. IEEE.

Jouault, Frédéric, Allilaire, Freddy, Bézivin, Jean, & Kurtev, Ivan. 2008. ATL: A model

transformation tool. Science of computer programming, 72(1), 31–39.

Kurtev, I., Bézivin, J., & Akşit, M. 2002 (October). Technological Spaces: An Initial Ap-

praisal. Pages 1–6 of: International Conference on Cooperative Information Systems

(CoopIS), DOA’2002 Federated Conferences, Industrial Track, Irvine, USA.

56

Mattsson, Anders, Lundell, Björn, Lings, Brian, & Fitzgerald, Brian. 2009. Linking

model-driven development and software architecture: a case study. Software Engineer-

ing, IEEE Transactions on, 35(1), 83–93.

Mens, Tom, & Van Gorp, Pieter. 2006. A taxonomy of model transformation. Electronic

Notes in Theoretical Computer Science, 152, 125–142.

Meyer, Bertrand. 1992. Applying’design by contract’. Computer, 25(10), 40–51.

Nickel, Ulrich, Niere, Jörg, & Zündorf, Albert. 2000. The FUJABA environment. Pages

742–745 of: Proceedings of the 22nd international conference on Software engineer-

ing. ACM.

Noack, T. 2013. Automatic Linking of Test Cases and Requirements. Pages 45–48 of:

5th International Conference on Advances in System Testing and Validation Lifecycle,

Venice, Italy.

OMG. 2015. OMG Meta Object Facility (MOF) Core Specification Version 2.5. Final

Adopted Specification (June 2015).

OMG, OMG. 2007. Unified modeling language (omg uml). Superstructure.

Post, Hendrik, Sinz, Carsten, Merz, Florian, Gorges, Thomas, & Kropf, Thomas. 2009.

Linking functional requirements and software verification. Pages 295–302 of: Require-

ments Engineering Conference, 2009. RE’09. 17th IEEE International. IEEE.

Seidewitz, Ed. 2003. What models mean. IEEE software, 26–32.

Song, Hui, Huang, Gang, Chauvel, Franck, Zhang, Wei, Sun, Yanchun, Shao, Weizhong,

& Mei, Hong. 2011. Instant and incremental QVT transformation for runtime models.

Pages 273–288 of: Model Driven Engineering Languages and Systems. Springer.

Spivey, J Michael, & Abrial, JR. 1992. The Z notation. Prentice Hall Hemel Hempstead.

Steinberg, Dave, Budinsky, Frank, Merks, Ed, & Paternostro, Marcelo. 2008. EMF:

eclipse modeling framework. Pearson Education.

Trollmann, Frank, & Albayrak, Sahin. 2015. Extending Model to Model Transformation

Results from Triple Graph Grammars to Multiple Models. Pages 214–229 of: Theory

and Practice of Model Transformations. Springer.

57

Xiong, Yingfei, Liu, Dongxi, Hu, Zhenjiang, Zhao, Haiyan, Takeichi, Masato, & Mei,

Hong. 2007. Towards automatic model synchronization from model transformations.

Pages 164–173 of: Proceedings of the twenty-second IEEE/ACM international confer-

ence on Automated software engineering. ACM.

	Resumo
	Resumo Estendido
	1 Introdução
	2 Fundamentação
	2.1 Modelos
	2.2 Sincronização de Modelos
	2.3 Gramática de Grafos Triplos

	3 Relações de Metamodelos no Espaço Tecnológico Java
	4 Sincronização de Modelos no Espaço Tecnológico Java
	5 Conclusão

	Referências
	Abstract
	Zusammenfassung
	List of Figures
	List of Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Background
	1.2 Motivation
	1.3 Objective
	1.4 Methodology

	2 Foundations
	2.1 Models and MDE
	2.2 Model Synchronization
	2.3 Triple Graph Grammar

	3 State of the Art
	4 Metamodel Relations in the Java Technological Space
	4.1 Network of Metamodels
	4.2 Metamodel Definitions
	4.2.1 UML Class Diagram
	4.2.2 UML Sequence Diagram
	4.2.3 UML Contract
	4.2.4 Java

	4.3 Metamodel Relations
	4.3.1 Relations between UMLClassDiagram and Java
	4.3.2 Relations between UMLSequenceDiagram and Java
	4.3.3 Relations between UMLContract and Java

	4.4 Evaluation

	5 Synchronization of Models in the Java Technological Space
	5.1 Synchronization of a Network of Models

	6 Discussion
	7 Conclusion
	References

