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Abstract We investigate mesons as unequal mass qQ objects in the front form representation
(equivalently, on the light cone (LC) or in the infinite momentum frame (IMF)). Our starting
point is the manifestly covariant Bethe-Salpeter equation (BS) in the instant form, which we
reduce to a 3-dimensional covariant LC equation by restricting the quark and sea antiquark system
symmetrically off their mass shells. We discuss analytical solutions to the LC amplitude and
compare our findings with current parameterizations of the distribution amplitude emphasizing the
characteristic jc-dependence for unequal quark masses.

INTRODUCTION

The common approach to hadronic two- and many-body systems is their formula-
tion based either on the nonrelativistic many-body Schrodinger equation or the minimal
relativistic extension towards the corresponding Dirac equation; in practical calcula-
tions, effective two-body forces and more or less severe mean-field approximations are
employed to make the system tractable. The common framework for the many-body
problem is the instant form: in the language of second quantization the commutators
(anti-commutators) of the underlying field operators are quantized along the hyperplane
with t = const, resulting in the standard commutation and anti-commutation relations.
The advantage of this approach is the appearance of a single (unique) time-variable t for
all interacting particles together with standard Feynmann contributions in perturbative
expansions. As a characteristic feature the relation for a free particle E = ±^Jp + m2

involves the intimate coupling of positive and negative energy states even without inter-
action i.e. the existence of a complicated "nontrivial" Dirac vacuum for fermions.

However, particularly with the advent of recent systematic experiments at high en-
ergy and/or momentum transfers, such as elastic or deep-inelastic hard scattering pro-
cesses, a different frame for such processes is suggested[l]. As with increasing energy
the bulk of scattering events are focussed on a small forward cone along the direction
of the projectile (the beam), as characterized by q%,q2 » q2

±, then, with the transver-
sal momentum component being neglected, the dispersion relation is truncated to an
(effectively) 2-dimensional form q2 = q^ — q2 — q^2 — (q0 — qz) (q$ + qz) = ?-?+• the
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physics becomes 2-dimensional (we exhibit the symmetry between qQ and qz by intro-
ducing quantities q± discussed below). Though rather simplistic, already this intuitive
picture suggests a different system of reference for relativistic high energy processes. Of
course, observables in any field theoretical calculation should be independent of the spe-
cific frame of quantization: the quantization along the light-like hyperplane t+z = const
is equally acceptable. In momentum space — as intuitively envisioned — this leads to a
transition to LC variables (p0,ft5/Jj_) -> (/>_,/>+ , / f j _ ) with a rotation of 9 = n/4 around
the perpendicular J)L axis:

f V2cos(n/4) -V2sin(n/4) 0 \ / p0 \
= [ V2sin(n/4) V2cos(n/4) 0 ft , (1)

V 0 0 1 J \ PL )

ending up in a new representation of the dispersion relation of a free particle p2 =
Po~Pz -P±2- Representing p_ as the new light cone energy and p+ as the longitu-
dinal LC momentum, this new dispersion relation p_ = m PA- develops a unique new
feature: being single-valued in the energy variable p_9 it strictly decouples particles
from antiparticles and thus the free (and, as can be shown, interacting) vacuum becomes
"trivial" [2]. Immediate consequences are, as shown in the pioneering work of Dirac[3],
the appearance of 7 (instead of 6) kinematical generators for the Poincare group, specif-
ically the kinematical nature of Lorentz-boosts, as already anticipated for the standard
Lorentz transformations

(with j3 = v and j — l/\/l — j32; as equivalently seen from pz — > e») in the IMF) or
the suppression of pair-creation out of the vacuum (which, in turn allows an appropriate
decomposition of the Fock-space respecting baryon number conservation within each
Fock component). Finally the corresponding Feynman rules are recovered in the old-
fashioned perturbation theory basically from the substitution of the LC energies[4]

(when we introduce the momentum fraction x=^ with P+ being the total momentum
of the system).

Thus going to the LC we have recovered the intuitive picture sketched at the beginning
for scattering processes at high energy and momentum transfers with an effectively 2-
dimensionaljp± -world. As expected, a price has to be paid for this simplification: break-
ing the a priori spherical symmetry in the transition to the LC variables, rotational invari-
ance is lost; similarly, the implementation of parity conservation in the 3-dimensional
Hamiltonian approach, upon integrating out the time component in the LC amplitude

_y(x,p^p_), (4)
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evidently destroys reflection symmetry p_ <—> p+9 present in manifestly covariant
formulations[5]. However, in spite of these deceases, getting the implementation of
covariance under Lorentz boosts practically for free on the LC together with the trivial
vacuum, renders the relativistic front form one of the most promising attempts to bound
systems at large total 4-momenta.

In this note, we apply the covariant LC formalism to two body-systems in QCD.
Quite explicitly, motivated by numerous studies of mesonic qQ systems in the recent
literature, we investigate in this note the structure of mesons on the LC in the framework
of Quasi-Potential (QP) equations[6]. As we are looking for analytical solutions for
the corresponding LC wave-functions, we incorporate the genuine feature of QCD
by a covariant scalar harmonic confinement potential (attempts in the instant form in
this direction have been followed, for example, by Mitra and coworkers [7]). In view
of recent activities at charm (C) and beauty (B) factories, we focus on momentum
distributions both of qq mesons with equal masses and light-heavy qQ mesons with
a light u, d quark and a heavy s, c, b anti-quark.

FROM THE BETHE-SALPETER TO THE QUASI-POTENTIAL
EQUATION FOR THE QQ SYSTEM ON THE LIGHT CONE

Our starting point for a quark q (with mass m l and momentum p l ) and an anti-quark Q
(with mass m2 and momentum p2} is the manifestly covariant BSE in the instant form[8]

x K(pvp2,kl,k2)Y(kl,k2)S(kl+k2-pl-p2)dkldk2 (5)

with the two-particle propagator

m\-ie}(pl- (6)

It is clear that the transition of the 4-dimensional BSE from the instant form to the LC
is merely a formal change in the explicit representation, without modifying its physical
content. Both from conceptional and practical reasons (such as to provide for example
an appropriate one-body limit to the Dirac equation for phenomenological kernel, a
feature which is in general not exhibited by the BS equation with truncated kernels,
such as in the ladder approximation[9]) we integrate out the relative p_ component,
by restricting the corresponding retardation in a covariant way. As a consequence the
resulting equation is still covariant and avoids the conventional static (Salpeter) limit

We eliminate the dependence of eq. (5) on the relative energy variable and convert the
BSE into a QPE by projecting the propagation of the qQ system on the mass shell as
[10]

with the 7] parameter restricted to the interval [0.1]; above we denote the total and
relative momenta for the qQ system by p and P, respectively; furthermore in eq. (7) we
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keep only the positive energy pole (+) in the 5 function. We remark that the observables
calculated should be independent of r\.

Even after integrating out the dependence on the internal energy variable, the resulting
equations is in its full structure involve a coupled system of 16 differential equations due
to the spin of the interacting fermions and particle - anti-particle mixing, schematically

(8)

Both in the instant and front form we reduce this complex system to a single radial
equation by an appropriate simplification of the spin structure of the system

) ; (9)
where in an helicity representation ̂ (AA7/^) is determined in the Mock representation
(assuming no interaction in the spin sector [1 1]), or on the LC by a free Melosh rotation
from the qQ rest system to the IMF [12]. Without further details we mention that we
are currently exploring the detailed spin-structure of the LC by employing a one-rank
separable interaction kernel, which allows to reduce the complex system of coupled
differential equations to a set of 16 ordinary algebraic equations.

Upon elimination of the complexity of the spin dependence the covariant nature of
the BSE allows an immediate transition to LC variables[2-5]

; (10)

The resulting radial QPE for O(x,/?±,M2) on the LC is then obtained with the appropri-
ate LC projection for the two-particle Green's function [13]

-11^, (..)
which leads to

(M2 - ̂  - ^2^)o(x,£x;M2) = I ' K(x,pvy,kL}®(y,kLM2}dydkL , (12)

with M2 being the invariant squared qQ mass and TW?J_ = mf + p]_ (we absorb all
irrelevant factors from the projection of the Green's function in the kernel K).

For a given interaction kernel the solution of the equations above directly results
in the light cone distribution of qQ system. As so far a detailed derivation of the LC
amplitude from QCD is till lacking (only results in the large Q2 — »• °° limit or estimates
from QCD sum rules exist [2, 14]), the main two goals of this short note are very
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modest: on the one side we would like to use a kernel which can be derived explicitly
from the corresponding covariant representation in the instant form and we aim for
an analytical solution for the momentum distribution. A QCD inspired kernel, which
includes confinement as the unique property of QCD, is a covariant harmonic confining
kernel

~Z^; (13)
within yields, in momentum space, in the instant form

K(p,K) = ̂ ^S(p-K) (14)

or, equivalently, in LC coordinates

--^ ~ r 8(p_-k_)8(x-y)8(p± -Ix) (15)

(the strength parameter g is related to the running quark-gluon coupling constant; its
value is fixed in the non-relativistic limit from meson spectroscopy). Following the same
steps for the reduction to the QPE as sketched above, we obtain explicitly

where the projection on the relative energy variable fixes p_ from eq. (11). Upon
eliminating p_ in the last equation with

dp_ \dp_s p±=const"-* \"F-/ x=const<

from equation (16) we obtain for an arbitrary parameter 77 the explicit equation for

_
dx2

(1-77 +(277-1)*) 1 d d d2 \ , _ 2.
2(277-1) ^W^WJ ^W^ (18)

As expected, for arbitrary values of ?], the longitudinal and the transversal components of
the light cone amplitude are intimately coupled both through the effective masses m\L =
ni} + p\ in the coefficient proportional to d2/dx2 and through the mixed derivative
faWPj Jr

In its most general form, i.e. for an arbitrary 77, equation (18) admits only numerical
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solutions. As we in this note we are interested in analytically solvable equations, we
explore the range of r\ to separate longitudinal and transversal components. Going back
to equation (18) we immediately identify the two appropriate limits for 77:

• 77 = 1/2 (the Blankenblecker-Sugar BBS projection [15]), yielding p_ = (1 —

. 7] = 0 (the Gross projection [16]) in the limit m2 = WQ » nil = mq giving
p_ = M2 - ̂  for M2~n%^ «>, n$± ->• M2).

Both projections stress different physics for the off-shell propagation of the bound
particles; r\ = 1/2 restricts the propagation of the particles symmetrically off-shell and
is thus a natural choice for interacting particles with equal mass; r\ = 0 puts the heavy
particle on its mass shell and enforces by this restriction the appropriate one-body limes
(resulting in a single Dirac equation for the light particle in the limit m2^00l this limit
bears a strong relation to the heavy quark effective theory[17]).

In the following we focus on the BBS solution for the general case of unequal masses.
We mention that with 77 = 1 /2 , but mq ̂  T%, p_ is only shifted by the difference of the
squared masses and does not effect the radial solution; only the spin dependence, which
we do not consider here, in detail, is modified.

The next steps are now well defined. The radial LC equation (18) in the BBS limit is
explicitly given as

As the longitudinal and the transversal components factorize we obtain with the ansatz
(we drop the index BBS for simplicity)

M2), (20)

(x,M2) = 0, (21)

) = 0, (22)

The explicit solution of the differential equation in the BBS limit is given as[18]

M ) =Hwc(px)Hny(py)e~fp-L (23)

and
0(x,M2) = <T^ ^AlFl(a,l-^x2)+B(^lFl(a+l-,^x2)j , (24)

with
l _^_ l_M 2 (^ -^ )

a-4 4 A ~ 4 ' l '
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with — 1/2 < x < 1/2. In these expressions, the functions F(a,b,z) denote confluent
hypergeometrical functions, Hni(pt) are Hermite polynomials. The eigenvalues for the
invariant mass M2 , L e. the mesonic spectrum, are then defined by the eigenvalue
conditions

<D(x=-l/2,M2) = 0(x=l/2,M2)=0 (26)

Together with the normalization condition 1 = ^fdxdp±\®(x.p±.M2)\2 this fixes the
LC wave function completely as a function of the strength g of the harmonic kernel

We compare our derivation with current parameterizations in the literature, where
various simple analytical forms can be found[19]. In order to exhibit the influence of
unequal quark masses we compare with two typical momentum distributions (for the
variable x shifted to — > x + 1 /2)

• the Lepage-Brodsky parameterization [20]

™ + 2 m + (27)-
L \

• the parameterization as a simple power law [21]

<D(x,M2) = Nx^(l -x)7^ (28)

(we extended the standard equal-mass parameterization to unequal quark masses). In-
sight into the x-dependence of the BBS solution, particularly for unequal particle masses,
is obtained from a comparison of the invariant longitudinal distribution amplitude (IDA)
[2,21],

0(x,M2) = >dp±\3>(x,p±,M2)\®(A2-p2_}. (29)

(for the parameterizations compared the transversal cut-off at a scale A affects only
the overall normalization of the distribution amplitude; due to the Gaussian form the
contribution from the perpendicular components is always finite, even without a cut-
off).

Exceeding the limited scope of this brief note, a detailed discussion of our results
is presented in a forthcoming publication. Here we stress only various characteristic
features of the invariant amplitudes derived. As a general trend we find, that the various
current parameterizations in the literature show similar gross features, but differ mainly
around the end points x —> 0 and x —)> 1 and in the width of the distribution around the
maximum x^^ = mq/niQ. Furthermore we confirm a systematic shift of the dominant
momentum components towards x = 0 for qQ mesons with increasing heavy quark mass,
a trend which is expected qualitatively from a minimization of the kinetic energy in the
LC Hamiltonian:

^L-^l_,o oo)
yielding xmax ~ m\/m\ for m\ » m2[22].
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Let us summarize our short contribution. In this note we investigate the momentum
distribution of mesons with unequal quark masses on the light cone. Without considering
spin effects in detail, the radial dependence was derived in a covariant fashion starting
from the BSE, by projecting it in a still covariant and physically motivated way onto
the light cone. Rigorous analytical solutions were derived and compared for a covariant
confining kernel for the BBS constraint of the relative energy variable of the qQ system.

We find, that our results reproduce qualitatively the trends of purely phenomenolog-
ical parameterizations of LC distribution amplitudes. In detail, however, particularly in
the endpoint behaviour both in the longitudinal and in the transversal components we
find serious quantitative differences due to the implementation of our boundary con-
ditions. Though very simple, our model shows some advantages. First of all it starts
from a covariant interaction kernel, which can be easily extended to more realistic cases
(for example, to parameterize the influence of the one-gluon exchange allowing still an
analytical solution). Furthermore, the transition from the BSE to QPE allows a direct
transition from the instant form to the front form for arbitrary systems, such as to two
very heavy quarks in the non-relativistic limit.

Of course, the rather selective ideas presented here yield only little insight in the
details of the model. Presently we are extending our approach (including additional
elements of the qQ interaction and comparing different recipes for the 4 —> 3-dim
reduction); beyond that we test the model for other quantities, such as for moments
of the distribution functions, decay constants and form factors [23].
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