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In this paper an electromagnetic particle code is used to investigate the spontaneous thermal

emission. Specifically we perform particle-in-cell simulations employing a non-relativistic

isotropic Maxwellian particle distribution to show that thermal fluctuations are related to the origin

of spontaneous magnetic field fluctuation. These thermal fluctuations can become seed for further

amplification mechanisms and thus be considered at the origin of the cosmological magnetic field,

at microgauss levels. Our numerical results are in accordance with theoretical results presented in

the literature. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4825249]

The plasma emission is the most fundamental problem

in basic plasma physics and space plasmas. It is known that

unmagnetized plasmas with perpendicular free energy can

give origin to purely growing electromagnetic mode excited

via classical Weibel instability.1–3 In the last few years,

some theoretical4–7 and computational8,9 efforts have been

made to investigate this issue. According to this scenario, the

Weibel instability is driven by the anisotropy of the particle

velocity distribution of plasma. Due to this anisotropy, cur-

rents and waves are generated in the plasma.10 The free

energy related to the anisotropy is transferred to magnetic

field energy.

Recently, a general theory for spontaneous electromag-

netic fluctuations in an unmagnetized plasma was discussed

by Schlickeiser and Yoon,5 considering the non-relativistic

limit. As an illustrative example, the authors consider the

case of the non-relativistic isotropic Maxwellian distribution

function, using the Klimontovich and Maxwell equations.

However, no computational simulation has been performed

to confirm that theory. The purpose of the present work is to

perform particle-in-cell (PIC) simulations to verify the theo-

retical prediction of the general theory for generation of elec-

tromagnetic fluctuation from thermal emission in a non-

relativistic regime.

As we shall show, the spontaneous thermal emission can

originate both high-frequency spontaneously emitted electro-

static field fluctuations and spontaneous emission of mag-

netic field fluctuations in an equilibrium plasma. To perform

the simulations we utilize the PIC simulation code KEMPO

1D (Kyoto ElectroMagnetic Pic cOde)11 in a modified

version.12

Our numerical simulations are realized in one-

dimensional electromagnetic PIC code with periodic bound-

ary conditions. It is important to notice that although our

code is 1D in configuration space (x-axis), it is 3D in velocity

space, electric and magnetic fields. Also, one can obtain

diagnostics for spatial profiles of electric and magnetic fields

ðEx;y;z; xÞ, ðBy;z; xÞ, 3D transverse fields Ey;z, Byz, and particle

velocity components vy;z along the x-axis. From that, we can

obtain the wave dispersion relation (x� k diagrams) for

Ex;y;zðx; kÞ and By;zðx; kÞ.11,13

For numerical simulation we explicitly assume the ambient

magnetic field equal to zero, B0 ¼ 0, which implies the electron

cyclotron frequency is given by Xce ¼ 0:0. This assumption is

important to assure that there is no magnetic field fluctuations

in our numerical scheme at t ¼ 0:0. All electrostatic and

electromagnetic fluctuations are induced in the system from

self-consistent solution of Maxwell and motion equations.

We utilize 2048 spatial grid points, with distances nor-

malized by kDe, where kDe ¼ ðe0kBT=n0e2Þ1=2
is the Debye

length, and grid spacing Dx ¼ 1:0kDe. We run the simula-

tions for a total of 524 288 time steps, with Dt ¼ 0:02x�1
pe ,

which means that the system is allowed to evolve until

xpet ¼ 10; 485:76. This long time run is necessary because

we are looking for low frequency emissions, and in numeri-

cal simulations this is performed by setting the minimal fre-

quency in the numerical system as xmin ¼ 2p=ðntDtÞ, where

nt is the total amount of time steps. In our numerical system

all frequencies are normalized by the electron plasma fre-

quency, and the velocities are normalized by the speed of

light in vacuo c.

For the electron plasma species we consider the thermal

velocity ve ¼ 0:025, with no drift velocity vd ¼ 0:0, and 2048

super-particles per grid cell. Also, we consider Maxwellian

ion and electron species with equal temperature, Te ¼ Ti ¼ T,

and realistic ion-to-electron mass ratio, mi=me ¼ 1836. It is

important to notice that we consider both ions and electrons

with gyrotropic distribution functions.

Figure 1 shows the x� k diagram obtained from the x
(longitudinal) component of the electric field by Fourier

transforming in space along the x axis and in time. For refer-

ence, we also plot both the theoretical Langmuir (Bohm-

Gross) dispersion relation x2 ¼ x2
peð1þ 3k2k2

DeÞ (dotted

curve) and the numerical solution (continuous curve) of the

dispersion equation

2k2k2
De � Z0

x=xpeffiffiffi
2
p

kkDe

 !
¼ 0;
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where ZðfÞ is the well-known Fried & Conte function.

By comparison with Fig. 1 from Schlickeiser and

Yoon,5 one can see that the present results are in agreement

with the theoretical prediction of the general theory for

spontaneous electromagnetic fluctuation in the non-

relativistic limit. To avoid that at any time during the simu-

lation some particle attains speed comparable to the light

speed, the velocities are checked at every simulation time

step, in order to guarantee preservation of the non-

relativistic regime.

Shown in Fig. 2 is the simulated dispersion diagram,

x-k, generated from the magnetic field fluctuation. It is pos-

sible to see that for a given normalized wave number

kve=xpe the spontaneously emitted magnetic field fluctua-

tion maximizes at zero frequency, x=xpe ¼ 0, which is

merely the collective Weibel mode. A result like this was

also obtained by Yoon and can be seen in Fig. 3 of Ref. 6.

This result is important because it shows that the spontane-

ous magnetic field perturbation can be amplified as the

Weibel instability. Also, our PIC-simulation results confirm

the general theory proposed by Schlickeiser and Yoon5 for

non-relativist limit.

We emphasize that in our simulation we do not impose

a temperature gradient, in contrast with previous simulation

work.9 The results obtained in the present paper were

obtained assuming isotropic Maxwellian distributions and

have shown the occurrence of spontaneously emitted weakly

amplified magnetic field fluctuations. However, it has to be

pointed out that kappa distribution functions produce good

quality fittings for solar wind measurements.14–17 Therefore

it may be interesting to perform PIC simulations for condi-

tions similar to those presented here, but assuming kappa dis-

tribution functions, for comparison with the simulations

made using Maxwellian distributions, and for comparison

with recent theoretical analysis.18 We are presently working

along this line and intend to report our findings in a forth-

coming paper.

To conclude, we have performed PIC simulations to

show that even an isotropic Maxwellian plasma in a non-

relativistic limit can produce spontaneous electromagnetic

fluctuations. The results were obtained considering a situa-

tion different from that considered in previous analysis

found in the literature, which have imposed temperature

gradients as a source of free energy to generate the insta-

bilities. Our results are in accordance with the general

theory proposed by Schlickeiser and Yoon,5 where

Maxwellian velocity distribution functions for the plasma

particles provide the thermal fluctuations of weakly ampli-

fied modes, as shown in Fig. 1 for the high-frequency elec-

trostatic fluctuations and in Fig. 2 for the amplified

magnetic field fluctuations. Also, our results suggest a new

scenario for the generation of fast transverse electromag-

netic fluctuations, where spontaneous electromagnetic

emission can be generated by isotropic plasma distribution

functions. These thermal fluctuations can became seed for

further amplification mechanisms, like dynamos and/or ki-

netic Weibel-like plasma instabilities, and thus be consid-

ered at the origin of the cosmological magnetic field, at

microgauss levels.
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