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We utilize a kinetic description to study the dispersion relation of Alfv�en waves propagating

parallelly to the ambient magnetic field in a dusty plasma, taking into account the fluctuation of

the charge of the dust particles, which is due to inelastic collisions with electrons and ions. We

consider a plasma in which the velocity distribution functions of the plasma particles are

modelled as anisotropic kappa distributions, study the dispersion relation for several

combinations of the parameters jk and j?, and emphasize the effect of the anisotropy of the

distributions on the mode coupling which occurs in a dusty plasma, between waves in the branch

of circularly polarized waves and waves in the whistler branch. VC 2012 American Institute of
Physics. [http://dx.doi.org/10.1063/1.4772771]

I. INTRODUCTION

The solar wind is an outflow of plasma coming out of

the solar corona and traveling through the heliosphere. It is

composed mostly by electrons and protons, with a much

smaller population of alpha particles and heavier ions, con-

taining also a population of dust particles which in terms of

number density is much less expressive than the population

of electrons and ions.1,2 Similar outflows must also occur

around other stars, what makes the solar wind a representa-

tive of a more general class of phenomena, which can

receive the general denomination of stellar winds.

Dust particles have been observed in the solar wind,

both by remote sensing and by direct observation by space-

crafts, covering a range of distances starting from the inner

solar system and extending outside up to a few AU’s (astro-

nomical units).3–6 The observations have been made inside a

region within angular distance of 30� from the ecliptic plane.

In the region covered by the observations, the typical dust

particles have been seen to be of nanometrical size, with

mass �10�20 g. Despite the small value of the number den-

sity, it is estimated that the mass of dust per unit volume in

the interplanetary space can be about one order of magnitude

larger than the density of mass associated to the solar wind

particles.7–9

Of particular interest for the present work are the obser-

vations which have shown that the velocity distribution func-

tions of the main components of the solar wind feature

marked non-thermal characteristics. For instance, the proton

distribution was measured by the IMP 6, HELIOS, Wind and

Ulysses spacecraft within the radial interval from 0.3 to 2.5

AU, displaying a significant temperature anisotropy, with the

perpendicular temperature ðT?pÞ (relative to the local inter-

planetary magnetic field) larger than the parallel temperature

ðTkpÞ at 0.3 AU, but with Tkp > T?p for radial distances

greater than 1 AU.1,10–12 The free energy available in the

non-Maxwellian distribution can lead to plasma instabilities

related to the protons that are, for a bi-Maxwellian distribu-

tion, the proton cyclotron, mirror and parallel and oblique

firehose instabilities. However, comparisons made between

the observed wave levels and the linear theory of plasma

instabilities have shown that the observations are not

adequately described by the theoretical results obtained

employing a simple bi-Maxwellian distribution.1,13

The distribution function for electrons has also been

observed to possess significant non-thermal characteristics.

According to observations, these distribution functions are typi-

cally composed by a dense thermal core with low energy and

two tenuous but hot superthermal populations, the halo, which

is present at all pitch angles, and the strahl, which is a highly

anisotropic population moving along field lines in the anti-

sunward direction.14–23 Due to the observed non-thermal char-

acteristics, the electron distribution has been modeled in recent

years by Lorentzian or kappa distributions,24–27 and the same

type of distributions has been proposed for modeling the proton

distribution functions.28 The kappa distribution can be charac-

terized by the j index, with the Maxwellian distribution being

the asymptotic limit for j!1. Fitting of data obtained by

spacecraft in the range 0.3–4 AU have shown that in that region

of the solar wind, the j index drops monotonically with radial

distance for both the halo and strahl components, with j ’ 2

for RS ’ 4 AU and 10 � j � 16 for RS ’ 0:3 AU.26,27 Over

the whole distance range, the electron distribution functions are

noticeably different from the Maxwellian.a)Electronic address: ziebell@if.ufrgs.br.
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The observation that particle distributions in the space

environment are frequently non-thermal is backed up by

many theoretical analysis. In fact, several mechanisms have

been proposed as responsible for the creation of the observed

non-thermal features, including the so-called exospheric

theory of the solar wind electrons,18,21 the broadening of the

strahl by pitch-angle and diffusion due to wave-particle

interactions,26,27 and non-thermal states, which satisfy condi-

tions of turbulent equilibrium between waves and particles.29

Since the space plasmas are frequently collisionless, they are

not easily thermalized to the Maxwellian state and preserve

the non-thermal features, which are generated by other phys-

ical mechanisms. The non-thermal features associated to j
distributions can lead to significant effects on wave disper-

sion relations, which have motivated many recent investiga-

tions, as in Refs. 30–32.

It is known that the presence of dust may affect consid-

erably the dynamics of waves in the interplanetary plasma.

Also in laboratory experiments, it has been shown that none-

quilibrium features in the electron distribution function may

strongly affect the distribution of charge of dusty grains.33

In particular, in the case of Alfv�en waves in spacelike condi-

tions, for instance, we have already discussed the modifica-

tion of damping due to collisional charging of dust

particles,34 and the occurrence of mode coupling between

the whistler and the ion cyclotron branch.35,36 These analysis

have been made for the case of Maxwellian distributions for

ions and electrons. More recently, we have explored the

combined effect of the non-Maxwellian features of kappa

distributions and the presence of dust, combination which

originate considerable modifications in the dispersion rela-

tion for Alfv�en waves.37

In the present work, we develop further the investigation

by exploring the anisotropic features which have been observed

in the solar wind, by considering a magnetized dusty plasma in

which the electrons and ions are described by anisotropic kappa

distributions. In Sec. II, we introduce the dusty plasma model

and the velocity distribution functions for electrons and ions,

and also the frequencies of inelastic collisions between dust par-

ticles and plasma particles, as well as the equilibrium electric

charge of the dust particles. In Sec. III, we present the disper-

sion relation for parallel-propagating Alfv�en waves, and in Sec.

IV, we present and discuss results obtained by numerical solu-

tion of the dispersion relation. Final remarks and a discussion

on future perspectives appear in Sec. V.

II. DUSTY PLASMA MODEL

We consider a magnetized dusty plasma in which the

magnetic field is along the z direction, B0 ¼ B0ez, with a

dust population composed by groups of particles, which are

assumed to be spherical with different radius aj and charge

qj, where j ¼ 1;…; n, which is acquired by capturing

plasma particles by inelastic collisions. We assume that in

the average, the electrostatic energy associated to the inter-

action between dust particles is much smaller than their ki-

netic energy, so that the analysis is restricted to the case of

weakly coupled dusty magneto-plasmas. We also assume

that the dust particles can be considered immobile, which

means that the wave angular frequency x is much larger

than the dust plasma frequency xpd and the dust cyclotron

frequency Xd(x� xpd � jXdj). As a consequence, the for-

mulation excludes the wave modes originated from the dust

dynamics.

The distribution of plasma particles of species b satisfies

a Vlasov meta equilibrium with the addition of a term associ-

ated to inelastic collisions with dust particles, which can,

therefore, capture plasma particles. The formalism includes

the interaction between the plasma particles and dust par-

ticles of all populations.

More explicitly, the fb distributions satisfies the follow-

ing equation:

@fb
@t
þ p

mb
� rfb þ qb Eþ p

mbc
� B

� �
� rpfb

¼ �
ð

dq
p

mb

X
j

rj
bðf

j
dfb � f j

d0fb0Þ; (1)

where f j
d0 and fb0 represent, respectively, the equilibrium dis-

tribution function of dust particles of species j and of plasma

particles of species b, and rj
b is the cross section for charging

of dust particles of radius aj by inelastic collisions with par-

ticles of species b, given by38

rj
bðp; qÞ ¼ pa2

j 1� 2qqbmb

ajp2

� �
H 1� 2qqbmb

ajp2

� �
: (2)

The distribution function for the dust particles of popu-

lation j, f j
d � f j

dðr; q; tÞ, satisfies the following equation:

@f j
d

@t
þ @

@q
½Ijðr; q; tÞf j

d� ¼ 0; (3)

where

Ijðr; q; tÞ ¼
X

b

ð
d3p qb rj

bðp; qÞ
p

mb
fbðr; p; tÞ

is the current of electrons and ions, which charge the dust

particles.39

Considering small amplitude oscillations, the perturbed

distribution function satisfies the following equation:

@fb1

@t
þ p

mb
� rfb1 þ qb

p

mbc
� B0

� �
� rpfb1

þ
�X

j

�j0
bdðpÞ

�
fb1 ¼ �

�X
j

�j1
bdðr; p; tÞ

�
fb0

� qb E1 þ
p

mbc
� B1

� �
� rpfb0; (4)

where

�j0
bdðpÞ �

ð0

�1
rj

bðp; qÞ
p

mb
f j
d0ðqÞdq;
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�j1
bdðr; p; tÞ �

ð0

�1
rj

bðp; qÞ
p

mb
f j
d1ðr; q; tÞdq:

Using Fourier-Laplace transform in the system of equa-

tions, it is readily shown that the perturbed distribution func-

tion for species b can be written as

f̂ bðpÞ ¼ f̂
C

b þ f̂
N

b ; (5)

where

f̂
C

b ¼ �qb

ð0

�1
ds ei

�
k�R�

	
xþi


Rj �

j0
bd
ðpÞ
��

s



� Ê þ p0

mbc
� B̂

� �
� rp0 fb0ðp?; pkÞ;

f̂
N

b ¼ �
ð0

�1
ds ei

�
k�R�

	
xþi


Rj �

j0
bd
ðpÞ
��

s



�
�X

j

�̂ j
bdðk; p;xÞ

�
fb0:

These expressions are similar to those appearing in Ref.

40, except for the fact that in the present paper, there is a

summation over the inelastic equilibrium collision frequen-

cies �j0
bdðpÞ in the argument of the exponential functions,

instead of a single collision frequency, as well as a summa-

tion over the Fourier-Laplace transforms of the perturbed

collision frequency �j1
bd in the integrand of f̂

N

b , instead of a

single value.

It is noticed that f̂
C

b has the same formal structure as

the perturbed distribution obtained in the evaluation of the

dielectric tensor of a conventional homogeneous magne-

tized plasma, with xþ i
P

j�
j0

bd
ðpÞ instead of x in the argu-

ment of the exponential function, and originates a

contribution to the dielectric tensor, which can be called

the “conventional” contribution, denoted as eC
ij .

40,41 The

quantity identified as f̂
N

b , in addition to a similar contribu-

tion to the argument of the exponential function, features

an integrand which is proportional to
P

j�̂
j

bd
and which

vanishes in the case of dustless plasma. It constitutes a

contribution to the dielectric tensor which is exclusive to

dusty plasmas, and which can therefore be called the

“new” contribution, denoted as eN
ij .

40,41 The components of

the dielectric tensor therefore can be written as a summa-

tion of these two contributions40–42

eij ¼ eC
ij þ eN

ij : (6)

The development of the expression proceeds as in previ-

ous derivations, until that the components of the

“conventional” contribution are written as follows:41

eC
ij ¼ dij þ dizdjzezz þ N

dizþdjz

? vC
ij ; (7)

where, for instance,

vC
xx ¼

1

z2

X
b

x2
pb

X2
	

1

nb0

X1
m¼1

q?
rb

� �2ðm�1Þ

�
Xm

n¼�m

n2aðjnj;m� jnjÞJðn;m; 0; fb0Þ;

vC
xy ¼ i

1

z2

X
b

x2
pb

X2
	

1

nb0

X1
m¼1

q?
rb

� �2ðm�1Þ

�
Xm

n¼�m

nmaðjnj;m� jnjÞJðn;m; 0; fb0Þ;

vC
yx ¼ �i

1

z2

X
b

x2
pb

X2
	

1

nb0

X1
m¼1

q?
rb

� �2ðm�1Þ

�
Xm

n¼�m

nmaðjnj;m� jnjÞJðn;m; 0; fb0Þ;

vC
yy ¼

1

z2

X
b

x2
pb

X2
	

1

nb0

X1
m¼1

q?
rb

� �2ðm�1Þ

�
Xm

n¼�m

bðjnj;m� jnjÞJðn;m; 0; fb0Þ;

(8)

where we have defined the following integral expression:

Jðn;m; h; fb0Þ � z

ð
d3u

uh
ku

2ðm�1Þ
? u?Lðfb0Þ

z� nrb � qkuk þ i
P

j ~� j0
bd

; (9)

and where we have utilized the following dimensionless

variables

z ¼ x
X	
; qk ¼

kkv	
X	

; q? ¼
k?v	
X	

;

rb ¼
Xb

X	
; ~� j0

bdðuÞ ¼
�j0

bdðuÞ
X	

:

The differential operator appearing in Eq. (9) is defined

as follows:

L ¼ ð1� N	kukÞ
@

@u?
þ N	ku?

@

@uk

� �
;

Moreover, we have the following quantities:

x2
pb ¼

4pnb0q2
b

mb
; Xb ¼

qbB0

mbc
;

aðn;mÞ ¼ 1

2

� �2ðjnjþmÞ ð�1Þm½2ðjnj þ mÞ�!
½ðjnj þ mÞ!�2ð2jnj þ mÞ!m!

;

bðn;mÞ ¼

að1;m� 2Þ; for n ¼ 0
1

4
½aðn� 1;mÞ þ aðnþ 1;m� 2Þ

�2
jnj þ m� 1

jnj þ m
aðn;m� 1Þ�; for n > 0

8>>><
>>>:

with
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1

ð�mÞ! ¼ 0; for m 
 1;

and the explicit form for the equilibrium value of the inelas-

tic collision frequency,

�j0
bdðuÞ ¼

pa2
j nj

d0v	
u

u2 þ 2Zj
d0eqb

ajmbv2
	

 !
H u2 þ 2Zj

d0eqb

ajmbv2
	

 !
:

(10)

The subscript b ¼ e; i identifies electrons and ions,

respectively, qd0 ¼ �eZd0 is the equilibrium charge of the

dust particles, assumed to be negative due to the greater col-

lisional rate of the electrons with the dust particles, com-

pared to the ions, and H denotes the Heaviside function.

The quantities X	 and v	 are some characteristic angular

frequency and velocity, respectively. For instance, v	 may be

the light speed c, or the Alfv�en speed vA, or the ion sound

speed cs, depending on the application for which the formu-

lation is utilized. The integral form given by Eq. (9) depends

on the quantity u, which is the normalized momentum,

defined as u ¼ p=ðmav	Þ.
The form of the “conventional” components of the dielec-

tric tensor, as given by Eq. (7), is obtained after expansion of

the Bessel functions that appear in components of the dielectric

tensor, for magnetized plasmas. The expansion introduces the

coefficients aðn;mÞ and bðn;mÞ, and allows the eC
ij to be written

in such a way that they depend on a double series, on harmonic

and Larmor radius contributions. It is seen that the eC
ij also

depend on a small number of integrals, which have to be eval-

uated depending on the equilibrium distribution function.

The evaluation of the “new” contribution can proceed along

similar steps. However, for the present application, we will

neglect the “new” contribution, as in previous analysis of the

dispersion relation for Alfv�en waves.34,35,43 The point is that the

“new” contributions contain integrals over velocity variables

that are similar to those of the “conventional” contributions, but

multiplied by the small ratio between the frequency of collisions

with dust particles and a characteristic frequency, which is

assumed as the ion cyclotron frequency in the case of Alfv�en

waves. In another example, in the case of electrostatic waves, it

has already been shown that the effect of the “new” contribution

is negligible, for small population of dust particles.41

The formulation which has been presented is valid for

general forms of the distribution functions of ions and elec-

trons that feature azimuthal symmetry, and constitutes a gen-

eralization of previous formulations developed for the case

of a single population of dust particles. More complete

expressions and more details about the derivation can be

found in Refs. 41 and 43.

For the present application, we will consider the case of

anisotropic kappa distributions for electrons and ions

fb;jð~uÞ ¼
nb0

p3=2j?j
1=2

k u2
b?ubk

Cðj?ÞCðjkÞ
Cðj? � 1ÞCðjk � 1=2Þ

� 1þ
u2
k

jku2
bk

 !�jk

1þ u2
?

j?u2
b?

 !�j?

; (11)

where

u2
bk ¼

2Tbk
mbu2

	
; u2

b? ¼
2Tb?
mbu2

	
;

and where we have used other dimensionless variables. In order

to avoid negative arguments in the C functions, the range of

values of the j indexes has to be restricted to jk > 0:5 and

j? > 1:0. Distribution (11), which is also called “product

bi-kappa” distribution, has been utilized in a recent paper pre-

senting a detailed derivation of the components of the dielectric

tensor of a dusty plasma and a detailed calculation of the veloc-

ity integrals depending on the equilibrium velocity distribu-

tions, which appear in these components.43

As it is known, the Maxwellian distribution is the limit-

ing case of kappa distributions when the parameter j
becomes sufficiently large. In Figure 1, we show contour

plots for four different forms of the distribution function, vs.

uk and u?, in arbitrary units, for ubk ¼ ub?. Figure 1(a)

shows the case of a Maxwellian distribution and Figure 1(b)

shows distribution (11) for jk ¼ j? ¼ 5:0. It is seen that for

equal values of jk and j?, the anisotropic j distribution is

almost symmetrical, with a very slight anisotropy, which can

barely be perceived. Panels (c) and (d) of Figure 1 have been

obtained for (jk ¼ 2:5 and j? ¼ 5:0) and (jk ¼ 5:0
and j? ¼ 2:5). Despite the difference of a factor 2 between

jk and j?, the distribution function still appears to be quite

isotropic.

Thermal velocity spreads parallel and perpendicular to

the magnetic field can be obtained as second moments of the

distribution functions in velocity space. Using spherical

coordinates, uk ¼ u cos h and u? ¼ u sin h. The integrals

over angular coordinates can be easily performed, and the

FIG. 1. Contour plots of the electron distribution function vs. uk and u?, in

arbitrary units. (a) Maxwellian distribution function; (b) Anisotropic kappa

distribution, with jk ¼ j? ¼ 5:0; (c) Anisotropic kappa distribution,

with jk ¼ 2:5 and j? ¼ 5:0; and (d) Anisotropic kappa distribution, with

jk ¼ 5:0 and j? ¼ 2:5.
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normalized velocity spreads can be written in terms of the

Appell hypergeometrical function of two variables

h2
? ¼

4

3

2p

p3=2j?j
1=2

k u2
b?ubk

Cðj?ÞCðjkÞ
Cðj? � 1ÞCðjk � 1=2Þ

�
ð1

0

du u4
j?u2

b?
j?u2

b? þ u2

 !j?

� F1

1

2
; jk; j?;

5

2
;� u2

jku2
bk
;

u2

j?u2
b? þ u2

 !
; (12)

h2
k ¼

2

3

2p

p3=2j?j
1=2

k u2
b?ubk

Cðj?ÞCðjkÞ
Cðj? � 1ÞCðjk � 1=2Þ

�
ð1

0

du u4
j?u2

b?
j?u2

b? þ u2

 !j?

� F1

3

2
; jk; j?;

5

2
;� u2

jku2
bk
;

u2

j?u2
b? þ u2

 !
: (13)

Some additional comments can be made about the ther-

mal dispersion integrals. For these, we utilize the expression

written in terms of spherical coordinates, before the integra-

tion over u and h variables,

h2 ¼ 2ð2pÞ
p3=2j?j

1=2

k u2
b?ubk

Cðj?ÞCðjkÞ
Cðj? � 1ÞCðjk � 1=2Þ

�
ð1

0

dl
ð1

0

duu4 1þ u2l2

jku2
bk

 !�jk

1þ u2ð1� l2Þ
j?u2

b?

 !�j?

;

(14)

where l ¼ cos h. Of course, h2
? and h2

k can be obtained by

inserting l2 and ð1� l2Þ in the integrand, respectively.

Let us analize the integrand in Eq. (14) in terms of the

dependence on u, for ubk ¼ ub?, initially considering

l ¼ 0:5. For u! 0, the integrand vanishes, and for u!1,

the integrand goes as u2ð2�jk�j?Þ. It is seen that it is neces-

sary to have jk þ j? > 2, otherwise the integrand of the

thermal dispersion integrals is divergent.

Let us now make further considerations. In the limiting

value l ¼ 0, the integrand of the u integral vanishes for u! 0

and goes to infinity as u2ð2�j?Þ. The convergence of the inte-

grand depends only on j?, which would have to be larger than

2. That means that, in the region of the integrand where

0 < l� 0:5, the integrand converges if jk þ j? > 2, but the

meaningful part of the integrand goes up to very large values of

u, tending to1 for l approaching 0. Similar reasoning can be

made for l ¼ 1. In the limiting case l ¼ 1, the integrand would

only converge in jk > 2. If this condition is not satisfied but

jk þ j? > 2, the integrand converges, but the significant part

tends to the region u!1, for l tending to 1. The consequence

is that the thermal dispersion, the effective temperature, becomes

very different of the Maxwellian case if either jk or j? becomes

smaller than 2, even if the summation j? þ jk is larger than 2.

These considerations can be illustrated by plots of the inte-

grand of the thermal dispersion integrals. In Figure 2(a), we

show the plot obtained considering u2 multiplying a Maxwel-

lian distribution function, and in Figure 2(b), the case of u2 mul-

tiplying distribution (11) with jk ¼ j? ¼ 5:0. For these

relatively large values of the j-indexes, despite the fact that the

distribution function appeared very similar to the Maxwellian

in Figure 1(b), Figure 2(b) shows that the integrand of the ther-

mal dispersion integral is significantly different from the Max-

wellian case. Figures 2(c) and 2(d) are similar to Figure 2(b),

but with jk ¼ 2:5 and j? ¼ 5:0 in panel (c) and jk ¼ 5:0 and

j? ¼ 2:5 in panel (d). Figure 2(c) illustrates that for jk signifi-

cantly smaller than j?, the integrand of the thermal dispersion

integral can be considerably extended along the parallel direc-

tion, and Figure 2(d) shows that for j? significantly smaller

than jk, there is also significant enhancement along perpendic-

ular direction, although less pronounced.

It is also useful to analyze separately the cases of parallel

and perpendicular thermal dispersions. In Figure 3, we display

the integrand of the thermal integrals, h2
k and h2

?, in arbitrary

FIG. 2. u2 � the electron distribution

function vs. uk and u?, in arbitrary

units. (a) The case of a Maxwellian dis-

tribution function; (b) The case of an-

anisotropic kappa distribution, with

jk ¼ j? ¼ 5:0; (c) The case of an aniso-

tropic kappa distribution, with jk ¼ 2:5
and j? ¼ 5:0; and (d) The case o an

anisotropic kappa distribution, with

jk ¼ 5:0 and j? ¼ 2:5.
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units, as function of uk and u?, still considering ubk ¼ ub?.

Figures 3(a) and 3(b), respectively, display the integrands of

h2
k and h2

?, for a Maxwellian distribution. Figures 3(c) show

respectively the integrands of h2
k and h2

?, considering an aniso-

tropic kappa distribution with jk ¼ 2:5 and j? ¼ 5:0. Panel

(d) shows that the integrand of h2
? is only slightly more

extended than the Maxwellian counterpart featured in panel

(b), indicating that the perpendicular “temperature” is not sig-

nificantly different from the temperature in the equilibrium

distribution. Panel (c), however, is already well extended to-

ward larger values of u, despite jk is larger than 2. The signifi-

cant region of the integrand would extend towards much

larger values of u for jk approaching 2, and extend to infinity

if jk < 2. The conclusion is that, for j? relatively large, the

effective parallel temperature may became very large for jk
approaching the value 2. Similar considerations, about perpen-

dicular effective temperature, could be made in the case of j?
smaller than jk and approaching the value 2.

III. DISPERSION RELATION

Considering waves propagating parallelly to the external

magnetic field, the general dispersion relation is obtained

from the following determinant:

det

1þ vC
xx � N2

k vC
xy 0

vC
yx 1þ vC

yy � N2
k 0

0 0 1þ ezz

0
@

1
A ¼ 0; (15)

where Nk ¼ qkc=v	z. This dispersion relation factors into

two equations, one for electrostatic waves, given by

1þ ezz ¼ 0, and another for electromagnetic waves, given

by 2� 2 determinant

ð1þ vC
xx � N2

kÞð1þ vC
yy � N2

kÞ � vC
xyv

C
yx ¼ 0; (16)

where the vC
ij are the limiting forms of Eq. (8), for q? ! 0,

vxx ¼
1

4z2

X
b

x2
pb

X2
	

1

nb0

½Jð�1; 1; 0; fb0Þ þ Jð1; 1; 0; fb0Þ�;

vxy ¼ i
1

4z2

X
b

x2
pb

X2
	

1

nb0

½Jð1; 1; 0; fb0Þ � Jð�1; 1; 0; fb0Þ�;

vyx ¼ �i
1

4z2

X
b

x2
pb

X2
	

1

nb0

½Jð1; 1; 0; fb0Þ � Jð�1; 1; 0; fb0Þ�;

vyy ¼
1

4z2

X
b

x2
pb

X2
	

1

nb0

½Jð1; 1; 0; fb0Þ þ Jð�1; 1; 0; fb0Þ�;

where we have used að1; 0Þ ¼ bð1; 0Þ ¼ 1=4 and

bð0; 1Þ ¼ 0.

It is readily seen that vC
xy ¼ �vC

yx and that vC
xx ¼ vC

yy, and,

therefore, Eq. (16) takes the form

ð1þ vC
xx � N2

kÞ
2 þ ðvC

xyÞ
2 ¼ 0: (17)

It follows from this equation that the parallel component

of refractive index can be expressed as:

N2
k ¼ 1þ vC

xx 6 ivC
xy (18)

or using explicitly the expressions obtained for the vC
ij ,

N2
k ¼ 1þ 1

2z2

X
b

x2
pb

X2
	

1

nb0

Jðs; 1; 0; fb0Þ; (19)

where s ¼ 61.

For the case of distribution (11), the integral

Jðs; 1; 0; fb0Þ can be written as follows:

Jðs;1;0; fb0Þ ¼ 2nb0

j?
j? � 2

�
�
� j? � 2

j?
þ

u2
b?

u2
bk

jk � 1=2

jk

þðf0
b � f̂

s

bÞ
j? � 2

j?
Zð0Þjk
ðf̂s

bÞ þ
u2

b?
u2

bk
f̂

s

bZð1Þjk
ðf̂s

bÞ
�
;

(20)

FIG. 3. (a) u2
k � the Maxwellian elec-

tron distribution function vs. uk and u?,

in arbitrary units. (b) u2
? � the Maxwel-

lian electron distribution function vs. uk
and u?, in arbitrary units. (c) u2

k � the

anisotropic kappa distribution, with

jk ¼ 2:5 and j? ¼ 5:0; and (d) u2
? � the

anisotropic kappa distribution, with

jk ¼ 2:5 and j? ¼ 5:0.
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where

f0
b ¼

z

qkubk
; f̂

n

b ¼
z� nrb þ i

P
j ~� j

b

qkubk
;

Zð0Þjk
ðnÞ ¼ i

jk � 1=2

j3=2

k

�2F1 1; 2jk; jk þ 1;
1

2
1þ in

j1=2

k

0
@

1
A

2
4

3
5;

jk > �1=2;

Zð1Þjk
ðnÞ ¼ i

ðjk � 1=2Þðjk þ 1=2Þ
j3=2

k ðjk þ 1Þ

� 2F1 1; 2jk þ 2; jk þ 2;
1

2
1þ in

j1=2

k

0
@

1
A

2
4

3
5;

jk > �3=2;

and 2F1 is the Gauss hypergeometric function. Details of the

derivation can be obtained in Sec. III of Ref. 43.

Using Eq. (20) into Eq. (19), we get

c2

v2
	

q2
k ¼ z2 þ

X
b

x2
pb

X2
	
�1þ j?

j? � 2

jk � 1=2

jk

u2
b?

u2
bk

"

þðf0
b � f̂

s

bÞZð0Þjk
ðf̂s

bÞ þ
j?

j? � 2

u2
b?

u2
bk

f̂
s

bZð1Þjk
ðf̂s

bÞ
#
:

(21)

By taking the limits jk ! 1, j? ! 1, and considering

the isothermal case ubk ¼ ub?, Eq. (21) becomes

c2

v2
	

q2
k ¼ z2 þ

X
b

x2
pb

X2
	
f0
bZðf̂s

bÞ; (22)

which corresponds to the Maxwellian limiting case of Eq. (21).

IV. NUMERICAL ANALYSIS

In the numerical analysis, we will consider electromag-

netic waves of low frequency, propagating parallel to the

ambient magnetic field. We make the convenient choice,

v	 ¼ vA, X	 ¼ Xi. Since distribution (11) was considered,

both j? and jk variables are restricted to the intervals37,44

1 < j? <1, 1=2 < jk <1. In addition, closer inspection

of the dispersion relation, given by Eq. (21), shows that it is

necessary also to impose the condition j? 6¼ 2.

The numerical approach follows that used in Ref. 35,

as well as the numerical parameters. Magnetic field,

B0 ¼ 1:0� 10�4 T, ion density, ni0 ¼ 1:0� 109 cm�3, Tik
¼ Ti? ¼ 1:0� 104 K, Tek ¼ Tik, and Te? ¼ Ti?. For simplic-

ity, we consider only one species of dust particle, with ra-

dius, a ¼ 1:0� 10�4 cm. With the choice of Tb? ¼ Tbk, the

anisotropy of the distribution is associated only to the values

of jk and j? and to the intrinsically anisotropic character of

the bi-kappa distribution.

We start the numerical analysis considering fixed values

of jk, namely 2.50 and 40.00, and then considered four val-

ues of j?, ð2:50; 3:50; 10:0; 40:0Þ. In the sequence, we con-

sider fixed values of j?, 2.50 and 40.00, and for each of

these values, we have evaluated the roots by considering

four values of jk, ð2:50; 3:50; 10:0; 40:0Þ. For all the cases,

we consider a single value of the numerical value of the par-

allel component of the normalized wave vector, qk ¼ 0:3.

We present the solutions of the dispersion relation as a func-

tion of the parameter �, which varies from 0 to 7� 10�5

and represents the normalized density of dust particles. In

the figures, we consider only the case s ¼ þ1, since the case

s ¼ �1 produces equivalent roots. The corresponding roots

for the case of Maxwellian distribution are also plotted, for

comparison.

In the following, the figures are composed by pairs, side

by side, of real and imaginary parts of the normalized fre-

quency z.

A. jk52:50

The first case to be considered is the case of jk ¼ 2:50,

with j? between 2.50 and 40.0. In Figure 4, we present

four pairs of curves, obtained for j? ¼ 2:50; 3:50; 10:0, and

40.0, and also present a pair of curves corresponding to the

two modes obtained for the case of isotropic Maxwellian

distribution. The curves for the Maxwellian case are pre-

sented in black lines. Notice that, even for j? as large as

40.0, the dispersion curves are still quite far from those in

the Maxwellian limit, due to the markedly non-thermal of

the distribution along parallel direction, which is associated

to jk ¼ 2:50. As it is well known, for small wave number,

the dispersion relation for Alfv�en waves in a dustless

plasma is given by x ¼ kvA, where vA is the Alfv�en veloc-

ity. For larger wave numbers, the dispersion relation sepa-

rates into two branches, one known as the whistler branch
and the other known as the ion-cyclotron branch. For

�! 0, Figure 4(a) denotes with a black dashed line the root

corresponding to the forward propagating waves in the

whistler branch, and with the black continuous line the so-

lution corresponding to backward propagating waves in the

ion-cyclotron branch. In the presence of dust, the real part

of the two roots approaches each other. In Figure 4(a),

which shows the real part of the normalized frequency, zr,

we notice that there is a crossing of the lines corresponding

to the two different roots, for � ’ 6:0� 10�5. On the right-

hand panel, one sees that the imaginary part of the two roots

is well separated. By comparison between the real and

imaginary parts, it is seen that one of the roots is that start-

ing with the dashed line, for small values of �, and continu-

ing with the full line, for � in the upper part of the range

considered. This root corresponds to the whistler branch,

while the root depicted with the full black line for small

values of � and continued with the dashed line corresponds

to the branch of the ion-cyclotron waves. There is a cou-

pling between the two modes, at � ’ 6:0� 10�5.35 Figure 4

features in color magenta the curves corresponding to the

case of jk ¼ 2:50 and j? ¼ 40:0. Both the real and imagi-

nary parts of z are similar in shape to those obtained for the
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Maxwellian case, but the point of mode-coupling is moved

toward a value of � which is considerably smaller than that

of the Maxwellian case, namely � ’ 3:5� 10�5. Another

difference is that the magnitude of the damping rates is

larger than in the case of the Maxwellian distribution. The

case of jk ¼ 2:50 and j? ¼ 10:0 appears in Figure 4

depicted with green lines. It is noticed that the roots of the

dispersion relation for j? ¼ 10:0 are very similar to those

of the case with j? ¼ 40:0, with the mode-coupling point

occurring for a value of � only slightly smaller.

On the other hand, Figure 4 also shows the case of

j? ¼ 3:50, depicted with blue lines. Figure 4(a) shows that

the two roots come close to each other for � ’ 3:0� 10�5,

but the point of mode coupling does not occur. For smaller

values of j?, the coupling between the two modes becomes

even more distant, as illustrated by the case of j? ¼ 2:50,

shown with red lines in Figures 4(a) and 4(b).

B. jk540:00

Here, we consider a large value of jk, and four values of

j?, from small to large, namely j? ¼ 2:50; 3:50; 10:0, and

40.0. The lines in color magenta and green in Figure 5 repre-

sent the cases of j? ¼ 40:0 and 10.0, respectively. It is seen

that the solution of the dispersion relation in these cases is

very similar to the solution obtained for Maxwellian distribu-

tion, shown by the black lines. The difference is more signifi-

cant for larger values of �, representing greater dust

population, with a displacement of the point of mode cou-

pling toward smaller values of �. Even for the case of

j? ¼ 3:50, depicted with the blue lines, the roots are very

similar to the roots of the Maxwellian case, for small �. How-

ever, in this case, the point of mode coupling occurs for a

content of dust that is less than half of the content required in

the Maxwellian case. The case of j? ¼ 2:50 is shown with

red lines in Figure 5. It is seen that the roots corresponding

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.0×100 3.5×10-5 7.0×10-5
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ε

(a) (b)

κ⊥ = 2.50
κ⊥ = 3.50

κ⊥ = 10.00
κ⊥ = 40.00

Maxwellian root

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.0×100 3.5×10-5 7.0×10-5

z i

ε

FIG. 5. (a) Real part of the normalized wave fre-

quency, zr ¼ xr=Xi, vs. normalized dust den-

sity, � ¼ nd=ni, for jk ¼ 40:0 and four values of

j?, 2.50, 3.50, 10.0, and 40.0. (b) Imaginary

part of the normalized wave frequency,

zi ¼ xi=Xi, vs. normalized dust density,

� ¼ nd=ni, for jk ¼ 40:0 and four values of j?,

2.50, 3.50, 10.0, and 40.0. Other parameters as

in Figure 4.
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(a) (b)

κ⊥ = 2.50
κ⊥ = 3.50

κ⊥ = 10.00
κ⊥ = 40.00

Maxwellian root
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-0.8
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-0.4

-0.2

0.0

0.0×100 3.5×10-5 7.0×10-5

z i

ε

FIG. 4. (a) Real part of the normalized wave fre-

quency, zr ¼ xr=Xi, vs. normalized dust den-

sity, � ¼ nd=ni, for jk ¼ 2:50 and four values of

j?, 2.50, 3.50, 10.0, and 40.0. (b) Imaginary

part of the normalized wave frequency,

zi ¼ xi=Xi, vs. normalized dust density,

� ¼ nd=ni, for jk ¼ 2:50 and four values of j?,

2.50, 3.50, 10.0, and 40.0. Magnetic field

B0 ¼ 1:0� 10�4 T, ion density ni0 ¼ 1:0
�109 cm�3, Tik ¼ Ti? ¼ 1:0� 104 K, Tek ¼ Tik,
and Te? ¼ Ti?, only one size of dust particle,

a ¼ 1:0� 10�4 cm.
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to the two branches of the dispersion relation approach to

each other in the presence of dust, and then diverge again,

without the occurrence of the mode coupling which occurs

for Maxwellian plasmas. Despite the fact that the large value

of jk, 40.0, assures a Maxwellian-like feature to the distribu-

tion of velocities along parallel direction, the non-thermal

feature associated to small values of j? produces significant

modification of the wave dispersion properties, with the con-

sequent disappearance of the mode coupling, which occurs

for in the Maxwellian case, for the parameters considered.

C. j?52:50

Results obtained in the case of small value of j? and a

range of values of jk are shown in Figure 6, with the real

part zr appearing in Figure 6(a) and the imaginary part zi

appearing in Figure 6(b). Differently of the case of small

value of jk, shown in Figure 4, which displayed marked de-

pendency of the dispersion relation on the value of j?, Fig-

ure 6 shows that the solutions of the dispersion relation for

small value of j? are relatively independent of the value of

jk. The lines shown in magenta, green, blue, and red,

respectively, corresponding to jk ¼ 40:0; 10:0; 3:50, and

2.50, are remarkably close to each other, both in the case of

the real part and in the case of the imaginary part. The roots

of the dispersion relation are close to the Maxwellian roots

for �! 0, and depart considerably from the thermal case

with the increase of the dust content. The difference regard-

ing the Maxwellian case even for large values of jk is asso-

ciated to the non-thermal feature of the distribution

function, which is consequence of the small value of j?,

which is 2.50. It is seen from Figure 6 that the coupling of

the two modes does not occur for small value of j?, for the

parameters considered, independently of the value of jk.
Regarding the imaginary part zi, Figure 6(b) shows that for

the case of small j?, the damping due to the presence of

dust is much more significant than in the Maxwellian case,

for small values of �.

D. j?540:00

Results obtained in the case of large value of j? and a

range of values of jk are shown in Figures 7(a) and 7(b). It is

readily seen that Figure 7 has a feature markedly different

from that seen in Figure 6, obtained for j? ¼ 2:50. The solu-

tions obtained for j? ¼ 40 and for values of jk ranging from

the small value jk ¼ 2:50 up to the large value jk ¼ 40:0
are all quite similar to the solutions obtained in the Maxwel-

lian case. The similarity is quite evident from the qualitative

point of view, with the quantitative difference that with the

decrease of jk the point of mode coupling moves toward

smaller values of �, that is, the coupling occurs for smaller

content of dust, with the increase in the non-thermal features

of the parallel distribution. However, it must be remarked

that the results show that the mode coupling occurs for the

whole range of values of jk, in the case of large j?.

V. FINAL REMARKS

In this paper, we have presented a discussion about nu-

merical results obtained from a dispersion relation for low-

frequency electromagnetic propagating along the ambient

magnetic field, in a dusty plasma containing a population of

dust particles assumed to be spherical and motionless. The

dispersion relation was obtained using a kinetic theory, in

which we assumed that the interaction between dust particles

and plasma particles occur via collisional charging of the

dust particles, by inelastic collisions with ions and electrons.

In addition to the presence of the dust, we have assumed

that the plasma particles are described by anisotropic j
distributions. Both the presence of dust particles and the

non-thermal character of the distribution, described by the j
distributions as well as the presence of anisotropy, are

features motivated by observed features in the solar wind.

We have obtained that the dispersion relation for Alfv�en

waves is significantly affected by the presence of the dust,

and significantly affected by the non-thermal features
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0.0×100 3.5×10-5 7.0×10-5
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(a) (b)

κ|| = 2.50
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κ|| = 40.00
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FIG. 6. (a) Real part of the normalized wave fre-

quency, zr ¼ xr=Xi, vs. normalized dust den-

sity, � ¼ nd=ni, for j? ¼ 2:50 and four values of

jk, 2.50, 3.50, 10.0, and 40.0. (b) Imaginary part

of the normalized wave frequency, zi ¼ xi=Xi,

vs. normalized dust density, � ¼ nd=ni, for

j? ¼ 2:50, and four values of jk, 2.50, 3.50,

10.0, and 40.0. Other parameters as in Figure 4.
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associated to the anisotropic kappa distributions. For small

value of jk, mode coupling occurs between waves in the

whistler branch and waves in the ion-cyclotron branch, for

sufficiently large dust population, if j? is above a limiting

value, but ceases to occur for small values of j?. Even for

large values of jk, exemplified in the present paper by

jk ¼ 40:0, the results obtained are similar, in the sense that

mode coupling continues to occur at sufficiently large dust

population, for most of the range of values of j?. Only for

j? � 3:0, the dispersion relation departs sufficiently from

the Maxwellian case, such that the mode coupling does not

occur, regardless the dust population.

On the other hand, we have shown that for small value

of j?, exemplified by j? ¼ 2:50, the mode coupling does

not occur, for the whole range of values of jk. For

j? ¼ 40:0, example of a large value, the situation is

reversed: mode coupling occurs for the whole range of jk.
The qualitative conclusion which can be drawn is that the

non-thermal feature along the perpendicular direction seems

to dominate the dispersion relation, regarding the proximity

with the results expected for thermal plasmas. Even for rela-

tively moderated values of j?, for which the distribution

functions of plasma particles is approximately Maxwellian

along the perpendicular direction, the dispersion properties

of Alfv�en waves do not depart very much from the behavior

of thermal plasmas. On the other hand, even for very large

values of jk, corresponding to a completely Maxwellian

shape along the parallel direction, the dispersive properties

of Alfv�en waves in a dusty plasma only approach those of

Maxwellian plasmas for sufficiently high value of j?. For

small j?, the results of the dispersion relation for Alfv�en

waves are significantly different from those of thermal plas-

mas, independently of the value of jk. These findings corre-

spond to those obtained in the case of anisotropic

Maxwellian distributions, for which the mode coupling

between circularly polarized and whistler branches was

observed to remain when parallel temperature is larger than

perpendicular temperature, and disappear when perpendicu-

lar temperature becomes sufficiently larger than parallel

temperature.36

The objective of the paper has been to investigate the

dependency of the dispersion relation on the parameters jk
and j?, and on the presence of the dust. For this analysis, the

temperature parameter T has been considered isotropic, with

the anisotropy in the distribution function associated entirely

to the parameters jk and j?. Despite the highly anisotropic

situations considered in the analysis, we have not obtained

unstable solutions in the dispersion relation, for the parame-

ters considered. We intend to continue the investigation by

considering different parameters, in order to determine how

instabilities like the firehose instability and the ion-cyclotron

instability are affected by the simultaneous presence of dust

and non-thermal kappa distributions. The results of the forth-

coming investigation on the instabilities shall be submitted

for publication in the near future.
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