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Nonlinear ion-acoustic cnoidal wave structures are studied in an unmagnetized quantum plasma.

Using the reductive perturbation method, a Korteweg-de Vries equation is derived for appropriate

boundary conditions and nonlinear periodic wave solutions are obtained. The corresponding analyt-

ical solution and numerical plots of the ion-acoustic cnoidal waves and solitons in the phase plane

are presented using the Sagdeev pseudo-potential approach. The variations in the nonlinear poten-

tial of the ion-acoustic cnoidal waves are studied at different values of quantum parameter He

which is the ratio of electron plasmon energy to electron Fermi energy defined for degenerate elec-

trons. It is found that both compressive and rarefactive ion-acoustic cnoidal wave structures are

formed depending on the value of the quantum parameter. The dependence of the wavelength and

frequency on nonlinear wave amplitude is also presented. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4899041]

I. INTRODUCTION

The study of nonlinear wave propagation in quantum

plasmas has gain importance due its application in under-

standing the particle or energy transport phenomenon on

short scale lengths, i.e., in micro and nano scale electronic

devices and in dense compact stars.1–7 Typically, the quan-

tum effects in plasmas become important when the Fermi

temperature, which is related to the particles density,

becomes equal or greater than the system’s thermal tempera-

ture or the inter-particle distance becomes smaller or of the

same order of the particle’s de Broglie thermal wavelength.

In order to study the dynamics in quantum plasmas, the

quantum hydrodynamic (QHD) model is frequently used.1,2,6

The QHD model consists of a set of equations describing the

transport of charge, momentum and energy in a quantum

charged particle system interacting through a self consistent

electromagnetic field. In QHD model, the quantum effects

appear through the quantum statistical (Fermi) pressure and

the Bohm potential (due to quantum diffraction or tunneling

effects). The QHD is useful to study collective effects on

short scale lengths and has its limitation for systems that are

large compared to the Fermi Debye lengths of the species in

the system. Quantum ion-acoustic waves were investigated

by Haas et al.1,2 using the QHD model. They derived a

Korteweg-de Vries (KdV) equation in the weakly nonlinear

amplitude wave limit for studying the propagation of ion-

acoustic solitons in a quantum plasma. It is reported that the

compressive or rarefactive soliton solution depends on a

quantum parameter (He) defined for degenerate electrons,

which is the ratio of the electron plasmon energy to the

Fermi energy. In the fully nonlinear regime, the existence of

periodic traveling wave patterns were reported for ion-

acoustic waves in quantum plasmas. The arbitrary amplitude

ion-acoustic solitary waves using the QHD model in

electron-ion quantum plasmas with the Sagdeev potential

approach has also been investigated.8 Nonlinear electrostatic

wave structures such as solitons, envelope and shocks have

been studied in quantum electron-ion (EI) plasmas9 but no

one has reported the propagation of cnoidal wave structures

in quantum plasmas. The purpose of the present work is to

investigate the formation of ion-acoustic cnoidal waves in a

quantum EI plasma using the well known QHD model.

In classical plasmas, a lot of research work has been

done in studying nonlinear ion-acoustic wave structures such

as solitons, cnoidal waves and envelopes. Solitons are single

pulse structures which are formed due to the balance

between nonlinearity and dispersion effects in the system10

and they consist of isolated hump or dip like wave profile

with no rapid oscillations inside the packet. Envelope struc-

ture contains both fast and slow oscillations, obtained when

nonlinearity balances the wave group dispersion effects. The

envelope is a localized modulated wave packet whose dy-

namics is governed by the nonlinear Schr€odinger (NLS)

equation.11,12 The periodic (cnoidal) wave is the exact non-

linear periodic wave solution of the KdV equation with

appropriate boundary conditions. These solutions of the KdV

equation are also termed as cnoidal waves because they are

written in terms of Jacobian elliptic-function cn. In general,

the nonlinear periodic waves are expressed in terms of

Jacobian elliptic-functions such as dn, sn or cn, and the non-

linear dn waves are believed to be generated in the defocus-

ing region of the ionospheric plasmas.13–16 The ion-acoustic

soliton and double layer structures are observed in auroral

and magnetospheric plasmas and also nonlinear periodic

wave signals appear frequently in these observations.17 The

periodic signals are also observed at the edge of the tokamak

plasma, which can be described by cnoidal waves.18 Kono

et al.19 studied the higher order contributions in the reductive

perturbation theory for the nonlinear ion-acoustic wave prop-

agation under the periodic boundary condition. The nonlin-

ear periodic wave solution for small amplitude Langmuir

waves in electron-ion plasmas was studied by Schamel.20

Jovanovic and Shukla21 presented a solution in the form of a

cnoidal wave provided the minimum value of the electro-

static potential remain finite in studying coherent electric
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field structures. Prudskikh22 studied the ion-acoustic nonlinear

periodic waves in dusty plasmas. The ion-acoustic cnoidal

wave and the associated nonlinear ion flux in dusty plasmas

was studied by Jain et al.23 They derived the coupled evolu-

tion equations for the first and second order potentials for

ion-acoustic waves in unmagnetized dusty plasmas using

reductive perturbation method with appropriate boundary con-

ditions. Kaladze et al.24 investigated acoustic cnoidal waves

and solitons in unmagnetized pair-ion (PI) plasmas consisting

of the same mass ion species with different temperatures.

They reported the formation of both compressive and rarefac-

tive cnoidal wave structures in PI plasmas which depends on

the temperature ratio of PI species. Recently, Kaladze, and

Mahmood25 studied the effect of positrons density and non-

thermal parameter kappa on the propagation of the ion-

acoustic cnoidal waves in electron-positron-ion plasmas. Saha

and Chatterjee studied electron acoustic periodic and solitary

wave solutions in unmagnetized26 and magnetized27,28 quan-

tum plasmas. They derived a KdV equation using the reduc-

tive perturbation method and investigated the associated

nonlinear structures using bifurcation theory.

The manuscript is organized in the following way. In

Sec. II, the model and set of dynamic equations for studying

nonlinear ion-acoustic waves in unmagnetized quantum plas-

mas is presented. Using the reductive perturbation method,

the KdV equation is also derived with appropriate boundary

conditions. In Sec. III, the stationary wave solution is

obtained for ion-acoustic cnoidal waves using the Sagdeev

potential approach. In Sec. IV, the numerical analysis and

plots are presented for degenerate plasma cases at different

plasma densities chosen from literature and the conclusion is

drawn in the final Sec. V.

II. BASIC MODEL AND DERIVATION OF KORTEWEG-DE
VRIES EQUATION

In order to study the electrostatic nonlinear periodic (cnoi-

dal) waves in unmagnetized EI quantum plasmas, we will

derive a KdV equation using the reductive perturbation

method. A KdV equation for quantum ion-acoustic waves has

already been derived by Haas et al.2 with emphasis on local-

ized solutions obtained under decaying boundary conditions.

For cnoidal waves, periodic boundary conditions are more

appropriate, hence we will derive again the KdV equation for

quantum ion-acoustic waves. The set of dynamic equations for

ion-acoustic wave using QHD model is described as follows.

The ion continuity and momentum equations for ion

fluid are given by

@ni

@t
þ @

@x
niuið Þ ¼ 0; (1)

@ui

@t
þ ui

@ui

@x
¼ � e

mi

@/
@x

: (2)

The dynamic equation for the inertialess electron quantum

fluid is described by

0 ¼ e
@/
@x
� 1

ne

@pe

@x
þ �h2

2me

@

@x

1ffiffiffiffiffi
ne
p

@2

@x2

ffiffiffiffiffi
ne
p

 !
: (3)

The Poisson equation is written as

@2/
@x2
¼ e

e0

ne � nið Þ; (4)

where / is the electrostatic potential. The ion fluid density

and velocity are represented by ni and ui, respectively, while

ne is the electron fluid density. Also, me and mi are the elec-

tron and ion masses, �e is the electronic charge, e0 and �h are

the dielectric and scaled Planck’s constants. In equilibrium,

we have ne0 ¼ ni0 ¼ n0 (say). Here, pe is the electron pres-

sure and peðneÞ is obtained from the equation of state for the

electron fluid. The electrons are assumed to obey the equa-

tion of state pertaining to one-dimensional zero-temperature

Fermi gas,2,3 which is pe ¼ mev2
Fen3

e=3n2
0, where n0 is the

equilibrium plasma density. Here, vFe is the Fermi velocity

of electron, connected to the Fermi temperature by

mev2
Fe=2 ¼ kBTFe and kB is the Boltzmann constant. The last

term on the right hand side of the momentum equations for

electrons quantum fluid is the quantum force, which arises

due to the quantum Bohm potential and gives quantum dif-

fraction or quantum tunneling effects due to the wave-like

nature of the charged particles. The quantum effects due to

ions are ignored in the model as they have large inertia in

comparison with the electrons.

In order to find the nonlinear ion-acoustic periodic

waves in a quantum plasma, the set of nonlinear dynamic

equations are written in a normalized form as follows:

@~ni

@~t
þ @

@~x
~ni~uið Þ ¼ 0; (5)

@~ui

@~t
þ ~ui

@

@~x
~ui ¼ �

@U
@~x

; (6)

0 ¼ @U
@~x
� 1

2

@~n2
e

@~x
þ H2

e

2

@

@~x

1ffiffiffiffiffi
~ne

p @2

@~x2

ffiffiffiffiffi
~ne

p !
; (7)

@2U

@~x2
¼ ~ne � ~ni: (8)

The normalization of space, time, ion velocity, and electro-

static potential is defined by ~x ! xpix=cs; ~t ! xpit; ~ui

! ui=cs, and U ¼ e/=2kBTFe, respectively, where the ion

plasma frequency and ion-acoustic speed are xpi ¼
ðn0e2=e0miÞ1=2

and cs ¼ ð2kBTFe=miÞ1=2
, respectively, and

the non-dimensional quantum parameter for electrons is

defined as He ¼ �hxpe=2kBTFe ,i.e., the ratio of electron plas-

mon energy to the Fermi energy, here xpe ¼ ðn0e2=e0meÞ1=2

is the electron plasma frequency. The normalization of elec-

tron and ion fluid density is defined as ~nj ¼ nj=n0 ðj ¼ e; iÞ.
In the following, for simplicity we will not use the tilde sign.

In order to find an nonlinear evolution equation, a

stretching of independent variables x, t is defined as

follows:10

n ¼ e1=2ðx� V0tÞ ; s ¼ e3=2t;

where e is a small parameter and V0 is the phase velocity of

the wave to be determined later on. The perturbed quantities

can be expanded in the powers of e,
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ni1 ¼ 1þ eni1 þ e2ni2 þ :::;
ne1 ¼ 1þ ene1 þ e2ne2 þ :::;
ui ¼ eui1 þ e2ui2 þ :::;
U ¼ eU1 þ e2U2 þ ::: (9)

Moreover, @=@x ¼ e1=2 @=@n and @=@t ¼ e3=2@=@s
�V0e1=2@=@n.

From ion continuity and momentum equations the low-

est order ð�e3=2Þ terms gives

�V0

@ni1

@n
þ @ui1

@n
¼ 0; (10)

�V0

@ui1

@n
þ @U1

@n
¼ 0; (11)

@U1

@n
� @ne1

@n
¼ 0: (12)

The lowest order ð�eÞ term of Poisson equation gives

ni1 ¼ ne1: (13)

Multiplying Eq. (10) by V0 and adding with Eq. (11), we

have

@ni1

@n
¼ 1

V2
0

@U1

@n
: (14)

Using Eqs. (12)–(14), we have

V0 ¼ 61; (15)

which is the normalized phase velocity of the ion-acoustic

wave. From now on, we set V0 ¼ 1 without loss of

generality.

Now integrating Eqs. (11), (12), (14) and using (13), we

have

ni1 ¼ ne1 ¼ U1 þ c1ðsÞ (16)

and

ui1 ¼ U1 þ c2ðsÞ; (17)

where c1ðsÞ and c2ðsÞ are at this point arbitrary functions of

s only.

Now collecting the next higher order terms from ion

dynamic equations, we have

� @ni2

@n
þ @ui2

@n
þ @ni1

@s
þ @

@n
ni1ui1ð Þ ¼ 0; (18)

� @ui2

@n
þ @U2

@n
þ @ui1

@s
þ ui1

@ui1

@n
¼ 0; (19)

@U2

@n
� @ne2

@n
� 1

2

@

@n
n2

e1 þ
H2

e

4

@3ne1

@n3
¼ 0: (20)

The next higher order (�e2) term of Poisson equation gives

@2U1

@n2
¼ ne2 � ni2: (21)

Adding Eqs. (18) and (19), we obtain

@ni2

@n
¼ @ni1

@s
þ @

@n
ni1ui1ð Þ þ

@ui1

@s
þ ui1

@

@n
ui1 þ

@U2

@n
; (22)

and from Eq. (20), we have

@ne2

@n
¼ @U2

@n
� 1

2

@

@n
n2

e1 þ
H2

e

4

@3ne1

@n3
: (23)

Using ni1; ui1, and ne1 from Eqs. (16) and (17) in Eqs. (22)

and (23), we obtain

@ni2

@n
¼ 2

@U1

@s
þ 3U1

@U1

@n
þ 2c2 þ c1ð Þ @U1

@n
þ @U2

@n
(24)

and

@ne2

@n
¼ �U1

@U1

@n
� c2

@U1

@n
þ H2

e

4

@3U1

@n3
þ @U2

@n
: (25)

Applying periodic boundary conditions we get

@c1=@s ¼ @c2=@s ¼ 0, so that the functions c1 and c2

become independent of both n and s and are from now on

constants.

Differentiating Eq. (21) and using Eqs. (24) and (25),

and after some simplifications, we have the KdV equation

for the nonlinear dynamics of ion-acoustic waves in a quan-

tum plasma as follows:

FIG. 1. (a) The nonlinear potential WðUÞ is plotted for q0 ¼ 0:01, u¼ 0.2,

and He¼ 0.05. (b) The phase plane plots of the compressive ion-acoustic

cnoidal wave (solid bounded curve) and soliton (dotted curve) are shown for

the same numerical values as in Fig. 1(a). Dimensionless variables are used.
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@U
@s
þ 2U

@U
@n
þ c0

@U
@n
þ D

@3U

@n3
¼ 0; (26)

where

c0 ¼ c1 þ c2; D ¼ 1

2
1� H2

e

4

� �
: (27)

Here, U1 has been replaced by U.

In the above KdV Eq. (26), the term containing an arbi-

trary constant c0 can be removed with a Galilean transforma-

tion. Hence, we can set c0 ¼ 0 without loss of generality. It can

be noticed easily from dispersive coefficient D that the cnoidal

wave solution exist only when He 6¼ 2, so that the dispersive

coefficient does not disappear to balance the nonlinearity.

III. NONLINEAR PERIODIC WAVE SOLUTIONS

In order to find the steady state cnoidal and solitary

waves solutions of the KdV Eq. (26) for quantum ion-

acoustic waves, we follow the same procedure as already

done in Refs. 24 and 25. Assume a solution UðgÞ, where

g ¼ n� us and u is the velocity of the nonlinear structure

moving with the frame. Therefore, Eq. (26) can be written as

D
d3U
dg3
þ d

dg
U2 � uUð Þ ¼ 0: (28)

As said, the arbitrary constant c0 has been ignored, since it

gives just a shift in the velocity of the nonlinear structure.

After integration of Eq. (28), we get the equation of a

conservative nonlinear oscillator, i.e.,

d2U
dg2
¼ � dW

dU
; (29)

where its potential energy W ¼ WðUÞ is defined as

W Uð Þ ¼ 1

3D
U3 � u

2D
U2 þ q0U: (30)

Here, q0 is an integration constant. The potential function

WðUÞ has two points of extremum for U, i.e., U ¼ ~U1;2

defined by @W=@U ¼ 0, which are given by

FIG. 2. (a) The nonlinear potential

WðUÞ is plotted for q0 ¼ 0:01, u¼ 0.2,

and He¼ 0.24 (b) The phase plane

plots of the compressive ion-acoustic

cnoidal wave (solid bounded curve)

and soliton (dotted curve) are shown

for the same numerical values as in

Fig. 2(a). Dimensionless variables are

used.
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~U1;2 ¼
u

2
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

4
� Dq0

r
: (31)

Thus, there are two equilibrium states. One of them defines a

saddle point while the other one represents a center point,

i.e., the bottom of the potential well.24 Moreover u2=4�
Dq0 > 0 must hold for real values. The zero’s of the poten-

tial energy (30), i.e., U ¼ z1; z2; z3 are given as follows:

z1 ¼ 0 ; z2;3 ¼
3

2

u

2
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

4
� 4

3
Dq0

r !
: (32)

To get the shape of the real potential well u2=4� 4Dq0=3 > 0

must holds. Note that the potential well having the center for

U > 0 (positive) defines the compressive cnoidal waves and

solitons, while in the case of U < 0 (negative) the potential

well defines the rarefactive cnoidal waves and solitons.24

The shape of the potential well strongly depends on the sign

of dispersive coefficient D (see Eq. (30)). As described in

Eq. (27), the value of the dispersive coefficient D in the KdV

equation is positive for electron quantum parameter He< 2

case, while it becomes negative for He> 2. Therefore, the

formation of compressive or rarefactive ion-acoustic nonlin-

ear structure depends on the value of the quantum parameter

He. The amplitude of the nonlinear structures is defined by

the width of the potential well, which is the length between

the last zero of the potential well and the saddle point (see

Eqs. (31) and (32)).

The energy first integral associated to (29) is

1

2

dU
dg

� �2

þW Uð Þ ¼ E2
0

2
; (33)

where E2
0 is the integration constant (assumed positive defi-

nite in order to access cnoidal wave solutions).

Using Eq. (30) in (33), we have

dU
dg

� �2

¼ E2
0 �

2

3D
U3 þ u

D
U2 � 2q0U: (34)

Let us consider the initial conditions Uð0Þ ¼ U0 and

dUð0Þ=dg ¼ 0. Then, we can define

FIG. 3. (a) The nonlinear potential

WðUÞ is plotted for q0 ¼ 0:01;
u ¼ �0:05, and He¼ 2.002 (b) The

phase plane plots of the rarefactive ion-

acoustic cnoidal wave (solid bounded

curve) and soliton (dotted curve) are

shown for the same numerical values as

in Fig. 3(a). Dimensionless variables

are used.
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E2
0 ¼

2

3D
U3

0 �
u

D
U2

0 þ 2q0U0: (35)

Using Eq. (35) in Eq. (34) and after factorization, we have

dU
dg

� �2

¼ 2

3D
U0 � Uð Þ U� U1ð Þ U� U2ð Þ; (36)

where

U1;2 ¼
3

2

u

2
� U0

3
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3
b1 � U0ð Þ U0 � b2ð Þ

r" #
(37)

and

b1;2 ¼
u

2
62

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

4
� Dq0

r
: (38)

In addition, the following inequalities should be kept: b2 �
U0 � b1 or b1 � U0 � b2. From Eqs. (34)–(36), we have the

following relation:

u ¼ 2

3
U0 þ U1 þ U2ð Þ: (39)

The periodic (cnoidal) wave solution of Eq. (36) is given29

by

UðgÞ ¼ U1 þ ðU0 � U1Þcn2ðRg; sÞ; (40)

where cn is the Jacobian elliptic function, s is the modulus

defined as

s2 ¼ U0 � U1ð Þ
U0 � U2ð Þ < 1; (41)

and the quantity R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

6D U0 � U2Þð
q

.

The amplitude A of the cnoidal wave is defined from Eq.

(40) as follows:

A ¼ U0 � U1: (42)

As it is seen from the solution (40) at g¼ 0, we have the ini-

tial condition Uð0Þ ¼ U0. In addition, the real numbers

Ui ði ¼ 0; 1; 2Þ are ordered as U0 > U1 � U2 and U1 � U �
U0 for D> 0.

The modulus 0 < s < 1 is a measure of the nonlinearity

of the wave. The case s� 1 corresponds to the weakly non-

linear oscillations near the bottom of the potential well and

the elliptic functions are close to trigonometric ones. At

s! 0, the expression (40) passes to solution of linear

equations.29

The wavelength k of the cnoidal waves is defined as

k ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3D

2 U0 � U2ð Þ

s
K sð Þ; (43)

where K(s) is the complete elliptic integral of the first kind

and the corresponding frequency is f ¼ v1=k (where v1 is the

velocity of the cnoidal waves). The velocity v1 of the cnoidal

waves in the laboratory frame is equal to v1 ¼ V0 þ u, where

the expression for the frame velocity u is given by

u ¼ 2

3

U0 � U1ð Þ
s2

2� s2ð Þ þ 2U2; (44)

which has been obtained using the expression of the modulus

s described by Eq. (41).

The mean value of U can be expressed as

�U ¼ 1

k

ðk

0

U gð Þdg ¼ U2 þ U0 � U2ð Þ E sð Þ
K sð Þ

; (45)

where E(s) is the complete integral of the second kind.

The limiting case of the soliton, i.e., s¼ 1, can be

obtained at U0 � b1 or U0 � b2 (see Eq. (38)), so that

U1 � U2 ¼
u

2
7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

4
� Dq0

r
: (46)

Further, we take into account,

K sð Þ � 1

2
ln

16

1� s2

� �
!1 ; cn z! 1

ch z
; (47)

which imply that the wavelength of the cnoidal waves

defined in (43) tends to infinity and the solution (40) passes

to a soliton-like shape,29 i.e.,

FIG. 4. (a) The plots of compressive ion-acoustic cnoidal waves (periodic

wave oscillations) from Eq. (40) and (b) solitons (single pulse) from Eq.

(48) are shown for the He< 2 case, i.e., with He¼ 0.05 (solid) and He¼ 0.24

(dotted), respectively. Dimensionless variables are used.
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U gð Þ ¼ U1 þ
A

ch2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

6D
U0 � U1ð Þ

r
g

 ! ; (48)

where � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6jD=Aj

p
is the width of the soliton and A is its

amplitude, defined by Eq. (42). As it follows from Eq. (44),

the propagation velocity of the solitons becomes

u ¼ 2U1 þ
2

3
A: (49)

From Eq. (48), we see that U1 defines the potential at

g! 61.

Thus, at large values of s, i.e., s! 1, A¼ const the peri-

odic wave asymptotically approaches to the sequence of soli-

tons having the amplitude A (relatively to the level

U ¼ �U ¼ U1). By the order of magnitude, the distance

between them is equal to

k ¼ �jlnð1� s2Þj; (50)

where � is the width of the soliton already defined above.

IV. NUMERICAL ANALYSIS

The numerical plots of the nonlinear wave potential and

the phase plane plots of the cnoidal wave structures and soli-

tons are shown in Figs. 1–3 at different densities for a degen-

erate electron plasma cases, such as astrophysical plasmas,

laser plasmas, and ultra-cold plasmas. For a completely

degenerate electron plasma, the electron Fermi energy and

density are related as kBTFe ¼ �h2ð3p2n0Þ2=3=2me and the

Fermi temperature of degenerate electrons (TFe) should be

much greater than the thermal temperature T of the system,

i.e., T � TFe. The quantum parameter for electrons is related

to density as He � n
�1=6
0 , which shows that in a completely

degenerate electron plasma case, the value of the quantum

FIG. 5. (a) The plots of compressive ion-acoustic cnoidal waves (periodic wave oscillations) from Eq. (40) and (b) solitons (single pulse) from Eq. (48) are

shown for the He> 2 case, i.e., with He¼ 2.002 (solid) and He¼ 2.01 (dotted), respectively. Dimensionless variables are used.
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parameter decreases with the increase in the plasma density.

So the quantum diffraction effects tend to be less relevant in

dense plasmas. In case of astrophysical plasma conditions,

i.e., n0 ¼ 1036m�3, the quantum parameter for degenerate

electrons comes out to be He¼ 0.05 and the condition for

thermal temperature becomes T � 109K, while for laser

plasmas we have n0 ¼ 1032m�3 then He ¼ 0:24 and

T � 107K. Further, for ultra-cold plasmas, we have n0 ¼ 2:7
�1026m�3 for which He¼ 2.002 and T � 1800 K.30,31

The formation of ion-acoustic compressive (rarefactive)

nonlinear structures depends on the value of the quantum pa-

rameter for electrons, i.e., He< 2 (He> 2). It is also noticed

that the velocity of the nonlinear structure is positive, i.e.,

u> 0 for compressive cnoidal waves and solitons with quan-

tum parameter for degenerate electrons lies in the range

0 � He < 2. For the He> 2 case, rarefactive ion-acoustic

cnoidal waves and solitons structures are formed and its

solution exist only when the velocity of the nonlinear struc-

ture is negative u< 0, i.e., it moves in the backward

direction.

It can be seen from Figs. 1(a) and 2(a) that the Sagdeev

potential WðUÞ are formed for U > 0 for the electron quan-

tum parameter values He ¼ 0:05 and 0.24. The correspond-

ing compressive ion-acoustic cnoidal wave (solid curve) and

solitons (dotted curve) structures are shown in the phase

plane plots of Figs. 1(b) and 2(b), respectively. The cnoidal

wave structure (solid bounded curve) is formed inside the

separatrix (dotted curve) which represent a soliton structure

as shown in the figures. The Sagdeev potential plot WðUÞ is

formed with U < 0 for the electron quantum parameter value

He¼ 2.002 (> 2) as shown in the Fig. 3(a). The correspond-

ing rarefactive ion-acoustic cnoidal wave (solid bounded

curve) and soliton (dotted curve) structures in the phase

plane plot are shown in the Fig. 3(b). Rarefactive nonlinear

FIG. 6. (a) The dependence of wave-

length k on compressive ion-acoustic

cnoidal wave amplitude A is shown for

degenerate electron quantum parameter

He¼ 0.05 (solid curve) and He¼ 0.24

(dotted curve) with v1 ¼ 0:1. (b) The

dependence of frequency f on compres-

sive ion-acoustic cnoidal wave ampli-

tude A with same parameters as in Fig.

4(a). Dimensionless variables are used.
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ion-acoustic cnoidal wave (solid bounded curve) structures

are also formed inside the separatrix (dotted curve), which

represent the soliton.

The plots of the compressive ion-acoustic cnoidal wave

from Eq. (40) and solitons from Eq. (48) for He< 2 case are

shown in the Figs. 4(a) and 4(b), respectively. It can be seen

from the Fig. 4(a) that there is a little decrease in the wave-

length (frequency) of the compressive ion-acoustic cnoidal

wave case with the increase in the quantum parameter of the

degenerate electrons. The little increase in the width of the

compressive ion-acoustic solitons with the increase in the

value of quantum parameter is shown in the Fig. 4(b).

Similarly, the plots for the rarefactive ion-acoustic cnoidal

wave and soliton structures for He> 2 case are shown in the

Figs. 5(a) and 5(b), respectively. It can be seen from the Fig.

5(a) that wavelength (frequency) of the rarefactive ion-

acoustic cnoidal wave increases and its amplitude decreases

significantly with the little increase in the value of quantum

parameter for He> 2 case. Also, the decrease in the wave

amplitude as well as increase in the width of the rarefactive

ion-acoustic soliton with the increase in the value of quan-

tum parameter is shown in Fig. 5(b).

The variations of the wavelength and frequency with

wave amplitude of the compressive ion-acoustic cnoidal

waves at different quantum parameters are shown in Figs.

6(a) and 6(b), respectively. It can be seen from the figures

that the wavelength increases, while the frequency decreases

with the increase in the amplitude. Also, the decrease in the

wavelength and increase in the wave frequency is found with

the increase in the electron quantum parameter for compres-

sive (He< 2) ion-acoustic cnoidal waves case. However, this

decrease in the wavelength and increase in the wave fre-

quency with the wave amplitude for the ion-acoustic com-

pressive cnoidal waves case seems to be very small at the

FIG. 7. (a) The dependence of wave-

length k on rarefactive ion-acoustic

cnoidal wave amplitude A is shown for

degenerate electron quantum parame-

ter He¼ 2.002 (solid curve) and

He¼ 2.01 (dotted curve). (b) The de-

pendence of frequency f on rarefactive

ion-acoustic cnoidal wave amplitude A
with the same parameters as in Fig.

6(a). Dimensionless variables are used.
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chosen degenerate plasma densities as indicated in Figs. 6(a)

and 6(b). The dependence of the wavelength and frequency

on the wave amplitude in case of rarefactive ion-acoustic

cnoidal waves case, i.e., at quantum parameters with values

He> 2 are shown in Figs. 7(a) and 7(b), respectively. The

wavelength increases while the frequency decreases with the

increase in the amplitude of the rarefactive ion-acoustic cnoi-

dal waves in quantum plasmas. On the other hand, the wave-

length is found to be increased, while frequency decreases

for rarefactive ion-acoustic cnoidal waves case with the

increase in the value of the quantum parameter for degener-

ate electrons as shown in the Figs. 7(a) and 7(b).

V. CONCLUSION

To conclude, we have studied for the first time the ion-

acoustic cnoidal waves and solitons in an unmagnetized

quantum plasma. The KdV equation for ion-acoustic waves

in a quantum plasma was obtained using the reductive per-

turbation method with periodic wave boundary conditions,

appropriate to study cnoidal waves. It is found that both

compressive and rarefactive nonlinear ion-acoustic cnoidal

wave structures are formed in such a degenerate plasma,

which depends on the quantum parameter, i.e., He02. The

dependence of wave frequency and wavelengths on the non-

linear ion-acoustic wave amplitude is also investigated at dif-

ferent values of quantum parameters with the degenerate

plasma densities exist in astrophysical and laboratory plas-

mas. It is found that the dependencies of wavelength and fre-

quency on wave amplitude at different quantum parameters

for electrons behave differently for compressive and rarefac-

tive ion-acoustic cnoidal wave cases. The results are useful

to understand how nonlinear wave propagates in quantum

plasmas.
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