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Inhomogeneous cold beams undergo wave breaking as they move along the axis of a magnetic
focusing system. All the remaining control parameters fixed, the earliest wave breaking is a sensitive
function of the inhomogeneity parameter: the larger the inhomogeneity, the sooner the breaking. The
present work analyzes the role of envelope size mismatches in the wave breaking process. The
analysis reveals that the wave breaking time is also very susceptible to the mismatch; judiciously
chosen mismatches can largely extend beam lifetimes. The work is extended to include recently
discussed issues on the presences of fast and slow regimes of wave breaking, and the theory is
shown to be accurate against simulations. © 2010 American Institute of Physics.
�doi:10.1063/1.3385393�

A fundamental issue in the dynamics of magnetically
focused beams designed to meet requirements in vacuum
electronics, concerns relaxation when the beam profile is not
homogeneous.1 On general grounds of energy conservation
one concludes that relaxation takes place as the coherent
fluctuations of beam inhomogeneities are converted into par-
ticle kinetic energy and field energy.2 Recent works actually
show that in the case of cold beams relaxation proceeds in
two basic steps.3 Wave breaking initially pushes particles off
the beam, and then ejected particles form a relaxing hot halo
as they absorb energy from macroscopic oscillations of the
remaining beam core. Wave breaking is therefore a key fea-
ture in the process.

Attention has been mostly drawn to the effects the de-
gree of inhomogeneity has on wave breaking. Two instances
were then identified. Originally, a threshold was obtained in
terms of gradients in the amplitude of waves propagating
across the beam.4 As particles largely displaced from their
equilibrium positions are released, they overtake each other
in less than one plasma wave cycle creating density singu-
larities and wave breaking; for small displacements, breaking
is absent. A more thorough analysis however shows that not
only amplitude gradients, but also formerly neglected gradi-
ents of the spatially varying frequency of the density waves
is a key factor determining wave breaking.3,5 The physical
process is different from the previous, as one shows that no
threshold exists in this latter case. Particles slowly move out
of phase due to small differences in their oscillatory frequen-
cies, until a time when one eventually catch up with another
creating again infinite densities and breaking.

In addition to the inhomogeneity effect, one should also
note that since wave breaking is essentially dictated by com-
pressions and rarefactions of beam densities, it may be quite
possible that expansions or contractions of the beam trans-
versal size have a noticeable effect on the process. In par-

ticular we will show that, contrarily to the homogeneous
beam case where envelope mismatch is an undesirable fea-
ture, for inhomogeneous beams it may largely delay wave
breaking, extending beam lifetime.

We focus on crystalline cold beams which have been
attracting a growing amount of interest lately,6 also serving
as a step towards warmer beams. Crystalline beams are not
only cold, but also spatially ordered. Consider thus an axially
symmetric, collisionless, unbunched beam moving with con-
stant velocity along z. In the para-axial approximation the
equation for the radial motion of any cylindrical layer takes
the form3

r� = − �r + Q�r�/r . �1�

Primes indicate derivatives with respect to z for stationary
beams. Q�r� is a measure of the total charge up to radial
layer r. It reads Q�r�=KN�r� /Nt, where K=Ntq

2 /�3m�2c2 is
the beam perveance, with N�r� denoting the number of par-
ticles up to radial coordinate r, and Nt their total number. q
and m denote the beam particle charge and mass, respec-
tively. �= �1−�2�−1/2 is the relativistic factor where �=vz /c,
vz is the constant axial beam velocity, and c is the speed of
light. ���qB /2�m�c2�2 where B is the constant axial focus-
ing magnetic field. Beams with perfectly matched envelopes
are the ones for which the initially farthest radial layer rb0 is
in equilibrium: rb0

2 =K /� from Eq. �1�.
We suppose that the beam starts off from rest as a cold

fluid. Then, while particles do not overtake each other,
Q�r ,z� may be evaluated for any layer at r as the initial value
Q�r0�, where r�z=0��r0. In a likewise fashion, one can
compute the amount of charge contained between two
neighbor layers located at r and r+dr in the form dQ
=2�r��r ,z�dr=2�r0��r0 ,0�dr0, where � denotes the charge
�Q� density of the system. The expression for dQ tells us that
the density evolves as

��r,z� = ��r0,0���r/�r0�−1�r0/r� . �2�

Equation �2� reveals that the density function develops a sin-
gularity when the orbital equation r=r�r0 ,z� becomes multi-
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valued with �r /�r0=0. This point corresponds to a potential
barrier not all particles can move across. Some particles are
reflected relaxing the beam via kinetic effects associated with
emittance growth.

So, it all depends on the behavior of the compressibility
factor �r /�r0 as a function of “time” z. An approximate so-
lution for small oscillations can be obtained from Eq. �1� in
the fluid state where Q�r� can be replaced with Q�r0� as
explained earlier

r�z� � req + A cos��z� . �3�

The solution describes an oscillatory motion of amplitude
A�r0−req around an equilibrium point req promptly
recognized as req=�Q�r0� /� from Eq. �1�. The amplitude
depends on r0, and the nonlinearly corrected frequency
also does: canonical perturbative theories show that3,7

��r0�=�2�+��A2 / �6�2req
2 �. Therefore, if from Eq. �3� one

writes down the compressibility factor one arrives at

�r

�r0
=

�req

�r0
+

�A

�r0
cos��z� − z

��

�r0
A sin��z� . �4�

If the inhomogeneity in A is sufficiently large that �A /�r0
��req /�r0, wave breaking takes place within a cycle of
oscillation as the cosine’s phase slips from zero towards �.
In this case the last term on the right hand side of Eq. �4�
can be safely neglected as a small O�A3 /req

3 � quantity. The
threshold condition for fast wave breaking dominated by the
amplitude gradient can also be written in the convenient
form Q−1/2��Q /�r0����. In typical configurations of beams
with humped cores and dilute populations near the border,
�Q /�r0 �r0→rb0

→0 and the condition for wave breaking is
easily satisfied there. This is the fast regime analyzed in Ref.
4, as mentioned earlier. In addition to this fast regime, an-
other clear fast regime is found as one considers hollow
beams, where densities are extremely high near the beam
border, but small at the center. Looking at the beam center
where Q	�r0

2 for a local density �, one sees that the wave
breaking condition is fulfilled there as �→0.

When the threshold for the fast wave breaking is not
attained across the beam, a simple oscillatory process cannot
bring the compressibility factor to zero. This is where the last
term of Eq. �4� begins to play its crucial role. Corrections to
the frequency are small as mentioned, but the respective term
present in Eq. �4� grows linearly with the time z. Thus, no
matter how small is the inhomogeneity, for sufficiently long
periods of time the term involving the frequency gradient
becomes large enough that �req /�r0	z�A�� /�r0 for a given
z�=z��r0�,

z� 	 ��req/�r0�/�A � �/�r0� . �5�

Neglecting the nonsecular term, at this point the wave break-
ing singularity �r /�r0=0 is reached again. The earliest break-
ing time is the one of physical relevance. It is obtained here
as the minimum of z��r0� over all r0’s in the form zwb

�minr0
�z��r0��, from which convenient approximations shall

be discussed later.
For now, let us summarize our findings based on typi-

cally varying beam profiles. �i� Starting from humped core
beams with very low densities at the borders, wave breaking
is fast and occurs at the beam border.4 �ii� Next, as one
diminishes the density contrast between beam core and beam

border, one enters a slow regime where the rapidly oscillat-
ing compressibility factor modulates linearly with z, reaching
the wave breaking state �r /�r0=0 after long time periods.3

Importantly, the slow regime of wave breaking does not in-
volve any threshold. As long as beam inhomogeneities are
present, the beam is bound to undergo wave breaking. �iii�
Finally, with further increase in the density contrast, now
with higher densities near the border, a different zone of fast
wave breaking is reached where breaking occurs near the
beam center.

We now add the effect of a mismatched beam border and
investigate the effect in slow regimes where it is prominent.
The density profile is presently needed and is specified in the
general parabolic form ��r0	rb0�=2K /�rb0

2 �1+
�2r0
2 /rb0

2

−1��, ��r0�rb0�=0, where rb0 is the initial beam size and
−1	
	+1 measures the degree of inhomogeneity; 
→−1
for humped, 
=0 for homogeneous, and 
→+1 for hollow
beams. With Q�r0�=
0

r02�r��r�dr we see that the slow re-
gion lies within the limits 
min=−0.5 and 
max=0.75 for the
matched beam rb0=�K /�. With that information we con-
struct Fig. 1�a� using 
=0.6, where zwb is displayed as a
function of beam size; in all numerics, radial coordinates are
given in units of �K /� and z in units of �−1/2. Note that
because of our choice of the inhomogeneity 
=0.6, we do
fall in a slow region, at least in the vicinity of the matched
beam. The thick line is obtained exactly as one integrates
Eq. �1� and its derivative with respect to r0, looking for the
earliest time where �r /�r0→0, all in the fluid state where we
can replace Q�r�→Q�r0�. The thin lines are based on the

FIG. 1. �Color online� Wave breaking time vs initial beam radius in panel
�a�. z�=z��r0� for rb0=0.8 in �b� and for rb0=0.9 in �c�. Beam phase-spaces
just after the breaking: rb0=0.8 in panel �d� and rb0=0.9 in �e�. In all cases,

=0.6. Simulations are based on Gauss’s law using 50000 cylindrical shells.
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perturbative solution Eq. �5� and approximate the exact curve
on the right and left hand sides of the peak. In addition to the
peak the plot reveals strong sensitivity to the choice of rb0.
We note that the matched beam is not the one with the largest
lifetime before breaking. The longest living beam is the one
at the peak where rb0�0.85, and its breaking time is around
five times larger than the matched beam’s time.

The reason for the sharp peak can be understood in pan-
els �b� and �c� where we plot the local wave breaking time
z��r0� as a function of the initial position of the correspond-
ing fluid element; we recall that the smallest z��r0� is of
major physical significance. Panel �b� represents point rb0
=0.8, on the left side of the peak. For this point and all others
on the left side the earliest breaking occurs at the beam bor-
der �B�. Panel �c� represents point rb0=0.9 on the right of the
peak and reveals that the earliest breaking time for this point
�and all others on the right side� occurs in the inner �I� body
of the beam. The curves for rb0�1 always reveal two local
minima separated by a divergent z� corresponding to a fixed
equilibrium point rfp located inside the beam; that portion of
the beam extending up to the fixed point behaves like a
matched beam of radius rfp and, as one can show, a renor-
malized 
→1+ �
−1�K /�rb0

2 . This allows to obtain the
wave breaking time zwb

I in the inner region �right-hand side
approximation� as

zwb
I = min

r0�rfp

�z��r0�� , �6�

a form that can benefit from minimizing procedures previ-
ously applied to fully matched beams.3 As for the breaking at
the beam border zwb

B �left-hand side approximation� one sim-
ply evaluates

zwb
B = z��r0 = rb0� . �7�

There is thus an abrupt transition at the peak, where the
beam simultaneously breaks at the center and at the border:
rb0 at the peak is obtained from zwb

I =zwb
B . Full simulations in

panels �d� �rb0=0.8� and �e� �rb0=0.9�, further clarify the
case, again indicating the abrupt change in location of the
initial breaking �where the jets are seen� across the peak.
When 
�0 the behavior is reversed, but otherwise equiva-
lent, with the internal fixed point appearing when the beam is
stretched with rb0�1.

We can now investigate beam inhomogeneity and size in
a unified way. To do so we construct Fig. 2, where the ear-
liest breaking time is coded in colors, as a function of the
control parameters rb0 and 
. A wide parametric extension is
covered enabling the see the fast wave breaking regions and
all details of the slow region. The analytical bent dotted line
represents the loci of the largest wave breaking time. Expec-
tations are confirmed: wave breaking strongly depends not

only on the beam profile 
, but also on the beam size rb0.
And more: given 
 Fig. 2 teaches how a judicious mismatch-
ing applied to rb0 may help to control detrimental effects of
nonuniformities across the beam section. We also note that
near the borders, a small shift in rb0 can bring the system
from a fast to the slower region and that previous estimates
for the matched beam are accurate.

To summarize, we investigated two types of wave break-
ing cases in space charge inhomogeneous beams: a fast
breaking commanded by amplitude gradients and a slow
breaking commanded by frequency gradients. The latter has
no threshold and is bound to happen no matter how small is
the beam nonuniformity. Then, in all instances we showed
how a judiciously chosen envelope size mismatch can sig-
nificantly extend the beam life time as compared with the
matched case.
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FIG. 2. �Color online� Color coded wave breaking time map in the

�rb0-space. Doted line comes from the analytical approach, and indicate
the loci of maximum wave breaking time. Black means zwb�105.

141503-3 Souza et al. Appl. Phys. Lett. 96, 141503 �2010�

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Download to IP:  143.54.44.137 On: Thu, 05 May

2016 19:47:31

http://dx.doi.org/10.1016/j.nima.2005.01.280
http://dx.doi.org/10.1016/j.nima.2005.01.280
http://dx.doi.org/10.1063/1.2201062
http://dx.doi.org/10.1063/1.2837891
http://dx.doi.org/10.1103/PhysRevLett.82.4002
http://dx.doi.org/10.1063/1.2802072
http://dx.doi.org/10.1063/1.3091914
http://dx.doi.org/10.1103/PhysRevSTAB.3.094201
http://dx.doi.org/10.1103/PhysRev.113.383
http://dx.doi.org/10.1063/1.1423621
http://dx.doi.org/10.1103/PhysRevLett.89.184102

