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This work analyzes the dynamics of inhomogeneous, magnetically focused high intensity beams of
charged particles. Initial inhomogeneities lead to density waves propagating transversely in the
beam core, and the presence of transverse waves eventually results in particle scattering. Particle
scattering off waves in the beam core ultimately generates a halo of particles with concomitant
emittance growth. Emittance growth indicates a beam relaxing to its final stationary state, and the
purpose of the present paper is to describe halo and emittance in terms of test particles moving under
the action of the inhomogeneous beam. To this end an average Lagrangian approach for the beam
is developed. This approach, aided by the use of conserved quantities, produces results in nice
agreement with those obtained with full N-particle numerical simulations. © 2009 American
Institute of Physics. �DOI: 10.1063/1.3091914�

I. INTRODUCTION

Magnetically focused beams of charged particles can re-
lax from nonstationary to stationary flows with associated
emittance growth and concomitant halo formation.1

Gluckstern2 showed that initial envelope oscillations of mis-
matched homogeneous beams induce formation of large
scale resonant islands beyond the beam border:3,4 Beam par-
ticles are captured by the resonant islands resulting in emit-
tance growth and relaxation. A closely related question con-
cerns the mechanism of beam relaxation and the associated
emittance growth when the beam is not homogeneous, as
frequently happens in beam transport channels.1,5 On general
grounds of energy conservation one again concludes that
beam relaxation takes place when the coherent fluctuations
of beam inhomogeneities are converted into microscopic ki-
netic energy, as shall be detailed along the paper.

Recent investigation of inhomogeneous beams shows
that relaxation comes about as a consequence of particle
scattering off density waves in the beam.6 Scattering par-
ticles initially move in phase with the macroscopic density
fluctuations, drawing their energy from the propagating wave
fronts and converting it into microscopic kinetic energy. For
ultracold, or crystalline beams, the process amounts to the
mechanism of pure wave breaking, where particles are first
coherently accelerated to the velocity of the waves and then
abruptly ejected from high density peaks. At the moment of
ejection, spatial dependence of oscillatory frequency, a
needed feature for wave breaking, has already turned the
core into a highly incoherent state.7,8

In the present paper we focus attention on the case of
space charge dominated but warmer beams. Under these con-
ditions, resonant particles are already present at initial times
due to thermal spread, and the entire relaxation process is
smoother. In contrast to the crystalline case, here particles

gain energy while the core still displays coherence. In any
case, ejected particles form a low density halo around the
beam core, which ultimately increases beam emittance and
relaxes the dynamics. Due to its low density the ejected
population can be very accurately described as a set of test
particles. It is thus of importance to describe the motion of
test particles as they are driven into the halo by core fluctua-
tions. The core itself generically behaves as an oscillatory
drive, the details of which depend on the particular instance
investigated. While in homogeneous cases the core is occa-
sionally modeled as a breathing flattop charge distribution,
corresponding models for oscillating inhomogeneous beams
are less frequent.

The first aim of this paper is therefore to construct a
model for the inhomogeneous oscillating core. To do that we
make use of a Lagrangian approach with which one can de-
scribe its dominant nonlinear oscillatory mode. Then, as the
core is coupled to test particles, one can give a good account
of the latter’s distribution in phase space. One further adds
the help of conserved quantities to obtain saturated quantities
such as the relaxed emittance, and in the final step we show
that the modeled emittance agrees well with the one obtained
from particle simulations.

The paper is organized as follows. In Sec. II we discuss
general features of the problem and introduce the model for
the oscillating core and for test particles. In Sec. III we make
use of the model aided by use of conserved quantities to
estimate the structure of the final relaxed state; comparisons
are then made with full particle simulations. In Sec. IV we
draw our conclusions.

II. THE MODEL AND INITIAL ANALYSIS

We consider solenoidal focusing of space charge domi-
nated beams propagating along the transport axis, defined as
the z axis of our reference frame. The beam is initially cold
with very small emittance, and is azimuthally symmetric
around the z axis. Our problem is then to describe the aver-
age oscillatory motion of the beam core and how it drives
test particles to form halo with subsequent beam relaxation.
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Considering full azimuthal symmetry, one can use
Gauss’ law in order to write the governing equation for any
particle in the beam,7,9–11

r� = − �r +
Q�r�

r
, �1�

primes indicating derivative with respect to the longitudinal z
coordinate which for convenience we shall also refer to as
“time.” The focusing factor is ���qB /2�m�c2�2, where B is
the axial, constant, focusing magnetic field. Q�r�
=KN�r� /Nt is the particle-averaged measure of the charge
contained between the origin at r=0 and the position r�z�
=r, Nt is the total number of beam particles per unit axial
length, N�r� is the number of particles up to r, and K
=Ntq

2 /�3m�2c2 is the beam perveance. q and m denote the
beam particle charge and mass respectively, and �= �1
−�2�−1/2 is the relativistic factor with �=vz /c. vz is the con-
stant axial beam velocity and c is the speed of light.

A. Density oscillations of the core

We recall that we are interested in slightly thermal
beams where particles begin to move away from the core
while it still oscillates coherently. Particles left in the core
are thus approximately described in terms of a charged fluid
where trajectories of individual fluid elements do not inter-
cept each other during the dynamics. In other words, for a
particular position at a particular time, one can ascribe a
unique velocity for all particles sitting there. Particles whose
trajectories do cross each other are halo particles and form
the kinetic part of the full particle distribution. This kinetic
portion of the distribution will be handled later.

Since the core is assumed to be a fluid with negligible
random motion, the amount of charge that a core particle
sees at any time equals the charge initially seen at z=0. In
other words, if a core particle evolves from r0 at z=0 to a
new position r at time z, we consider Q�r ,z�=Q�r0�. r0 is in
fact the Lagrangian coordinate of the core particle,12 which
means that the solution to Eq. �1� can be written parametri-
cally in terms of r0 in the convenient form r=r�r0 ,z�. Once
again we emphasize that the amount of charge Q�r� seen by
the fluid element inside the region 0�r�r�z� remains unal-
tered at Q�r0�, independently of time z. This is of fundamen-
tal importance since from Gauss’ law this is the charge that
exerts the force on the fluid element.

Expression �1�, adapted for core particles according to
the preceding comments, can be readily obtained from the
single-particle Lagrangian L

L�r,r�� =
r�2

2
− �

r2

2
+ Q�r0�ln�r� , �2�

with help of Euler–Lagrange equations. In our system one
has a multitude of Nt particles, as mentioned, and the full
transverse Lagrangian takes the form

L =� L�r,r��n�r0�d2r0, �3�

where what one is doing is to multiply the single-particle
Lagrangian at coordinate r by the number of particles evolv-

ing from r�z=0�=r0 to r�z�=r, n�r0�d2r0, and integrating
over all possible initial conditions. Recalling that since we
are dealing with core particles, the amount of charge seen by
a particle at any time z equals that at z=0. This explains the
presence of the term Q�r0�—computed at r0—in Eq. �2�.

At the present point we would like to invoke average
Lagrangian techniques.13 The purpose here would be to pro-
duce an average formalism that could provide an easy way
into obtaining the nonlinear frequency and the amplitude of
the dominant oscillatory mode of the core. With this approxi-
mate core dynamics serving as a drive for test particles, we
shall finally attempt to investigate halo formation and the
corresponding basic features of the relaxed state.

The general idea of the average Lagrangian is to suppose
a trial shape for the density n=n�r ,��z��, where z depen-
dence comes through an amplitude factor �=��z� to be de-
termined. Then one proceeds to integrate Eq. �3� over r0 and
apply the Euler–Lagrange method of stationary action to ob-
tain a governing equation for the density fluctuation ampli-
tude ��z�. This will complete the description for the core
dynamics.

Let us list in some detail the most critical steps needed to
achieve our goal.

�i� We first of all note that given continuity, fluid ele-
ments must evolve obeying the constraint n�r0�d2r0

=n�r ,��z��d2r. Once the trial function n�r ,��z�� has
been defined, this step enables to write n�r0�d2r0 in
Eq. �3� explicitly in terms of the radial coordinate r
and the respective differential.

�ii� In addition to that, continuity can be used once again,
now in terms of the azimuthally symmetric continuity
equation

�n

�z
+

1

r

�

�r
�rnv� = 0, �4�

to extract an expression for the velocity r� in terms of
the coordinate and time:

r� = −
1

rn
�

0

r

r
�

�z
n�r,��z��dr � v = v�r,��z�� . �5�

�iii� We finally note that since Q�r0�=Q�r ,��z��
= �K /Nt�N�r ,��z�� from Eq. �1� and associated defini-
tions, the charge Q in L can be also explicitly written
in terms of the radial coordinate r once we integrate
the density n to find N�r ,��z��.

The steps above guarantee that, given the density
n�r ,��z��, we can change the integration variable in Eq. �3�
from r0 to r and perform the integration so what we need
now is the ansatz for the density. As initial condition we
impose a parabolic type perturbation of the form n�r�rc�
=�h�1+��2r2 /rc

2−1�� �with n�r�rc�=0�, where �h is the av-
erage beam density and rc is the beam core radius. Then we
assume that as the density wave evolves in the core it can be
represented in the form
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n�r,��z�� = �h�1 + ��z��2
r2

rc
2 − 1	
 , �6�

where now we let the amplitude to become a function of time
z. The ansatz represents a compressive-rarefactive wave and
gives an accurate account of the density fluctuations for short
times following the initial state. Only for much longer peri-
ods, effects associated with spatial dependence of oscillatory
frequency become more noticeable.6,7 As explained earlier,
we intend to apply the theory in case of space charge domi-
nated, but not ultracold fully crystalline beams. In this case
some stray particles detached early from the beam core gain
energy while the core still oscillates in a coherent fashion.
Since these first evaporated particles are the ones that absorb
maximum energy and define the halo boundaries in phase
space, usage of expression �6� is justified.

The case of crystalline beams was investigated in a pre-
vious paper.6 Under these conditions particles detach from
the core only when wave breaking due to spatial dependence
of the oscillatory frequency takes place. Then, while the

monochromatic ansatz �6� is in principle arguable, we shall
comment later how the estimates can still be used.

We also choose rc=K /� so particles at beam border are
at equilibrium. Under this condition the beam displays inter-
nal oscillations but keeps its radius unaltered during initial
stages. This reduces the action of Gluckstern’s resonances
and therefore enhances the effects of density oscillations
which is our focus here.

With help of the ansatz and all steps detailed above, we
can fully integrate Eq. �3� with respect to r and make use of
Euler–Lagrange equations applied to the remaining function
�=��z�,

d

dz
� �L

���
	 −

�L

��
= 0, �7�

to obtain a closed expression for the amplitude

���z� = F���z�,���z�� , �8�

where the specific form of the involved function F, obtain-
able from the Euler–Lagrange procedures, is written below:

F = �rc
2�3���z� + 1����z�2 + ��z� − 4��log� 1

1 − ��z�	 + log���z� + 1�� − 2��z�
��z��2��z� − 9� − 12�	���z�2

− 16��z�5�2rc
2 + ��z� − 2�
��2rc

2��z��3���z� − 1��log� 1

1 − ��z�
 + log���z� + 1�����z� + 1�2

+ 2��z�
�3 − 2��z����z� + 3�	
 . �9�

The dynamics of the modeled ��z� should be tested
against full simulations and it will be. However let us defer
the testing until we have discussed in more depth tools used
in these full simulations. For now let us look into our next
issue on how to describe the dynamics of test particles.

B. Test particle orbits

As for test particles, Eq. �1� is applied with the restric-
tion that Q�r� contains only the core charge. This is equiva-
lent to our assumptions on the diluteness of the halo,
whereby the core drives test particles but is not acted upon
by the latter.

As they interact with the beam, test particles feel the
space charge action of the core up to their current position
r=r�z�. In particular, test particles outside the beam see con-
stant charge. Therefore the governing equation for those test
particles can be written as

r� = − �r + �K
r�rc

2 + �r2 − rc
2���z��

rc
4 , if r � rc,

K/r , if r � rc.
� �10�

Equations �8� and �10� shall be solved simultaneously to ob-
tain the dynamics of test particles.

III. ESTIMATES VERSUS FULL SIMULATIONS

A. Estimates based on conserved quantities and test
particle dynamics

The � dynamics, coming from a time independent one-
dimensional Lagrangian, is completely integrable and peri-
odic. Test particle motion can be thus represented in terms of
a convenient Poincaré plot, where we record the pair of val-
ues r�z� and r��z� each time ��z� cycles one period.

One can also rescale radii, perveance and focusing factor
so as to work with K=�=rc=1.14 If in addition one selects
��z=0���0=0.4 and ���0�→0 as typical initial conditions
at beam entrance, one obtains the dynamics for the test par-
ticles as the scattered plot shown in Fig. 1.

Except for a resonance bubble near the origin, test par-
ticles distribute evenly over a limited region of phase space.
One should expect, however, that the real phase space be a
slightly shrunk version of the one in Fig. 1. This is so be-
cause in the real case core oscillations are damped, which
reduces energy transfer into the halo. We obtain perhaps a
better picture of the halo geometry by first computing the
maximum velocity of test particles at r=0, and then forward
integrating the orbit under the assumption that the beam has
relaxed, i.e., by taking �→0. The result is the thick line

033107-3 Relaxation of intense inhomogeneous charged beams Phys. Plasmas 16, 033107 �2009�
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present in Fig. 1. One key assumption of the model is that
the halo will be homogeneously distributed over the region
bounded by this maximum energy curve. In the case �0

=0.4 we find that the maximum radius and maximum veloc-
ity at r=0 reads rh�1.36 and vh�0.504, respectively.

What remains unknown up to the present point is the
halo normalization—or the total number of halo particles—
within the bounded domain. Only full knowledge of the dis-
tribution, layout and normalization, enables to calculate sev-
eral quantities for the relaxed beam, including the emittance,
an instrument of choice for beam diagnostics. We shall return
to this specific issue of emittance later on.

Our approach to evaluate the halo density of the relaxed
beam has been used before and shall be applied again here.
Details can be found in a previous paper14 and we shall out-
line the procedure here. Let us first of all introduce the con-
served energy E,10

E =
�r�2�

2
+ �

�r2�
2

+ E�s� = const, �11�

with angle brackets denoting average over particles. The first
term of the middle expression represents kinetic energy, the
second represents potential energy in the external magnetic
field and E is the self-field energy. Self-field energy can be
expressed in terms of the gradients of self-field potentials E
= �1 /4	K��d2r��
�2, and the gradients can be obtained from
Gauss’ law as we integrate the radial Poisson equation

�2
 = −
2	K

Nt
n�r� . �12�

The self-field term can be evaluated for an initial condi-
tion with a given density, and can be expressed as a function
of the unknown halo fraction f �Nhalo /Nt when we examine
the relaxed state and consider a phase space of homogeneous

density for the halo population. Average quantities appearing
in the brackets of Eq. �11� can also be evaluated for initial
and final states, with the proviso that in the final state they
should be segregated into a core and halo contributions. To
be more specific, an overall average �g� is to be written in the
form �g�= �1− f��g�core+ f�g�halo, where the subscripted aver-
ages are performed over the corresponding populations;
�g�
core,halo�=1 /N
core,halo��i
core,halo�

gi. The squared rms radius

�r2� is dealt with along these lines, and the velocity term
�r�2� is first expressed in terms of the relaxed emittance10

��z → �� = 2rb
��r�2� , �13�

which is then written in terms of the total beam radius rb via
the envelope equation rb�=−rb+1 /rb+�2 /rb

2, with rb�→0 for
the relaxed state and rb

2�2�r2�.
If in addition we use sensible models for the core and

halo, final emittance can be obtained as we enforce energy
conservation by equaling relation �11� for both initial and
final states. In our space charge dominated beams we assume
that the core is a cold flattop entity extending up to a maxi-
mum radius rc, and that the dilute halo displays constant
density in phase space within the boundaries obtained by test
particle calculations, as already mentioned. We will see
shortly how the estimates compare with the full simulations.

B. Full simulations

Full particle simulations are then performed, where each
particle is governed by Eq. �1� and where now the charge
factor Q�r� is fully and self-consistently evaluated with basis
on all particles coordinates. Detailed information about the
self-consistent method employed in the beam simulation
shown here can be found in Ref. 14. In all cases we use Nt

=10 000 macroparticles, with the same parameters as used in
the previous context of test particle dynamics; K=�=1. As
initial condition we use a density distributed according to
expression �6� with a random velocity evenly laid upon the
range −0.1�vdirected��r��0.1�vdirected�. Under our assump-
tions of space charge dominated systems, the velocity range
is set as much narrower than the directed velocity vdirected

acquired by the fluid. The directed velocity can be obtained
as one inserts expression �6� into Eq. �5� and reads vdirected

�0.1 for �0=0.4.
Our very first investigation with full simulations is on

the usefulness of the core model. From Eq. �6� one can write
� in terms of the rms averages

� = 6��r2n�r,z�d2r

�n�r,z�d2r
−

1

2

 = 6��r2� −

1

2

 . �14�

We then compare � obtained from the model, let us call it
�model, with the one obtained from Eq. �14� but with all av-
erages based on full simulations, we call it �simulation. The
results, shown in Fig. 2 for �0=0.4 up to a point where the
first particles detach from the core, indicate that our model-
ing is accurate. One notices a small frequency mismatch as
time progresses, but both the frequency and amplitude dif-
ferences between model and simulations remain small until
much later times where a large portion of particles is already

0.0 0.5 1.0 1.5 2.0
r

-1.0

-0.5

0.0

0.5

1.0

v

FIG. 1. Test particle dynamics �scattered dots� and bounding energy curve
�thick line� for �0=0.4.
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gone into halo formation. In this �0=0.4 case for instance,
wave breaking in crystalline distributions occurs at z
�1500, while in the presently analyzed thermal distribution
particles already reached the bounding curve at z�200
where the core still oscillates coherently.

As for halo structure of asymptotic states, results for the
simulations are displayed in Fig. 3 where one sees the distri-
bution of Nt beam macroparticles in phase space at the in-
stant z=5000, where the system has already reached its sta-
tionary state. In the final relaxed state represented by the
figure, one can clearly perceive a flat line extending up to the
maximum radius r=1��rc� with small thickness along the
velocity axis, surrounded by a low density cloud of hot par-

ticles. This narrow flat line incorporates the idea of a cold
core, and the hot cloud lies in the phase space in a similar
manner as particles of the previous test particle computa-
tions, Fig. 1. The geometric layout of both figures is thus
similar, but one must still run a final test where actual physi-
cal quantities are investigated. As mentioned earlier, we
choose to examine emittance. The result is strikingly similar:
while the test particle simulations revealed a emittance
�model=0.106 for the particular �0=0.4, our full simulations
based on definition �13� for the relaxed emittance, attributes
the value �simulation=0.099 to this quantity.

Comparison between simulations and the model is fur-
ther extended in Table I where we list a series of results for
various values of the initial amplitude �0, always taking
���z=0�=0 in the test particle simulations. We note that for
all considered values of the inhomogeneity parameter �0

agreement between simulations and the low dimensional
model remains tight.

IV. FINAL REMARKS

Combining techniques of Lagrangian fluids, average
Lagrangians, test particle methods, and the expression for the
conserved energy, we obtained an accurate description of
halo formation in inhomogeneous beams. Particles are scat-
tered off density fluctuations of the inhomogeneous core and
form a low density population moving under the action of
this core. Representing the low density population as test
particles, and aided by the fact that energy is conserved, we
then determined the final relaxed emittance of the system.
The model was then compared with full self-consistent simu-
lations and we found the results in nice agreement.

Our theory applies to space charge dominated beams
where there is a small velocity spread with magnitude much
smaller than the average fluid velocity. This amounts to the
validity condition 0���z=0�
vdirected in our dimensionless
set of physical quantities where rb�1. vdirected can be esti-
mated as we insert n=n�r ,��z�� from Eq. �6� into Eq. �5�,
with �=��z� provided by the average Lagrangian method. In
our initial conditions we thus use slightly thermal beams
where velocity dispersion is not larger than one-tenth of the
maximum average velocity. Under these conditions particles
detach early from the core while our ansatz is still accurate.
The noteworthy point here is that the ansatz still provides a
good quantitative agreement with simulations even in cases
of crystalline beams, where particles begin to be ejected from
the core only when wave breaking and the associated phase
mismatches take place. In this situation where beam oscilla-
tions cannot be faithfully described in terms of our mono-

0 6 12 18 24 30
z

-0.8

-0.4

0.0

0.4

0.8

η

FIG. 2. Comparison of �’s obtained from the model and full simulations:
�model is represented by the dotted line and the fully simulated �simulation by
the solid line. All parameters and initial conditions as in the previous figure.

0.0 0.5 1.0 1.5 2.0
r

-1.0

-0.5

0.0

0.5

1.0

v

FIG. 3. Full simulations displaying a snapshot of the phase space occupied
by Nt=10 000 macroparticles at z=5000, for �0=0.4. The thick line repre-
senting bounding energy is once again displayed.

TABLE I. Comparison of full simulations and analytical estimates for
asymptotic states based on test particle dynamics and conserved quantities.

�0 �analytical �simulation

0.2 0.053 0.051

0.4 0.106 0.099

0.6 0.152 0.140

0.8 0.211 0.175
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chromatic ansatz, the dominant frequency and amplitude pre-
dicted by the ansatz apparently suffices to provide a good
picture of the test particle overall dynamics.
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