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Abstract. An analytical approach, using the spatial beam theory, to determine the mechanical 

response of cables is proposed in this work. Experimental results are limited and expensive to 

be obtained and there is a lack of good benchmarks solutions to check the FEM models before 

starting complex analysis. Therefore, in order to obtain the results the parametric spatial 

description were derived for one strand, considering one wire surrounding a core, since the 

response of all wires are similar. Solving the differential equilibrium equations of the spatial 

beam theory and applying bending loads it was possible to obtain the mechanical response of 

the wire. Six loading cases were analyzed for the wire helix analytically and numerically. 

Good results were obtained when the both methodologies were compared for the cable 

bending. 
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1  INTRODUCTION 

Cables are structures that can be used in many applications such as cable-stayed 

bridges, offshore platforms and prestressed concrete structures. Its geometry is defined as a 

straight core surrounded by layers of helical strands. The simplest, and most used, 

configuration is the so called 1 + 6, where six helical wires are laid around the core forming 

just one layer. The main reason to be used so diversely is the high strength-to-weight ratio and 

the capacity to support large axial loads in comparison to bending and torsion loads. 

Several authors have tried to develop theories and models to study cables. Many 

numerical analyses, specially using Finite Element Method (FEM), are available and can be 

used to study these structures. Although is a very powerful tool this approach demands time 

and must be carefully employed. Stanova et al. (2011),  Nawrocki and Labrosse (2000), and 

Jiang (1999) are examples of works where this analysis was carried out using finite elements.  

Analytical studies have been produced based on assumptions as curved beams theory, 

purely tension wires and friction effects (Ghoreishi et al. (2007)). Some of the most know 

theory are presented by Østergaard et al. (2011), Argatov (2011), Labrosse and Nawrocki 

(2000) and Costelo (1990).  

In order to validate the FEM or even the methodology used to represent the cable 

behavior analytically, some classical experimental work are cited. The most known 

procedures were performed by Machida. and Durelli (1973) and Utting and Jones (1987) 

2  STRAND MODELING 

In order to simulate the cable behavior the structure was modeled according to the space 

curved beam theory. To do so, only one wire was considered, since the results can be used to 

simulate the whole cable, this condition is valid for a simplified case where a non contact 

behavior is assumed for the structure. The cable geometry is set as a helix and characterized 

by its center line.  

Parameterizing the curve, as Labrouse and Nawrocki (2000), to obtain the mathematical 

representation of the wire as 
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where   is the rod radius,   is the helix angle and   is the position on the helix length. With 

this parameterization it is possible to determine any point in the curve that represents the 

strand laid helically around a straight core.   

It is also important to define the Frenet-Serret triad that defines the kinematic 

properties of a particle moving along the curve. Three components can be obtained from this 

theory considering only the dependence on the arc length: the tangent, normal and binormal 
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vectors. The first one indicates the tangent direction of the point in the curve, the second 

points at the direction of the curvature radius and the latter is a cross product of the other two. 

Consequently these are orthogonal to each other (Kraus, 1967).   

Using the equation found in Feyrer (2007) and the description of a generic space curve 

(r), where the position vector depends only on the length along the wire (S), to determine the 

tangent vector and the parameterization in Eq. (1) it is possible to find  

 

     
  

  
 

[
 
 
 
 
     (

       

 
)       

   (
       

 
)       

      ]
 
 
 
 
 

   

 

(2) 

and the derivative of the triad unit vectors leads to (Ramsey, 1988) 
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(3) 

 

where n and b denotes the normal and binormal vectors, respectively, and κ and τ represents 

the curvature and torsion of the space curve. Hence, the normal vector can be determined by 

solving the first equation of the system in Eq. (3) and as the triad is an orthogonal set of 

vector the binormal direction can be obtained by the cross product of t and n. Therefore, this 

triad represents a local reference system and can be used to study any point of the wire 

individually. 

Using the parameterization it is possible to obtain κ, which express the tangent vector 

change rate of a point moving along the curve, and τ, that indicate the twist of the same point. 

Using the Eq. 1 and the relations in Eq. 2 it is possible to define both parameters as 
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So, the triad can be expressed now as a function depending only on the length of the 

wire, as the normal and binormal vectors written as 
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Using the spatial beam theory, developed by Love (1944), to represent the wire by its 

center line, where the equilibrium equations are written as 
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where    and    are the load and distributed load, respectively, in each direction. For the 

equilibrium of moments, the system is 

   

  
           

   

  
                  

   

  
              

 

(7) 

where    and    are the moment and distributed moment, respectively, in each direction. 

Therefore, the response of the cable due to the loads applied can be calculated. 

Solving both systems (Eq. 6 and 7) it is possible to obtain the cable mechanical behavior. 

Considering that the wire is clamped at one end, the boundary conditions, in order to 

determine the 6 integration constants, can be used in the solutions. Since the 5 parameters are 

know (t, n, b,   and  ) one can describe the wire geometrically at any point. 

To do so, the loads applied in the structure are decomposed into the local system, 

using the triad as the transformation matrix written as 
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]   

 

(8) 

so, each component of the force is evaluated in any point of the helix. This procedure is 

reversible, that means, the Frenet-Serret formulas makes it possible to transform any 

information, regarding the local system, back to the global system, and vice-versa. All the 
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study developed here is focused on the global analysis, hence the diagrams are presented 

regarding the fixed system in the center of the cable. 

The triad is used to transform not only the force vector but also the moments. So the 

position vector (r) determines the distance for the moments and the cross product aligns the 

boundary condition to the triad.      

3  RESULTS 

 

 

(a)  (b)  

Figure 1 – (a) Case 1 studied, Vx parallel to the x1 direction and (b) moments diagram.  

Using the formulation proposed, one turn and one wire of the cable was simulated. 

This methodology provided results that can be used to characterize the role structure. Setting 

the helix angle as 75º and the radius 50mm the maximum value of S is calculated, due to the 

parameterization (Eq. 1), as         . With the geometry defined, the loads were changed 

and the moments diagram, due to bending, analyzed. Six cases of bending were studied. The 

first case is a force applied in one end of the wire, the other is clamped in all the cases, in the 

x1 direction as shown in Fig. 1(a). 

The moments diagram (Fig. 1(b)) presents the numerical solution (     
,      

 and 

     
 ) and the model results (     

 ,      
  and      

 ). Initially, at the clamped end 

(    ), the moment in the x2 direction is maximum and is evaluated as           , the 

linear behavior presented by this component was already expected. The moment    has the 

maximum equals, in modulus (        ), to the minimum value at       and   
    , respectively. As the load applied is parallel to the x1 direction, there is no moment 

generated in that component in any point, therefore,       .  
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(a) (b) 

Figure 2 - Case 2,    applied parallelly to the    direction and (b) the diagram of moments. 

In order to analyze the quality of results, a FEM model was developed, using a 

commercial software, and the responses compared. For the first case, all the curves are 

coincident to the numerical points generated by the finite element analysis. This result can be 

used to validate the model. 

For the second case, Fig. X(a), the load applied is now parallel to the x2 direction and 

set again as    . Once more the bending maximum value is            , it is also 

linear, but is negative, due to the notation used. For    and    it is possible to note that the 

curves have a similar behavior as    and    in the first case, because of the same reasons. 

When two loads are applied to the wire,    and   , as demonstrated in Fig. 3(a), the 

bending behavior has the same features as cases one and two. This is not only expected but 

also indicates that the methodology used is respecting the superposition effect, since the 

system solved is linear and must present this characteristic. Adding the responses generated 

by each load alone provide the same result when both loads are analyzed together.  

It is interesting to observe that the moment in the x3 direction is generated by the 

resultant of the loads, indicated as V. Therefore the maximum moment occurs not at one of 

the axis, but in the middle. The higher value is set at 135° while the angle where it is zero is 

270°, those points are at the vector V direction (no distance) and parallel to it (top distance), 

respectively.  

Case 4, in Fig. 4, demonstrates that due to    the    component is no longer linear. 

Once again the superposition is present. Considering the first case, since    does not produce 

moment in the    direction, adding this load only generates effects in    and   . In other 

words,    does not change when    is taken into account.   
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(a) (b) 

Figure 3 - Case 3 with     and    applied parallelly to the      plane and (b) the diagram of moments. 

 

 

 

(a) (b) 

Figure 4 - Case 4,    and    applied parallelly to the      plane and (b) the moments diagram. 

For the fifth case where    and    are applied, see Fig. 5, the component    is not 

linear for the same reasons of the forth case. Once more, the analysis of two loads were 

identical to the addition of separated cases, which demonstrates the linearity of the system.  
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(a) (b) 

Figure 5 - Case 5,    and    applied parallelly to the      plane and (b) the moments diagram. 

 

 

(a) (b) 

Figure 6 - Case 6,   ,    and    applied and (b) the moments diagram. 

   

The last case studied is an application of loads in all the directions. As expected there 

are two points where the moment is maximum and they are equal in modulus because the 

loads and distances are the same. Both    and    are set as         and have the same 

behavior (nonlinear) as cases 5 and 4, respectively. The other component (  ) has the same 

result as in case 3, reaching its maximum value at 135° as       for the same reasons. 
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Therefore, it is possible to realize that this last case is a combination of the other cases and 

that the methodology is coherent to the expected. In fact, the application of this procedure 

leads to a linear system.  

 For all the cases the comparison between the analytic model and the numerical 

analysis were presented. The methodology used to generate the results was validated by the 

Fem model. No significant difference was found in any case analyzed when the solutions 

were compared.  

4  CONCLUSIONS 

An analytical expression to study the mechanical behavior of a cable, subjected to 

bending, was obtained by solving the spatial beam theory. The wire was modeled as a helix 

and a parameterization was used to describe the cable geometrically. As the results of one 

wire can be used to study the whole cable, since the responses are similar, only one 

component was analyzed.  

Using the transformation matrix to decompose the loads and moments, the boundary 

conditions were used to determine the integration constants. The results obtained in the local 

system were transformed back to the global system. Six cases of loading were analyzed, using 

the methodology applied, and compared to a FEM model. The differences between the results 

were not significant and the theory developed was validated. 

Another feature of the theory was the superposition. It was expected, since the system 

is linear, that this theory could be used to analyze any loading case. The third case showed 

that the methodology applied could generate the same result as the first two cases combined. 

The other cases also presented this characteristic.  
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