UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM MATEMÁTICA APLICADA

Método LTS_N Não Espectral

por

Bruna Rigolli

Trabalho submetido como requisito parcial para a obtenção do grau de Mestre em Matemática Aplicada

Profa. Dra. Cynthia Feijó Segatto Orientadora

Porto Alegre, dezembro de 2015.

CIP - CATALOGAÇÃO NA PUBLICAÇÃO

Rigolli, Bruna

Método LTS_N Não Espectral / Bruna Rigolli.—Porto Alegre: PPGMAp da UFRGS, 2015.

69 p.: il.

Dissertação (Mestrado) —Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Matemática Aplicada, Porto Alegre, 2015. Orientadora: Feijó Segatto, Cynthia

Dissertação: Matemática Aplicada, Equações S_N , Método Não Espectral, Multiregião

Método LTS_N Não Espectral

por

Bruna Rigolli

Trabalho submetido ao Programa de Pós-Graduação em Matemática Aplicada do Instituto de Matemática da Universidade Federal do Rio Grande do Sul, como requisito parcial para a obtenção do grau de

Mestre em Matemática Aplicada

Linha de Pesquisa: Fenômenos de Transporte

Orientadora: Profa. Dra. Cynthia Feijó Segatto

Banca examinadora:

Prof. Dr. Marco Túlio Vilhena PPGMAp-UFRGS

Prof. Dr. Rubem Vargas PUCRS

Prof. Dr. Ricardo Carvalho de Barros UERJ

Dissertação apresentada e aprovada em 17 de dezembro de 2015.

Prof. Dr. Carlos Hoppen Coordenador

Sumário

LISTA DE FIGURAS	vi
LISTA DE TABELAS	vii
LISTA DE SÍMBOLOS	viii
RESUMO	xi
ABSTRACT	xii
1 INTRODUÇÃO	1
2 MÉTODO LTS_N	5
2.1 Equações S_N	5
2.2 Meios Homogêneos	8
2.2.1 Método LTS_N Clássico	8
2.2.1.1 Descrição do método LTS_N Clássico para meios homogêneos	9
2.2.2 Método LTS_N Recursivo	17
2.2.2.1 Descrição do método LTS_N Recursivo para meios homogêneos	17
2.3 Meios Heterogêneos	19
2.3.1 Método LTS_N Clássico para meios heterogêneos	20
2.3.2 Método LTS_N Recursivo para meios heterogêneos	24
3 MÉTODO LTS_N NÃO ESPECTRAL	27
3.1 Método LTS_N Não Espectral para meios homogêneos \ldots \ldots	27
3.1.1 Exemplificando o Método LTS_N Não Espectral para N=4	31
3.2 Método LTS_N Não Espectral para problemas heterogêneos	40
4 RESULTADOS NUMÉRICOS	43
4.1 Problemas Homogêneos	43

4.2 Problemas Heterogêneos	51
5 CONCLUSÕES	57
REFERÊNCIAS BIBLIOGRÁFICAS	59
APÊNDICE	65

Lista de Figuras

Figura 2.1	Placa de espessura x_0 dividida em R regiões $\ldots \ldots \ldots \ldots$	20
Figura 4.1	Fluxos escalares para N=40 e anisotropia L=8	49
Figura 4.2	Fluxos escalares para N=100 e anisotropia L=82 $\ \ldots$	50
Figura 4.3	Fluxos escalares para N=300 e anisotropia L=299	50
Figura 4.4	Gráfico Recursões - Caso Heterogêne o ${\cal N}=100~L_1=0~L_2=82$	55
Figura 5.1	Comparativo entre as rotinas principais - Homogêneo \times Heterogêneo \ldots	66
Figura 5.2	Comparativo entre as rotinas principais - Homogêneo \times Heterogêneo $\ldots \ldots \ldots$	67
Figura 5.3	Comparativo entre as rotinas principais - Homogêneo \times Heterogêneo \ldots	68
Figura 5.4	Comparativo entre as rotinas principais - Homogêneo \times Heterogêneo \ldots	69

Lista de Tabelas

Tabela 3.1	Fluxos Escalares do problema LTS_4 com Anisotropia $L=2$	40
Tabela 4.1	Fluxos escalares via LTS_N Não Espectral e LTS_N Recursivo com Spline Restrito - Anisotropia L=8	46
Tabela 4.2	Fluxos escalares via LTS_N Não Espectral com Spline Restrito e LTS_N Clássico - Anisotropia L=8	46
Tabela 4.3	Fluxos escalares via LTS_N Não Espectral e LTS_N Recursivo com Spline Restrito - Anisotropia L=82	47
Tabela 4.4	Fluxos escalares via LTS_N Não Espectral com Spline Restrito e LTS_N Clássico - Anisotropia L=82	47
Tabela 4.5	Fluxos escalares via LTS_N Não Espectral e LTS_N Recursivo com Spline Restrito - Anisotropia L=299	48
Tabela 4.6	Fluxos escalares via LTS_N Não Espectral com Spline Restrito e LTS_N Clássico - Anisotropia L=299	48
Tabela 4.7	Fluxos escalares considerando $N = 40, L_1 = 0 \in L_2 = 8 \dots$	52
Tabela 4.8	Fluxos escalares considerando $N = 100, L_1 = 82 \text{ e } L_2 = 8$	52
Tabela 4.9	Fluxos escalares considerando $N = 100, L = 0 e L_2 = 82 \dots$	53

LISTA DE SÍMBOLOS

S_N	Sistema de ordenadas discretas
N	Ordem de Quadratura de Gauss
LTS_N	Transformada de Laplace de S_N
L	Grau de anisotropia
L	Operador da transformada de Laplace
\mathcal{L}^{-1}	Operador da transformada inversa de Laplace
μ	Direção angular
μ_n	Direção discreta
ψ	Fluxo angular
ψ_n	Fluxo angular na direção discreta μ_n
x	Espessura
x_0	Espessura máxima
σ_s	Seção de choque macroscópica de espalhamento
$p\cos(\Theta)$	Função de espalhamento
$P_l(\mu)$	Polinômio de Legendre
$P_l^m(\mu)$	Funções associadas de Legendre
β_l	Coeficientes da expansão em Polinômios de Legendre
ω_k	Pesos da quadratura de Gauss-Legendre
$S(x,\mu)$	Fonte externa

Ψ	Vetor do fluxo
Q	Vetor fonte
$\bar{\Psi}$	Transformada de Laplace do vetor fluxo
\bar{Q}	Transformada de Laplace do vetor fonte
A	Matriz LTS_N associada
a_{ij}	Elementos da matriz A
Ψ_1	Vetor do fluxo nas direções negativas
Ψ_2	Vetor do fluxo nas direções positivas
В	Matriz da transformada inversa de Laplace de $(sI-A)^{-1}$
Η	Vetor convolução da matriz B com o vetor Q
Х	Matriz de autovetores de A
X^{-1}	Matriz inversa de autovetores de A
D	Matriz de autovalores de A
d_{ij}	Elementos da matriz D, autovalores da matriz A
S	Parâmetro complexo proveniente da transformação de Laplace
D^+	Matriz diagonal com os autovalores positivos
D^{-}	Matriz diagonal com os autovalores negativos
Ι	Matriz identidade
A_I	Matriz isotrópica
A_C	Matriz anisotrópica

ix

- Ψ^k Fluxo recursivo
- ξ vetor auxiliar
- R Número de regiões da placa heterogênea
- σ^r_s
 Seção de choque macroscópica de espalhamento da região
 r
- L^r Grau de anisotropia da região r
- \mathcal{D} Matriz diagonal com os termos da matriz A
- \mathbf{d}_i Elementos da matriz diagonal \mathcal{D}
- $\mathcal{A}_{\mathcal{C}}$ Matriz complementar com os termos da matriz A
- V Vetor auxiliar para cálculo das recursões
- A_r Matriz LTS_N da região r

RESUMO

Neste trabalho, focamos nossa atenção na solução das equações S_N em uma placa por um método não espectral. Para este fim, depois de escrevermos as equações S_N em sua forma matricial, decompomos a matriz resultante da equação matricial diferencial linear ordinária de primeira ordem como a soma de sua diagonal principal mais seu complemento. Este procedimento nos permite a construção de um sistema de equações matriciais diferenciais, os quais possuem uma fonte desconhecida, a qual corrige o fluxo com informação contida na matriz complementar. Devemos observar que a primeira equação deste sistema recursivo é escolhida sem termo fonte, e por consequência sua solução é conhecida, como a exponencial da matriz diagonal. Para as equações restantes, nós avaliamos o termo fonte desconhecido através da solução da equação anterior do sistema recursivo. Nós também assumimos que as condições iniciais satisfazem as condições de contorno do problema original enquanto as equações restantes devem satisfazer condições de contorno homogêneas. O número de equações no sistema recursivo é escolhido de forma a obter uma precisão preescrita.

ABSTRACT

In this work we focus our attention to the solution of the S_N equations in multilayered slab by a non-spectral method. For such, after casting the Snequations in matrix form, we decompose the matrix of the resulting first order linear matrix differential equation as sum of a diagonal matrix with its complement. This procedure allows the construction of a system of matrix differential equation with an unknown source that carries the information of the complement matrix. We must observe that the first equation of the recursion system has no source and as consequence a known solution, we mean the exponential of diagonal matrix. For remaining equations, we evaluate the source considering the solution of the previous equation of the recursive system. We also assume that the initial equation satisfies the boundary conditions of the original problem meanwhile the remaining equations in the recursive system is choice in order to obtain a prescribe accuracy. For Illustration we present numerical simulations for selected problems.

1 INTRODUÇÃO

Ao longo dos anos, muitas aproximações para a equação do transporte tem sido desenvolvidas. Entre estas aproximações, destaca-se o método das ordenadas discretas (S_N) , desenvolvidas por Chadrasekhar no estudo de astrofísica [1]. A ideia central da aproximação S_N é a discretização da variável angular, para isto, o termo integral que consta na equação de transporte, é aproximado por quadratura de Gauss-Legendre de ordem N. A seguir o método da colocação é aplicado considerando a função delta de dirac como função teste, e como pontos da colocação as direções discretas já usadas na integração numérica. Com este procedimento é obtido um sistema de N equações diferenciais ordinárias para o fluxo angular nas Ndireções discretas consideradas. Este sistema de equações diferenciais ordinárias de primeira ordem é usualmente chamado de equações S_N ou equações de Ordenadas Discretas. Muitos métodos foram desenvolvidos para a solução das equações S_N , entre eles, na década de 90, surgiu o método LTS_N . O método LTS_N foi pensado visando encontrar uma solução analítica para equações S_N . Esse método consiste na aplicação da transformada de Laplace na variável espacial do sistema de equações S_N , resultando em um sistema algébrico no espaço transformado. Esse sistema algébrico é então resolvido para o fluxo transformado e, dessa forma, o fluxo angular de partículas é obtido através do operador transformada inversa. Neste ponto, devemos observar que esta inversão é feita de maneira analítica. Assim, a solução LTS_N fornece uma expressão analítica para o fluxo angular de partículas na variável espacial e nas N direções discretas.

Em 1991, Vilhena e Barichello [2] iniciaram o desenvolvimento do método LTS_N . Nesta época, a inversão da matriz LTS_N e sua posterior inversão de Laplace foi feita usando diretamente a definição de matriz inversa e o teorema de Heaviside. Este procedimento gerou uma dificuldade de inversão da matriz simbólica LTS_N para problemas de alto grau de anisotropia ou para problemas que exigissem uma

ordem de quadratura elevada. Desta forma, o método ficou restrito para solução de problemas isotrópicos e linearmente anisotrópicos. Para maiores graus de anisotropia o método mostrou-se inviável computacionalmente [3]. Logo em seguida, Streck [4] [5] utilizou o algoritmo de Trzaska na solução LTP_N do problema de transporte em uma placa. Usando a ideia do algoritmo de Trzaska para inversão da matriz LTS_N e o teorema de Heaviside para inversão da transformada de Laplace, Segatto e Vilhena [6] resolveram o sistema LTS_N com alto grau de anisotropia. A seguir, Segatto et. al. [7] e Brancher et. al. [8] usando a decomposição de Schur sobre a matriz A e o método de particionamento reduziram o problema de inversão da matriz simbólica $(s\mathbf{I} - A)$ à inversão de uma matriz triangular superior e esta inversão é feita recursivamente. E, novamente, a transformada inversa de Laplace é obtida através da aplicação do Teorema de Heaviside. Com este procedimento a potenciação de matrizes, necessária para a aplicação do algoritmo de Trzaska é evitado, mas o caráter exponencial da solução continua impedindo a resolução de problemas com número de direções discretas grande e grandes espessuras. Para contornar o caráter exponencial da solução LTS_N , e evitar erros numéricos na solução Segatto et. al. [9] e Gonçalves et. al. [10] associaram a diagonalização da matriz LTS_N e usaram a propriedade de invariância das direções discretas da equação do transporte. Isto é, quando temos os autovalores negativos usamos a condição de contorno em x = 0 e quando os autovalores são positivos é feita uma translação e a condição de contorno em $x = x_0$ é utilizada. Com este procedimento a solução LTS_N apresenta apenas exponenciais com argumentos negativos, evitando assim o problema numérico de *overflow*. Observa-se também que com este procedimento o método pode ser empregado para problemas de transporte com qualquer tipo de fonte integrável.

Na literatura, o método LTS_N tem sido usado para a solução de vários tipos de problemas: problemas unidimensionais em meios homogêneo [11] e heterogêneo [12] [13]; problemas envolvendo modelo de multi-grupo de energia [14] [15] e meio composto por dois materiais em sistema de mistura aleatória [16]; problemas de criticalidade [17] [18] [19] [20] [21]; transferência radiativa [13] [7] [8]; problemas que consideram o coeficiente de albedo com dependência espacial [22]. A fim de resolver problemas com dependência no tempo, Tomaschewski [21] e Segatto et. al. [23] aplicam transformada de Laplace na variável temporal obtendo um sistema de equações que são resolvidas via método LTS_N . Também Oliveira et. al. [24] [25] [26] [27] usaram expansão de Laguerre para resolver problemas com dependência temporal. Além disso, o método foi utilizado na resolução de problemas de aplicação na área de ótica hidrológica [28] [29] [30], onde é resolvido um problema inverso não linear, problemas considerando a ordem de quadratura N ímpar [31] e para o caso onde o coeficiente de espalhamento é igual a um (c = 1) [32].

Ressaltamos que a convergência do método LTS_N já foi provada por Pazos e Vilhena [33] [34], o que garante que ao passo que a ordem de quadratura Ncresce, a solução LTS_N se aproxima da solução exata proposta por [35], a menos do erro inerente ao problema de arredondamento, fornecendo, assim, uma confiabilidade para obter resultados com uma precisão controlada.

Cabe salientar que o método LTS_N foi utilizado para problemas com geometria cartesiana multidimensional (2D e 3D) [36] [37] [38]. Já para problemas considerando geometria cilíndrica, a solução da aproximação S_N , pelo método LTH_N , que resolve problemas isotrópicos e linearmente anisotrópicos. Para a equação em sua forma integral em geometria cilíndrica, existe solução analítica apenas para problemas com espalhamento isotrópico. Também utilizando a equação em sua forma integral, Fernandes [39] descreve a solução do problema de transporte anisotrópico de modo recursivo a partir de um conjunto de equações de transporte integrais isotrópicas, onde a anisotropia é inserida pelo termo fonte. Nesta direção, Foletto [40] apresentou um método que utiliza a ideia de Fernandes [39] para a equação do transporte em sua formulação integro-diferencial, tanto para meios homogêneos quanto para meios heterogêneos constituídos pelo acoplamento de placas homogêneas usando hipótese de continuidade de fluxo entre as placas. Considerando aplicar o método recursivo proposto por Foletto, apresentamos uma proposta não espectral para a solução LTS_N unidimensional anisotrópica. Esta proposta visa evitar o cálculo de autovalores da matriz LTS_N associada ao problema que crescem em magnitude com a ordem de quadratura e assim proporcionar o desacoplamento do sistema de equações diferenciais ordinárias a ser resolvido.

Com este objetivo, esta dissertação está dividida em cinco capítulos e está estruturada da seguinte forma: no capítulo **2**, descrevemos as equações S_N a fim de apresentar uma solução analítica para esta aproximação a partir do método LTS_N em sua formulação Clássica. Assim como a construção da solução LTS_N anisotrópica a partir de um sistema recursivo de soluções LTS_N isotrópicas. No capítulo **3**, apresentamos e descrevemos um método recursivo para a solução do problema LTS_N anisotrópico, que no entanto não utiliza a diagonalização da matriz associada ao problema e, portanto, não necessita o cálculo de seus autovalores e autovetores. Com o intuito de exemplificar o método, apresentamos, também, a construção da solução LTS_N via método Não Espectral considerando uma ordem de quadratura N = 4 e grau de anisotropia L = 2. Para analisar o comportamento da solução encontrada via método LTS_N Não Espectral, implementamos um código em *Fortran*95. Os resultados obtidos estão descritos no capítulo **4** em forma de tabelas e gráficos. No capítulo **5**, apresentamos nossas conclusões a respeito do método apresentado e propostas para trabalhos futuros.

2 MÉTODO LTS_N

Com o objetivo de comparar resultados, neste capítulo, apresentamos as equações S_N assim como o método LTS_N em sua formulação Clássica e o método LTS_N Recursivo, que reconstroi a solução de problemas anisotrópicos a partir de um sistema recursivo de soluções LTS_N Isotrópicas. Apresentamos ambos os métodos para meios homogêneos e heterogêneos.

2.1 Equações S_N

Com a finalidade de desenvolvermos o método LTS_N , consideramos a equação do transporte linear em sua forma íntegro-diferencial unidimensional, estacionária, com simetria azimutal, com espalhamento anisotrópico e com fonte externa:

$$\mu \frac{\partial}{\partial x} \psi(x) + \sigma_t \psi(x,\mu) = \frac{\sigma_s}{2} \int_{-1}^1 p(\cos\Theta)\psi(x,\mu')d\mu' + S(x,\mu).$$
(2.1)

Neste trabalho, por simplicidade, vamos considerar que temos como condições de contorno os fluxos incidentes conhecidos, isto é,

$$\psi(0,\mu) = f(\mu), \quad \mu > 0$$

 $\psi(x_0,\mu) = g(\mu), \quad \mu < 0.$
(2.2)

Na equação (2.1), temos que:

x	é a variável espacial pertencente a $[0, x_0];$
$\mu=\cos(\theta)$	θ é o ângulo polar, portanto $\mu \in [-1,1]$
$\psi(x,\mu)$	é o fluxo angular de partículas em x na direção de μ ;
σ_t	é a seção de choque macroscópica total;
σ_s	é a seção de choque macroscópica de espalhamento isotrópico;
$p\cos(\Theta)$	é a função de espalhamento, onde Θ é o ângulo formado pela
	direção de movimento da partícula antes da iteração e o ângulo
	resultante depois da iteração;
$S(x,\mu)$	é uma fonte externa.

Aproximamos a função espalhamento por uma série truncada em polinômios de Legendre. Assim,

$$p\cos(\Theta) = \sum_{l=0}^{L} \beta_l P_l \cos(\Theta)$$
(2.3)

Pelo Teorema da Adição para polinômios de Legendre [41], reescrevemos (2.3) como

$$p\cos(\Theta) = \sum_{m=0}^{M} \sum_{l=m}^{L} \beta_l^m P_l^m(\mu') P_l^m(\mu) \cos(m(\varphi - \varphi'))$$
(2.4)

onde φ é o ângulo azimutal formado com um ângulo de referência φ' , e P_l^m são as funções associadas de Legendre com

$$\beta_l^m = \frac{(l-m)!}{(l+m)!}\beta_l$$

Como estamos considerando que o fluxo angular sem simetria azimutal,

assumimos M = 0 em (2.4). Deste modo, substituindo (2.4) em (2.1) obtemos

$$\mu \frac{\partial}{\partial x} \psi(x,\mu) + \sigma_t \psi(x,\mu) = \frac{\sigma_s}{2} \int_{-1}^1 \sum_{l=0}^L \beta_l P_l(\mu') P_l(\mu) \psi(x,\mu') d\mu' + S(x,\mu)$$
(2.5)

Aproximamos o termo integral por quadratura de Gauss-Legendre

$$\int_{-1}^{1} \sum_{l=0}^{L} \beta_l P_l(\mu') P_l(\mu) \psi(x,\mu') d\mu' \approx \sum_{l=0}^{L} \beta_l \sum_{k=1}^{N} P_l(\mu_k) P_l(\mu) \omega_k \psi(x,\mu_k)$$
(2.6)

onde μ_k são as raízes do polinômio de Legendre de grauNordenadas de forma decrescente

$$-1 < \mu_N < \dots < \mu_{\frac{N}{2}+1} < 0 < \mu_{\frac{N}{2}} < \dots < \mu_1 < 1,$$

com N par, e ω_k são os pesos da quadratura de Gauss-Legendre dados por

$$\omega_k = \int_{-1}^1 \prod_{k=0, k \neq i}^N \frac{(\mu - \mu_k)}{(\mu_i - \mu_k)} d\mu.$$
(2.7)

Usando a quadratura Gaussiana descrita pela equação (2.6), podemos reescrever a equação (2.5) como

$$\mu \frac{\partial}{\partial x} \psi(x,\mu) + \sigma_t \psi(x,\mu) = \frac{\sigma_s}{2} \sum_{l=0}^L \beta_l \sum_{k=1}^N P_l(\mu_k) P_l(\mu) \omega_k \psi(x,\mu_k) + S(x,\mu).$$
(2.8)

A seguir, com a finalidade de discretização da variável angular, aplicamos o método da colocação na equação (2.8) usando a função delta de dirac $\delta(\mu - \mu_n)$ como função

teste, e os pontos μ_n como pontos de colocação, com $n = 1, \ldots, N$. Desta forma obtemos

$$\mu_n \frac{d}{dx} \psi(x,\mu_n) + \sigma_t \psi(x,\mu_n) = \frac{\sigma_s}{2} \sum_{l=0}^L \beta_l \sum_{k=1}^N P_l(\mu_k) P_l(\mu_n) \omega_k \psi(x,\mu_k) + S_n(x).$$
(2.9)

Agora, para facilitar a notação, vamos denotar o fluxo angular em x na direção $n, \psi(x, \mu_n)$, por $\psi_n(x)$. Desta forma, as equações S_N que aproximam as equações unidimensionais de transporte de partículas (2.2) são descritas por:

$$\frac{d}{dx}\psi_n(x) + \frac{\sigma_t}{\mu_n}\psi_n(x) = \frac{\sigma_s}{2\mu_n}\sum_{l=0}^L \beta_l \sum_{k=1}^N P_l(\mu_k)P_l(\mu_n)\omega_k\psi_k(x) + \frac{1}{\mu_n}S_n(x), \quad (2.10)$$

sob as seguintes condições de contorno:

$$\psi_n(0) = f_n, \qquad n = 1, \dots, \frac{N}{2}$$

 $\psi_n(x_0) = g_n, \qquad n = \frac{N}{2} + 1, \dots, N.$

Na próxima seção descreveremos a solução das equações S_N pelo método LTS_N Clássico.

2.2 Meios Homogêneos

2.2.1 Método LTS_N Clássico

Na década de 90, foi desenvolvido o método LTS_N [2] que resolve a aproximação S_N da equação do transporte de forma analítica. De forma resumida, o método consiste na aplicação da transformada de Laplace nas equações de ordenadas discretas S_N , inversão analítica da matriz simbólica, e inversão do fluxo transformado também de forma analítica.

2.2.1.1 Descrição do método LTS_N Clássico para meios homogêneos

Para descrever este método, vamos reescrever a equação (2.10) como uma equação diferencial ordinária matricial de primeira ordem

$$\frac{d}{dx}\Psi(x) - A\Psi(x) = Q(x) \tag{2.11}$$

onde $\Psi(x)$ representa o vetor dos fluxos angulares nas N direções discretas, A é a matriz LTS_N anisotrópica dada por

$$a_{ij} = \begin{cases} \frac{\sigma_s \omega_i}{2\mu_i} \sum_{l=0}^L \beta_l P_l(\mu_i) P_l(\mu_j) - \frac{\sigma_t}{\mu_i}, & i = j \\ \frac{\sigma_s \omega_i}{2\mu_i} \sum_{l=0}^L \beta_l P_l(\mu_i) P_l(\mu_j), & i \neq j. \end{cases}$$

e Q(x) é o vetor fonte dado por

$$Q(x) = \left[\frac{S_1(x)}{\mu_1}, \frac{S_2(x)}{\mu_2}, \dots, \frac{S_N(x)}{\mu_N}\right]^T.$$

Por conveniência, costumamos dividir o vetor fluxo angular $\Psi(x)$ como sendo

$$\Psi(x) = \begin{bmatrix} \Psi_1(x) \\ \Psi_2(x) \end{bmatrix} = \begin{bmatrix} \psi_1(x) \\ \vdots \\ \psi_{\frac{N}{2}} \\ \psi_{\frac{N}{2}+1} \\ \vdots \\ \psi_N(x) \end{bmatrix},$$

onde $\Psi_1(x)$ é um sub-vetor de tamanho $\frac{N}{2}$ que contém o fluxo angular nas direções positivas de μ e $\Psi_2(x)$, também sub-vetor de tamanho $\frac{N}{2}$, contendo o fluxo angular nas direções negativas de μ . Da mesma forma, como apenas conhecemos os fluxos incidentes nos extremos, representamos as condições de contorno como sendo os sub-vetores de ordem $\frac{N}{2}$ descritos como

$$\Psi_1(0) = \begin{bmatrix} f_1 \\ \vdots \\ f_{\frac{N}{2}} \end{bmatrix} \quad e \quad \Psi_2(x_0) = \begin{bmatrix} g_{\frac{N}{2}+1} \\ \vdots \\ g_N \end{bmatrix}. \quad (2.12)$$

A fim de resolvermos a equação diferencial matricial (2.10), aplicamos Transfomada de Laplace na variável espacial x. Deste procedimento, obtemos um sistema algébrico no espaço transformado

$$(sI - A)\bar{\Psi}(s) = \bar{\Psi}(0) + \bar{Q}(s),$$
 (2.13)

onde $\overline{\Psi}(s) = \mathcal{L}[\Psi(x)]$ e $\overline{Q}(s) = \mathcal{L}[Q(x)]$ são as transformadas de Laplace, s é um parâmetro complexo e I uma matriz identidade de ordem N. Resolvendo este sistema algébrico para o fluxo angular transformado obtemos

$$\bar{\Psi}(s) = (sI - A)^{-1}\Psi(0) + (sI - A)^{-1}\bar{Q}(s).$$
(2.14)

A seguir, aplicando a transformada inversa de Laplace em (2.14), obtemos o fluxo angular $\Psi(x)$:

$$\Psi(x) = B(x)\Psi(0) + H(x), \qquad (2.15)$$

 com

$$B(x) = \mathcal{L}^{-1}[(sI - A)^{-1}]$$
(2.16)

e o vetor H(x) definido por:

$$H(x) = B(x) * Q(x) = \int_0^x B(x - \xi)Q(\xi)d\xi,$$
(2.17)

onde o sinal * representa a convolução matricial.

Para encontrarmos a matriz B(x), observamos que os autovalores da matriz LTS_N são todos distintos não nulos e simétricos quando a seção de choque de espalhamento é menor do que a seção de choque total, $\sigma_s < \sigma_t$, e portanto, A é diagonalizável. Assim sendo, diagonalizando a matriz A, temos que

$$A = XDX^{-1}, (2.18)$$

onde D é a matriz diagonal formada pelos autovalores de A dada por

$$D = \begin{bmatrix} d_1 & 0 & \cdots & 0 \\ 0 & d_2 & \cdots & \vdots \\ \vdots & 0 & \ddots & 0 \\ 0 & \cdots & 0 & d_N \end{bmatrix},$$
 (2.19)

e X a matriz cujas colunas são autove
tores associados. Assim, $B(\boldsymbol{x})$ pode ser escrita como

$$B(x) = \mathcal{L}^{-1}[(sI - A)^{-1}]$$

= $\mathcal{L}^{-1}[(sXX^{-1} - XDX^{-1})^{-1}]$
= $\mathcal{L}^{-1}[((sX - XD)X^{-1})^{-1}]$
= $\mathcal{L}^{-1}[(X(sI - D)X^{-1})^{-1}]$
= $\mathcal{L}^{-1}[(X(sI - D)^{-1}X^{-1})],$

visto que a matriz X é uma matriz constante, reescrevemos B(x) como

$$B(x) = X \mathcal{L}^{-1}[(sI - D)^{-1}]X^{-1}.$$
(2.20)

Como a matriz (sI-D) é uma matriz diagonal, sua inversa $(sI-D)^{-1}$ é dada por

$$(sI - D)^{-1} = \begin{bmatrix} \frac{1}{s - d_1} & 0 & \cdots & 0\\ 0 & \frac{1}{s - d_2} & \cdots & \vdots\\ \vdots & 0 & \ddots & 0\\ 0 & \cdots & 0 & \frac{1}{s - d_N} \end{bmatrix},$$
 (2.21)

e sua transformada inversa de Laplace é dada por

$$\mathcal{L}^{-1}[(sI-D)^{-1}] = \begin{bmatrix} e^{d_1x} & 0 & \cdots & 0\\ 0 & e^{d_2x} & \cdots & \vdots\\ \vdots & 0 & \ddots & 0\\ 0 & \cdots & 0 & e^{d_Nx} \end{bmatrix} = e^{Dx}, \quad (2.22)$$

reescrevemos a matriz B(x) como:

$$B(x) = Xe^{Dx}X^{-1}. (2.23)$$

Logo, a solução do sistema de equações LTS_N descrita pela equação (2.11), é dada por

$$\Psi(x) = B(x)\Psi(0) + H(x)$$

$$\Psi(x) = Xe^{Dx}X^{-1}\Psi(0) + H(x)$$
(2.24)

Como desconhecemos a parte do vetor $\Psi(0)$ que contém as direções negativas da solução, $\Psi_2(0)$, dada por (2.24), reescrevemos a solução $\Psi(x)$ na forma particionada como

$$\begin{bmatrix} \Psi_1(x) \\ \Psi_2(x) \end{bmatrix} = \begin{bmatrix} B_{11}(x) & B_{12}(x) \\ B_{21}(x) & B_{22}(x) \end{bmatrix} \begin{bmatrix} \Psi_1(0) \\ \Psi_2(0) \end{bmatrix} + \begin{bmatrix} H_1(x) \\ H_2(x) \end{bmatrix}.$$
 (2.25)

Aplicamos $x = x_0$ nas $\frac{N}{2}$ últimas linhas em (2.25), obtemos

$$\Psi_2(x_0) = B_{21}(x_0)\Psi_1(0) + B_{22}(x_0)\Psi_2(0) + H_2(x_0).$$
(2.26)

Como $\Psi_1(0), \Psi_2(x_0)$ e $H_2(x_0)$ são vetores conhecidos, temos que $\Psi_2(0)$ é dada por

$$\Psi_2(0) = B_{22}(x_0)^{-1} [\Psi_2(x_0) - B_{21}(x_0)\Psi_1(0) - H_2(x_0)].$$
(2.27)

Assim, determinamos completamente a solução (2.24) do problema dado por (2.11).

O comportamento exponencial da solução (2.24) aliado ao fato dos autovalores associados ao problema crescerem em magnitude com o crescimento da ordem da quadratura N, mostram que a solução apresentada não é apropriada para grandes espessuras ou alto grau de anisotropia. Nestes casos, uma falha computacional relacionada com o uso de operações aritméticas finitas podem ocasionar imprecisão dos resultados ou até problema de overflow. Visto que em situações aplicadas há a necessidade de resolvermos problemas com tais características, Gonçalves et. al. [10] eliminou o problema usando a propriedade de invariância de direções discretas. Por facilidade, vamos considerar que os autovalores são escritos na forma crescente, sendo então os $\frac{N}{2}$ primeiros negativos e os $\frac{N}{2}$ últimos positivos. Utilizando essa propriedade de invariância, eliminaram o *overflow* originado pelos termos de exponencial positivas para N grande, separando as soluções homogênea e particular em componentes que contém apenas as direções positivas ($\mu > 0$) e negativas $(\mu < 0),$ ou seja, dividimos a matriz diagonal exponencial que aparece na equação (2.24) como a soma de duas matrizes, a primeira contendo todos os elementos que possuem expoentes positivos e a segunda contendo os termos de expoentes negativos, isto é

$$e^{D^x} = e^{D^+x} + e^{D^-x} (2.28)$$

onde as matrizes e^{D^+x} e e^{D^-x} são dadas por

$$e^{D^{+}x} = \begin{cases} e^{d_{ij}}, & d_{ij} > 0 \\ 0, & d_{ij} < 0 \end{cases} \quad e^{D^{-}x} = \begin{cases} 0, & d_{ij} > 0 \\ e^{d_{ij}}, & d_{ij} < 0 \end{cases}$$
(2.29)

e os elementos d_{ij} são os elementos da matriz D. Assim, definimos

$$B(x) = Xe^{Dx}X^{-1}$$

= $X(e^{D^{+}x} + e^{D^{-}x})X^{-1}$ (2.30)
= $Xe^{D^{+}x}X^{-1} + Xe^{D^{-}x}X^{-1}$
= $B^{+}(x) + B^{-}(x)$ (2.31)

Agora, de acordo com a formulação apresentada por [10], reescrevemos a solução LTS_N como

$$\Psi(x) = B^{+}(x - x_0)\Psi(x_0) + B^{-}(x)\Psi(0) + H(x)$$
(2.32)

onde o vetor H(x) é dado por

$$H(x) = \int_{x_0}^x B^+(x-\eta)Q(\eta)d\eta + \int_0^x B^-(x-\eta)Q(\eta)d\eta.$$
 (2.33)

Desta forma, escrevemos a solução (2.32) como

$$\begin{bmatrix} \Psi_1(x) \\ \Psi_2(x) \end{bmatrix} = \begin{bmatrix} B_{11}^+(x) & B_{12}^+(x) \\ B_{21}^+(x) & B_{22}^+(x) \end{bmatrix} \begin{bmatrix} \Psi_1(x_0) \\ \Psi_2(x_0) \end{bmatrix} + \begin{bmatrix} B_{11}^-(x) & B_{12}^-(x) \\ B_{21}^-(x) & B_{22}^-(x) \end{bmatrix} \begin{bmatrix} \Psi_1(0) \\ \Psi_2(0) \end{bmatrix} + \begin{bmatrix} H_1(x) \\ H_2(x) \end{bmatrix}$$

Para determinar os componentes desconhecidos $\Psi_2(0) \in \Psi_1(x_0)$, aplicamos as condições de contorno (3.5). Assim, temos que

$$\begin{bmatrix} \Psi_1(x_0) \\ \Psi_2(0) \end{bmatrix} = \begin{bmatrix} B_{11}^+(0) & B_{12}^-(0) \\ B_{21}^+(x_0) & B_{22}^-(x_0) \end{bmatrix}^{-1} \begin{bmatrix} (I - B_{11}^-(0))\Psi_1(0) - B_{12}^+(0)\Psi_2(x_0) - H_1(0) \\ (I - B_{22}^+(x_0))\Psi_2(x_0) - B_{21}^-(x_0)\Psi_1(0) - H_2(x_0) \end{bmatrix}$$

Observamos que os argumentos de todas as exponenciais são negativos, assim podemos determinar a solução do problema via método LTS_N Clássico.

A fim de facilitar a resolução do sistema linear, observemos que existe a possibilidade de escrever a equação (2.32) como

$$\begin{bmatrix} \Psi_1(x) \\ \Psi_2(x) \end{bmatrix} = X \begin{bmatrix} e^{D_1 x} & 0 \\ 0 & e^{D_2(x-x_0)} \end{bmatrix} \begin{bmatrix} \xi_1 \\ \xi_2 \end{bmatrix} + \begin{bmatrix} H_1(x) \\ H_2(x) \end{bmatrix}, \quad (2.34)$$

considerando

$$\begin{bmatrix} \xi_1 \\ \xi_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & e^{D_2 x_0} \end{bmatrix} X^{-1} \begin{bmatrix} \Psi_1(0) \\ \Psi_2(0) \end{bmatrix}, \qquad (2.35)$$

onde D_1 e D_2 são submatrizes diagonais de ordem $\frac{N}{2}$ formadas, respectivamente, por autovalores negativos e positivos da matriz A. Desta forma, tomando

$$\mathbf{B}(x) = X \begin{bmatrix} e^{D_1 x} & 0\\ 0 & e^{D_2(x-x_0)} \end{bmatrix},$$
(2.36)

podemos reescrever a solução como

$$\Psi(x) = \mathbf{B}(x)\xi + H(x). \tag{2.37}$$

Esta é uma estratégia computacional que utilizamos evitando, desta forma, o *overflow* que aparece no cálculo de $e^{D_2(x_0)}$.

2.2.2 Método LTS_N Recursivo

Nesta seção, apresentamos o método LTS_N Recursivo que reconstrói a solução LTS_N anisotrópica de forma hierárquica a partir da solução LTS_N isotrópica [40] [42]. A ideia principal é a decomposição da matriz LTS_N anisotrópica, associada ao problema, como soma de duas matrizes, uma contendo a parte isotrópica e outra contendo as características anisotrópicas do problema.

2.2.2.1 Descrição do método LTS_N Recursivo para meios homogêneos

Para descrever o método LTS_N Recursivo, consideramos a equação S_N anisotrópica em sua forma matricial dada por

$$\frac{d}{dx}\Psi(x) - A\Psi(x) = Q(x).$$
(2.38)

Em seguida, decompomos a matriz $A \mod A = A_I + A_C$, onde A_I é a matriz isotrópica e A_C a matriz que possui a parte anisotrópica da matriz A. Desta maneira, podemos reescrever (2.38) como

$$\frac{d}{dx}\Psi(x) - A_I\Psi(x) = A_C\Psi(x) + Q(x).$$
(2.39)

Para resolver o problema de forma recursiva, considera-se que o fluxo seja decomposto como

$$\Psi(x) = \sum_{k=0}^{\infty} \Psi^k(x),$$

onde a primeira parcela é solução do sistema

$$\begin{aligned} \frac{d}{dx}\Psi^{0}(x) - A_{I}\Psi^{0}(x) &= Q(x), \\ \psi_{i}(0) &= f(x), \qquad i = 1, \cdots, \frac{N}{2} \\ \psi_{i}(x_{0}) &= g(x), \qquad i = \frac{N}{2} + 1, \cdots, N \end{aligned}$$

cuja solução é dada por

$$\Psi^{k}(x) = Xe^{Dx}X^{-1}\Psi(0) + H(x), \qquad (2.40)$$

onde

$$H(x) = X \int_0^{x_0} e^{D(x-\eta)} X^{-1} Q(\eta) d\eta,$$

X é a matriz dos autovetores da matriz A, X^{-1} é a matriz inversa dos autovetores da matriz A e e^{Dx} é a matriz diagonal formada pelos autovalores da matriz A. As demais parcelas do fluxo angular são soluções dos sistemas

$$\frac{d}{dx}\Psi^k(x) - A_I\Psi^k(x) = A_C\Psi^{k-1}(x),$$

para $k = 1, 2, 3, \cdots$, com condições de contorno homogêneas. As soluções destes problemas são dadas por

$$\Psi^{k}(x) = Xe^{Dx}X^{-1}\Psi(0) + H(x), \qquad (2.41)$$

onde

$$H(x) = X \int_0^{x_0} e^{D(x-\eta)} X^{-1} A_C \Psi^{k-1}(\eta) d\eta.$$

Como desconhecemos metade do vetor condição de contorno $\Psi(0),$ escrevemos

$$\xi = X^{-1}\Psi(0)$$

para então resolvermos um sistema linear. Deste modo, as soluções (2.40) e (2.41) podem ser escritas como

$$\Psi^k(x) = B(x)\xi + H(x),$$

onde o termo fonte H(x) é dado por

$$H(x) = X \int_0^{x_0} e^{D(x-\eta)} X^{-1} Q(\eta) d\eta \qquad k = 0 \qquad (2.42)$$

$$H(x) = X \int_0^{x_0} e^{D(x-\eta)} X^{-1} A_C \Psi^{k-1}(\eta) d\eta \qquad k = 1, 2, \dots$$
 (2.43)

Deste modo, foi reconstruída a solução do problema LTS_N anisotrópico a partir de um sistema recursivo das soluções LTS_N isotrópicas.

2.3 Meios Heterogêneos

Nesta seção, apresentamos as versões dos métodos LTS_N , descritas anteriormente, agora para meios heterogêneos. Para tal, consideramos uma placa heterogênea de espessura x_0 , composta por R regiões homogêneas, cada uma com seus respectivos parâmetros de transporte, conforme representamos na Figura (2.1):

Figura 2.1: Placa de espessura x_0 dividida em R regiões

2.3.1 Método LTS_N Clássico para meios heterogêneos

As equações S_N que descrevem o problema unidimensional heterogêneo, com simetria azimutal e espalhamento isotrópico para cada região são dadas por

$$\mu_n \frac{d}{dx} \psi_n^r(x) + \sigma_t \psi_n^r(x) = \frac{\sigma_s^r}{2} \sum_{i=1}^N \psi_i^r(x) \omega_i + S_n^r(x)$$
(2.44)

para cada r = 1, ..., R, σ_s^k é a seção de choque macroscópica de espalhamento na região r, $\psi_n^r(x)$ é o fluxo angular na direção discreta μ_n na região r e na posição x, $S_n^r(x)$ é a fonte externa discretizada, N é a ordem de quadratura e ω_i são os pesos da quadratura, com condições de contorno

$$\psi_n^1(0) = f_n \qquad n = 1, \dots, \frac{N}{2}$$

 $\psi_n^R(x_0) = g_n \qquad n = \frac{N}{2} + 1, \dots, N,$
(2.45)

além das condições de continuidade nas interfaces das regiões

$$\psi_n^r(x_r) = \psi_n^{r+1}(x_r) \qquad r = 1, \dots, R-1.$$
 (2.46)

Por simplicidade, realizamos uma mudança na variável espacial x, da seguinte forma, $x = x - x_{r-1}$ na região r. As espessuras de cada placa são dadas por $L_r = x_r - x_{r-1}$. Desta forma as condições de contorno e de continuidade nas interfaces são dadas respectivamente por

$$\psi_n^1(0) = f_n, \qquad \mu_n > 0$$
(2.47)

$$\psi_n^R(L_R) = g_n, \qquad \mu_n < 0$$
(2.48)

$$\psi_n^r(L_r) = \psi_n^{r+1}(0) \qquad r = 1, \dots, R-1$$
 (2.49)

Aplicando o método LTS_N Clássico como descrito na seção 2.2, para cada região r, obtemos a solução da equação (2.44), como sendo

$$\Psi^{r}(x) = B^{r}(x)\xi^{r} + H^{r}(x)$$
(2.50)

para r = 1, ..., R, onde $\Psi^{r}(x)$ é o fluxo angular na região r, $B^{r}(x)$ é definido da mesma forma que (2.36), ξ^{r} é um vetor desconhecido e $H^{r}(x)$ é o vetor que contém os termos de convolução na variável x. Aplicando o método LTS_{N} Clássico para cada região r, obtemos

$$\begin{bmatrix} \Psi_1^r(x) \\ \Psi_2^r(x) \end{bmatrix} = \begin{bmatrix} B_{11}^r(x) & B_{12}^r(x) \\ B_{21}^r(x) & B_{22}^r(x) \end{bmatrix} \begin{bmatrix} \xi_1^r \\ \xi_2^r \end{bmatrix} + \begin{bmatrix} H_1^r(x) \\ H_2^r(x) \end{bmatrix}.$$
 (2.51)

Para que a solução seja determinada, é necessário encontrar o vetor ξ^r . Para isto, aplicamos as condições de contorno (2.47) e (2.48)

$$\Psi_1^1(0) = B_{11}^1(0)\xi_1^1 + B_{12}^1(0)\xi_2^1 + H_1^1(0)$$
(2.52)

$$\Psi_2^R(L_R) = B_{21}^R(L_R)\xi_R^1 + B_{22}^R(L_R)\xi_2^R + H_2^R(L_R)$$
(2.53)

e de continuidade (2.49)

$$\Psi^{r}(L_{r}) = \Psi^{r+1}(0)$$

$$B_{11}^{r}(L_{r})\xi_{1}^{r} + B_{12}^{r}(L_{r})\xi_{2}^{r} + H_{1}^{r}(L_{r}) = B_{11}^{r+1}(0)\xi_{1}^{r+1} + B_{12}^{r+1}(0)\xi_{2}^{r+1} + H_{1}^{r+1}(0)$$

$$B_{21}^{r}(L_{r})\xi_{1}^{r} + B_{22}^{r}(L_{r})\xi_{2}^{r} + H_{2}^{r}(L_{r}) = B_{21}^{r+1}(0)\xi_{1}^{r+1} + B_{22}^{r+1}(0)\xi_{2}^{r+1} + H_{2}^{r+1}(0).$$

Podemos escrever esse sistema na forma matricial

$$M\xi = V \tag{2.54}$$

 sendo

$$\xi = \begin{bmatrix} \xi_1^1 \\ \xi_2^1 \\ \vdots \\ \xi_1^r \\ \xi_2^r \\ \vdots \\ \xi_1^R \\ \xi_2^R \end{bmatrix} , \quad V = \begin{bmatrix} \Psi_1^1(0) - H_1^1(0) \\ H_1^1(L_1) - H_1^2(0) \\ \vdots \\ H_1^r(L_r) - H_1^{r+1}(0) \\ H_2^r(L_r) - H_2^{r+1}(0) \\ \vdots \\ H_1^{R-1}(L_{R-1}) - H_1^R(0) \\ H_2^{R-1}(L_{R-1}) - H_2^R(0) \\ \Psi^R(L_R) - H^R(L_R) \end{bmatrix}$$
(2.55)

 \mathbf{e}

0 0 0 0	0 0 0		0 0 0	0 0	$^{R-1}(L_{R-1})$ $-B^{R}(0)$	$0 B^R_{21}(L_R) B^R_{22}(L_R)$
0 0 0	0 0		0 0	0	$^{R-1}(L_{R-1})$	0
0 0	0		0		В	
0	-		-		0	0
	0		$-B^{r+1}(0)$	0	0	0
0	0		$B^r(L_r)$	0	0	0
÷	÷	÷	÷	÷	÷	:
0	$-B^{3}(0)$		0	0	0	0
$-B^{2}(0)$	$B^2(L_2)$		0	0	0	0
$B^1(L_1)$	0		0	0	0	0
	$B^1(L_1)$ $-B^2(0)$ 0	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$M_{-} = \begin{bmatrix} B^{1}(L_{1}) & -B^{2}(0) & 0 & \cdots \\ 0 & B^{2}(L_{2}) & -B^{3}(0) & \cdots \\ \vdots & \vdots & \vdots & \ddots \\ \vdots & \vdots & \vdots & \ddots \\ \end{bmatrix}$	$M = \begin{bmatrix} B^{1}(L_{1}) & -B^{2}(0) & 0 & \cdots \\ 0 & B^{2}(L_{2}) & -B^{3}(0) & \cdots \\ \vdots & \vdots & \vdots & \ddots \\ 0 & 0 & 0 & 0 & \cdots \end{bmatrix}$	$M = \begin{bmatrix} B^{1}(L_{1}) & -B^{2}(0) & 0 & \cdots \\ 0 & B^{2}(L_{2}) & -B^{3}(0) & \cdots \\ \vdots & \vdots & \vdots & \ddots \\ 0 & 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & 0 & \cdots \\ \end{bmatrix}$	$M = \left \begin{array}{cccc} B^{1}(L_{1}) & -B^{2}(0) & 0 & \cdots \\ & 0 & 0 & B^{2}(L_{2}) & -B^{3}(0) & \cdots \\ & \vdots & \vdots & \vdots & \ddots \\ & 0 & 0 & 0 & 0 & \cdots \\ & 0 & 0 & 0 & 0 & \cdots \\ & 0 & 0 & 0 & 0 & \cdots \\ & 0 & 0 & 0 & 0 & \cdots \\ \end{array} \right $

onde

$$B^{r}(x) = \begin{bmatrix} B^{r}_{11}(x) & B^{r}_{12}(x) \\ B^{r}_{21}(x) & B^{r}_{22}(x) \end{bmatrix}$$
(2.56)

e **0** representa a matriz nula. Resolvendo o sistema (2.54) de RN equações e RN incógnitas, a solução para o fluxo angular é determinada.

2.3.2 Método LTS_N Recursivo para meios heterogêneos

Nesta seção, apresentamos o método Recursivo para meios heterogêneos. A partir do método Recursivo apresentado inicialmente para meios homogêneos, vamos resolver problemas S_N anisotrópicos em meios heterogêneos. A fim de aplicarmos o método LTS_N Recursivo, representamos matricialmente as equações S_N associadas ao problema descrito pela figura (2.1) como

$$\frac{d}{dx}\Psi(x) - [A_1 + (A_2 - A_1)\delta_2 + \dots + (A_R - A_1)\delta_R]\Psi(x) = 0$$
(2.57)

onde

$$\delta_r = \begin{cases} 1, & x \text{ está na região r} \\ 0, & x \text{ não está na região r} \end{cases}$$

Assim, a matriz LTS_N para cada uma das regiões r é dada por:

$$A_r(i,j) = \begin{cases} \frac{\sigma_s^r \omega_i}{2\mu_i} \sum_{l=0}^L \beta_l^r P_l(\mu_i) P_l(\mu_j) - \frac{\sigma_t^r}{\mu_i}, & i = j \\ \frac{\sigma_s^r \omega_i}{2\mu_i} \sum_{l=0}^L \beta_l^r P_l(\mu_i) P_l(\mu_j), & i \neq j \end{cases}$$
para r = 1, 2, ..., R, suponhamos que as condições de contorno são de fluxos incidentes conhecidos em x = 0 e $x = x_0$ e que não temos fonte externa:

$$\Psi_n(0) = f(x) \qquad \mu_n > 0$$

$$\Psi_n(x_0) = g(x) \qquad \mu_n < 0.$$
(2.58)

A fim de resolver este problema heterogêneo de forma recursiva, reescrevemos a equação (2.57) como

$$\frac{d}{dx}\Psi(x) - A_1\Psi(x) = \sum_{r=2}^{R} (A_r - A_1)\delta_r\Psi(x)$$
(2.59)

 ${\rm e}\ {\rm tomamos}$

$$\Psi(x) = \sum_{i=0}^{\infty} \Psi^{i}(x).$$
 (2.60)

Substituindo (2.60) na equação matricial (2.59) e iniciando o processo recursivo, temos que $\Psi^0(x)$ é solução do problema S_N homogêneo

$$\begin{cases} \frac{d}{dx}\Psi^{0}(x) - A_{1}\Psi^{0}(x) = 0\\ \Psi^{0}(0) = f(x) \quad e \quad \Psi^{0}(x_{0}) = g(x) \end{cases}$$
(2.61)

cuja solução é dada por $\Psi^0(x) = B(x)V^0$. Seguindo o processo recursivo, temos que $\Psi^i(x)$, para i = 1, 2, ..., é solução dos seguintes problemas homogêneos

$$\frac{d}{dx}\Psi^{i}(x) - A_{1}\Psi^{i}(x) = \sum_{r=2}^{R} (A_{r} - A_{1})\delta_{r}\Psi^{i-1}(x)$$
(2.62)

com condições de contorno homogêneas. As soluções destes problemas são conhecidas e dadas por:

$$\Psi^{i}(x) = B(x)V^{i} + B(x) * \sum_{r=2}^{R} (A_{r} - A_{1})\delta_{r}\Psi^{i-1}(x).$$
(2.63)

Através deste procedimento, o problema heterogêneo é resolvido de forma idêntica ao problema homogêneo e a heterogeneidade é inserida na forma de fonte.

3 MÉTODO LTS_N NÃO ESPECTRAL

Utilizando a ideia do método LTS_N Recursivo descrito no capítulo anterior, apresentamos o desenvolvimento de um método não espectral. A principal motivação deste método é evitar o cálculo dos autovalores e autovetores associados à matriz LTS_N . Desta forma, seguindo a mesma ideia de decomposição da matriz LTS_N feita anteriormente o método não espectral separa a matriz A da aproximação LTS_N como $A = \mathcal{D} + \mathcal{A}_C$, onde \mathcal{D} é a matriz com os termos da diagonal da matriz A e \mathcal{A}_C é a matriz com os demais termos. Esta mudança na maneira de separação da matriz \mathcal{A} , provoca o desacoplamento das equações, pois a matriz \mathcal{D} foi escolhida diagonal.

3.1 Método LTS_N Não Espectral para meios homogêneos

Para construção do método não-espectral, decompomos a matriz LTS_N A como a soma de duas matrizes, sendo uma delas diagonal. Ou seja,

$$\frac{d}{dx}\Psi(x) - A\Psi(x) = Q(x)$$

$$\frac{d}{dx}\Psi(x) - [(A - D) + D]\Psi(x) = Q(x)$$

$$\frac{d}{dx}\Psi(x) - D\Psi(x) = (A - D)\Psi(x) + Q(x)$$

$$\frac{d}{dx}\Psi(x) - D\Psi(x) = \mathcal{A}_{\mathcal{C}}\Psi(x) + Q(x). \quad (3.1)$$

A matriz diagonal \mathcal{D} é dada por

$$d_{ij} = \begin{cases} \frac{\sigma_s \omega_i}{2\mu_i} \sum_{l=0}^L \beta_l P_l(\mu_i) P_l(\mu_j) - \frac{\sigma_t}{\mu_i}, & i = j, \\ 0, & i \neq j. \end{cases}$$

e a matriz $\mathcal{A}_{\mathcal{C}}$ por

$$\mathcal{A}_{\mathcal{C}ij} = \begin{cases} 0, & i = j, \\ \frac{\sigma_s \omega_i}{2\mu_i} \sum_{l=0}^L \beta_l P_l(\mu_i) P_l(\mu_j), & i \neq j. \end{cases}$$

Para darmos início a um processo recursivo, vamos primeiramente supor que o fluxo angular $\Psi(x)$ é decomposto como

$$\Psi(x) = \sum_{k=0}^{\infty} \Psi^k(x).$$
(3.2)

Assim, substituindo a decomposição (3.2) nas equações (3.1), obtemos

$$\frac{d}{dx}\sum_{k=0}^{\infty}\Psi(x) - \mathcal{D}\sum_{k=0}^{\infty}\Psi(x) = \mathcal{A}_{\mathcal{C}}\sum_{k=0}^{\infty}\Psi(x) + Q(x).$$
(3.3)

As equações (3.3) podem ser resolvidas de diversas formas, aqui escolhemos iniciar o processo de recursão resolvendo os seguintes problemas:

$$\frac{d}{dx}\Psi^0(x) - \mathcal{D}\Psi^0(x) = Q(x), \qquad (3.4)$$

com as condições de contorno originais do problema

$$\Psi(0) = f, \quad \mu > 0,$$

 $\Psi(x_0) = g, \quad \mu < 0.$
(3.5)

Observamos que a solução deste problema é totalmente conhecida. A seguir, entramos com o processo recursivo onde

$$\frac{d}{dx}\Psi^k(x) - \mathcal{D}\Psi^k(x) = \mathcal{A}_{\mathcal{C}}\Psi^{k-1}(x), \qquad k = 1, 2, \dots,$$
(3.6)

considerando condições de contorno homogêneas. Observamos que pela construção da matriz \mathcal{D} , os $\frac{N}{2}$ primeiros elementos \mathbf{d}_{ii} são negativos e os $\frac{N}{2}$ últimos elementos \mathbf{d}_{ii} são positivos. Como a matriz \mathcal{D} é diagonal, podemos escrever o sistema não mais em sua forma matricial, e sim como n equações desacopladas. Desta forma, no primeiro problema da recursão, isto é, para k = 0, temos que

$$\frac{d}{dx}\psi_i^0(x) - \mathbf{d}_{ii}\psi_i^0(x) = Q_i(x) \qquad i = 1, \cdots, N,$$
(3.7)

com condições de contorno

$$\psi_i^0(0) = f_n, \quad i = 1, \dots, \frac{N}{2}$$

 $\psi_i^0(x_0) = g_n, \quad i = \frac{N}{2} + 1, \dots, N$

As soluções para o problema descrito em (3.7) são facilmente calculadas e descritas como

$$\psi_i^0(x) = e^{\mathbf{d}_{ii}x}\psi_i^0(0) + e^{\mathbf{d}_{ii}x} * Q_i(x),$$

= $e^{\mathbf{d}_{ii}x}\psi_i^0(0) + \int_0^x e^{\mathbf{d}_{ii}(x-\eta)}Q_i(\eta)d\eta \qquad i = 1, \dots, N.$ (3.8)

Entretanto, como desconhecemos os termos $\psi_i(0)$ para $i = \frac{N}{2}, \dots, N$, aplicamos as condições de contorno originais do problema nas equações (3.8) com $i = \frac{N}{2}, \dots, N$, ou seja, quando $x = x_0$ temos que

$$\psi_i^0(x_0) = e^{\mathbf{d}_{ii}x_0}\psi_i^0(0) + \int_0^{x_0} e^{\mathbf{d}_{ii}(x_0-\eta)}Q_i(\eta)d\eta$$

Assim, isolando o termo $\psi^0_i(0),$ temos que

$$\psi_i^0(0) = \psi_i^0(x_0)e^{-\mathbf{d}_{ii}x_0} - e^{-\mathbf{d}_{ii}x_0} \int_0^{x_0} e^{\mathbf{d}_{ii}(x-\eta)}Q_i(\eta)d\eta$$

= $\psi_i^0(x_0)e^{-\mathbf{d}_{ii}x_0} - \int_0^{x_0} e^{-\mathbf{d}_{ii}\eta}Q_i(\eta)d\eta.$

Voltando à equação que descreve a solução da recursão 0, temos que

$$\psi_{i}^{0}(x) = e^{\mathbf{d}_{ii}x} \left(\psi_{i}^{0}(x_{0})e^{-\mathbf{d}_{ii}x_{0}} - \int_{0}^{x_{0}} e^{-\mathbf{d}_{ii}\eta}Q_{i}(\eta)d\eta \right) + \int_{0}^{x} e^{\mathbf{d}_{ii}(x-\eta)}Q_{i}(\eta)d\eta$$

$$= e^{\mathbf{d}_{ii}(x-x_{0})}\psi_{i}^{0}(x_{0}) - \int_{0}^{x_{0}} e^{\mathbf{d}_{ii}(x-\eta)}Q_{i}(\eta)d\eta + \int_{0}^{x} e^{\mathbf{d}_{ii}(x-\eta)}Q_{i}(\eta)d\eta$$

$$= e^{\mathbf{d}_{ii}(x-x_{0})}\psi_{i}^{0}(x_{0}) - \int_{x}^{x_{0}} e^{\mathbf{d}_{ii}(x-\eta)}Q_{i}(\eta)d\eta$$

$$= e^{\mathbf{d}_{ii}(x-x_{0})}\psi_{i}^{0}(x_{0}) + \int_{x_{0}}^{x} e^{\mathbf{d}_{ii}(x-\eta)}Q_{i}(\eta)d\eta.$$
(3.9)

Logo, temos que a solução do problema (3.1), para k=0, é dada por

$$\begin{cases} \psi_i^0(x) = e^{\mathbf{d}_{ii}x}\psi_i^0(0) + \int_0^x e^{\mathbf{d}_{ii}(x-\eta)}Q_i(\eta)d\eta & i = 1, \dots, \frac{N}{2}, \\ \psi_i^0(x) = e^{\mathbf{d}_{ii}(x-x_0)}\psi_i^0(x_0) + \int_{x_0}^x e^{\mathbf{d}_{ii}(x-\eta)}Q_i(\eta)d\eta & i = \frac{N}{2} + 1, \cdots, N \end{cases}$$

Observamos que este procedimento acaba naturalmente com o problema de overflow que ocorre no método LTS_N . Os demais termos da recursão para o fluxo angular $\Psi(x)$ são dados a partir da solução das equações

$$\frac{d}{dx}\psi_{i}^{k}(x) - \mathbf{d}_{ii}\psi_{i}^{k}(x) = V_{i}^{k-1}(x), \qquad i = 1, \cdots, N, \qquad (3.10)$$

 com

$$V^{k-1}(x) = Ac\Psi^{k-1}(x), \qquad k = 1, 2, \dots$$

com condições de contorno homogêneas.

Da mesma maneira, como não conhecemos parte do vetor condição de contorno, utilizamos a mesma ideia apresentada para a recursão 0. E, desta forma, temos que a solução para cada recursão k = 1, 2, ... é dada por

$$\psi_{i}^{k}(x) = \int_{0}^{x} e^{\mathbf{d}_{ii}(x-\eta)} V_{i}^{k-1}(\eta) d\eta, \quad \text{para} \quad i = 1, \cdots, \frac{N}{2}$$

$$\psi_{i}^{k}(x) = \int_{x_{0}}^{x} e^{\mathbf{d}_{ii}(x-\eta)} V_{i}^{k-1}(\eta) d\eta, \quad \text{para} \quad i = \frac{N}{2} + 1, \cdots, N, \quad (3.11)$$

com

$$V^{k-1}(\eta) = \mathcal{A}_{\mathcal{C}} \psi^{k-1}(\eta)$$

Assim a solução do problema (3.1) pode ser completamente determinada.

3.1.1 Exemplificando o Método LTS_N Não Espectral para N=4

Buscamos, nesta seção, exemplificar o processo de aproximação S_4 e a construção da solução LTS_N pelo método não espectral. Para tal, utilizaremos a equação do transporte unidimensional, estacionária, com simetria azimutal, com espalhamento anisotrópico com grau de anisotropia L = 2 e sem fonte externa:

$$\mu \frac{\partial}{\partial x} \psi(x) + \sigma_t \psi(x,\mu) = \frac{\sigma_s}{2} \int_{-1}^1 p(\cos\theta) \psi(x,\mu') d\mu'.$$
(3.12)

Seguindo as com as condições de contorno:

$$\psi(0,\mu) = f(\mu), \qquad \mu > 0$$

 $\psi(x_0,\mu) = g(\mu), \qquad \mu < 0.$

Aproximamos a função espalhamento por uma série truncada em polinômios de Legendre

$$p\cos(\theta) = \sum_{l=0}^{L=2} \beta_l P_l(\mu') P_l(\mu)$$
(3.13)

 com

$$\beta_{l} = \left(\frac{2l+1}{2l-1}\right) \left(\frac{L+1-l}{L+1+l}\right) \beta_{l-1}, \qquad \beta_{0} = 1.$$
(3.14)

e resulta em

$$\mu \frac{\partial}{\partial x} \psi(x,\mu) + \sigma_t \psi(x,\mu) = \frac{\sigma_s}{2} \int_{-1}^1 \sum_{l=0}^2 \beta_l P_l(\mu') P_l(\mu) \psi(x,\mu') d\mu'.$$
(3.15)

Em seguida, aproximamos o termo integral por quadratura de Gauss-Legendre,

$$\int_{-1}^{1} \sum_{l=0}^{2} \beta_{l} P_{l}(\mu') P_{l}(\mu) \psi(x,\mu') d\mu' \approx \sum_{l=0}^{2} \beta_{l} \sum_{k=1}^{4} P_{l}(\mu_{k}) P_{l}(\mu) \omega_{k} \psi(x,\mu_{k}), \quad (3.16)$$

onde μ_k são as raízes do polinômio de Legendre de grau 4 e ω_k os respectivos pesos da quadratura de Gauss-Legendre.

$$\mu \frac{\partial}{\partial x} \psi(x,\mu) + \sigma_t \psi(x,\mu) = \frac{\sigma_s}{2} \sum_{l=0}^2 \beta_l \sum_{k=1}^4 P_l(\mu_k) P_l(\mu) \omega_k \psi(x,\mu_k).$$
(3.17)

Aplicamos o método da colocação na variável μ na equação com a função delta de dirac $\delta(\mu - \mu_n)$ como função teste, e os pontos μ_n como pontos de colocação. Deste modo,

$$\int_{-1}^{1} \mu \frac{\partial}{\partial x} \psi(x,\mu) \delta(\mu - \mu_n) d\mu + \int_{-1}^{1} \sigma_t \psi(x,\mu) \delta(\mu - \mu_n) d\mu =$$
(3.18)

$$= \frac{\sigma_s}{2} \sum_{l=0}^{2} \beta_l \int_{-1}^{1} \sum_{k=1}^{4} P_l(\mu_k) P_l(\mu) \omega_k \psi(x, \mu_k) \delta(\mu - \mu_n) d\mu.$$
(3.19)

Obtemos, então:

$$\mu_n \frac{d}{dx} \psi(x, \mu_n) + \sigma_t \psi(x, \mu_n) = \frac{\sigma_s}{2} \sum_{l=0}^2 \beta_l \sum_{k=1}^4 P_l(\mu_k) P_l(\mu_n) \omega_k \psi(x, \mu_k).$$
(3.20)

Multiplicamos a equação (3.20) por $\frac{1}{\mu_n}$ e obtemos o problema:

$$\frac{d}{dx}\psi_n(x) + \frac{\sigma_t}{\mu_n}\psi_n(x) = \frac{\sigma_s}{2\mu_n}\sum_{l=0}^2 \beta_l \sum_{k=1}^4 P_l(\mu_k)P_l(\mu_n)\omega_k\psi(x,\mu_k)$$
(3.21)

com as condições de contorno

$$\psi_n(0) = f_n, \qquad \mu_n > 0$$

 $\psi(x_0) = g_n, \qquad \mu_n < 0.$

Desta forma, o sistema de equações S_4 associado ao problema (3.12) é dado por,

$$\frac{d}{dx}\Psi(x) - D\Psi(x) = Ac\,\Psi(x),\tag{3.22}$$

onde $\Psi(x)$ é o vetor dos fluxos angulares nas quatro direções discretas consideradas. A matriz Dé dada por

$$\mathbf{d}_{ij} = \begin{cases} \frac{\sigma_s \omega_i}{2\mu_i} \sum_{l=0}^2 \beta_l P_l(\mu_i) P_l(\mu_j) - \frac{\sigma_t}{\mu_i}, & i = j \\ 0, & i \neq j \end{cases}$$

E a matriz $\mathcal{A}_{\mathcal{C}}$ por

 como

$$\mathcal{A}_{\mathcal{C}ij} = \begin{cases} 0, & i = j \\ \frac{\sigma_s \omega_i}{2\mu_i} \sum_{l=0}^2 \beta_l P_l(\mu_i) P_l(\mu_j), & i \neq j \end{cases}$$

Vamos supor, neste exemplo, que o fluxo angular $\Psi(x)$ seja decomposto

$$\Psi(x) = \sum_{k=0}^{1} \Psi^{k}(x) = \Psi^{0}(x) + \Psi^{1}(x)$$
(3.23)

onde $\Psi^0(x)$ é a solução de

$$\frac{d}{dx}\Psi^{0}(x) - D\Psi^{0}(x) = 0$$
(3.24)

com condições de contorno

$$\psi_1(0) = 1,$$

 $\psi_2(0) = 1,$
 $\psi_3(x_0) = 0,$
 $\psi_4(x_0) = 0,$

e $\Psi^1(x)$ é solução de

$$\frac{d}{dx}\Psi^{1}(x) - \mathcal{D}\Psi^{1}(x) = \mathcal{A}_{\mathcal{C}}\Psi^{0}(x)$$
(3.25)

com condições de contorno homogêneas.

Neste exemplo, assumimos uma placa de comprimento $x_0 = 1$ e coeficientes de seção de choque $\sigma_s = 0.95$ e $\sigma_t = 1$. Os pesos e raízes da quadratura de Gauss-Legendre de ordem 4 são dados por

ω_1	=	0.3478548451	$\mu_1 = 0.8611363116$
ω_2	=	0.6521451549	$\mu_2 = 0.3399810436$
ω_3	=	ω_2	$\mu_3 = -\mu_2$
ω_4	=	ω_1	$\mu_4 = -\mu_1$

Os polinômios de Legendre são dados por

$$P_{0}(\mu_{1}) = 1 \qquad P_{1}(\mu_{1}) = \mu_{1} \qquad P_{2}(\mu_{1}) = \frac{1}{2}(3\mu_{1}^{2} - 1),$$

$$P_{0}(\mu_{2}) = 1 \qquad P_{1}(\mu_{2}) = \mu_{2} \qquad P_{2}(\mu_{2}) = \frac{1}{2}(3\mu_{2}^{2} - 1),$$

$$P_{0}(\mu_{3}) = 1 \qquad P_{1}(\mu_{3}) = \mu_{3} \qquad P_{2}(\mu_{3}) = \frac{1}{2}(3\mu_{3}^{2} - 1),$$

$$P_{0}(\mu_{4}) = 1 \qquad P_{1}(\mu_{4}) = \mu_{4} \qquad P_{2}(\mu_{4}) = \frac{1}{2}(3\mu_{4}^{2} - 1),$$

e os coeficientes de anisotropia de grau 2 por

$$\beta_0 = 1,$$

 $\beta_1 = 1.5,$
 $\beta_2 = 0.5.$

Assim, substituindo os valores no problema (3.22), temos

$$\mathcal{D} = \begin{bmatrix} -0.719978 & 0 & 0 & 0 \\ 0 & -1.823631 & 0 & 0 \\ 0 & 0 & 1.823631 & 0 \\ 0 & 0 & 0 & 0.719978 \end{bmatrix}$$
(3.26)

е

 como

$$\mathcal{A}_{\mathcal{C}} = \begin{bmatrix} 0 & 0.481722 & 0.165775 & 0.014418 \\ 0.650830 & 0 & 0.801762 & 0.223971 \\ -0.223971 & -0.801762 & 0 & -0.650830 \\ -0.014418 & -0.165775 & -0.481722 & 0 \end{bmatrix}.$$
 (3.27)

Como descrito na seção anterior, podemos escrever as soluções $\Psi^0(x)$

$$\begin{bmatrix} \psi_1^0(x) \\ \psi_2^0(x) \\ \psi_3^0(x) \\ \psi_4^0(x) \end{bmatrix} = \begin{bmatrix} e^{d_1x}\psi_1^0(0) \\ e^{d_2x}\psi_2^0(0) \\ e^{d_3(x-1)}\psi_3^0(L) \\ e^{d_4(x-1)}\psi_4^0(L) \end{bmatrix}$$
(3.28)

com condições de contorno

$$\psi_i^0(0) = 1, \qquad n = 1, 2$$

 $\psi_i^0(x_0) = 0, \qquad n = 3, 4.$

e $\Psi^1(x)$ como

$$\begin{bmatrix} \psi_1^1(x) \\ \psi_2^1(x) \\ \psi_3^1(x) \\ \psi_4^1(x) \end{bmatrix} = \begin{bmatrix} \int_0^x e^{d_1(x-\eta)} V_1^0(\eta) d\eta \\ \int_0^x e^{d_2(x-\eta)} V_2^0(\eta) d\eta \\ \int_1^x e^{d_3(x-\eta)} V_3^0(\eta) d\eta \\ \int_1^x e^{d_4(x-\eta)} V_4^0(\eta) d\eta \end{bmatrix}$$

onde

$$V^0(\eta) = \mathcal{A}_{\mathcal{C}} \psi^0(\eta)$$

com condições de contorno homogêneas.

Desta forma, a expressão geral de $\Psi^0(x)$ que permite calcular o fluxo angular em qualquer posição é dada por

$$\begin{bmatrix} \psi_1^0(x) \\ \psi_2^0(x) \\ \psi_3^0(x) \\ \psi_4^0(x) \end{bmatrix} = \begin{bmatrix} e^{-0.719978x} \\ e^{-1.823631x} \\ 0 \\ 0 \end{bmatrix}$$
(3.29)

A fim de exemplificar, vamos calcular os fluxos angulares nas posições nos extremos do domínio considerado, x = 0 e x = 1. Então $\Psi^0(0)$ e $\Psi^0(1)$ são dadas por:

$$\begin{bmatrix} \psi_1^0(0) \\ \psi_2^0(0) \\ \psi_3^0(0) \\ \psi_4^0(0) \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} \qquad e \qquad \begin{bmatrix} \psi_1^0(1) \\ \psi_2^0(1) \\ \psi_3^0(1) \\ \psi_4^0(1) \end{bmatrix} = \begin{bmatrix} 0.486762512054 \\ 0.161438488217 \\ 0 \\ 0 \end{bmatrix}$$
(3.30)

A solução $\Psi^1(x)$ calculada com condições de contorno homogêneas é dada por

$$\begin{array}{c|c} \psi_1^1(x) \\ \psi_2^1(x) \\ \psi_3^1(x) \\ \psi_4^1(x) \end{array} = \begin{bmatrix} \int_0^x 0.481722e^{-0.719978(x-\eta)}e^{-1.823631\eta}d\eta \\ \int_0^x 0.650830e^{-1.823631(x-\eta)}e^{-0.719978\eta}d\eta \\ \int_1^x e^{1.823631(x-\eta)}(-0.223971e^{-0.719978\eta} - 0.801762e^{-1.823631\eta})d\eta \\ \int_1^x e^{0.719978(x-\eta)}(-0.014418e^{-0.719978\eta} - 0.165775e^{-1.823631\eta})d\eta \end{bmatrix}$$

Assim, os fluxos angulares $\Psi^1(0)$ e $\Psi^1(1)$ são dados por

$$\begin{bmatrix} \psi_1^1(0) \\ \psi_2^1(0) \\ \psi_3^1(0) \\ \psi_4^1(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0.295229839312 \\ 0.06769233693741 \end{bmatrix} e \begin{bmatrix} \psi_1^1(1) \\ \psi_2^1(1) \\ \psi_3^1(1) \\ \psi_4^1(1) \end{bmatrix} = \begin{bmatrix} 0.141997543799 \\ 0.191845559971 \\ 0 \\ 0 \end{bmatrix}$$

Do mesmo modo, os fluxos angulares $\Psi^2(x)$ e $\Psi^3(x)$ são dados por:

$$\begin{bmatrix} \psi_1^2(0) \\ \psi_2^2(0) \\ \psi_3^2(0) \\ \psi_4^2(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 0.06506023916975 \\ 0.06715904196648 \end{bmatrix} \qquad e \qquad \begin{bmatrix} \psi_1^2(1) \\ \psi_2^2(1) \\ \psi_3^2(1) \\ \psi_4^2(1) \end{bmatrix} = \begin{bmatrix} 0.06791190498702 \\ 0.07213364513803 \\ 0 \\ 0 \\ 0 \end{bmatrix} e$$

$$e \qquad \begin{bmatrix} \psi_1^3(0) \\ \psi_2^3(1) \\ \psi_3^3(0) \\ \psi_3^3(0) \\ \psi_4^3(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0.03212975596713 \\ 0.02628591414746 \end{bmatrix} \qquad e \qquad \begin{bmatrix} \psi_1^3(1) \\ \psi_2^3(1) \\ \psi_3^3(1) \\ \psi_4^3(1) \end{bmatrix} = \begin{bmatrix} 0.02762702372846 \\ 0.03121334315631 \\ 0 \\ 0 \end{bmatrix}$$

Desta forma, podemos calcular o vetor fluxo angular da solução do problema anisotrópico de forma recursiva. Assim, obtemos

0

$$\Psi(0) = \Psi^{0}(0) + \Psi^{1}(0) + \Psi^{2}(0) + \Psi^{3}(0) = \begin{bmatrix} 1 \\ 1 \\ 0.409379841973450 \\ 0.414009634354510 \end{bmatrix}$$

$$\Psi(1) = \Psi^{0}(1) + \Psi^{1}(1) + \Psi^{2}(1) + \Psi^{3}(1) = \begin{bmatrix} 0.723895383565220 \\ 0.450860433258850 \\ 0 \\ 0 \end{bmatrix}$$

Para a visualização da convergência do método Não Espectral neste exemplo, calculamos o fluxo escalar em x = 0 e x = 1. A tabela que segue ilustra o fluxo escalar nas primeiras recursões assim como o fluxo escalar na vigésima recursão. Consideramos como critério de parada para o erro uma tolerância de 10^{-8} no desvio absoluto. Deste modo, são necessárias 20 recursões neste exemplo.

Recursão	$\Psi(0)$	$\Psi(1)$
0	1	0.274604026148
1	1.21607981666	0.449109712173
2	1.28187013455	0.519774804545
3	1.31196708183	0.549740629112
÷	:	÷
19	1.33257928820	0.570572975229
20	1.33257929640	0.570572983432

Tabela 3.1: Fluxos Escalares do problema LTS_4 com Anisotropia L = 2

3.2 Método LTS_N Não Espectral para problemas heterogêneos

Nesta seção, aplicamos o método Não Espectral construído, inicialmente para meios homogêneos, em meios heterogêneos. Nesse sentido, vamos resolver problemas S_N anisotrópicos em meios heterogêneos considerando uma placa heterogênea de espessura x_0 , composta por R regiões homogêneas, cada uma com seus respectivos parâmetros de transporte. Deste modo, a equação matricial que modela o problema a ser resolvido para meios heterogêneos pode ser escrita como

$$\frac{d}{dx}\Psi(x) - \left[A_1\delta_1 + A_2\delta_2 + \dots + A_R\delta_R\right]\Psi(x) = 0.$$
(3.31)

Assim, a matriz LTS_N para cada uma das regiões r é dada por:

$$A_r(i,j) = \begin{cases} \frac{\sigma_s^r \omega_i}{2\mu_i} \sum_{l=0}^L \beta_l^r P_l(\mu_i) P_l(\mu_j) - \frac{\sigma_t^r}{\mu_i}, & i = j \\ \frac{\sigma_s^r \omega_i}{2\mu_i} \sum_{l=0}^L \beta_l^r P_l(\mu_i) P_l(\mu_j), & i \neq j \end{cases}$$

para r = 1, 2, ..., R.

Decompondo a matriz A_1 exatamente como foi decomposta para problemas homogêneos, como a soma $A_1 = \mathcal{D} + \mathcal{A}_{\mathcal{C}}$, \mathcal{D} como sendo a matriz com os termos da diagonal da matriz $A \in \mathcal{A}_{\mathcal{C}}$ a matriz com os demais termos. Assim, reescrevemos a equação (3.31) como

$$\frac{d}{dx}\Psi(x) - \left[\left(\mathcal{D} + (A_1 - \mathcal{D})\delta_1 + (A_2 - \mathcal{D})\delta_2 + \dots + (A_R - \mathcal{D})\delta_R\right]\Psi(x) = 0 \quad (3.32)$$

Para utilizarmos o método recursivo, organizamos a equação (3.32) como

$$\frac{d}{dx}\Psi(x) - \mathcal{D}\Psi(x) = \left[\sum_{r=1}^{R} (A_r - \mathcal{D})\delta_r\right]\Psi(x), \qquad (3.33)$$

com condições de contorno

como

$$\psi_n(0) = f_n, \qquad n = 1, \dots, \frac{N}{2}$$

 $\psi_n(x_0) = g_n, \qquad n = \frac{N}{2} + 1, \dots, N.$

Da mesma maneira, suponhamos que o fluxo angular seja decomposto

$$\Psi(x) = \sum_{k=0}^{\infty} \Psi^k(x).$$
 (3.34)

Substituindo (3.34) na equação (3.33) e iniciando o processo recursivo

temos

$$\begin{cases} \frac{d}{dx}\Psi^0(x) - \mathcal{D}\Psi^0(x) = 0\\ \Psi^0(0) = f(x)\\ \Psi^0(x_0) = g(x) \end{cases}$$

cuja solução é dada por

$$\begin{split} \psi_i^0(x) &= e^{\mathbf{d}_i x} \psi_i^0(0), \qquad i = 1, \cdots, \frac{N}{2} \\ \psi_i^0(x) &= e^{\mathbf{d}_i (x - x_0)} \psi_i^0(0), \qquad i = \frac{N}{2} + 1, \cdots, N. \end{split}$$

As demais recursões são dadas por

$$\frac{d}{dx}\Psi^{k}(x) - \mathcal{D}\Psi^{k}(x) = \left[\sum_{r=1}^{R} (A_{r} - \mathcal{D})\delta_{r}\right]\Psi^{k-1}(x)$$

com condições de contorno homogêneas. Suas soluções são dadas por

$$\psi_{i}^{k}(x) = e^{\mathbf{d}_{i}x} * \left[\sum_{r=1}^{R} (A_{r} - \mathcal{D})\delta_{r}\right] \psi_{i}^{k-1}(x), \qquad i = 1, \cdots, \frac{N}{2}$$

$$\psi_{i}^{k}(x) = -e^{\mathbf{d}_{i}x} * \left[\sum_{r=1}^{R} (A_{r} - \mathcal{D})\delta_{r}\right] \psi_{i}^{k-1}(x), \qquad i = \frac{N}{2} + 1, \cdots, N.$$

Assim, este método permite calcular de forma não espectral o fluxo em meios heterogêneos, de forma que a heterogeneidade é inserida no termo fonte.

4 **RESULTADOS NUMÉRICOS**

Para validar o método LTS_N Não Espectral desenvolvido neste trabalho, resolvemos numericamente alguns problemas com o auxílio do programa Fortran e os resultados foram comparados com o método LTS_N Clássico e LTS_N Recursivo. Primeiramente resolvemos problemas em meios homogêneos, para então estendermos para problemas em meios heterogêneos considerando uma placa dividida em duas regiões homogêneas.

4.1 Problemas Homogêneos

Analisaremos o comportamento do método LTS_N Não Espectral através da solução da equação de transporte estacionária, monoenergética, com espalhamento anisotrópico sem fonte externa dada por

$$\mu \frac{\partial}{\partial x} \psi(x,\mu) + \sigma_t \psi(x,\mu) = \frac{\sigma_s}{2} \int_{-1}^1 p(\cos\Theta) \psi(x,\mu') d\mu'.$$
(4.1)

Para isso, consideramos:

- uma placa de tamanho $x_0 = 1 \, cm$,
- seção de choque de espalhamento $\sigma_s = 0.95 \, cm^{-1}$,
- seção de choque total $\sigma_t = 1 \, cm^{-1}$,
- com condições de contorno:

$$\Psi(0) = 1 \quad \text{para} \quad \mu > 0$$

$$\Psi(x_0) = 0 \quad \text{para} \quad \mu < 0.$$

Analisamos o comportamento do método para diferentes ordens de quadraturas, N = 40, 100, 200, 300 e 400, assim como para diferentes graus de anisotropia, L = 8, 82 e 299.

A solução para a recursão zero (k = 0) é descrita por

$$\psi_i^0(x) = e^{\mathbf{d}_i x} \psi_i^0(0) \quad \text{para} \quad i = 1, \dots, \frac{N}{2},$$

 $\psi_i^0(x) = e^{\mathbf{d}_i(x-x_0)} \psi_i^0(x_0) \quad \text{para} \quad i = \frac{N}{2} + 1, \cdots, N,$

. .

e para as demais recursões, $k = 1, 2, \ldots$, as soluções são dadas por

$$\psi_i^k(x) = e^{d_i(x)} * \mathcal{A}_{\mathcal{C}} \psi^{k-1}(\eta) = \int_0^x e^{d_i(x-\eta)} \mathcal{A}_{\mathcal{C}} \psi^{k-1}(\eta) d\eta \quad \text{para} \quad i = 1, \cdots, \frac{N}{2},$$

$$\psi_i^k(x) = e^{d_i(x)} * \mathcal{A}_{\mathcal{C}} \psi^{k-1}(\eta) = \int_{x_0}^x e^{d_i(x-\eta)} \mathcal{A}_{\mathcal{C}} \psi^{k-1}(\eta) d\eta \quad \text{para} \quad i = \frac{N}{2} + 1, \cdots, N.$$

Para calcularmos o termo de convolução $e^{d_i x} * Ac \Psi^{k-1}$ de cada recursão k, utilizamos quadratura de Gauss-Legendre com 50 pontos. Para tal, interpolamos o termo $Ac \Psi^{k-1}$ por Spline Cúbico, com condições de contorno Natural e Restrita. A implementação utilizou uma subrotina proposta por [43] na página 109. Neste trabalho, consideramos 100 pontos na interpolação polinomial via Spline Cúbico.

Os resultados que seguem apresentam o fluxo escalar de partículas, calculado por

$$\phi(x)=\int_{-1}^1\psi(x,\mu')d\mu'.$$

A fim de fazer a comparação com os métodos LTS_N Clássico e LTS_N Recursivo, calculamos o erro relativo entre as aproximações. Este erro é dado por

$$\varepsilon_{N,R} = \left| \frac{\phi_N(x) - \phi_R(x)}{\phi_N(x)} \right|$$

onde $\phi_N(x)$ representa o fluxo escalar obtido pelo método Não Espectral, $\phi_R(x)$ representa o fluxo escalar obtido pelo método Recursivo e $\varepsilon_{N,R}$ o erro relativo entre estes fluxos escalares. O erro realtivo entre os fluxos escalares obtidos pelo método LTS_N Não Espectral e LTS_N Clássico será denotado por $\varepsilon_{N,C}$.

Os resultados foram organizados em forma de tabelas e gráficos. Apresentamos, a seguir, os fluxos escalares em diferentes pontos da placa, no início x = 0, no meio x = 0.5 e no final da placa x = 1, para diferentes ordens de quadratura Ne graus de anisotropia L.

As tabelas a seguir apresentam os fluxos escalares calculados a partir dos métodos LTS_N Clássico, LTS_N Recursivo e LTS_N Não Espectral, considerando anisotropia L = 8, 82, 299. Apresentamos os fluxos escalares obtidos pelos métodos LTS_N Recursivo e LTS_N Não Espectral considerando Spline Cúbico com condições de contorno restritas.

Posição	Quadratura	Não Espectral	Recursivo	$\varepsilon_{N,R}$
	40	1,29152733E + 00	1,29152735E + 00	1,51526E - 08
x = 0	100	1,29160693E + 00	1,29160701E + 00	6,19538E - 08
	300	1,29161914E + 00	1,29161991E + 00	5,98218E - 07
	40	9,23291577E - 01	9,23291596E - 01	1,99254E - 08
x = 0.5	100	9,23270251E - 01	9,23270271E - 01	2,06841E - 08
	300	9,23266878E - 01	9,23267001E - 01	1,33736E - 07
	40	6,05927896E - 01	6,05927918E - 01	3,62832E - 08
x = 1	100	6,05833511E - 01	6,05833708E - 01	3,24916E - 07
	300	6,05818492E - 01	6,05820681E - 01	3,61411E - 06

Tabela 4.1: Fluxos escalares vi
a LTS_N Não Espectral e LTS_N Recursivo com Spline Restrito - Anisotropia L=8

Posição	Quadratura	Não Espectral	Clássico	$arepsilon_{N,C}$
	40	1,29152733E + 00	1,29152736E + 00	1,75529E - 08
x = 0	100	1,29160693E + 00	1,29160705E + 00	8,71163E - 08
	300	1,29161914E + 00	1,29162029E + 00	8,90176E - 07
	40	9,23291577E - 01	9,23291595E - 01	1,96872E - 08
x = 0.5	100	9,23270251E - 01	9,23270277E - 01	2,74643E - 08
	300	9,23266878E - 01	9,23266975E - 01	1,05077E - 07
	40	6,05927896E - 01	6,05927902E - 01	9,03573E - 09
x = 1	100	6,05833511E - 01	6,05833459E - 01	8,63191E - 08
	300	6,05818492E - 01	6,05817762E - 01	1,20421E - 06

Tabela 4.2: Fluxos escalares via LTS_N Não Espectral com Spline Restrito e LTS_N Clássico - Anisotropia L=8

Posição	Quadratura	Não Espectral	Recursivo	$\varepsilon_{N,R}$
	100	1,22874877E + 00	1,22874883E + 00	5,04009E - 08
x = 0	200	1,22876716E + 00	1,22876741E + 00	1,98150E - 07
	300	1,22876957E + 00	1,22877015E + 00	4,72554E - 07
	100	9,20236002E - 01	9,20236044E - 01	4,59523E - 08
x = 0.5	200	9,20232440E - 01	9,20232556E - 01	1,26015E - 07
	300	9,20231739E - 01	9,20231969E - 01	2,49161E - 07
	100	6,61465036E - 01	6,61465738E - 01	1,06169E - 06
x = 1	200	6,61445934E - 01	6,61449954E - 01	6,07659E - 06
	300	6,61443044E - 01	6,61451930E - 01	1,34338E - 05

Tabela 4.3: Fluxos escalares vi
a LTS_N Não Espectral e LTS_N Recursivo com Spline Restrito - Anisotropia L=82

Posição	Quadratura	Não Espectral	Clássico	$\varepsilon_{N,C}$
	100	1,22874877E + 00	1,22874893E + 00	1,28285E - 07
x = 0	200	1,22876716E + 00	1,22876792E + 00	6,15478E - 07
	300	1,22876957E + 00	1,22877137E + 00	1,46875E - 06
	100	9.20236002E - 01	9.20236033E - 01	3.42706E - 08
x = 0.5	200	9,20232440E - 01	9,20232504E - 01	6,99421E - 08
	300	9,20231739E - 01	9,20231862E - 01	1,33766E - 07
	100	6 61465026 E 01	6 61464064 E 01	1.09469E 07
	100	0,01405050E = 01	0,01404904E = 01	1,00400E = 07
x = 1	200	6,61445934E - 01	6,61445488E - 01	6,75486E - 07
	300	6,61443044E - 01	6,61441943E - 01	1,66492E - 06

Tabela 4.4: Fluxos escalares via LTS_N Não Espectral com Spline Restrito e LTS_N Clássico - Anisotropia L=82

Posição	Quadratura	Não Espectral	Recursivo	$arepsilon_{N,R}$
x = 0	300	1,19332898E + 00	1,19332899E + 00	1,48241E - 08
	400	1,19333150E + 00	1,19333169E + 00	1,59076E - 07
x = 0.5	300	9,17597846E-01	9,17597815E-01	3,33632E - 08
	400	9,17597539E - 01	9,17597468E - 01	7,72212E - 08
I				
x = 1	300	6,89687559E - 01	6,89719585E - 01	4,64359E - 05
	400	6,89685466E - 01	6,89742763E - 01	8,30771E - 05

Tabela 4.5: Fluxos escalares via LTS_N Não Espectral e LTS_N Recursivo com Spline Restrito - Anisotropia L=299

Posição	Quadratura	Não Espectral	Clássico	$arepsilon_{N,C}$
x = 0	300	1,19332898E + 00	1,19333229E + 00	2,77424E - 06
	400	1,19333150E + 00	1,19333804E + 00	5,48120E - 06
x = 0.5	300	9,17597846E - 01	9,17597949E - 01	1,12648E - 07
	400	9,17597539E - 01	9,17597706E-01	1,82675E - 07
x = 1	300	6,89687559E - 01	6,89685604E - 01	2,83392E - 06
	400	6,89685466E - 01	6,89681561E - 01	5,66077E - 06

Tabela 4.6: Fluxos escalares via LTS_N Não Espectral com Spline Restrito e LTS_N Clássico - Anisotropia L=299

Ao analisarmos os resultados apresentados nas tabalas acima, verificamos que foi possível reconstruir a solução via método LTS_N Não Espectral. O erro de aproximação relativo entre os fluxos escalares calculados via método LTS_N Não Espectral e LTS_N Recursivo ($\varepsilon_{N,R}$) obtiveram uma variação com a ordem de grandeza entre 10^{-5} e 10^{-8} . Já o erro de aproximação relativo entre os métodos LTS_N Não Espectral e LTS_N Clássico ($\varepsilon_{N,C}$) varia entre 10^{-6} e 10^{-9} . O número de recursões necessárias para a convergência de $\phi_N(x)$ para o grau de anisotropia L = 8, foi de 28 a 30 recursões, para anisotropia L = 82 foram necessárias entre 32 e 33 recursões, e para fluxos utilizando anisotropia L = 299foram necessárias entre 35 e 36 recursões. Esses dados foram obtidos considerando como critério de parada uma tolerância de 10^{-8} .

A fim de analisarmos o comportamento da solução via método LTS_N Não Espectral, apresentamos os gráficos dos fluxos escalares obtidos. O comportamento dessas soluções foram comparados com a solução obtida a partir do método LTS_N Clássico. Os gráficos ilustram o comportamento das primeiras recursões e da última recursão via método LTS_N Não Espectral. Assim como o comportamento da solução via método LTS_N Clássico.

Inicialmente, exibimos o gráfico das soluções dos métodos considerando ordem de quadratura N = 40 e grau de anisotropia L = 8.

Figura 4.1: Fluxos escalares para N=40 e anisotropia L=8

Apresentamos, também, o gráfico que demonstra o comportamento das soluções do problema que considera ordem de quadratura N = 100 e grau de anisotropia L = 82.

Figura 4.2: Fluxos escalares para N=100 e anisotropia L=82

E, por fim, apresentamos o gráfico considerando N = 300 e L = 299.

Figura 4.3: Fluxos escalares para N=300 e anisotropia L=299

Observamos nos gráficos que a solução LTS_N Não Espectral, a cada recursão, se aproxima da solução obtida a partir do método LTS_N Clássico. Isso se deve ao fato de que as características do problema original são inseridas a cada recursão, o que fica visivelmente claro observando o comportamento das primeiras recursões. Assim, o erro de aproximação entre as soluções calculadas via método LTS_N Clássico e a solução calculada a partir do método LTS_N Não Espectral fica menor do que 10^{-5} , o que inviabiliza uma análise visual.

4.2 Problemas Heterogêneos

Nesta seção, apresentamos os resultados a partir da implementação do método LTS_N Não Espectral para o problemas heterogêneos, considerando o domínio dividido em duas regiões homogêneas. Os fluxos escalares de partículas calculados pelo método LTS_N Não Espectral são comparados com os fluxos obtidos via método LTS_N Recursivo e LTS_N Clássico.

Nos problemas a seguir, assumimos

- uma placa de tamanho $x_0 = 2 \, cm$,
- seção de choque de espalhamento da região 1 $\sigma_{s1} = 0.5 \, cm^{-1}$,
- seção de choque de espalhamento da região 2 $\sigma_{s2} = 0.9 \, cm^{-1}$,
- seção de choque total $\sigma_t = 1 \, cm^{-1}$,
- com condições de contorno:

$$\Psi(0) = 10 \quad \text{para} \quad \mu > 0$$

 $\Psi(x_0) = 0 \quad \text{para} \quad \mu < 0.$

A Tabela (4.7) apresenta os fluxos escalares de partículas considerando ordem de quadratura N = 40 e grau de anisotropia para região 1 $L_1 = 0$ e $L_2 = 8$ para região 2.

Posição	Não Espectral	Recursivo	Clássico	$\varepsilon_{N,R}$	$arepsilon_{N,C}$
x = 0	1,17082E+01	1,17086E + 01	1,17086E+01	3,63E - 05	3,65E - 05
x = 0.2	7,98062E+00	7,98190E + 00	7,98190E + 00	1,61E - 04	1,61E - 04
x = 0.9	3,31509E + 00	3,31975E + 00	3,31976E + 00	1,41E - 03	1,41E - 03
x = 1	3,03260E+00	3,04357E + 00	3,04360E + 00	3,62E - 03	3,63E - 03
x = 1.1	2,99823E + 00	3,02068E + 00	3,02071E + 00	7,49E-03	7,50E - 03
x = 1.8	2,16982E+00	2,18039E + 00	2,18043E + 00	4,87E - 03	4,89E - 03
x = 2	1,78054E+00	1,78452E + 00	1,78465E + 00	2,24E-03	2,31E - 03

Tabela 4.7: Fluxos escalares considerando $N = 40, L_1 = 0$ e $L_2 = 8$

Na Tabela 4.8, apresentamos os fluxos considerando ordem de quadratura N = 100 e grau de anisotropia $L_1 = 82$ para região 1 e $L_2 = 8$ para região 2.

Posição	Não Espectral	Recursivo	Clássico	$\varepsilon_{N,R}$	$\varepsilon_{N,C}$
x = 0	1,07742E + 01	1,07757E + 01	1,07757E + 01	1,41E - 04	1,41E - 04
x = 0.2	7,64542E + 00	7,64507E + 00	7,64508E + 00	4,58E - 05	4,43E - 05
x = 0.9	4,01229E+00	4,02613E + 00	4,02616E + 00	4,58E - 05	3,46E - 03
x = 1	3,87926E + 00	3,90329E + 00	3,90332E + 00	6,19E-03	6,20E - 03
x = 1.1	3,89073E + 00	3,91366E + 00	3,91369E + 00	5,89E - 03	5,90E - 03
x = 1.8	2,83668E + 00	2,84542E + 00	2,84548E + 00	3,08E - 03	3,10E - 03
x = 2	2,32508E + 00	2,32853E + 00	2,32861E + 00	1,49E - 03	1,52E - 03

Tabela 4.8: Fluxos escalares considerando $N=100,\,L_1=82$
e $L_2=8$

No próximo problema, consideramos

- uma placa de tamanho $x_0 = 0.5 \, cm$,
- sessão de choque de espalhamento da região 1 $\sigma_{s1} = 0.5 \, cm^{-1}$,
- sessão de choque de espalhamento da região 2 $\sigma_{s2} = 0.9 \, cm^{-1}$,
- sessão de choque total $\sigma_t = 1 \, cm^{-1}$,
- grau de anisotropia da região 1 $L_1 = 0$,
- grau de anisotropia da região 2 $L_1 = 82$,
- com condições de contorno:

$\Psi(0)$	=	1	para	$\mu > 0$
$\Psi(x_0)$	=	0	para	$\mu < 0.$

Assim, os resultados para os fluxos escalares são dados por:

Posição	Não Espectral	Recursivo	Clássico	$\varepsilon_{N,R}$	$arepsilon_{N,C}$
x = 0	1,12491E+00	1,12493E + 00	1,12493E + 00	1,56E-05	1,57E - 05
x = 0.05	9,79870E - 01	9,80193E - 01	9,80193E - 01	3,30E-04	3,30E - 04
x = 0.225	7,02187E - 01	7,02239E - 01	7,02239E - 01	7,35E-05	7,40E-05
x = 0.25	6,74721E - 01	6,75101E - 01	6,75101E - 01	5,62E - 04	5,63E - 04
x = 0.275	6,67849E - 01	6,69590E - 01	6,69590E - 01	2,61E-03	2,61E - 03
x = 0.45	5,94232E - 01	5,95525E - 01	5,95526E - 01	2,18E-03	2,18E - 03
x = 0.5	5,61365E - 01	5,61534E - 01	5,61536E - 01	3,01E-04	3,04E - 04

Tabela 4.9: Fluxos escalares considerando N = 100, L = 0 e $L_2 = 82$

Após analisarmos as tabelas para os problemas heterogêneos, inferimos que a solução foi reconstruída pelo método LTS_N Não Espectral. O erro de aproximação relativo obtido ficou entre 10^{-5} e 10^{-3} . Na figura 4.4, apresentamos o gráfico que mostra o comportamento das recursões do problema que considera ordem de quadratura N = 100 e grau de anisotropia da região 1 $L_1 = 0$ e da região 2 $L_2 = 82$.

Aqui, cabe salientar que a implementação do método LTS_N Não Espectral para meios heterogêneos foi facilmente obtida a partir de pequena modificação na rotina principal do código criado para problemas homogêneos. Ver Apêndice.

5 CONCLUSÕES

O presente trabalho apresentou uma nova proposta de um método de solução não espectral para o problem
a ${\cal S}_N$ de transporte de partículas para o caso unidimensional em geometria cartesiana. Para isto, as equações S_N foram escritas em forma matricial e a matriz A associada a esta equação diferencial matricial de primeira ordem foi decomposta como $A = \mathcal{D} + \mathcal{A}_{\mathcal{C}}$, onde \mathcal{D} é a matriz com os termos da diagonal da matriz A e $\mathcal{A}_{\mathcal{C}}$ a matriz com os demais termos. Com este procedimento foi gerado um esquema recursivo de sistemas, sendo que o primeiro é um problema sem fonte e com as condições iniciais do problema original e os restantes são problemas com fonte determinada pela solução do problema anterior mais a informação obtida da matriz S_N que estava fora de sua diagonal principal e com condições de contorno homogêneas. Devemos observar que com este procedimento cada um dos sistemas do esquema recursivo pode ser desacoplado em N equações diferenciais de ordem 1, ainda que com a aplicação das condições de contorno, o problema de *over*flow que surge no método LTS_N Clássico fica naturalmente resolvido, e finalmente que a partir do segundo sistema a solução fica restrita apenas ao termo da integral de convolução pois as condições de contorno homogêneas. Também foram apresentados resultados numéricos para problemas de uma e duas regiões, mostrando a funcionalidade do método aqui desenvolvido. Outro ponto importante que deve ser ressaltado é que a única modificação feita na parte computacional para uma ou para mais regiões é a definição do termo de fonte.

Enfatizamos que este método ainda necessita de aperfeiçoamentos na parte de aproximação da solução do sistema anterior, que é necessária para o cálculo do termo da integral de convolução feita no termo anterior. Neste trabalho foi usada as rotinas "splint" e "spline" fornecidas no livro *Numerical Recipes in FORTRAN* 77 [43]. Para conseguirmos boa aproximação com estas rotinas precisamos de muitos pontos de pline, em uma placa pequena, fato que faz nosso tempo computacional ficar bem elevado. Desta forma, em trabalhos futuros iremos focar nossa atenção na forma de aproximação usada no termo integral de convolução. Assim como na análise de convergência do método LTS_N Não Espectral.

Referências Bibliográficas

- [1] S. Chandrasekhar. *Radiative Transfer*. Dover books on advanced mathematics. Dover Publications, 1960.
- [2] M.T. Vilhena and L.B. Barichello. The LTS_N method: a new analytical approach to solve the neutron transport equation. *Kerntechnik*, 56(5):334–336, 1991.
- [3] J.D. Brancher, A.V. Cardona, and M.T. Vilhena. A recursive method to invert the LTS_N matrix. *Progress in nuclear energy*, 33(4):393–401, 1998.
- [4] E.E. Streck. Solução analítica para a aproximação P_N da equação de transporte linear unidimensional. Tese de doutorado pelo programa de pósgraduação em engenharia mecânica (PROMEC), Universidade Federal do Rio Grande do Sul, 1993.
- [5] M.T. Vilhena and E.E. Streck. An approximated analytical solution for the one-group slab-geometry neutron transport equation. *Kerntechnik*, 57(3):196, 1992.
- [6] C. Segatto, M.T.Vilhena, and T.T Gonçalves. Extension of the LTS_N formulation for discrete ordinates problem without azimutal symmetry. Annals of Nnuclear Energy, 21:701–710, 1994.
- [7] C.F. Segatto, M.T. Vilhena, and J.D. Brancher. The one-dimensional LTS_N formulation for high degree of anisotropy. *Journal of quantitative spectros-copy and radiative transfer*, 61(1):39–43, 1999.
- [8] J.D. Brancher, M.T. Vilhena, and C.F. Segatto. The LTS_N solution for radiative transfer problem without azimuthal symmetry with severe anisotropy. Journal of Quantitative Spectroscopy and Radiative Transfer, 62:743–753, 1999.

- [9] C.F. Segatto, M.T. Vilhena, and M.G. Gomes. The one-dimensional LTS_N solution in a slab with high degree of quadrature. Annals of Nuclear Energy, 26:925–934, 1999.
- [10] G.A. Gonçalves, C. F. Segatto, and M. T. Vilhena. The LTS_N particular solution in a slab for an arbitrary source and large order of quadrature. *Journal of Quantitative Spectroscopy and Radiative Transfer*, 66:271–276, 2000.
- M.T. Vilhena and L.B. Barichello. A general apprach to the one-group one dimensional transport equation. *Kerntechnik*, 33(58):182–184, 1993.
- [13] C. F. Segatto, M. T. Vilhena, and L. S. Tavares. The determination of radiant parameters by the LTS_N method. Journal of Quantitative Spectroscopy and Radiative Transfer, 70:227–236, 2001.
- [14] M. Vilhena and L. Barichello. An analytical solution for the multigroup slab geometry discrete ordinates problems. *Transport Theory and Statisti*cal Physics, 24:1337–1352, 1995.
- [15] F.K. Tomaschewski, C.F. Segatto, and M.T. Vilhena. Integral Methods in Science and Engineering: Progress in Numerical and Analytic Techniques, chapter A Genuine Analytical Solution for the S_NMulti-Group Neutron Equation in Planar Geometry, pages 329–339. Springer New York, 2013.
- [16] R. Vasques. A review of particle transport theory in a binary stochastic medium. Dissertação de mestrado pelo programa de pós-graduação em
engenharia mecânica (PROMEC), Universidade Federal do Rio Grande do Sul, 2005.

- [17] C. Batistela and M. Vilhena. Cálculo de criticalidade pelo método LTS_N.
 XI ENFIR Encontro Nacional de Física de Reatores e Termo-hidráulica, 1:226–231, 1997.
- [18] C. Batistela and M. Vilhena. Criticality by the LTS_N method. Journal of Nuclear Science and Tecnology, 34:603–606, 1997.
- [19] C. Batistela, M. Vilhena, and V. Borges. Determination of the effective multiplication factos in a slab by the LTS_N method. Annals of Nuclear Science, 26:761–766, 1999.
- [20] G. Orengo, M.T. Vilhena, C.O. Graça, A.D. Caldeira, and G.A. Gonçalves. Recent advances in the LTS_N method for criticality calculations in slab geometry. Annals of Nuclear Energy, 31:2195–2202, 2004.
- [21] F. Tomaschewski. Solução da equação S_Nmultigrupo de transporte dependente do tempo em meio heterogêneo. Dissertação de mestradopelo programa de pós-graduação em matemática aplicada (PPGMAp), Universidade Federal do Rio Grande do Sul, 2012.
- [22] R.M.F. Vargas, C.F. Segatto, and M.T. Vilhena. Solution of the radiative heat transfer equation with internal energy sources in a slab by the LTS_N method. Journal of Quantitative Spectroscopy and Radiative Transfer, 105:1–7, 2007.
- [23] C.F. Segatto, M.T. Vilhena, and T.T. Gonçalez. An analytical integral formulation for time-dependent sn transport equation in a slab by double laplace transform technique. *Kerntechnik*, 73, 2008.
- [24] J.V.P. Oliveira, A.V. Cardona, M.T. Vilhena, and R.C. Barros. A semianalytical numerical method for time-dependent radiative transfer pro-

blems in a slab geometry with coherent isotropic scattering. Journal of Quantitative Spectroscopy and Radiative Transfer, 73(1):55–62, 2002.

- [25] M.R. Retamoso, M.T. Vilhena, H.F.C Velho, and F.M. Ramos. Estimation of boundary condition in hydrologic optics. *Applied Numerical Mathema*tics, 40(1-2):87–100, 2002.
- [26] G.A. Gonçalves, G. Orengo, M.T. Vilhena, and C.O. Graça. LTS_N solution of the adjoint neutron transport equation with arbitrary source for high order of quadrature in a homogeneous slab. Annals of Nuclear Energy, 29(5):561–569, 2002.
- [27] J.V.P. Oliveira, A.V. Cardona, and M.T. Vilhena. Solution of the onedimensional time-dependent discrete ordinates problem in a slab by the spectral and LTS_N methos. *Annals os nuclear energy*, 29(1):13–20, 2002.
- [28] M. R. Retamoso, M.T. Vilhena, H.F.C. Velho, and F.M Ramos. Estimation of boundary condition in hydrologic optics. *Applied Numerical Mathema*tics, 40(1-2):87–100, 2002.
- [29] H.F.C. Velho, M. R. Retamoso, and M.T. Vilhena. Inverse problems for estimating bottom boundary conditions of natural waters in engineering. *International Journal for Numerical Methods in Engineering*, 54(9):1357– 1368, 2002.
- [30] H.F.C. Velho, M.T. Vilhena, M. R. Retamoso, and R.P. Pazos. An application of the LTS_N method on an inverse problem in hydrological optics. *Progress in Nuclear Energy*, 42(4):457–468, 2003.
- [31] N. H. Bonemberger. Método LTS_N para *n* inteiro. Dissertação de mestrado pelo programa de pós-gradução em matemática aplicada (PPGMAp), Universidade Federal do Rio Grande do Sul, 2005.

- [32] D. Marona, C.F. Segatto, and M.T. Vilhena. On the LTS_N solution of the transport equation in a slab for c=1. International Nuclear Atlantic Conference (INAC), 2007.
- [33] M. T. Vilhena and R. P. Pazos. Convergence of the LTS_N method: Approach of c0 semi-groups. *Progress in Nuclear Energy*, 30:77–86, 1999.
- [34] M.T. Vilhena and R.P. Pazos. Convergence in transport theory. Applied Numerical Mathematics, 30:79–92, 1999.
- [35] K.M. Case. Elementary solution of transport equation and their applications. Annals of Physics, 9:1–23, 1960.
- [36] C.F. Segatto, M.T. Vilhena, and S. Leite. The LTS_N angular multigrid approach in a slab. Journal of Quantitative Spectroscopy and Radiative Transfer, 95:415–442, 2005.
- [37] M. Simch, C. Segatto, and M. Vilhena. An analytical solution for the S_Nradiative transfer equations with polarization in a slab by the LTS_N method. Journal of Quantitative Spectroscopy and Radiative Transfer, 97:424–435, 2006.
- [38] J. Zabadal, M.T. Vilhena, and L.B. Barichello. Solution of the threedimensional one group discrete ordinates problem by the LTS_N method. Annals of Nuclear Energy, 22:131–134, 1995.
- [39] J.C.L. Fernandes. Solução da equação de transporte multi-grupo de nêutrons nucleares com fontes pulsadas. Tese de doutorado pelo programa de pós-graduação em matemática aplicada (PPGMAp), Universidade Federal do Rio Grande do Sul, 2015.
- [40] T. Foletto. Construção da solução LTS_N anisotrópica a partir de um sistema recursivo de solução LTS_N isotrópicas. Dissertação de mestrado pelo

programa de pós-graduação em matemática aplicada (PPGMAp), Universidade Federal do Rio Grande do Sul, 2015.

- [41] C. Segatto. Extensão da Formulação LTS_N para Problemas de Transporte sem Simetria Azimutal e Problemas Dependentes do Tempo. Tese de doutorado pelo programa de pós-graduação em engenharia mecânica (promec), Universidade Federal do Rio Grande do Sul, 1995.
- [42] T. Foletto, C.F. Segatto, B.E. Bodmann, and M.T. Vilhena. On a hierarchical construction of the anisotropic LTS_N solution from the isotropic LTS_N solution. Anais do International Nuclear Atlantic Conference - INAC 2015, 2015.
- [43] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling. Numerical Recipes in FORTRAN 77: Volume 1, Volume 1 of Fortran Numerical Recipes: The Art of Scientific Computing. Number 2. Cambridge University Press, 1992.

APÊNDICE

Para implementação do método desenvolvido neste trabalho, criamos códigos em *Fortran95*, dois para meios homogêneos e dois para meios heterogêneos. Inicialmente criamos um baseado no código utilizado para a implementação do método LTS_N Recursivo, assim como um código em que utilizamos todas as vantagens do desacoplamento das equações, para então estendermos esses códigos para meios heterogêneos. As duas versões de código fornecem os mesmos resultados. Desta forma, apresentamos as rotinas principais de uma versão dos códigos desenvolvidos para a implementação do método desenvolvido nesta dissertação. Salientamos que o algoritmo que calcula a solução LTS_N Não Espectral para meios heterogêneos foi obtido a partir de pequenas mudanças na rotina principal deste algoritmo criado para meios homogêneos. A fim de ilustrar estas modificações, expomos estas rotinas desenvolvidas destacando as diferenças existentes entre estas rotinas.

naoespectral homogeneo.f95* X	1 nanecnettal helenonenen f95* X	
1 program nacespectral 2 implicit none	<pre>1 program multiregiao_naoespectral 2 implicit none</pre>	
4	4 INTEGER, PARAMETER	TND (1.0D0)
5 INTEGER, PARAMETER :: tipo=KIND (1.0D0)	5 REAL (KIND=1), parameter	. Dd0
6 REAL(KIND=1), parameter :: zero=0.0d0	6 INTEGER :: N, NR	
7 INTEGER :: N, GRAUANISOTROPIA	7 INTEGER	rvalos, i, contador, j, iteracoes, dimen
8 INTEGER :: N_intervalos, i, contador, j, iteracoes, dim	aen 8 double precision	cc0, cc1, fluxoescalar, to1, L, fluxoescalarn, time
9 double precision ::L,SS,ST,X,cc0,cc1,fluxoescalar,to1,	fluxoescalarn 9 double precision	uxoescalark, fluxoescalarl, fluxoescalarn2
10 double precision .: fluxoescalark, fluxoescalar1, fluxoes	scalarn2, time 10 integer, ALLOCATABLE, DIMENSION(:) :: GR	AUANISOTROPIA
11 double precision, ALLOCATABLE, DIMENSION(:) ::U, W, betal, D, abscissa, H, fluxo, v_aux	11 double precision, ALLOCATABLE, DIMENSION(:) ::33	, st, LL
12 double precision, ALLOCATABLE, DIMENSION(:) ::fluxozero, ordenada, ordenada_2, orden	ada_aux 12 double precision, ALLOCATABLE, DIMENSION(:) ::U,]	W, abscissa, H, fluxo, v_aux
13 double precision, ALLOCATABLE, DIMENSION(:) ::v, fluxoescalar_aux, derivada0, deriva	13 double precision, ALLOCATABLE, DIMENSION(:) ::f1	uxozero, ordenada, ordenada_2, ordenada_aux
14 double precision, ALLOCATABLE, DIMENSION (:,:) ::AC, somafluxoangular, Vm, vm_spline, hm	1, A, aux 14 double precision, ALLOCATABLE, DIMENSION(:) :: 1, V,)	fluxoescalar_aux, derivada0, derivadaL
15 double precision, ALLOCATABLE, DIMENSION (:, :) ::fluxoescalarit	15 double precision, ALLOCATABLE, DIMENSION(:,:) ::A,	AC, D
16 double precision, ALLOCATABLE, DIMENSION(:, ; ; ;) ::fluxoangularit	16 double precision, ALLOCATABLE, DIMENSION(:, :) ::au	XXO, auxxL, aaxL, auxO, auxL
17	17 double precision, ALLOCATABLE, DIMENSION(:,:) :: so	mafluxoangular,Vm,vm_spline,hm
18	18 double precision, ALLOCATABLE, DIMENSION(:,:) ::f1	uxoescalarit
19 cc0=1.0d+00	19 double precision, ALLOCATABLE, DIMENSION(:,:,:) ::f1	uxoangularit
20 ccI=0.0d+00	20 double precision, ALLOCATABLE, DIMENSION(:,,:,:) ::Ma	tA, MatAC, MatD
21 ss=.95d+00	21	
22 st=1.0d+00	22 cc0=10.0d+00	
23 I=1.0d+00	23 ccL=0.0d+00	
24 j=0	24 WRITE (*,*) 'ORDEM DA QUADRATURA'	
25 WRITE(*,*) 'ORDEM DA QUADRATURA'	25 READ(*,*) n	
26 READ(*,*) n	26 nr=2 !numero de regioes	
27 WRITE(*,*) 'GRAU DE ANISOTROPIA REGIAO 1'	27 n_intervalos=200 !numero de pontos no spline	
28 READ(*,*) GRAUANISOTROPIA	28 ITERACOES=100	
29 n_intervalos=100 !numero de pontos no Spline	29 dimen=50 !numero pontos da quadratura	
30 iteracoes=50	30 tol=1	
31 dimen=100 !numero pontos da quadratura	31 j=0	
32 tol=1	32	
m	33 OPEN(UNIT=30,FILE='SAIDA.TXT')	
34 OPEN (UNIT=30, FILE='SAIDA.TXT')	34	
35 write(30,*) ' N= ' ,n	35 write(30,*)'Ordem de Quadratura=',n	
36 write(30,*) ' GRAU DE ANISOTROPIA= ' , GRAUANISOTROPIA	36 write (30, *) 'Pontos do Spline=', n_intervalos	
37 write(30,*) ' PONTOS DO SPLINE ' , N_INTERVALOS	37 write (30, *) 'Spline Restrito'	
38 write(30,*) 'Spline Restrito'	0.0	
5 m	9 V	

Figura 5.1: Comparativo entre as rotinas principais - Homogêne
o \times Heterogêneo

naoespectral_homogeneo.f95* X	naoespectral_heterogeneo.f95* X
41	
42	40 14###################################
43 !####################################	41 allocate(U(N),W(N), abscissa(n_intervalos+1),H(N),fluxo(n),fluxozero(n))
55	42 allocate (ss (nr), st (nr), LL (nr), grauanisotropia (nr))
45 allocate (U (N), W (N), abscissa (n_intervalos+1), H (N), fluxo (n), fluxozero (n), aux (N, N))	43 allocate(A(n,n),AC(n,n),D(n,n),MatD(n,n,nr),MatA(n,n,nr),MatAC(n,n,nr))
46 allocate(BETAL(0:grauanisotropia))	44 allocate (somafluxoangular(n_intervalos+1,n), derivada0(n), derivadaL(n))
47 allocate (D(N), AC(N,N), somafluxoangular (n_intervalos+1,n), A(n, n))	45 allocate (aauxL(n,n), aux0(n,n), auxL(n,n), auxx0(n,n), auxxL(n,n))
48 allocate(derivada0(n), derivadaL(n))	<pre>46 allocate(fluxoangularit(0:iteracoes,n_intervalos+1,N))</pre>
<pre>49 allocate(fluxoangularit(0::iteracoes, n_intervalos+1, N))</pre>	<pre>47 allocate(fluxoescalarit(n_intervalos+1,0:iteracoes),fluxoescalar_aux(n))</pre>
50 allocate(fluxoescalarit(n_intervalos+1,0:iteracoes),fluxoescalar_aux(n))	48 allocate (V_aux (n_intervalos+1), Vm(n, n_intervalos+1), V(n_intervalos+1))
51 allocate (V aux (n intervalos+1), Vm(n, n intervalos+1), V(n intervalos+1))	49 allocate (vm spline (n intervalos+1, n), Hm(n, n intervalos+1))
52 allocate (vm spline (n intervalos+1, n), Hm(n, n intervalos+1))	50 allocate (ordenada (N), ordenada 2 (n intervalos+1), ordenada aux (n))
53 allocate (ordenada (N), ordenada 2 (n intervalos+1), ordenada aux (n))	51
4W	52 !###### ENTRADA DOS PARAMETROS ####################################
55	53 open(unit=55, file='parametros.txt', status='old')
0.0	54 do i=1, nr
57 !####### DADOS INICIAIS ###################################	55 read(55,*) ss(i), st(i), LL(i), grauanisotropia(i)
00	56 enddo
59 call galeq (n,-1.0d+00,1.0d+00,u,w)	57 L=LL (nr)
60	
61 call COEFBETA(GRAUANISOTROPIA, BETAL)	59 1######### DADOS INICIAIS ###################################
62	60 call galeg(n,-1.0d+00,1.0d+00,u,w)
63 call geraACD(n,grauanisotropia,betal,ss,st,u,w,AC,D,A)	61 do i=1, nr
4.0	62 call deraACD(n, grauanisotropia(i), ss(i), st(i), u, w, AC, D, A)
65	63 MatD(:,:,i)=D(:,:)
00	64 Math(:,:,i)=A(:,:)
67 !######### RECURSÃO ZERO ####################################	65 MatAC(:,:,i)=AC(:,:)
68	66 enddo
69 do i=1,n_intervalos+1	67
70	68 !######### RECURSÃO ZERO ####################################
71 abscissa(i) = x	69 do i=1, n_intervalos+1
72 call itzero(n,x,D,CCO,CCL,L,fluxozero)	70 x=real(i-1,2)*LL(nr)/real(N_intervalos,2)
73 somafluxoangular(i,:)=fluxozero(:)	71 abscissa (i) = x
74 fluxoangularit(0,i,:)=somafluxoangular(i,:)	72 call itzero(n,x,MatD(:,:,1),CC0,CCL,L,fluxozero)
75 call fluxo_escalar(n,fluxozero,w,fluxoescalark)	73 somafluxoangular(i,:)=fluxozero(:)
76 fluxoescalarit(i,0)=fluxoescalark	74 fluxoangularit(0, i, :)=somafluxoangular(i,:)
77 enddo	75 call fluxo_escalar(n,fluxozero,w,fluxoescalark)
78	76 fluxoescalarit(i,0)=fluxoescalark
79	77 enddo
20	

Figura 5.2: Comparativo entre as rotinas principais - Homogêne
o \times Heterogêneo

~naosenertral homoreneo.195* ×	naoespectral heterogeneo.195* X
	VOI 1444444444444444444 DEPUD DEFUTIOND DEFUTIOND 1 44444444444444444444444444444444444
0	C) НАНИКАТАНАТКАТАТА СТОЛИКАТА СТОЛИКАТАТАТАТАТАТАТАТАТАТАТАТАТАТАТАТАТАТАТ
5/	
0	<pre>BI derivadau(:)=macmut(auxu,riuxoangularit(u, 1, :))</pre>
81 !################# DERIVADA PARA RECURSÃO 1 ###################################	82 auxL-matmul((MatA(:,:,nr)-MatD(:,:,1)),MatA(:,:,1))
82 aux=matmul(AC,A)	83 derivadaL(:)=matmul(auxL,fluxoangularit(0,n_intervalos+1,:))
<pre>83 derivada0(:)=matmul(aux,fluxoangularit(0,1,:))</pre>	84
84 derivadaL(:)=matmul(aux,fluxoangularit(0,n intervalos+1,:))	25 1####################################
	86 do while (tol.gt.1.0d-8)
2011,1月11日日本市场市场市场市场市场市场,在市场市场市场市场市场市场市场市场市场市场市场市场市场	87 WRITE(30,*) 'CONTADOR', '
1 do unite(rol or 1 od_8)	200 (由来来来来来来来来来来来来。SPLINE 在非常考虑来来来来来来来来来来来来来来来来来来来来
	89 do i=1.n intervaloa+1
C VORTETNOO (COLUMNOO)	00 ordenada=fluxoranuniarit(i.i.:)
0.0 1 4444444444444444444 SDITNF 444444444	19 19
1) (j=1 n intervalorati	92 if (abscissa(i).le.(LL(nr/2)) then
0.0	93 ordenada aux=matmul((MatA)(,1)-MatD(,1)) ordenada) [8]
93 ordenada aux=matmul(ac.ordenada)	else <u> </u>
94 vm(:,i)=ordenada aux(:)	95 ordenada aux=matmul((MatA(:;,:,2)-MatD(:;,:,1)),ordenada) !R2
95 enddo	96 endif
96 11111	297
97 do i=1.n	98 vm(:,i)=ordenada aux(:)
98 v(;)*7m(i,;)	99 enddo
99 (call spline(abscissa.v.n intervalos+1.1.0d+31.1.0d+31.V aux) [Soline Natural	00 j=j+1
100 call spline(abscissa.v.n intervalos+1.derivada0(i).derivada1(i).V aux)'Spline Restrito	01 do i=1,n
101 vm spline(:,1)=v aux(:)	02 V(:)=Ym(i,:)
102 endo	03 !call spline(abscissa,v,n intervalos+1,1.0d+31,1.0d+31,V aux) !Spline Natural
103 1 ####################################	04 call spline (abscissa, v, n_intervalos+1, derivada0(i), derivadaL(i), V_aux) !Spline Restrito
104	05 vm_spline(:,i)=v_aux(:)
105 do I=1, N INTERVALOS+1	06 enddo
106 X=ABSCISSA(I)	02 1 444444444444444444444444444444444444
107 call convolucao(n,n_intervalos,dimen,abscissa,vm,vm_spline,d,x,L,H)	08
108 !write (30,*)'H',H	09 do I=1, N_INTERVALOS+1
109 Hm(:,i)=H(:)	10 X-ABSCISSA(I)
110 fluxoangularit(j,i,:)=hm(:,i)	11 call convolucao(n,n_intervalos,dimen,abscissa,vm,vm_spline,MatD(:,:,1),x, <u>L,</u> H)
<pre>111 somafluxoangular(i,:)=somafluxoangular(i,:)+H(:)</pre>	12 Hm (:, i) =H (:)
1112 call fluxo_escalar(n, somafluxoangular(i,:), w,fluxoescalar)	<pre>13 fluxoangularit(j,i,:)=hm(:,i)</pre>
<pre>113 fluxoescalarit(i,j)=fluxoescalar</pre>	14 somafluxoangular(i,:)=somafluxoangular(i,:)+H(:)
114 enddo	15 call fluxo_escalar(n, somafluxoangular(i,:), w, fluxoescalar)
115	16 fluxoescalarit(i,j)=fluxoescalar
	17 enddo
-	1999 (1997)

Figura 5.3: Comparativo entre as rotinas principais - Homogêne
o \times Heterogêneo

4 naoespectral_homogeneo.f95* ×	naoespectral_heterogeneo.f95* X
117	10 HALLANDAL POTTATA AND ACTORS OF ALLANDAL ALLANDAL
119	.13 :####################################
120 !####################################	<pre>21 derivada0(:)=matmul(auxx0,fluxoangularit(j,1,:))</pre>
<pre>121 derivada0(:)=matmul(aux,fluxoangularit(j,1,:))</pre>	.22 auxxL=matmul((MatA(:,:,nr)-MatD(:,:,1)),MatA(:,:,nr))
<pre>122 derivadaL(:)=matmul(aux,fluxoangularit(j,n_intervalos+1,:))</pre>	<pre>.23 derivadaL(:)=matmul(auxxL,fluxoangularit(j,n_intervalos+1,:))</pre>
124 TOL-DABS(fluxoescalar-fluxoescalark)	-53
125 fluxoescalark=fluxoescalar	26
126 enddo	.27 TOL-DABS (fluxoescalar-fluxoescalark)
127	.28 fluxoescalark=fluxoescalar
128 !####################################	- 29
129 call fluxo_escalar(n,somafluxoangular(1,:),w,fluxoescalar1) 130 write(30.*)"fluxoescalarit em 0=".fluxoescalar1	31 enddo 31
<pre>131 call fluxo escalar(n.somafluxoencular(n intervalos/2)+1).w.fluxoescalarn2)</pre>	
132 write(30,*) 'fluxoescalarit em 0.5=', fluxoescalarn2	.33 call fluxo escalar(n, somafluxoanqular(1,:),w,fluxoescalar1)
133 call fluxo_escalar(n, somafluxoangular(n_intervalos+1,:),w,fluxoescalarn)	.34 write(30,*)'fluxoescalarit em 0=',fluxoescalar1
134 write(30, *) 'fluxoescalarit em 1=',fluxoescalarn	.35 call fluxo_escalar(n, somafluxoangular((n_intervalos/2)+1,:),w,fluxoescalarn2)
135 i####################################	.36 write(30,*)'fluxoescalarit em 1=',fluxoescalarn2
136	.37 call fluxo_escalar(n, somafluxoangular(n_intervalos+1,:),w,fluxoescalarn)
137 CALL CPU_TIME (TIME) !contador de tempo	.38 write(30,*) 'fluxoescalarit em 2=',fluxoescalarn
138 write(30,*)'tempo (em segundos)=',time	.39] ###################################
139	40
140 end program	41 CALL CPU_TIME (TIME)
	.42 Write (30, *) 'tempo=',time
	43
	.44 end program

Figura 5.4: Comparativo entre as rotinas principais - Homogêne
o \times Heterogêneo