Thermochemical behavior of hydrogen in hafnium silicate films on Si
C. Driemeier, J. J. Chambers, L. Colombo, and I. J. R. Baumvol

Citation: Applied Physics Letters 89, 051921 (2006); doi: 10.1063/1.2335407
View online: http://dx.doi.org/10.1063/1.2335407
View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/89/5?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Angle-resolved photoelectron study on the structures of silicon nitride films and Si 3 N 4 / Si interfaces formed using nitrogen-hydrogen radicals

Temperature-dependent interfacial chemical bonding states and band alignment of Hf O x N y / Si O 2 / Si gate stacks

Temperature-dependent structural stability and optical properties of ultrathin Hf–Al–O films grown by facing-target reactive sputtering
J. Appl. Phys. 102, 094103 (2007); 10.1063/1.2802994

Effects of the oxygen precursor on the interface between (100)Si and Hf O 2 films grown by atomic layer deposition

Interaction of Hf O 2 / Si O 2 / Si structures with deuterium gas
Thermochemical behavior of hydrogen in hafnium silicate films on Si

C. Driemeier
Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 91501-970, Brazil

J. J. Chambers and L. Colombo
Silicon Technology Development, Texas Instruments Incorporated, Dallas, Texas 75243

I. J. R. Baumvol
CCET, Universidade de Caxias do Sul, Caxias do Sul, Rio Grande do Sul 95070-560, Brazil and Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 91501-970, Brazil

(Received 1 May 2006; accepted 21 June 2006; published online 4 August 2006)

HfSiO films on Si were sequentially annealed in vacuum, oxygen, hydrogen, or deuterium atmospheres followed by quantification of H and D by nuclear reaction analysis. The observed H(D) incorporation and desorption behaviors are discussed in terms of two H bonding states in the films. Si–H bonds are easier to break thermally and formation of these bonds can be suppressed by annealing in O2 to fully oxidize Si atoms. O–H bonds are harder to break thermally. However, hydrogen atmospheres ease desorption of H in O–H species. The results indicate possible paths to achieve low H content in HfSiO gate dielectrics. © 2006 American Institute of Physics.

[DOI: 10.1063/1.2335407]

Materials with high dielectric constants (high-k materials) are being intensively investigated in order to find a replacement for SiO2 as the gate dielectric material in Si-based metal-oxide-semiconductor field-effect transistors. (HfO2)1−x(SiO2)x mixed oxides, alternatively called hafnium silicates (HfSiO for short), arose as promising gate dielectric materials because HfSiO films deposited on Si holding high dielectric constants while keeping appropriate thermal stability can be achieved. In addition, the presence of hydrogen in gate dielectrics constitutes a key feature, since H is known to critically influence device properties. Hydrogen at the dielectric/Si interface is necessary to passivate electrically active interfacial Si dangling bonds. On the other hand, H in the bulk of gate dielectric films is a potential source of device instabilities and therefore this bulklike H content must be minimized. Since Hf-based gate dielectrics commonly have H contents much higher than those found in thermally grown SiO2, understanding the nature of H incorporation and bonding in HfSiO films as well as developing possible ways to minimize H content is critical for achieving high quality and reliable HfSiO gate dielectrics.

We report here on quantitative investigation of hydrogen incorporation, bonding, and thermal stability in HfSiO films on Si sequentially annealed in vacuum, oxygen, hydrogen, or deuterium atmospheres. Hafnium silicates were deposited on Si(001) by metal-organic chemical vapor deposition run at 650 °C using Hf[N(C2H5)2]4 and Si[N(CH3)2]4 precursors and O2 as oxygen source. HfSiO films 4, 6, 8, 10, and 50 nm thick were produced with 30%, 60%, or 80% SiO2 fraction. Channeled Rutherford backscattering spectrometry (not shown) failed to detect N residuals in the films, indicating N concentration below 5% (atomic). Samples were annealed in a Joule-effect heated furnace whose quartz tube was pumped down to a base pressure of 10−7 mbar. Each annealing was performed for 30 min, either in vacuum or in a specific static gaseous atmosphere. Employed atmospheres were 1 mbar of O2, 60 mbars of D2 (95% enriched in the 2H isotope), or 60 mbars of forming gas (H2:N2, 10% H2, so that H2 partial pressure is also 60 mbar). Vacuum and O2 annealings were performed at 800 °C, while forming gas and D2 annealings were performed at 500 °C. The use of D2 atmospheres is convenient because D2 chemically mimics H2 (forming gas) and also allows to distinguish atoms incorporated from the annealing atmosphere (D) from those previously existing in the films or incorporated from air (H).

Deuterium amounts incorporated into the 4, 6, 8, and 10 nm thick HfSiO films annealed in D2 were determined by nuclear reaction analysis employing 400 keV 3He+ beams to induce the D(3He, p)4He nuclear reaction. At this energy the cross section of the nuclear reaction is constant (within 3%) throughout the films such that reaction yields are proportional to the total D amounts in the films. A sensitivity of approximately 10¹² D cm⁻² is achieved. Figure 1(a) shows incorporated D as a function of film thickness for samples containing 30% SiO2. Incorporated D increases linearly with HfSiO film thickness, evidencing significant D incorporation in bulk regions of the films. This is in contrast to D incorporation in HfO2/Si structures, where D was seen incorpo-

FIG. 1. (a) D amounts vs film thickness for the 30% SiO2 HfSiO films after annealing in D2 either with or without preannealing in vacuum or O2. (b) Slopes derived by linear fitting of D amounts vs thickness data for the 30%, 60%, and 80% SiO2 films.
rated mainly in near-surface regions of the HfO2 films, as well as in contrast to SiO2/Si structures, where D incorporates mainly in the SiO2/Si interfacial region.12

The slopes derived from the linear fitting of the experimental data on D amounts versus HfSiO thickness, expressing the concentration of bulklike D (in units of at. cm−3), are shown in Fig. 1(b) for 30%, 60%, and 80% SiO2 films annealed in D2, either with or without preannealing in vacuum or O2. For samples annealed in D2, either with or without vacuum preannealing, one observes an increase of the concentration of bulklike D with decreasing SiO2 fraction. On vacuum preannealing, one observes an increase of the concentration of suboxidized Si with decreasing SiO2 fraction. Moreover, the 30% SiO2 silicate film shows a marked decrease in D incorporation when preannealing was performed prior to D2 exposure, the decrease being more pronounced when preannealing was performed in O2.

The effects of preannealing on film chemistry were accessed by analyzing 10 nm thick HfSiO films by x-ray photoelectron spectroscopy. Mg Kα x-ray source and 30° photoelectron takeoff angle (relative to sample normal) were employed. Figure 2(a) shows Hf 4f photoelectron regions of the as-deposited and O2-annealed 30% SiO2 films. One observes that the Hf 4f peaks do not shift after annealing in O2, indicating no change in the Hf oxidation state. On the other hand, the Si 2p signal shifts 0.3 eV towards higher binding energies after O2 annealing [Fig. 2(b)]. Oxidation of Si substrate cannot be responsible for this shift since the analyzed 10 nm films are thick enough to attenuate signal coming from the HfSiO/Si interface, as evidenced by the absence of Si substrate signal at 99.6 eV. The Si 2p signal shift evidences that a significant fraction of the Si atoms in the 30% SiO2 silicate film were in suboxidized states, which were converted into fully oxidized Si during O2 annealing.

We suggest that annealing in D2 forms Si–D bonds in the films and comparing with that from a polystyrene standard one derives total H amounts inside the 50 nm HfSiO films. By integrating signals corresponding to H inside the films and comparing with that from a polystyrene standard we employed the elastic12C nuclear reaction15 and compared with a SiC wafer standard to quantify C in the HfSiO films. By analyzing the alpha spectra one could separate signal from C at sample surface (due to air exposure) from C inside the 50 nm films [Fig. 3(b)]. C amounts inside the as-deposited HfSiO/Si structures are at or below 1015 cm−2, which is at least 20 times lower than the determined H amounts even when uncertainties in H and C amounts are taken into account. This implies C–H bond breaking during deposition and formation of new bonds between H and the other elements present in the films. Hf–H and Si–H bonds are both related to a local oxygen deficiency, since these bonds are replacing, respectively, Hf–O and Si–O bonds which are the only expected bonds in a stoichiometric, defect-free hafnium silicate. Therefore, both Hf–H and Si–H bonds tend to be removed by O2 annealing. Since, differently from Si, we could never detect O2-induced changes in Hf oxidation state (Fig. 2), we suggest that Hf–H bonds are a minor contribution to the H content in the HfSiO films.

In order to investigate whether part of the H inside the films could be in the form of C–H bonds remaining from deposition precursors, we employed the elastic12C(α, α)12C nuclear reaction and compared with a SiC wafer standard to quantify C in the HfSiO films. By analyzing the alpha spectra one could separate signal from C at sample surface (due to air exposure) from C inside the 50 nm films [Fig. 3(b)]. C amounts inside the as-deposited HfSiO/Si structures are at or below 1015 cm−2, which is at least 20 times lower than the determined H amounts even when uncertainties in H and C amounts are taken into account. This implies C–H bond breaking during deposition and formation of new bonds between H and the other elements present in the films. Hf–H and Si–H bonds are both related to a local oxygen deficiency, since these bonds are replacing, respectively, Hf–O and Si–O bonds which are the only expected bonds in a stoichiometric, defect-free hafnium silicate. Therefore, both Hf–H and Si–H bonds tend to be removed by O2 annealing. Since, differently from Si, we could never detect O2-induced changes in Hf oxidation state (Fig. 2), we suggest that Hf–H bonds are a minor contribution to the H content in the HfSiO films.

Hydrogen depth profiling in the 50 nm thick HfSiO films was accomplished using the 1H(15N, αγ)12C nuclear reaction near the resonance at 6.385 MeV.14 By progressively increasing the 15N beam energy above the resonance energy the presence of H is sampled at progressively deeper layers in the films. Resulting excitation curves [Fig. 3(a)] show a surface peak at the resonance energy, corresponding to H at sample surface due to exposure to air, whereas signals at higher energies correspond to H inside the 50 nm HfSiO films. By integrating signals corresponding to H inside the films and comparing with that from a polystyrene standard one derives total H amounts inside the 50 nm HfSiO films to be (30, 28, and 44) × 1015 H cm−2 for the 30%, 60%, and 80% SiO2 films, respectively. These H amounts correspond to average H concentrations of (6.0, 5.8, and 8.8) × 1017 cm−3, respectively.

In order to investigate whether part of the H inside the films could be in the form of C–H bonds remaining from deposition precursors, we employed the elastic12C(α, α)12C nuclear reaction and compared with a SiC wafer standard to quantify C in the HfSiO films. By analyzing the alpha spectra one could separate signal from C at sample surface (due to air exposure) from C inside the 50 nm films [Fig. 3(b)]. C amounts inside the as-deposited HfSiO/Si structures are at or below 1015 cm−2, which is at least 20 times lower than the determined H amounts even when uncertainties in H and C amounts are taken into account. This implies C–H bond breaking during deposition and formation of new bonds between H and the other elements present in the films. Hf–H and Si–H bonds are both related to a local oxygen deficiency, since these bonds are replacing, respectively, Hf–O and Si–O bonds which are the only expected bonds in a stoichiometric, defect-free hafnium silicate. Therefore, both Hf–H and Si–H bonds tend to be removed by O2 annealing. Since, differently from Si, we could never detect O2-induced changes in Hf oxidation state (Fig. 2), we suggest that Hf–H bonds are a minor contribution to the H content in the HfSiO films.
one also observes H loss by annealing in H\textsubscript{2}. It is interesting to note that H desorbed by annealing in H\textsubscript{2} at 500 °C could not be previously desorbed in vacuum or O\textsubscript{2} at 800 °C, indicating that the H\textsubscript{2} atmosphere eases the desorption process. We suggest that this H desorbed with the help of the H\textsubscript{2} atmosphere is in the form of O–H groups. This assignment is consistent with the observed resistance for thermal desorption (in vacuum) of H in the form of O–H groups inside SiO\textsubscript{2}. Moreover, differently from Si–H bonds which are related to a local O deficiency, O–H bonds are related to a local Si or Hf deficiency, or, alternatively, O excess. This reasoning relating O–H bonding to local O excess helps in understanding the observed role of the reducing H\textsubscript{2} atmosphere on H desorption. We speculate that the desorption reaction taking place is H\textsubscript{2} + 2OH → 2H\textsubscript{2}O. The H\textsubscript{2}O products desorb, resulting in no remaining H in sites where there was an O–H group.

In summary, the H content in hafnium silicate films on Si was investigated by nuclear reaction analysis as a function of the postdeposition annealing to which the HfSiO films were exposed to. Based on the response of the H content to the annealing atmospheres we described two different H bonding states with different thermal behaviors. Si–H bonds form on suboxidized Si atoms and H in these bonds can be desorbed by an 800 °C, 30 min anneal. These H binding sites are eliminated after fully oxidation of Si atoms by annealing in O\textsubscript{2}, leading to lower H incorporation after O\textsubscript{2} preannealing. On the other hand, H in O–H bonds are more resistant to thermal desorption, probably reflecting stronger bonding. Nevertheless, by employing a H\textsubscript{2} atmosphere, desorption of H in O–H groups is eased. These results indicate that by appropriately managing postdeposition annealing atmospheres HfSiO films with low H content can be achieved.

![FIG. 4. Excitation curves of the 3H(1N, a)7C nuclear reaction for as-deposited (solid lines) and annealed 50 nm HfSiO films. Annealing was performed in vacuum (squares) or O\textsubscript{2} (circles) either followed by H\textsubscript{2} annealing (solid symbols) or not (empty symbols). The horizontal scale is chosen so as to show only signal coming from H inside the HfSiO films.](image-url)