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Abstract

The three-dimensional noncommutative supersymmetric QED is investigated within the superfield approach. We prove the
absence of UV/IR mixing in the theory at any loop order and demonstrate its one-loop finiteness.
0 2003 Published by Elsevier B.V. Open access under CC BY license,

During last years noncommutative gauge theories have been intensively studied. The interest in this subject
has deep motivations coming mainly from string theory [1] (for a review see [2,3]). Different aspects of
noncommutative gauge theories were discussed in [4-11].

One of the most remarkable properties of honcommutative theories consists of an unusual structure of
divergences, the so-called UV/IR mixing, that could lead to the appearance of infrared divergences [4,12]. It
should be noticed that the cancellation of quadratic and linear ultraviolet divergences in commutative theories
does not guarantee the absence of harmful infrared divergences in their noncommutative counterparts [13-16]. The
elimination of such divergences is crucial since they may obstruct the development of a sound renormalization
scheme, leading to the breakdown of the perturbative series.

Based on experience, it is natural to expect that supersymmetry could improve this situation [4,17]. In fact,
the Wess—Zumino model [14] and the three-dimensional sigma-model [18] are renormalizable at all loop orders.
This is furtherly supported by the results of [19] according to which the one-loop effective actighdHr, 2
super-Yang—Mills theory contains only logarithmic divergences while\for 4 the theory is one-loop finite [19,

20].
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In this Letter we employ the covariant superfield formalism to study noncommutative supersymmetgc QED
We will prove that this theory is free of nonintegrable UV/IR divergences at any loop order. We shall also
demonstrate that the model is one-loop finite.

The action of the three-dimensionsl= 1 noncommutative supersymmetric QED is [21]

= ng dSZ W s Wy, (1)
where
1 o i a 1 o
Ws = SD“DpAq — 5[A% DuAp] = 5[A% (Au, Ap}] @

is a superfield strength constructed from the spinor superpotentiatereafter it is implicitly assumed that all
commutators and anticommutators are Moyal ones. In this work we consider only space—space noncommutativity,
to evade unitarity problems [22]. This action is invariant under the gauge transformations

8Ay=DuK —i[Aqg, K]. 3)
Then, we must add a gauge fixing term which we choose to be
1 5 o 2(nB
SGF=—4€—g2 d°z (D% As) D(DF Ag), 4)
leading to the quadratic action
1 1 1 1 1
So=— [ d®2| Z(1+ = )A%0A, — = 1— 2 )A%id,D2A% |. 5
2= 282 Z[2<+s) e 2( s) et } ©
The free gauge propagator is
ig? 1 1 5.5
(A% (@ AP (22)) = —- [C“ﬁa@ +1 - 53¢ —Dis”p ]8 (z1—22), (6)

whereC® = —Cyg is the second-rank antisymmetric symbol defined with the normalizatién= i. The most
convenient choice for the gauge fixing parameteris 1, the Feynman gauge, in which the propagator collapses
to

1
(A%(z) AP (z2)) = igzcaﬁESS(m —22). (7)
The interaction part of the classical action in the pure gauge sector is

1 ] 1
Sint = ?/dSZ [—%DVDD(AV * [Aﬁ’ DﬁAa] - 1—2DVDO‘A)/ * [Aﬂ, {Ag, Aa}]

— %[AV, D, A%] % [A?, DpAL] + %Z[AV, D, A%] % [AP, {Ag, A}]
+7i2[AV,{AV,A“}]*[Aﬂ,{Aﬂ,Aa}]}. (8)
The action of the associated Faddeev—Popov ghosts reads
Sep= Tsl’z d°z (¢'D* Dyc +ic' % D*[Aqg, c), 9)

implying in the propagator

D2
(¢'zp)e(z2)) = —igZESS(Zl —z22). (10)
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Fig. 1. Superficially linearly divergent diagrams contributing to the two-point function of the gauge field.

We assume that the ghosts are in the adjoint representation. The total action is, then, given by

Stotal= S + ScF + Sep. (11)

To study the divergence structure of the model we shall start by determining the superficial degree of divergence
w associated to a generic supergraph. Explicilyeceives contributions from the propagators and implicitly from
the supercovariant derivatives. This last dependence can be unveiled by the use of the conversion rule

Dy Dp = idyp — CopD? (12)

and the identity D?)2 = 0. Each loop contributes two power of momentum. To see how this come about, notice
that each integration ovei’k is decreased by one power of momentum when contracting the corresponding loop
into a point. It can be seen thatVi§, V>, V1, andVjy are, respectively, the numbermfiregauge vertices with three,

two, one and none spinor derivatives, then, they altogether will contrgM;ek Vo + %Vl to w. Furthermorey,
gauge-ghost vertices will increaseby %Vc. Each gauge propagator (let their numbertg lowersw by two,

each ghost propagator (let their numberiglowersw by one. Moving a supercovariant derivative to an external
field decreases by % (let Np be the number of spinor derivatives moved to the external fields). Putting everything
together we may conclude thatis given by

3 1 1
w=2L+§V3+Vz+ E(V1+ VC)—ZPA—PC—END. (13)

The number of the ghost vertices is equal to the number of the ghost propadatetsy., since the ghost
propagators only form closed loops. Thus, after using the topological iddntity/ — P =1 with P = P4 + P,
andV =V, + Vo + V1 + V> + V3, we obtain

a)=2—:—2LVC—2V0—ng—Vz—:—ZLV:g—:—ZLND. (24)
This power counting relationship characterizes noncommutative supersymmetrig @c@n UV super-
renormalizable theory. It is easy to realize that linear divergences may come only from the graphs wifh
or Vo =1, or V. = 2. These graphs are depicted in Fig. 1, they contribute to the two-point functiotfs fiéld.
In these graphs, a crossed line corresponds to a fégtacting on the ghost propagator. A trigonometric factor
e lINE = i sin(k A1) originates from each commutator. By denoting the contributions of the graphs in Fig. 1
by I1a, I1p, and/yg, respectlvely, we have

1 o0 d3k sirt(k A p) N,
(2 )3 @ /(277)3 k2(p — k)?

1 1
x [—DVD“ (Cw/i - kw/g DZ) DY D" 512

I1a= AP(=p,61)AP (p,62)

k2 k4
§+1 £-1
(P = Koo k)4DZ)D,3/512

E+1 £§-1 5,
+DVD“<C), —z +kyo A ~——D* | Dgé12

x Dg (Ca

x Dg (Cay 5]; 1 + P =Koy %D2> DY D 312] S, (15a)
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1 dp d3k sirf(k A p)
hp= = 1 d<o —_—
1b 3($+ )/(Zn)g 1/(2;1)3 2
x [AP(=p,61)Ap(p,01)Cya DY D*812), _y — AP(=p,01) Aa(p, 61)Cyp DY D*S12|,, _, |

1 dd3p d3k sirf(k A p)
+ (s—1>/( I

d3p d3k sirf(k A p)
-6+ D) [ St [ S S A (o) AP (. 008D Dy

01=0>

—+ -,

d3 a3k sirf(k A
-1 / P_ 2, / KNP 4y (—p.01) AP (p, 0K D1 D Dg2812
(2 01=0
(15b)

2n)3 k2

3 3, i
Iio= % / (Czlni; . 420,42, / %%Aa(— .01 Ag(p. 62) D% D2812D2 DL 511 (15¢)
Where not otherwise indicated it must be understood that the supercovariant derivatives act on the Grassmann
variabledy, alsod1o = §2(61 — 62). In the expressions for thA's the terms where covariant derivatives act on
external fields were omitted because they do not produce linear divergences and UV/IR mixing (as we shall shortly
verify, such terms give only finite contributions). In the formulae above they are indicated by the ellipsis. After
some D-algebra transformations we arrive at

1 [ d% , 43k sif(kAp) 4
[15‘__55/ 239 G e AP AP O (16a)
1 d3p d3k sirt(k A p)
=50 +8 [ S Esdn [ S5 S A 6 Agp 60 + -, (16b)
1 48 d%k sirt(k
Ie=— P2 wAﬁ(_p,gl)Aﬁ(p,ng.... (16¢)

2] @03 ) 23 k2

Hence, the total one-loop two-point function of the gauge superfield, give byl14+ I1p + 1, is free from

both UV and UV/IR infrared singularities. The same situation takes place in the four-dimensional noncommutative
supersymmetric QED [15,16]. It is also easy to show that the logarithmically divergent pdits 6f, and I1c,

which involve derivatives of the gauge fields, turn out to be proportional to the integral

d3k kep SirP(k A p)
(27)3  k2(k + p)?

and are therefore finite by symmetric integration. Thus, the logarithmic divergendes in,, and I1¢ are also
absent, i.e., the two-point function @f* field is finite in the one-loop approximation. We already mentioned that
linear divergences are possible only g = 1, or V3 = 2, or V. = 2. Nevertheless, it is easy to see that two-
and higher-loop graphs satisfying these conditions are just vacuum ones. Then, there are no linear UV and UV/IR
infrared divergences beyond one-loop and, as consequé&ed8reen functions are free of nonintegrable infrared
divergences at any loop order

We examine next the structure of potentially logarithmic divergent diagrams. They corresporddio<01,
which is possible ifVp =1,0rVy =1,0rVo =2,0rV, =3,4,0rV, =2 with Vo =1, or V3 = 2 with Vo =1, or
Va=2with V., =2, 0rV3 = 3,4, or Vo = V3 = 1. Notwithstanding, the contributions of these graphs turn out to be
very similar among themselves so that the same mechanism of cancellation of divergences applies. As a prototype

17)
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Fig. 2. A typical logarithmically divergent diagram.

o B N A

Fig. 3. Other superficially divergent contributions.

of this mechanism let us consider the supergraph Witk- 3 in Fig. 2. Its amplitude in the Feynman gauge reads

i\ [(d®pd®p2 [ o, o d3k sin(k A py)sinlk A (p1+ p2)Isinl(k + p1) A pal
L=—2(= ————— [ d°61d%62d°63 5 > > 3
3\2 (27) (2m) k“(k + p1)=(k + p1+ p2)
X Apg(p1,01)Ap (p2,02)Agr (—p1 — p2,63)

x DY D* DP'81,D7' DY DP" 523D DY DP812C,y o/ C,yrn oy (18)

By using the relationship (12) and the identj#®,, D?} = 0 we find that/, vanishes. The fact that this graph is
finite is actually a gauge independent statement. Indeed, in an arbitrary gauge and after D-algebra transformations,
12(5) is given by

1 d3pyd® d3k 3

® , 2 p1d=p2 - -
I =1 —i— | d°0 sin(p1 A — sin(2k A p; A
2 2 l6f / 27 f(Zn)3|: (pLA p2) — ) _SiN2k A pi + p1A p2)
1

i=1

2 2 1) A Aw
X T2k g it EE - DAs(pr 0)Ap (p2.6)

x [kPP"DP Agi(p3,0) + kPP DP' Api(ps, 0) + kPP DP" Agi(ps, 0)]. (19)

whose planar part is proportional to that of the integral in Eq. (17), which is finite. The nonplanar pﬁ?t isf
composed of two terms, one proportional to

d3k kep cOS2k A p)

s 20
(27)3  k2(k + p)? (20)
which is evidently finite, and the other proportional to a linear combination of integrals of the form
A3 kegSIN2k Ap) i Pap (21)
(2r)3 k4 A/ 2

Here, poug = Omn p" (6™ )ap, and©,,, is the constant antisymmetric matrix characterizing the noncommutativity
of the underlying space—time. A8% = 0, this last expression does not produce logarithmic divergences, which
confirms the finiteness of the contributimﬁ).

The above mechanism also enforces the vanishing of UV logarithmic divergences and of UV/IR infrared
logarithmic singularities from the graphs in Fig. 3. The UV finiteness of all these one-loop graphs may be proved
in an analogous way. For example, in the Feynman gauge the one-loop grapthwit@ contains four spinor
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derivatives and its UV leading contribution is proportional to the finite integral in Eq. (17). A similar situation
arises for the one-loop graph witfy = V3 = 1. The one-loop graph withiz = 2 andV, = 1 contains 8 D-factors
and, after using the identityD?)? = O, either a finite contribution proportional to that in Eq. (17) or a finite term
in which some derivatives are moved to the external fields could emerge. The others potentially divergent one-loop
graphs correspond td. = 4 or V3 = 4 and for them the same mechanism applies and, hence, they are finite. As it
can be checked, the same happens in an arbitrary covariant gauge. The vanishing of UV/IR infrared singularities
for all these graphs has the same origin as that for the graph in Fig. 2.

Up to this point, the net result of our study is thié theory without matter turns out to be one-loop UV and
IR finite It is interesting to note that, in the framework of the background field method [21,23], all contributions
to the effective action are superficially finite. From a formal viewpoint this is caused by the presence of two
spinor derivatives in the expression for the strengthin Eq. (2), which make®vVp > 4 in Eq. (14), since loop
corrections must be at least of second order in the background strengths (compare with [19]). We also remark
that Eq. (14) implies in the absence of divergences at three- and higher-loop orders, in agreement with the super-
renormalizability of the theory. This concludes our analysis ofthe: 1 supersymmetry.

We next study the interaction of the spinor gauge field with matter. To this end we add to (36) the matter action

1 - - -
Sm = — / d®° [E(D“% +i[¢a, A%]) * (Datpa — il Aa; Bal) + M¢a¢>a]- (22)

Here,¢,,a=1,..., N, are scalar superfields apg their corresponding conjugate ones. We may also write

- 1.- - 1.-
Sm = / d°z |:¢a(D2 - m)¢a - ié([‘ba, Aa] * Dypa — Datpa * [Aa, ¢a]) - é[d’a, Aa] * [Ao, ¢a]] (23)

The free propagator of the scalar fields is

- . D’+m
(@a (2009 (22)) = ibap = — m265<z1 - 22), (24)
which, in momentum space, reads
- . D%+ m
(ba(—k, 01 (k, 62)) = —i8ab iz 5012 (25)
The superficial degree of divergence when matter is present is given by
1 3 1 1 1 1
=2—ZV.—2Vo—=V1—Vo—ZV3—ZEy— VP — ZNp— V2, 26
w SVe=2Vo—Vi—=Vo—Va— By — SV = SNp =V (26)

where, as beforéy; is the number of pure gauge vertices withpinor derivativesky is the number of external
scalar linesNp is the number of spinor derivatives associated to external Ilrjﬁs’s the number of triple vertices
A% % ¢y % D oda, anqu? is the number of quartic vertices * ¢, * A * A,.

Graphs can now be split into those willy = 0 and those withEy, # 0. The leading UV divergence for those
with E4 =0 isw = 3/2, corresponding to a tadpole graph which vanishes identically. What comes next are graphs
with two externald,, legs which are UV linearly divergent. They are depicted in Fig. 4. Graphs with three and four
externalA, legs are UV logarithmically divergent. The remaining ones are finite. As for the graph£yigO,
only those withEy4 = 2 are potentially UV logarithmically divergent, those wil > 2 are finite.

WWQVW

@ (b)

Fig. 4. One-loop corrections to the self-energy of the spinor gauge field.
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Graphs withEg4 = 0 verify the conditionsvd? > 0 or V¢D > 0 which, unless for the tadpole graph already

mentioned, imply tha% V¢D + Vd? > 1. On the other hand, i%vd)D + Vd? > 2, the corresponding supergraphs are
superficially finite, according to (26). Since there are no external matter legs, each vertex of the one-loop graph
must involve matter. Hence, we arrive at the following conditionddreing nonnegative

1
1<§V¢D+V¢?<2. (27)

The lower limit of the inequality correspondsdo= 1, whereas the upper limit correspondsie- 0.
The UV linearly divergent case is only realized by the one-loop matter correction to the two-point function of
the gauge fieldd,, (Fig. 4). The graph (a) in Fig. 4 furnishes

Iaa= /dsp d?o dZG/ % AY(—p, 00 AP (p, 62) sirf(k A p)

X [Da1{6a(L)$p(2))(Dp2({ba(Dbp(2))) — (Da1Dp2{ta(Lp(2)))(ba(Lb(2))], (28)

where the indices 1 and 2 in the supercovariant derivatives designate the field to whizloffezator is applied.
Taking into account the explicit form of the propagators, we found

laa=N / e d®61d%6, / . A% (=p, 00 AP (p, 62) sinf(k A p)
(2m)3 (2m)3
Do1(D2+m) . (D2 +m)Dgz Do1(D? +m)Dg2 D?+m
[ Km? P+ pZam? T T k2 em? 12(k+p)2+m2312]
which, after usingDg2812 = —Dg1812, can be cast as

sa=N / (Czli’)? L d%01d%; / (;i];g J(k, p)
x [2(DF +m)812D1 (D5 + m) Dp18124% (—p, 61) AP (p, 62)
+ (D% 4 m)812(D% +m) Dp1612(D* Ao ) (— p, 60 AP (p, 62)], (30)
where we have introduced the notation
sirf(k A p)
(k% +m?)[(k + p)2+m?]’

(29)

J(k, p) = (31)

It is convenient to splif45 into two parts,/4a = j;) + Iji), wherel, (1) andl, (2) are, respectively, associated to the

first and second terms in the large brackets in the right-hand S|de of Eq (30). It is straightforward to verify that

5 22 a3k
I ZN/(2 E d<o (Zn)BJ(k,p)
x [~ (k% + m?) Cap A% (— p, 0) AP (D, 0) + (kg — mCap)(D?A%(—p, 0)) AP (p,0)]. (32)

For the second term in the right-hand side of Eq. (30) one analogously finds

3
12 dk o p
=N 29 k DY D% Ay(—p,0)(kyp — AF(p,0)|. 33
/(271)3 f(Zn)sf( Il (=P, 0)(kyp —mCyp) AP (p, 6)] (33)
By adding Egs. (32) and (33) we can cast the contribution from the graph (a) in Fig. 4 as

d3p 2 d3k sire(k A p)

laa=2N (27)3 27)3 (k2 + m2)[(k + p)2 + m2]
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x [_(k2 +m?)Cop A% (—p, ) AP (p, 0) + (kap — mCap)[ D*A* (—p, )] AP (p, 6)

1, P (34)
+§D DAy (kyg —mCyg) A" (p,0) |.

The algebraic manipulations for the graph (b) in Fig. 4 are simpler and yield

4% sirf(k
[“b_ZN/(z R0 (2n)3(k+1§)2/\+p)2 CapA*(=p.O)A"(p. ). (35)

The complete correction to the two-point function is, therefore,

Loy [P 2 [ 2 Si(k A p)
‘= (2n)3 @271)3 (2 +m2)[(k + p)2+m?]
1
x (kyp — ma)[(DZAV(—p, 0)A%(p.8) + 5D D" Aa(—p.6) AP (p, 9)] (36)

We stress that the dangerous linear divergences have disappeared, i.e., the two-point fuAc¢tiieldfturns out
to be free of UV/IR infrared singularities and, moreover, finite. This two-point function can be used for deriving
the effective propagators in tq%e expansion [24].

It remains to consider the graphs with = 0. It follows from (27), that the only remaining one-loop
logarithmically divergent graphs involving matter are those ones depicted in Fig. 5. Nevertheless, a direct
calculation shows that the planar contributions of the first two of these supergraphs is proportional to the integral
in Eq. (17) whose divergent part is known to vanish. The divergent parts of their nonplanar contributions vanish in
a way similar to that of the graphs in Figs. 2 and 3. As for the third graph, it is evidently finite.

We shall next deal with the graphs witfy, > 0. Such graphs do not contain linear divergences, according to
Eq. (26). Furthermore, the number of external scalar legs must be even since any vertex carries an even number of
scalar fields, and only an even number of them can be contracted into propagators. As stated before, the logarithmic
divergences in this case are possible onlyEgr= 2, VD 2 and forEy =2, V =1. These graphs are shown in
Fig. 6. The graph (a) in Fig. 6 gives the contribution

sire(k A p)
k2[(k + p)2 +m?]

|: E+DCop+ - (5 1) aﬂ DZ 812+ - (37)

o b0 o

Fig. 5. Contributions to the three and four point functions of the spinor gauge field.

(@ (b)

Fig. 6. One-loop corrections to the self-energy of ¢hizeld.

o[ dBp . d3k - « (2 B
loa= 2 / S oo, / Gyt (. 000u(p. 00 D (D? —m)DPs1;
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As before, the ellipsis stands for manifestly finite terms. After some simplifications, one obtains

d3p &Pk - Siré(k A p)
I 252 [ 4P g2 / &k -
which is finite. The second graph in Fig. 6 yields the amplitude
dp d3k - K
lep=(§ —1 ——3%a(— — = sin? D?

01=0>
which vanishes identically becauseidf, = 0.
Therefore the two-point function of the scalar field is free from UV/IR mixing and, moreover, finite in any

covariant gauge. It follows from Eq. (26) that the supergraphs with two or more external scalar legs and one or
more gauge legs are also superficially finite.

To sum up we conclude th#te three-dimensional noncommutative supersymmetric QED is one-loop UV and
UV/IR infrared finite both without and with mattek natural development of this work consists in the investigation
of the possibility of appearance of divergences at two-loop order. Other possible developments are a detailed

study of the YN expansion for the model involving many scalar fields and the analysis of spontaneous symmetry
breaking and the Higgs mechanism.
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