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We present a hamlltonian formulation of QED in a fully fixed axial gauge. The equal-time commutators for all field vari- 
ables are computed and are shown to lead to the correct equations of motion. The constraints and gauge conditions hold as 
strong operator relations. 

It has long been known [1] that gauge theories fall into the class of constrained systems and that only the 
hamiltonian formalism provides an entirely reliable scheme for quantizing such theories [1 -3 ] .  

The implementation of a quantum hamiltonian dynamics for abelian as well as non-abelian gauge field theories 
has been carried out in the case of the Coulomb gauge [4] * 1. On the other hand, there have been several attempts 
to obtain a hamiltonian formulation in the axial gauge A 3 = 0 [6,7]. This last mentioned gauge has proved to be 
very useful in discussing non-abelian gauge theories. It is the purpose of this paper to present the hamiltonian for- 
mulation of QED in the fully fixed axial gauge specified by 

A 3 ( x O , x l , x 2 , x 3 ) = O ,  A l ( x O , x  1 2 3 _ 2 0 1 2 3 _ , x  ,X(o)) - A (x ,X (o),X , x ( 0 ) ) -  0 ,  ( la ,b)  

0 0 1 2 X~o) )=_ (a f /V2 ) z r j ( x O ,x ) [ x=x (o )  A (x ,X(o),X(o),  . ( lc)  

Here, the A u's (p = 0, 1,2,  3) are the gauge potentials while the 7ri's (i = 1,2,  3) are the momenta canonically 
1 2 3 conjugate to the Ai 's .  Furthermore x(0 ) = (x(0), x(0), x(0)) denotes some arbitrary fixed point. Summation conven- 

tion oi1 repeated indices must be understood. Latin indices sum from 1 to 3 unless otherwise is specified. Our 

space-t ime metric is g00 = - g l  I = -g22 = -g33 = +1, g~v = 0 if/a @ v. 
One can easily convince oneself that the conditions (1) fix the gauge uniquely, i.e., up to a global gauge trans- 

formation. Within the set of gaugesA 3 = 0 we have chosen a very particular one to which we shall refer to as the 
superaxial gauge. If instead of eq. (1 c) had we chosen A O(xO,x~o), X~o),X~o))= 0 then our gauge would coincide 
with that employed by Halpern in a different context [8]. As we shall see condition ( lc )  plays an important role 
in the process of obtaining a consistent hamiltonian formulation of QED. 

Our strategy consists in observing that the gauge (1) can be reached from the Coulomb gauge via the following 
operator gauge transformation 

AU(x )  =Au ,  C(x)  + aUA(x), ¢(x) = exp[ieA(x)] ¢C(x) ,  (2,3) 

1 Supported in part by Conselho Nacional de Desenvolvimento Cient/fico e Tecnol6gico (CNPq), Brasil. 
#I See also ref. [5 ] for a formulation of the problem in the Dirac bracket formalism. 
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where 

x 3 X 1 x 2 

A(x)=f dx'3A3,C(x°,xl,x2,x'3)+f dx ' lA I ,C(x° , x ' l , x2 , x~o , )+ f  dx'2A2,c(x°,X~o,,X'2,X~o,), (4) 

and e is the electron charge. We have denoted all field variables belonging to the Coulomb gauge by the superscript 
"C",  while field variables without gauge identification are understood to belong to the superaxial gauge. The non- 
vanishing equal-time commutators (ETC's) in the Coulomb gauge are known to read [4,5] 

[Ai, C(xO,x),rri(xO,y)]=i(6i/ i j 2 - axax/Vx)~(x - y ) ,  {ffC(x°,x) ,  zr~ (x° ,y )}  = iS(x - y ) ,  (5a,b) 

[rri(xO,x),ffC(xO,y)]=-effC(xO,y)(Oiy/V2)8(y - x), [Tr/(x 0 , x ) , z r ~ ( x 0 , y ) ] = e r r ~ ( x  O,y)(3y/V;)6(yi 2 - x ) ,  
(5c,d) 

where 7r 0 is the canonical momentum conjugate to the spinor field ~b. No gauge superscript has been attached to 
the 7ri's since they are gauge invariant quantities. Therefore, it follows from eqs. ( 2 ) - ( 5 )  that the ETC's in the 
superaxial gauge can be found from the corresponding ones in the Coulomb gauge. In this respect notice that 

[A i, C(x°, x ) ,  ~C(x0 ,y) l  = 0 ,  (6) 

guarantees that there are no ordering problems in eq. (3). Moreover, we emphasize that our particular choice of 
condition (1 c) secures that A is a local function of time. Indeed, any other choice for AO(x O, x(0)) would lead to 
a A which is non-local in time. In particular, if ( l c )  is replaced by 

AO(xO 1 2 3 _ , x (0  ) , x (0  ),  x (0 ) )  - 0 ,  

then, the gauge operator function A connecting the Coulomb gauge with the superaxial gauge differs from that 
given in eq. (4) by the term 

x o 

- f dx'OAO'e(x'O,x(o)), 

~o~ 
where 

"t°' c( x° , X(o)) = - (a£/v~)~/ (  ~° , x)i~=~(o). 

This is the reason for having chosen condition (1 c). 
For the non-vanishing ETC's in the superaxial gauge we obtain 

[A 1 (x O, x), rr](xO,y)] = i~ lJ6(x 1 - y l ) f ( x  2 - y2)  [5(x3 - y3)  _ 6(x~0) _ y 3 ) ]  

+ i5 3] [31 6(xl _ y l ) ]g (x2  _ y2)A(x3 ' x~0);y3) ,  (7a) 

[A2(x °, x) ,  nj(x °, y) ]  = i61/[ax 2 5(x 2 _ y2)]  6 (x ~0) _ y3 )A(x l  ' x~0);yl)  

i62]~i(x 2 _ y2 ) [5 (x l  _ y l ) 6 ( x 3  _ y3)  _ 5(x~0)-- _ yl)5(x~0 ) -  _ y3)]  + 

+ i6 3]6(xl - y l ) [ 3 2  6(x 2 _ y2)]  A(x 3, x~0);y3) ,  (7b) 

(qJ(x 0, x ) ,  fro (x 0 ,y)}  = i6(x - - y ) ,  (7c) 

[rrj(xO,y), ~(x O, x)] = -et)(x O, x)(aJx/V2)6(x - y)  + efZ/(x,y, X(o)) ~(x 0, x ) ,  (7d) 

[Tr/(x 0 , y ) ,  7r¢ (x 0, x)] = err¢ (x 0 , x)(3/x/V2)6(x - y )  - egZj(x,y, x(0))Trq~ (x 0 , x ) ,  (7e) 

where 
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x i 
A(xi, X}o);yi) = f dx'i6(x'i _ y i ) ,  (8) 

X~(o) 
and 

--~:(x'y'X(o)) = (~/1 ] 1 2 2 
- ~y~y/V~)~(y - x2)~(x~o) - y3)Z~(xl, x~o);yl) 

(6]2 ] 2 2 1 _ y l  + - ayay/v:)~(X(o) )8(x~o) - y3)a(x2,x~o);y2) 
+ (6/3 _ ~ 03/V2)6(x 1 _ y l ) 6 ( x  2 _ y2)A(x3 ' x~0) ; y 3 ) .  (9) 

The ETC's involving A 0 can be similarly computed but since they play no role in the hamiltonian dynamics they 
will not be given here. It can readily be checked that our ETC's [eq. (7)] are compatible with the Gauss law, i.e., 

3JTr/ - -  ie 7r¢ • ~ = O, (10) 

and with the gauge conditions (1) as strong operator relations. The "dot"  in eq. (10) symbolizes 

~r~ (x)-  ~(x) = ½ [nqj (x), ~(x)] . (11) 

In order to find the quantum equations of  motion we must now specify the hamiltonian operator (H) in terms 
of  axial gauge field variables. The hamfltonian operator of  QED generating the correct equations of  motion for 
the Coulomb field variables is known [4 -9 ] .  Furthermore, it is invariant under the operator gauge transformation 
( 2 ) - ( 4 )  and hence is given by 

1 1 k • 70~b -- ierr~ • 707k~A k] (12) H fd3z [gzrfnj+¼Fi]F i] ' 7rq~)'707kff--irnTr~ 

After a rather tedious calculation one arrives at the following equations of  motion 

~tJ=Tr/+OJA O, / ' : 1 , 2 ;  A3:0; ~j :OkFk /+ ien~ '@3 'J~ ,  / = 1 , 2 , 3 ;  (13a,b,c) 

=--ieTOTkAkt~ -- imT0ff  +ieA0ff  + 703,k3kff; ";r¢ =ien¢@3,kA k +im~r~7 ° - ierccA 0 +(akTr~)707 k , 

where 

x 3 

A ° ( x ° , x l , x 2 , x 3 ) =  f 

~o) 

x 2 

x 1 

dx'37r3 (x 0 , x 1 , x 2 , x '3) + f 

X~o) 

(13d,e) 

,1 , xg0)) dx rrl(xO,x'l ,x 2 

+ dx rf2(x ,X(o),X , X)[x=x(o) , f ,2 0 1 ,2 (14) 

X~o) 
which is precisely the expression following after some trivial manipulations from eqs. (2) and (4). From the equa- 
tions of  motion (13) one sees immediately that the Gauss law ( t0)  and the gauge conditions (1) are persistent in 
time. 

Finally we wish to comment about the structure of  the ETC's presented in this paper and to compare our re- 
sults with some previous attempts for obtaining a hamiltonian formulation of  a gauge theory in the axial gauge. 
One verifies that the ETC's given in eq. (7) are all consistent with the electric and magnetic field vanishing at spatial 
infinity and hence our hamiltonian (12) is a well defined object. Thus, Schwinger's criticism [10] of  the original 
formulation of  the axial gauge by Arnowitt and Fickler [6] does not apply to our case. We also remark that in the 
formulation of  Chodos [7] the ETC's involving the electric field have support at spatial infinity and therefore they 
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are not compatible with vanishing electric and magnetic field at spatial infinity. 
In conclusion, we have shown that the quantum hamiltonian dynamics of QED in the superaxial gauge can be 

implemented in a satisfactory way, with all constraints (Gauss law) and gauge conditions appearing as strong op- 
erator relations. 

One of us (H.J.R.) would like to thank the DAAD and the CNPq and Professor B. Liberman for the kind hos- 
pitality extended to him during his stay at the Instituto de Ffsica, UFRGS, where part of this work has been done. 
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