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Abstract. Most design procedures devised to evaluating the bearing capacity of column-
reinforced foundations have mainly dealt with foundations under vertical loading. The
purpose of the present work is to investiga te within the framework of limit analysis theory the
ultimate bearing capacity problem of column-reinforced foundations under inclined loading.
Special emphasis is given to the ejJect of reinforcement on the interaction diagram relating
the foundation load components. Starting from the situation of an isolated column, a lower
bound solution for the bearing capacity is derived by considering statically admissible
piecewise linear stress fields that comply with the failure condition everywhere in the
foundation soil. On the other hand, the kinematic approach of limit analysis makes it
possible, through the implementation of failure mechanisms on the column-reinforced
structure, to derive upper bound estimates of the bearing capacity for each value of lhe
inclination angle of applied load. The semi-analytical expressions of both lower and upper
bound estimates al/ow for a parametric study on the improvement of the bearing capacity as a
function of dimensionless parameters, which are defined from geometrical and strength
properties. In this context, design charts are presented to provide an insight into the
reinforcement mechanism. Generalization ofthe approach to the situation of a soil reinforced
by a group of columns is subsequently undertaken in the context of plane strain conditions. It
is shown in particular that, as soon as the horizontal component of the force increases, the
vertical component of the bearing capacity decreases, thus emphasizing the strong interaction
between the load components.

Keywords: Bearing Capacity, Column Reinforcement, Foundations, Inclined Loading, Limit
A nalysis
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Yield Design Solutions to Bearing Capacity of a Column-reinforced Soi! Foundation under inclined loading

1 INTRODUCTION

The columns reinforcement technique consists in incorporating into a soft soil regularly
spaced vertical cylindrical inclusions. Two categories may be devised depending on the
column material: the "stone-column" and the "Iime-cement column" techniques. The main
improvement expected from these techniques is to reduce settlements of highly compressive
soils, accelerate the stage of primary consolidation and increase bearing capacity. The present
contribution is concerned with the latter issue.

The common method of stone-column has been used since 1970's (Datye and Madhav, 1988).
The reinforcing material is a vibrocompacted stone or ballast exhibiting high frictional
properties. Irs construction is made by using probes that vibrate in the horizontal direction
and penetrates the ground (Schaeffer, 1997). On the other hand, lime-cement columns
construction consists in blending the weak soil mass with dry lime and cement using a rotary
tool to form treated columns (Schaeffer,1997).

From a practical engineering viewpoint, design of column-reinforced foundations turns to be
a challenging task owing to the strong heterogeneity of the geo-composite resulting from the
association of native soft soil and the reinforcing soil columns. The design procedures
conceived to estimate bearing capacity improvement from this reinforcement technique (e.g.
Bouassida and Hadhri, 1995; Nazari and Ghazavi, 2012; Jellali et aI., 2005; Jellali et aI.,
2007; Bouassida et aI., 2009; Hassen et aI., 2013) have mainly dealt with foundations under
vertical loading. The question may arise as to whether the soil is strengthened by the stone
columns/lime-cement columns or not when the foundation is submitted to an inclined loading.
The main purpose of this paper consists in studying the yield strength of soft foundation soils
reinforced by columns, giving special attention to the interaction between the vertical and
horizontal component ofthe externalload.

2 STATEMENT OF THE PROBLEM

The present work relates to the ultimate bearing capacity of a strip footing resting on the
surface of a soft soil reinforced by columns. The foundation (width B) as well as the column
(width B I and depth h), are assumed to have an infinite length following direction z (Fig.l),
and therefore, the problem can be studied considering a plane strain situation. This foundation
is subjected to uniformly distributed externai inclined loads E along the z direction. It is also
assumed to be rigid. The inclination angle of the load F with respect to the y axes is denoted
by ô • Two situations are consecutively studied: the case of an isolated column and soil
reinforced by a group of columns (Fig. 1).

The foundation soil and the reinforcement material (column) are modelled as continuum
media. Each material is characterized by a strength-criterion which defines local failure. The
soil underlying the foundation is generally a purely cohesive soft c1ay (for undrained
considerations), whose strength capacities are described by a Trescas strength criterion with
cohesion C; The reinforcement material (column) obeys a Coulomb's isotropic strength
condition with cohesion C; and friction angle cp. The gravity forces are considered in the
analysis.

The problem defined above depends on a finite number of loading parameters: the vertical
component V , the horizontal component H of the externai force and the unit weight of each
material (r for the column material and r for soil).r s
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(a) The case of an iso\ated co\umn (b) The case ofa group ofco\umns

Figure 1. Strip footing resting on a co\umn-reinforced soil

Dimensional arguments show that the ultimate load depends on the following dimensionless
parameters:

n,l1=nBl/B, ç=y /(BC), m=C /C, rp, k=y /y, h/B, l=l'/B (1)s s r s r s

where n denotes to the column (trench) number and Z' is the space between two neighboring
columns (Fig.l). Results may also be expressed as a function of a = (l-Z(n-l) -1])/2.

3 LIMIT ANALYSIS FRAMEWORK

The problem is studied within the framework of limit analysis theory. The basic features
ofthe yield design method are briefly outlined in this section. A detailed presentation may be
found in Salençon (1990).

A lower bound solution (static approach) is derived by the construction of stress fields g that

comply with the strength criteria everywhere in the soil and at the interface:

{

2: statically admissible with E
F is sustained <=> :3 I,(g) ~ O in the soil

fc (g) s O in lhe columns
(2)

where f, and fc are respectively the soil and column material strength criterion.

On the other hand, the much more frequently employed upper bound kinematic method uses
the virtual work principIe as a dualisation of the equilibrium conditions. This method is
applied through the implementation of failure mechanisms on the column-reinforced
structure. Virtual velocity fields fl are then considered that involve either rigid body motions
or structure strains.

The upper bound theorem of limit analysis states that a necessary condition for the system to
remain safe under applied load Q = {F = (H, V), r , r } is expressed by means the followings r
inequality (Salençon, 1995):
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W (Q, u) s; W (u)ex - mr- (3)

where W is the rate of work performed by externaI forces in any velocity field u and W isex - mr
the maximum rate of work developed in the same velocity field Y....The so called maximum
rate of work is defined as follows:

(4)

where [~] represents the velocity jump when crossing the discontinuity surface L along its
unit normal !1and g the strain rate field associated with Y....The expression of the support

function 'Ir appearing in Eq.( 4) can be found in Salençon (1990) for Mohr-Coulomb and
Trescas strength criterion and depends on whether the velocity jump or strain rate is located
in the soil or in the column.

For the Tresca soil material, condition Wmr ( ~) < -j-<X) requires that velocity jump W] is

tangential to the discontinuity surface. As regards the columns, Wmr ( ll.) < -j-<X) requires that the

velocity jump must be inclined at an angle equal to rp with respect to the discontinuity
surface. Figure 2(a) sketches velocity jumps for a trench reinforced soil for plane
discontinuity surfaces of the velocity field. In the case of a rigid body rotation, these
conditions are translated in terms of cylindrical surfaces with a circular are cross-section for
the cohesive soil and a log-spiral curve cross-section of angle rp for the frictional material
(Fig.2(b)).

(a) Velocity jump for plane discontinuity
surfaces

(b) Curve discontinuity surfaces for a rigid
body rotation

Figure 2. Velocity jump surfaces in a trench reinforced soil

The semi-analytical expressions of both lower and upper bound estimates allow for a
parametric study on the improvement of the bearing capacity as a function of the
dimensionless parameters ofEq. (1).

4 STATIC APPROACH

A static solution has been constructed, using a piecewise linear field as sketched in Fig. 3.
In each one of the zones 1 to 3, the stress complies with the strength condition of constitutive
material, namely the soil material (Tresca condition with cohesion C,) and column material
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(Mohr-Coulomb condition with cohesion c, and frictional angle cp). The orientation of
principal stress coincide with (x,y) directions in zones I and 4, while they depend on angle a
in zones 2 and 3. Figure 3 (a) is referred to the case of an isolated column and Fig. 3 (b) to a
foundation resting on a soil reinforced by a group of columns.

H '1--

(a)

Rigid Substratum

Figure 3. Piecewise linear stress field used for static approach

2 2

(b)

Referring to plane strain axes x- y defined in Fig. 1, the stress field is defined by

o = (-Cs(l + 2cos2a -cos4a) + ysy C sin4a ]

=2 C sin4a -C (1+2coss2a+coS4a)+y y
s s s

(

-C (l+2cos2a-cos4a)+y y CsSin4a]
c = s s
=3 C sin4a A+y y

s r

(5)

(6)

(7)

(8)

where A is a constant determined by satisfying Mohr-Coulornbs strength criterion
(fc(g) s o) in zone 3 for 05, Y 5, h:

A = min {_1_2-((I +sin ' <p)(Ysy-CsD)- y,ycos2 <p-2C, sin <pcos<p-2..[.i)}
O~y<h cos <p (9)

with D = I+ 2cos2a - cos4a and J given by:

J = C; D2 sin? <p- 2CsDsin <p(Ysysin<p-C, cose] + y;y2 sirr' <p-2yysC, sin <pcos<p+( C; - C; sin" 4a )cos2 <p (10)

with restrictions O ~a ~45° and J ~ O. Mohr-Coulombs strength condition is then numerically
verified in zone 4 (fc(g4) ~ o).
This stress field leads to the following lower bound solution:

7scs = (%Cs =sin4a,1scs =-lJYcs+(1-lJ)(1+2cos2a+coS4a») (11)
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It is recalled that, for r, ==y" the loads F;=(H=O,v=(1r+2)BC,) and F; =(H=BCs,v=O)

respectively derived by Prandtl (1923) and Salençon and Pecker (1995) for foundation Iying
on homogeneous cohesive soi!, are lower bound solutions for the bearing capacity in the
column reinforced situation soil for the case of a purely cohesive reinforcement material.

5 KINEMATIC APPROACH

This approach is based on the implementation ofthree failure mechanisms for the case of
an isolated column and three failure mechanisms for the case of a group of columns.

5.1 The Case of ao Isolated Column

Failure Mechanism I. The first mechanism displayed in Fig. 4 consists in a translational
motion of the volumes A' AEG and ADC, while the velocity Y.. = U ~IJ is constant and
orthoradial in the fan AEC. This failure mechanism involves velocity jumps along lines A'G,
GE, AE, CD and circular are EC.

~v
H

v

y

x

Figure 4. Generalized Prandtl type failure mechanism I

The rate of work w (F) performed by the externaI force F is obtained by:
ex

W (F) =UFsin(a+S)
ex (12)

where 8 is used to denote the inclination angle of applied load (Fig. 4) and U represents the

virtual velocity of volume A' AEG. The rate of work we)r"r,) performed by the gravity forces

can be written as:

Wex(r"r,) = ~UB2Ys(1_I]{ sina( tana(l-I])+ I] tan(a + rp)+2kl]( tana + I] tan(a +rp)))-~ A(I-I])sinX ] (13)

ClLAMCE 2015
Proceedings ofthe XXXVllberian Latin-American Congress on Computational Methods in Engineering
Ney Augusto Dumont (Editor), ABMEC, Rio de Janeiro, Ri, Brazil, November 22-25, 2015



M Arévalos, S.Maghous

. (2'1 tan(a + q»)2 2'1 .with parameterA=I+ tana+ and tanx=tana+-tan(a+q». Meanwhile
1-'1 1-'1

maximum resisting work is obtained by using Eq. 4, yielding:

W UZ) = .!.C,uB(J -'1)(_1_+«1+31l"12-2X)Sin(x+a)-COs(x+a)).JA)+ C,uBmrycosq>
mr 2 cos a cos(a + q»

the

(14)

Applying the fundamental kinematic equality, Eq. (3), yields

~ s min f(a)
BC a sin(a+o)

s
(15)

f(a) is given by Eq. 16:

f( a) = .!.(l-rü(-I- + [(I+ 31l"/ 2- 2x)sin(x + a)- cos(X+a) ].JA)+ rn17 cos<p
2 cosa cos(a + rp)

. [(1- 1'))2 1 1 1 2 ]-I; SIO a tan a + -l1(l-l1)tan(a + c) + - k1')(I-11) tan(a) + - kll tan(a + rp)
4 4 2 2

+.!.I;(I_1'))2 AsinX
8

(16)

'h 7r d 7rwit O:5:a :5:--epan X+a:5:-2 2
Failure Mechanism 11. The second mechanism, shown in Fig. 5, is defined by the zones
A IAGED and ACG in translational movement. The lines A ID, DE, EG ,GC and AG are
discontinuity surfaces for the velocity.
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Figure 5. Two translational zones failure mechanism 11

The rate ofwork W performed by externai forces is obtained by:ex

W (F) = UFsin(a + o) +.!.UB2y (J -'1)(sin a(I-'1 + k'1).JA - Acosa)
ex 2 s

(17)
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withA=tana+ 17
tan

(a+<p) and U represents the virtual velocity of volume A'AGED (Fig.5).
1-17

On the other hand Eq. 18 presents the maximum rate of work W developed for the samemr
velocity field:

W = CSU(1-17)(_I_+[sina+cosatan fi + cosa ]n + __ m_17-,--co_s....:.<p__ )
mr cosa cosfisinfi cos(a+<p)(1-17)

Applying Eq. (3) leads to the following inequality:

~ < min g(a)
BC - a.p sin(a+8)

s

where

g (a) = (1-17) (_I- +[Sina + cosa tan.8 + cos~ ].fÃ + __ m_ry-,--co_s....:.<P__ )
cosa cos.8 sm.8 cos(a + <p)(i-ry)

- W ;1']) (sin a(i-ry+kry).fÃ - Acosa)

'h 7rwit O:::::; a :::::;- - cp .
2

(18)

(19)

(20)

Failure Mechanism lIl. The failure mechanism is defined by the rotation of block
A'CDEabout axisili. The block is delimited by two circular arcsA'CandDE, and the log-
spiral curve CD having the focus n and angle cp (Fig. 6). This mechanism is similar to the
one used by Bouassida and Hadhri (1995), with two differences: for one hand gravity forces
are considered in this analysis and for the other, an inclined force is studied.

Similar analysis to those presented for Failure Mechanism I and 11was developed, and once
again, application of kinematical condition, Eq. (3), yields an upper bound solution of the
form

~::;min g(BpB2)
BC 9,,9,

S

where function g(B"B2) depends on the dimensionless parameters defined in Eq.(I).

~v
H

v

x

E

:<.-- B ------...

Figure 6. Rotational failure mechanism 111

(21)
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5.2 The Case of a Group of Columns

Failure Mechanism I. The mechanism presented in Fig. 7 consists in a translational motion
ofthe volumes A' AEG and ADC, while the velocity rL = Uo ~f) is constant and orthoradial in the
fan AECThis failure mechanism involves velocity jumps along lines A'GE,AE,CD and
circular are EC.

~v
H

Figure 7. Generalized Prandtl type failure mechanism I

Applying the fundamental kinematic equality Eq. (3), by previously calculating the maximum
resisting work (Eq. 4) and the rate ofwork W performed by externai forces, an upper boundex
solution is obtained ofthe form:

~ s min f(a)
BC a sin (a +0)

s
(22)

where 8 is used to denote the inc1ination angle of applied load (Fig. 7) and f( a) is given by
Eq.24:

f(a)=r[sen(x+a)(l+ 37í -2X)+COS(x+a)]+ 1-1]-a + m1]cosrp
2 cosa cos(a + rp)

-qsin a[~tan a(I-1] - a)2 +tan(a + rp)[,1] ni 1i+ ~k1]2)+ 1k tan++ / i 1 (n- i))]
2 n i=1 2 n i=1

-Ç" sin a[~ a( 1]tan(a + rp)- tan a(I-1] - a)}] + ~qr2 sin(x + a)sin X

and r = ~a2 + [(1-7] - a) tan a + 7] tan(a + cp)t with conditions: O S; a S; !!.- - rp and X + aS; 7í
2 2

(23)

Failure Mechanism lI. The second mechanism defined by the zones A'AGDand ACG in
translational movement is shown in Fig. 8. The lines A' D, DG, GC and AG are discontinuity
surfaces for the velocity.
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tsJv
H

G

Figure 8. Two translational zones failure mechanism 11

The application of Eq. (3) leads to the following inequality:

_F_ s min ---=g-,(_u"-) _
BC a.p sin(u+o)

s
(24)

where

[
I 2 (I n-I ) I 2 ]g(u)=-çsena -tana(l-17) +17tan(a+tp) - I i+a +-k17 tan(a + tp)
2 ni=1 2

[ n-I] I 2-çsena akn tssi a+nkl uuva I (n-i) +-çcosa[(J-17)tana+l]tan(a+tp)]
i= 1 2

+ 1-17 + [(l-17)tan a + 17tan(a + tp) l( sin a + 2../2 cosa) + m17costp
cosa cos(a + tp)

(25)

with condition: Os a s 7r -cp
2

Failure Mechanism IH. The third failure mechanism presented in Fig. 9 is defined by the
rotation of block A'CDabout axis nz. The block is delimited by circular ares and log-spiral
curves having the focus o and angle cp.

Application ofkinematical condition, Eq. (3) yields an upper bound solution ofthe form

(26)

where function f(()1'()2) depends on the dimensionless parameters defined In Eq. (1). A

numerical minimization over ()I and ()2 is performed.
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~v
H

Log -spiral are
Figure 9. Rotational failure mechanism 111

6 RESULTS

6.1 The Case of an Isolated Column

The static approach is defined by the boundary of the surface which, in the space (H, V)

or (F,8) , for a fixed set of parameters {k,m,cp";,I],h/ B} presented in Eq. 1, delineates the set of
safe loads. This method approximates the extreme loads "from inside", while the kinematic
approach does it "from outside".

For illustrative purposes, Fig. 10 shows the resuIts obtained in the context of this analysis for
a cohesive soil reinforced by a column consisting of original soil blended with lime
(Cr>Cs' qJ=O).

As it could be expected the reinforcing effect induced by cohesive columns is increasing with
ratio C, / Cs. Unlike the static approach, the kinematic approach predicts improvement of the
bearing capacity in both horizontal and vertical directions of the load, thus emphasizing the
necessity to resort to more sophisticated stress distributions.

The variation of the lower and upper bound estimate as a function of the cohesion ratio m for
a purely vertical load is presented in Fig. 11. The static approach shows that reinforcement
occurs from a cohesion ratio m = 2.6 and m = 3.4 for replacement ratios of 7J = 0.4 and
7J = 0.25 respectively.

The second application refers to reinforcement by means of purely frictional columns
(C, = O, qJ# O). Figure 12 shows the results obtained for two values of the column friction

angle. The reinforcement reveals effective only for sufficiently high values of cp. Similarly to
the resuIts developed in Salençon and Pecker (I995b), it is also observed that the lower bound
estimates tend to zero as the load direction is closer to the horizontal one.
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ICr/Cs=S I n= L,~.0.4, ~=0.5.",.0', k-L, h/S. I 1 cr/Cs=21
-- Statlc Approach- . - Kinematie Approach

'" - • • •• Non..•.elnforced soil '"U. U
~8- , ~8

" -- ,
" r

<, ,
" &- ,

. .. .
,#4 - .... ..

2-

I

·2 o ·2 o
H/BCs HlBCs

Figure 10. Lower and upper bound approach for the bearing capacity domain for cohesive columns

16 Kinematic Approach
yr/ys=I,O; ysB/Cs=O,5; cp=00
••••• '1=0,10

- • - '1=0,25
-'1=0,4012

12

Static Approach
yrlys=I,O; ysB/Cs=O,5; cp=00
••••• '1=0,10

- . - 11=0,25
--11=0,40

(J)

~ 8s
5,14+--.-. .......•~----------

4

...................
(J) 8
Üc:cs ....5,14I----..---.:..---- •..•...•~---

4

0-+--,--.--,--.--,--.--,--.--,---,
o 2 4 6 8

Cohesion Ratio m
10

O+----.-,--.----r-,--.-----,-,--,---,
O 2 4 6 8

Cohesion Ratio m
10

Figure 11. Lower and upper bound approach for the bearing capacity domain of a purely verticalloading
for cohesive columns

10

'"olE .
>" ,

" 8

n=1. ~=0.4, =0.5, m=O,k= I. h/b=l
-- Stalic Approach
- . - Klnematic Approach
- • • •• Non-reinf()(ced sail '" 10 lo

~

",-30'

,
,
, ,

,

..········

..········
·2 ·1 O

HlBCs
·2 ·1 o

HlBCs

Figure 12. Lower and upper bound approaches for the bearing capacity domain for purely frictional
columns
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The evolution of the lower and upper bound estimates with friction angle rp is shown in
Fig.13 for a purely vertical load V . The static approach indicates that reinforcement occurs
from the friction angle tp = 20° for a replacement ratio of1] = 40% , while for 25% it happens
from rp = 27° . The increase of the bearing capacity depends of these two parameters:
1]and ip .

12

Static Approach
yr/y~I,O; ysB/C~0,5; m=O
••••• 11=0,10

16

- • - 11=0,25
-11=0,40

12

Kinematic Approach
yr/ys""-1,0; ysB/C~0,5; m=O
••••• 1']=0,10

- • - 1']=0,25
-1']=0,40

Cf) 8
Ucos

5, 14r-------=:....,,:.J..~. _ . - ••••••
~ • T •••••4 .: ••••••••

Cf)

~ 8:> .........

O -+-----,,------.------,,----+-----,,------.------,----,------,----,

5,14.-=:'UOILL."--=--=-~-------
4

O -+--,------.------,,----,-----,,--,---,--,---,----,

O 10 20 30 40 50 O 10 20 30 40 50

Figure 13. Lower and upper bound approaches for the bearing capacity domain for purely frictional
columns

Table 1 summarizes the results obtained in this work and values from Bouassida and Hadhri
(1995) for illustrative examples. The static approach given by these authors corresponds to a
particular case of the stress field considered in this work (when a = 0° and gravity is
neglected), therefore, same values of the lower bound were obtained. As regard to the upper
bound, better estimations of the limit load were founded in comparison with Bouassida and
Hadhri (1995).

Table 1. Results for a purely frictional column material

1] Lower Bound by Lower Bound by Upper Bound by Upper Bound by the
the static approach Bouassida and Bouassida and kinematic approach

Hadhri (1995) Hadhri (1995)

cp = 25° cp = 30° tp = 25° tp = 30° rp = 25° rp = 30° rp = 25° cp = 30°

0.2 4.18 4.40 4.19 4.40 5.99 6.32 5.71 6.07

0.4 4.37 4.80 4.37 4.80 6.51 7.21 6.37 7.07

0.6 4.56 5.20 4.56 5.20 7.11 8.25 7.11 8.25
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6.2 The Case of a Group of Columns

In the same form adopted in the previous section, two categories of column materiais are
subsequently studied. The combination of static and kinematic approaches provides lower and
upper bounds domains for the bearing capacity for each category. An illustrative example of
such approaches for a purely cohesive column material (Cr> Cs' cp = O) is first presented.

Figure 14 relates the extreme non dimensional externai force ~with the inclination angle
BCs

S of the load. Both the static and kinematic approaches predict an improvement of the
extreme load for inclination angles between O~ S ~ 20°. The interaction between the non-
dimensional load components of the upper and lower bound estimates (Fig. 14) shows that an
increase on the horizontal component of the force implies a reduction of the vertical bearing
capacity.
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Figure 14. Lower and upper bound estimates for the bearing capacity domain for purely cohesive columns

Figure 15 refers to reinforcement by means of purely frictional columns (C, = O, cp 7: O). The
lower and upper bound estimates are compared to the ultimate bearing capacity of a non-

reinforced soil in Fig.15 relating the Force ~ to its inclination angle S. Results are
BCs

conveniently presented in the plane (~,~) in Fig. 15 as the lower and upper domains
BCs BCs

of the extreme loads. For both categories of material reinforcement, the ultimate bearing
capacity could only be bracketed. Generally, upper bound estimates lead to better
approximations of the bearing capacity, therefore, more sophisticated stress distributions
should be considered in order to conceal extremes loads boundaries with a higher degree of
accuracy.
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Figure 15. Lower and upper bound approach for the bearing capacity domain for purely frictional
columns

Analytical and elastoplastic simulations were performed by Hassen G. et ai (2013) based on a
periodic homogenization limit analysis method to determine the homogenized strength
capacity of column reinforced soi!. Upper bound estimates of the ultimate bearing capacity
using the previously obtained numerical estimate of the strength domain for a purely vertical
load in plane strain analysis have been derived. Table 2 compares this result with the upper
and lower bound studied in this work for the fixed set of parameters:
{n = 6, 17 = 0.28, rp = 35°, k = O,ç = 0, m = 0, I = 0.15}. The difference between these upper

bounds is 4%.

Table 2. Results for a group of purely frictional column material

Lower Bound by Upper Bound by Hassen G. et ai Upper Bound by
the Static (2013) using homogenization the Kinematic
Approach approach and yield design theory Approach

5.01 7.15 7.76

7 CONCLUSIONS

The problem solved in the current study, relates to the ultimate bearing capacity of a strip
footing resting on the surface of a column reinforced soil subjected to an inclined, central
load. The extreme load is defined within the framework of the plane strain yield design theory
using the yield strengths ofthe materiais involved. Both lower and upper bound solution have
been derived in the situation of a single column and of a group of columns.

The novelty of this contribution is in its ability to deal with inclined loads situation. The
analysis may be viewed as a generalization of existing approaches developed in the case of
vertical loading. The results bracket the variations of the bearing capacity as a function of
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either the load inclination or the column and soil strength parameters. The interaction between
the load components showed that as soon as the horizontal component of the force increases,
the vertical component of the bearing capacity decreases. This aspect should thus be carefully
considered in foundation designo

The foundation ultimate bearing capacity has been compared with available solutions derived
for purely vertical load.
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