
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

CURSO DE CIÊNCIA DA COMPUTAÇÃO

ALAN FRANCISCO HÖNG

A Machine Learning Approach for
Content-Based Music Recommender

Systems

Work presented in partial fulfillment
of the requirements for the degree of
Bachelor in Computer Science

Advisor: Prof. Dr. Paulo Martins Engel

Porto Alegre
December 2015

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos Alexandre Netto
Vice-Reitor: Prof. Rui Vicente Oppermann
Pró-Reitor de Graduação: Prof. Sérgio Roberto Kieling Franco
Diretor do Instituto de Informática: Prof. Luis da Cunha Lamb
Coordenador do Curso de Ciência de Computação: Prof. Carlos Arthur Lang Lisbôa
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

“Computers are the equivalent of a bicycles for our minds”

— STEVE JOBS

ABSTRACT

This work tries to approach music recommendation in a content based way. Most today‘s rec-

ommender systems use user data on such as listening history and likes to recommend new mu-

sic to users. Many of todays music platforms such as Soundcloud, Mixcloud or Youtube grow

rapidly and contain many new music pieces of lesser known artists. As traditional recommender

systems require a great amount of user data to predict good recommendations, these approaches

might perform poorly on these newer platforms, as lesser known tracks won’t be recommended

at all or only appear to very few users. This work presents a recommender system which re-

quires very few user data to make recommendations. By analysing audio data and clustering

the analysed data using a neural network, recommendations for each user are generated. At the

end we evaluate the achieved results using offline evaluation techniques.

Keywords: Music recommendation. self-organising map. music similarity. audio analysis.

Uma abordagem em aprendizagem de máquina para sistemas de recomendações de

musica baseados em conteúdo

RESUMO

Este trabalho trata de abordar recomendações musicais de uma maneira baseada em conteúdo.

A maioria dos sistemas de recomendação hoje em dia usam os dados do usuário como o histó-

rico de musicas escutadas e preferencias para recomendar novas músicas aos usuários. Muitas

das plataformas recentes de música tais como Soundcloud, Mixcloud ou Youtube crescem rapi-

damente e contêm muitas novas peças de música de artistas menos conhecidos. Como sistemas

de recomendação tradicionais requerem uma grande quantidade de dados de usuários para pre-

ver recomendações, essas abordagens podem executar mal nessas plataformas mais recentes,

como musicas menos conhecidas não será recomendada a todos ou só apareceram para poucos

usuários. Este trabalho apresenta um sistema de recomendações que usa um mínimo de dados

de usuário para fazer recomendações. Ao analisar os dados de áudio e agrupando-os, utilizando

uma rede neural, as recomendações para cada usuário são gerados. No final serão avaliados os

resultados obtidos através da avaliação de técnicas off-line.

Palavras-chave: Reccomendações de musica, self-organising map, semelhança de musica, ana-

lise de audio.

LIST OF FIGURES

Figure 2.1 The figure below shows a signal (blue) and three window functions (red) with
no overlap. For each segment the window function is multipied with the signal and
a DTFT is applied. ... 16

Figure 2.2 Figure showing logarithmic plots of powerspectra of different musical styles.
The spectra were generated using a hamming window function, segment size of 23
milliseconds and an overlap of 50%. ... 16

Figure 2.3 Figure showing 4 example plots of rhythm histograms.. 19

Figure 3.1 Genre annotations for 6000 tracks of the constructed subset 26
Figure 3.2 Bark scale ... 29
Figure 3.3 Logarithmic plot of S, notice the asymmetrical shape ... 30
Figure 3.4 Examples of how spreading affects the critical bands .. 30
Figure 3.5 The phone contours .. 32
Figure 3.6 Relation between loudness sensation and loudness level 33
Figure 3.7 Loudness modulation in certain critical bands of an electronic music piece.

Observe the periodicity especially in lower bands and in the last plot. 35
Figure 3.8 fluctuation strength model .. 36
Figure 3.9 Examples of Fluctuation Patterns ... 37
Figure 3.10 Reconstruction of compressed fluctuation pattern.. 40
Figure 3.11 SOM clusters using distinct feature vectors ... 45
Figure 3.12 Implemented recommender system .. 47
Figure 3.13 Comparison of two users likes in musical space .. 48

Figure 5.1 The two like sets of a user used for evaluation in music similarity space 56

LIST OF TABLES

Table 3.1 Distance matrix between sample tracks ... 38
Table 3.2 Feature Vectors ... 42

Table 4.1 Sign Test probabilities between our approach and random recommender............... 50
Table 4.2 Feature evaluation table.. 51
Table 4.3 Outcomes for unary ratings .. 51
Table 4.4 Usage Predictions ... 52
Table 4.5 RScores... 53

LIST OF ABBREVIATIONS AND ACRONYMS

SOM Self Organizing Map

IGMN Incremental Gaussian Mixture Network

DTFT Discrete Time Fourier Transform

STFT Short Time Fourier Transform

MIR Music Information Retrieval

MSD Million Song Database

FFT Fast Fourier Transform

SPL Sound Pressure Level

CF Collaborative Filtering

GMM Gaussian Mixture Model

CONTENTS

1 INTRODUCTION.. 11
1.1 Motivation... 11
1.2 Goals.. 11
1.3 Structure ... 11
1.4 Concepts, Vocabulary and Notation... 12
2 BACKGROUND... 13
2.1 Overview ... 13
2.2 Collaborative Filtering .. 13
2.2.1 User-based Collaborative Filtering ... 13
2.2.1.1 Algorithm... 13
2.2.2 Item-based Collaborative Filtering ... 14
2.2.2.1 Algorithm... 14
2.2.3 Similarity Functions.. 14
2.3 Audio Features.. 15
2.3.1 Short Time Fourier Transform .. 15
2.3.2 Acoustical Features... 17
2.3.2.1 Timbral Texture Features ... 17
2.3.2.2 Rhythm Features .. 18
2.4 Clustering Techniques ... 19
2.4.1 K-means .. 19
2.4.2 Multivariate Gaussian Mixtures Models... 20
2.5 Psychological and Human Aspects ... 21
2.5.1 Music Similarity ... 21
2.5.2 Personality and Cultural Background concerning Musical Perception 22
2.6 Related Approaches ... 22
3 THE APPROACH.. 24
3.1 Data Acquisition... 24
3.1.1 Data Sources ... 24
3.1.2 Constructing the subset ... 25
3.1.3 Genre Distribution .. 25
3.2 Audio Features.. 25
3.2.1 Preprocessing Audio ... 26
3.2.2 Mel-Frequency Cepstral Coefficients ... 26
3.2.3 Fluctuation Patterns .. 28
3.2.3.1 Specific Loudness Sensation.. 28
3.2.3.2 Rhythm Patterns... 33
3.2.3.3 Examples of Modified Fluctuation Patterns... 36
3.3 Feature Combination... 38
3.3.1 Fluctuation Pattern Dimensionality Reduction... 38
3.3.1.1 Chunk Selection ... 38
3.3.1.2 Principal Component Analysis .. 38
3.3.1.3 Quality of PCA .. 40
3.3.2 Expressing Music Timbre with MFCCs ... 40
3.3.2.1 MFCC Deltas ... 41
3.3.2.2 Concatenated MFCCs .. 41
3.3.2.3 Medians.. 41
3.3.2.4 Polyphonic Timbre... 41
3.3.3 Building Feature Vectors... 42

3.4 Clustering.. 42
3.4.1 Self-organising Map Algorithm.. 43
3.4.2 Observations ... 44
3.5 Recommender... 46
3.5.1 Preferences in Musical Space ... 46
3.5.2 Score Calculation .. 48
4 EVALUATION.. 49
4.1 Significance ... 49
4.2 Feature Vector Evaluation... 50
4.3 Measuring Usage Prediction ... 50
4.4 Ranking Measure ... 52
4.5 Item Space Coverage ... 53
4.6 Observations... 54
5 CONCLUSION .. 55
5.1 Summary and Discussions... 55
5.2 Reviewing Data and Algorithm .. 55
5.3 Future Work ... 56
REFERENCES.. 57

11

1 INTRODUCTION

1.1 Motivation

Every day we are expected to make choices. What cloth to wear, which book to read

or which song to listen to. The choices available to choose from are frequently immense.

Recommender systems can prove very helpful with these tasks. The most popular algorithm

for recommending items has been collaborative filtering for many years (UITDENBOGERD;

SCHYNDEL, 2002). It makes recommendations based on user data. Using user data to gener-

ate recommendations is an efficient and smart way to achieve many good recommendations but

lesser or unknown items will never be recommended. In the last years content-based recom-

mendation for music has grown more popular. Digital music archives have been growing ever

since with new countless sub genres appearing each year. Many listeners know that there are

many unknown but amazing artists hidden in the waste amount of music data available. The

motivation of this work is to recommend music not based on their popularity amongst others,

but based on their content and shaped to the user’s taste, supporting lesser known producers and

DJs as well as listeners who have a more unusual taste.

1.2 Goals

This work’s goals are to prototype a recommender system based on audio analysis and

evaluate it’s performance. The system should be able to provide quality recommendation using

only the liked tracks of a particular user and the available audio data. Furthermore the system

is constructed to have 100% coverage over all tracks in its database. This work will examine if

this is feasible and how useful it would be to implement such a system.

1.3 Structure

Five chapters divide this work. In the introduction, motivation and goals are explained.

The second chapter examines traditional approaches, related fields and some background tech-

niques. The third chapter explains the approach used in this work. It talks about how the data

was obtained and which techniques will be used. The fourth chapter treats the evaluation of

the system. Finally in the last chapter conclusions are presented and as well as thoughts about

12

future work.

1.4 Concepts, Vocabulary and Notation

Unless noted otherwise, with the term artist the performer of a musical piece is meant

not the composer. With track we refer to a concrete recording of a musical piece.

Recommender systems usually operate on a information domain, which consists of users

and their preferences for various items. A single preference is often expressed as a tuple (User,

Item). Sometimes this preferences also include ratings which can be binary or integer scales

but for reasons of simplicity this work will consider only unary preferences. If a certain user

likes some item we will refer to this as a like. As we are working with a music recommender

our items will be single music tracks or simply tracks.

Matrices and vectors are always bold letters, whereas scalar variables are normal letters.

Indices are always displayed as minor normal printed letters.

As for some mathematical definitions we will introduce U as our set of users and T

as a set of tracks. The like matrix L is composed by likes with lu,t = 1 if the user liked the

track and lu,t = 0 if the user has not yet rated the track. l̄u is the average of the user’s u likes

and respectively l̄t is the average of track’s t likes. Furthermore we define Π as the true and

complete like matrix and p is the output we get from the recommender.

13

2 BACKGROUND

2.1 Overview

In this chapter we will review some background and related works. First the traditional

collaborative filtering algorithm is explained. Subsequently some commonly known audio fea-

tures are presented. Followed by some background on clustering techniques. Finally previous

approaches in recommend music using neural networks are examined.

2.2 Collaborative Filtering

In the following two popular approaches for the CF algorithm are presented. Algorithms

of this class usually need a big amount of user data to make good recommendations. This data

is usually only available for popular tracks and therefore more popular tracks are recommended

more frequently gaining more and more popularity. Tracks with not enough user data to be

recommended appear stay unknown as they are rarely recommended.

2.2.1 User-based Collaborative Filtering

User-based collaborative Filtering were the first automated CF methods (EKSTRAND;

RIEDL; KONSTAN, 2011). This approach tries to predict recommendation for a user A by

inspecting similar user’s likes and infer from their likes prediction for yet unrated tracks by

A. User similarity is defined as having a similar likes. To compute such similarity a similarity

function s : U × U → R has to be introduced.

2.2.1.1 Algorithm

To predict likes s is used to choose a set of nearest neighbours N ⊂ U . This set usually

limited to 20 to 50 neighbours as this has been proofed to be a good number (HERLOCKER;

KONSTAN; RIEDL, 2002). The next step is to infer likes from N . To do this we compute the

average of the neighbours’ likes weighted by their corresponding similarity. To compute like

14

predictions for a user u we get:

pu,t =

∑
u′∈N s(u, u

′)lu′,t∑
u′∈N |s(u, u′)|

(2.1)

2.2.2 Item-based Collaborative Filtering

Item-based CF methods present a computational more efficient approach and are quite

similar to User-based methods presented above. The difference is that instead of computing

user similarity they compute track similarity based on user ratings. If two tracks are liked by

the same users they are considered as similar. This clusters of similar tracks are then saved

persistently to avoid repeating this expensive step for each recommendation. Furthermore big

platforms tend to have more users than tracks. By having a sufficient high user to track ration

a single user editing his likes is unlikely to have big impact on the similarity between items

(EKSTRAND; RIEDL; KONSTAN, 2011). This allows to precompute similarity and allows

the CF algorithm to scale to large user databases, while maintaining low computational costs.

The similarity function need to be redefined to accept a tuple of tracks s : T × T → R

2.2.2.1 Algorithm

After selecting a set of similar tracks S ⊂ T similar to t. We compute the predictions as

follows:

pu,i =

∑
t∈S s(t, t

′)lu,t′∑
t∈S |s(t, t′)|

(2.2)

2.2.3 Similarity Functions

As we use unary likes and define unrated tracks as 0, a good similarity function is the

cosine similarity. It provides a simple, fast and good predictive function to estimate similarity

between tracks as well as between users.

s(i, j) =
Li · Lj

‖Li‖2 ‖Lj‖2
(2.3)

With Li or Lj being either user likes or item likes according to which type of CF method

is used. For different data domains there exists more appropriate similarity methods like e.g.

15

the Pearson Correlation (EKSTRAND; RIEDL; KONSTAN, 2011).

2.3 Audio Features

Substantial research has been carried out by the field of Music Information Retrieval a

interdisciplinary field focused on retrieving information about music from digital environments,

including audio data. We will present some of the most commonly used audio descriptors below

but before we will present the short time fourier transform (STFT) as most features are based

on it.

2.3.1 Short Time Fourier Transform

The Fourier Transform does not contain any information about how the spectrum of

the signal changes over time. For music analysis the temporal aspect is quite important as

music usually has a certain dynamic that has to be considered. For that reason the Short Time

Fourier Transform is introduced. It’s main difference to the Fourier Transform is that the signal

x(n) is splitted into multiple small segments τi, where the signal is considered as stationary

(OHM; LÜKE, 2010). To improve results these segments may overlap. To remove artefacts

we introduce a window function ω(n). A discrete fourier transform is applied to each of this

segments. In the following the segments spectra will be referred to as frames. The STFT is then

defined as follows:

X(τi, f) =

∫ ∞
−∞

x(t)ω(t− τi)e−i2πftdt (2.4)

Where τ is shifted by a fraction of the window function size depending on the amount

of desired overlap.

The magnitude of the STFT |X(τ, f)|is called spectrogram or power spectrum if the

magnitudes have been squared and are often used to provide a graphical display of the spec-

trogram. Below we will see some examples of powerspectra. Notice the difference between

different music styles. Metal and Hip Hop, styles with a big amount of vocals have high mag-

nitudes spread over the whole spectrum and time while more instrumental based styles, like

electronic or classical produce more unbalanced powerspectra with a tendency to higher mag-

nitudes in the lower frequencies.

16

Figure 2.1: The figure below shows a signal (blue) and three window functions (red) with no
overlap. For each segment the window function is multipied with the signal and a DTFT is
applied.

Source: IFN Magdeburg

Figure 2.2: Figure showing logarithmic plots of powerspectra of different musical styles. The
spectra were generated using a hamming window function, segment size of 23 milliseconds and
an overlap of 50%.

17

2.3.2 Acoustical Features

2.3.2.1 Timbral Texture Features

Many subsequent feature use the magnitude of the power spectrum therefore we in-

troduce Mt[n] = |X(τ, n)|2. Where |X(τ, n)|2 is the squared magnitude at segment τ and

frequency bin n. Subsequently some timbral texture features which are considered relevant

by (TZANETAKIS; COOK, 2002) are presented. According to the author these features are

standard features proposed for music-speech discrimination and speech-recognition.

2.3.2.1.1 Spectral Centroid The spectral centroid is a measurement for how bright or how

dark a sound sounds. It is therefore a measurement of the spectral shape and is obtained by

calculating the centroid of the magnitude spectrum of the STFT of a track.

Cτ =

∑N
n=1Mt[n] ∗ n∑N
n=1Mt[n]

(2.5)

2.3.2.1.2 Spectral Rolloff The Spectral Rolloff is a feature that measures how much energy re-

sides in the lower frequencies. It is the frequencyRt below, which a certain fraction (commonly

0.85) of the magnitude distribution is concentrated.

Rt∑
n=1

Mt[n] = 0.85 ∗
N∑
n=1

Mt[n] (2.6)

2.3.2.1.3 Spectral Flux This feature is defined as the squared difference between the magnitude

of two frames of the powerspectrum. The spectral flux is a measurement of local change in the

powerspectrum:

Ft =
N∑
n=1

(Mt[n]−Mt−1[n])2 (2.7)

2.3.2.1.4 Time Domain Zero Crossings This feature describes the average of how many times

the signal crosses the zero amplitude line. It is used as a measurement of noise in the signal.

18

The sign function returns 1 for positive numbers and 0 for negative numbers. x(n) is the time-

domain signal for segment τ

Zτ =
1

2

∑
n=1

N |sign(x(n))− sign(x(n− 1))| (2.8)

2.3.2.1.5 Mel-Frequency Cepstral Coefficients MFCC are features that are also based on the

STFT. The FFT bins are transformed using triangular filter to fit into Mel Frequency bins. This

features have been widely used in speech recognition systems but have also proofed very useful

for musical timbre description(LOGAN et al., 2000). Later we will present how these features

are motivated and calculated in detail.

2.3.2.2 Rhythm Features

2.3.2.2.1 Fluctuation Patterns Fluctuation Patterns also called Rhythm Patterns are psycho-

acoustic, time independent features matrices which describe loudness modulation on various

different frequency bands(RAUBER; PAMPALK; MERKL, 2002). These features have been

adjusted to include research about the human perception of audio signals. How these are cal-

culated and how research concerning human perception influences these features will be shown

later in this work.

2.3.2.2.2 Rhythm Histograms Rhythm Histograms are based on Fluctuation Patterns and present

a simpler representation of them(LIDY; RAUBER, 2005). In contrary to FP these feature do

not store rhythmic information on different bands. The modulation magnitudes for all frequen-

cies are summed up to obtain a histogram of rhythmic energy per modulation band. Figure 2.3

shows the rhythm histograms from the above shown STFT spectra. Observe as electronic style

has two peaks at 150 and 400 bpm representing mostly bass and percussive features. Whereas

the other features are more balanced, they still have their respective peaks at modulation bands

typic for their genre.

19

Figure 2.3: Figure showing 4 example plots of rhythm histograms.

2.4 Clustering Techniques

Ensuing we will present some popular clustering techniques which are similar to the

ones we will be using in our approach. Clustering means finding groups of data points in

a multidimensional space, whose inter-point distances are small compared with distances to

points of other groups(BISHOP, 2006).

2.4.1 K-means

K-means is a well known centroid based clustering technique. To explain this algorithm

some notation is introduced. It will be assumed that the number of clusters K is given. For

each cluster we define a set of vectors µk with k = 1, . . . , K. Let‘s assume now that these

µk represent the centres of our K clusters. The goal is to find an assignment of data points to

clusters as well as find the best possible centres for these clusters. To describe the assignment of

data points to cluster we introduce for each data point xn a set of binary variables rn,k ∈ {0, 1},

with k = 1, . . . , K. If xn is assigned to cluster k then rn,k = 1 and rn,j = 0 for all j 6= k. We

20

can than formulate an objective function:

J =
K∑
n=1

K∑
k=1

rn,k ‖xn − µk‖22 (2.9)

These represents the squared distance for each point to it’s assigned cluster centre. To

minimise the objective function two steps are made. By repeating this two steps convergence to

a local minimum is assured(BISHOP, 2006):

1. Optimise the assignment of the data points to the centres by choosing the nearest center.

rn,k =

1 if k = arg minj ‖xn − µj‖22

0 otherwise
(2.10)

2. Optimise position of centres. J is a quadratic function of µk to minimise this function we

set it’s derivative to zero and solve for µk so we obtain:

µk =

∑
n rn,kxn∑
n rn,k

(2.11)

2.4.2 Multivariate Gaussian Mixtures Models

A mixture of gaussians is a probabilistic model that uses a superposition of K Gaussian

densities. This distribution can be used to model almost any continuous density very accurately

by using the right amount of components:

p(x) =
K∑
k=1

πkN (x|µk,σk) (2.12)

as can be seen above each component has it’s own mean µk and it’s own covariance Σk.

πk are called the mixing components and govern the form of the distribution. As all probability

density function have to be positive we can infer πk >= 0 and by integrating 2.12 we get:

∫
p(x)dx =

K∑
k=1

πk

∫
N (x|µk,Σk)dx

1 =
K∑
k=1

πk

(2.13)

as the integrals of probability densities are normed to be 1, we get a further constraint. It

21

holds that 0 ≤ πk ≤ 1 hence πk can be considered a probability itself and is known as the prior

probability of picking the kth component.

Now to find the right parameters of such a mixture distribution to fit the data we can

maximise the logarithmic likelihood over all N data pointsX ∈ RN × RD, which is given as:

ln p(X|π, µ,Σ) =
N∑
n=1

ln(
K∑
k=1

πkN (xn|µk,σk)) (2.14)

This formula is kown to have no closed-form analytical solution (BISHOP, 2006) and

can therefore only be estimated using an algorithm known as expectation maximisation. In this

work we will use a neural network called Incremental Gaussian Mixture Network to estimate

the number of components and their respective parameters for each component automatically.

It also uses the expectation maximisation algorithm and some heuristics to add or remove com-

ponents incrementally. For more details and explanations on this algorithm (HEINEN; ENGEL,

2010) should be consulted.

To use a Gaussian Mixture Model for clustering it is sufficient to assign each datapoint,

after fitting the parameters, to the component corresponding to the highest posterior probability

p(k|x), as given by the Bayes’ theorem:

p(k|x) =
πkN (x|µk,σk)∑
l πlN (x|µl,σl)

(2.15)

2.5 Psychological and Human Aspects

2.5.1 Music Similarity

As seen above to give recommendation, a definition of similarity is inevitable. Many

studies have been made concerning music similarity. It was soon noticed that human perception

of music similarity does not comply with the definition of an Euclidean metric(BERENZWEIG

et al., 2004). Furthermore music similarity is perceived very subjective by most individuals.

Often the perception of similarity is influenced by current mood as well as by the amount

of interested someone has in a certain style of music. It is often perceived that people who

aren’t interested in a certain style perceive all music as "the same". Moreover music has many

distinct dimensionalitys such as tempo, rhythm, tonality, genre, melody, geographical origin,

lyric content, and much more (BERENZWEIG et al., 2004). This permits music similarity to be

interpreted on many different dimensions, adding complexity to the problem. In this approach

22

we will limit these dimension to acoustic similarity.

2.5.2 Personality and Cultural Background concerning Musical Perception

Most of us have experienced how cultural background or personality influence musical

taste and perception. For example there has always been a cultural bias against popular music.

Nowadays lesser than 50 years ago. Some research concerning preferences in musical styles,

published before 1950, contains statements that defines popular music as "music that is ranked

by critics as tawdry, banal, insipid"(GERNET, 1940).

Also personality influences preferences in musical styles. In 1939, Burt published re-

search which subjected individuals to introvert versus extrovert and stable versus unstable per-

sonality tests as devised by Eysenck. He came to the conclusion that stable extroverts prefer

solid predictable music in contrast to stable introverts who enjoy listening to more cognitive

classical and baroque styles. It is also interesting that a study conducted in Japan shows that

japanese adolescents are more likely to enjoy listening to classical or jazz music than Americans

of the same age (WELLS; TOKINOYA, 1998). It was also shown that heavy metal music is

generally disliked because of social stigmata associated with it. Another study shows that there

are tempo preferences between social groups (UITDENBOGERD; SCHYNDEL, 2002). It was

also shown that women are more interested in music than men. Moreover it has been shown

that people prefer musical styles which they were listening to during a critical period of their

lives at an average age of about 23.5 years. Hence it can be seen that there exist a lot of factors

which might influence how music is perceived differing form individual to individual.

2.6 Related Approaches

It should be mentioned that there exists other techniques besides analysing audio data.

Noteworthy is the work (VEMBU; BAUMANN, 2005) which tries to make music recommen-

dation by textual mining album reviews. Another interesting approach is to use social tagging

websites to retrieve tags for tracks, like done by (HARIRI; MOBASHER; BURKE, 2012). Us-

ing data generated by humans about a musical piece allows to include personal and cultural

context into features, which can be very useful as these backgrounds affect how music is per-

ceived. (YOSHII et al., 2008) could achieve very good results combining CF models with

content based approaches. This work will focus on a content based approach and evaluate more

23

complex feature descriptors extracted form music. Furthermore the evaluation will be done on

a bigger and less biased dataset across all genres.

24

3 THE APPROACH

In this work it is assumed that acoustic similarity can be used to recommend musical

pieces to a user. It is also assumed that the music similarity can be modelled using an euclidean

metric for simplicity reasons. The approach presented here makes use of audio features as used

in MIR which have been shown as being good descriptors of musical features. These features

are then compressed in their dimensionality and presented to a SOM. After training the network

we can assign each track in our database to a cluster. New unknown tracks can also be clustered

immediately as the neural network has already been trained using our current database. Hence

allowing this recommender system to work online. New tracks can therefore be recommended

instantly without having to wait for sufficient user data about them being available. This cluster-

ing is then used as a similarity measure between tracks. We then examine a users previous likes

and their relative distribution among these clusters to give recommendation on similar tracks.

A brief overview over the whole system is shown in Figure 3.12

3.1 Data Acquisition

It proofed quite difficult to obtain a dataset for this approach. Most datasets provided

for music information retrieval are very small and provide no user data at all. Furthermore they

are often limit to a unrealistic number of genres. We will describe how a realistic dataset was

constructed to provide audio as well as user preference data.

3.1.1 Data Sources

To obtain audio data as well as user data for evaluation, a subset of the Million Song

Database (BERTIN-MAHIEUX et al., 2011) was used as it provides sufficient metadata as

well as track ids from services like 7digital to obtain preview audio. Furthermore we used

the ThisIsMyJam archive dump(JANSSON; RAFFEL; WEYDE,) to get user data on tracks.

ThisIsMyJam was a social music website where users could post their current favourite track

from various sources. It was possible to follow other users as well as to like other users jams.

We preferred this dataset over the TasteProfile dataset. As it contains explicit likes from users

in contrary to listening history which also presents preferences but in a implicit form.

25

3.1.2 Constructing the subset

As Audio as well as user data is needed we constructed a subset of the MSD to include

all these requisites. This subset was constructed as follows:

1. The ThisIsMyJam dump likes file was constrained to obtain a list of likes which refer to

songs known to the MSD. To achieve this we used a mapping from jam ids to MSD ids

provided by the LabROSE.

2. To limit computational costs we randomly sampled 250 users from this data. This 250

users made 14489 likes which matched to 8496 distinct MSD tracks.

3. To get audio data for each track the 7digital API was queried by preferring track ids

obtained from the MSD if available. If not available album id, artists ids or text search

where used to find the correct audio file. 7digital provides preview audio files with a

length of 30 to 60 seconds. After querying it was possible to obtain 8003 audio files.

4. we restrict our subset of likes and tracks to the tracks, for which audio previews could be

obtained.

Finally the subset consists of 250 distinct users with 13891 likes and 8003 distinct tracks

with audio files.

3.1.3 Genre Distribution

For about 6000 tracks genre attributes could be obtained using the tagtraum genre anno-

tations (SCHREIBER, 2015) as well as the MAGD dataset(TU-WIEN, 2014). In Figure 3.1 we

can see that the data is very unbalanced and almost 50% are Pop/Rock songs.

3.2 Audio Features

The features chosen to form feature vectors for our recommender system are Fluctuation

Patterns and Mel-Frequency Cepstral Coefficients as they are popular in other research fields

and have been proven to provide good results for most musical domains.

26

Figure 3.1: Genre annotations for 6000 tracks of the constructed subset

3.2.1 Preprocessing Audio

To reduce computational complexity some preprocessing is done to reduce the input

data. First the raw audio data is combined into one mono channel. Then the audio is sampled

down to 11025Hz. Next the data is segmented into 6s chunks and intro and outro chunks are

removed. If the audio track is longer than 30s every third chunk is removed.

3.2.2 Mel-Frequency Cepstral Coefficients

MFCC is short for Mel-Frequency Cepstral Coefficients. These are short-term spectral

based features. This means they usually are time dependent and offer therefore a description of

timbre evolution over time. Although MFCCs were designed for speech recognition they also

proofed to be very useful in music analysis (LOGAN et al., 2000). The Computation of MFCCs

is oriented at the model of speech production which claims that speech is modelled by a linear

system. The excitation signal, generated by the vocal cords, is thereby enveloped by the impulse

response of the vocal tract. For speech-recognition the excitation signal is irrelevant. Important

27

is only the slow change of the vocal tract which determines the spoken sound. The folding is

converted into an addition by taking the cepstrum and can therefore be separated more easily

from the excitation (NIEMANN, 2013).

1. Calculating the Powerspectrum

The powerspectrum of the preprocessed audio is computed by squaring the spectrum

obtained from STFT as described in 2.3.1, using a segment size of 256 samples which

corresponds to 23ms and a Hanning window with 50% overlap, yielding the matrixX .

2. Taking the logarithm

Little is found about the motivation of this step in literature. Most probably it accounts

for the phenomena that loudness is not perceived linear.

X ′(i, j) = log(X(i, j)) (3.1)

3. Map to Mel Scale

The coefficient of the logarithmic power spectrum X ′ are summated into mel bin using

triangular filter banks. The correlation between frequency and perceived pitch is none

linear and can be expressed by:

fmel(fHz) = 1125 ∗ log(1 +
fHz
700

) (3.2)

To obtain the triangular filter bank a linear spacing defining the desired number of mel

bins N = 40 is done in the mel domain resulting in a vector lmel containing upper and

lower limits of the bins. This vector is then transformed back into frequency domain using

the inverse of the above function fmel. To compute the right indexes a helper function

binfreq : [1, . . . , 256]→ R has to be introduced. This function shall return the associated

frequency considered with the bin index.

lHz(i) = f−1mel(lmel(i))

idxi = {j|binfreq(j) ≥ lHz(i) ∧ binfreq(j) < lHz(i+ 1)}

Cmel(i, j) =
∑
k∈idxi

X ′(k, j)

(3.3)

4. Apply the DCT

The frames in Cmel are usually highly correlated. To reduce the number of parameters

usually a Discrete Cosine Transform (DCT) is applied to each frame to decorrelate the

28

components. Theoretically the DCT is an approximation to the Principal Component

Analysis and is used as it is fast and domain independent. Only the first 13 cepstral

feature are kept from each vector.

3.2.3 Fluctuation Patterns

As mentioned above Fluctuation Patterns provide a time independent feature for music

rhythm description, while considering characteristics of human auditorial perception. It fol-

lows a description of multiple steps on how to compute these features and how these steps are

motivated. The process of computing fluctuation patterns can be split into two major parts:

Calculating the Specific Loudness Sensation and computing the Rhythm Patterns, as proposed

by (PAMPALK, 2001).

3.2.3.1 Specific Loudness Sensation

In this step some psychoacoustics scales and filter are applied to the STFT of the pre-

processed audio data. This involves 6 steps:

1. Calculating the Powerspectrum

The powerspectrum of the preprocessed audio is computed by squaring the spectrum

obtained from STFT as described in 2.3.1. Using a segment size of 256 samples which

corresponds to 23ms and a Hanning window with 50% overlap.

2. Bark Critical Bands

According to (FASTL; ZWICKER, 2007) our inner ear separates certain frequencies and

concentrates them on certain parts of our basilar membrane. So the inner ear can be

regarded as a set of asymmetrical bandpass filters. These bandpass filters have centre

frequencies related to the ones of the bark scale. The position and width of these bands

has been analysed in psycho-acoustical experiments by using a loud tone to mask a quiet

one. At high frequencies the frequency difference of these two tones must be greater

so that listeners can hear the quiet tone. At lower frequencies the quiet tone can be

perceived at smaller differences. Moreover these masking effects are closely related to

noticeable frequency variations. Therefore two tones within a critical band are very hard

to distinguish. Listeners usually can’t tell which one of the two is higher or lower.

29

Figure 3.2: Bark scale

3. Spectral Masking

As mentioned above a louder tone can mask a quieter one, if they are played simulta-

neously or shortly before or after. This can also occur across critical bands and is a

natural phenomena that helps to reduce noise. A spreading function has been proposed

to account for the effects of simultaneous masking(SCHROEDER; ATAL; HALL, 1979;

PAMPALK, 2001). The spreading function is applied to each frame of our critical band

rate spectrum matrix and describes the influence of the ith band on the jth, visualised in

Figure 3.3:

S(i, j) = 15.81 + 7.5(i− j + 0.474)− 17.5
√

1 + (i− j + 0.474)2 (3.4)

To apply the spreading function to each frame of our matrix we can simply multiply the

spreading matrix with the critical band rate spectrum matrix B:

Bs(i, t) =
24∑
j=1

S(i, j)B(j, t), this is equivalent to

Bs = SB

(3.5)

In Figure 3.4 is demonstrated how spectral masking affects the critical bands. Higher

frequencies are affected more than lower ones, these can be observed especial in the pro-

file plot. The two right plots of the vertical matrix demonstrate that it only affects single

frames. This step has been shown to controversial as it might have negative influence on

the performance of this feature (LIDY; RAUBER, 2005).

30

Figure 3.3: Logarithmic plot of S, notice the asymmetrical shape

Figure 3.4: Examples of how spreading affects the critical bands

31

4. Decibel Scale

To proceed the values of our matrix BS have to be converted into the decibel scale. The

decibel is a logarithmic scale which measures the ratio between two numbers. As the

human hearing is able to perceive a rather large range from the lowest to the loudest

sound, in terms of sound pressure level, approximately 1012 : 1. The decibel scale offers

a much more convenient way to represent these numbers by mapping those to a more

manageable range between 1 and 140. As the decibel scale is a relative scale it uses

instead of a zero point, a reference point, which can be arbitrary. Sound amplitudes are

most often measured using sound pressure levels (SPL) as are our digital audio archives

based on SPL which measures amplitudes in terms of dynes/cm2 or Pascal. Usually

the reference point used for this unit is 20µPa as these represents the hearing threshold

of a sound at 1000kHz (LASS, 2012) which is, as already mentioned, quite popular in

acoustics. To calculate decibels based on sound pressure levels from audio archives some

adjustments have to be made. As our data is represented in bits we will define the lowest

possible sound as 1 (or −1, as we use magnitudes). The conversion from SPL to decibel

is given by:

dB(SPL) = 20 ∗ log(
p

p0
) (3.6)

Whereas p0 is the hearing threshold defined as 1. By applying this formula to each entry

of our matrix BS a loudness matrix is obtained. It is necessary to define all entries lower

than one to 1 to avoid the singularity of the log function.

B′S(i, j) =

1, if BS(i, j) < 1

BS(i, j) otherwise

LdB(i, j) = 20 ∗ log10(B
′
S(i, j))

(3.7)

5. Phon Scale

How we perceive loudness at different frequencies is not linear. To account for this effect

the phone scale is introduced which allows to map our matrix’s values to phon. The phon

makes loudness sensation independent from the frequency. A tone at any frequency with

40 phon is defined to be as loud as a 40dB tone at 1kHz. The equal loudness contours

in 3.5 have been obtained by experiments involving single tones. These contours achieve

a minimum around 2kHz to 5kHz which are the frequencies humans are most sensible

to. Outside these interval the curves rise rapidly corresponding to decrease in hearing

32

Figure 3.5: The phone contours

sensibility outside this interval. To obtain the phon representation Lphon of the loudness

matrix LdB, we define the equal loudness contour matrix Celc(i, j) which contains the

in Figure 3.5 plotted curves, with the decibel value of jth contour at the ith critical band

(represented as black dots in Figure 3.5). The corresponding phon values can then be

interpolated, using cphon = [3, 20, 40, 60, 80, 100] as follows:

1. Cast values below contour of phon 3 to smallest available value.

L′db(i, t) = max(Ldb(i, t),Celc(i, 1))

2. for each entry find upper contour index

leveli,t = arg min
j

(L′db(i, t) < Celc(i, j))

3. Linear interpolation first step: ri,t being the relative distance to the lower level

ri,t =
L′db(i, t)−Celc(i, leveli,t − 1)

Celc(i, leveli,t)−Celc(i, levelsi,t − 1)

4. Linear Interpolation second step: compute interpolated value

Lphon(i, t) = cphon(leveli,t − 1) + ri,tcphon(leveli,t)

33

Figure 3.6: Relation between loudness sensation and loudness level

5. Sone Scale

Notice that phon scale is not linear as doubling the phon does not result in a doubled

loudness perception. To transform the phon unit into a linear scale the sone scale is used,

which represents perceived loudness in a linear scale. How the phone scale relates to the

sone scale can be seen in Figure 3.6. The conversion is calculated as follows:

Lsone(i, t) =

2
1
10

(Lphon(i,t)−40) if Lphon(i, j) > 40

(1
40
Lphon(i, t))2.642 otherwise

(3.8)

3.2.3.2 Rhythm Patterns

Until now the obtained feature matrix from last section Lsone is still time dependent.

Shifts in the signal of the same music would result in highly dissimilar matrices. Making this

feature vector unsuitable as a descriptor. Hence Rhythm Patterns are introduced to obtain a time

invariant representation of the loudness sensation.

If we examine the loudness of a specific band we will observe that it rises and falls

several times. This is likely to occur in a periodical pattern, which is perceived as the rhythm.

Usually instruments follow a rhythmic pattern, which is very accurately timed, as perceivable

in the critical bands. This can be seen in Figure 3.7m which depicts a plot of several critical

bands using Lsone of an electronic music track. As we can see there is some periodicity es-

pecially in the lower bands as electronic music uses mostly simple rhythms at low frequencies

(commonly known as beats). It is also noteworthy to examine all these critical bands overlaid

in a single plot, as peaks repeatedly meet at a certain periodicity, which can be interpreted as

34

a musical bar, a time segmentation most musicians use to time their compositions. If we con-

sider this periodical pattern as a linear combination of sinuids in a discrete sampled domain we

can use the FFT to reconstruct the amplitude corresponding to each frequency for each individ-

ual critical band. A 3-step approach, proposed by (RAUBER; PAMPALK; MERKL, 2002), is

presented subsequently to construct time independent rhythm descriptors with psycho-acoustic

considerations.

1. Amplitude Modulated Loudness

As described above each critical band is likely to have some periodic phenomena. Con-

sequently we will analyse the underlying modulation frequencies. These analysis is done

for each 6 second segment, described in 3.2.1. As a result of the STFT we have time

quanta of 12ms (considering the overlay of the windows). Applying a FFT on each of

this 6 second segments will result in a spectrum with frequency bin from 0Hz to 43Hz

with an accuracy of 0.17Hz. Note that a modulation frequency of 43Hz corresponds to

approximately 2600 beats per minute (bpm). The modulation amplitude is calculated as

follows:

∆Ls(i) = FFT (Lsone(i, s ∗ [1, . . . , 512])) (3.9)

With Lsone(i, s ∗ [1, . . . , 512]) being the ith critical band of sth 6s segment.

2. Fluctuation Strength

the hearing sensation produced by slow amplitude fluctuation, usually less then 20/s, is

called fluctuation strength. Sensation induced by faster fluctuations are called roughness

(FASTL, 1982). It was discovered that fluctuation strength is most intense around mod-

ulation frequencies of 4Hz an gradually decreases until reaching 15Hz. After 15Hz the

sensation of roughness starts to increase. It was shown that the absence of roughness is

a prerequisite for musical consonance (FASTL, 1982). To take the unequal sensation of

fluctuation strength into account a weighting function f : R → [0; 1] based on Fastl’s

model is introduced an shown in Figure 3.8. With this function fluctuation modulations

around 4Hz are emphasised.

Fs(i, j) = ∆Ls(i, j) ∗ f(j) (3.10)

35

Figure 3.7: Loudness modulation in certain critical bands of an electronic music piece. Observe
the periodicity especially in lower bands and in the last plot.

36

Figure 3.8: fluctuation strength model

As after 15Hz roughness starts to increase by plotting a summary of all data of fluctuation

patterns, it can be observed that after 10Hz there is hardly any activity (PAMPALK,

2001). Consequently only the first 60 values which correspond to 10Hz are used.

3. Modified Fluctuation Strength

At this point we have time independent rhythm descriptors which would already provide

good results. To further improve this features (RAUBER; PAMPALK; MERKL, 2002)

applies gradient filter to enhance vertical lines in the matrices which occur in beat rich

music styles. Afterwards a gaussian filter is applied to blur across critical bands as the ex-

act bands are irrelevant for music similarity. This measures reduce the Euclidean distance

between two similar music pieces, which is a desired effect.

3.2.3.3 Examples of Modified Fluctuation Patterns

In this section we will present some examples of fluctuation patterns and discuss their

similarities and distances in music space. Figure 3.9 shows 4 fluctuation pattern matrices of

4 different tracks each of a distinct musical style and Table 3.1 shows the distances between

the corresponding normalized and compressed fluctuation patterns. Observe how Hip Hop and

Electro tracks produce kind of similar fluctuation patterns as they both have a very bass and

beat based rhythms. They still are distinct as the Hip Hop track has a lot of fluctuation also

in higher bands but they are compared to the beat loudness rather small and spread over all

frequencies therefor less visible in the plot. The Electro track has only a smaller peak at around

37

Figure 3.9: Examples of Fluctuation Patterns

400bpm in higher frequencies, which are percussive instruments like hi-hats. Therefore they are

still distinct enough as can be seen in distance matrix they have the biggest distance between

all pairs. It might seem surprisingly that metal and classic music have the lowest distance

between each other, but observing the fluctuation patterns we can see that they are quite similar

in rhythmic composition. Beethoven’s Piano Sonata is a quite lively piano pieces with many

different notes played in fast sequences with varying loudnesses. This can be interpreted as

similar to a Metal track which usually has a lot of guitar chords played in fast sequence. Of

course the metal track’s modulation frequencies reside in lower frequencies which is clearly

visible in the plot. Still there are quite some differences for example the classic tracks has many

peaks whereas the metal track as a single beat around 250bpm which is most probably the bass

drum. Also the scales are very different the metal track is perceived almost double as loud as

can be seen on the values on it’s colour scale.

38

Table 3.1: Distance matrix between sample tracks

Clas
sic

Elec
tro

nic

M
eta

l
HipH

op

Classic 0.000 5.824 1.694 4.584
Electronic 5.824 0.000 5.782 6.215

Metal 1.694 5.782 0.000 4.608
HipHop 4.584 6.215 4.608 0.000

3.3 Feature Combination

Now there exists a Fluctuation Pattern matrix for every 6s chunk of every track in the

database and for every 6 second chunk exists also a matrix with MFCC containing a timbre

vector for every 23ms. As these data amounts are still to big to handle for most clustering algo-

rithms the data has to reduced. It arises the question: from the 6s chunks which one represents

best the songs rhythm and how can we express the song’s timbre dynamically without needing

big amounts of data? In the following section we will present various approaches trying to

achieve this. In the Evaluation chapter we will see how these different strategies preform.

3.3.1 Fluctuation Pattern Dimensionality Reduction

The Fluctuation pattern matrix has dimenionality of 1440 as we have 24 frequencies in

the first dimension and 60 modulation frequencies in the second dimension. As this is to big to

achieve a stable clustering, the data is reduced using PCA to a dimensionality of 60.

3.3.1.1 Chunk Selection

As shown by (PAMPALK, 2001) the simplest and quite good preforming method to

compress all chunks is to calculate the median between all 6s chunks. Leaving a single fluctu-

ation pattern matrix to be further compressed using PCA.

3.3.1.2 Principal Component Analysis

The principal component Analysis or PCA is a method used here for dimensionality re-

duction. The PCA is a projection of data of dimensionality D into a subspace of dimensionality

M while minimising the average projection cost which is defined as the squared distance be-

tween data points and their projections. To calculate the PCA we have to select a basis of vectors

39

so that the cost function is minimised. To do this let’s assume we have complete orthonormal

basis of D-dimensional vectors ui. Then each data point xn can be represented as:

xn =
D∑
i=1

(xTnui)ui (3.11)

To achieve dimensionality reduction we have to restrict the number of basis vectors to

be M . Therefore we can write the projected points x̃n as:

x̃n =
M∑
i=1

zniui +
D∑

i=M+1

biui (3.12)

Here zni depends on each datapoint and basis vector and bi are constants. Our projection

cost function is defined as:

J =
N∑
i=1

‖xn − x̃n‖2 (3.13)

By setting the derivatives of J to zero and substituting zni and bi we get an expression

of the distortion measure dependent only on ui (BISHOP, 2006)

J =
D∑

i=M+1

uTi Sui (3.14)

To minimize this term we have to avoid the trivial result ui = 0, to do this we introduce

the constraint uTi ui = 1 leading to an modified cost function:

J̃ =
D∑

i=M+1

uTi Sui + λi(1− uTi ui) (3.15)

By setting the derivative to zero we can see that this terms reduces to choosing ui to be

an eigenvectors of the covariance matrix.

Sui = λiui (3.16)

using this observation and substituting this into 3.14 get our final projection costs func-

tion:

J̃ =
D∑

i=M+1

λi (3.17)

We can minimise this function by choosing the residual vectors ui, with i = M +

40

Figure 3.10: Reconstruction of compressed fluctuation pattern

1, . . . , D, to be the vectors with the corresponding smallest eigenvalues. Therefore we have to

choose as basis vectors the vectors with the biggest eigenvalues in S. This can be done with

a singular value decomposition which returns a matrix with eigenvalues on the diagonal sorted

by size. To project a given vector xn it is sufficient to multiply it with a matrix that has the M

used eigenvectors of S in it’s rows.

3.3.1.3 Quality of PCA

The quality of the PCA can be visualised by projecting one of the compressed vectors of

dimensionality M of size 60 back to it’s original dimensionality D of size 1400 and comparing

the results. This has been done and visualised in Fig 3.10. It can be seen that the most important

features have been preserved even though the dimensionality has been reduced by a factor of

230. The reconstructed fluctuation pattern only got a slightly smoothened out which is a desired

result as it removes noise from the descriptors.

3.3.2 Expressing Music Timbre with MFCCs

Music timbre, also known as tone colour or tone quality in psychoacoustics, is what

makes the same tones played with same loudness on distinct instruments sound different. In

the following, three different approaches to capture dynamic evolution in music timbre are

presented. Combining these approaches will lead to 4 distinct feature vectors for music timbre

representation.

41

3.3.2.1 MFCC Deltas

Calculating the delta-cepstrals of MFCCs has been proposed in the automatic speech

recognition research community by (FURUI, 1986). In hope to add dynamic information to the

static MFCCs. These makes sense also for music as music evolves over time and these dynamics

influence the timbre perceived by humans. It was shown by (KUMAR; KIM; STERN, 2011)

that adding this dynamic component as a feature enhances the speech recognition systems it was

also shown that double-delta feature further improve the system, but in this work only single

delta features are used. To calculate the delta features the following formula was used:

Dmel[n] = Cmel[n+m]−Cmel[n−m] (3.18)

WhereCmel[n] is a single row vector at position n of the MFCC matrix. The variable m

is usually in practice between 2 or 3.

3.3.2.2 Concatenated MFCCs

Another idea to represent dynamics is to concatenate multiple MFCC vectors into one

vector. Describing a short changes of timbre for a musical piece. This has been done with ten

such vectors leading to a feature vector of size 130. Consequently representing timbre evolution

over a timeframe of 230ms. As the double-deltas have shown to provide further improvement

the same was done for the above calculated MFCC deltas. As a feature vector of 130 is still big,

two more PCA over all concatenated MFCCs and Delta MFFCs were executed and the data was

compressed to a dimenionality of 40.

3.3.2.3 Medians

As medians have proofed successful with Fluctuation Patterns and provide a simple and

cost effective way of compressing the various vector into a single one, the medians of MFCCs

as well as Deltas are computed and stored for feature combinations.

3.3.2.4 Polyphonic Timbre

It has been shown that MFCCs can be described very good with GMMs. But the methods

used to compare GMMs are rather numerical unstable. To overcome this problem a polyphonic

timbre representation for MFCCs was used as proposed by (YOSHII et al., 2008). These fea-

tures were used in a hybrid recommender system approach and delivered very good results on

42

Table 3.2: Feature Vectors
Abb. Combination Dimensionality
A Fluctuation Patterns Compressed + Gaussian Representation of Concatenated MFCC 90
B Fluctuation Patterns Compressed + Concatenated MFCC Median 100
C Fluctuation Patterns Compressed + Concatenated MFCC Delta Median 100
D Fluctuation Patterns Compressed +(Concatenated MFCC + Concatenated MFCC Delta) Median 140
E Fluctuation Patterns Compressed 60
F Concatenated MFCC Medians 40
G Concatenated MFCC Delta Median 40
H Concatenated MFCC + Concatenated MFCC Delta Median 80
I Gaussian Representation of Concatenated MFCC 30
J Fluctuation Patterns Raw 1440

japanese music hits. This methods describes a songs timbre as a vector of weights for each

gaussian component in a track. To calculate the polyphonic representation of timbre a IGMN

(HEINEN; ENGEL, 2010) instance was trained over all concatenated MFCCs of all songs re-

sulting in 30 components. These proofed to be quite difficult due to numerical problems caused

by the dimensionality of the data. Therefore the compressed version of the concatenated MFFC

version was used. Each song is then represented as 30 dimensional feature vector u describing

the sum of the posterior probabilities for each vector belonging to each component:

u(i) =
1

|M |
∑
m∈M

P (i|xm), for i = 1, . . . , 30 (3.19)

With m being the single feature vectors of one song and P (i|xm) being the posterior

probability of xm belonging to the ith gaussian component.

3.3.3 Building Feature Vectors

From the above calculated features some combinations between them are combined to

form the final track representations. The Table 3.2 illustrates how the vectors are combined,

their resulting dimensionality as well as an abbreviation for them to be used subsequently.

3.4 Clustering

Given the above feature vectors it is necessary to order them into distinct clusters. This

should be done considering auditory similarity of the tracks. To perform clustering the SOM al-

gorithm was chosen as it is a sophisticated algorithm which can perform unsupervised learning

and offers good ways to visualise high dimensional data. This is important as our data contains

43

no explicit information about similarity. Thus the algorithm used must learn by itself which

tracks are similar and which are not. After training the SOM we perform a KMeans clustering

on the trained codebook to further reduce the amount of clusters. We use the SOMpy imple-

mentation by (MOOSAVI, 2014), which proofed extremely fast and useful in visualisation tasks

but uses heuristic which might not be optimal suited to this problem. Therefore it was tried to

increase the number of training epochs with moderate success.

3.4.1 Self-organising Map Algorithm

The Self-organising Map as introduced by (KOHONEN, 2012) is neural network model

inspired by certain regions of the brain which underly a 2 dimensional organization. It usually

employs a two-dimensional grid of neural cells or neurons, which are all interconnected with

each other. This neurons are identified by their position in two-dimensional space r ∈ A ⊂ R2.

Each cell is provided with the actual input v ∈ Rd and has an weight vectorwr ∈ Rd, describing

the synaptic strengths for each input element from v, associated to it. A single iteration of the

algorithm, in which all available data vectors v are presented to the net is described in the

following steps:

1. Initialization

To initialise the SOM appropriate values for allwr have to be chosen. This can be random

values if no priori information about the data is available. In this approach the principal

components (see 3.3.1.2) of the data are used to initialise the weight vectors which leads

to a faster convergence and therefore to lesser iterations.

2. Choice of Input

A random data vector v is chosen from all available vectors to be presented to the network.

3. Excitation Response

The most excited neuron is called the best matching unit or the excitation centre. To

calculate a neurone excitation the euclidean distance to its weight vector is used. The

neuron with the weight vector of the smallest distance to the current input v is selected as

follows:

‖v −wr′‖2 ≤ ‖v −wr‖2 ,for all r ∈ A (3.20)

4. Adaptation Step

This learning step is carried out by updating all neurons weight’s based on a centroid

44

calculation between old and new synaptic strengths as shown below:

wnew
r = wold

r + η(t)hrr′(t)(v −wold
r) (3.21)

and continue at step 2.

With η(t) being the hebbian learning term, a slowly decreasing function over time t as proposed

by (HEBB, 2005) and used since then throughout many network models. The term hrr′(t)

denotes a neighbourhood topology and usually a gaussian function with decreasing radius over

time is chosen. An example for this might be:

hrr′ = e
−(r−r′)2

2σ2
E (3.22)

σE is thereby again a decreasing function over time, which determines the neighbourhood ra-

dius. It starts at rather large value σ0 until reaching a very low value after many iterations.

3.4.2 Observations

For each feature vector as presented in Table 3.2 we initialise a SOM with a two-

dimensional topology of (20 × 20) neurons and present all available feature vectors to it. An

histogram for each SOM depicting the number of tracks associated of the 400 nodes can be seen

in Figure 3.11. It can be observed that MFCC Medians features with MFCC medians tend to

produce more balanced clusters whereas features using Fluctuation Patterns tend to have more

variance in the cluster size. It is hard to tell which might perform better only from this results

as little is known about the dataset. Considering the genre distribution there should be 3 bigger

clusters and a lot of smaller ones. The plot for A ,B and D as well as F and J show the formation

of some bigger clusters. To reduce the size of the clusters a K-Means algorithm is approached

on the weight vectors of each some clustering our data into 40 distinct clusters. Each track is

saved in a database file containing which node it belongs to for each SOM as well as to which K

Means cluster it belongs to. In the next chapter we will evaluate using the dataset of user likes

which features perform best.

45

Figure 3.11: SOM clusters using distinct feature vectors

46

3.5 Recommender

To select recommendations for a user the recommender receives a list of tracks the user

has liked in the past Lu. To do this the recommender does not have to know the track before. If

the track is unknown the audio is analysed and the track projected onto a cluster using the SOM

algorithm like presented in the last section. To increase the neighbourhood size we perform

a clustering of the codebook with the k-Means algorithm. For each liked tracks the cluster

is looked up. Then the clusters are ordered by frequency, in which they appear, in the user’s

likes. In the following step all tracks belonging to these clusters are retrieved and presented

as recommendations after removing the initial likes. Figure 3.12 shows the whole process in a

simple diagram.

3.5.1 Preferences in Musical Space

In Figure 3.13 we see two different user’s preferences mapped onto the k-Means clus-

tered codebook. Each number represents a single like. It can be observed how likes are clearly

concentrated in some of the clusters generated by the SOM. Thus we can conclude that similar-

ity might be a valid approach for recommending music. It is also observable that not all likes

are in clusters some likes are spread in a random manner over the map, most notably at User 1.

This is congruent with humans taste as a lot of people do enjoy bigger variety of styles. Now

User 1 has less likes than User 2 so it might be that this user could enjoy music from the clusters

he has already likes in.

47

Figure 3.12: Implemented recommender system

48

(a) User 1 (b) User 2
Figure 3.13: Comparison of two users likes in musical space

3.5.2 Score Calculation

As one cluster usually holds a big amount of tracks a score is introduced. To calculate

the score of a given recommended track t in it’s cluster Ct the following formula is used:

s′u(t) = min(
{
‖li − t‖2

∣∣ li ∈ (Ct ∩ Lu)
}

)

su(t) =
1

s′u(t)

(3.23)

s′u(t) presents the minimum distance of the new track to one of the users likes in the

track’s cluster. This distance is inverted to give a ascending score criterium with decreasing dis-

tance. This can be done for each cluster and finally the list of recommendations are sorted using

the score criterium. As this step is quite computationally expensive it has been implemented

to be optional as selecting tracks from a cluster usually already satisfies a certain proximity to

other liked tracks in the cluster. As a solution to this dilemma a whole distance matrix between

all tracks of a cluster could be pre-calculated what would reduce computational complexity.

Finally the known user likes are removed from the recommended set.

49

4 EVALUATION

To evaluate the presented algorithm 10% of each user’s likes are hidden. Then the differ-

ent evaluation metrics are calculated for each user. This user scores are averaged and presented

in the following tables. Furthermore for reasons of comparison we also evaluate a state of the

art CF algorithm (LOW et al., 2014). Most tables also include a random recommender to pro-

vide a baseline algorithm. This random recommender randomly samples a set of tracks from all

available tracks and subtracts the already known user likes.

4.1 Significance

We use the sign test to prove that our algorithm performs better than the random recom-

mender. The sign test gives the probability that algorithm A is not truly better than algorithm

B. It is counted how often Algorithm A outperforms algorithm B nA and vice versa nB, while

n = nA + nB. We use as outperform criterium the number of recommended tracks, which

appears in the evaluation set. To calculate the significance the formula 4.1 is used. To fur-

ther evaluate our approach we do the sign test against the random recommender. This test is

executed 10 times as the random recommenders performance might vary and the obtained re-

sults are averaged. The numbers of cluster to use was set to 40 and recommendation lists were

trimmed afterwards to save computation time. Using this parameters the recommender algo-

rithm’s performance should decrease. The obtained probabilities for each feature vector can be

observed in Table 4.1

p = 0.5n
n∑

i=nA

n!

i!(n− i)!
(4.1)

All significance levels below 0.1 have been printed bold. Usually a algorithm is consid-

ered truly better if the sign test evaluates a significance level of 0.05 or below. It can be seen

that only with feature vector H and J a significance level lower than 0.05 is achieved. As the

results for feature vector H are that surprising the experiments have been repeated. The test was

reexecuted with 50 repetitions and the results were averaged, resulting in similar probabilities.

Also feature vector A achieves sufficient significance but only at very high recommendation

lengths. Feature vector D performed quite good on in Table 3.2 but never reaches less than 0.09

significance.

50

Table 4.1: Sign Test probabilities between our approach and random recommender
N A B C D E F G H I J
50 0.83 0.32 0.71 0.64 0.25 0.47 0.57 0.07 0.75 0.45
250 0.34 0.44 0.57 0.30 0.15 0.54 0.51 0.02 0.38 0.31
1000 0.41 0.18 0.23 0.09 0.08 0.41 0.59 0.08 0.27 0.13
2000 0.06 0.17 0.22 0.11 0.20 0.47 0.49 0.09 0.33 0.04

4.2 Feature Vector Evaluation

To evaluate the feature vectors we used the recall criterium, which is explained later

in detail, see 4.3. For now it should be sufficient that it measures how many likes we could

predict in relation to all hidden likes. We evaluated different recommendation lengths as well as

number of clusters to use over all feature vectors presented in Table 3.2. The recommendation

lengths are proportional to the number of clusters usedNrecommendation = Nclusters∗50. Observe

as some of them consider rhythm and timbre as for example A and D, while delivering good

performance. Others like H, perform quite well but just consider timbre. Others like for example

E only consider rhythm and perform very good at lower recommendation lengths but seem to

weaken at very high lengths.

We choose to evaluate further metrics with H as it performed best considering signif-

icance levels. Also A will be further evaluated as it is a combination of Fluctuation patterns,

which reached significance with E and J and the descriptor I which differs in it’s representation

from the other descriptors. Finally also D will be further considered, as it reached a low signifi-

cance level and delivered best results in terms of average recall. J will not be further considered

as it’s use under realistic conditions is difficult because of it’s high dimensionality.

4.3 Measuring Usage Prediction

As we are using unary ratings the quality of recommendation is measured by introduc-

ing metrics of how useful the recommended items are to the user. When evaluating a set of

recommendations there are four possible outcomes 4.3 for the recommended and hidden items.

In offline evaluation we are forced to assume that unused items would have not been used even

if the have been recommended. This assumption is in most cases false as a user might use a

recommended item and didn’t use, or like, it because he was unaware of it’s existence. The

following evaluation metrics are proposed by (SHANI; GUNAWARDANA, 2011).

51

Table 4.2: Feature evaluation table
Clusters used Our Approach CF Recommender Random Recommender Recommendation Size

A

1 0.87%(±4.37) 0.84%(±4.34) 0.47%(±3.62) 50
5 3.86%(±9.36) 3.21%(±8.88) 3.28%(±8.93) 250
20 13.89%(±17.77) 9.73%(±13.62) 12.02%(±13.96) 1000
40 27.49%(±21.36) 18.26%(±19.34) 25.40%(±20.99) 2000

B

1 0.78%(±4.23) 0.84%(±4.34) 0.28%(±1.84) 50
5 3.68%(±8.58) 3.21%(±8.88) 3.58%(±8.83) 250
20 14.49%(±18.15) 9.73%(±13.62) 13.19%(±15.58) 1000
40 26.62%(±21.08) 18.26%(±19.34) 26.82%(±21.99) 2000

C

1 0.62%(±4.19) 0.84%(±4.34) 0.58%(±3.40) 50
5 3.72%(±9.05) 3.21%(±8.88) 2.90%(±7.79) 250
20 13.12%(±16.16) 9.73%(±13.62) 12.94%(±16.34) 1000
40 27.27%(±21.22) 18.26%(±19.34) 27.75%(±22.25) 2000

D

1 1.20%(±5.82) 0.84%(±4.34) 0.58%(±4.12) 50
5 4.16%(±11.04) 3.21%(±8.88) 3.06%(±7.99) 250
20 17.35%(±19.28) 9.73%(±13.62) 11.38%(±15.10) 1000
40 30.58%(±23.28) 18.26%(±19.34) 24.78%(±21.42) 2000

E

1 1.12%(±4.89) 0.84%(±4.34) 0.60%(±3.11) 50
5 3.80%(±9.17) 3.21%(±8.88) 2.93%(±9.00) 250
20 14.36%(±16.25) 9.73%(±13.62) 12.02%(±14.59) 1000
40 27.45%(±21.77) 18.26%(±19.34) 26.85%(±22.45) 2000

F

1 0.74%(±4.17) 0.84%(±4.34) 0.62%(±3.53) 50
5 3.53%(±8.82) 3.21%(±8.88) 3.25%(±9.89) 250
20 13.70%(±16.81) 9.73%(±13.62) 13.17%(±17.06) 1000
40 25.46%(±21.67) 18.26%(±19.34) 25.73%(±21.97) 2000

G

1 0.84%(±4.24) 0.84%(±4.34) 0.73%(±4.27) 50
5 3.75%(±9.09) 3.21%(±8.88) 3.22%(±8.95) 250
20 11.64%(±15.65) 9.73%(±13.62) 13.27%(±18.05) 1000
40 25.29%(±21.48) 18.26%(±19.34) 24.63%(±21.09) 2000

H

1 0.86%(±4.73) 0.84%(±4.34) 1.52%(±6.75) 50
5 3.61%(±8.82) 3.21%(±8.88) 2.89%(±8.17) 250
20 15.23%(±18.47) 9.73%(±13.62) 11.89%(±15.13) 1000
40 29.74%(±22.68) 18.26%(±19.34) 24.77%(±21.52) 2000

I

1 0.61%(±3.58) 0.84%(±4.34) 0.62%(±3.56) 50
5 3.08%(±8.79) 3.21%(±8.88) 3.37%(±9.25) 250
20 13.05%(±17.11) 9.73%(±13.62) 12.71%(±16.47) 1000
40 25.07%(±22.29) 18.26%(±19.34) 25.81%(±21.06) 2000

J

1 0.71%(±4.59) 0.84%(±4.34) 0.57%(±4.21) 50
5 3.82%(±9.48) 3.21%(±8.88) 2.92%(±8.41) 250
20 13.38%(±16.97) 9.73%(±13.62) 12.39%(±15.03) 1000
40 26.26%(±23.12) 18.26%(±19.34) 25.67%(±21.79) 2000

Table 4.3: Outcomes for unary ratings
Recommended Not Recommended

Used True Positive False Negative
Not Used False Positive True Negative

52

Table 4.4: Usage Predictions
Feature Vector A

N Precision Recall FPR
50 0.104%(±0.479%) 0.874%(±4.371%) 0.625%(±0.003%)
250 0.085%(±0.178%) 3.865%(±9.363%) 3.123%(±0.005%)
1000 0.082%(±0.105%) 13.888%(±17.772%) 12.494%(±0.011%)
2000 0.082%(±0.078%) 27.492%(±21.363%) 24.988%(±0.013%)

Feature Vector D
N Precision Recall FPR
50 0.104%(±0.479%) 1.204%(±5.823%) 0.625%(±0.003%)
250 0.091%(±0.196%) 4.163%(±11.044%) 3.123%(±0.006%)
1000 0.094%(±0.103%) 17.349%(±19.277%) 12.493%(±0.011%)
2000 0.084%(±0.071%) 30.575%(±23.279%) 24.988%(±0.014%)

Feature Vector H
N Precision Recall FPR
50 0.080%(±0.392%) 0.864%(±4.729%) 0.625%(±0.002%)
250 0.078%(±0.170%) 3.611%(±8.815%) 3.124%(±0.005%)
1000 0.086%(±0.109%) 15.233%(±18.470%) 12.494%(±0.012%)
2000 0.085%(±0.077%) 29.736%(±22.677%) 24.987%(±0.014%)

Precision =
|tp|

|tp|+ |fp|
(4.2)

Recall(True Positive Rate) =
|tp|

|tp|+ |fn|
(4.3)

False Positive Rate =
|fp|

|fp|+ |tn|
(4.4)

In Table 4.4 we see these evaluation metrics on our selected feature vectors. While we

can see that descriptor D performs best, the precision is verly low at all times.

4.4 Ranking Measure

Usually recommendations are presented to a user in an ordered fashion, for example in

a horizontal list, with the first element being the most important one. As recommendations lists

can be long it is useful to order this list according to the user’s preferences. As we have "true"

order given for the evaluation set of likes, only the utility of the system’s ordering can be mea-

sured. The utility of each recommendation is the utility of the recommended item discounted by

a factor that depends on its position in the list of recommendations(SHANI; GUNAWARDANA,

53

Table 4.5: RScores
Descriptor A D H Random

R-Score 0.025 0.052 0.116 0.085

2011). The R-Score metric assumes that a user will only see or browse the very first items of

a list and the utility of recommended tracks declines exponentially with distance to the first

position. Therefore the value of an item only depends on it’s position in the recommendation

list.

Only with descriptor H we can reach a better result than the random recommender. The

random recommender results were averaged over 50 executions of the experiment. The other

two descriptor seem to contain most likes very late in the list meaning that the preferences are

not as close in space as with descriptor H.

Ru =
∑
j

ruij

2
j−1
α−1

(4.5)

Where ruij = 1 if the user u selects item i and ij is the item at jth position in the list.

After obtaining all user’s R-Scores the metric can be aggregated using:

R = 100

∑
uRu∑
uR
∗
u

(4.6)

with R∗u being the maximum R-Score that can be obtained by user u.

4.5 Item Space Coverage

Item space coverage refers to the proportion of items which can be recommended by the

recommender. The item space coverage of our recommender is 100%. The algorithm is able to

recommend each track known to him independently if there is user data available to him. Each

track that is in proximity to some like of some user can and will be recommended to this user.

54

4.6 Observations

As seen in evaluation the algorithm presented is yet to improve and to be exposed to

different datasets to give a final statement about it’s performance. It showed that it has slightly

superior performance to the CF algorithm at low recommendations lengths. The significance

level is reached by H at a reasonable recommendation length the other feature vectors reach

almost significance but only at very high recommendation lengths. Recommendation lists of

this size are of low use to the real user. But it also has to be considered that offline evaluation

is not an optimal method as it makes some risky assumptions about false positives. It should be

also mentioned that on this dataset even the popular collaborative filtering algorithm performed

rather poorly not reaching any significance at all even with long recommendation lists. This

might be due to the very sparse user data that was given. We had 8003 tracks and 250 users.

Therefore an matrix with over 2 million entries but only about 14000 is constructed. That

results in a relative population of only 0.7%. Also the polyphonic timbre vectors similar as the

ones described by (YOSHII et al., 2008) could not reproduce the results they achieved with

their model based approach. This might be due to differences in the data used for analysis and

evaluation or because concatenated MFCCs are not useful for this method. The data that was

used to evaluate their algorithm was not available so the experiments could not be reproduced.

It was seen though in 3.13 ,that many user likes form clusters in our music similarity space.

Therefore it can be assumed that a certain similarity measure was achieved with this method.

55

5 CONCLUSION

5.1 Summary and Discussions

A recommender system based on audible music similarity was presented. To extract

rhythm features Fluctuation Patterns were calculated and to capture musical timbre MFCCs

and features based on them were evaluated. This features were used to build an musical space

with the SOM algorithm and a recommender was prototyped using this subspace as music sim-

ilarity measure. We than evaluated the algorithm on a random chosen subset of the Million

Song Dataset and compared it to a state of the art CF recommender. Significance over the base-

line random recommender could be achieved but mostly at very big recommendation lengths

whereas the CF algorithm could not achieve any significance on this data at all. With further

adjustments this algorithm could proof useful as a baseline algorithm for systems with sparse

user data as it at least performs better than a completely random recommender often used in

such situations. The goal has only been reached partially as it could be shown, that likes at

least seem to be influenced at least by some similarity measure. Descriptors for music analysis

are yet to improve as they usually use methods from speech recognition which might be not as

tailored to the problem as own feature vectors. Also the fluctuation patterns, which were devel-

oped especially as music descriptors, have actually shown to be problematic as some steps do

actually worsen the result (LIDY; RAUBER, 2005). Subjective listening to single clusters and

recommendation has been very interesting and it seems that descriptor D is to able span a quite

good similarity space, as is A. H does certainly introduce a similarity in timbre but subjectively

was found to select very dissimilar tracks considering rhythm. Evaluation should be redone on

different data to confirm obtained results about significance of this descriptor.

5.2 Reviewing Data and Algorithm

Below we see a user’s like set split into the two sets we used for our evaluation. This

split is completely random as no time labels where available for the user data. Therefore this

introduces a quite unrealistic model of user’s liking data as they are more probable to like data

to music they have been listening to more recently. As we see in the picture some tracks are

very far away from the main clusters as for example like 11 and 33 are never going to be

recommended as they are too far away from all the others and have no neighbour like in their

cluster. But the ones in cluster 27 and 36 are likely to be recommended somewhere at bigger

56

(a) Known Likes (b) Hidden Likes
Figure 5.1: The two like sets of a user used for evaluation in music similarity space

recommendation lengths. The highest scores will be given to clusters 19 and 36 as they contain

very dense likes so the algorithm will rather recommend likes from this cluster as it assumes

that the user has a preference for this kind of music. Considering this information it does make

sense why the significance is achieved only at high recommendations lengths.

5.3 Future Work

It stays interesting how this algorithm would perform in an online evaluation which

could give concrete insights about how good the calculated musical space is representing actual

music similarity even though the concept of similarity might vary drastically between distinct

subjects. Then features and clustering algorithm could be adjusted by choosing the best results

from online evaluation. For clustering the music space advanced methods like probabilistic

methods with soft cluster or hierarchical techniques, which subdivide big clusters further, could

be used to cluster this rather complex space. Furthermore it would be interesting to construct a

system that learns similarity from a users listening history, so it adjust it’s similarity measure to

the individual.

57

REFERENCES

BERENZWEIG, A. et al. A large-scale evaluation of acoustic and subjective music-similarity
measures. Computer Music Journal, MIT Press, v. 28, n. 2, p. 63–76, 2004.

BERTIN-MAHIEUX, T. et al. The million song dataset. In: Proceedings of the 12th
International Conference on Music Information Retrieval (ISMIR 2011). [S.l.: s.n.], 2011.

BISHOP, C. M. Pattern recognition and machine learning. [S.l.]: springer, 2006.

EKSTRAND, M. D.; RIEDL, J. T.; KONSTAN, J. A. Collaborative filtering recommender
systems. Foundations and Trends in Human-Computer Interaction, Now Publishers Inc.,
v. 4, n. 2, p. 81–173, 2011.

FASTL, H. Fluctuation strength and temporal masking patterns of amplitude-modulated
broadband noise. Hearing Research, Elsevier, v. 8, n. 1, p. 59–69, 1982.

FASTL, H.; ZWICKER, E. Psychoacoustics: Facts and models. [S.l.]: Springer Science &
Business Media, 2007.

FURUI, S. Speaker-independent isolated word recognition based on emphasized spectral
dynamics. In: IEEE. Acoustics, Speech, and Signal Processing, IEEE International
Conference on ICASSP’86. [S.l.], 1986. v. 11, p. 1991–1994.

GERNET, S. K. Musical discrimination at various age and grade levels. [S.l.]: The College
press, 1940.

HARIRI, N.; MOBASHER, B.; BURKE, R. Context-aware music recommendation based
on latenttopic sequential patterns. In: ACM. Proceedings of the sixth ACM conference on
Recommender systems. [S.l.], 2012. p. 131–138.

HEBB, D. O. The organization of behavior: A neuropsychological theory. [S.l.]:
Psychology Press, 2005.

HEINEN, M. R.; ENGEL, P. M. An incremental probabilistic neural network for regression
and reinforcement learning tasks. In: Artificial Neural Networks–ICANN 2010. [S.l.]:
Springer, 2010. p. 170–179.

HERLOCKER, J.; KONSTAN, J. A.; RIEDL, J. An empirical analysis of design choices in
neighborhood-based collaborative filtering algorithms. Information retrieval, Springer, v. 5,
n. 4, p. 287–310, 2002.

JANSSON, A.; RAFFEL, C.; WEYDE, T. This is my jam?data dump.

KOHONEN, T. Self-organization and associative memory. [S.l.]: Springer, 2012.

KUMAR, K.; KIM, C.; STERN, R. M. Delta-spectral cepstral coefficients for robust speech
recognition. In: IEEE. Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE
International Conference on. [S.l.], 2011. p. 4784–4787.

LASS, N. J. Review of Speech and Hearing Sciences. [S.l.]: Elsevier Health Sciences, 2012.

LIDY, T.; RAUBER, A. Evaluation of feature extractors and psycho-acoustic transformations
for music genre classification. In: ISMIR. [S.l.: s.n.], 2005. p. 34–41.

58

LOGAN, B. et al. Mel frequency cepstral coefficients for music modeling. In: ISMIR. [S.l.:
s.n.], 2000.

LOW, Y. et al. Graphlab: A new framework for parallel machine learning. arXiv preprint
arXiv:1408.2041, 2014.

MOOSAVI, V. SOMpy A Self Organizing Map (SOM) Package in Python). 2014. <http:
//vahidmoosavi.com/2014/02/18/a-self-organizing-map-som-package-in-python-sompy/>.
Accessed: 03.12.2015.

NIEMANN, H. Klassifikation von mustern. [S.l.]: springer-Verlag, 2013. 209–216 p.

OHM, J.-R.; LÜKE, H. D. Signalübertragung: Grundlagen der digitalen und analogen
Nachrichtenübertragungssysteme. [S.l.]: Springer-verlag, 2010. 56–58 p.

PAMPALK, E. Islands of music: Analysis, organization, and visualization of music
archives. [S.l.]: na, 2001.

RAUBER, A.; PAMPALK, E.; MERKL, D. Using psycho-acoustic models and self-
organizing maps to create a hierarchical structuring of music by sound similarity. [S.l.]:
na, 2002.

SCHREIBER, H. Improving genre annotations for the million song dataset. In: ISMIR. [S.l.:
s.n.], 2015. p. 241–247.

SCHROEDER, M. R.; ATAL, B. S.; HALL, J. Optimizing digital speech coders by exploiting
masking properties of the human ear. The Journal of the Acoustical Society of America,
Acoustical Society of America, v. 66, n. 6, p. 1647–1652, 1979.

SHANI, G.; GUNAWARDANA, A. Evaluating recommendation systems. In: Recommender
systems handbook. [S.l.]: Springer, 2011. p. 257–297.

TU-WIEN, I. MAGD Dataset MSD Allmusic Genre Dataset. 2014. <http://www.ifs.tuwien.
ac.at/mir/msd/MAGD.html>. Accessed: 03.12.2015.

TZANETAKIS, G.; COOK, P. Musical genre classification of audio signals. Speech and
Audio Processing, IEEE transactions on, IEEE, v. 10, n. 5, p. 293–302, 2002.

UITDENBOGERD, A. L.; SCHYNDEL, R. G. van. A review of factors affecting music
recommender success. In: ISMIR. [S.l.: s.n.], 2002. v. 2, p. 204–208.

VEMBU, S.; BAUMANN, S. A self-organizing map based knowledge discovery for music
recommendation systems. In: Computer music modeling and retrieval. [S.l.]: Springer,
2005. p. 119–129.

WELLS, A.; TOKINOYA, H. The genre preferences of western popular music by japanese
adolescents. Popular Music & Society, Taylor & Francis, v. 22, n. 1, p. 41–53, 1998.

YOSHII, K. et al. An efficient hybrid music recommender system using an incrementally
trainable probabilistic generative model. Audio, Speech, and Language Processing, IEEE
Transactions on, IEEE, v. 16, n. 2, p. 435–447, 2008.

http://vahidmoosavi.com/2014/02/18/a-self-organizing-map-som-package-in-python-sompy/
http://vahidmoosavi.com/2014/02/18/a-self-organizing-map-som-package-in-python-sompy/
http://www.ifs.tuwien.ac.at/mir/msd/MAGD.html
http://www.ifs.tuwien.ac.at/mir/msd/MAGD.html

	Abstract
	Resumo
	List of Figures
	List of Tables
	List of Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Goals
	1.3 Structure
	1.4 Concepts, Vocabulary and Notation

	2 Background
	2.1 Overview
	2.2 Collaborative Filtering
	2.2.1 User-based Collaborative Filtering
	2.2.1.1 Algorithm

	2.2.2 Item-based Collaborative Filtering
	2.2.2.1 Algorithm

	2.2.3 Similarity Functions

	2.3 Audio Features
	2.3.1 Short Time Fourier Transform
	2.3.2 Acoustical Features
	2.3.2.1 Timbral Texture Features
	2.3.2.2 Rhythm Features

	2.4 Clustering Techniques
	2.4.1 K-means
	2.4.2 Multivariate Gaussian Mixtures Models

	2.5 Psychological and Human Aspects
	2.5.1 Music Similarity
	2.5.2 Personality and Cultural Background concerning Musical Perception

	2.6 Related Approaches

	3 The Approach
	3.1 Data Acquisition
	3.1.1 Data Sources
	3.1.2 Constructing the subset
	3.1.3 Genre Distribution

	3.2 Audio Features
	3.2.1 Preprocessing Audio
	3.2.2 Mel-Frequency Cepstral Coefficients
	3.2.3 Fluctuation Patterns
	3.2.3.1 Specific Loudness Sensation
	3.2.3.2 Rhythm Patterns
	3.2.3.3 Examples of Modified Fluctuation Patterns

	3.3 Feature Combination
	3.3.1 Fluctuation Pattern Dimensionality Reduction
	3.3.1.1 Chunk Selection
	3.3.1.2 Principal Component Analysis
	3.3.1.3 Quality of PCA

	3.3.2 Expressing Music Timbre with MFCCs
	3.3.2.1 MFCC Deltas
	3.3.2.2 Concatenated MFCCs
	3.3.2.3 Medians
	3.3.2.4 Polyphonic Timbre

	3.3.3 Building Feature Vectors

	3.4 Clustering
	3.4.1 Self-organising Map Algorithm
	3.4.2 Observations

	3.5 Recommender
	3.5.1 Preferences in Musical Space
	3.5.2 Score Calculation

	4 Evaluation
	4.1 Significance
	4.2 Feature Vector Evaluation
	4.3 Measuring Usage Prediction
	4.4 Ranking Measure
	4.5 Item Space Coverage
	4.6 Observations

	5 Conclusion
	5.1 Summary and Discussions
	5.2 Reviewing Data and Algorithm
	5.3 Future Work

	References

