

Síntese e caracterização de nanoestruturas compósitas TiO₂/ME (M = Cu, Ag, Au, Cd, Hg; E = Se, Te) e sua utilização como fotocatalisadores para a produção de hidrogênio

Bruno Bercini de Araújo, Rafael Stieler

Universidade Federal do Rio Grande do Sul, IQ, Av. Bento Gonçalves, 9500, Porto Alegre, Brasil, 91540-160

E-mail: bruno.bercini@gmail.com

Introdução

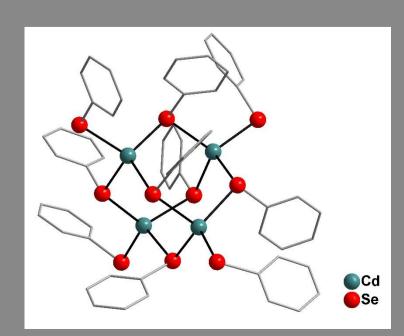
A procura de fontes de energias mais limpas e renováveis desperta grande interesse tanto pela preocupação com o meio ambiente como pela competitividade do mercado energético atual. Dentre elas, a produção de hidrogênio através da fotodecomposição da água tem sido objeto de intensas investigações. A fotólise da água é um processo altamente endotérmico podendo, entretanto, ser auxiliado pelo uso de semicondutores que catalisam esta reação. Dentre os vários semicondutores conhecidos o dióxido de titânio (TiO₂) é o mais empregado, pois suas propriedades favorecem sua utilização.¹

Uma das técnicas mais utilizadas para aumentar a eficiência fotocatalítica do material é realizada pela incorporação na superfície do semicondutor de um metal ou de outro semicondutor com uma banda de condução localizada a energias inferiores à do TiO₂.²

Deste modo, este projeto visa o preparo e caracterização de nanoestruturas compósitas TiO₂/ME e sua utilização como fotocatalisadores para a produção de hidrogênio.

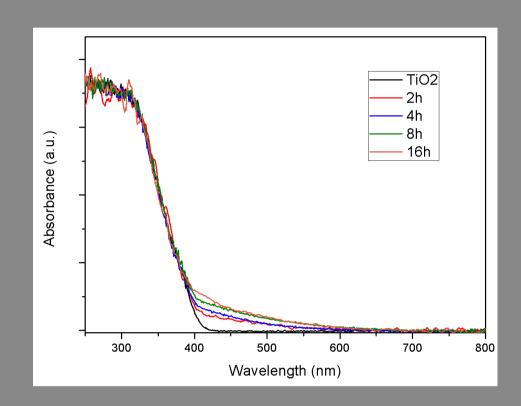
Resultados e Discussão

Os nanocompósitos de $TiO_2/CdSe$ foram obtidos através da deposição de CdSe sobre nanopartículas de TiO_2 (anatase) previamente sintetizadas. Para a obtenção do CdSe, utilizou-se como estratégia de síntese a decomposição térmica do precursor molecular $[Cd(SePh)_2]_n$.

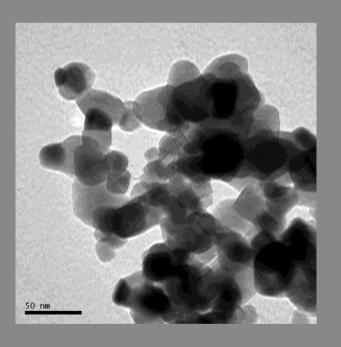

As nanopartículas de TiO₂ foram obtidas através do método solgel, por meio da hidrólise do *tetra*(isopropóxido) de titânio em meio ácido. Em seguida, a solução foi levada a autoclave a 210 °C por 12 h para completo processo de nucleação e crescimento das nanopartículas.

O cluster metálico $[Cd(SePh)_2]_n$, utilizado como precursor para a deposição de CdSe, foi obtido através da reação de PhSeH com $Cd(OAc)_2$ em metanol, conforme representado no Esquema 1:

 $(PhSe)_2 + 2 NaBH_4 \rightarrow 2 PhSeH + Cd(OAc)_2 \rightarrow [Cd(SePh)_2]_n$


Esquema 1. Reações para obtenção do $[Cd(SePh)_2]_{n}$

Monocristais do composto $[Cd(SePh)_2]_n$ foram obtidos em metanol em condições solvotérmicas, de modo que o mesmo teve sua estrutura cristalina determinada por difração de raios X em monocristal. Nesses composto, observa-se que todos os átomos de cádmio são conectados uns aos outros através de ligações do tipo μ -SePh.


Figura 1. Estrutura do composto do $[Cd(SePh)_2]_n$.

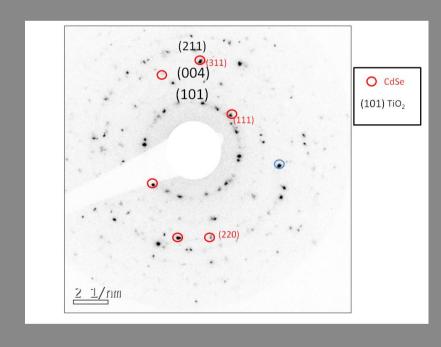

Para a obtenção dos nanocompósitos de TiO₂/CdSe foram testadas diferentes condições reacionais, como solventes, ligantes e tempos de reação. Entretanto, os melhores resultados foram obtidos através do uso de tolueno e etilenodiamina a 120 °C. A deposição de CdSe sobre a superfície do TiO₂ foi acompanhada por espectroscopia na região do UV-Vis, onde pode-se observar o aumento da banda de absorção correspondente ao CdSe ao longo do tempo.

Figura 2. Espectro de absorção na região do UV-Vis dos nanocompósitos TiO₂/CdSe

Conforme pode ser observado na Figura 3a, foram obtidos nanocompósitos de TiO₂/CdSe com uma pequena distribuição de diâmetros (cerca de 20 nm). Embora tenha sido constatado o aparecimento de uma banda de absorção referente ao CdSe no espectro de UV-Vís, não foi possível observá-lo nas imagens de TEM. Deste modo, foram realizadas análises de difração de elétrons para comprovar a existência do material na superfície do TiO₂. As análises de difração de elétrons comprovam a existência do TiO₂ na forma de anatase e de CdSe na forma hexagonal.

Figura 3. (a) Imagem através de TEM e **(b)** difração de elétrons dos nanocompósitos de TiO₂/CdSe.

Conclusão

Os resultados obtidos até o momento demonstraram a possibilidade de obtenção de nanoestruturas compósitas TiO₂/CdSe através da decomposição térmica de precursores moleculares. Deste modo, pretende-se expandir este trabalho para outros *clusters* metálicos que atuarão como *single source precursors* para o preparo de diferentes materiais TiO₂/ME.

Referências

- ¹ Strataki, N.; Bekiari, V.; Kondorides, D. I.; Lianos, P. Appl. Catal. B: Environ. 184, 77, 2007.
- ² Wu, L.; Yu, J. C.; Fu, X. *J. Mol. Catal. A* 25, 244, **2006**.

Agradecimentos

