

LdTM

XXVII Salão de Iniciação Cientifica Outubro de 2015

Estudo para a Adequação Microestrutural do Aço UNS-S32760 à Conformação a Frio

Bacellar, Gabriel Campos¹; Rocha, Alexandre da Silva².

1: Aluno de graduação de engenharia mecânica, Laboratório de Transformação Mecânica, Universidade Federal do Rio Grande do Sul. 2:Orientador: Prof.Dr.Eng., Laboratório de Transformação Mecânica, Universidade Federal do Rio Grande do Sul.

1. INTRODUÇÃO

Os aços inoxidáveis duplex e superduplex apresentam uma excelente combinação de propriedades mecânicas e resistência à corrosão. Este conjunto de boas propriedades permite seu emprego na indústria do papel e celulose, óleo e gás, química, petroquímica e geração de energia. Esta ampla gama de aplicações industriais somente é possível mediante a obtenção de uma Figura 1. Aplicação química / petroquímica. Fonte: Braskem. microestrutura típica, constituída pelas fases ferrita (δ) e austenita (γ). O objetivo do presente trabalho é analisar a influencia de diferentes frações volumétricas das fases $\delta e \gamma$ nas propriedades mecânicas do aço UNS-S32760 no ensaio de compressão a frio.

- Análise Metalográfica:

A análise metalográfica, mostrou que houve mudança na morfologia e distribuição das fases de acordo com a condição de tratamento aplicada.

2. MATERIAIS E MÉTODOS

O material utilizado nesse estudo foi o aço inoxidável UNS-S32760 cujo a composição química pode ser observada na Tabela 1.

Tabela 1 - Composição química (% peso) do aço inoxidável superduplex UNS-S32760

	Cr	Ni	Mo	Cu	W	С	Ν	Mn	Si	Ρ	S	Fe
Min	24,00	6,00	3,00	0,50	0,50	-	0,20	-	-	-	-	-
Max	26,00	8,00	4,00	1,00	1,00	0,03	0,30	1,00	1,00	0,03	0,01	Balanço

Com o objetivo de variar a fração volumétrica das fases δ e γ o material foi submetido à tratamentos isotérmicos em diferentes tempos e temperaturas. Após os tratamentos isotérmicos,

Figura 4. Metalografias das amostras tratadas isotermicamente na temperatura de 1050 °C nos tempos de a) 30, b) 90 e c) 240 minutos.

Figura 5. Metalografias das amostras tratadas isotermicamente na temperatura de 1150 °C nos tempos de a) 30, b) 90 e c) 240 minutos.

- Durezas:

Tabela 2 - Dados relativos à tensão de escoamento e durezas.

foram confeccionados os corpos de prova para a realização dos ensaios mecânicos (compressão e dureza) e metalúrgicos (análise microestrutural).

Figura 2. Metalografia da amostra como *recebida* (condição de tratamento 1100°C /4h).

Os dados obtidos através do ensaio de compressão, apresentados na Tabela 2, seguiram o ajuste correspondente à equação de Ludwig-Hollomon (Equação 1) e os valores do coeficiente de ajuste, R², são relativos à função potência.

 $\mathbf{K}\mathbf{f} = \mathbf{C}\boldsymbol{\varphi}^{\mathbf{n}}$

Equação 1

Onde 'n' é o coeficiente de encruamento, ' φ ' é a deformação e, 'C' o coeficiente de resistência. Para a caracterização do material, utilizou-se: (i) máquina de ensaios universal EMIC, modelo DL 60000, (ii) microdurômetro Insize, modelo ISH-R150 e, (iii) microscópio óptico Olympus, modelo GX51.

3. RESULTADOS

- Curvas de escoamento:

Temperatura(°C)/ Tempo (min)	Kf ₀	С	n	φruptura	R ²	Dureza (HV 1)
1100/240*	624 ± 5,13	1401	0,215	>1	0,991	$259,77\pm4,1$
1050/30	649 ± 7,76	1426	0,213	>1	0,991	291,91 ± 6,2
1050/90	644 ± 5,29	1421	0,212	>1	0,992	$\textbf{281,88} \pm \textbf{4,5}$
1050/240	632 ± 6,80	1408	0,211	>1	0,992	$\textbf{270,58} \pm \textbf{4,1}$
1150/30	686 ± 1,15	1425	0,2	>1	0,991	$297,14 \pm 3,7$
1150/90	$683 \pm 2{,}51$	1419	0,198	>1	0,99	295,61 ± 4,2
1150/240	677 ± 6,08	1416	0,201	>1	0,991	$291,\!63\pm3,\!3$
*Amostra como red	cebida					

4. CONCLUSÕES

A análise da influência da variação das porcentagem de fases $\delta \in \gamma$ nas propriedades mecânicas do aço UNS-S32760 permite a tomada seguintes conclusões:

- Observou-se uma relação direta entre a dureza e o tempo de exposição nas temperaturas analisadas.
- Aparentemente, não houve uma mudança significativa nas propriedades

Figura 3. Grupo de curvas de escoamento para as condições de tratamento térmico.

mecânicas que justificariam a aplicação de tratamentos isotérmicos para a o processamento deste material.

- Dependendo da temperatura do tratamento isotérmico aplicado haverá a alteração microestrutural (forma, tamanho e distribuição) das fases δ e γ , influenciando a aplicação do material.

AGRADECIMENTOS

O autor agradece a Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS), pela bolsa de pesquisa concedida.

REFERÊNCIAS

1. Alvarez-Armas, Iris. Degallaix-Moreuil, Suzanne. Duplex Stainless Steels, Wiley, 2009. 2. R.N. Gunn. Duplex stainless steels – Microstructure, properties and applications, Woodhead publishing Ltd., Cambridge, 1997.