
DETERMINAÇÃO SEQUENCIAL DE Cd E Cr EM AMOSTRAS DE TANINO POR ESPECTROMETRIA DE ABSORÇÃO ATÔMICA DE ALTA RESOLUÇÃO COM FONTE CONTÍNUA E FORNO DE GRAFITE UTILIZANDO AMOSTRAGEM DIRETA DE SÓLIDOS (HR-CS SS-GF AAS)

TATIANE PRETTO (IC)*,1, ARIANE V. ZMOZINSKI (PQ)1, MARIA GORETI R. VALE (PQ)1,2

¹Instituto de Química, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre, RS ²Instituto Nacional de Ciência e Tecnologia do CNPq - INCT de Energia e Ambiente, Universidade Federal da Bahia, CEP 40170-115 Salvador, BA

*e-mail: tatianepretto@gmail.com

OBJETIVO

Desenvolver um método analítico simples, rápido e exato para a determinação sequencial de cádmio e cromo em amostras de tanino por espectrometria de absorção atômica de alta resolução fonte contínua e forno de grafite utilizando amostragem direta de sólidos.

EXPERIMENTAL

REAGENTES

Calibração: Soluções padrão aquosas de Cd e Cr

Massa de amostra : 0,02 – 0,25 mg

PREPARO DE AMOSTRA

Moídos em micro-moinho

Peneirados em peneira de poliéster de 200 µm

Secados em 50 °C por seis horas em uma estufa

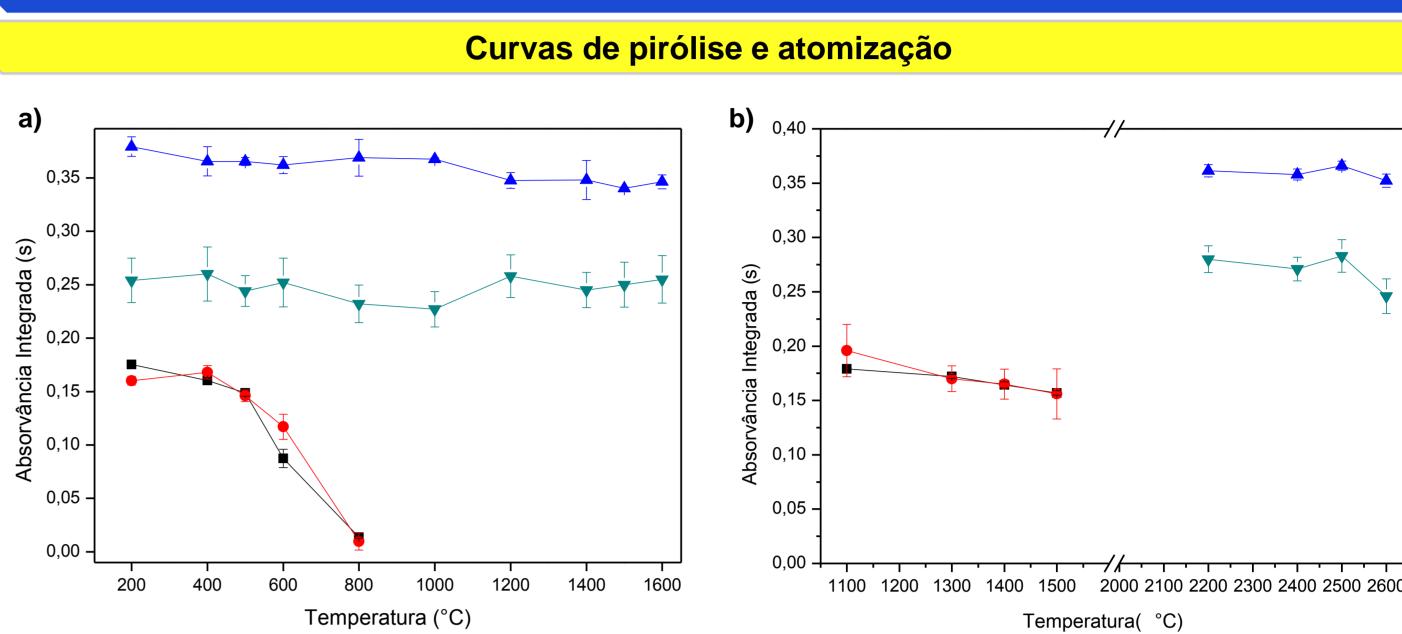
INSTRUMENTAÇÃO

Amostrador sólido: SSA6 (Analytik Jena, Alemanha)

Micro balança : M2P- Sartorius

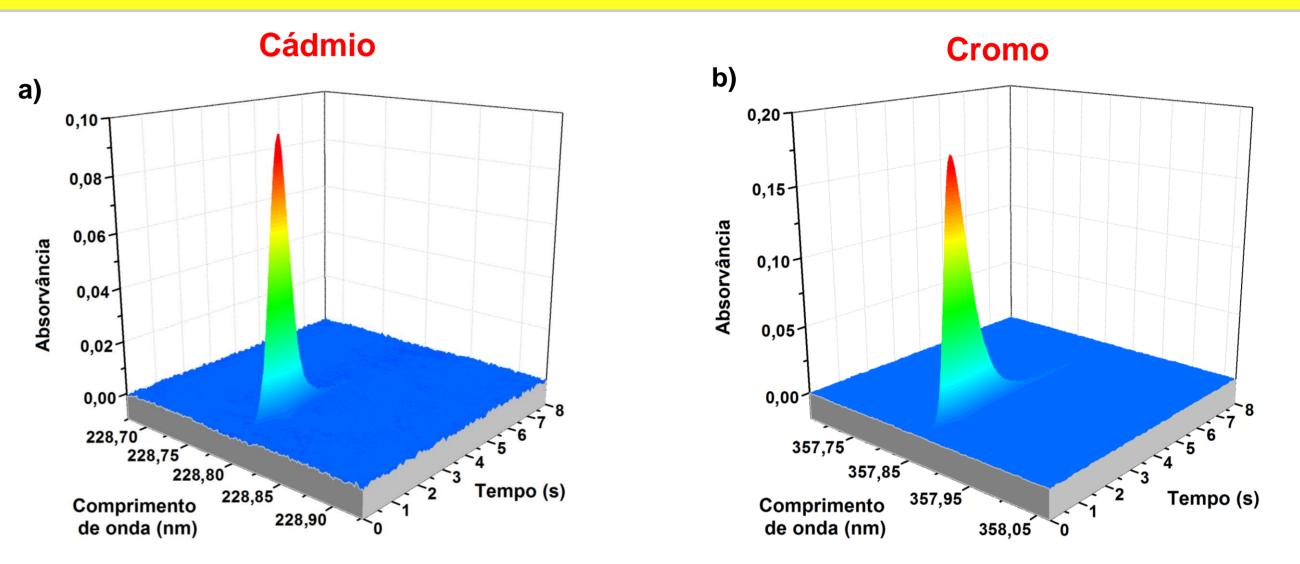
Micro moinho A 11 Basic (IKA – Werke, Germany)

HR-CS SS-GF AAS


- ✓ ContrAA 700 (Analytik Jena, Alemanha);
- ✓ Plataformas para sólido (Analytik Jena Part no. 407-152.023)
- ✓ Forno de grafite para sólido (Analytik Jena Part no. 407-A81.303)
- \checkmark Cr: λ: 357,9 nm (CP ± 1);
- ✓ Cd: λ: 228,8 nm (CP ± 1)

Programa de aquecimento do forno de grafite

Etapas	Temperatura (°C)	Rampa (°C s ⁻¹)	Tempo de permanência	Fluxo de gás (L min ⁻¹)	
Secagem 1	90	10	20	2	
Secagem 2	120	20	40	2	
Pirólise	400	300	40	2	
Atomização ^a	1500	3000	8	0	
	Resfriamer	nto e troca de comp	orimento de onda	a	
Pirólise	1500	500	1	2	
Atomização ^b	2500	3000	7	0	
Limpeza	2650	500	8	2	


^a Atomização do Cd ^b Atomização do Cr

RESULTADO E DISCUSSÃO

Fig. 1: a) Curvas de pirólise para 10 pg Cd (-•-) e 150 pg Cr (-▲-); Cd (-•-) e Cr (-▼-) na amostra de tanino pinus. T_{atom} = 1500 °C e 2500 °C para Cd e Cr, respectivamente. b) Curvas de atomização para 10 pg Cd (-•-) e 150 pg Cr (-▲-); Cd (-•-) e Cr (-▼-) na amostra de tanino pinus. T_{pir} = 400 °C para Cd e T_{pir} = 400 °C e 1500 °C para Cr. A absorvância foi normalizada para 0,25 mg de amostra.

Perfis de sinais analíticos

Fig. 2: Perfis de absorvância para a amostra de tanino pinus **a)** Cd e **b)** Cr. T_{pir}= 400 °C para Cd e T_{pir}= 400 °C e 1500 °C para Cr. T_{atom}= 1500 °C para Cd e 2500 °C para Cr.

Parâmetros de mérito

Analito	Equação de regressão linear	R	m _o /pg	LOD ^a / µg kg ⁻¹	LOQa / µg kg-1
Cd	Aint = 0,01316m (pg) + 0,00201	0,99952	0,31	0,5	2
Cr	Aint = 0,00194 m (pg) + 0,01346	0,99781	2,2	17	57

*Calculado para 0,25 mg de amostra

CDM	Cd			Cr		
CRM	Certificado	Encontrado	RSD (%)	Certificado	Encontrado	RSD (%)
Nó de pinheiro (mg kg ⁻¹)	0,23 ± 0,04	0,20 ± 0,01	6	-	-	-
Ramos de arbustos (mg kg ⁻¹)	-	-	-	$2,6 \pm 0,2$	$2,8 \pm 0,2$	7
Chá (µg kg ⁻¹)	62 ± 4	64 ± 4	7	0,45 ± 0,1	$0,46 \pm 0,02$	3

Resultados analíticos obtidos

Amostros	Concentração de (Cd (µg kg ⁻¹)	Concentração de Cr (mg kg ⁻¹)		
Amostras	Valor encontrado	RSD (%)	Valor encontrado	RSD (%)	
Tanino pinus	180 ± 25	14	$\textbf{3,1} \pm \textbf{0,3}$	9	
Tanino acácia-negra	$\textbf{2,6} \pm \textbf{0,3}$	10	$\textbf{3,2} \pm \textbf{0,2}$	6	
Tanino quebracho	$\textbf{3,5} \pm \textbf{0,2}$	7	0,8 ±0,1	13	
Tanino mimosa	$\textbf{8,0} \pm \textbf{0,8}$	10	$\textbf{1,8} \pm \textbf{0,1}$	5	
Tanino castanheiro	53 ± 8,0	15	$\textbf{2,4} \pm \textbf{0,2}$	8	
Tanino enológico 1	$\textbf{3,8} \pm \textbf{0,4}$	10	$\textbf{3,1} \pm \textbf{0,2}$	6	
Tanino enológico 2	21 ± 2	9	$\textbf{3,0} \pm \textbf{0,4}$	13	
Tanino tara	$\textbf{3,7} \pm \textbf{0,4}$	11	$\textbf{4,4} \pm \textbf{0,3}$	7	

CONCLUSÕES

- O método mostrou-se rápido, exato e preciso;
- ✓ Foi possível realizar a calibração com padrões aquosos;
- ✓ A amostragem direta reduziu o manuseio da amostra e a elevada sensibilidade da técnica tornou o método adequado para análises de rotina.

