
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

GERMANO CAUMO CARNIEL

Including workers with disabilities in flow
shop scheduling

Thesis presented in partial fulfillment
of the requirements for the degree of
Master of Computer Science

Advisor: Prof. Dr. Marcus Ritt

Porto Alegre
December 2015

CIP — CATALOGING-IN-PUBLICATION

Carniel, Germano Caumo

Including workers with disabilities in flow shop scheduling
/ Germano Caumo Carniel. – Porto Alegre: PPGC da UFRGS,
2015.

56 f.: il.

Thesis (Master) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2015. Advisor: Marcus Ritt.

1. Flow shop scheduling. 2. Integer programming. 3. Workers
with disabilities. I. Ritt, Marcus. II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos Alexandre Netto
Vice-Reitor: Prof. Rui Vicente Oppermann
Pró-Reitor de Pós-Graduação: Prof. Vladimir Pinheiro do Nascimento
Diretor do Instituto de Informática: Prof. Luis da Cunha Lamb
Coordenador do PPGC: Prof. Luigi Carro
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

“THE ROAD TO WISDOM?

Well, it’s plain

and simple to express.

Err and err and err again,

but less and less and less.”

— PIET HEIN

ACKNOWLEDGEMENTS

I would like to hugely thank my parents for the lessons and examples of work and

dedication, in special my mother, which is a life model for me, by having given so much to my

development and taught me the values of education, culture and respect to others.

To my family and close friends for always being with me and for always being ready to

help. I also would like to really thank my wife Leini, for all the love, affection and comprehen-

sion during all times.

To my research group colleagues, André, Tadeu, Borba, Moura, Paulo, Marcelo, Renato,

Arton and Fernando for all their help with difficult questions and for the friendship.

A special thanks to my advisor Marcus Ritt for the patience and for teaching me count-

less lessons, without him I would never make this far.

This work was supported by CNPq (Brazilian National Research Council) and by Insti-

tuto de Informática da UFRGS.

ABSTRACT

Persons with disabilities have severe problems participating in the job market and their unem-

ployment rate is usually much higher than the average of the population. This motivates the

research of new modes of production which allow to include these persons at a low overhead.

In this work we study the inclusion of persons with disabilities into flow shops with the objec-

tive of minimizing the makespan. Since flow shops usually have only a few machines, we focus

on the inclusion of one and two workers. We define the problem, propose mathematical models

and a heuristic solution, as well as realistic test instances. In computational tests we evaluate

the performance of the models and the heuristic, and assess the utility of such a model of in-

clusion. We conclude that the problem can be solved satisfactorily, and that including workers

with disabilities into flow shops is economically feasible.

Keywords: Flow shop scheduling. Integer programming. Workers with disabilities.

Incluindo trabalhadores com deficiência em flow shops

RESUMO

Pessoas com deficiências possuem muitas dificuldades em participar do mercado de trabalho,

possuindo uma taxa de desemprego bem maior do que a média populacional. Isso motiva o

estudo de novos modos de produção que permitam incluir essas pessoas com baixo custo ope-

racional.

Neste trabalho é feito um estudo sobre a inclusão de pessoas com deficiências em flow shops

com o objetivo de minimizar o makespan. Como flow shops normalmente possuem poucas má-

quinas, o foco do estudo é na inserção de um e dois trabalhadores. O problema é definido, são

propostos modelos matemáticos e uma solução heurística para resolvê-lo, assim como instân-

cias de teste realistas. Nos testes computacionais a performance dos modelos e da heurística é

avaliada e a utilidade prática deste modelo de inclusão é analisada. Nós concluímos que o pro-

blema pode ser resolvido de forma satisfatória e que a inclusão de trabalhadores com deficiêcia

emn flow shops é economicamente viável.

Palavras-chave: Escalonamento de tarefas, Programação inteira, Trabalhadores com deficiên-

cias.

LIST OF FIGURES

Figure 2.1 Information flow diagram in a manufacturing system.. 16
Figure 2.2 Chain precedence for a job in a flow shop.. 17
Figure 2.3 Gantt chart example.. 18
Figure 2.4 Example of a flow shop instance. ... 19
Figure 2.5 An instance of PFSISP, where a single WWD must operate one machine in a

flow shop. ... 20
Figure 2.6 An instance of HPFSISP, where two WWDs must operate a dual-machine

stage in a flow shop.. 21
Figure 2.7 Example of a schedule for a benchmark instance... 23

Figure 3.1 Principle of the TS3 model ... 27

Figure 4.1 Iterated Local Search operation .. 31
Figure 4.2 Example of an iteration of the IGA .. 36
Figure 4.3 Example of an instance with the schedules found by the DP and by the earliest

completion time heuristic for the job permutation sequence 3,4,1,2 39

LIST OF TABLES

Table 2.1 Common notation used in flow shop scheduling problems...................................... 17
Table 2.2 Schedule-dependent variables .. 17
Table 2.3 Common objective functions.. 19

Table 3.1 Notation used in the mixed integer programming models. 25
Table 3.2 Notation used in the HPFSISP model. ... 28

Table 5.1 Size of the Carlier and Taillard instances ... 40
Table 5.2 Results of the models on the Carlier instances... 42
Table 5.3 Results of the models on the Taillard instances. .. 42
Table 5.4 Results of the HPFSISP model... 43
Table 5.5 Comparison of the makespan obtained by the FS and TS3 models 44
Table 5.6 Results for Carlier instances when inserting one worker ... 45
Table 5.7 Results for Carlier instances when inserting two workers 45
Table 5.8 Average number of iterations of the IGA on the Carlier instances when insert-

ing one worker ... 46
Table 5.9 Average number of iterations of the IGA on the Carlier instances when insert-

ing two workers.. 46
Table 5.10 Results for Taillard instances when inserting one worker. 49
Table 5.11 Results for Taillard instances when inserting two workers. 50
Table 5.12 Average number of iterations of the IGA on the Taillard instances when in-

serting one worker.. 51
Table 5.13 Average number of iterations of the IGA on the Taillard instances when in-

serting two workers. ... 51

LIST OF ALGORITHMS

1 Generic Iterated Local Search... 31

2 NEH Algorithm... 32

3 Local search algorithm.. 34

4 Iterated Greedy Algorithm.. 35

5 A pooled IGA for PFSISP or HPFSISP. ... 37

LIST OF ABBREVIATIONS AND ACRONYMS

ALWABP Assembly Line Worker Assignment and Balancing Problem

APRD Average Percentage Relative Deviation

DP Dynamic Programming

FSSP Flow Shop Scheduling Problem

FSISP Flow Shop Insertion and Scheduling Problem

HFSISP Hybrid Flow Shop Insertion and Scheduling Problem

HPFSISP Hybrid Permutation Flow Shop Insertion and Scheduling Problem

IGA Iterated Greedy Algorithm

LP Linear Program

MILP Mixed Integer Linear Program

PFSSP Permutation Flow Shop Scheduling Problem

PFSISP Permutation Flow Shop Insertion and Scheduling Problem

SWD Sheltered Work Centers for Disabled

WHO World Health Organization

WWD Worker With Disabilities

CONTENTS

1 INTRODUCTION.. 12
1.1 Literature review.. 13
1.2 Contributions.. 14
2 PROBLEM DEFINITION .. 15
2.1 Assumptions and notation... 15
2.2 Inserting a single worker into a flow shop ... 20
2.3 Inserting two workers into a hybrid flow shop.. 20
3 MATHEMATICAL FORMULATION OF THE FLOW SHOP INSERTION PROB-

LEMS .. 24
3.1 Flow Shop ... 24
3.1.1 The flow shop scheduling and insertion problem ... 24
3.1.2 The permutation flow shop insertion and scheduling problem....................................... 25
3.1.2.1 Adapting the LYeq model to the PFSISP... 26
3.1.2.2 Adapting the TS3 model to the PFSISP... 26
3.2 Hybrid permutation flow shop insertion and scheduling problem 28
4 HEURISTICS FOR THE PFSISP AND THE HPFSISP ... 30
4.1 Iterated Local Search .. 30
4.2 The NEH Algorithm .. 32
4.2.1 Complexity of NEH algorithm.. 33
4.3 The Iterated Greedy Algorithm.. 34
4.4 A Pooled IGA for inserting WWDs into flow shops.. 36
4.5 Solving the two-machine subproblem .. 37
5 COMPUTATIONAL EXPERIMENTS.. 40
5.1 Test instances and experimental methodology .. 40
5.2 Numerical results ... 41
5.2.1 Comparison of the mathematical models ... 42
5.2.1.1 Results of the FSISP and PFSISP models ... 42
5.2.1.2 Results of the HPFSISP model .. 43
5.2.1.3 Comparison of permutation and non-permutation schedules 43
5.2.2 Results of the heuristics algorithms .. 44
5.2.2.1 Experiments with the Carlier instances.. 45
5.2.2.2 Experiments with the Taillard instances .. 47
6 CONCLUDING REMARKS .. 52
REFERENCES.. 53

12

1 INTRODUCTION

In 2004, the World Health Survey and the Global Burden of Disease project estimated

the population of persons of 15 years and older with a disability around 785 (15.6%) to 975

(19.4%) million. According to the World Health Organization (WHO) and the International

Labour Organization, unemployment rates are much higher for persons with disabilities than for

persons without disabilities in both developed and developing countries. However, almost all

tasks can be performed by persons with disabilities, since they often have the necessary skills,

and most of them can be productive in an appropriate environment (WHO, 2011). Among

the workers with disabilities (WWDs), many are employed in production occupations in the

manufacturing industry (BRAULT, 2012)

Governments of many countries adopt strategies to incorporate persons with disabilities

into the labour force, for example in Sheltered Work Centers for Disabled (SWDs), which are

facilities that employ people with disabilities exclusively or primarly, or by laws that oblige

companies to contract a minimum percentage of WWDs. These models of socio-labor integra-

tion try to overcome the stereotype that considers people with disabilities as unable to develop

continuous professional work (MIRALLES et al., 2010).

Motivated by similar studies that have demonstrated that such workers can be integrated

successfully in assembly lines (e.g. Miralles et al. (2007)), we study in this work the integration

of WWDs into flow shops scheduling problem with the objective of minimizing the makespan.

Since flow shops have relatively few machines, and legislation usually foresees an integration

of about 2% to 5% of WWDs for companies with at least 100 employees (BRASIL, 1991), we

focus on the case of the integration of one and two workers into a flow shop.

The rest of this text is organized as follows: the next sections reviews the literature on

related problems and states the contributions of this work. In Chapter 2 we explain flow shops

in general and motivate two variants of the problem of integration of WWDs into flow shops

by means of examples. In Chapter 3 we formulate integer programming (IP) models, and in

Chapter 4 we propose heuristic solutions procedures for the problems. In Chapter 5 we define a

set of instances modelling realistic conditions, present computational experiments with several

solution methods, and analyze the results. Finally, in Chapter 6 we discuss the results, and offer

some conclusions.

13

1.1 Literature review

Several researchers have been studying the problem of integrating persons with disabil-

ities in production processes. For assembly lines, Miralles et al. (2007) have proposed the

Assembly Line Worker Assignment and Balancing Problem (ALWABP). In this problem the

task execution time depends on the worker, and tasks as well as workers must be assigned to a

fixed number of stations such that the production rate of the assembly line is maximized. This

problem is NP-hard, since it generalizes the NP-hard Simple Assembly Assembly Line Balanc-

ing Problem. Research has focused mainly on heuristic methods for solving it (MIRALLES

et al., 2008; MIRALLES et al., 2010; BLUM; MIRALLES, 2011; ARAÚJO; COSTA; MI-

RALLES, 2012; MUTLU; POLAT; AYCA, 2013; MOREIRA et al., 2012) but effective exact

solution techniques are available (VILA; PEREIRA, 2014; BORBA; RITT, 2014).

The ALWABP assumes that all workers have some disability and take therefore different

times to execute the tasks. Moreira, Miralles and Costa (2015) studied the effect of including

only one disabled worker in an assembly line. This models the case of conventional factories,

where WWDs must be employed among regular workers. The authors conclude that it is pos-

sible to integrate person with disabilities with little impact on the efficiency of the assembly

line.

Benavides, Ritt and Miralles (2014) investigated flow shops with heterogeneous work-

ers, where each machine is operated by a different worker. They discovered that the modified

problem is harder than the traditional flow shop, since mathematical models could not solve

even small instances, but a scatter search heuristic managed to solve it satisfactorily. Their

methods are specially useful in practice at SWDs, where all workers have different execution

times and depending on the available resources, the optimal schedule varies.

The regular flow shop scheduling problem (FSSP) has been extensively studied in the

literature. Most research focuses on the simpler permutation flow shop problem (PFSSP), where

all the jobs have to be processed in the same order on all machines, although Potts, Shmoys

and Williamson (1991) showed that there are instances for which the makespan of an optimal

solution for the PFSSP is worse than the optimal solution for the non-permutation FSSP by more

than a factor of
√

m/2, where m is the number of machines in the flow shop. The PFSSP can be

solved in polynomial time for two machines (JOHNSON, 1954) but is NP-hard for three or more

machines (GAREY; JOHNSON, 1979). The existence of a constant factor polynomial-time

approximation algorithm for flow shop scheduling is open (although there exists a polynomial-

time approximation scheme for a fixed number of machines (HALL, 1998)). We also study

14

a variation of the hybrid flow shop scheduling problem which allows parallel machines. The

problem is known to be NP-hard even when restricted to two stages where one of the stages

has two parallel machines and the other has a single machine (GUPTA, 1988). For more details

on approaches to solve the flow shop scheduling problems, we refer to the excellent surveys of

(GUPTA; STAFFORD, 2006) and (POTTS; STRUSEVICH, 2009). For hybrid flow shops the

survey of Ruiz and Vázquez-Rodríguez (2010) gives a good overview of solution methods.

1.2 Contributions

The specific case of integrating a small percentage of WWDs into flow shops has, to the

best of our knowledge, not been studied in the literature so far. Since WWDs take different,

usually higher processing times to perform an operation, the processing time of the “machine”

or work center will depend on the worker that is assigned to it. The additional component of

finding the optimal allocation of the WWDs to machines increases the number of possible solu-

tions of the permutation flow shop by a factor m. Computation time in flow shops are important

in practice due to rescheduling caused by workers rotation, turnover and absenteeism, mainly

with WWDs, where periodical health and psychological support are more usual (MIRALLES

et al., 2007). Therefore, advanced techniques are necessary to obtain the optimal allocation of

the WWDs in addition to the optimal schedule in a reasonable computation time.

This work intends to present new models and approaches to cope with issues that arise

in medium or large companies that have a small percentage of WWDs employed, when the

diversity of the workers needs to be considered. The solution methods proposed to this problem

allow to measure the productivity lost or gained when compared to a regular flow shop with

no WWDs, helping the managers of the companies to estimate costs and make better decisions

when integrating these workers.

15

2 PROBLEM DEFINITION

In a manufacturing environment, the steps that are needed to make the products, called

jobs, can be divided in one or more tasks or operations, where each must be executed on some

kind of machine and is the smallest piece of work that is suitable to consider (EMMONS;

VAIRAKTARAKIS, 2013). Each task has a processing time and may require different mate-

rials, machinery, equipment and operators. Thus, the job goes through several stages of work,

each one consisting of one or more productive facilities (e.g. drill presses, ovens, human in-

spectors, etc), called machines.

A schedule is a specification of when each task of a given job is to be processed and

with what equipment, personnel, etc. The problem of job shop scheduling is to determine an

optimal schedule: a schedule that satisfies all constraints and has the best value for the objective

desired. Figure 2.1 shows a diagram of how the information flows in a manufacturing system.

A flow shop is defined as a processing system where the task sequence of each job is

linearly ordered, as depicted in Figure 2.2, and all jobs have to pass through the stages in the

same order, they follow the same path. Here we will consider that a job can never revisit a stage,

so the stages are numbered 1,2, . . . ,m, and every job visits them in numerical order.

2.1 Assumptions and notation

There are a lot of different variations of the general flow shop, each using different

constraints. The version studied here is the most common and fundamental, with the following

characteristics:

• n independent jobs have to be processed, each made up of m tasks where task i of job

j needs the processor i for a processing time pi j > 0. So, each task of a job requires a

different machine and the machine sequence is the same for all jobs;

• jobs are available at time zero, and continue to be available until all the work is completed;

• each job can only be processed on one machine at a time;

• any machine can process only one operation at a time;

• there is no preemption between the execution of the tasks: once started, a task must be

completed until the end without interruptions;

16

Figure 2.1 – Information flow diagram in a manufacturing system.

Source: Pinedo (2012b, p. 5)

• the machine setup times are negligible: when a job completes processing on one machine,

it is immediately available to begin on the next;

• the capacity of the buffer between machines (the space for the work to queue up) is

unlimited;

• Problem data are deterministic and known in advance.

A more general variation of the flow shop that will also be considered is the hybrid flow

shop, also known as flow shop with multiple processors or flexible in the literature. In this

variation, each stage can have more than one machine that operates in parallel and the machines

can be identical or unrelated, but all are capable of processing the tasks assigned to that stage.

Unrelated machines means each machine in a stage processes a job at a different speed. This

17

Figure 2.2 – Chain precedence for a job in a flow shop

T1 T2 T3 Tm

Source: Emmons and Vairaktarakis (2013, p. 2)

form of the problem is especially relevant in practice, since it covers cases that are more likely

to be found in real production systems (RUIZ; VÁZQUEZ-RODRÍGUEZ, 2010).

Where not otherwise stated, the common notation shown in Tables 2.1 and 2.2 are used

to describe the problem1.

Table 2.1 – Common notation used in flow shop scheduling problems

Notation Description

n Number of jobs to be scheduled
m Number of stages in the shop. In a simple flow shop, each stage has one machine,

so m is also the number or machines in this shop
J j Job j (j ∈ [n])
Mi Machine i, i.e., the machine at stage i (i ∈ [m]) in a simple flow shop
Ti j Task i of J j, i.e., the task of J j processed at stage i
pi j Processing time of job J j on stage i
r j Release date of J j: when J j is available to be processed
d j Due date of J j: a desired latest completion time. Violating this date usually gen-

erates a penalty.
w j The weight of J j, a measure that models the importance of a job. It may represent

the cost of the job, volume, relative priority, among others.

Table 2.2 – Schedule-dependent variables

Notation Description

Ci j Completion time of job j at stage i
C j Completion time of job j at the last stage (m)
Fj =C j− r j Flow time of job j: the time elapsed from release to completion
Wi j Waiting time between the completion of J j at stage i−1 and the start at stage i
L j =C j−d j Lateness of J j. L j is negative if the job is early
Tj = max{0,L j} The tardiness of J j

U j A penalty measure for every tardy job, U j = 1 if J j is late, 0 otherwise

A Gantt chart is used to present a schedule graphically. Figure 2.3 presents an example

of the progress of a job with the components presented above. Tasks are represented by a bar

1We use the notation [n] = {1,2, . . . ,n}

18

Figure 2.3 – Gantt chart example

Source: Emmons and Vairaktarakis (2013, p. 5)

along a horizontal time axis, where the position and length corresponds to its time and duration.

In this example the job is completed early, since it completes before the due date.

The α|β |γ notation, introduced by Graham et al. (1979) is commonly used to classify

scheduling problems precisely and in a concise manner.

The α field represents the type and size of the shop, indicated by a letter and a number:

Fm is the simple flow shop with m machines. Other examples include FH for Hybrid flow shop,

Gm for the general job shop, where the machine sequence of the jobs may differ and Om for

the open shop where the tasks of the jobs have no precedence, i.e. they can be executed in any

order.

The second field β comprises constraints and assumptions that deviate from the simple

flow shop. The most common examples are r j where jobs may be ready at any time r j > 0, pmtn

for allowing preemption, and prmu indicating that only permutation schedules are permitted:

the job order must be the same on all machines.

Finally, the γ parameter specifies the objective function to be minimized. The objectives

of a schedule are a function of the completion times of the jobs: they depend only on the

completion time of the last operation of each job. The most common and extensively studied

objective is Cmax = maxC j, i.e. the maximum over all completion times C j, j ∈ [n] of the jobs,

also called the makespan. It is the time the last job leaves the system and minimizing it implies

a good utilization of the machines. Other functions can be seen in Table 2.3.

An example of an instance and a solution for the Fm|prmu|Cmax and Fm||Cmax is shown

in Figure 2.4. In the table on the top we are given four jobs and their processing times on four

machines. The optimal schedule shown on the left is a permutation schedule formed by the

sequence 2,4,3,1 and has a makespan of 11. The schedule on the right also has a makespan

of 11 but note that this is no permutation schedule, since jobs two and three exchange their

processing order on machine three.

19

Table 2.3 – Common objective functions.

Description Meaning

max C j Maximum completion time
max (Fj) Maximum flow time
max (L j) Maximum lateness
max (Tj) Maximum tardiness
∑C j Total/average completion time
∑w jC j Total/average weighted completion time
∑Fj Total/average flow time
∑w jFj Total/average weighted flow time
∑U j Number of late jobs
∑w jU j Total weighted number of late jobs

Source: Ruiz and Vázquez-Rodríguez (2010, p. 2).

Figure 2.4 – Example of a flow shop instance. Top: Processing times. Left and right: Gantt chart of
optimal schedules for PFSSP and FSSP.

Machine
Job M1 M2 M3 M4
J1 1 2 2 1
J2 1 1 2 2
J3 2 1 1 2
J4 1 3 2 1

0 5 10

M1
M2
M3
M4

J2 J4 J3 J1

t 0 5 10

M1
M2
M3
M4

J1 J2 J3 J4

t

A shop with the prmu constraint, called permutation flow shop is the most studied in the

literature and will be the focus of this work. Johnson (1954) has shown that there always exists

an optimal schedule such that the processing order of the jobs on the first two machines and the

last two machines is the same. Thus, discounting these schedules the non-permutation variant

has up to (n!)max(m−2,1) different possible solutions, while the permutation variant permits only

the n! with the same order on all machines. This is the reason most of the research has focused

on the permutation variant, although for instances found in practice Tandon, Cummings and

LeVan (1991), Liao, Liao and Tseng (2006) have shown that the makespan can be improved by

1% to 3% for the non-permutation flow shop. The concept of a permutation schedule for hybrid

flow shops is more subtle: each job is scheduled in order at the stages at the earliest feasible

time that a machine at that stage becomes available (EMMONS; VAIRAKTARAKIS, 2013).

20

2.2 Inserting a single worker into a flow shop

The situation encountered when we need to integrate WWDs into a regular workforce

can be seen in the left part of Figure 2.5. In addition to the times that regular workers take to

perform the operations, we have times for a worker with disabilities (WWD), which normally

exceed the time of the regular workers. In the example, the times of the WWD were chosen

randomly in the interval [p,2p], for a processing time of p of a regular worker. The WWD may

also be unable to operate some of the machines. In the example, this is the case for machine M4

represented by a processing time of ∞ on this machine.

The problem of inserting a WWD into a flow shop (flow shop insertion and scheduling

problem, FSISP) is defined as follows: we have to assign the WWD to a machine he is able to

operate, and find a valid schedule of the jobs, such that the makespan is minimized. We call the

variant restricted to permutation schedules the permutation flow shop insertion and scheduling

problem (PFSISP).

The optimal makespan for PFSISP in the above example is 12, obtained when assign-

ing the disabled worker to machine M3, and can be seen in the right part of Figure 2.5. The

permutation in this case is 2,4,3,1.

Figure 2.5 – An instance of PFSISP, where a single WWD must operate one machine in a flow shop.
Left: Processing times for regular worker and WWD. Right: Gantt chart of optimal schedule

Regular With disabilities
Job M1 M2 M3 M4 M1 M2 M3 M4
J1 1 2 2 1 2 4 2 ∞

J2 1 1 2 2 1 1 4 ∞

J3 2 1 1 2 4 2 1 ∞

J4 1 3 2 1 1 4 2 ∞ 0 5 10

M1
M2

M3,dw
M4

J2 J4 J3 J1

t

2.3 Inserting two workers into a hybrid flow shop

When assigning a single, possibly slow worker to a machine in a flow shop, he will most

likely be a bottleneck and increase the makespan compared to a solution with regular workers.

Therefore we also study a hybrid flow shop in which two WWDs are assigned to a single stage

with two parallel machines. Such a design allows to integrate more WWDs into the production

line and at the same time has the potential to compensate for their increased execution times.

This is the assumption we aim to validate.

21

There are many different variants of hybrid flow shops (RUIZ; VÁZQUEZ-RODRÍGUEZ,

2010), but here we are going to use the same assumptions as for the FSSP, the only difference

being that the stage with the WWDs will contain two parallel machines. Since the two work-

ers have different processing times, the machines are unrelated. Using the α|β |γ notation for

hybrid flow shop from Ruiz and Vázquez-Rodríguez (2010) the permutation variant is denoted

FHm,(R2)k,(1)i
i∈[m]\{k}|prmu|Cmax. We call this problem the Hybrid Flow Shop Insertion and

Scheduling Problem (HFSISP), and its permutation variant the Hybrid Permutation Flow Shop

Insertion and Scheduling Problem (HPFSISP).

An instance of these problems consists of the processing times for the regular workers,

and two (usually different) sets of processing times for the WWDs. A solution is given by

an assignment of the two workers to some stage, and a processing order for the jobs. In the

permutation version, we require the jobs to obey the processing order on each of the parallel

machines. However, with this it is still possible that the operations start out of order on a stage,

making the problem harder, since we must find a schedule between the machines of the stage.

An instance based on the example for the single worker insertion is shown in Figure 2.6.

In the upper part, WD 1 and WD 2 refer to the two WWDs. An optimal makespan of 11 can be

obtained when the WWDs are assigned to the third stage. The makespan is the same as the one

obtained for the regular problem without WWDs. This shows that the parallel stage was able to

compensate the longer processing times of the WWDs. This will be investigated in more detail

in the computational experiments.

Figure 2.6 – An instance of HPFSISP, where two WWDs must operate a dual-machine stage in a flow
shop. Top: Processing times for regular worker and WWDs. Bot: Gantt chart of an optimum solution.

Regular WD 1 WD 2
Job M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4
J1 1 2 2 1 2 4 2 ∞ 2 3 3 ∞

J2 1 1 2 2 1 1 4 ∞ 2 2 3 ∞

J3 2 1 1 2 4 2 1 ∞ 4 1 1 ∞

J4 1 3 2 1 1 4 2 ∞ 2 5 4 ∞

0 5 10

M1
M2

M3,wd1
M3,wd2

M4

t

J1
J2
J3
J4

Figure 2.7 shows another example of an optimal schedule with two WWDs for a real

benchmark instance: the instance number 7 from Carlier (1978). The Gantt chart was generated

22

using the Lekin system (PINEDO, 2012a). The processing times for the WWDs are again in the

[p,2p] range, and they are assigned to machine 2 in the figure. The optimal makespan is 6537

compared to an optimal makespan of 6558 in the normal flow shop.

23

Fi
gu

re
2.

7
–

E
xa

m
pl

e
of

a
sc

he
du

le
fo

ra
be

nc
hm

ar
k

in
st

an
ce

24

3 MATHEMATICAL FORMULATION OF THE FLOW SHOP INSERTION PROBLEMS

Mathematical formulation or mathematical programming is a method to model an opti-

mization problem in terms of mathematical variables and constraints. The most basic example is

the Linear Program (LP) where the objective and constraints are linear in the decision variables,

meaning that the effect of changing a decision variable is proportional to its magnitude. When

there is no integer restrictions on the decision variables, the formulation is solvable efficiently

(polynomial time) by techniques such as the Simplex Algorithm and Karmarkar’s Algorithm.

When some decision variables are required to be integer, indicating a discrete choice, the prob-

lem is called a Mixed-Integer Linear Program (MILP), and it becomes NP-Hard. There exists

free and commercial software that solves MILP with sophisticated mathematical techniques.

Most scheduling problems can be modelled as MILPs. In this chapter we adapt some

well known models existing for the regular and hybrid flow shop problem to the integration

case in order to have an exact solution to the new problems and to be able to compare with other

methods.

3.1 Flow Shop

In this section we present a mathematical formulation of the FSISP, and two formulations

for the PFSISP that consider the inclusion of a WWD. When presenting the models we use

subscripts r ∈ [m] for machines, i ∈ [n] for jobs, and j ∈ [n] for sequence positions. Table 3.1

explains the variables used in the moldels.

3.1.1 The flow shop scheduling and insertion problem

The model for flow shop scheduling is based on the model of Wagner (1959) using

dichotomous constraints for ordering the jobs on each machine. We extend this model by modi-

fying the processing times according to the assignment of the WWD and introducing a decision

variable corresponding to the machine the worker is assigned to (Xr).

min. Cmax, (3.1)

s.t. Sri +Tri ≤Cmax, ∀r ∈ [m], i ∈ [n], (3.2)

25

Table 3.1 – Notation used in the mixed integer programming models.

A set of machines which the WWD can operate
pri processing time of job Ji on machine Mr when executed by regular workers
dri processing time of job Ji on machine Mr when executed by the WWD
P a large constant
Cri completion time of job Ji on machine Mr
Sri starting time of job Ji on machine Mr
Br j starting time of job in sequence position j on machine Mr
Yr j waiting time of job in sequence position j after it finishes processing on machine Mr
Tri processing time of job Ji on machine Mr after assigning the WWD
Tr j processing time of job in sequence position j on machine Mr after assigning the WWD
Dik 1, if job Ji precedes job Jk, 0, otherwise
Dikr 1, if job Ji precedes job Jk on machine r, 0, otherwise
Zi j 1, if job Ji is assigned to sequence position j, 0 otherwise
Xr 1, if the WWD is assigned to machine Mr, 0 otherwise

Sri +Tri ≤ Sr+1,i, ∀r ∈ [m−1], i ∈ [n], (3.3)

Sri +Tri ≤ Srk +P(1−Dikr), ∀r ∈ [m], i,k ∈ [n], i < k, (3.4)

Dikr +Dkir = 1, ∀i,k ∈ [n], i < k,r ∈ [m], (3.5)

Tri = pri(1−Xr)+driXr, ∀r ∈ [m], i ∈ [n], (3.6)

∑
r∈A

Xr = 1. (3.7)

In this model constraint (3.2) defines Cmax as the latest completion time. Constraints (3.3)

and (3.4) set the starting time of all operations according to the precedences. Constraint (3.5)

enforces precedence relations for operations on the same machine. The processing time of an

operation depends on the machine the WWD is assigned to, and is defined in constraint (3.6).

Constraint (3.7) requires that the disabled worker is assigned to one of the machines she can

operate.

3.1.2 The permutation flow shop insertion and scheduling problem

Stafford, Tseng and Gupta (2004) and Tseng and Stafford (2007) present an extensive

comparison of models for the PFSSP. The model the authors identified as performing best,

called TS3, however, is harder to adapt for the PFSISP, since it multiplies the processing times

with binary decision variables Zi j, which define the permutation of the jobs. For this reason, we

study the extension of two models to the PFSISP: the best model using dichotomous constraints,

called LYeq, as well as a linearization of the TS3 model.

26

3.1.2.1 Adapting the LYeq model to the PFSISP

The LYeq model of Liao and You (1992) for the job shop scheduling problem was ap-

plied by Pan (1997) to the PFSSP. It can be modified in the same manner as the Wagner model

to include an additional WWD. The model uses the additional surplus variables Qrik for the time

between the completion of job Jk and the start of job Ji, if k precedes i. The constant P can be

set to ∑ j∈[n]maxr∈[m] dri.

min. Cmax, (3.8)

s.t. Cmi ≤Cmax, ∀i ∈ [n], (3.9)

C1i ≥ T1i, ∀i ∈ [n], (3.10)

Cr+1,i−Cri ≥ Tr+1,i, ∀r ∈ [m−1], i ∈ [n], (3.11)

PDik +Cri−Crk−Tri = Qrik, ∀r ∈ [m], i,k ∈ [n], i < k, (3.12)

Qrik ≤ P−Tri−Trk, ∀r ∈ [m], i,k ∈ [n], i < k, (3.13)

Qrik ≥ 0 ∀r ∈ [m], i,k ∈ [n] (3.14)

equations (3.6) and (3.7).

Constraint (3.9) defines Cmax as the latest completion time on the last machine. Constraint (3.10)

ensures each job can only be completed on machine 1 after it is fully processed on that ma-

chine. Constraint (3.11) states that each job is processed on only one machine at a time. Con-

straint (3.12) replaces the dichotomous constraints in the Wagner model, and equation (3.13)

upper bounds the surplus variables Qrik, in case i precedes k.

3.1.2.2 Adapting the TS3 model to the PFSISP

The TS3 model was proposed by Tseng and Stafford (2007). The underlying principle

of the formulation is to define the starting times of job J j at machine Mr, called Br j, by the

sum of its predecessors on the first machine, plus the sum of its processing times on machines

1, . . . ,r−1 and the waiting time on these machines before starting on the next machines. This

principle can be seen by the thick line in Figure 3.1. The comparison of these partial sums

yields compact constraints for expressing the relative starting times for a given job permutation.

27

Figure 3.1 – Principle of the TS3 model

Source: Tseng and Stafford (2007)

min. Cmax = ∑
p∈[n]

T1p + ∑
q∈[2,m]

Tqn + ∑
q∈[m−1]

Yqn, (3.15)

s.t. ∑
i∈[n]

Zi j = 1, ∀ j ∈ [n], (3.16)

∑
j∈[n]

Zi j = 1, ∀i ∈ [n], (3.17)

T1, j−1−Tr, j−1 + ∑
q∈[r−1]

Tq j−Tq, j−1

+ ∑
q∈[r−1]

Yq j−Yq, j−1 ≥ 0, ∀r ∈ [2,m], j ∈ [2,n], (3.18)

Tr j = ∑
i∈[n]

pri(1−Xr)Zi j +driXrZi j, ∀r ∈ [m], j ∈ [n], (3.19)

equation (3.7).

Constraint (3.15) defines Cmax as the sum of three components: (i) the processing time

of all jobs on the first machine, (ii) the processing time of last job on all remaining machines,

and (iii) the waiting times of the last job on all machines, except the last one. Constraints (3.16)

and (3.17) model the assignment of jobs to positions: each job is assigned to only one sequence

position and each sequence position has only one job assigned to it. Constraint (3.18) relates the

starting times of the jobs at sequence positions j−1 and j according to the principle explained

28

above. Constraint (3.19) defines the processing times of the jobs at each sequence position

according to the assignment of the WWD to one of the machines he is able to operate. Note

that these constraints are non-linear because of the product XrZi j, but can be easily linearized

by introducing new binary variables Nri j and adding the constraints (WILLIAMS, 2013):

Nri j ≤ Xr, ∀r ∈ [m], i, j ∈ [n], (3.20)

Nri j ≤ Zi j, ∀r ∈ [m], i, j ∈ [n], (3.21)

Nri j ≥ Xr +Zi j−1, ∀r ∈ [m], i, j ∈ [n]. (3.22)

where the new variables capture the value of the product in a linear form.

3.2 Hybrid permutation flow shop insertion and scheduling problem

The formulation for the HPFSISP was based on that for the standard Hybrid Flow Shop

proposed in Brah (1988). We use indices j and q for jobs, k for stages, l for machines and w for

workers. The model uses dichotomous constraints for ordering the jobs in each stage. Table 3.2

describes the data and variable notation used.

Essentialy, the modification needed was to only allow a job to be scheduled in a second

machine at the stage the WWDs are assigned to, disabling the parallel machines at other stages

(constraint 3.26 below). The constant Q can be set to ∑ j∈[n]∑k∈[m]maxw∈[2]d jkw.

Table 3.2 – Notation used in the HPFSISP model.

A set of stages which the WWDs can operate
p jk processing time of job j at stage k when executed by regular workers
d jkw processing time of job j at stage k when executed by the WWD w
Tjk processing time of job j at stage k after assigning the WWDs
U jkl 1, if job j at stage k is assigned to machine l, 0 otherwise
Pjq 1, if job j precedes job q, 0 otherwise
C jk completion time of job j at stage k
Xk 1, if the WWDs are assigned to stage k, 0 otherwise
Wwl 1, if the WWD w is assigned to machine l in the dual-machine stage, 0 otherwise
Q a sufficiently large constant

min. Cmax, (3.23)

s.t. Cmax ≥C jm, ∀ j ∈ [n], (3.24)

29

∑
l∈[2]

U jkl = 1, ∀ j ∈ [n],k ∈ [m], (3.25)

U jk2 ≤ Xk, ∀ j ∈ [n],k ∈ [m], (3.26)

C jk−Tjk ≥C j,k−1, ∀ j ∈ [n],k ∈ [m], (3.27)

Q(2−U jkl−Uqkl +Pjq)

+C jk−Tjk ≥Cqk, ∀ j,q ∈ [n],k ∈ [m], l ∈ [2], (3.28)

Q(3−U jkl−Uqkl−Pjq)

+Cqk−Tqk ≥C jk, ∀ j,q ∈ [n],k ∈ [m], l ∈ [2], (3.29)

Tjk = p jk(1−Xk)

+ ∑
l∈[2]

(d jkwXkWwl), ∀ j ∈ [n],k ∈ [m], l,w ∈ [2], (3.30)

∑
k∈A

Xk = 1, (3.31)

∑
l∈2

Wwl = 1, ∀w ∈ [2], (3.32)

∑
w∈2

Wwl = 1, ∀l ∈ [2], (3.33)

C jk ≥ 0 ∀ j ∈ [n],k ∈ [m]. (3.34)

The objective function (3.23) is defined as the latest completion time in constraint (3.24).

Constraint (3.25) requires that all jobs are assigned to only one of the machines at each stage.

Constraint (3.26) guarantees that only the stage to which the WWDs have been assigned can

use a second, parallel machine. Constraint (3.27) ensures that each job can only start on a stage

after it has finished on the previous one. Constraints (3.28) and (3.29) prevent any two jobs

to be executed on the same machine at the same time. The processing time of a job depends

on the stage the WWDs were assigned to, and is defined in constraint (3.6). Restriction (3.31)

requires that the disabled workers are assigned to one of the stages they can operate. Finally,

constraints (3.32) and (3.33) require that each worker is assigned to exactly one of the parallel

machines and each machine has only one worker assigned to it.

Again, the presented model is not linear due to the term XkWwl in constraint (3.30), but

can be linearized in the same way explained for the TS3 model in Section 3.1.2.2.

30

4 HEURISTICS FOR THE PFSISP AND THE HPFSISP

In this chapter, heuristic solutions are presented to solve the new problems. Heuristics

are not guaranteed to find optimal solutions, but they can speed up the process of finding a

satisfactory solution when finding an optimal one is impractical due to the large search space.

To solve a worker insertion problem we must find the best stage for the WWDs and an

optimal schedule of the operations. For a single worker, a simple approach is to solve a standard

PFSSP for each possible insertion in one of the m stages. This makes it possible to use existing

methods to solve each subproblem, but ignores that some stages may be better for inserting the

worker than others, and thus should receive more search time. We propose a pooled strategy

to solve this problem. The same approaches work when inserting a pair of workers, but we

additionally have to solve the sub-problem of scheduling the jobs on the stage with two parallel

machines.

We have chosen to base our heuristic on an iterated greedy algorithm (IGA), a special

form of an iterated local search (RUIZ; STÜTZLE, 2007). Both methods were successful in

finding good schedules for the permutation flow shop and related problems. For most of these

problems they are, or are part of, the current best heuristics (see e.g. Dubois-Lacoste, López-

Ibáñez and Stützle (2011), Pan and Ruiz (2012), Fernandez-Viagas and Framinan (2014)). In

the following, the heuristics are described in more detail.

4.1 Iterated Local Search

A local search is a heuristic optimization algorithm that searches the solution space of

a problem by applying a modification to a candidate solution. The set of solutions resulting

of a modification form the neighbourhood of a solution. The local search moves to better

neighbours until the solution can’t be improved and a local minimum is reached (considering a

minimization problem).

Iterated Local Search is a high-level heuristic, or metaheuristic that iterates over local

search solutions. It can be seen as a search in the local minimum space, as shown in Figure 4.1.

In order to be able to jump from one local minimum to another, a large enough modification

in the current solution is needed. This modification is called a perturbation. The way this

perturbation is applied defines the neighbourhood between the local minimum.

31

Figure 4.1 – Iterated Local Search operation

Source: Lourenço, Martin and Stützle (2010)

This simple idea is old is also known as iterated descent or chained local optimiza-

tion (LOURENÇO; MARTIN; STÜTZLE, 2010). Algorithm 1 presents the generic idea of an

Iterated Local Search.

Algorithm 1 Generic Iterated Local Search
Input: A solution s.
Output: An improved solution s′

1: s← localSearch(s)
2: while termination criterion not satisfied do
3: perturb the current solution s to obtain s′

4: s′← localSearch(s′)
5: if accept(s,s′) then
6: s← s′

7: end if
8: end while
9: return the best solution s′ found during the search

32

4.2 The NEH Algorithm

The IGA takes as input an initial solution, a job sequence π for the PFSSP. One way to

obtain a good initial solution is to use a constructive heuristic. We choose to use a variant of

NEH (NAWAZ; ENSCORE; HAM, 1983), one of the best known constructive heuristics for the

PFSSP to date. The idea is to order the jobs by non-increasing total processing time (sum of all

times of a job) and insert each job in the best possible position at each step of the permutation

construction. Algorithm 2 explains NEH in more detail.

Algorithm 2 NEH Algorithm
Input: Processing times pi j of the n jobs on m machines.
Output: Constructed permutation π .

1: for all j ∈ [n] do
2: compute Pj = ∑

m
i=1 pi j

3: end for
4: sort the jobs in non-increasing order of Pj, getting the initial sequence J1,J2, . . . ,Jn
5: evaluate two partial sequences J1,J2 and J2,J1 and choose the one with the smaller

makespan
6: for all k ∈ {3, . . . ,n} do
7: insert Jk in the k possible places of the partial solution with k-1 jobs
8: evaluate the k partial sequences
9: choose the sequence π with smallest makespan to be the k-th partial solution

10: end for
11: return π

This is the original NEH algorithm. Considering NEH as a case of a family of heuristics,

there are several options that can affect the performance of the algorithm: the starting order, i.e.

how to arrange the jobs in the first step (line 4), the sequence generation, i.e. how the candidate

(sub)sequences are generated, and the tie-breaking mechanism, i.e. how to handle ties in the

makespan evaluation of the (sub)sequences (NEH does not define tie-breaking rules).

Kalczynski and Kamburowski (2008) proposed an improved NEH heuristic where they

define the weighted times â j and b̂ j as follows:

â j = ∑
m
i=1 [(m−1)

m−2
2

+m− i]pi j (4.1)

b̂ j = ∑
m
i=1 [(m−1)

m−2
2

+ i−1]pi j (4.2)

The initial order is given by sorting the jobs by their non-increasing c j, where c j = â j

if â j ≤ b̂ j, or c j = b̂ j if â j > b̂ j. The sequence generation is the same as the original NEH but

33

when ties occur during the insertion candidates evaluation, the best candidate is the first index

for which the minimum is achieved if â j ≤ b̂ j, or the last last index if â j > b̂ j. We decided

to use this version of NEH in our iterated greedy algorithm since it is better than the original

and has performance very similar to the best known (FERNANDEZ-VIAGAS; FRAMINAN,

2014). We refer to this algorithm as NEHKK .

4.2.1 Complexity of NEH algorithm

In line 8 of Algorithm 2, it takes O(mk) to calculate the makespan of each partial se-

quence. The for loop can evaluate up to n(n+1)/2−1 = O(n2) schedules, totalling a compu-

tational complexity of O(mn3).

Taillard (1990) introduced optimizations to the NEH algorithm that accelerate the makespan

calculations. These optimizations uses data structures to store information that is needed more

than once during the partial sequences insertions, since the times before a insertion position

remains the same. This reduces the complexity of computing the makespan of all partial se-

quences in a step of the for loop in line 6 to O(mk), giving a final complexity of O(mn2). The

data structures used are (when job Jk is about to be inserted in a partial sequence):

• ei j, the earliest completion time of job J j at machine Mi (also called head):

ei j = max{ei−1, j,ei, j−1}+ pi j, e0 j = ei0 = 0, i ∈ [m], j ∈ [k−1];

• qi j, the interval between the latest start time of job J j at machine Mi and the total comple-

tion time (also called tail):

qi j = max{qi+1, j,qi, j+1}+ pi j, qm+1, j = qik = 0, i ∈ {m, . . . ,1}, j ∈ {k−1, . . . ,1};

• fi j, the earliest completion time of job J j at machine Mi after it is inserted at position j

(also called relative head):

fi j = max{ fi−1, j,ei, j−1}+ pi,Jk , f0, j = 0, i ∈ [m], j ∈ [k].

• C j: the makespan of the partial sequence after Jk is inserted at place j:

C j = max
i
{ fi j +qi j}, i ∈ [m], j ∈ [k].

34

4.3 The Iterated Greedy Algorithm

The IGA works by performing repeated perturbations on the solution: it destroys and

reinserts jobs of a given permutation, followed by a local search. Each iteration of the IGA can

be divided in four phases:

• Destruction Phase: d, a number given as parameter, jobs are randomly chosen without

repetition and then are removed from π in the order they were taken;

• Construction Phase: The d jobs removed are inserted back again one by one in the best

possible position of π;

• Local Search: The resulting solution from the construction phase is improved by a local

search. A insertion neighbourhood is used: the neighbours of a solution are all the permu-

tations obtained removing a job and inserting it in all possible positions. The local search

only allow modifications that improve the current solution, and the strategy for choosing

the new solution is first improvement, i.e. it selects the first neighbour that improves the

current solution. The local search can be seen in Algorithm 3.

• Acceptance Criterion: A simulated annealing-like acceptance criterion is used, where

worse solutions can be accepted according to a constant probability given as a parameter

named T . The worse solutions are used for diversification and to avoid stagnation.

Algorithm 3 Local search algorithm.
Input: Job permutation π .
Output: π improved to a local minimum.

1: improve← true
2: while improve do
3: improve← false
4: for all i ∈ [n] do
5: k← random job removed from π without repetition
6: π ′← best permutation obtained by inserting k in any possible positions of π

7: if Cmax(π
′)<Cmax(π) then

8: π ← π ′

9: improve← true
10: end if
11: end for
12: end while
13: return π

35

Algorithm 4 presents the IGA for the PFSSP and Figure 4.2 presents an example of an

iteration of this algorithm. The temperature used in the acceptance criterion depends on the

instance size and is computed as

Temperature = T ·
∑

m
i=1 ∑

n
j=1 pi j

n ·m ·10

Algorithm 4 Iterated Greedy Algorithm. random is a random number distributed uniformly in
[0,1].
Input: A permutation schedule π .
Output: An improved permutation schedule πb.

1: π ← improve solution with Algorithm 3
2: πb← π

3: while termination criteria not satisfied do
4: π ′← π

5: remove d random jobs from π ′ and insert in π ′R
6: for all i ∈ [d] do
7: π ′← best permutation obtained by inserting π ′R[i] in any possible positions of π ′

8: end for
9: π ′′← improve solution with Local Search (Algorithm 3)

10: if Cmax(π
′′)<Cmax(π) then

11: π ← π ′′

12: if Cmax(π
′′)<Cmax(πb) then

13: πb← π

14: end if
15: else if random ≤ exp{−(Cmax(π

′′)−Cmax(π))/Temperature} then
16: π ← π ′′

17: end if
18: end while
19: return πb

A characteristic that makes the heuristic faster is that it uses the Taillard (1990) opti-

mizations as explained in Section 4.2.1. The optimizations are used to calculate the makespan

after each new insertion, and are used in the NEH heuristic, in the local search and also in the

construction phase of the IGA.

36

Figure 4.2 – Example of an iteration of the IGA

Source: Ruiz and Stützle (2007)

4.4 A Pooled IGA for inserting WWDs into flow shops

Remembering that for the flow shop insertion variants, besides the permutation, we also

need to assign the WWDs to one of the machines or stages. To find this assignment, we propose

Algorithm 5, a pooled variant of an IGA. Firstly, a pool with m solutions is created. For each

candidate solution, the WWDs are assigned to one of the m stages and the NEHkk heuristic is

applied to obtain an initial solution. Then, the algorithm proceeds in m phases. In each phase,

the IGA is applied to each candidate solution for a fixed time t and then the solution of worst

makespan in the pool is discarded. The total running time is therefore m(m+ 1)t/2, and the

kth best solution receives (m+ 1− k)t of this time. This ensures that solutions with a shorter

makespan receive more time than the those that get stuck early. This approach is preferable

to more complex methods like that of Benavides, Ritt and Miralles (2014), because we are in-

serting only a few WWDs. Similar approaches have been applied successfully for selecting the

best among several sets of parameters in racing methods (LÓPEZ-IBÁNEZ et al., 2011) and to

improve local search in the “Go with the winners” heuristic (ALDOUS; VAZIRANI, 1994). In

Algorithm 5, function NEHKK(k) returns an initial solution using the NEHKK algorithm, when

assigning the WWDs to the kth stage, and function IGA(π, t) improves the current schedule π

37

by applying the IGA for time t.

Algorithm 5 A pooled IGA for PFSISP or HPFSISP.
Output: A solution (π,k) for the PFSISP or HPFSISP .

1: P: pool of solutions
2: for all k ∈ [m] do
3: P← P∪{(NEHKK(k),k)} . Create the solution pool
4: end for
5: while |P|> 0 do
6: for all (π,k) ∈ P do
7: (π,k)← (IGA(π, t),k)) . Algorithm 4
8: end for
9: (π0,k0)← argmax(π,k)∈PCmax(π)

10: P← P\{(π0,k0)}
11: end while
12: return the latest solution π0,k0 removed from the pool

The makespan calculation adjustments for the PFSISP are trivial, we simply need to use

the correct processing time, depending on whether the WWD is assigned to a machine or not.

For the HPFSISP, we also have to perform the scheduling of the jobs on the parallel machines

of the stage at which the WWDs were assigned. This subproblem is treated in the next section.

4.5 Solving the two-machine subproblem

A solution for the HPFSISP assigns two workers to a stage with two parallel machines,

and must additionally solve the subproblem of finding an optimal schedule for this stage.

This subproblem can be formulated as a head-body-tail problem on two unrelated ma-

chines (ATTAR; MOHAMMADI; TAVAKKOLI-MOGHADDAM, 2013). For a permutation π

of the jobs, and a assignment of the WWDs to stage k, heads are defined as e j = ek−1, j and

tails q j = qk+1, j, where ei j is the earliest completion time of job j on stage i, as defined in Sec-

tion 4.2.1 and qi j is the shortest time from the start of job j on stage i to the completion of the

last operation, also defined in Section 4.2.1. Then we have to find starting times S j for the jobs

j ∈ [n] on the two machines, such that S j ≥ e j, minimizing Cmax = max j{S j + q j}. Since we

impose the order of the permutation flowshop π on all machines the problem reduces to finding

an optimal assignment of the jobs to the parallel machines.

This problem is NP-hard, since it generalizes P2||Cmax (LENSTRA; KAN; BRUCKER,

1977), but can be solved by dynamic programming (DP) in time O(nC2
) for some upper bound

C of the makespan. It works by processing the jobs in order of non-decreasing heads, breaking

38

ties by longer tails. In each step, two sub-problems are generated when assigning the current

job to one of the two machines, and updating current times of the two machines accordingly.

Let C(j, t1, t2) be the minimal completion time when scheduling jobs j, ...,n on the two parallel

machines, starting not earlier than t1 on the first, and not earlier than t2 on the second machine.

Then the optimal solution is given by C(1,0,0), where

C(j, t1, t2) = min{max{C1(t1, j)+q j,C(j+1,C1(t1, j), t2)},

max{C2(t2, j)+q j,C(j+1, t1,C2(t2, j))})}.

and Cl(t, j) = max{t,e j}+ p jl is the completion time of job J j when starting not earlier than t

on parallel machine l. The base case is C(n+1, t1, t2) = 0 for all t1 and t2.

The solution by DP can be very expensive for large instances, therefore, we also decided

to use a heuristic to solve this subproblem. The heuristic processes the jobs in order, and

greedily assigns each job to the parallel machine that results in the earliest completion time

(tail).

Figure 4.3 shows an example of the best schedule found by the two approaches for a

given permutation. We can see that the optimal makespan found by the DP is 14 while the

heuristic finds a makespan of 18. This difference happens because the first job J3 is allocated to

the second machine of the first stage in the DP, while the heuristic greedily assigns it to the first

machine since the tails are the same.

To summarize, we have two solutions for the dual machine stage: an exact solution using

DP and an earliest completion time heuristics.

39

Figure 4.3 – Example of an instance with the schedules found by the DP and by the earliest completion
time heuristic for the job permutation sequence 3,4,1,2

Regular WD 1 WD 2
Job M1 M2 M1 M2 M1 M2
J1 1 1 7 ∞ 9 ∞

J2 1 1 7 ∞ 10 ∞

J3 1 1 3 ∞ 3 ∞

J4 1 7 5 ∞ 7 ∞

0 5 10 15 20

M1,wd1
M1,wd2

M2

t

J1
J2
J3
J4

0 5 10 15 20

M1,wd1
M1,wd2

M2

t

J1
J2
J3
J4

40

5 COMPUTATIONAL EXPERIMENTS

In this chapter the results of computational tests are presented. We first analyze the

performance of the models. Then, the heuristics are compared on small instances that can be

solved to optimality. In a second experiment we evaluate the heuristics on instances of practical

sizes.

The computational experiments compare the performance of different methods on each

problem, and help to study the benefit of inserting WWDs into traditional flow shops. We first

propose test instances in Section 5.1 and then present the numerical results in Section 5.2.

5.1 Test instances and experimental methodology

For the computational experiments we created instances for the inclusion problem based

on the well-known flow shop instances proposed by Carlier (1978) and Taillard (1993). The

Carlier benchmark is composed of eight small instances that are relatively simple to solve with

processing times ranging from 1-999, while the Taillard benchmark contains 120 instances di-

vided into groups of 10 that are more difficult to solve, with processing times randomly gener-

ated in the range [1,99]. From the Taillard benchmark we used the first 60 instances with sizes

up to 50 jobs and 20 machines. Taillard’s benchmark has instances based on real dimensions of

industrial problems. Table 5.1 reports the size of the instances used.

Table 5.1 – Size of the Carlier and Taillard instances

Inst. n m Group n m

car1 11 5 ta01 20 5
car2 13 4 ta02 20 10
car3 12 5 ta03 20 20
car4 14 4 ta04 50 5
car5 10 6 ta05 50 10
car6 8 9 ta06 50 20
car7 7 7
car8 8 8

We assume that the processing times pi j of a flow shop instance are those of a regular

worker. To model a WWD, we modify these processing times in two ways. First, a fixed

percentage of incompatibilities is introduced. An incompatibility models the case of a worker

who is unable to operate some machine, as, for example, machine 4 for the WWD in the instance

41

given in Figure 2.5. Second, the processing times are increased to reflect that a WWD usually

needs more time to execute a job. Based on experiences made with workers in SWDs, we opted

to produce instances with no incompatibilities, as well as 10% and 20% of incompatibilities per

worker. The processing time p of a regular worker for some job on some machine is increased

by choosing uniformly at random a processing time in the interval [p,2p] or [p,5p].

For the mathematical models, we limited our tests to the Carlier instances, and the first

group of ten Taillard instances with 20 jobs and 5 machines, since the larger instances are hard

to solve exactly even in the regular case. The heuristics were run for the first sixty Taillard

instances.

With three levels of incompatibilities and two levels of task time variation, we obtain a

total of 408 test instances.

5.2 Numerical results

We solved the instances described above using the models presented in Section 3, two

IGA based heuristics, as well the DP and heuristic solution for the hybrid variation subproblem.

To further compare the quality of the heuristic solutions, we run the tests for the PFSISP in-

stances with the exact method LOMPEN (COMPANYS; MATEO, 2007), a branch-and-bound

algorithm for the PFSSP.

LOMPEN is a branch-and-bound algorithm that uses the reversibility property: a permu-

tation and the inverse of this permutation have the same makespan (the inverse of a permutation

is formed by the jobs of the permutation in reversed order). LOMPEN use this property to ap-

ply simultaneously branch-and-bound algorithms to both direct and inverse instances, sharing

lower and upper bounds between them. In our experiments, each machine assignment of the

WWD was solved separately and then the best solution was collected.

The mathematical models have been solved using the commercial solver CPLEX 12.5

running with a single thread and a time limit of one hour. The proposed heuristics were im-

plemented in C++, and compiled with GNU C++ 4.7.3 with optimization level 3 (-O3). All

computational tests were executed on a PC with an Intel Core i7 processor running at 2.8 GHz,

and with 12 GB of main memory.

42

5.2.1 Comparison of the mathematical models

5.2.1.1 Results of the FSISP and PFSISP models

The results for the FSISP and the two PFSISP models described in Section 3.1 are pre-

sented in Table 5.2 for the Carlier instances and in Table 5.3 for the Taillard instances. Each

table compares the overall averages of the three models for each of the two time variations,

and each level of incompatibilities. In the tables model (3.2)–(3.7) is denoted by FS. For each

combination we report the average percentage relative deviation (APRD) between the lower and

upper bounds found by CPLEX (Gap%), the average running time taken by CPLEX (Time),

and the number of optimum solutions found for each group of instances (Opt).

Table 5.2 – Results of the models on the Carlier instances.

FS LYeq TS3
Var. Inc. Gap Time Opt Gap Time Opt Gap Time Opt

2 0 14.25 2168.7 4 5.31 1261.9 6 0.00 26.8 8
2 10 14.08 1971.8 4 3.86 1122.3 6 0.00 17.8 8
2 20 13.92 2162.5 4 4.32 1191.8 6 0.00 14.6 8
5 0 25.04 2267.8 3 14.79 1440.9 5 0.00 55.7 8
5 10 17.19 2276.8 3 10.91 1453.0 5 0.00 46.7 8
5 20 12.06 2279.5 3 8.54 1423.8 5 0.00 11.3 8

Table 5.3 – Results of the models on the Taillard instances.

FS LYeq TS3
Var. Inc. Gap Time Opt Gap Time Opt Gap Time Opt

2 0 60.02 - 0 52.72 - 0 0.86 1861.7 7
2 10 59.84 - 0 52.78 - 0 0.03 2065.4 9
2 20 58.44 - 0 51.63 - 0 0.00 1301.8 10
5 0 67.78 - 0 64.15 - 0 1.64 2496.1 7
5 10 65.12 - 0 63.55 - 0 1.20 2182.8 7
5 20 58.83 - 0 62.34 - 0 1.90 2557.5 5

The FS model had the worst performance, solving about half of the Carlier instances in

an average of 36 minutes and none of the Taillard instances. The LYeq model is clearly better,

solving two more Carlier instances in about 60% of the time of the FS model, but was still

unable to solve any of the Taillard instances. The relative performance of the two models was

expected, since both use dichotomous constraints for defining the job order, but the FS model

43

solves a harder problem. The TS3 model performed much better than the other models, solving

all Carlier instances in a small fraction of the time and being able to solve 75% of the Taillard

instances. Thus, the TS3 model for the PFSSP continues to be the strongest model for PFSISP,

even with the additional overhead from linearizing constraints (3.19). We can also see that an

increased time variation makes the problem in general more difficult to solve, while increasing

the incompatibilities makes it easier, since it reduces the number of feasible assignments of the

WWDs to machines.

5.2.1.2 Results of the HPFSISP model

Table 5.4 presents the results for the HPFSISP model. We can see that the model solved

about 80% of the Carlier instances and none of the Taillard instances. The time taken to solve

the Carlier instances was more than 5 minutes in average and the gap for the Taillard instances

was still very high, showing that the model cannot solve even the smallest group of instances.

The observations about the problem difficulty with increasing incompatibilities stills applies for

this variant.

Table 5.4 – Results of the HPFSISP model

Carlier Taillard
Var. Inc. Gap Time Opt Gap Time Opt

2 0 6.86 239.18 5 54.12 - 0
2 10 6.40 334.61 6 53.63 - 0
2 20 5.13 832.87 6 51.59 - 0
5 0 4.13 486.60 7 57.27 - 0
5 10 3.71 513.17 7 54.88 - 0
5 20 3.75 386.46 7 50.15 - 0

5.2.1.3 Comparison of permutation and non-permutation schedules

Table 5.5 presents the average makespan obtained by the non-permutation (FS) and the

best permutation model (TS3) for the Carlier and Taillard instances. The numbers are averages

over all instances of each group. We can see that for the Carlier instances, the non-permutation

variant obtained best average results for all time and incompatibilities variations, but with an

improvement of less than 1%. On the other hand, for the Taillard instances, the permutation

variant was better in the majority of cases. This can be explained by the large gap between

between the lower and upper bounds in the non permutation model, not being able to find

44

good solutions in the time limit, since accordingly to Potts, Shmoys and Williamson (1991),

the optimal solutions of non-permutation schedules should always be better than those of the

permutation schedules.

Overall, we can see that a small increase of the makespan can be obtained using non-

permutation schedules instead of permutation schedules. However, this small increase is still

relevant in practice because the methods that solves the permutation problem are already very

optimized and close to the optimum solution.

Table 5.5 – Comparison of the makespan obtained by the FS and TS3 models

Carlier Taillard
Var. Inc. FS TS3 FS TS3

2 0 8050.2 8103.0 1450.7 1465.0
2 10 8087.5 8133.1 1475.8 1427.4
2 20 8204.1 8238.2 1474.9 1443.7
5 0 13197.5 13210.9 2541.5 2521.7
5 10 13197.5 13210.9 2547.2 2540.9
5 20 13324.2 13337.8 2678.2 2673.9

5.2.2 Results of the heuristics algorithms

We evaluated the pooled (P) IGA heuristic as well a simple variation (S) where the IGA

is run for each possible machine assignment of the WWDs. As stopping criterion for the IGA

based heuristics, we run tests using four variations of time limit (in milliseconds): 3nm and

a longer version 3nm2 (identified as L in the results) and also 30nm and a longer counterpart

30nm2. This was done to compare if more time is really necessary for the assignments or if a

shorter time can give similar results. For the IGA parameters, we used d = 4, T = 0.4, identified

as the best in Ruiz and Stützle (2007).

To be able to evaluate the impact of inserting WWDs, the solution quality is reported as

the APRD ((Cmax−C∗max)/C∗max ·100) from the best known makespan C∗max of the corresponding

flow shop instance (called “Rd.” in the results). For example, if the best solution for the original

flow shop instance has a makespan of 100, and our heuristic finds a solution with a makespan of

99 when inserting a disabled worker, the result is reported as−1(%), indicating a decrease when

compared to the original problem. Due to the heuristic non-determinism, we report averages

over 5 replications with different seeds. All times are reported in seconds.

45

5.2.2.1 Experiments with the Carlier instances

On the Carlier instances, we present the CPLEX results of the TS3 model for the PFSISP

and the model of section 3.2 for the HPFSISP. For the PFSISP we also present the LOMPEN

results.

Table 5.6 reports the relative deviations when inserting one worker, and Table 5.7 when

inserting two workers. For the exact methods, we also report the solution time (t), and for the

heuristics, the initial solution obtained by NEHKK . All instances when inserting one worker

could be solved to optimality. When inserting two workers, the optimality gap (Gap) is shown

when no optimal solution is found in one hour.

The PFSISP is easy to solve on the Carlier instances. LOMPEN finds the optimum

very quickly, and the heuristics also find the optimal solutions even in the version with the

shortest time limit (less than 1 second). The constructive heuristic NEHKK gives solutions at

most 1.3% from the optimum. The HPFSISP is harder to solve, and the average solution time

of the CPLEX solver increases by a factor of almost 40, and the NEHKK starts with a solution

up to about 9% worse. The heuristics find good solutions with a makespan that is at most 0.4%

longer in 1/500th of the time.

Table 5.6 – Results for Carlier instances when inserting one worker
Exact Heuristics

CPLEX LOMPEN 3nm 3nm2 30nm 30nm2

Var. Inc. t Rd. t Rd. NEH S P SL PL S P SL PL

2 0 26.7 7.4 0.1 7.4 8.5 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4
2 10 17.8 7.9 0.1 7.9 9.2 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9
2 20 14.5 9.2 0.1 9.2 10.2 9.2 9.3 9.2 9.3 9.2 9.3 9.2 9.2
5 0 55.7 75.8 0.0 75.8 76.2 75.8 75.8 75.8 75.8 75.8 75.8 75.8 75.8
5 10 46.7 75.8 0.0 75.8 76.2 75.8 75.8 75.8 75.8 75.8 75.8 75.8 75.8
5 20 11.3 77.7 0.0 77.7 78.1 77.7 77.7 77.7 77.7 77.7 77.7 77.7 77.7

Avg. 28.8 42.3 0.0 42.3 43.1 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3

Table 5.7 – Results for Carlier instances when inserting two workers
Exact Heuristics

CPLEX 3nm 3nm2 30nm2 30nm2

Var. Inc. Gap t Rd. NEH S P SL PL DP S P SL PL DP

2 0 6.9 1499.5 -4.2 1.0 -4.1 -4.0 -4.1 -4.0 -3.9 -4.1 -4.0 -4.1 -4.0 -4.1
2 10 6.4 1151.0 -2.2 2.4 -2.1 -2.1 -2.1 -2.1 -1.9 -2.1 -2.1 -2.1 -2.1 -2.1
2 20 5.1 1524.7 -0.6 2.6 -0.6 -0.5 -0.6 -0.5 -0.4 -0.6 -0.5 -0.6 -0.5 -0.5
5 0 4.1 875.8 3.6 11.5 4.2 4.2 4.2 4.3 4.4 4.2 4.3 4.2 4.2 4.0
5 10 3.7 899.0 5.0 14.6 5.4 5.5 5.4 5.6 5.4 5.4 5.5 5.4 5.5 5.2
5 20 3.7 788.2 5.4 14.6 5.8 5.9 5.8 5.9 6.1 5.8 5.9 5.8 5.9 5.8

Avg. 5.0 1123.0 1.2 7.8 1.4 1.5 1.4 1.5 1.6 1.4 1.5 1.4 1.5 1.4

46

We can also see that there were very small differences between the different heuristic

strategies and time limits. Tables 5.8 and 5.9 compares the number of iterations run by the

IGA algorithm in each heuristic with the different time limits for one and two workers. The

numbers are rounded averages over all instances in each group. We can see that the simple and

pooled variant have a very similar number of iterations, with the simple version having slightly

more. The DP on the other hand was not able to perform many iterations due to the increased

calculation complexity, but nonetheless found solutions of good quality.

We can observe that inserting a single worker introduces, as expected, a large overhead,

in particular for a high time variation, whereas the makespan does not increase more than 1.2%

when inserting two workers.

Table 5.8 – Average number of iterations of the IGA on the Carlier instances when inserting one worker
3nm 3nm2 30nm 30nm2

Var. Inc. S P SL PL S P SL PL

2 0 12053 10685 74279 62665 115940 110431 716972 683450
2 10 10015 8982 61589 55642 97153 92571 596361 582444
2 20 7992 7244 44515 44960 79739 73087 486529 479786
5 0 15188 14410 81270 87799 152227 146619 900621 917233
5 10 12596 11900 69787 75156 126541 120724 759788 766446
5 20 10026 9449 62518 62149 100628 93589 617590 623819

Avg. 11312 10445 65660 64728 112038 106170 679644 675530

Table 5.9 – Average number of iterations of the IGA on the Carlier instances when inserting two workers
3nm 3nm2 30nm 30nm2

Var. Inc. S P SL PL DP S P SL PL DP

2 0 1607 1558 10590 10498 169 26905 26877 172607 179782 2170
2 10 1541 1163 8193 8139 141 20622 20592 133548 139812 1726
2 20 826 816 5647 5619 101 14321 14236 92541 94544 985
5 0 1584 1581 10578 10382 113 26230 26786 172571 184709 862
5 10 1240 1488 8056 8170 91 19822 20465 133341 143524 756
5 20 861 854 5564 5787 64 13773 13825 93220 99095 504

Avg. 1277 1243 8105 8099 113 20279 20463 132971 140244 1167

47

5.2.2.2 Experiments with the Taillard instances

We have repeated the experiments on Taillard’s instances. We do not report results for

CPLEX, which was unable to solve the larger instances, but report results for LOMPEN when

inserting a single worker, which was able to solve all instances up to 10 machines and about

70% of the instances with 20 machines in two hours. We also do not report results for the

heuristic variant computing an exact schedule on the parallel stage by dynamic programming,

since it turned out to be too slow and thus found solutions of inferior quality.

Tables 5.10 and 5.11 present the results for the insertion of one and two workers, re-

spectively. They report the APRD for each group of Taillard’s instances of the same size (n and

m), time variation (Var.) and each percentage of incompatibilities (Inc.), and additionally, when

inserting one worker, the solution time of LOMPEN (t).

We first look at the performance of the methods. Comparing the results of LOMPEN

and the single worker case, we find that the heuristics again find very good solutions in a short

time. The exact solver now has more difficulties, in particular for a time variation of [p,2p]

and runs about three hours whereas the heuristics run for at most 10 min, but the 3nm2 simple

version already finds equal or better solutions than LOMPEN in at most one min. For a single

worker the different strategies have only small impact on the solution quality. When inserting

two workers, the choice of the heuristic strategy makes some difference: in the 3nm version,

using a solution pool improves the solution by up to 0.6% for a time variation of [p,5p] against

the simple variant. When adding an extra m time this difference decreases to 0.2%. With even

more time (30nm), the simple IGA managed to reach the pooled version, presenting very similar

results, and adding extra m time improves the solution quality by about 0.3% for both variants.

Tables 5.12 and 5.13 report the number of iterations of the heuristics for one and two

workers, respectively. The numbers are rounded averages over all instances in each group. We

can see the simple IGA did more iterations than the pooled one in all cases, but still the pooled

variant found slightly better results. Comparing the number of iterations when inserting one

and two workers, the two worker variant is a factor 10 slower than the single one. This can be

explained by the lack of the Taillard optimizations from Section 4.2.1 to speed up the makespan

computations in the double insertion case, since the two machine subprolem requires a different

makespan calculation. Further investigation is needed to check if it is possible to still apply the

optimizations with this variant.

48

We now turn to the practical value of the solutions. As before, inserting a single worker

has a visible overhead of about 12% for a small time variation. A large time variation with a

single worker is unpractical, since it leads to about 90% overhead. In contrast, the disabilities of

two workers can be hidden completely for a small time variation and never exceed 5% for large

time variations. In summary, the insertion of WWDs if feasible for moderate time variations,

independent of the percentage of incompatibilities.

49

Table 5.10 – Results for Taillard instances when inserting one worker.
Exact Heuristics

LOMPEN 3nm 3nm2 30nm 30nm2

Var. Inc. n m t Rd. NEH S P SL PL S P SL PL

2 0 20 5 0.4 14.7 16.1 14.7 14.7 14.7 14.7 14.7 14.7 14.7 14.7
2 0 20 10 3141.9 2.5 7.8 3.7 3.7 3.5 3.7 3.5 3.6 3.4 3.6
2 0 20 20 54258.4 1.2 4.0 1.5 1.3 1.2 1.3 1.2 1.3 1.2 1.3
2 0 50 5 6.9 27.4 27.5 27.4 27.4 27.4 27.4 27.4 27.4 27.4 27.4
2 0 50 10 127.0 19.2 19.7 19.4 19.4 19.4 19.3 19.3 19.3 19.2 19.3
2 0 50 20 21934.4 5.2 8.2 5.1 4.7 4.2 4.1 4.4 4.2 3.8 3.9

Avg. 13244.9 11.7 13.9 12.0 11.9 11.7 11.8 11.8 11.8 11.6 11.7

2 10 20 5 0.4 17.0 18.3 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0
2 10 20 10 3795.5 3.5 7.8 3.7 3.8 3.5 3.6 3.5 3.7 3.5 3.7
2 10 20 20 48653.9 1.3 4.2 1.5 1.4 1.3 1.4 1.3 1.3 1.3 1.4
2 10 50 5 6.2 28.4 28.5 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4
2 10 50 10 80.4 20.2 20.4 20.2 20.2 20.2 20.2 20.2 20.2 20.2 20.2
2 10 50 20 19483.3 5.5 8.3 5.6 5.0 4.6 4.5 4.7 4.6 4.3 4.4

Avg. 12003.3 12.6 14.6 12.7 12.6 12.5 12.5 12.5 12.5 12.4 12.5

2 20 20 5 0.4 18.3 19.5 18.3 18.3 18.3 18.3 18.3 18.3 18.3 18.3
2 20 20 10 1872.0 5.2 8.7 5.4 5.4 5.2 5.4 5.2 5.4 5.2 5.3
2 20 20 20 44304.2 1.3 4.2 1.5 1.4 1.3 1.3 1.3 1.3 1.3 1.4
2 20 50 5 4.7 28.7 28.8 28.7 28.7 28.7 28.7 28.7 28.7 28.7 28.7
2 20 50 10 76.4 20.5 20.7 20.6 20.6 20.5 20.6 20.5 20.6 20.5 20.6
2 20 50 20 16410.8 5.8 8.7 5.7 5.4 5.0 4.9 5.1 5.0 4.7 4.8

Avg. 10444.8 13.3 15.1 13.3 13.3 13.2 13.2 13.2 13.2 13.1 13.2

5 0 20 5 0.2 106.5 106.5 106.5 106.5 106.5 106.5 106.5 106.5 106.5 106.5
5 0 20 10 3.7 58.0 58.5 58.0 58.0 58.0 58.0 58.0 58.0 58.0 58.0
5 0 20 20 390.8 24.6 26.0 24.6 24.7 24.6 24.7 24.6 24.7 24.6 24.7
5 0 50 5 6.8 149.2 149.2 149.2 149.2 149.2 149.2 149.2 149.2 149.2 149.2
5 0 50 10 30.8 125.5 125.6 125.6 125.5 125.5 125.5 125.5 125.5 125.5 125.5
5 0 50 20 491.5 77.0 77.3 77.1 77.0 77.0 77.0 77.0 77.0 77.0 77.0

Avg. 154.0 90.1 90.5 90.2 90.2 90.1 90.2 90.1 90.2 90.1 90.2

5 10 20 5 0.2 108.3 108.4 108.3 108.4 108.3 108.4 108.3 108.4 108.3 108.4
5 10 20 10 3.6 58.0 58.5 58.0 58.0 58.0 58.0 58.0 58.0 58.0 58.0
5 10 20 20 389.5 26.6 27.9 26.6 26.6 26.6 26.6 26.6 26.6 26.6 26.6
5 10 50 5 5.8 154.7 154.7 154.7 154.7 154.7 154.7 154.7 154.7 154.7 154.7
5 10 50 10 27.5 125.5 125.7 125.5 125.5 125.5 125.5 125.5 125.5 125.5 125.5
5 10 50 20 476.9 77.8 78.0 77.8 77.8 77.8 77.8 77.8 77.8 77.8 77.8

Avg. 150.6 91.8 92.2 91.8 91.8 91.8 91.8 91.8 91.8 91.8 91.8

5 20 20 5 0.1 119.1 119.1 119.1 119.1 119.1 119.1 119.1 119.1 119.1 119.1
5 20 20 10 3.4 68.2 68.8 68.2 68.2 68.2 68.2 68.2 68.2 68.2 68.2
5 20 20 20 383.6 27.6 28.9 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6
5 20 50 5 4.4 154.7 154.7 154.7 154.7 154.7 154.7 154.7 154.7 154.7 154.7
5 20 50 10 24.1 126.0 126.2 126.1 126.0 126.0 126.0 126.0 126.0 126.0 126.0
5 20 50 20 462.1 78.5 78.7 78.5 78.5 78.5 78.5 78.5 78.5 78.5 78.5

Avg. 146.3 95.7 96.1 95.7 95.7 95.7 95.7 95.7 95.7 95.7 95.7

50

Table 5.11 – Results for Taillard instances when inserting two workers.
3nm 3nm2 30nm 30nm2

Var. Inc. n m NEH S P SL PL S P SL PL

2 0 20 5 5.0 -3.7 -3.7 -3.8 -3.7 -3.8 -3.7 -3.8 -3.7
2 0 20 10 6.4 -0.7 -1.0 -1.3 -1.2 -1.4 -1.3 -1.5 -1.4
2 0 20 20 3.6 -0.2 -0.5 -0.9 -0.9 -0.9 -0.9 -1.1 -1.0
2 0 50 5 2.6 -1.3 -1.3 -1.3 -1.4 -1.4 -1.4 -1.4 -1.4
2 0 50 10 10.2 0.5 0.2 -0.5 -0.8 -0.6 -0.7 -1.2 -1.3
2 0 50 20 8.2 2.7 2.1 0.7 0.4 0.9 0.5 -0.1 -0.3

Avg. 6.0 -0.5 -0.7 -1.2 -1.3 -1.2 -1.2 -1.5 -1.5

2 10 20 5 5.0 -3.7 -3.6 -3.8 -3.7 -3.8 -3.7 -3.8 -3.7
2 10 20 10 6.6 -0.9 -0.8 -1.3 -1.3 -1.3 -1.2 -1.5 -1.3
2 10 20 20 3.7 -0.2 -0.4 -1.0 -1.0 -0.9 -0.9 -1.1 -1.1
2 10 50 5 3.0 -0.9 -1.0 -1.0 -1.0 -1.1 -1.1 -1.1 -1.1
2 10 50 10 10.3 0.8 0.3 -0.4 -0.6 -0.4 -0.6 -1.0 -1.1
2 10 50 20 8.3 2.7 2.1 0.8 0.3 0.9 0.6 -0.1 -0.3

Avg. 6.2 -0.4 -0.6 -1.1 -1.2 -1.1 -1.2 -1.4 -1.4

2 20 20 5 5.1 -2.0 -2.0 -2.1 -2.0 -2.1 -2.0 -2.1 -2.0
2 20 20 10 6.7 -0.5 -0.6 -1.1 -1.0 -1.1 -1.0 -1.3 -1.1
2 20 20 20 3.8 0.1 -0.4 -0.8 -0.8 -0.7 -0.9 -1.0 -1.0
2 20 50 5 4.0 -0.6 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7
2 20 50 10 10.8 1.3 0.9 0.0 -0.2 -0.1 -0.2 -0.6 -0.6
2 20 50 20 8.9 2.7 2.1 0.7 0.5 0.9 0.7 -0.1 -0.3

Avg. 6.5 0.1 -0.1 -0.6 -0.7 -0.6 -0.7 -1.0 -1.0

5 0 20 5 20.4 5.9 5.9 5.4 5.4 5.2 5.2 5.1 5.3
5 0 20 10 19.0 4.4 4.2 3.7 3.5 3.5 3.5 3.3 3.4
5 0 20 20 14.1 3.0 2.5 2.1 2.1 2.2 2.1 1.9 2.0
5 0 50 5 20.2 2.9 2.8 2.4 2.2 2.1 2.1 1.9 1.9
5 0 50 10 24.1 5.7 4.8 3.8 3.5 3.8 3.5 2.7 2.6
5 0 50 20 20.3 5.8 5.0 3.4 3.0 3.7 3.2 2.5 2.2

Avg. 19.7 4.6 4.2 3.5 3.3 3.4 3.3 2.9 2.9

5 10 20 5 20.8 5.9 5.8 5.4 5.4 5.2 5.2 5.1 5.2
5 10 20 10 19.0 4.6 4.1 3.6 3.6 3.5 3.6 3.3 3.5
5 10 20 20 14.2 3.1 2.7 2.1 2.1 2.2 2.1 1.9 2.0
5 10 50 5 20.2 3.1 2.9 2.3 2.2 2.1 2.1 2.0 2.0
5 10 50 10 24.7 6.4 5.6 4.5 4.1 4.3 3.9 3.4 3.2
5 10 50 20 20.5 6.1 5.0 3.5 3.0 3.9 3.2 2.5 2.2

Avg. 19.9 4.9 4.3 3.6 3.4 3.5 3.3 3.0 3.0

5 20 20 5 20.8 5.8 5.8 5.4 5.5 5.2 5.3 5.1 5.2
5 20 20 10 19.3 4.4 4.1 3.6 3.6 3.6 3.5 3.3 3.4
5 20 20 20 14.8 3.6 3.1 2.6 2.5 2.6 2.6 2.3 2.4
5 20 50 5 27.1 8.0 7.6 7.1 7.1 6.8 6.8 6.5 6.6
5 20 50 10 25.5 6.6 5.6 4.8 4.2 4.6 3.9 3.5 3.2
5 20 50 20 20.7 6.1 5.0 3.4 3.0 3.7 3.3 2.5 2.2

Avg. 21.4 5.7 5.2 4.5 4.3 4.4 4.2 3.9 3.8

51

Table 5.12 – Average number of iterations of the IGA on the Taillard instances when inserting one
worker.

3nm 3nm2 30nm 30nm2

Var. Inc. S P SL PL S P SL PL

2 0 4035 3423 41526 37013 52891 46011 570846 495379
2 10 3079 2646 37499 32640 46228 40206 507060 460024
2 20 2544 2240 32058 28535 39087 34109 440719 401540
5 0 5118 5200 61051 60996 71232 65880 825620 723665
5 10 4533 4276 53441 50117 61749 57135 731607 700503
5 20 3274 2990 44881 42421 52500 49133 637723 614744

Avg. 3764 3462 45076 41954 53948 48746 618929 565976

Table 5.13 – Average number of iterations of the IGA on the Taillard instances when inserting two
workers.

3nm 3nm2 30nm 30nm2

Var. Inc. S P SL PL S P SL PL

2 0 292 269 3608 3558 4484 3666 54300 50638
2 10 229 204 3182 3222 3597 3434 43392 43394
2 20 170 158 2614 2571 2690 2574 32474 32345
5 0 288 248 3946 4146 4486 4278 54057 53389
5 10 230 207 3411 3272 3585 3428 43324 38273
5 20 170 170 2521 2453 2686 2573 32403 32344

Avg. 230 209 3214 3204 3588 3325 43325 41730

52

6 CONCLUDING REMARKS

In this work we have studied two scheduling problems that aim to insert WWDs into flow

shops. We have proposed mathematical formulations, heuristic solutions and a set of realistic

test instances.

Our results show that our methods find close to optimal schedules for the inclusion of

WWD into flow shops. From a practical point of view, our results show that the inclusion of

WWDs can be optimized with standard techniques for moderate problem sizes. For larger flow

shop instances, the heuristic becomes necessary to reach good solutions fast. The incompatibil-

ities have almost no impact on the resulting makespan, such that workers which cannot operate

some machines, but have almost regular processing times for the remaining machines can be

integrated into a flow shop with virtually no overhead. When the processing time of the WWDs

is about 50% slower in average, they can be included in a flow shop with a small overhead.

We can also conclude that a company that needs to integrate two WWDs in a flow

shop, can duplicate the machine they are going to operate and even achieve a reduction in the

makespan. However, the companies will have to consider the costs of purchasing and installing

the new machine, as well the maintenance costs, in order to evaluate the real benefits of the

integration. The governments could participate in this matter, providing some financial help,

given that in some countries they are obligating a percentage of disabled workers. This would

make the idea much more attractive for the companies.

This suggests further that companies can contribute to integrate people with disabilities

in their production systems with no or only moderate losses in productivity. We hope this can

lower the prejudice and help to increase the participation of persons with disabilities in the

market and in society.

53

REFERENCES

ALDOUS, D.; VAZIRANI, U. “Go with the winners” algorithms. In: IEEE. Foundations
of Computer Science, 1994 Proceedings., 35th Annual Symposium on. [S.l.], 1994. p.
492–501.

ARAÚJO, F.; COSTA, A.; MIRALLES, C. Two extensions for the assembly line worker
assignment, and balancing problem: parallel stations and collaborative approach. Int. J. Prod.
Econ., v. 140, p. 483–495, 2012.

ATTAR, S.; MOHAMMADI, M.; TAVAKKOLI-MOGHADDAM, R. Hybrid flexible flowshop
scheduling problem with unrelated parallel machines and limited waiting times. Int. J. Adv.
Manuf. Technol., v. 68, n. 5-8, p. 1583–1599, 2013.

BENAVIDES, A. J.; RITT, M.; MIRALLES, C. Flow shop scheduling with heterogeneous
workers. Eur. J. Oper. Res., v. 237, n. 2, p. 713–720, 2014.

BLUM, C.; MIRALLES, C. On solving the assembly line worker assignment and balancing
problem via beam search. Comput. Oper. Res., v. 38, n. 2, p. 328–339, 2011.

BORBA, L. M.; RITT, M. A heuristic and a branch-and-bound algorithm for the assembly line
worker assignment and balancing problem. Comput. Oper. Res., v. 45, p. 87–96, may 2014.
Online supplement: alwabp2.herokuapp.com/instances.

BRAH, S. A. Scheduling in a flow shop with multiple processors. Thesis (PhD) —
University of Houston, 1988.

BRASIL. Lei no 8123, de 24 de julho de 1991. Presidência da República, 1991. Available
online: <http://www.planalto.gov.br/ccivil_03/leis/l8213cons.htm>.

BRAULT, M. W. Americans with disabilities: 2010. [S.l.]: US Department of Commerce,
Economics and Statistics Administration, US Census Bureau, 2012.

CARLIER, J. Ordonnancements a contraintes disjonctives. R.A.I.R.O. Recherche
operationelle/Operations Research, v. 12, n. 4, p. 333–351, 1978.

COMPANYS, R.; MATEO, M. Different behaviour of a double branch-and-bound algorithm
on Fm | prmu |Cmax and Fm | block |Cmax problems. Comput. Oper. Res., v. 34, n. 4, p.
938–953, 2007.

DUBOIS-LACOSTE, J.; LÓPEZ-IBÁÑEZ, M.; STÜTZLE, T. A hybrid TP+PLS algorithm for
bi-objective flow-shop scheduling problems. Computers & Operations Research, Elsevier,
v. 38, n. 8, p. 1219–1236, 2011.

EMMONS, H.; VAIRAKTARAKIS, G. Flow Shop Scheduling: Theoretical Results,
Algorithms, and Applications. [S.l.]: Springer, 2013. (International Series in Operations
Research & Management Science). ISBN 9781461451525.

FERNANDEZ-VIAGAS, V.; FRAMINAN, J. M. On insertion tie-breaking rules in heuristics
for the permutation flowshop scheduling problem. Computers & Operations Research,
Elsevier, v. 45, p. 60–67, 2014.

http://www.planalto.gov.br/ccivil_03/leis/l8213cons.htm

54

GAREY, M. R.; JOHNSON, D. S. Computers and intractability: A guide to the theory of
NP-completeness. [S.l.]: Freeman, 1979.

GRAHAM, R. L.; LAWLER, E. L.; LENSTRA, J. K.; KAN, A. H. G. R. Optimization and
approximation in deterministic sequencing and scheduling: a survey. Ann. Discrete Math.,
v. 5, p. 287–326, 1979.

GUPTA, J.; STAFFORD, E. A comprehensive review and evaluation of permutation flowshop
heuristics. Eur. J. Oper. Res., v. 169, n. 3, p. 699–711, 2006.

GUPTA, J. N. Two-stage, hybrid flowshop scheduling problem. Journal of the Operational
Research Society, JSTOR, p. 359–364, 1988.

HALL, L. A. Approximability of flow shop scheduling. Math. Prog. B, v. 82, n. 1–2, p.
175–190, 1998.

JOHNSON, S. M. Optimal two- and three-stage production schedules with setup times
included. Nav. Res. Logist., v. 1, n. 1, p. 61–68, 1954.

KALCZYNSKI, P. J.; KAMBUROWSKI, J. An improved NEH heuristic to minimize
makespan in permutation flow shops. Comput. Oper. Res., v. 35, p. 3001–3008, 2008.

LENSTRA, J. K.; KAN, A. R.; BRUCKER, P. Complexity of machine scheduling problems.
Annals of discrete mathematics, Elsevier, v. 1, p. 343–362, 1977.

LIAO, C.; LIAO, L.; TSENG, C. A performance evaluation of permutation vs. non-permutation
schedules in a flowshop. International Journal of Production Research, Taylor & Francis,
v. 44, n. 20, p. 4297–4309, 2006.

LIAO, C.-J.; YOU, C.-T. An improved formulation for the job-shop scheduling problem. J.
Oper. Res. Soc., v. 43, n. 11, p. 1047–1054, 1992.

LÓPEZ-IBÁNEZ, M.; DUBOIS-LACOSTE, J.; STÜTZLE, T.; BIRATTARI, M. The irace
package, iterated race for automatic algorithm configuration. IRIDIA, Université Libre de
Bruxelles, Belgium, Tech. Rep. TR/IRIDIA/2011-004, Citeseer, 2011.

LOURENÇO, H. R.; MARTIN, O. C.; STÜTZLE, T. Iterated local search: Framework and
applications. In: GENDREAU, M.; POTVIN, J.-Y. (Ed.). Handbook of Metaheuristics. [S.l.]:
Springer US, 2010, (International Series in Operations Research & Management Science,
v. 146). p. 363–397.

MIRALLES, C.; GARCIA-SABATER, J. P.; ANDRéS, C.; CARDOS, M. Advantages of
assembly lines in Sheltered Work Centres for Disabled. A case study. Int. J. Prod. Res.,
v. 110, n. 2, p. 187–197, 2007.

MIRALLES, C.; GARCIA-SABATER, J. P.; ANDRéS, C.; CARDOS, M. Branch and
bound procedures for solving the assembly line worker assignment and balancing problem:
Application to sheltered work centres for disabled. Discrete Appl. Math., v. 156, n. 2, p.
352–367, 2008.

MIRALLES, C.; MARIN-GARCIA, J.; FERRUS, G.; COSTA, A. OR/MS tools for integrating
people with disabilities into employment. a study on valencia’s sheltered work centres for
disabled. Int. Trans. Oper. Res., v. 17, p. 457–473, 2010.

55

MOREIRA, M. C. O.; MIRALLES, C.; COSTA, A. M. Model and heuristics for the assembly
line worker integration and balancing problem. Computers & Operations Research, Elsevier,
v. 54, p. 64–73, 2015.

MOREIRA, M. C. O.; RITT, M.; COSTA, A. M.; CHAVES, A. A. Simple heuristics for the
assembly line worker assignment and balancing problem. J. Heuristics, v. 18, n. 3, p. 505–524,
2012.

MUTLU, O.; POLAT, O.; AYCA, A. An iterative genetic algorithm for the assembly line
worker assignment and balancing problem of type-ii. Comput. Oper. Res., v. 40, n. 1, p.
418–426, jan. 2013.

NAWAZ, M.; ENSCORE, E.; HAM, I. A heuristic algorithm for the m-machine, n-job
flow-shop sequencing problem. Omega, v. 11, n. 1, p. 91–95, 1983.

PAN, C.-H. A study of integer programming formulations for scheduling problems. J.
Comput. Syst. Sci., v. 28, n. 1, p. 33–41, 1997.

PAN, Q.-K.; RUIZ, R. Local search methods for the flowshop scheduling problem with
flowtime minimization. Eur. J. Oper. Res., v. 222, p. 31–43, 2012.

PINEDO, M. The Lekin system. In: Scheduling. [S.l.]: Springer US, 2012. p. 615–621. ISBN
978-1-4614-1986-0.

PINEDO, M. Scheduling: Theory, Algorithms, and Systems. [S.l.]: Springer, 2012.
(SpringerLink : Bücher). ISBN 9781461423614.

POTTS, C. N.; SHMOYS, D. B.; WILLIAMSON, D. P. Permutation vs. non-permutation flow
shop schedules. Oper. Res. Lett., v. 10, n. 5, p. 281–284, 1991.

POTTS, C. N.; STRUSEVICH, V. A. Fifty years of scheduling: a survey of milestones. J.
Oper. Res. Soc., v. 60, p. S41–S68, 2009.

RUIZ, R.; STÜTZLE, T. A simple and effective iterated greedy algorithm for the permutation
flowshop scheduling problem. Eur. J. Oper. Res., v. 177, n. 3, p. 2033–2049, 2007.

RUIZ, R.; VÁZQUEZ-RODRÍGUEZ, J. A. The hybrid flow shop scheduling problem. Eur. J.
Oper. Res., v. 205, n. 1, p. 1–18, 2010.

STAFFORD, E. F.; TSENG, F. T.; GUPTA, J. N. D. Comparative evaluation of MILP flowshop
models. J. Oper. Res. Soc., v. 56, n. 1, p. 88–101, jul. 2004. ISSN 0160-5682.

TAILLARD, E. Some efficient heuristic methods for the flow shop sequencing problem. Eur.
J. Oper. Res., v. 47, n. 1, p. 65–74, 1990.

TAILLARD, E. Benchmarks for basic scheduling problems. Eur. J. Oper. Res., v. 64, n. 2, p.
278–285, 1993.

TANDON, M.; CUMMINGS, P.; LEVAN, M. Flowshop sequencing with non-permutation
schedules. Computers & chemical engineering, Elsevier, v. 15, n. 8, p. 601–607, 1991.

TSENG, F. T.; STAFFORD, E. F. New MILP models for the permutation flowshop problem. J.
Oper. Res. Soc., v. 59, n. 10, p. 1373–1386, aug. 2007. ISSN 0160-5682.

56

VILA, M.; PEREIRA, J. A branch-and-bound algorithm for assembly line worker assignment
and balancing problems. Comput. Oper. Res., v. 44, p. 105–114, 2014.

WAGNER, H. M. An integer linear-programming model for machine scheduling. Nav. Res.
Logist., v. 6, n. 2, p. 131–140, 1959.

WHO. World report on disability. [S.l.]: World Health Organization, 2011.

WILLIAMS, H. P. Model building in mathematical programming. [S.l.]: John Wiley &
Sons, 2013.

	Acknowledgements
	Abstract
	Resumo
	List of Figures
	List of Tables
	List of Algorithms
	List of Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Literature review
	1.2 Contributions

	2 Problem Definition
	2.1 Assumptions and notation
	2.2 Inserting a single worker into a flow shop
	2.3 Inserting two workers into a hybrid flow shop

	3 Mathematical formulation of the flow shop insertion problems
	3.1 Flow Shop
	3.1.1 The flow shop scheduling and insertion problem
	3.1.2 The permutation flow shop insertion and scheduling problem
	3.1.2.1 Adapting the LYeq model to the PFSISP
	3.1.2.2 Adapting the TS3 model to the PFSISP

	3.2 Hybrid permutation flow shop insertion and scheduling problem

	4 Heuristics for the PFSISP and the HPFSISP
	4.1 Iterated Local Search
	4.2 The NEH Algorithm
	4.2.1 Complexity of NEH algorithm

	4.3 The Iterated Greedy Algorithm
	4.4 A Pooled IGA for inserting WWDs into flow shops
	4.5 Solving the two-machine subproblem

	5 Computational Experiments
	5.1 Test instances and experimental methodology
	5.2 Numerical results
	5.2.1 Comparison of the mathematical models
	5.2.1.1 Results of the FSISP and PFSISP models
	5.2.1.2 Results of the HPFSISP model
	5.2.1.3 Comparison of permutation and non-permutation schedules

	5.2.2 Results of the heuristics algorithms
	5.2.2.1 Experiments with the Carlier instances
	5.2.2.2 Experiments with the Taillard instances

	6 Concluding remarks
	References

