Estudo comparativo do espectro vibracional de nanoestruturas de óxido de vanádio

Vitor Sudbrack¹ (IC), Vladimir Lavayen^{1*} (PQ)

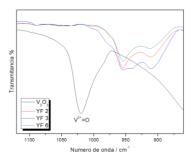
¹Universidade Federal do Rio Grande do Sul, Instituto de Química, BR-91501970, Porto Alegre-RS, Brasil.

Palavras Chave: óxido, vanádio, infravermelho, nanoestruturas.

Introdução

Nanoestruturas hibridas baseadas em óxido de vanádio (V_2O_5) é ainda uma área de intensa pesquisa pelos uso destes materiais como componentes de baterias de Íons de Lítio, dispositivos electrocrômicos entre outros. ¹⁻⁴ Nosso grupo tem estudado as propriedades eletrônicas, vibracionais de nanoestruturas unidimensionais (1D) como nanotubos, nanobastões, e os nanoouriços 3D. ^{1,4}

Xerogel de óxido de vanádio (XG) é um gel envelhecido que seco produz um pó leve, que possue dois tipos de arranjos nos seus octaedros. Ou chamado alfa, muito ordenado, e ou gamma que é desordenado.^{1,4}


 $\rm V_2O_5$ ortorrômbico apresenta um modo vibracional activo no infravermelho pertenciente ao grupo vanadilo, $\rm V^{5+}{=}O$ a 1001 cm $^{-1}$. Reações oxidoredução podem ocorrir neste tipo de materiais, assim a co-existencia das especies $\rm V^{5+}, \, V^{4+}, \, e \, V^{3+},$ ao mesmo tempo da presença de diversas conformações. 1,4

Neste trabalho se apresenta a caracterização vibracional focada no vanádio de estruturas hibridas organo-inorgânicas, assim como a comparação com ou XG e V_2O_5 .

Resultados e Discussão

Ou material sintetizado, chamado de \mathbf{YF} , com composição $V_2O_5(surfactante)_y$, onde \mathbf{y} tem valores de 2,3,6, apresenta morfologia lamelar é de cor amarelo. No espectro infravermelho pode ser observado bandas correspondentes ao modos vibracionais ativos do vanádio no intervalo 400-1100 cm⁻¹, veja-se **Figura 1**.

A banda observada perto de 1001 cm⁻¹ é atribuído ao modo de deformação axial V⁵⁺=O.¹⁻⁴ Na Figura 1, se observa bandas a 1033 cm⁻¹, 954 cm⁻¹ e 940 cm⁻¹ bandas atribuídas ao vibração axial V-O-V em suas diferentes conformações. Ou modo de vibração axial da espécie V⁴⁺ é observado a 910 cm⁻¹. Foi relatado que ou XG apresenta bandas a 1010 cm⁻¹, 945 cm⁻¹ e 910 cm⁻¹.⁴

Figura 1. Espectro infravermelho dos híbridos V_2O_5 (surfactante), e e V_2O_5 .

A partir das intensidades das bandas se determino uma relação V^{5+}/V^{4+} dos materiais estudados. Se encontro uma tendência de **YF 3> YF 6> YF 2>** XG >V₂O₅ no aumento da espécie V^{4+} . Também serão apresentados e discutidos resultados de analises morfológico, e de difração de raios X.

Conclusões

Se determino una relação aproximada dos estados de oxidação, V⁵⁺/V⁴⁺, que será corroborada por outras técnicas de maior confiabilidade.

Mediante ou conteúdo do surfactante pode se regular a composição do hospede, assim como ou estado de oxidação do vanádio.

Agradecimentos

Os autores agradecem ao facilidades do CNANO/UFRGs, assim como ao programa PIBID e ao CNPq pelo apojo financeiro.

¹ O'Dwyer, C.; Lavayen, V.; Tanner, D.; Newcomb, S.; Benavente, E; Gonzalez, G. e Sotomayor-Torres C. *Adv. Funct. Mater.* **2009**, 19, 1736.

² Kweon, H.; Lee, K. W.; Lee, E. M.; Park, J.; Kim, I. M.; Lee, C. E.; Jung, G.; Gedanken, A. e Koltypin, Y. *Phys. Rev. B.* **2007**, 76, 045434.

³ Zylbersztejn, A. e Mott, N. F. *Phys. Rev. B.* **1975**, 11, 4383.

⁴ O'Dwyer, C.; Lavayen, V.; Newcomb S.B.; Santa Ana M.A.; Benavente, E.; González, G.; e Sotomayor-Torres C.; *J. Electrochem. Soc.* **2007**, 154, K29-K35.