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“Blizzard has announced that the little game that could has hit another big,
round number: they are now claiming 10 million World of Warcraft players glob-
ally. Gamasutra is reporting that WoW has about 2 million subscribers in Europe,
about 2.5 million in North America, and approximately 5.5 million in Asia.

They’ve also taken the step of qualifying what they mean when they say ‘sub-
scriber’, something critics have used as a knock against their impressive sub-
scriber numbers in the past due to the way that accounts are used in Korea and
China. A subscriber, according to Blizzard, is someone who has ‘paid a subscrip-
tion fee or have an active prepaid card to play World of Warcraft, as well as those
who have purchased the game and are within their free month of access’.

That number notably doesn’t count promo subscriptions, expired accounts,
canceled subscriptions, or unused prepaid cards. They are counting ‘PC Bang’
players by considering an account active if it has been used within the last 30
days. Subscribers that connect to the game under licensees like The9 are counted
under the same guidelines.

It’s a little staggering to consider the sheer number of people playing this game
now. When I started playing these games 50,000 people in one world was a big
deal; Lineage, EQ, and FFXI were big-time by being at or over 500,000 people.
Now with titles like WoW, Gaia Online, MapleStory, and even Habbo Hotel de-
molishing the old concept of a Massive world, it’s ... more than a little bit exciting.

I also think it’s time that people just stop comparing WoW to other US-developed
MMOs. People keep talking about a ‘WoW Killer’, but ... 10 MILLION people,
people. World of Warcraft isn’t a game, it’s a city. It makes as much sense to
compare WoW to Dungeons and Dragons Online as it does to compare Scrabble
with Chicago. That’s just my opinion ... what do you think? Will there be a ‘WoW
Killer’ someday?”

— MICHAEL ZENKE, World of Warcraft hits 10 million players (2008)
http://www.massively.com/2008/01/22/world-of-warcraft-hits-10-million-players/

“So I ask, in my writing, What is real? Because unceasingly we are bombarded
with pseudo-realities manufactured by very sophisticated people using very so-
phisticated electronic mechanisms. I do not distrust their motives; I distrust their
power. They have a lot of it. And it is an astonishing power: that of creating whole
universes, universes of the mind. I ought to know. I do the same thing. It is my
job to create universes, as the basis of one novel after another.”

— PHILIP K. DICK,
How to Build a Universe That Doesn’t Fall Apart Two Days Later (1978)



ABSTRACT

Typically, games classified as ‘massively multiplayer online games’ (MMOGs) are
competitive, real-time, large-scale interactive simulations of graphical virtual worlds.
Currently, most (if not all) commercial MMOGs are implemented as centralized services,
where hundreds or even thousands of ‘server’ machines, maintained by the game service
provider, are responsible for running almost all of the virtual world simulation. This in-
curs a significant equipment and communication cost for the game providers. Several
works attempt to reduce the cost of hosting a MMOG by proposing more decentralized,
peer-to-peer models for distributing the simulation among client (player-owned PCs with
consumer-grade broadband) and server (provider-owned) machines, with some going as
far as eliminating the need for provider-owned machines altogether. Decentralizing a
MMOG, however, creates security issues, as the simulation is now delegated to untrusted
client nodes which gain opportunities to cheat the game rules, as the rules are now exe-
cuted by them. There are several types of cheats, but we show in this thesis that a case
can be made for considering state cheating and denial-of-service attacks as the most sig-
nificant threats for peer-to-peer MMOGs. In light of this, we propose FreeMMG 2, a
new MMOG decentralization model based on the division of the virtual world into cells
that are maintained individually by separate groups of volunteer peers that are running
a non-interactive, daemon simulation process. Each peer of a cell contains a full replica
of the cell state and synchronizes both conservatively and optimistically with every other
peers (replicas) of the cell, while at the same time receiving game commands and dissem-
inating game updates to actual player machines. Due to its cell replication and random
peer selection, we show that FreeMMG 2 is resistant to state cheating. And, due to the
use of one secret back-up peer for every primary replica peer of the cell, we show that
denial-of-service attacks don’t significantly increase the odds of either state cheating or
cell state loss happening. Through network simulation we verify that FreeMMG 2 is scal-
able and bandwidth-efficient, showing that a replication-based approach to peer-to-peer
MMOG support, considering peers with realistic Internet connectivity (no IP multicast
and consumer-grade broadband), is a viable one.

Keywords: Massively multiplayer, online games, peer-to-peer, cheating.



RESUMO

Suporte par-a-par e resistente à trapaça para jogos online maciçamente
multijogador

Em geral, jogos classificados como ‘jogos online maciçamente multijogador’, ou mas-
sively multiplayer online games (MMOGs) são simulações interativas, competitivas, em
tempo real e em larga escala, de mundos virtuais gráficos. Atualmente, a maioria (se não
todos) os MMOGs lançados comercialmente são implementados como serviços centra-
lizados, onde centenas ou até milhares de máquinas servidoras, mantidas pelo provedor
do serviço do jogo, são responsáveis por executar quase toda a simulação do mundo vir-
tual. Isto implica em gastos significativos em equipamentos e comunicação por parte dos
provedores do jogo. Vários trabalhos tentam reduzir o custo de hospedar um MMOG pro-
pondo modelos de distribuição da simulação mais descentralizados (peer-to-peer), onde a
simulação é movida parcialmente ou totalmente dos servidores (máquinas dos provedores
do jogo) para os nós clientes, tipicamente PCs de jogadores conectados por banda larga
residencial. Porém, a tentativa de descentralizar um MMOG cria problemas de segurança,
na medida em que a simulação passa a ser delegada a nós clientes, que são nós intrinse-
camente não-confiáveis que ganham a oportunidade de trapacear no jogo, burlando as
regras, visto que as regras da simulação serão executadas por estes. Existem vários tipos
de trapaças, mas nós mostramos nesta tese que é possível argumentar que a trapaça de
estado (state cheating) e ataques de negação de serviço são as ameaças mais significativas
para MMOGs peer-to-peer. Como consequência, nós propomos o FreeMMG 2, um novo
modelo de descentralização de MMOGs baseado na divisão do mundo virtual em células
que são mantidas individualmente por grupos separados de peers voluntários que execu-
tam um processo daemon, não-interativo de simulação. Cada peer de uma célula contém
uma réplica completa do estado da célula e se sincroniza de forma tanto conservadora
quanto otimista com cada outro peer (réplica) da célula, enquanto ao mesmo tempo re-
cebe comandos de jogo e dissemina atualizações de jogo para as máquinas ‘cliente’ dos
jogadores do jogo. Devido à replicação e à seleção aleatória de peers para as células,
nós mostramos que o FreeMMG 2 é resistente a trapaça de estado. E, devido ao uso de
um peer back-up secreto para cada peer réplica primária da célula, nós mostramos que
ataques de negação de serviço contra os peers não irão aumentar de forma significativa
a probabilidade de ocorrência de trapaça de estado ou de perda total do estado da célula
atacada. Através de simulação de rede, nós mostramos que o FreeMMG 2 é escalável e
que utiliza a largura de banda dos clientes de forma eficiente. Assim, mostramos que uma
abordagem baseada em replicação de suporte a MMOGs, considerando clientes com co-
nectividade à Internet realística (sem IP multicast e com banda larga doméstica), é viável.

Palavras-chave: jogos online, maciçamente multijgador, par-a-par, trapaça.
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1 INTRODUCTION

Multiplayer online games (MOGs) have been enjoying an ever-growing popularity
since Internet access became commercialized in the early 1990s. A study from 2006
estimated that the online games market would grow from US$ 3.4 billion in 2005 to over
US$ 13 billion in 2011 (DFC INTELLIGENCE, 2006). There are several different types
of MOGs, from two-player turn-based computer versions of traditional board games (e.g.
Chess) to real-time 3D adventure and combat simulations with thousands of players.

The vast majority of MOGs are analogous to most real-world gaming or sports activi-
ties: a session of the game supports a small number of players, and they are self-contained
activities in the sense that subsequent sessions are not affected, even if the same set of
players is present. For instance, a MOG that simulates a realistic soccer match could
support 22 players split in two teams of 11 each, last for one hour and a half, and end by
displaying the final score for the match, which would not affect the starting score of any
subsequent matches anywhere else. As a more concrete example, most online first-person
shooter games (FPSs) support a few tens of players (usually up to 32, 64 or 128 players
maximum) in matches that can last from 10 or 20 minutes to 1 or 2 hours, depending
on the game and the game server configuration. When the game ends, the score is dis-
played, and a new match starts. Players can enter and leave at any time, and no results are
recorded anywhere except for the occasional ranking which does not actually affect the
rules or the outcome of later matches.

This thesis is about massively multiplayer online games (MMOGs), which are a spe-
cial kind of MOG. These ‘massive’ MOGs are less like simulations of real-world activities
and more like simulations of the real world itself. A MMOG is basically an online simu-
lation of a virtual world which is filled with both opportunities for social interaction and
for competitive activities found on traditional MOGs such as combat, strategy, economy
and management, etc. For example, the most popular and successful MMOG, ‘World
of Warcraft’, is a ‘medieval fantasy’ world where players upon connecting to the game
find themselves controlling a 3D humanoid avatar (human, orc, elf, dwarf or other) inside
some kind of city environment, surrounded by other player avatars. In World of Warcraft
and other MMOGs, upon connecting the player generally isn’t immediately thrown into a
typical MOG activity such as fighting a dragon or other players, but rather finds itself in
a larger-scale and freer-form environment that, notably, is more analogous to being in the
real world. Also, most (if not all) MMOGs feature their own virtual currency and playing
is often centered around managing virtual wealth, which also encompasses a great deal of
being a human in the current real world.

The virtual worlds of MMOGs have proven to be quite popular and the number of
MMOG players is ever-growing. A study estimates that the market for subscription-
based MMOGs could reach US$ 2 billion by 2013 (SCREEN DIGEST, 2009). As of



18

April 2008, at least 16 million people around the world were playing MMOGs (WOOD-
COCK, 2008a), of which 10 million were for World of Warcraft (a market share of over
62%) (WOODCOCK, 2008a; BLIZZARD ENTERTAINMENT, 2008).

As of 2009, the majority of players of MMOGs have to pay a monthly fee to play. For
example, World of Warcraft players are charged a fee of around US$ 15 per month. This
is an economical necessity since, unlike traditional MOGs, MMOGs require that all game
servers be controlled by a trusted game provider, which is usually the same enterprise
involved with the game’s development. This, in turn, generates high costs for the game
provider, which must pay for all the server-side infrastructure: CPUs, power, bandwidth,
staff, etc. Most notably, bandwidth for the MMOG server clusters is a significant recur-
ring cost: one major MMOG operator has reported to spend one third of its subscription
revenue to pay for the server-side bandwidth consumed by players (FENG, 2007).

Alternatives to pure client-server MMOGs have been proposed. Most of those are
inspired by the peer-to-peer paradigm. Currently, peer-to-peer support for MMOGs is
an active area of research. In that context, a significant amount of models have already
been proposed which apply peer-to-peer to MMOG network support. There are several
potential motivations (or advantages) for applying peer-to-peer to MMOG support, and
below we list the main ones we have identified so far among current peer-to-peer MMOG
proposals:

• To reduce the communication or computational load on the server-side infrastruc-
ture. By having some features of the MMOG be supported by client-server inter-
action, while off-loading other features to a peer-to-peer network, the cost of the
server-side infrastructure can be reduced significantly;

• To eliminate the need for a server-side infrastructure. By making MMOGs run like
existing peer-to-peer systems such as file-sharing systems, the central operator’s
role can be eliminated, resulting in a pure peer-to-peer system that doesn’t have a
central point of failure;

• To increase the quality of game play. Peer-to-peer games can force lower interac-
tion latencies upon players since, in principle, peer-to-peer communication allows
players to exchange game event messages directly (a minimum of one logical hop),
whereas client-server systems often require players to synchronize with each other
through the server (a minimum of two logical hops);

• To facilitate the development of different kinds of games. As with any architec-
ture, centralized MMOGs are adequate for some types of games, but not so for
others. Real-time strategy (RTS) games, for example, allow each player to control
hundreds of units at the same time, which is not the ideal pattern for a centralized
simulator. In a centralized architecture the bandwidth consumed by each client-
server link increases linearly with the amount of independently-moving units. On
the other hand, peer-to-peer protocols can support RTS games while making players
exchange small command packets instead of large object update lists (BETTNER;
TERRANO, 2001);

• To enhance server-side infrastructures. Most MMOG instances are not scalable
past a few tens of thousands of players. The World of Warcraft service is actually
an array of a hundred or so instances, each one currently supporting around 50,000
players at most (MCGRAW; HOGLUND, 2007), without support for interaction
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between players located in different instances1. Some works show that computing
resources allocated to isolated instances could provide better results if organized in
more sophisticated ways such as a server-side peer-to-peer network, allowing for
larger-scale instances, reduced player latency, etc.

The key motivation which has sparked this thesis is the first one on the above list.
We want to significantly reduce communication and computing costs for MMOG server
operators. We hope that by reducing the costs of MMOG service hosting significantly we
can allow small game companies, independent game developers or researchers to deploy
innovative or experimental MMOGs to large audiences.

However, developing a more decentralized alternative to MMOG support that is based
on peer-to-peer computing presents many challenges. Two key reasons for MMOGs be-
ing centralized are the large scale and the long-lasting aspects of MMOGs highlighted
earlier. Traditional MOG instances such as Quake (ID SOFTWARE, 2008) or Counter-
Strike (WIKIPEDIA, 2008a) servers, being short-lived and small-scale with no stateful
connection between any two individual instances, are easily hosted by volunteer servers
not owned by the game developer or publisher. Serving a MMOG instance, however, re-
quires a large pool of server machines with low-latency and high-bandwidth links to the
Internet and to each other acting in concert. This is much more difficult to assemble from
heterogeneous volunteer hosts that are scattered all around the Internet and that can go
offline at any time.

Additionally, and perhaps even more importantly, there is the issue of trust. Misplaced
trust in a distributed system leads to cheating. In a distributed server scenario, each server
holds part of the state of the virtual world. For instance, Server A holds the state for
players Alice, Adam, and others, Server B holds the state for player Bob, Bruce, and
others, and so forth. In this simplified game state partitioning scenario, even if there are
hundreds of honest and well-provisioned volunteer servers, it only takes one dishonest
server to bring down the game’s economy. For instance, Server A may grant an arbitrarily
high amount of wealth to Alice for no reason, and the other servers (and players) won’t
know any better, thus instantly and trivially ruining the relationship between effort and
reward in the economy and turning the game pointless. This game-obliterating cheat will
be called state cheat through the remaining of this text, and it will be the main cheat that
this thesis will try to address.

To avoid state cheating and to allow the service to be provided reliably to millions of
players willing to pay for the privilege, commercial MMOG providers have resorted to
centralizing all of the virtual world’s critical functions, which means almost everything
except (typically) client-side graphics rendering and, to some degree, character position
updates. By doing this, state cheating is simply not possible and the game developers
can instead focus on the other security problems that plague online games (WEBB; SOH,
2007; YAN; RANDELL, 2005) such as speed and position cheats, wall-hacks and other
state exposure cheats, server-side software flaw exploitations such as item duping, auto-
aiming cheats, reflex enhancers, online fraud, etc.

In this thesis we propose FreeMMG 2, a new distribution model for MMOG services.
FreeMMG 2 is a hybrid of client-server and peer-to-peer, where most of the communi-
cation and computing load is transferred from the servers to the clients which, in turn,

1Usually, players are bound to their instance upon avatar instantiation. However, some MMOGs may
allow players to travel between instances. For example, Blizzard Entertainment started allowing character
transfers between World of Warcraft instances in June 2006, initially charging US$ 25 per transfer opera-
tion (CALDWELL, 2006).
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coordinate directly with each other in a peer-to-peer fashion. The design of FreeMMG 2
is driven by two key points:

• To allow FreeMMG 2 to support MMOGs in an hostile, competitive environment,
we attempt to make it highly resistant to state cheating, even in the presence of
network-level attacks;

• To guarantee that a FreeMMG 2 game can execute on top of a peer network of
consumer-grade Internet hosts with realistic specifications, we focus on making
the model bandwidth-efficient and compatible with current consumer broadband
technology. Also, no IP multicast support is required: only UDP/IP unicast support.

The FreeMMG 2 model is based on what we have called a ‘multiple arbiter’ approach.
In a multiple arbiter model, several hosts (clients) hold a copy of the same cell (which is
a part of the virtual world), and all such hosts hold equal power when it is necessary to
determine the current state of that cell. This makes it difficult for a minority of colluding
cell replicas to silently pass arbitrary modifications to the cell’s state. The multiple arbiter
approach contrasts with what we have called the ‘single arbiter’ approach, where the state
of a cell is replicated, but one of the replicas is the master replica which has absolute
power in determining the state of the cell. That single arbiter of each cell is then able to
perform state cheating without depending on the cooperation of other nodes.

From our point of view, the main drawback of cell replication approaches in general,
and of multiple arbiter approaches in particular, is the amount of messaging required
to keep all replicas synchronized. When a replica changes its own state, it will need
to somehow send its modification to all other replicas. Considering that IP multicast
cannot be relied upon, achieving the desired bandwidth efficiency becomes a challenge.
That adds up with several other difficulties inherent to peer-to-peer approaches to MMOG
support in general, such as other vulnerabilities that can be exploited for cheating, high
interaction latencies and temporal inconsistencies (if there are too many hops in the peer-
to-peer overlay), tolerating peer churn (unplanned host disconnections), etc. That is to say,
attempting solution to most problems can inevitably lead to an increase in messaging. For
example, to prevent cheating, some multiple arbiter models cause multiple state update
packets to be sent to a player machine at the same time (WEBB; SOH; TRAHAN, 2008;
KABUS; BUCHMANN, 2007; ENDO; KAWAHARA; TAKAHASHI, 2005), while in
FreeMMG 2 each player machine needs to receive only one update packet at a time.

Nevertheless, our main hypothesis is that an hybrid (client-server and peer-to-peer),
cell-based, replication-based, multiple arbiter approach can result in a MMOG support
model that is both bandwidth-efficient and resistant to state cheating, the latter even in the
presence of network-level attacks.

To verify that hypothesis, first we describe the FreeMMG 2 model in detail, showing
that it is possible to develop a complete peer-to-peer MMOG solution that is, in principle,
reasonably complete and coherent. Next, we quantify the bandwidth usage of FreeMMG
2 through simulations, assessing its scalability and showing that FreeMMG 2 can support
peer-to-peer MMOGs where the peer machines feature current, consumer-grade connec-
tivity such as ADSL broadband. Finally, we explain why the multiple arbiter approach of
FreeMMG 2 is resistant to state cheating and to network-level attacks throughout the text.

Thus, the main contribution and the goal of this thesis is to verify that hypothesis by
providing a model (FreeMMG 2) as an example. And finally, in Chapter 6 we verify
that the FreeMMG 2 model is indeed a novel contribution by comparing it with related
peer-to-peer MMOG models.
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The remainder of the text is organized as follows:

• Chapter 2 – Background: This chapter provides background information required
for understanding the later chapters. This includes distributed simulation, multi-
player online games support, cheating in online games and related work in peer-to-
peer MMOG support;

• Chapter 3 – Intra-cell replica synchronization: This chapter proposes BSS, a
new event synchronization algorithm for small-scale games. After this, we show
how BSS is used as the intra-cell synchronization mechanism of FreeMMG 2, our
cell-based peer-to-peer MMOG architecture;

• Chapter 4 – FreeMMG 2 architecture: This chapter describes FreeMMG 2,
which a design for a peer-to-peer MMOG middleware. We show what are FreeMMG
2’s main modules and how they work together to achieve our vision of effective
middleware support for peer-to-peer MMOGs;

• Chapter 5 – Validation: This chapter presents FreeMMG 2 simulation results and
discusses how those validate our claims;

• Chapter 6 – Comparison: This chapter performs a comparative analysis of FreeMMG
2 against a selection of similar peer-to-peer MMOG middleware designs. Through
that comparison, we show that FreeMMG 2 is an original contribution;

• Chapter 7 – Conclusion: This chapter draws some conclusions, presents a sum-
mary of the contributions in this dissertation, and discusses some opportunities for
future work.
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2 BACKGROUND

The goal of this chapter is to cover both basic concepts for and the state-of-the-art
in peer-to-peer MMOG research. Section 2.1 defines what exactly is a MMOG in the
context of our research. In Section 2.2, we use the predecessors of MMOGs, the MUDs
(multi-user dungeons) to expose the motivation behind using distributed simulation for
MMOGs. Section 2.3 covers distributed simulation concepts. The focus of this section
is in explaining the concepts of conservative and optimistic synchronization, which are a
pre-requisite for understanding all of our contribution and especially the part of it that is
presented in the immediately following chapter (Chapter 3).

Section 2.4 covers support for client-server gaming, showing what techniques go into
a client-server action game protocol and how they help game clients achieve not only
synchronization but a high-quality game play experience. With the distributed simulation
background from Section 2.3 and the background on client-server games support from
Section 2.4, the reader will be equipped to understand MMOG architectures since most
of them are hybrids of techniques both from distributed simulation and from client-server
gaming.

In preparation for the upcoming MMOG decentralization discussion, Sections 2.5
and 2.6 discuss security topics. Section 2.5 explains the problem of cheating in online
games, both for massive and non-massive online games. We make our case on the im-
portance of providing prevention (rather than detection) of state cheats in peer-to-peer
MMOGs by contrasting other possible cheats against state cheats. Section 2.6 consid-
ers the threat of network-level attacks against the peer-to-peer overlays of decentralized
MMOGs. We make our case on why considering network-level attacks is important for a
peer-to-peer MMOG.

Finally, in Section 2.7 we review existing state-of-the-art solutions for peer-to-peer
MMOGs. We make our case that a gap exists where, at least for some possible peer-to-
peer MMOGs, there is not enough protection offered against state cheating, and also not
enough resilience against network-level attacks against selected nodes in the peer-to-peer
network such as a DDoS. We finish the chapter in Section 2.8 by cementing the motivation
behind FreeMMG 2, what to expect and what to not expect from it, and where exactly it
fits among the other peer-to-peer MMOG models.

2.1 What is a Massively Multiplayer Online Game (MMOG)

Before proceeding, we will need a definition of Massively Multiplayer Online Games
(MMOGs) to distinguish them from other MOGs and thus avoid confusion. In this thesis
we differentiate MMOGs essentially by their large-scale and long duration traits, in
contrast to traditional MOGs which are small-scale and have a short duration.
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Though these two characteristics are generally enough to explain what a MMOG is,
there are other key characteristics that are usually present in games considered as being
‘MMOGs’. In this dissertation they will also be considered essential parts of MMOGs,
that is, if a game doesn’t have any of them, it will not be considered a MMOG. These are
listed below:

• MMOGs are persistent-state games. This is an allusion to the fact that MMOG state
is persisted through a game instance’s (long) lifetime1;

• MMOGs are real-time simulations. This is used to differentiate games such as
World of Warcraft, Lineage and EverQuest, which are usually cited as examples of
MMOGs, from turn-based, web-based games that support large player counts and
also last for a long time. The latter are also called MMOGs, but in the context of
this thesis, we will use the term ‘MMOG’ exclusively to refer to real-time games,
that is, games where the discrete turns are measured in tens of milliseconds and thus
give the illusion of being continuous simulations to human players2;

• MMOGs are graphical simulations. This is used to differentiate from Multi-User
Dungeons (MUDs), which were the text-based precursors of MMOGs. As with
the web-based ‘massive’ games, implementing a MUD is not as near a technical
challenge as implementing a real-time graphical virtual world, and so there is no
distribution problem to tackle: the ‘many clients, one server’ approach is enough;

• MMOGs have virtual economies. This is a natural consequence of putting massive
amounts of players inside the same game instance for years, be it in a real-time
graphical MMOG, be it in a web-based massive game or in a MUD. That’s a nat-
ural trait of the humans behind the avatars: we tend to hoard, protect and trade
stuff, be it real or virtual. The ‘virtual economy’ aspect of MMOGs is where the
most weird and wonderful phenomenons occur, such as players spawning real law-
suits for loss of virtual property (EGAN, 2008) and real-money trading of virtual
assets (PAPAGIANNIDIS; BOURLAKIS; LI, 2008; WHITE, 2008)3.

It should be now clear that real-time, graphical MMOGs (from now on, those will be
called just ‘MMOGs’) such as World of Warcraft and EverQuest are significantly different
from traditional MOGs, web-based ‘massive’ games and MUDs. Next, we will touch
on why supporting MMOGs (i.e., designing, programming and deploying a distributed
system that is used as middleware by the game logic) is a noteworthy (and hard) feat.

1However, the short-term MOG instances could also be seen as having a ‘persisted’ state, even if that
state is discarded several times a day by the server. The difference here is that MMOG instances hold on
to their shared state for a longer time, usually several years, with no concept of a sequence of separate
‘sessions’, ‘levels’ or ‘maps’ which are usual in traditional MOGs. So, the duration of a game instance
determines for how long the shared state should be maintained alive, and the ‘persistent’ label is more or less
redundant for abstract discussion. The ‘persistent-state’ distinction may however be useful at the software
engineering level as it implies the use of some sort of persistent storage technology such as databases.
Persistent storage is mandatory for MMOGs but seldom used by MOGs.

2In other words, if there is a conter anywhere on the screen telling the player how many seconds or
minutes he must wait until he can submit another command, then that is not the kind of MMOG we’re
talking about in this work.

3This is also why cheat-proofing is much more crucial for MMOGs than it is for MOGs: cheating in a
MOG instance affects only a small group of people and their effects disappear once the MOG instance ends
(minutes or hours later), while cheating in MMOGs affects thousands of people and their effects can persist
for years, causing cheats to compound with each other, eventually destroying the economy aspect.
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2.2 The origin of MMOGs: Multi-User Dungeons (MUDs)

In 1975, ‘Adventure’, the first widely used adventure game (also known as ‘inter-
active fiction’ (WIKIPEDIA, 2008b)) was written by Will Crowther on a DEC PDP-10
computer (WIKIPEDIA, 2008c). In adventure games, players are presented a textual rep-
resentation of the virtual environment surrounding a fictional character (the game player’s
avatar) and a textual prompt. Upon entering textual commands, a player acts on the
game’s environment. The result of those textual actions (such as ‘walk north’, ‘examine
the current location’, ‘pick up object X’, ‘use object Y’, etc) results in another textual
description being shown to the player that represents the resulting environment. An ad-
venture game usually has goals such as accumulating points through specific interactions
or moving the avatar to some final location within the game world.

Adventure games were first promoted to multiplayer games somewhere around 1978
with the development of the original ‘MUD’ (Multi-User Dungeon or Multi-User Dimen-
sion) program by Roy Trubshaw and Richard Bartle (WIKIPEDIA, 2008d). The term
‘MUD’ can refer to both the name of the original program and the term used to describe
any text-based on-line multiplayer virtual world. Because of that, the original MUD pro-
gram is currently referred to as ‘MUD1’ or ‘Essex MUD’ (WIKIPEDIA, 2008d). The
actual pioneer MUD was not the Essex MUD however, but a game called ‘Oubliette’
which was written by Jim Schwaiger in 1977 (WIKIPEDIA, 2008d) and deployed in a
mainframe-based educational network called PLATO (WIKIPEDIA, 2008e).

The text-based MUD is the ancestor of the graphical real-time MMOG. A MUD is
basically an adventure game where players can chat with other players and also inter-
act with their respective in-game avatars in addition to interacting with the shared virtual
world environment. The experience of adventuring in a fictional world together or against
other human players was so strong that player addiction ensued (CURTIS, 1992; SCHI-
ANO; WHITE, 1998; SEMPSEY, 1997), something that is also observed in players of
MMOGs (NG; WIEMER-HASTINGS, 2005). According to Wikipedia, ‘The popularity
of MUDs escalated in the USA during the 1980s, when (relatively speaking) cheap, at-
home PCs with 300 to 2400 baud modems enabled role players to log into multi-line BB-
Ses. In Europe, MUD development and use centered around academic networks around
the same time.’ (WIKIPEDIA, 2008f). Today, MUDs are still popular and they can be
played through the Internet via textual terminal protocols such as TELNET.

Both MUDs and real-time MOGs need several computers and a communication net-
work to allow the human players to synchronize their actions between each other. MUD
clients and servers will only exchange messages whenever some user finishes reading the
current environment’s description, thinks of his next command, and enters it on a prompt.
The interval between two interactions from the same player will typically be in the order
of several seconds, and usually there will not be any fixed deadlines for exchanges at the
network level. This communication pattern could be well supported even with the earliest
modem technology.

For this reason, MUD instances are well supported using a simple client-server solu-
tion, with one server that actually runs the game simulation and many clients that are just
dumb terminals. From a software engineering point of view, the typical MUD is a solo
computer program running in one machine, not a distributed system. The fact that the
keyboards and screens used to interact with it are miles away and that their commands
have to travel through a telephone network or a packet-switched network makes no differ-
ence to the game developer. There is no issue of ‘trusting’ what each keyboard submits to
the centralized game logic running at the server; each terminal is free to send anything it
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wants and it is solely the server’s job to validate each user’s input.
However, real-time MOGs (such as MMOGs) tax the underlying network much more

heavily than MUDs. There is a reason why real-time MOGs usually require players to
be equipped with broadband connections4. That reason is that real-time MOGs provide
networked simulations of dynamic 2D or 3D spaces that change constantly, usually in the
order of tens of times per second. This requires intense and constant network messaging
between players and, in the case of MMOGs, multiple server machines may be required
to handle the load of serving a single game instance.

Thus, the problem of distributing an interactive simulator arises. In small-scale
MOGs, this happens because the clients are not dumb terminals, but actually run part
of the logic of the simulation, albeit a limited one. In the large-scale MMOGs, client
participation is also true, and the problem is compounded by the limit on the load that
can be thrown at a single unit of computing, which mandates the use of multiple server
machines. Distributed and interactive simulation is therefore our next topic.

2.3 Simulation background for MMOGs

Many of the fundamental concepts used for the construction of the networking sub-
systems of MOGs were already known before the Internet was commercially available: it
turns out that online games are a prime example of distributed simulation systems. More
specifically, online games are interactive simulations composed of many processes run-
ning on different machines distributed across the Internet5.

Owing not only to this relationship of ancestry between games and simulation, but
also to the applicability of distributed simulation to MMOG decentralization, we cover
some basic concepts from simulation in this section. We show an overview of time and
events in simulation, distributing the simulation among Logical Processes (LPs), con-
servative versus optimistic synchronization techniques and networking architectures for
DVEs (Distributed Virtual Environments). We only present here the absolute minimum
necessary for enabling later discussion on peer-to-peer MMOG support. For more on the
subject, the reader is directed to Richard Fujimoto’s Parallel and Distributed Simulation
Systems (FUJIMOTO, 2000).

2.3.1 Time and interactivity

“A simulation is a system that represents or emulates the behavior of another sys-
tem over time. In a computer simulation, the system doing the emulating is a computer
program” (FUJIMOTO, 2000). By this definition, all computer games are simulations
of another system: the one imagined by the game designer, which exists only inside the
designer’s mind. System is the keyword that brings the definition to life: we’re not dis-
cussing an imagined static image being rendered in a painting. By system it is meant
an object that, when observed by a human mind, is unavoidably perceived as containing
other objects, movement and change over time. If the simulation is interactive, the human
observer can also interact with the simulation while it is executing.

A central concept in computer simulation is time. In a simulator program there is
always a variable that counts time as perceived from the inside of the virtual system. For
instance, in a sports match simulation there will probably be a time variable that counts

4Links to the Internet that move hundreds of kilobits per second or more.
5A distributed simulation system can also have LAN connections between the processes (machines).

The more interesting systems combine LAN and WAN (Internet) connections between peers.
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the seconds or milliseconds since the virtual match has started, and that variable can be
read by e.g. the referee object which then decides whether to end the match or not. The
passing time as counted by the simulator in program variables is called simulation time,
whereas the time as counted by humans in the real world is called wall-clock time. If there
is a correspondence between the two times, that is, if simulation time advancement tries
to mimic the advancement of wall-clock time, then the simulation is called a real-time
simulation. However, if the simulation time advancement process completely disregards
wall-clock time, then the simulation is called an as fast as possible simulation.

An example of as fast as possible simulation is the one used to generate the results
presented in Chapter 5. There we describe the implementation of a simplified version of
what an actual FreeMMG 2 game network would look like. We used it to simulate a game
network running for several days of real time. The goal was to see whether FreeMMG 2
would work smoothly or break under the simulated load of thousands of players during
these virtual operation days. Of course, though inside the simulator ‘days’ have passed,
each actual simulator run took only minutes of real time to complete. While the simulation
is running there is no need or want for human interaction, so it can run as fast as possible:
simulated time advances as fast as the CPU of the machine running the simulation can
cope with the computation.

Real-time simulations, on the other hand, need simulation time to have some rela-
tionship with wall-clock time (that is, the real time). This is usually the result of humans
needing to continuously interact with the simulation while it is running. Thus in this thesis
‘interactive simulation’ and ‘real-time simulation’ will be considered synonyms, and we
will consider that all games are interactive, and thus, real-time simulation applications.

As an example, consider a realistic, single-player racing game where a user controls a
car. Also consider that the game loop runs at 50Hz, that is, it renders 50 frames per second
to the player’s screen, enough to present the illusion that the car is moving. Finally,
let’s assume that computing and drawing a frame takes 1 millisecond. Since there is a
human interacting with the simulator, it will be expected that each frame represents 20
milliseconds of ‘virtual car’ movement corresponding to what a human would expect
from 20 milliseconds (1/50th of a second) of movement from real cars (remember that it
is a ‘realistic’ game). That is, not only the graphics have to be drawn on scale but the
passing of simulated time must correspond to human expectations of time advancement,
that is, of wall-clock time.

So, if a frame only takes 1 millisecond of wall-clock time to compute, this means that
the CPU will have to remain idle for the next 19 milliseconds of real time, when it will be
allowed to compute the next frame. If this waiting isn’t performed, then the user would be
interacting with a simulated world of car racing where everything moves 20 times faster
than in real life, give or take some depending on the particular computing complexity
of each actual frame. In essence, an interactive simulation is one where there is enough
CPU power to compute the worst-case steps, and one where there can be a lot of CPU
‘waiting’ between steps in order to allow more wall-clock time to pass and ‘catch up’
with simulation time6.

6Real game software usually do not implement waiting between frames but rather use any and all extra
CPU time to draw additional frames or to employ it in other tasks such as AI computations. When there is
shortage of CPU power, games automatically reduce the frame rate or the graphical quality of each rendered
frame (usually the former).
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2.3.2 Events, event-driven and time-stepped simulation

Fujimoto (FUJIMOTO, 2000) classifies simulation7 as having either event-driven or
time-stepped execution. Though this classification also applies to as-fast-as-possible sim-
ulation, we are only interested in its relationship with interactive simulators (games).

Both event-driven and time-stepped execution depend on the concept of event which,
at an abstract level, is simply a happening that can cause changes to the state of the
simulator. An event usually has a timestamp associated with it, which corresponds to
a point in time when it happened or is supposed to happen8. Events can be the result
of human activity, such as pressing game-command keys, or internal events, such as a
computer-controlled opponent in a combat game deciding to shoot at the player.

In time-stepped execution, the simulator advances simulation time in discrete intervals
or steps and, when doing so, runs some code that can potentially change all of the state
variables at once. The key feature of time-stepped execution is that all modifications to the
state happen at the same time, that is, all events scheduled to the same step have the same
timestamp. This usually results in the simulator collecting events and executing them in
batch when it is time to perform the next step computation. Thus, the step frequency must
be high enough that the effects of this discretization do not cause errors that would be
significantly prejudicial to users.

The single-player racing game example from before could be implemented as a time-
stepped simulation. For instance, during the 20ms interval between frames, the simulator
simply collects any and all input from the player that indicates whether the car should
steer to the left or to the right, accelerate or slow down, etc. Then, when it is time to
compute the next graphical frame for display, the simulation time steps by 20ms and all
pending player events are applied with that same timestamp. Supposing that, within a
frame, the player first ordered the car to steer left and instants later ordered the car to steer
right, the time-stepping simulator would ignore the time distance between the keypresses
and treat them as simultaneous events, as if the player pulled the steering wheel to both
directions simultaneously. Though this is a simplification and that the car should have
steered a bit to the left, most humans wouldn’t be able to feel an interaction latency under
20ms.

In an event-driven execution, the simulator also advances simulation time in a discrete
fashion, but this time the simulation time delta is always dictated by an event timestamp.
This makes more sense for as-fast-as-possible simulation, but it can be mapped to games
with some tweaks. First, one could generate a ‘step’ event in fixed intervals and have it
actually move all objects by the amount of time of the step interval. The gain would lie in
player events being more precise: each player command would be assigned a timestamp
not bound by the step ticks. Executing a ‘player command’ event could be as simple as
placing it in a queue so that the next ‘step’ event performs more complicated calcula-
tions that consider the exact timestamp of each command inside the step. Note that we
could also have reached the same result by extending the time-stepped example to include
timestamps in events. Fujimoto (FUJIMOTO, 2000) has some more detail on how to

7Fujimoto also classifies simulation as either continuous or discrete (or discrete-event). Continuous
simulators describe the state of the system as a function of time, while discrete simulators describe the
state of the system as a collection of variables which are updated by arbitrary pieces of logic in discrete
points in time, repeatedly. All games that we know of are discrete-event, so by simulation we always mean
discrete-event simulation in this text.

8Remember that in interactive simulation, simulated time corresponds to wall-clock time. Thus event
timestamps, though being usually expressed in simulation time, can also be mapped to wall-clock time.
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make each model emulate the other.
In this text we assume that games can use a hybrid of both approaches. From now on

we will assume and describe games as time-stepped executions. However, we consider
that time-stepping functions can order events inside the same step using their distinct
timestamps and that these sub-step timestamps can affect the outcome. In the racing
game steering example, the car would have had steered slightly to the left due to the ‘left
arrow key down’ event before the later ‘right arrow key down’ event would neutralize it.

The abstract concept of event presented here gets more complicated in a distributed
simulation scenario, that is, in a MOG or MMOG. In these scenarios, an event may have
multiple time values associated with it, such as the time it is generated, the time in which it
is sent, the time in which it is received and the time in which it is executed by the receiver.
However, one of these times is usually chosen as ‘the timestamp’ of the event. In a
typical client-server MOG, fairness and responsivity can be maximized when an event is
timestamped at the player (client) since that minimizes the delay between event issuance
and its timestamping, and security and temporal consistency are maximized when it is
timestamped at the server since that disallows players (clients) from issuing arbitrary
(false) timestamps. Determining who has authority to timestamp, order and execute events
is a critical design point in online games.

2.3.3 Distributed simulation: the basics

The CPU time required to complete a simulation step depends on the complexity of
the calculations. For a game server, complexity usually means the amount of avatars and
other dynamic objects in the game world that need calculations such as movement and
collision checking, AI tasks such as strategy and pathfinding, etc. Research works that
assess scalability of game servers and MMOG network support schemes do so primarily
through counting the amount of avatars supported on a server.

Using a single server machine to perform all simulation is not feasible for a cen-
tralized MMOG service that has a significant player base (e.g., hundreds of thousands of
concurrent players). Thus, some sort of strategy to distribute the computing load becomes
necessary. The trivial way out is to simply run an independent instance of the MMOG
simulation process on each available server machine. This confers scalability to the ser-
vice as a whole, but the amount of players supported at each game instance (shard) will
still have the same (low) bound which is given by the current processor technology and
how fast a single sequential program can be made to run.

A more scalable (and complex) solution is to distribute the simulation among sev-
eral cooperating processes. The idea is that each process spends a bit of its resources to
synchronize with other cooperating processes (the overhead) and the larger part of it to
support part of the objects in the simulation. The end result is, hopefully, an increased
game scale at the resulting MMOG instance. Below, some basic distributed simulation
concepts are presented.

Fujimoto (FUJIMOTO, 2000) uses the term Logical Process (LP) to denominate dis-
tributed processes that cooperate in a global simulation effort. Each LP holds part of the
global simulation. In the case of games, each LP could hold a cross-section of a contigu-
ous virtual world terrain and any objects currently residing on its section, thus allowing
many machines to contribute their CPU power to the same instance. The immediate
problem with this approach is how to make those LPs cooperate, since they are separate
processes running asynchronously, each on its own machine.

For LPs to cooperate, one basic requirement is for them to have a synchronized view
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of the passing of simulation time. One way to achieve this is to have LPs synchronize
their physical clocks or (more conveniently) a time offset variable that is to be added to
the physical clock value. Clock synchronization can be achieved through a bit of messag-
ing conducted between the LPs, and the quality of the synchronization depends mainly
on the quality of the network latency estimation between pairs of LPs. In this work we
assume that all LPs can have synchronized clock with errors in the order of tens of mil-
liseconds, which is a reasonable assumption for NTP (MILLS, 1992) running over the
Internet and generally acceptable for online games. The adverse effects of clock synchro-
nization imprecision in distributed simulation are similar to those of network latency, and
the mechanisms to tolerate the latter can be the same ones used to also tolerate the former.

The other basic requirement for LP cooperation is to have them exchange events. Each
LP generates events while running. An event may be relevant only to the local LP, and it
can also be relevant to other remote LPs. If the event is potentially relevant to remote LPs,
the local LP has to typically fill an application data structure with event information such
as what happened and at what time, and serialize that into a byte buffer that can be sent as
a ‘message’ to the remote LP through some sort of communication stack. The receiving
LP then deserializes the message into an event data structure, which is then processed by
the receiving LP.

What exactly is done in incoming event processing at an LP, and also other factors,
depends on the choice of synchronization algorithm which is a vital component of a dis-
tributed simulation. The synchronization algorithms attempt to solve synchronization
problems. The next section shows an example of synchronization problem in a simple
distributed virtual environment (DVE).

2.3.4 Synchronization problem example

To illustrate this problem of synchronizing multiple views of a shared simulation state,
we start with a straightforward scenario. Consider an online game with exactly two play-
ers each with their own machine, three objects in the virtual world (two avatars and a
ball), and a network link between the two machines. In essence, the game is about two
avatars whose only possible action is to either pick up a ball first or watch the adversary
pick up the ball first. More formally, both players run each an instance of the same game
software which enforces the following set of rules:

• The shared virtual world can only be in three possible states: no avatar holds the
ball (state FREE_BALL), the black player holds the ball (state BLACK_BALL)
and the white player holds the ball (state WHITE_BALL);

• Each player maintains a version of the virtual world, which is in one of the three
possible states;

• The only two legal events in the system are ‘black player picks up the ball’, which
can cause a transition from FREE_BALL to BLACK_BALL, and ‘white player
picks up the ball’, which can cause a transition from the FREE_BALL state to the
WHITE_BALL state;

• To each player is granted the ability to make their respective avatar pick up the ball
locally, that is, the black player’s version of the world can legally transition from
FREE_BALL to BLACK_BALL, but it cannot generate an event that transitions
from FREE_BALL to WHITE_BALL, since only the white avatar’s controller can
decide to have the white avatar pick up the ball;



30

• A non-cheating simulator will only pick up the ball if it is available, that is, if the
white client is in state BLACK_BALL, it knows that the black player has picked up
the ball prior to him, so he won’t be able to transition to WHITE_BALL;

Clock = 10s Clock = 10.05s

        Network link
One-hop latency = 0.1s

Wall-clock time:
         0s

Figure 2.1: A snapshot of a working peer-to-peer game with two peers (players).

Figure 2.1 shows both the architecture and a possible state of the system at wall-clock
time ‘zero’. The system is composed of two real-time interactive LPs, each holding the
full state of the simulation. The network delay between both players is considered a con-
stant of 100ms one-hop in both directions with no message loss. Clock synchronization
for simulation time is attempted by the system, with a slight error of 50ms in estima-
tion: machine 1 assumes that simulation time is at 10s, while machine 2 assigns the value
10.05s to simulation time.

In this example, the simulation is not time-stepped for simplicity’s sake. Events just
take the timestamp of the sending (generating) LP which is derived directly from the
synchronized clock. The state of each LP and thus the local view of each player only
changes upon sending or receiving an event. Let’s assume that the simulation times of
10s and 10.05s are a result of both players having started the game quasi-simultaneously
about 10 seconds of wall-clock time ago, and since then the system simply remained
dormant due to no player taking any action thus far. So, the initial game state was drawn
at the simulation start, with both screens showing the FREE_BALL initial state, and the
‘game loop’ on each machine is waiting for a local input event (e.g. keyboard activity)
or an incoming network message (incoming event from the other LP). So, if there is no
activity from the local player controls or from incoming network messages, the simulation
just keeps the simulation time going and the same local state and image on screen.

Figure 2.2 shows what happens when the simulator at the black player’s machine
receives a command (e.g. keyboard event) from the local player which requests that the
ball be picked up by the black avatar. This happens one second of wall-clock time later.
At this point in time, the white player still has not taken any action, as far as the black
player is concerned. The black LP is able to verify that, at least as far as Black’s version
of the virtual world is of concern, the ball is available, and thus modify the local state
from FREE_BALL to BLACK_BALL. We have the global vision of the system and we
know that this is not a problem: white player has not taken any action and his copy still
shows the ball as available.

After the black LP changes its state, it will have to let the white LP know that, so
that the while player won’t attempt to pick up the ball. To this end, the black LP builds a
network message which contains the event (labeled as E1 in the figure) and the simulation
time at which it happened – the timestamp of the event. Though E1 could be sent without
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Clock = 11s Clock = 11.05s

Event E1: “Black avatar 
Took the ball at T=11s”

E1

Wall-clock time:
         1s

Figure 2.2: Example of temporal inconsistency.

a timestamp, it will become clear in a moment why maintaining synchronized clocks and
sending events with time information is generally a good idea.

At the single point in wall-clock time depicted by Figure 2.2, a human-perceptible
temporal inconsistency has happened. That is because the black player is now temporarily
seeing a different version of the game world than the white player. The human controlling
the black avatar is seeing the black avatar with the ball on his possession on the screen,
while the human controlling the white avatar is seeing the ball available for pick-up be-
tween both avatars. This inconsistency can remain for the next 100 milliseconds, as the
event-carrying network packet just emitted by the black LP has to travel our fixed-delay
network to reach the white LP. Regardless of what the white LP will do with the event
once it receives it, for the next 100ms it won’t be able to perceive the event and thus the
temporal inconsistency will remain.

The temporal inconsistency can be resolved after 100ms, when the white player re-
ceives E1 and also changes its view to state BLACK_BALL. After that, the game would
be settled and no player would be able to perform any other action. However, there is a
window of wall-clock time of 100ms (at least) where the white player can attempt to also
pick up the ball, after black has already done the same. This is depicted in Figure 2.3.

Clock = 11.05s Clock = 11.1s

Event E2: “White avatar 
Took the ball at T=11.1s”

E1

Wall-clock time:
      1.05s

E2

Figure 2.3: Example of a situation which will result in conflicting events.

Figure 2.3 shows White’s player deciding to pick up the ball at wall-clock time 1.05s.
This corresponds exactly to E1 being halfway through the network link. The figure il-
lustrates a conflict situation, though one that is of impossible detection or prediction by
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either LP at the current wall-clock time.
We consider a conflict to be a kind of temporal inconsistency which is not going to

be solved simply by receiving and performing trivial processing of events in transit. In
Figure 2.4, when E1 is received at White’s computer, it cannot simply apply the event
because the transition from state BLACK_BALL to WHITE_BALL is forbidden by the
rules of the game: that is, an avatar cannot pry the ball away from the hands of another
avatar.

This is what synchronization is all about: it is ensuring that processes distributed
across a network can apply changes to a shared state while maintaining a consistent view
of the shared state most of the time. The situations depicted above must be eventually
resolved, or else the simulation is going to permanently ‘fork’ into two separate versions
of the game world. Most games attempt to maintain the different views of the game
world synchronized at least to the point that human participants cannot tell the difference
between them9 and temporal (temporary) inconsistencies that are proportional to network
latency are tolerated by players as a natural consequence of networked gaming.

Clock = 11.1s Clock = 11.15s

Event E1 received:
Conflict detected!

E1

Wall-clock time:
      1.1s

E2

Figure 2.4: Example of a conflict being detected upon event receipt.

Most solutions to the conflict detected in Figure 2.4 begin by trying to determine which
player most likely acted first, and then attempts to fix the simulation state at some LPs so
that all reflect a consistent view. In our example scenario, the white LP could compare
the timestamp of E1 (11s) to the timestamp of E2 (11.1s) and realize that the black player
had acted first after all. This is a result of the clocks being synchronized and reflecting
a ‘good’ approximation of the actual wall-clock time at which they were generated. The
whole of DVE research in fairness concerns with increasing the odds that two events will
be ordered by the distributed simulation software the same way they really occurred in
the real world. That is, in the example, if the Black player has hit his keyboard controls
first, then it is fair to to have his avatar pick up the ball.

However, there are some caveats to this approach. First, clock synchronization isn’t
perfect. Though the difference in the timestamps of E1 and E2 favors the black avatar
by 100ms, the actual wall-clock time difference favoring E1 was of 50ms due to clock
synchronization error. If the white player had acted earlier, an unfair situation might have

9A good example is a game where avatar positions are described in floating-point real numbers and the
synchronization algorithm allows LPs to diverge below a certain precision. For instance, a stationary avatar
at one LP could be at position 20.50 and at other LP the same avatar would be drawn at position 20.51, and
this discrepancy would be neither detected nor corrected by the system since ‘0.01’ in game distance units
translates to e.g. less than one pixel. The system would then perform correction only when the avatar moves
again, which has no time limit, but at least guaranteeing that separate discrepancies won’t add up over time.
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arisen where the clock synchronization error tilted the decision towards the white player.
It is unlikely that a clock synchronization protocol would achieve a 50ms error with a
link with perfectly constant latency (our example) but on the Internet this might possible
due to the actual delay of each hop being different from the previous. In this thesis we
have chosen to simply consider clock synchronization error as just another one of the
undesirable side-effects of network latency, which in this case causes unfair decisions to
be taken every once in a while.

Also, there is the problem of timestamp cheating. In a competitive game it is possible
that an LP might lie about the timestamp of an event to gain an advantage. To cheat our
proposed solution to conflict resolution thus far, the white LP could simply ignore E1, set
its state to WHITE_BALL and emit an E2 with a timestamp of any value below the 11s
timestamp value reported by E1. This would be interpreted at E1 as ‘white acted first’,
which is incorrect, and the cheater player controlling the white avatar would win, causing
the black LP to incorrectly and unfairly change to the WHITE_BALL state. There are
several works that try to detect time cheats in the context of peer-to-peer games, as will
be discussed in Section 2.5.5.

2.3.5 Optimistic synchronization

According to Fujimoto, ‘Errors resulting from out-of-order event processing are re-
ferred to as causality errors, and the general problem of ensuring that events are pro-
cessed in a time stamp order is referred to as the synchronization problem’ (FUJIMOTO,
2000). In the example scenario of the previous section, the white LP executes first event
E2, whose timestamp is ‘11.1s’, at wall-clock time 1.05s. After that, at wall-clock time
1.1s, it receives event E1, whose timestamp is earlier: ‘11s’. When E1 is received, the
white LP knows that E2 was executed out of time stamp order, because E1 has a smaller
timestamp than E2. This, in turn, may result in a causality error in the simulation state if,
for that particular simulation model, the order of execution of events E1 and E2 matters.
In other words, if executing (E1, E2) leads to a different state than executing (E2, E1)
then the latter order leads to a causality error. This is the case in the example, as the order
of execution leads to two different and highly conflicting outcomes.

Our game example illustrates an optimistic approach to synchronization. At Fig-
ure 2.2, the black LP is optimistically assuming that the white player has not picked up
the ball yet10. The event-ordering algorithm (or the ‘protocol’) decides that local events
are executed immediately; by executing E1 immediately at the black LP, the distributed
simulator is being optimistic that no straggler (late event with an earlier timestamp) will
be received that conflicts with the optimistically processed E1 at the black LP.

This optimistic event-ordering doesn’t solve the general synchronization problem by
itself because, as we have seen, it guarantees not that the execution of events will always
be in timestamp order. The solution, as suggested earlier, is to fix the simulation state
after a conflict is detected so that execution of events in timestamp order is restored. Thus
timestamp order is guaranteed in the long run, though it is temporarily violated between
the receipt of straggler events and the end of the conflict resolution step.

Though we could come up with a finely-tuned mechanism that is specific to our model
to fix the simulation once conflicts are detected (the common approach in MOG develop-
ment), there are many general techniques that accomplish this. A basic kind of approach
is checkpointing (or snapshotting). This consists of having LPs periodically save a copy of

10According to the approximative event ordering criteria used by the imperfect simulation apparatus,
which may differ from the real-world order of events.
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their state, and keep all events processed since the last checkpoint. Once a straggler event
is received, the state is rolled back to the checkpoint state and all events are re-executed
in the correct order, including the straggler. The various algorithms based on this vary on
the frequency of checkpointing, the amount of checkpoints kept in history, the mechanism
to detect when it is safe to discard a checkpoint state (that is, when a rollback to it is no
longer possible), how to perform distributed checkpoints, etc. So, an optimistic approach
may solve the synchronization problem if it is coupled with a recovery mechanism that is
always able to restore time-stamp order from any late event whose out-of-order can result
in a causality error.

2.3.6 Conservative synchronization: a stop-and-wait protocol example

In contrast to optimistic algorithms, there is another approach to event synchronization
called conservative synchronization which, instead of fixing timestamp order violations,
guarantees that events whose order of execution matters are never executed out-of-order
at any LP. Thus, an LP that is conservative in executing events will usually defer the
execution of received events until it can know that it is ‘safe’ to process that event, that is,
that no events with smaller timestamps can be possibly received later. The main advantage
is that recovery of conflicts is never an issue, and the main disadvantage is the added delay
between the receipt of events and their execution, which severely limits the applicability
of conservative approaches for real-time interactive simulation.

The topic of conservative synchronization algorithms can get complicated, especially
for event-driven simulation (see (FUJIMOTO, 2000), Chapter 3). Fortunately, in this the-
sis we will only employ one of the simplest conservative protocols: a ‘stop-and-wait’
protocol with time-stepped execution and no look-ahead (more on look-ahead later). Be-
low we modify our example game scenario from the previous sections to use the basic
stop-and-wait protocol.

The initial state of the system will be the same as in the previous (optimistic) example,
but with a slight modification. Instead of keeping simulation time as a relative measure of
elapsed wall-clock time, we will model simulation time as a series of discrete time steps,
and the simulation time variable T will be set to the current step at each LP. The initial
step is defined as being T = 0, and all LPs (black and white) must agree on an identical
initial state for T = 0.

If this was supposed to be an ‘as fast as possible’ simulation, then each LP would
attempt to advance to T = 1 immediately after it is started. However, in this example
we are temporarily ‘abusing’ the concept of conservative simulation for a real-time game
(more on this after the example). Thus, there is the need of a minimum interval of real
time between each step so that the simulator can collect user events for execution in the
next step. At each LP, the variable R will count the amount of elapsed wall-clock time
since the last step was computed at that LP. Whenever R increases by 100ms (our arbitrary
step size), the LP sends the events it collected on the current step, timestamps them with
T and sends them to all LPs, including itself.

Figure 2.5 shows the initial state of the system at an arbitrary wall-clock time ‘zero’.
Notice that we have modified the link to provide a constant 150ms of one-hop latency,
which is to avoid confusion with the simulation step size of 100ms. T = 0 on both LPs,
but R = 0s only at the black LP: there is a slight clock synchronization error between the
two LPs, and this has caused the black LP to start the simulation ahead of time.

Figure 2.6 shows the system 20ms later, when the white LP effectively starts. In the
mean time, the black LP has advanced its R by 20ms. Here, an important point must be
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T = 0 T = 0

        Network link
    Latency = 0.15s

Wall-clock time:
         0sR = 0s (Not started)

Figure 2.5: Stop-and-wait example (1 of 9).

T = 0 T = 0
Wall-clock time:
       0.02sR = 0.02s R = 0s

Figure 2.6: Stop-and-wait example (2 of 9).

made: the black avatar’s human player has so far been presented to 20ms of on-screen an-
imation. Though in our example nothing ‘moves’, this elapsed time can comprise physics
simulation (e.g., non-interactive background animations or dead reckoning 11). R, our
measure of simulation time, has in fact advanced at wall-clock time pace so far, at the
black LP.

T = 0 T = 0
Wall-clock time:
        0.1sR = 0.1s R = 0.08s

B,T=0,null

Blocked 
for 0s
Blocked 
for 0s

Figure 2.7: Stop-and-wait example (3 of 9).

Figure 2.7 shows R = 0.1s at the black LP. The step interval is over at the black LP,
and Black’s human player has not issued any interactive command. So, per the stop-and-
wait protocol, the black LP sends a message to all other LPs informing that, during step
(T = 0), the black LP has not generated any events (Denoted by null).

11Dead reckoning will be addressed in Section 2.4. Basically, it means extrapolating the position of an
object based on its last known position, velocity, acceleration and on the time elapsed since the object was
at that state.
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To keep simulation time (R) running at wall-clock pace at the black LP, it would be
necessary to advance from T = 0 to T = 1 at the black LP, that is, to compute the state
for the next step. This is necessary since R = (0.1s, 0.2s) (the next range for the simula-
tion time) only occurs during T = 1. However, the black LP cannot safely compute the
next step since it doesn’t know the set of events issued by the white LP for the current
step. If the black LP assumed that the white LP didn’t generate any events at T = 0, it
could compute an erroneous T = 1 if the message for step T = 0 from the white LP
contained the ‘White picks up ball’ event. The stop-and-wait protocol (and any other con-
servative simulation algorithm) strictly avoids processing events out of timestamp order.
In our practical time-stepped example this means that events from all LPs with the same
timestamp must be processed together. This forbids the black LP from processing its own
(T = 0, null) event without first receiving the event list for T = 0 from the white LP.

So, what happens at the black LP after the step is over is that the simulator blocks. That
is, per the simple stop-and-wait protocol, R at the black LP stops having correspondence
with wall-clock time and stops being counted. R advancement being blocked means
that Black’s human player is now seeing a frozen screen as far as object simulation is
concerned. This will continue until the black LP has received enough information to
safely compute T = 1. This means it will block until it receives a message from the white
LP telling what is the complete set of events that it is committing for execution at T = 0.

T = 0 T = 0
Wall-clock time:
       0.12sR = 0.1s R = 0.1s

B,T=0,null
(20 of 150ms)

W,T=0,null

Blocked 
for 0.02s

Blocked 
for 0s

Figure 2.8: Stop-and-wait example (4 of 9).

Figure 2.8 shows the white LP finally reaching its threshold R = 0.1s for the first step.
It commits the same set of events for T = 0 as the black LP did, namely an empty set of
events (null). In our example this means that neither human player issued any interactive
commands. The white LP is now also blocked.

Figure 2.9 shows the white LP being unblocked. It may seem strange that the black
LP is unblocked last, since it blocked first, but this is correct: by blocking first, the black
LP emits its step message first and, assuming a perfect link with fixed delay and no loss,
the white LP receives the remote event first and thus unblocks first. The white LP now
knows all events scheduled to execute at T = 0 across the entire system: it knows it
won’t schedule any events for T = 0 and it knows the black LP has not scheduled and
will not schedule any events for T = 0 since the received message (B, T = 0, null) is a
commitment from Black that it is not going to send any other events for T = 0 than the
ones stated in that message.

Since White knows all events for T = 0, it can now safely compute T = 1. Since
both Black and White didn’t emit any useful events (both commited a null set of events),
the next step’s state is only a function of the passing of simulation time over T = 0. In
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T = 0 T = 0
Wall-clock time:
       0.25sR = 0.1s R = 0.1s

B,T=0,null

(130 of 150ms)
W,T=0,null

     Safe to 
Compute T=1

Blocked 
for 0.15s

Blocked 
for 0.13s

Figure 2.9: Stop-and-wait example (5 of 9).

our example game, the passing of time has no effect and thus the state on the next step
is exactly the same as the previous one. In any case, the display on White is allowed to
‘animate again’ and simulation time once again flows at wall-clock time pace.

T = 0 T = 1
Wall-clock time:
       0.27sR = 0.1s R = 0.12s

W,T=0,null

Blocked 
for 0.17s

     Safe to 
Compute T=1

Figure 2.10: Stop-and-wait example (6 of 9).

Figure 2.10 shows the black LP unblocking. Per the conservative simulation contract,
it will now be able to compute the exact same state for T = 1 that all other LPs in the
system have, since it has the same previous state and the same list of events to apply. This
requires event processing to be deterministic.

T = 1 T = 1
Wall-clock time:
       0.32sR = 0.15s R = 0.17s

Event E1: “Black avatar 
takes the ball at T=1”

E1

(Queued)

Figure 2.11: Stop-and-wait example (7 of 9).
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Figure 2.11 introduces an action in the system. The black avatar’s human player hits
a key to pick up the ball. However, the black LP cannot execute the event immediately,
because it does not yet know what White will do in this turn, which could be a conflicting
action as we have seen earlier. Additionally, we have defined that events only apply at
the end of each step’s real-time duration: black only knows its own set of events for the
current turn when the window for generating turn events ends locally. So, E1 is simply
queued at Black, awaiting the end of turn T = 1 which will last for another 50ms of real
time (since R = 0.15s). No ball is picked up anywhere yet.

T = 1 T = 1
Wall-clock time:
       0.37sR = 0.2s R = 0.2s

Blocked 
for 0.02s

Blocked 
for 0s

B,T=1,{E1}

(20 of 150ms)
W,T=1,null

Figure 2.12: Stop-and-wait example (8 of 9).

Figure 2.12 shows the system 50ms later, when the step ends at the black LP. This
causes the black LP to flush its event queue into the step message (B, T = 1, E1), which
informs that Black’s player is trying to pick up the ball. In the mean time, White’s step has
already ended 20ms ago and it has already commited an empty set of events for T = 1.
The step at Black has ended, but it cannot yet compute T = 2 since it doesn’t know all
events scheduled for T = 1 yet. This will happen 130ms later, when it receives White’s
message for step T = 1, currently in transit.

T = 2 T = 1
Wall-clock time:
        0.5sR = 0.2s R = 0.2s

Blocked 
for 0.15s

Blocked 
for 0.13s

B,T=1,{E1}
(130 of 150ms)

T = 1 +
B,T=1,{E1}

W,T=1,null = T = 2

W,T=1,null

Figure 2.13: Stop-and-wait example (9 of 9).

Figure 2.13 shows Black receiving White’s event commitment for T = 1. As before,
by knowing all events for the current step, Black can now compute T = 2. For T = 1,
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the black LP has received an event list from the black LP (itself) which contains a single
event which is a request by the black avatar to pick up the ball. The black LP has also
received an empty event list from the white LP for the current step. Thus, it is logical that
the step update algorithm will grant the ball to the black avatar for T = 3. The white LP
will eventually reach the same conclusion.

With this stop-and-wait protocol we thus achieve a synchronized view of the shared
virtual world across distributed simulators without the need for state rollbacks. This sim-
ple protocol exposes the general thinking behind the conservative approach to synchro-
nization, which is to avoid executing events out of timestamp order, for whatever model-
ing of simulation time and how events relate to each other in the simulation model (i.e., if
total ordering is required or if some events can execute out of order). This has the benefit
of simplicity and less computational overhead since a rollback mechanism has a cost.

However, the frequent ‘blocking’ of the game screen caused by stop-and-wait is not
acceptable due to the poor resulting interactivity. As shown by the previous example, it is
obvious that conservative event execution is not applicable to interactive (or ‘human-in-
the-loop’) simulation as-is. However, this does not mean that conservative event execution
is entirely non-applicable to games. Two possible applications of conservative simulation
in real-time online games are the following:

• As a full synchronization solution for Real-Time Strategy (RTS) games: the suc-
cessful commercial game Age of Empires (Ensemble Studios, 1999) uses a conser-
vative event ordering scheme where player interactions generate commands that are
scheduled for execution two steps in the future. Since each step in Age of Empires
takes 200ms, this means that a game client only freezes when it experiences more
than 400ms of one-hop latency from any other peer. This scheduling of events for
the future is a form of look-ahead in simulation: an LP is able to ‘look ahead’ and
know, for a certain window of time (or steps) in the future that these future steps are
safe for execution (since the events for those should have already been received)12.
This is only possible because the fixed 400ms delay between a command and its
execution in an RTS game is acceptable. This is not acceptable for action games,
so this is a special case of applicability of a conservative technique in an interactive
application.

• As part of a more complex synchronization solution: in this thesis, we propose
using the stop-and-wait protocol described above as a means of keeping a ‘live’
snapshot that an optimistic simulator can roll back to whenever necessary. The
existence of conservative and optimistic simulator hybrids is not new (FUJIMOTO,
2000) but, as far as we know, for peer-to-peer MMOGs that is a new idea and one
of our contributions. Our conservative and optimistic hybrid simulator is presented
in Chapter 3.

More discussion on conservative simulation with look-ahead for RTS games can be
found in our previous work on peer-to-peer massively multiplayer RTS games (CECIN
et al., 2004). Also, Bettner and Terrano (BETTNER; TERRANO, 2001) describe in detail
the Age of Empires distributed simulation engine.

12Actual look-ahead techniques for conservative non-real-time distributed simulation are a bit differ-
ent (FUJIMOTO, 2000). It is possible that we have abused the original meaning of ‘look-ahead’ here but
the basic idea of a safe window of time into the future for conservative event execution is the same.
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It is important to note that by using the stop-and-wait protocol, all peers (LPs) are
subject to the greatest communication latency between any pair of peers. That is, if two
peers have 1000ms of latency between each other, a stop-and-wait will not run faster than
one step per second. This also means that if a peer crashes, the simulation blocks forever.
Thus, there is a need to define a timeout interval so that dropped peers are removed.
Finally, removing peers from stop-and-wait is not trivial: it requires explicit negotiation
between the peers (e.g., voting) in order to avoid some peers considering a live but lagged
peer to be dropped in a step while others still see it as live, which can lead to different event
sets being processed at different LPs for the same step and thus breaking determinism. An
example removal protocol for stop-and-wait with look-ahead is described in the original
FreeMMG dissertation (CECIN, 2005).

2.3.7 State partitioning versus replication

We have presented examples of a distributed simulation with two interactive LPs ex-
changing events that are timestamped according to a simulation time which is approxi-
mately the same at both LPs. However, each LP is holding the entire state of the sim-
ulation: both avatars and the ball, instead of partitioning it into two sets of objects and
assigning a set to each LP. In principle, this would result in a scheme that would not scale
as more LPs (player machines) and objects are added.

There are several ways to perform the distribution of objects among the LPs, and
there is nothing stopping a programmer from using a different strategy for each type of
object. For instance, each avatar can be assigned to the LP that has permission to control
it (partitioning), while the ball is replicated at both LPs and permission to modify its state
is given to both LPs.

However, in the example, even if an avatar is kept only at one LP, the other LP will be
interested in knowing the state (position) of the remote avatar. This is important because it
may affect the decision of a player to act or not. For example, assuming that we increment
the game to allow avatar movement, the white avatar may want to pick up the ball only if
the black avatar shows intent of doing the same by approaching the ball too. The natural
way to accomplish this is to include an event in the system that tells the white avatar
where the black avatar currently is (and vice-versa). While black is moving, its LP would
emit a stream of such events to the white LP so that White’s player would know about
the current status of a relevant object (black avatar) which is no longer ‘replicated’ at the
white LP. This way, even if the ball is still replicated at both LPs, partial state partitioning
is achieved.

But is it really partitioned? In any DVE implementation scenario imaginable, White’s
LP is drawing the black avatar on-screen since it is nearby. This means that some data
structure has to exists at the white LP to hold the black avatar’s state between the re-
ceipt of the incoming state updates. If we count that data structure inside the simulation
state of the white LP, then the black avatar isn’t partitioned, but replicated. In this kind
of distribution model, the object replicas don’t have equal status: one will be primary
(the authoritative copy) while others will just be slave or cached copies of the primary
version (BHARAMBE; PANG; SESHAN, 2006). Some works (YU; VUONG, 2005;
MÜLLER; GÖSSLING; GORLATCH, 2006) use the term ‘replication’ to mean this kind
of master-slave object ghosting.

This differentiation also applies to as-fast-as-possible, non-interactive simulations.
One could devise a simulation of two moving characters (black, white) on a grid, each
controlled by one of two LPs in the simulation, similarly to our previous example. To
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be able to move a character into a cell, it must be vacant. When one character moves, it
must send an event to the other LP telling about its new location. How the receiving LP
registers this move depends on how the simulation is modeled by the programmer. An
alternative is to keep the current position of the remote character in a local variable, and
another is to keep locally the status of each cell (either vacant or occupied) in addition to
the local avatar’s position.

Even in a third scenario where only the two avatars are present, if the LPs need to
exchange events, then at least some properties on one of the simulation objects (avatar)
are being affected by the other avatar. For instance, the black avatar could emit ‘attack’
events which increase a ‘damage’ numerical attribute of the white avatar, and both LPs
could be oblivious to any other information about the avatar object that is remote to it.
This scenario would more perfectly approach a ‘partitioned state’ perception. However,
we could characterize the echoes of Black’s events at the white avatar’s ‘damage’ property
as a kind of replication, since this too affects what white can and cannot do in the future.
For example, if white is too damaged it can’t move – perfectly analogous to being unable
to move to an occupied spot in the previous grid example.

As it turns out, partitioning and replication are somewhat elastic concepts which need
definition prior to usage. If you model a simulation using an object-oriented approach,
you may draw the line on the object boundary, assuming that partitioning is achieved if
events only modify object attributes instead of creating either replicas (ghosts) or copies
which are all authoritative (that is, any LP with a copy can modify the object and emit
events that mandate the change over other copies). Another approach is to consider au-
thority as the boundary: subordinate ‘ghost’ objects are just side-effects of event process-
ing and do not count as replicas. In this case, only the shared ball between the two players
is considered replicated, since both players can change their copies.

The key to nailing down the concept of state partitioning in a distributed simulation
is to remember that partitioning is supposed to achieve scalability. In a scenario where
only one LP is responsible for computing the behavior of an object while other LPs only
hold ‘ghost’ versions of the object, distribution of the CPU load for computing object
behavior is achieved. In our game example, there is no CPU problem: the simulation is
network-bounded. However, in a simulation where either an event is preceded by complex
calculations (e.g. A.I. decision), or there is a large number of objects, or great speed-up
of execution is desired (or all of these reasons), the simulation is likely CPU-bound. So,
having object ownership distributed across several LPs means ‘partitioning’ is achieved,
and it becomes somewhat irrelevant to determine which data structures are generated at
event receivers as a side-effect of incoming event processing.

However, in the case of DVEs, especially for peer-to-peer games like in our example,
the limiting factor is often the network. In this case, the key is also object authority, that is,
how many LPs per object can emit events that change the other copies and how conflicts
are to be resolved. Considering, in our example, that one LP owns an avatar and the other
holds a ‘ghost’ of the avatar, we can say that the messaging complexity is O(N), since the
single avatar owner will be sending events to the N LPs that are interested in the avatar’s
state changes at any given time. However, the ball has at least O(N2) complexity, since
all copies can send events to all other copies. The complexity is probably worse in the
case of optimistic writes to the shared ball state, since conflicting writes will have to be
undone, generating even more messaging.

When our proposed algorithms are described in Chapters 3 and 4, we will make exten-
sive use of the term ‘replication’. In this context, we always mean replication as O(N2)
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messaging. However, some works which we review in Section 2.7 mean replication as
in the owner-ghost object paradigm and thus O(N) messaging. We suspect that the term
replication is used because a ‘ghost’ version of the object sometimes can take over the
role of object owner if the LP with the master copy fails (or ‘churns’, in peer-to-peer par-
lance). However, in this text, such owner-ghost, O(N) messaging scenarios are always
considered a case of state partitioning, even if they can be seen as ‘replicas’ from the point
of view of fault tolerance.

2.3.8 Distributed virtual environments (DVEs) and architectures

Most multiplayer online games can be classified as DVEs. As discussed previously,
a DVE is a simulation of a shared 2D or 3D space which is interactive, allowing players
to move avatars about it. Though in games research the term DVE is not frequently
used, most MOGs and virtually all MMOGs are DVEs since they present the illusion of
immersion in a shared space.

Another type of DVE is the CVE (collaborative virtual environment) which are DVEs
aimed more at immersion and at facilitation of collaboration between users (e.g. hazard
drills, combat simulations for the military, facilitator for virtual meetings, etc.). Many
important results originally geared towards CVEs such as scalable distribution architec-
tures (peer-to-peer CVEs), networking optimizations (area-of-interest filtering, publish-
subscribe, dead reckoning) are reused in MOG works. Though CVEs usually focus on
features that are still far from mainstream games such as capturing user’s facial expres-
sions and eye-gaze (MURRAY; ROBERTS, 2006), haptics (SHEN et al., 2004), CAVE
interfaces (ASPIN; LE, 2007) and others, they also don’t usually focus on cheat preven-
tion which is an important issue to when considering support to competitive online games.

Figure 2.14 shows a possible classification of architectures for DVE support (FUJI-
MOTO, 2000). They are the following:

• Centralized server architecture: In this scenario, there is a single server machine
which is running a sequential ‘DVE server’ process which is unique (a singleton)
in the DVE system. The server maintains the authoritative version of the entire
simulation’s state, while a client maintain a subordinate version of part of the sim-
ulation’s state. For example, in a simple game with several players, each able to
move an avatar object, the server holds position information of all avatars, while a
player may know about its avatar’s position and maybe a couple other avatars which
happen to be nearby and as such are relevant to him (e.g. to be drawn on the player’s
screen). Also, a player never decides the position of other player’s avatars; instead,
it is constantly receiving packets from the server telling where the nearby avatars
are. And, even in protocols which permit the player to tell the server about the
exact position of the player’s avatar, the server is still the final authority and may
reject impossible requests (e.g. move player avatar inside a wall). Protocols for
this kind of architecture will be discussed in the next section. Fujimoto notes that
computation-only entities (in games these would be any non-avatar dynamic objects
such as monster, NPCs, items, environment objects such as doors, elevators, etc.)
are best handled by the server;

• Distributed server architecture: This is similar to the centralized server architec-
ture in respect to the authoritative version of the simulation being handled only by
trusted server machines, in this case more than one and all in the same LAN. This
allows the load of the simulation to be distributed (either partitioned or replicated, or
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(a)

(b)

(c)

WAN
interconnect

LAN
interconnect

Figure 2.14: Three DVE architectures with geographically distributed users. (a) Cen-
tralized server architecture; (b) Distributed server architecture; (c) Distributed serverless
architecture. Adapted from (FUJIMOTO, 2000).

both) across several server machines. Note that the WAN communication cost be-
tween the server cluster and the clients is the same as in the single-server scenario.
As discussed previously, the server machines will have to exchange messages to
achieve synchronization in addition to the client-server messaging. Computation-
only entities are assigned to servers using a criteria that is probably the same criteria
used to distribute player-controlled objects, which is almost always one that tries to
group nearby objects in the same LP to minimize inter-server messaging;

• Distributed serverless architecture: In the serverless approach there is no central
location and the distributed simulation is performed by a group of geographically
distributed machines. If these machines happen to be client (player) machines and
the DVE has security concerns (e.g. competitive games), then cheating becomes
a problem. In this case, replication among the simulators is more common than
partitioning since that allows distributed, anti-cheating verification procedures. For
example, if it is assumed that less than 1/3 of the replicas are faulty, then a Byzantine
agreement (LAMPORT; SHOSTAK; PEASE, 1982; DOLEV, 1980) is enough to
separate the ‘honest’ version of the simulation state from the ones computed by
malicious or faulty LPs.

This classification is useful as a starting point for understanding how a DVE simulator
can be distributed. Some DVE designs can be supported by more than one of the tech-
niques above, and it is possible to derive a new architecture from these three archetypes.
Below we present some examples of these situations.
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A sharded MMOG, that is, one composed of several isolated instances, can be sup-
ported with either the centralized server architecture or the distributed server architecture
as exactly presented above. In the centralized case there is one server with a copy of the
entire or part of the game content. In the distributed case there is a cluster of computers
supporting each shard, with each computer running one or more LPs. It is likely that the
synchronization mechanism employed between the LPs internal to a shard of a sharded
MMOG will take advantage of (a) the limited scalability requirements of each shard (usu-
ally under 100,000 players for current MMOGs); (b) near-zero latency and high band-
width communication between LPs (fast LAN bus or cluster interconnect technology)
and (c) the high reliability of the machines and trustworthiness of server-side simula-
tion. This makes things much simpler than designing a synchronization solution with LPs
distributed across unreliable, high-latency, low-bandwidth and generally untrustworthy
player machines.

A way to implement a peer-to-peer DVE would be to have player machines connect
to each other and send events to each other directly in a truly peer-to-peer fashion as in
the distributed serverless architecture above. However, it could be extended to increase
fairness, consistency and cheat-detection by adding a ‘helper’ server component that per-
forms some light-weight functions. Pellegrino et al. (PELLEGRINO; DOVROLIS, 2003)
propose the PP-CA architecture which allows players to exchange events directly that
would normally be sent to a game server, but also makes the players send their events to
a central server. The server, however, is generally ‘silent’: it receives events, validates
them, but does not usually send update packets to the players and only intervenes when-
ever it is necessary to resolve a conflict. For instance, if Player B shoots player C, but
player A shoots player B first, it may be the case that player B had no right to shoot C
because it was already dead. The server would detect that B’s shot was illegal and inter-
vene by sending authoritative messages to all involved undoing B’s shot, thus restoring
fairness and consistency, and avoiding (to some extent) cheats where a player would lie
about having successfully shoot someone.

The PP-CA architecture is not completely serverless, but it is also not completely
centralized: it is a hybrid of both architectures. This is an hybrid architecture by any clas-
sification criteria, since the server is receiving messages in real-time from all players and
thus is an active participant on the main loop of a DVE. Sometimes, hybrid architectures
are just the result of juxtaposition: the application is composed of two parallel aspects and
each is treated in a different way. An example would be a DVE which is serverless dur-
ing normal operation but which requires a central server to act as a Certificate Authority
(CA) which just performs CA-like infrequent operations such as issuing a certificate for
a new player. In this case, if ‘architecture’ means the complete DVE solution then it can
be said to be a hybrid. However, if the CA component is abstracted away then the DVE
architecture in question could be considered a serverless architecture in practice.

Fujimoto’s taxonomy doesn’t explicitly cover geographically distributed servers, which
have since then been explored by many works in MMOG support (see Section 2.7). How-
ever, most of these works assume low-latency and high-bandwidth links between server
sites, a fact that blurs the line between the classic definitions of LANs and WANs. That is,
if two nodes are separated by thousands of kilometers but they have a dedicated network
connection that transmits data at near-light speed and with gigabit bandwidth, then that
approaches the quality of service of LANs. Many works in MMOG server-side distribu-
tion assume such interconnects, thus in practice falling in Fujimoto’s ‘LAN distributed
server’ category.
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Informally, it might be useful to abstract peer-to-peer logical (socket) links as either
‘long distance and last-mile’ (slow, ‘WAN’) or ‘others’ (fast, ‘LAN’). Pairs of end-user
peers (players) from Brazil and Japan exchanging packets will likely have latency, con-
gestion and packet loss problems. However, peers inside the same country, considering a
country with a good Internet infrastructure and traffic-neutral ISPs, will likely not, at least
most of the time, even if this would be classified as ‘WAN’ due to geographic distance
(country-wide). Also, two servers from the same MMOG-serving company, each in a
different country, may experience latency proportional to the geographic distance, but the
link will probably be dedicated and as such will not be subject to significant packet loss
and congestion, distancing itself quite a bit from the ‘WAN’ label and approaching the
‘LAN’ label, though still having latency physically limited by geographic distance and
the speed of light. So, geographic distance is not sufficient for characterizing the useful-
ness of a link in building DVE architectures, though it is still an essential component and
a good overall indicator of what to expect in terms of network service quality.

2.4 Client-server game networking basics

This section offers the reader an insight on the actual content of messages exchanged
by client and server machines of highly interactive games. In essence, we explain what
a ‘client’ communicates to a ‘server’ and vice-versa. The focus is on what is really tried
and proven to work for existing action games such as FPS games. The focus is on action
games because they are the ones that strain the underlying network the most, usually
requiring low latency, low packet loss, low jitter and high bandwidth. This, in turn, results
in action games having very interesting client-server protocols that attempt to closely
emulate the single-player experience by, for instance, hiding network latency from the
player.

As mentioned earlier, most multiplayer online games (MOGs) are based on a cen-
tralized server architecture. In this architecture, a single machine (the server) provides
synchronization for all player machines (the clients) connected to it. All messaging has
to go through the server, which is a single point of failure and where most of the ‘intel-
ligence’ of the system is situated. This contrasts with the ‘distributed simulator’ concept
presented in the previous section, with emphasized distributing the simulation load across
symmetric LPs. Thus, we have followed the approach of Fujimoto’s simulation book (FU-
JIMOTO, 2000) and we tackle MOG (DVE) synchronization separately in this section.

The popularity of the client-server architecture for MOGs is in its relative simplicity,
if compared to some peer-to-peer13 or distributed server architectures. However, the task
of actually realizing the networking aspect of a client-server game such as a small-scale
3D FPS game is not trivial. At first, a single-player game engine can perform instant
communication between any two objects inside the simulator. With added multiplayer, the
state of the game has to be either partitioned or replicated (or both), requiring distributed
objects to synchronize with their copies through an imperfect network.

Pragmatic solutions and palliatives for most online game networking woes are well

13There is a perception that peer-to-peer can be simpler than client-server systems due to the former re-
quiring only one, symmetric process to be designed (the ‘peer’) as opposed to the two processes of the latter.
However, this depends on the protocol and application. A peer-to-peer search system that uses flooding for
query propagation takes advantage of the symmetry, whereas a competitive game where participants don’t
necessarily trust each other to modify a shared state is vastly simpler to implement with clients (untrusted)
and servers (trusted) separated.
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known to the games industry. After all, MOGs are popular and have been performing
acceptably over the Internet since the 1990s. In this section we will explain how online
games compensate for the undesired network characteristics such as high latency, packet
loss and jitter by applying some techniques. This section gradually evolves a simple
example client-server action game protocol to demonstrate these techniques. At first, we
present a ‘terminal’ protocol which is the one of the simplest client-server game protocols
possible but that presents many problems due to not dealing adequately with network
imperfections. For instance, the initial protocol doesn’t try to hide the fact that a player
command to move an avatar locally must first be acknowledged by the server, making the
client’s command await the network to be applied locally. This reduces responsivity and
can break the illusion that the human player is in control, turning the game unplayable.

To counter the inadequacies of the basic protocol, it is augmented with interest man-
agement, local input prediction, remote object interpolation and extrapolation, and finally
an advanced technique that is specific to 3D shooter games: lag compensation for instant-
hit weapons (BERNIER, 2001). The augmented example protocol is much more repre-
sentative of how existing online action games such as Counter-Strike actually work.

2.4.1 Using client-server for a shooter game

A shooter game is a kind of action game where the main activities performed by play-
ers are moving an avatar around a virtual space and shooting at other avatars, trying to hit
them. Though the simulation is actually a discrete-event simulation, movement of objects
inside a shooter game must appear to be continuous. This means that the simulation must
perform updates to object positions in the order of tens of times per second to present the
illusion of motion. This is trivial to accomplish in a single-player, non-networked shooter
game: just implement a single-threaded loop that alternates between collecting user input,
updating object positions and drawing the next graphics frame. If this can be done quickly
enough, the user will feel that he is interacting with a virtual space, with moving objects,
collisions, etc.

However, in a multiplayer scenario, the player’s machines have to synchronize over
the Internet. Each player will need to hold a version of the world’s state to draw on their
respective screen. With this, the issue of synchronizing these views arises. As we have
seen previously, synchronizing views of distributed players is quite complex. Besides
the issues of synchronization and conflicting simultaneous changes to the shared state
discussed in Section 2.3, there is the issue of trust: anonymous players of a competitive
online game don’t trust each other. When given the chance, players will cheat by, for
instance, sending fake synchronization messages that misrepresent the timeliness or the
precision of the actions performed locally.

The easiest way to solve these issues is to choose a special machine (or ‘LP’) in the
system to act as a trusted simulator: the server. By communicating through a server, all
player machines (now clients) can synchronize easily and trust-related problems are mini-
mized. Synchronization is achieved by having the ‘official version of the simulation’14 be
dictated by the trusted server. This makes conflict resolution much easier, as the clients

14In this thesis we will use ‘official’ (as in ‘official state’ or ‘official version’) to denote an element inside
a set of alternative states which is considered the correct one. We do not use ‘correct state’ since we will
usually employ the term ‘correct’ to mean semantic integrity (compliance to game rules). By contrast, all
the alternative versions of a simulator state may be ‘correct’ (i.e., in accordance to simulation laws) but
nevertheless be different from each other. In that case, usually one of these versions will be the ‘official’
one because of, for instance, being kept by an authoritative source such as a central server.
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just have to re-synchronize to the server’s state continuously to maintain convergence.
Also, some problems such as out-of-order event execution can disappear by simply hav-
ing the server timestamp all incoming events.

This shows that client-server is the more practical way to support a client-server online
action game. There are downsides, such as the server being a central point of failure and
a performance bottleneck, usually needing to run in a machine with more processing
capacity and more bandwidth than client machines. However, the popularity of client-
server for MOGs shows that these issues are more tolerable than having to solve peer-to-
peer synchronization or trust-related issues.

2.4.2 The basic client-server shooter protocol

This section describes an example, simple client-server protocol that could be em-
ployed to support a shooter game. The protocol is based on UDP. There are only two
UDP packets in the protocol:

• Client-to-server input packet. This packet contains the raw and absolute state
of all relevant input devices at the client, which were sampled shortly prior to the
packet being sent. For instance, for a range of relevant keyboard keys, the packet
can encode each in one bit as ‘key is pressed’ or ‘key is not pressed’;

• Server-to-client update packet. This packet contains a snapshot of the entire game
state at the server just prior to the packet being sent.

The whole system is shown in Figure 2.15. The client continuously polls its current
input state and dispatches a packet to the server. The interval between client packets can
be fixed at, for instance, 50ms between packets, resulting in each client sending 20 pack-
ets per second15. These input packets in average should be very small16. Upon receiving
an input packet from a client, the server simply saves the client’s input device state, over-
writing the previous state.

INPUT

UPDATE

Client Server

Every 50ms:
- Send INPUT 
  packet with current 
  input device state.

Receiving UPDATE:
- Update local state;
- Update screen to 
  reflect new state.

Every 50ms:
- Update state based
  on previous state and 
  the last saved input 
  state of each client;
- Send UPDATE 
  packet to all clients.

Receiving  INPUT:
- Save the client's 
  input for the next tick.

INPUT

UPDATE

...

...

... ...

... ...

Figure 2.15: Example system running a basic client-server game protocol with a fixed
tick rate of 20Hz for both clients and server.

In its main loop, the server must continuously perform two tasks. The first task is
running the game physics: updating (recomputing) its copy of the game state. The second

15As a reference of client-to-server packet rates for shooter games, the developers of the Source game en-
gine, which backs Half-Life 2 (a 3D FPS game), recommend setting the rate of client packets to somewhere
in between 20 to 30 packets per second, which would correspond to an interval of 50ms to 33ms between
each outgoing client packet (Valve Software, 2009).

16As an extreme example, the open source game Outgun (RITARI et al., 2006) (a 2D shooter game)
encodes all client input device state in a single byte.
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task is updating clients: sending an update packet to each client. These tasks can run
in different frequencies, but for simplicity we assume that the server performs a single
update step which both runs the physics to update the server’s state and, right after that,
sends an update packet to each client contaning the newly computed server state.

When performing a physics step, the server advances all objects in simulation time
proportionally to the time interval between steps. For instance, if the server is running at
20 steps per second, each physics step will advance objects in 50ms of simulation time.
The new state is a function of the previous state and the client input device states. For
instance, if the previous state contains an avatar at rest and the current client input tells
that the player has the ‘shoot’ key pressed, the next state should show the avatar firing its
weapon or preparing to do so, if allowed by the game rules (e.g., if the avatar had available
ammo in the previous state).

In our basic protocol, the update packet sent by the server always contains all game
state. For instance, in a shooter game, the update packet would contain the current po-
sition, viewing angle and animation frame of all player avatars. The only thing it would
not contain is constant information, such as the game map (terrain and structures), if the
game happens to have an immutable map. The clients, upon receiving an update packet,
simply display the contents of the packet to the screen.

2.4.3 Analysis of the basic protocol

With the basic protocol presented above, a simple action game can be supported. No-
tice the absence of a mechanism for delivering messages in order or reliably: all new
messages in a stream completely supersede all previous others. Notice also that the client
is a trivial terminal, with all simulation performed by the server. Though simple, this
basic system performs poorly in practice. The main problems are the following:

• Client keypresses can be missed. For instance, if the player presses a key and
releases it between outgoing input packets, the server will miss that keypress event.
This can be solved if the client uses a reliable messaging channel (e.g.: using TCP
or a custom packet retransmission protocol over UDP) to send its input to the server;

• Conversely, some server-side happenings can be missed. For instance, an avatar
is in ‘dead’ state for only a single server step and a client does not receive the
respective update packet in which that avatar is reported dead. In this case, the
client code is not able to detect that the avatar has died. This can be solved in
several ways. In practice, this is solved by implementing additional server-to-client
reliable messaging channel for unmissable events;

• The fixed rate of outgoing input packets introduced unnecessary latency into the
interaction loop. A way to solve this is having the client send an input packet
immediately after any input device state change instead of sending packets in a
fixed rate. However, this can cause an overflow if the client presses too many keys
in a short time, or with input devices that can change state hundreds of times per
second such as mouses. Anyway, this is a minor issue, but worth mentioning since
reducing latency is paramount for action MOGs;

• The protocol does not take into account different link capacities at each node, nor
it adapts to changing network conditions. Some clients and servers may not be able
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to cope with the (fixed) data rates. Optimal results are achieved if the rate of ticks
or messages is adapted to match each machine’s capacity17;

• The server always sends the full game state to each client, wasting bandwidth and
aggravating the problem of state-revealing cheats. In an avatar-based virtual world,
a client is only interested in state updates for objects that are near its avatar. So,
server update messages can be smaller if they only include information that is rel-
evant to each client. Additionally, sending irrelevant information to a client, such
as positions of enemies that are behind walls, may allow a malicious client process
to reveal that information on screen, giving an unfair advantage to the player which
can now see its enemies behind walls, an obvious tactical advantage. In a following
section we will add interest management to the server which helps to address these
issues;

• The client cannot execute its own commands immediately. The client has not
enough built-in intelligence to know what to do with its own commands: it only
sends keypresses and receives the results of executing those keypresses at the server.
From a simplicity standpoint this is a good thing, but this also means that the client
is forced to wait for a full client-server network round-trip between the time the
player issues some command (e.g.: shoot) and the time it is perceived on screen.
Depending on the game type, this latency can break the illusion that the player is
in control. If the network latency is significant, responsivity can be reduced to the
point that the game becomes unplayable. We address this in a following section by
adding a client-side input prediction mechanism to the protocol;

• Movement is perceived as choppy at the clients. After receiving an update from the
server, the remote objects at the client’s screen are instantly moved to the reported
position, and they stay on these positions for a full frame time until the next update
packet is received. One solution would be to just send more packets until the illusion
of movement can be sustained (e.g. 60 packets per second). However, that wastes
bandwidth and similar results can be obtained with remote object interpolation and
extrapolation (added to the protocol in following sections);

• The protocol may be unfair to clients on high-delay connections. The wall-clock
time in which client commands happen are not taken into consideration as all
timestamping is done at the server side. This causes low game fairness (BRUN;
BOUSTEAD; SAFAEI, 2006) for players which have a high delay to the server,
which will have less time to react to the moves of their opponents that have a low
delay link to the server. There are several ways to ameliorate this situation, such
as letting players inform the current position of their avatars, the simulation time
in which their commands happen, the simulation time in which they have reached
some position with their avatars or performed some action (e.g. fire a weapon),
among others. In the next sections we will address this with the client-side input
prediction mechanism for movement and a ‘lag compensation’ mechanism for the
instant-hit weapons of our hypothetic example game.

17In practice, most action MOGs allow the rate to be configured individually at each client or server,
but adaptation to changing network conditions is not commonly supported. The assumption is that both
clients and servers generally know the typical bandwidth that is being provided to them. Whenever a
node’s bandwidth drops, that is assumed to be temporary so there is limited usefulness for a long-term rate
adaptation mechanism.
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Besides these problems, the simple protocol actually presents an advantage: it is pretty
resilient against some common cheating techniques employed in 3D shooter games such
as Counter-Strike. For one thing, the protocol is immune to speed cheats (FUNG; LUI,
2009), since the client is not allowed to inform its position to the server. It is also im-
mune to timestamp-based cheats (DI CHEN; MAHESWARAN, 2004) since the client
does not even transmit client-side simulation time information. Typical commercial game
protocols include both client-side state information (namely, position, speed or other ex-
ploitable derivative) and client-side timestamps, which explains why many online games
have been known to be compromised by these kinds of cheats (FUNG; LUI, 2009). We
will explain these cheats and others in Section 2.5.

2.4.4 Saving bandwidth with interest management

The first optimization that can be done to the protocol is to reduce the size of update
messages. Currently, the update packet contains updated attribute values for all of the
objects in the game. So, if there are N avatars in a shooter game, each one of the N clients
will receive an update packet which always contains the most up-to-date position of all N
avatars. In a MMOG, N can be in the order of thousands and this scheme is clearly not
scalable. Even for a small-scale game it is interesting to reduce the size of each update
message in order to conserve server bandwidth, which is the network bottleneck of a
client-server MOG.

In the typical shooter MOG avatars are scattered around a maze and an avatar can only
‘see’ a subset of all other avatars since most of them will be occluded by the game map
(walls). Thus, instead of blindingly building a single update packet and sending that to
all clients, the server can perform an additional check for each client to determine what
is the scope of that client’s interest for the current simulation state. Then, for each client,
a custom update message is assembled which only includes information for which the
client is interested in.

World state at server

Relevant updates

Figure 2.16: Example of relevance filtering being applied to server update messages.

Figure 2.16 shows an example scenario. In the figure, the hatched avatar is behind
a wall and is not relevant to any other avatar. Conversely, no avatar is interested in the
hatched avatar. The gray avatar is between the white and black avatars, and thus they
are relevant to it and it is relevant to both. The dotted circle in the figure represents the
area of interest of the black avatar. It is used to detect that the white avatar is too far
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away from the black avatar to be relevant to it. An area filter is useful in a large-scale
environment because it prevents the execution of more refined (and expensive) criteria of
relevance such as traces, which can be too expensive to compute for a large number of
avatar pairings. Conversely, the white avatar, which also has an identical area of interest
(not shown in the figure to avoid visual clutter) considers the black avatar irrelevant.

Thus, we augment our hypothetical server with a relevance filter for clients: for each
client, send an update message which only contains relevant avatar position updates. This
can be easily accomplished in most game engines by executing traces from one avatar to
the other and determining whether opaque geometry is hit or not. This saves bandwidth
and, as mentioned in the previous section, helps to prevent state-revealing cheats, where
a player sees advantageous information that it shouldn’t be able to (more on cheating on
a following section).

There is more to client-server interest management (IM) than simple boolean filtering
at the server. If a client has not enough bandwidth to receive all information after the filter,
the server must then prioritize the individual update items in the packet and choose the
most important ones to send. Prioritizing individual update items is not so trivial, as some
pitfalls must be avoided such as starvation of individual update items that never get chosen
for sending. Frohnmayer and Gift (FROHNMAYER; GIFT, 2000) describe the network
engine of the Tribes series of FPS games, which performs this kind of prioritization.

Lastly, it should be noted that realizing IM optimizations is more complicated for peer-
to-peer games or VEs. This is because that in a truly distributed (decentralized) virtual
environment simulation there will not be a single ‘server’ node where all filtering can be
concentrated.

2.4.5 Smoothing movement with client-side extrapolation

The rate of server-to-client network packets in online games is significantly lower than
the rate of graphical frames that a client machine can render. For instance, a client may
render 60 graphical frames per second while it is only fed 20 network frames (updates)
per second from the server. In this case, and by following our basic protocol, the client
would just redraw the screen three times with the same update data between updates.
The human player would only perceive 20 different graphical frames of animation, which
looks choppy.

The first technique that can address this issue is extrapolation. It is also known as
dead reckoning, though some use that term to imply ballistic position prediction, with
constant acceleration or velocity. The basic idea of extrapolation is to update the state
of the local ‘ghost’ objects at the client independently from their master copies at the
server. In other words, instead of redrawing a graphical frame that shows the same world
state than the previous frame, the client process instead extrapolates the current state of
the world proportionally to the amount of time elapsed since the last received update and
then draws that guess to the screen.

Usually, extrapolation is employed first and foremost for remote object positions, and
the extrapolation function is usually a simple ballistic equation that assumes that the last
known velocity (or the acceleration, if informed) is constant. An object’s extrapolated po-
sition is calculated based on the object’s last known good position, velocity and, option-
ally, acceleration. With some luck, the extrapolated guesses are correct and the graphical
frames end up ‘filling in’ for the unavailable network frames.

Figure 2.17 shows an ideal scenario where a remote avatar’s velocity remains constant
between two network updates that are 50ms apart from each other. The example shows
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Position = 0u
Velocity = 60u/s

Server update
Time = 0ms

Position = 1u
Velocity = 60u/s

Extrapolation
Time = 16.666...ms

Position = 2u
Velocity = 60u/s

Extrapolation
Time = 33.333...ms

Position = 3u
Velocity = 60u/s

Server update
Time = 50ms

Current avatar position (drawn on the client's screen)

Past avatar position (invisible, for reference only)

Avatar direction 1u = Avatar diameter

Figure 2.17: Example of correct client-side extrapolation of a remote object’s position
between the receipt of two server updates that are 50ms apart from each other.

the game state evolving at the client, the current time at the client and whether the frame is
an extrapolation or a server packet. In this ideal example, the client is showing a constant
60 frames per second, and the server is providing a constant stream of 20 updates per
second. Thus, there are two fill-in guess frames for each ‘official’ frame from the server.
For simplicity, the example shows a single avatar moving along an unidimensional world.

The downside of this technique is that it breaks when the assumptions of the extrap-
olation function are wrong. For ballistic position extrapolation this means a wrong guess
happening when the remote object being extrapolated changes velocity or acceleration.

Correcting a wrong extrapolation can cause more visual artifacts than the ones avoided
by the technique. In a game like the open-source game Outgun (RITARI et al., 2006),
where avatar movements are highly inertial, almost ballistic, linear extrapolation can be
applied judiciously. However, this doesn’t hold for the typical 3D FPS online game, where
avatars can perform sudden changes in movement direction and speed. In 2001, Bernier
of Valve Software, developers of massively popular shooter games such as Half-Life and
Counter-Strike, hinted at limiting extrapolation to at most 100ms of real-time from the
last received server update (BERNIER, 2001). More recently, a developer-oriented page
at Valve Software’s website cites that their Source engine sets a default of 250ms for the
extrapolation limit (Valve Software, 2009).

There is more to extrapolation (or dead reckoning) than simple linear position extrap-
olation. Besides just limiting extrapolation outright, one way to minimize the impact of
wrong guesses is to interpolate between the wrong position and the new, correct position,
instead of just resetting the object’s position to the correct one. Aggarwal et al. (AG-
GARWAL et al., 2004) show that dead-reckoning augmented with timestamp informa-
tion can result in better visual consistency. Yonekura (YONEKURA, 2006) proposes an
augmented extrapolation technique that outperforms simple dead-reckoning. Also, some
works attempt to predict the behavior of objects that don’t respond well to simple linear
extrapolation (MARSHALL et al., 2004; LI; CHEN, 2006). Pantel and Wolf (PANTEL;
WOLF, 2002) have assessed the usefulness of dead reckoning techniques for games, con-
sidering different types of games.

Finally, it should be noted that this extrapolation is employed for remote objects and
not for the player avatar, which is (generally) the only local object in an avatar-based on-
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line game. In a following section we will add client-side input prediction to the protocol.
Input prediction extrapolates the local player avatar’s state, but it does so using the local
player’s commands as basis which guarantees that wrong guesses are much less common.
This is necessary since correcting the position of the local avatar is much more disturbing
to the player than correcting the position of a remotely-controlled object.

2.4.6 Smoothing movement with client-side interpolation

In our current protocol, the clients always perceives the world with delay. When the
server computes a new version of the game state, which is definitive and authoritative,
clients must still wait for the server update packet to see what really happened, since
the server’s simulation step function is the official source of simulation time and state
advancement for all clients. To keep a player’s view feeling like a ‘current’ version of the
world, its client module has to resort to showing guesswork while a new server update
doesn’t arrive.

Interpolation is a technique that adds a constant amount of delay (the interpolation
delay) to this loop, obtaining in return an increase in visual smoothness of remote object
movement. It is especially useful for objects such as humanoid player avatars whose
movement patterns, considering the typical 3D shooter game, are not well suited for linear
extrapolation for long periods of time.

In essence, interpolation is buffering incoming server updates at the client. Consider
a scenario where the client is showing an object on screen at position P1, and then an
update packet arrives with the new position P2 for that object. With interpolation enabled,
instead of showing the object at P2 immediately, the client instead postpones moving the
object to P2 for the duration of the interpolation delay. At the end of the interpolation
delay, the object is shown at P2. In the mean time, the client interpolates between P1
and P2 and draws the interpolated positions to the client.

The interpolation delay can never be too large or else the benefits are negated by
the added visual delay. Usually, interpolation is employed only to the point where the
effects of infrequent packet loss and network jitter (late packets) are sufficiently miti-
gated. As a reference, Valve Software uses 100ms of interpolation delay as the default
in their Source game engine, together with a 50ms default for update packet inter-arrival
times (Valve Software, 2009), which is sufficient to cover for any single lost packet in the
update stream.

Interpolation and extrapolation (dead reckoning) can be used together. If the client
runs out of data to interpolate to, that is, if the last target point in the buffer is reached,
extrapolation can kick in until the next update arrives. Together, the constant interpolation
delay and the extrapolation limit can cover for small sequences of packet loss in the update
stream before the client has to freeze the screen18.

2.4.7 Restoring responsiveness with client-side input prediction

The current protocol has a serious issue, as pointed earlier: the player has to wait at
least full network round-trip to the server to perceive the effects of its own avatar com-
mands. If the network distance between participants (or the server) is too great, this can
turn the game unplayable. Most client-server action games such as FPS games choose to
address this issue with input prediction.

18Freezing is employed to avoid misrepresenting a possible connectivity loss. If that’s not an issue,
extrapolation can be kept running forever with no client screen freezing.
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Input prediction is above all a concept: that of extrapolating the movement of a local
avatar based on the privileged information of its own input. Thus, if implemented prop-
erly, the end result is an extrapolation of the local avatar state that is almost always right.
It is extrapolation because, ultimately, the server will have to validate it. Our goal here
is not to provide a detailed explanation of input prediction techniques, but rather provide
an overview. Bernier (BERNIER, 2001) gives a good explanation of input prediction as
implemented in the Half-Life game engine. Sanglard (SANGLARD, 2009) has examined
the source code of QuakeWorld, one of the main ancestors of FPS online game engines,
including its prediction code.

With input prediction, the client runs a simulation loop similar to the server loop, and
it moves the local player’s avatar by an amount of simulation time that corresponds to the
amount of real time that elapses at the client. Here, it makes more sense to let the client
run that client-side simulation function before each graphics frame is drawn, instead of
dictating a fixed rate. But, since the real time it takes for the client to process each frame
may vary, this means that each simulation step at the client will advance simulation time
by a variable amount.

As for our example protocol, input prediction requires a new client input packet and
new server logic. Now, instead of just sending the state of input devices, the client sends
a stream of ‘commands’, where one command is generated for each simulation frame
at the client (which, as discussed above, now has variable duration). Each command is
comprised of input device state and the frame time for the command (its duration). When
the server receives a command, it can either execute it immediately over the respective
avatar (the solution adopted by the Half-Life and QuakeWorld games) or queue them
for execution on the next server tick, which now does not make much sense since each
avatar is now moving by a specific, reported quantum of simulation time. The protocol
can also be modified to have the server send an update right after receiving a client input
is received. This further reduces the interaction latency loop and minimizes the negative
effect of a wrong input prediction at the client since the latter will have less time to execute
prediction in a wrong direction.

Notice that, to support input prediction, the notion of a ‘dumb terminal’ client has to
be dropped entirely. This also helps to show that the notion of simulation time advancing
uniformly at a simulator is, after all, just a notion. Simulation time and world state are
just concepts, and there is nothing preventing a simulator from simulating objects indi-
vidually by arbitrary amounts of time, from moving objects to arbitrary positions, or from
predicting some attributes and not others.

As an example of selective attribute prediction, shooter games usually do predict fu-
ture movement but they do not predict the effects of hits. A client may predict, during
its local frame simulation, that a flying rocket from an enemy moves inside (or through)
its own avatar, but it does not execute the animations of rocket explosion or avatar death.
This is because if it’s predicted wrongly, the effects of undoing an avatar death and a
rocket explosion cause too much of a negative impact to the user to compensate for the
positive effects of the prediction.

2.4.8 Lag compensation for instant-hit weapons

According to Bernier (BERNIER, 2001), ‘Lag compensation is a method of normaliz-
ing server-side the state of the world for each player as that player’s user commands are
executed. You can think of lag compensation as taking a step back in time, on the server,
and looking at the state of the world at the exact instant that the user performed some
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action’.
Lag compensation is a solution for the following problem. If a player shoots at what

he is seeing, he won’t hit it at the server because he is seeing the server state in the past.
Even if the server executes the shoot command with compensation for the client-to-server
hop that this command travels (what could be part of input prediction support – or not),
this would still not cover for the other half of the interaction loop’s delay, that is, the delay
for the server-to-client update that fed the version of the world that the client was seeing
when he shot.

The Lag compensation algorithm further breaks the notion of an unified simulation
time advancing uniformly at all nodes. The algorithm works as follows (as described in
Bernier (BERNIER, 2001)). Notice that it assumes a protocol with input prediction where
the client sends a stream of commands that it has already executed locally with a specific
duration for each:

• Before executing a player’s current user command, the server:

– Computes a fairly accurate latency for the player;

– Searches the server history (for the current player) for the world update that
was sent to the player and received by the player just before the player would
have issued the movement command;

– From that update (and the one following it based on the exact target time being
used), for each player in the update, move the other players backwards in
time to exactly where they were when the current player’s user command was
created. This moving backwards must account for both connection latency
and the interpolation amount the client was using that frame;

• Allow the user command to execute (including any weapon firing commands, etc.,
that will run ray casts against all of the other players in their ‘old’ positions);

• Move all of the moved/time-warped players back to their correct/current positions.

Also notice that the client has to send more information to the server. It sends the
ID of the two world updates (update packets) that it is currently using for interpolation,
and the current point in time in which it is relative to the first update, that is, where in
between the two updates the client is interpolating, or whether it has already moved past
the second update and into extrapolation. The server then moves the world back in time
taking into account an estimate of both major factors of latency, which are the network
latency and the latency of the client simulator.

Though lag compensation increases consistency for players that are shooting at other
player avatars, it has a tradeoff. Figure 2.18, which also considers that input prediction is
in effect (that is, the server sees player movements with delay), shows what is happening
at two clients and the server in two sections of wall-clock time. In the first row of world
states, Black shoots at White and hits. In the second row of world states, all nodes have
exchanged one round of packets: Black’s shoot action arrives at the server, together with
White’s movement even further into a cover area. The server compensates for lag in
Black’s shoot action, resulting in White being hit. Later, White will receive a world state
where it has been hit, and this will look inconsistent to the player which think it is safely
covered from shots. Bernier (BERNIER, 2001) argues that this issue is not so serious
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Figure 2.18: Possible execution of lag compensation illustrating its consistency tradeoff.
Black sees the hit, the server later detects the hit at the lag compensated target position
(hashed avatar). Later, White will perceive its avatar being shot behind cover (not shown
in the figure).

because players usually run towards each other when shooting and ‘shot behind cover’
situations are rare in actual matches of 3D FPS games.

Besides Lag compensation, other solutions to this include just doing nothing and let-
ting players learn how to lead their targets, and extrapolating remote avatars at the shoot-
ing client to instead match what the server is seeing when the update is received at the
client. The latter is a sort of reversal over interpolation and is comprised of never actually
displaying incoming position updates as-is but instead considering them always late and
immediately adding the server-to-client (one hop) latency to them and visually extrapolat-
ing. This way, the player is always seeing an extrapolated world view. We have performed
some limited experiments with that solution for a peer-to-peer shooter game support and
found that it is not visually acceptable (CECIN et al., 2006).

2.4.9 Closing remarks

This section gives some insight on how client-server action games counter latency.
The presented solutions were designed for avatar-based and client-server action games.
We can argue that so far no applications have exercised advanced latency compensation
techniques in practice more than commercial online 3D FPS games have. Thus, in this
section, we have actually went far into what can be done to compensate for latency, though
we have only provided a short overview of each presented technique.

As we have seen, as more latency compensating techniques are added, the simulators
and the protocol become more complex. Notably, the assumption of uniform simulation
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time advancement is broken. This can be a problem because sometimes uniform time
advancement is desirable. Specifically, in FreeMMG (CECIN, 2005) and FreeMMG 2, we
require, for anti-cheating and fault tolerance, that the state of the simulation is replicated
among several peers, and by replication we mean peers having bitwise identical copies
of world state. For instance, if we take snapshots at two peers, we want to be able to
hash them and compare hash values to confirm that synchrony is being maintained. If
simulation time is not advancing uniformly at each peer or if the size of simulation steps
on each peer are not the same, then different peer snapshots are not comparable.

Thus, marrying good latency compensation techniques with some new architectures
(for instance, a peer-to-peer architecture that relies on replication and snapshot compar-
ison...) may be a problem. This can be a show-stopper issue if, in addition, support for
action games is being considered for the new architecture. This was a problem in the orig-
inal FreeMMG, which ended up being limited to Real-Time Strategy game support. In
FreeMMG 2 we tried to address this issue, allowing latency compensation techniques to
be employed together with a replication layer. This will be explained in the next chapters.

2.5 Cheating in online games

One of the major concerns of online game designers is the issue of players that attempt
to cheat at the game. The fundamental problem with cheating in online games is that as
more cheating is performed against a game, the less meaningful becomes the idea of
putting effort into playing the game by its rules. With enough cheating actions being
performed in instances of an online game service, it can become a pointless activity and
frustrated players quit. Since any form of revenue (monetary or not) obtained from an
online game is proportional to the amount of players interested in it, game designers
therefore attempt to prevent or reduce cheating in their games. This is also why cheating
in single-player, offline games doesn’t matter: only the cheater itself is affected19.

The ways in which games can be cheated are as numerous as the types of games that
exist. A cheat may be a serious threat to a game type while for another game type it may
be a minor annoyance20. For instance, in a first-person shooter (FPS) game, if a player
cheats the game to have automatic, perfect aiming capabilities, then the game is virtually
ruined for the opponent players. However, such a cheat would be just an annoyance in
an MMORPG game such as World of Warcraft, where aiming is a secondary activity
performed to select enemy targets for attacks – the attacks themselves being automatic
and a result of server-side dice rolls.

There are several works that attempt to create classification schemes for cheats or that
list and explain the possible cheats in online games (WEBB; SOH, 2007; YAN; RAN-
DELL, 2005; MCGRAW; HOGLUND, 2007; LAURENS et al., 2007; JHA et al., 2007;
CRONIN; FILSTRUP; JAMIN, 2003). The classifications usually organize cheats in sev-
eral dimensions, such as the methods (technique) used to cheat, the advantages gained,
or the architectural level where it happens (application, protocol, infrastructure, etc.). In
this section we explain some cheats that are not specific to peer-to-peer MMOGs but that

19A counter-example would be a single-player game which submits high-scores computed locally to a
shared online scoreboard. If the scoreboard is meaningful and not just a side feature, we consider the game
to be a MOG however and thus cheating in the single-player game matters to the multi-player scoreboard
meta-game.

20If cooperative virtual reality applications are considered as games, then one can argue that cheating in
general is only a minor annoyance to that type of game. In fact, cheating is not considered an issue in virtual
reality or collaborative virtual environments works.
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can be significant in that context. We split the selected cheats in the following broad
categories: time cheats, information exposure cheats, automation (bot) cheats and state
cheats.

In this section we also discuss what can be done to counter cheats. There are two
main approaches to combat cheating (NEUMANN et al., 2007): detection with later pun-
ishment and the preventive approach. With prevention, the architecture is designed to be
resistant (or sometimes immune) to cheats. With detection, the cheat is allowed to happen
sometimes, but it can be detected immediately, or later, with detection guarantee or with
a probability. After detection, the cheat can be corrected or at least partially compensated
for and the cheating player punished, all this with automation or sometimes with human
intervention (e.g., a game administrator manually identifies and bans a cheater from the
game or compensates the victims).

2.5.1 Damage level of cheats

In this thesis we introduce the concept of the damage level of an online game cheat.
We assert that it is impossible to design online games that provide the best possible quality
of service (consistency, fairness, responsiveness), scalability and immunity to all types of
cheats at the same time. Thus, security tradeoffs will have to be made. We also assert
that an online game developer should attempt to design the system in a way such that the
damage done from security vulnerabilities should be minimized. So, to help ourselves
in the process of choosing which security vulnerabilities would be addressed and which
ones wouldn’t, we came up with the following damage levels to categorize cheats in:

• Imperceptible damage: the cheat is not performed in the presence of other players
and enhances the player character for future encounters. This damage level is spe-
cific for bots that play MMORPG characters automatically against AI-controlled
opponents to enhance the character. These cheats cause minimum damage for other
players because the bots in question do not duel with other human players. When
other players later encounter the cheated avatar, now controlled by a human, it is
then no different than encountering a powered-up character that did so honestly.
Players cannot tell the difference among the several thousands of other players in
the server, thus the frustration is also minimal. The advantage is also bounded by
the time the robot runs and by the game rules, so this imperceptible damage level is
actually a special case of the bounded damage level (see below);

• Bounded damage: the cheat can be performed in the presence of other players and
confers a direct advantage against other players. In shooter games this includes
cheats that allow players to have perfect aiming or dodging reflexes, to teleport
to arbitrary positions, to run faster than other players or to see through walls. In
a MMORPG, these would also apply, with the aggravating factor that their ef-
fects would be persisted instead of erased once a new match begins. These cheats
have limited damage because, despite their potential of having a high impact on the
game, they directly affect only nearby players and the impact is proportional to the
effort, that is, the amount of persistent advantage obtained is still bound by game
rules even if the rules for obtaining the advantage are broken. For instance, even
if a player in a MMORPG cheats others by teleporting first to a treasure chest’s
location, the contents of the chest (the player’s reward for the cheat) is still bound
by game rules. Thus, if a good detection strategy is used, the game provider may
not even bother with a recovery (undo) strategy for the effects of the cheats;
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• Unbounded damage: cheats in this category, once performed, can confer an arbi-
trary amount of advantage to the cheating player. An example of this would be a
MMOG player being able to create any character or any game objects by changing
the client program or by changing the messages that are sent to the server. This
level is specific for MMOGs where there is a persistent economy to be protected.
An unbounded cheat is thus a cheat which allows a single player or a small group of
players to wreck the economy of the game. Since the economy is a main factor in
any MMOG, an unbounded cheat causes maximum damage that potentially affects
thousands of players at once . Client-server MMOGs, for all practical purposes, are
immune to unbounded cheats since clients cannot directly write to the authoritative
version of the game state at the server. Currently, we consider that only state cheats
against a peer-to-peer MMOG can cause unbounded damage.

The goal of this damage level classification is to assess what are the cheats that should
be addressed when designing a peer-to-peer MMOG architecture, with the understanding
that each problem solved in an architecture will inevitably complicate other issues (FER-
RETTI et al., 2005). As an example, consider that a design that starts by solving any and
all security issues will inevitably end up with higher communication cost and increased
interaction delay (GOODMAN; VERBRUGGE, 2008). This is true for almost any dis-
tributed system imaginable. Thus, we found out that some cheats should be addressed in
a definitive manner by the architecture itself, others should have their solution facilitated
by the way the architecture is designed but left for the application to solve, and still others
have to be ignored by the architecture design and left for the application to solve entirely.

We hold a strong position that, when designing MMOG middleware, any unbounded
damage, economy-wrecking cheats cannot be left to be addressed by future work if the
MMOG model in question is actually intended for implementation and deployment. We
also argue that using detection for state cheating in peer-to-peer MMOGs, which can
cause unbounded damage, is risky. For detection to be viable for state cheating there
must be also a reliable way to undo the damage done by the cheat prior to the detection.
Since undoing arbitrary state changes can be too troublesome to implement, at least trans-
parently in a MMOG middleware, for FreeMMG 2 we have chosen instead to employ the
preventive approach against unbounded damage cheats. In a following section we will de-
scribe the state cheat and show that it can cause unbounded damage. In later chapters, we
will show how FreeMMG 2 prevents state cheats from happening with high probability.

2.5.2 Common cheat implementation techniques

Though there are many ways to cheat in an online game, there are some common
techniques used to perform cheating, and it is useful to discuss them beforehand. These
techniques are listed below:

• Cheat by modifying the client executable. This is a straight-forward replacement
of the client-side code (or peer code in a pure peer-to-peer architecture) with ar-
bitrary code. This is generally easy to perform since determining the authenticity
of code in an unsecured machine is hard. Once the client code is compromised,
it can generate arbitrary network messages to other nodes, it can modify its own
memory, it can present hidden information to the player, etc. To counter this gen-
eral technique, Monch et al. (MÖNCH; GRIMEN; MIDTSTRAUM, 2006) propose
Mobile Guards, a code generation scheme where the client code has to be always
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up-to-date to connect the service. These code updates are both automatically gen-
erated and they contain code that verifies the integrity of the executable. Kabus et
al. (KABUS et al., 2005) reminds that Trusted Computing (TC) may be an alterna-
tive for securing the client executable;

• Cheat by modifying the memory of the client process or files read by the client
process. This is relatively easier to accomplish than modifying binary code. Basi-
cally, the memory of the client process is altered on-the-fly by an auxiliary process
akin to a debugger, or the files read by the process are altered before the process
is launched. As a simple example, files containing 3D models of avatars can be
modified to have brighter colors and thus help the player to spot them and aim at
them. In theory, by modifying the memory similar effects of changing the client
code can be achieved, such as auto-aiming;

• Cheat by modifying packets through a proxy. By employing an arbitrary proxy
process between the game client and its peers (game server or other clients), the
cheating player can modify the contents of outgoing and incoming packets at will.
If clients are allowed to, for instance, arbitrate over the current position of a player
avatar, then a cheater can simply modify outgoing packets to move its avatar to any
location (a speed or teleport cheat);

• Cheat by modifying video drivers. This technique is employed to allow players to
see through walls by modifying the video drivers in a way that occluded objects
blend with the obstacles instead of being obscured by them. This exploits game
systems that don’t perform relevance filtering when sending updates (or that can’t
do so) and that send all known objects all the way down to the rendering pipeline,
letting the video card do the job of hiding them.

These general techniques cover most common cheats. However, there are many others
ways in which cheats can be realized. For instance, a denial of service (DoS) attack can
be employed against peers if there is some advantage to be gained from it.

2.5.3 Automation cheats (bots)

In many online games, several tasks performed by the human players would be better
handled by a computer agent. For instance, aiming a weapon in a 3D shooter game
is relatively hard for a human, which has to possess good hand-eye coordination skills.
However, it is trivial to program the client process to automatically follow the heads of the
player’s enemy avatars – a single line of code would probably do the trick. However, the
point of the game is to have humans performing the hard tasks and having fun competing
with other humans while attempting such tasks. Automation cheats thus are any kind of
client-side modifications where hard tasks such as aiming in a 3D shooter, or repetitive
tasks such as accumulating virtual wealth or character experience in a MMORPG, are
automated by a bot (short for robot) program.

Auto-aiming is possible because most 3D games let the clients dictate the viewing
angles of the player to the server. The protocols have to allow clients to change their
own angles by arbitrary amounts due to the fact that there are really good players that
can manage large and precise changes in viewing angles. With this, it is only a matter
of adding a malicious proxy between the client and the server that corrects the angles on
outgoing client packets in order to aim perfectly at other avatars.
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In MMORPGs such as World of Warcraft and even in non-massive RPG online games
such as Diablo II, bots are employed to automate repetitive tasks. In RPGs it is often
the case that the player is thrown against wave after wave of similar computer-controlled
opponents (the monsters) and, every once in a while, the character levels up (becomes
stronger) due to the experience points accrued from defeating foes. Needless to say, these
tasks are often viewed as chores when they don’t present enough variation to the player.
Assume that the player, however, does not want to quit the game altogether for some
reason. The result is the player employing a program to do the chore for him. Once his
character levels up, he is able to face different monsters or to duel against stronger players
and, presumably, will resume normal play with the now stronger character.

Bots are also used in MMORPGs for accumulating in-game wealth. When a character
performs repetitive tasks such as defeating waves of monsters or completing quests21, it
is constantly rewarded with in-game wealth such as currency or valuable items (which
are usually interchangeable). Since possessing stronger items such as magical weapons is
also a way to build a stronger avatar, a bot can be employed to acquire any desired amount
of in-game wealth which can be later dumped at merchants and traded for whatever item
is desired by the player.

An example of MMORPG bot is the Glider bot (MDY Industries, 2009). The Glider
bot plays characters automatically for World of Warcraft, making them both stronger and
richer (with in-game wealth) at the same time.

Several works propose solutions for detecting bots in real-time online games. Ye-
ung et al. (YEUNG et al., 2006) propose a scheme that could detect aim-bots through
statistical analysis. Chen et al. (CHEN et al., 2006) attempt to detect bots by analyzing
the traffic between a player machine and its server. Thawonmas et al. (THAWONMAS;
KASHIFUJI; CHEN, 2008) are able to detect MMORPG bots by analyzing logs of player
actions by classifying the behavior, based on perceived patterns, as either belonging to a
typical human player or to a typical automated player. CAPTCHA tests have also been
cited in several works as a way to detect automated play (THOMAS; ESSAAIDI, 2006;
ROBLES et al., 2008; CHAMBERS; FENG; FENG, 2006).

In any case, we believe that MMOG bots cause limited (bounded) damage to the game
world since their actions are bounded to what is theoretically possible for a player, human
or otherwise, to perform. Again, this is not to say that this is a minor issue, since bots can
and do ruin the game experience (THAWONMAS; KASHIFUJI; CHEN, 2008).

As for auto-aiming bots in shooter-like MMOGs (a MMOFPS), we believe that the
persistent-state nature of the game and a centralized player database can be leveraged
into solutions. For instance, a detection scheme with a very low false-positive rate, but
that takes very long to establish a player as an aim-bot cheater, would be sufficient for an
MMOFPS. This is because being banned from a MMOFPS imposes a much higher cost to
the cheating player than being banned from a single server of a small-scale FPS game such
as Counter-Strike. Thus, cheaters will tend to cheat less as their characters accumulate
power and wealth, in order to avoid losing it all to a cheat detection algorithm.

2.5.4 Information exposure cheats

Information exposure cheats, also called secret revealing cheats (WEBB; SOH, 2007)
consist of a cheating player using some technique to gain access to information that it
shouldn’t have access to. Below are three prime examples of information exposure cheats:

21Quests are waves of monsters plus specific interactions with non-playing characters and the environ-
ment that resemble storytelling.
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• Wall-hack: This cheat is most prominent in 3D FPS games such as Counter-Strike,
where it allows a player to see enemies through walls. As discussed earlier, this
can be achieved if a player’s client process is receiving updates for enemy avatars
even when such avatars are not supposed to be visible. If that is the case, the
cheater can, for instance, modify the client program to render enemy players over
the walls. Laurens et al. (LAURENS et al., 2007) show that players with wall-hack
enabled follow their targets behind walls and that this behavior is very difficult
to avoid. In other words, the crosshairs of a wall-hacking player ‘touch’ hidden
enemies significantly more, a pattern that can be checked by the server;

• Map-hack: This cheat is executed mostly against RTS games such as Age of Em-
pires where the protocol requires all players to know about the full game state.
Since, in a strategy game, knowing about the whereabouts of enemy troops is cru-
cial, the game client of an RTS usually hides the contents of terrain that the client in
question is not actively scouting. This feature is called the fog of war in RTS games.
The map-hack consists of disabling the fog of war at the client and thus revealing
the full game state to the player, which is already available at the client’s memory
due to the way the protocol works. Buro proposes a solution for map-hack that is
specific to client-server RTS games (BURO, 2003), while Chambers et al. (CHAM-
BERS et al., 2005) mitigate the impact of information exposure in peer-to-peer RTS
games;

• Extra-Sensory Perception (ESP): This is used to refer to the exposure of several in-
formation items not covered by wall-hacks and map-hacks, such as the exact health
value of enemy troops or avatars, and the position of enemy avatars as drawn in an
on-screen map in an FPS game (ROBLES et al., 2008; LAURENS et al., 2007);

• Collusion cheat: In the context of information exposure, the collusion cheat con-
sists of players sharing information among themselves where such information was
intended to remain a secret from the receiving players (GAUTHIERDICKEY et al.,
2004a; WEBB; SOH, 2007; KABUS et al., 2005)22. The communication of such
information is usually performed in a side channel that doesn’t touch the game sys-
tem, which makes collusion difficult to tackle (WEBB; SOH, 2007). An example
of collusion would be a team-based game where a ‘traitor’ player sends secret in-
formation to the other team.

Information exposure cheats are an issue in RTS games, but they are not a significant
threat against MMORPG games (KABUS et al., 2005). We extend this to state that all
avatar-based MMOGs, including both MMORPGs and MMOFPSs, should have limited
impact from information exposure cheats. We back this assertion with Laurens et al.’s
work on wall-hack detection on small-scale FPS games (LAURENS et al., 2007). Ad-
ditionally, a MMOFPS would benefit from much longer player logs, if compared to a
small-scale FPS MOG, before having to reach a decision of whether a player is seeing
through walls or not. And finally, information exposure cheats cause bounded (limited)
damage against MMOGs. Thus, we disregard information exposure cheats for FreeMMG
2, which is geared towards avatar-based MMOGs. We leave such cheats to be mitigated
by the application or by future work.

22Kabus et al. (KABUS et al., 2005) describe the collusion cheat in the context of peer-to-peer games,
but they don’t name it.
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2.5.5 Time cheats

As we have hinted at previously, online game experience factors such as consistency
and fairness can be maximized for all players involved if clients inform the server about
the time in which their actions occur. For instance, the lag compensation mechanism of
Half-Life for instant-hit weapons allows clients to hit delayed targets on their machines
by informing the server about the time in which their actions occur. Also in the Half-
Life protocol, clients are allowed to inform, for each command, a quantity of simulation
time elapsed locally for the command (the frame duration), which is also a kind of time
information.

The problem with using time-related parameters sampled at clients is that clients can
lie about them to the server in order to cheat. This also goes for pure peer-to-peer archi-
tectures, where all nodes are client (read: untrustworthy) nodes, and they can lie about
time-related information to each other and exploit weaknesses in distributed consistency
protocols that depend on a client-side source of time.

Cronin et al. (CRONIN; FILSTRUP; JAMIN, 2003) define time cheats as cheats that
‘give the cheater an unfair advantage by allowing it to see into the future, giving the
cheater additional time to react to the other player’s moves’. Cronin et al. addresses a
common time cheat which is the look-ahead cheat for peer-to-peer games. Other works
address what they call the timestamp cheat (WEBB; SOH, 2007). Though there are other
time cheats such as the suppress-correct cheat (CRONIN; FILSTRUP; JAMIN, 2003) and
the fixed-delay cheat (GAUTHIERDICKEY et al., 2004a), we will focus on the look-
ahead and timestamp cheats only, which we describe below.

2.5.5.1 Look-ahead and timestamp cheats

The look-ahead cheat consist of waiting for other players’ moves before committing
your own, as in ‘peeking into the future’ to see what the opponents will do so that you
can make a better decision in the present. In a peer-to-peer, round-based protocol, where
player moves or commands are ordered with a sequence number – the round number –
instead of with specific time values sampled from machine clocks (timestamps), the look-
ahead cheat is implemented simply by waiting for other players’ moves for the current
turn, optimizing your decision based on them, and then sending out your own (cheated)
move.

In a timestamp protocol, where players may act at any time by sending a command
with a simulation time value, the look-ahead cheat is implemented by simply waiting for
an opponent’s command and then submitting a counter-move with an earlier timestamp.
In this case, it is called a timestamp cheat. This cheat is possible in such protocols be-
cause they have to be coupled with some mechanism to re-execute straggler (late) events
in the correct order or to compensate for them. Chen and Maheswaran (DI CHEN; MA-
HESWARAN, 2004) offer more details on timestamp cheating.

So, look-ahead and timestamp cheats are, in essence, the same cheat. In both cases,
the cheater gains an advantage over opponents due to its ability to commit its action
after knowing about other actions that should, but aren’t, simultaneous to his own, and
thus increasing his reaction time or fabricating a reaction time that didn’t exist (in the
case of moves that should be simultaneous). The difference is that look-ahead cheats are
committed against round-based protocols and timestamp cheats are committed against
proper timestamp-based protocols.

There are several works that address the look-ahead cheat for peer-to-peer proto-
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cols. The Asynchronous Synchronization (AS) protocol (BAUGHMAN; LIBERATORE;
LEVINE, 2007) is an hybrid solution that forces players to synchronize in a round-based
fashion whenever their avatars are close enough, and otherwise allows asynchronous
(unordered) execution of commands by unrelated (distant) avatars. Whenever execut-
ing in rounds, AS forces all players to cypher their moves for each turn and provide
the key for reading it on the next turn. This prevents players from using the knowledge
of other player’s actions since the key (the next turn) is only sent by the owner of the
move when it has received all cyphered moves for the current turn from all other play-
ers (BAUGHMAN; LIBERATORE; LEVINE, 2007). This basic principle of cyphering
moves to prevent look-ahead cheats is employed by other protocols such as NEO (GAU-
THIERDICKEY et al., 2004a) and SEA (CORMAN et al., 2006). The Sliding Pipeline
(SP) protocol (CRONIN; FILSTRUP; JAMIN, 2003) is an attempt at relaxing the rigid-
ness imposed by the round-based nature of that solution. In SP, missing rounds can be
dead-reckoned (extrapolated) and timestamp cheating is prevented by monitoring player
delays and trying to determine the maximum allowable delay for a late command (WEBB;
SOH, 2007). The main critique of these solutions is that they can impose large delays that
would be otherwise avoided by the simpler (and vulnerable) protocols (WEBB; SOH,
2007).

The Referee Anti-Cheat Scheme (RACS) (WEBB et al., 2007) requires a trusted ref-
eree which performs sensitive tasks such as assigning events generated by peers (players)
a ‘round’ to execute in all peers. The referee in RACS keeps most game traffic peer-to-
peer and it avoids several known cheats, including the timestamp (look-ahead) cheat. The
time cheat is avoided by scheduling late events to the next round, where the current round
is whatever the referee considers as current. In other words, timestamping occurs at the
receiver which, in this case, is a centralized, trusted party. Thus the cheat is avoided by
trading off by departing from a pure peer-to-peer solution. In this context, the authors of
RACS followed their work with ways to elect trusted referees out of a pool of anonymous
peers (WEBB; SOH; TRAHAN, 2008). This path is being pursued by other works on
reputation management for peer-to-peer games (HUANG; HU; JIANG, 2008; SHI; GAO;
DU, 2008; SHI et al., 2007).

There are works that attempt to solve the look-ahead cheat (or timestamp cheat) with-
out resorting to a round-based protocol. The AC/DC algorithm (FERRETTI; ROCCETTI,
2006) avoids forcing the simulation into rounds and allows events to be reported with any
timestamp. It detects time cheats after they occur by, first, deciding if a node is a potential
cheater – that is, it exhibits patterns that could be due either to network congestion or to
false client-side timestamping. After that, the server (or remote peer) artificially inflates
its own timestamps to see if the client will do the same to ‘keep up’. In other words,
the server (or peer) ‘cheats’ on purpose now and then to detect a remote logic that is
modifying its own timing to maintain a constant reaction time advantage.

2.5.5.2 Our stance on peer-to-peer MMOGs and time cheats

The general principle when designing an online game protocol is to never trust the
client since it is in the hands of the enemy. However, sometimes it is necessary to do
so, and the case of client-side timing information is emblematic. There is so much to
gain in fairness, consistency and responsiveness from using peer latency measures and
input device read times, and there are so many techniques that use that information, that
it is difficult to conceive an online game protocol that doesn’t use client-side timing. In
addition, there are already several works that counter time cheats. And finally, what
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cheaters gain with time cheats, at least before their cheating attempts are detected, is of
limited impact for MOGs and MMOGs – time cheats cause bounded damage.

In FreeMMG 2 we leave protocol design partially to the application. The FreeMMG 2
protocol provides some basic services such as state replication, overlay construction and
routing, and event dissemination, but it doesn’t go as far as specifying the actual mean-
ing of events, which are left for the application. The interaction protocol – what clients
request of the MMOG ‘server’ with their command messages – can thus be anything
discussed in Section 2.4, with a dumb terminal client or with client-side prediction, lag
compensation, etc. Thus, the peer-to-peer overlay that manages game state in a FreeMMG
2 game network (the ‘server’) can either use timing information from playing clients or
not, depending on the game developer’s choice. In case it does, any cheating arising from
that will cause bounded damage, and existing anti-time cheating work can be applied by
the application developer to counter these time-based cheats.

2.5.6 State cheats

As far as we can tell, the term state cheat is not present in the literature. Its charac-
teristics are described in related works and it is definitely recognized as an issue, but it is
not named in any consistent fashion23. Therefore, the name state cheat and the definition
we present of it are ours24.

A state cheat consists of a cheating player rewriting a significant portion of the au-
thoritative game state. Emphasis should be placed in significant: the cheater must be able
to cause unbounded damage to the game state, as we have discussed previously. Exploit-
ing server-side bugs or race conditions (MCGRAW; HOGLUND, 2007) will only cause
damage proportional to the bug in a limited window of time and thus do not qualify. Also,
we consider that sending fake absolute position updates to a server or a peer also doesn’t
qualify as most MMOG economies cannot be exploited purely by position cheating (also
known as telehacks) for the same reason that time cheats cannot. Thus, in a client-server
MOG or MMOG, since the authoritative game state is kept at a trusted and secure server
machine, state cheating is only practical if performed by the server administrator itself,
not the players.

2.5.6.1 Example: state cheat against a peer-to-peer MMOG with partitioned state

Figure 2.19 depicts a state cheating scenario. The figure shows the global game state
of a MMOG partitioned among four peers. This is one kind of cell-based MMOG archi-
tecture, since the game world’s virtual space is divided into contiguous cells. Adjacent
cells are supposed to connect transparently so that players should not, ideally, be able to
perceive cell borders during play. The figure does not assume anything from the peers
other than them being client resources, that is, machines not controlled by a central game
operator and thus untrustworthy. The peers in the figure could either be members of a
peer-to-peer overlay dedicated only to running the virtual world simulation, or they could

23We have erroneously named it collusion cheat in previous work (CECIN et al., 2004, 2006), but the term
‘collusion cheat’ is being used to denote a kind of information exposure cheat as seen in Section 2.5.4. What
we meant in our previous work, and which still holds for FreeMMG 2, is that state cheats can be performed
against replication-based peer-to-peer MMOGs when a significant portion of the assigned replicas collude
to perform illegal state alterations in concert to their part of the game world’s state.

24What we mean here is that our definition of the state cheat has no definitive backing in the literature
and thus should have its accompanying argumentation examined by the reader, instead of being dismissed
as established (background) information.
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be also the players of the game. In the current context, this is not important and can be
abstracted away.

Malicious
peer

$$

Illegal state modification:
fabricated wealth on 

compromised cell of the 
game's virtual world!

Figure 2.19: Simplified example of a state cheat being performed in a peer-to-peer
MMOG architecture where the game state is partitioned among four peers.

In Figure 2.19, one of the peers to which part of the virtual world (a cell) is delegated
exclusively is malicious. That peer decides to favor the white avatar in the figure and, to
this end, instantly modifies its own local memory to include a substantial amount of game
wealth next to the white avatar. In most MMORPGs it is common to encounter objects
such as ‘piles of gold’ that can be picked up by avatars next to them. Such objects usually
have a numeric attribute that designates the amount of gold in the pile in question. Thus,
a state cheat by a malicious peer could be executed simply by inserting one such pile into
the game state that has an arbitrarily high ‘amount’ value, one that, for instance, is higher
than the total amount of circulation in the entire game economy. The problem becomes
apparent if we consider that the white avatar can pick up that wealth and move to other
non-compromised cells carrying it – an unregulated amount of game wealth can ruin the
most well-engineered MMOG economy (THOMPSON, 2000). Thus, we show that this
simple cheat can cause an unbounded amount of damage to the game state.

While for a particular game it might be easy to establish a ceiling on the wealth that
an avatar may carry into a non-compromised cell, this is difficult to solve in any generic
way. Also, this is by far not the only example possible. The malicious peer can also
cause other avatars that it happens to dislike to die instantly, or it can ‘level up’ (make
permanently stronger) friendly avatars. These examples are already much more difficult
to detect by other cell peers and to compensate for, even for a solution that is specific
to one well-crafted game design. Each game would require its own checks and it would
become hard to detect cheaters that smuggle fabricate wealth to non-compromised cells
in a rate that is just below the detection threshold – that it knows about precisely since it
should be running the same logic.
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2.5.6.2 Impact of state cheats against MOGs and MMOGs

State cheats can be at least as serious as other forms of cheating in small-scale MOGs,
be them peer-to-peer or client-server. However, in a non-massive MOG that doesn’t have
persistent state, the damage is bounded by the limited duration of each instance or match
of the game. Moreover, the player can always switch servers or peer groups freely in a
non-massive game; there is no long-term game world being abandoned.

However, we assert that state cheats are promoted to a different, higher degree of
seriousness when we consider peer-to-peer MMOGs specifically. A peer-to-peer MMOG,
by definition, is relying on what are, by default, untrustworthy and anonymous client
machines for storing parts of a long-term game state. This is, again by default, the same as
letting clients store part of the game state or arbitrate over the game state in a client-server
MMOG. We say by default because the research trend on peer-to-peer MMOGs was, at
first, to just partition the game state among peer machines, letting each peer arbitrate alone
over some part of the game state. These solutions, as demonstrated by the earlier example,
are very vulnerable to state cheats since any peer can change the contents of its part of the
game world arbitrarily.

2.5.6.3 Dealing with state cheats in peer-to-peer MMOGs

Later in this thesis, we review other works that propose peer-to-peer MMOG architec-
tures, and we classify them as either addressing state cheats or not. For these architectures,
we consider the following to be general valid directions for addressing state cheats:

• Game design: The game is somehow immune or at least not fatally affected by the
ability of peers that manage game state to modify it arbitrarily;

• Detection with undo: The architecture is able to eventually detect state cheats and
recover fully from them or at least significantly mitigate their effects;

• Game design and detection without undo: The game is not fatally affected by
the ability of peers that manage game state to modify it arbitrarily. Additionally,
cheaters are eventually detected and banned in a way that state cheats are always
bounded by the detection interval (this replaces the undo mechanism). And finally,
cheaters are somehow prevented from creating new identities without cost to start
cheating immediately after being banned;

• Bounded state modification: The total amount of in-game wealth (game-specific)
in each part of the game state is somehow bounded. This would apply to solution
that verify the amount of wealth over time in each part of the game world and ban
peers that are enriching their game state partitions in a manner incompatible with
game rules. Another way to tackle this would be through use of cryptography to
restrict the minting of in-game items to a trusted party such as in the PSMMO
model (CHAMBERS; FENG; FENG, 2006);

• Trust or reputation management: trustworthy nodes are somehow correctly elected
among peers that are candidates for serving in the peer-to-peer overlay as keepers
of authoritative game state. An example of such solution would be one that re-
quired a community of ‘peer server’ administrators that implicitly trust each other
to make up the peer-to-peer MMOG overlay. Other solutions would involve reputa-
tion management or web-of-trust models for electing trustworthy peers (HUANG;
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HU; JIANG, 2008; ZHOU; HWANG, 2007; KAMVAR; SCHLOSSER; GARCIA-
MOLINA, 2003);

• Replication: The architecture replicates each part of the game state that is delegated
to client machines and employs some form of byzantine or quorum-based consensus
to filter out deviant versions of that part of the game state. This is the approach of
FreeMMG 2 and several others.

These are the ways that we know of and consider as viable solutions to the problem of
state cheating against peer-to-peer MMOGs. This list is derived from our current review
of the literature, and future works could certainly come up with new ways to address the
issue of state cheats. For instance, Kabus et al. (KABUS et al., 2005) point out that a
working Trusted Computing (TC) platform could be used as a cheat deterrent.

2.5.7 Closing remarks

The persisted game state of MMORPGs such as World of Warcraft contains signif-
icant value as perceived by players of these games (MANNINEN; KUJANPÄÄ, 2007).
Since there is perceived value in MMOG state and transfer of state items is possible be-
tween player avatars, the fact that players of MMOGs trade items between themselves
for real money (GUO; BARNES, 2007) is a natural and an ultimately unavoidable con-
sequence, though a significant portion of these players protest against this so-called Real
Money Trading (RMT) activity in MMOGs (YOON, 2008; LEHDONVIRTA, 2005). The
significant volume of RMT in MMOGs, which is a way of living for some (DIBBELL,
2007), has even caused governments to start pondering whether this commerce of vir-
tual items should be taxed (CHUNG, 2008). As a reference, the worldwide volume of
RMT transactions has been estimated to be around US$ 2 billion in 2007 (LEHTINIEMI;
LEHDONVIRTA, 2007).

As of now it is unclear if peer-to-peer MMOG architectures, if ever deployed, will face
the same issues of law, property, taxation and involvement with real money that client-
server MMOG services currently face. Nevertheless, as long as MMOG models based on
peer-to-peer are intended to contribute in this direction of large-scale deployment, they
should consider these issues.

In this context, it becomes clear that securing game state becomes important. In the
real world, it is certainly possible to defraud the systems of work and reward by e.g.
robbery, but creation of concrete wealth such as goods or money are either limited by
physical laws or limited to centralized (trusted) entities such as central banks which issue
‘real’ currency. The mechanisms that protect against outright fabrication of wealth in
the real world are much stronger than the mechanisms, such as policing and courts, that
protect against spurious violations (oftentimes with false positives). In virtual worlds, we
assert that this distinction also holds, and thus we have differentiated state cheating, which
is arbitrary fabrication of wealth analogous to owning a bank or being able to materialize
goods without effort, from other types of cheats that accelerate the acquisition of wealth
at a bounded pace.

And finally, this explains our design decisions in FreeMMG 2. Integrating resistance
against state cheating at a fundamental level in the architecture was thus one of the top-
level priorities, and several trade-offs were made to meet this demand. And, to avoid
making too much of a concession in terms of scalability, latency and bandwidth efficiency,
we have left other types of cheats to be addressed by the application, which will then be
responsible for assessing the cost of the additional anti-cheat solutions employed, if any.
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2.6 Network-level attacks versus peer-to-peer MMOGs

Alongside state cheats, one of our top-level concerns is with network-level attacks,
such as a Denial-of-Service attack (DoS) or a Distributed DoS (DDoS), against selected
nodes in the peer-to-peer overlay that is to maintain the game state. Network-level attacks
are more of an issue against peer-to-peer MMOGs than against client-server MMOGs.
The reason is that, in the case of a network attack against MMOG servers, the server
becomes unresponsive or dies, but once the attack ceases, it is certain that clients will
keep trusting the game state backed up by the server. Moreover, we can assume that
the internal network used by servers to synchronize between themselves is unaffected by
external network attacks. On the other hand, peer-to-peer MMOG architectures, which
are distributed computing systems, run into trouble when dealing with partial failure and
the lack of a central coordinator to recover from such failures, which are major issues in
distributed computing systems design (WALDO et al., 1997).

Though any peer-to-peer system, MMOG overlays included, have to automatically
deal with regular peer churn (STUTZBACH; REJAIE, 2006), the issue of network-level
attacks is more serious – it can be thought of as a form of directed and intentional (selec-
tive) peer churn. As an example, consider the following scenario: a peer-to-peer MMOG
replicates parts (cells) of the virtual world among several, randomly-selected anonymous
peers to make it resilient against state cheating. Let’s assume that each cell is replicated
in eight nodes. Now, let’s assume that one of these peers is malicious, and that it has at its
disposal a botnet (RAJAB et al., 2006; COOKE; JAHANIAN; MCPHERSON, 2005) of
sufficient size that then disables the remaining seven replicas from sending and receiving
packets. Unless otherwise noted by the architecture’s description, we should assume that
there is now a single copy of that world cell being managed by a malicious peer that is
now free to arbitrarily change the state of the cell.

In the above scenario, the honest game clients (player machines) and any server-side,
trusted supervisors are prevented from synchronizing with the honest cell replicas that
were taken down25. Now, one solution would be for the players or server-side coordinators
to wait for the honest replicas to come back. This is not practical since that can take a long
time and the game must proceed in real-time, and also there is no guarantee that the peers
will ever return to the system, causing the entire cell state to be permanently lost. Another
solution would be to replace the missing replicas with fresh ones, but those would feed
into whatever data is reported by the remaining (malicious) replica and thus the window
for state cheating remains.

We know that preventing a network-level attack such as a DDoS is impossible. Some
service outage is to be expected from it; this is the price of considering peers with lim-
ited bandwidth as components of a distributed MMOG service. However, we do believe
that reducing the likelihood of state loss due to regular churn and network attacks is of
paramount importance for the same reasons that cheating is to be prevented. That is,
a MMOG’s state has value and it should be protected from illegal alterations and loss.
Chapter 4 shows how we address network-level attacks in FreeMMG 2 by employing
secret back-up replicas in each cell.

25This kind of ‘cut-off’ attack against peer-to-peer overlays in general is known as the Sybil at-
tack (DOUCEUR, 2002).
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2.7 Peer-to-peer MMOG support

In 2001, Fitch (FITCH, 2001) stated that ‘cyberspace is simply the logical evolution
of peer to peer systems’, where MMOGs are one possible instantiation of the cyberspace
concept. Since around that time, a body of research work around peer-to-peer support
for MMOGs started to form. Guo and Norden (NORDEN; GUO, 2007) stated that ‘P2P
overlays are a natural fit for MMOGs, owing to their scalability and distributed nature of
processing’.

Schiele et al., in Requirements of peer-to-peer-based massively multiplayer online
gaming (SCHIELE et al., 2007), have identified ten key qualities that must or should be
provided by peer-to-peer MMOG solutions:

• Distribution: Schiele et al. argue that peer-to-peer MMOGs are completely decen-
tralized systems and thus require both distributed data management and distributed
computation, and that this decentralization (Distribution) requirement is what pri-
marily differentiates them from client-server MMOGs. We increment this defini-
tion by considering that hybrid MMOG distribution models, which combine client-
server and peer-to-peer, should also be classified as peer-to-peer MMOG models
that trade-off Distribution for some other requirement;

• Consistency: as we have focused on earlier in Section 2.3, once a distributed sim-
ulation scenario is considered, where the state of the simulation is to be kept by
different LPs communicating asynchronously with each other, the issue of main-
taining the global simulation state consistent arises. In addition, even in centralized
DVEs, there is the issue of maintaining temporal consistency between a central sim-
ulator and the consumers of its authoritative updates, as seen in Section 2.4. Thus,
maintaining consistency in a peer-to-peer MMOG is a challenge and, as noted by
Schiele et al., some compromise in this area is inevitable. The main tools for manag-
ing consistency are controlling network latency and peer bandwidth requirements.
Narrowing the model to support a specific MMOG genre (RPG, FPS, RTS or other)
is a common strategy when designing for consistency. Other effective strategy is
limiting the geographical coverage or the supported network distance between any
two peers;

• Self-Organization: as in any peer-to-peer system, a peer-to-peer MMOG cannot
rely on any live peer to be available in the future, thus game state or processing
tasks must be either replicated in advance or compensated for when the peer that
hosts them becomes suddenly unreachable26. It also cannot cannot rely on a partic-
ular peer’s resources to be continually available, thus either dynamically balancing
load between peers becomes a necessity or the system must be able to dynamically
scale down running tasks (e.g.: graceful degradation of services) to adjust for the
changing capacity;

• Persistency: Schiele et al. note that, in contrast to the typical peer-to-peer file
sharing network, content (game state items, or the value of game state variables)
cannot simply disappear from the system once the last peer that has it leaves the
system. They also note that state evolution and storage should be independent of

26An alternative is to design for super-peers (YANG; GARCIA-MOLINA, 2003). A system based on
super-peers faces the same trust and security issues of other decentralized systems, but each node of such
network is assumed to have the same resilience of a server node in a server-based system.
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the time that player machines stay connected – what is easily achieved by server-
centric models. To satisfy the persistency requirement, peer-to-peer MMOG models
either employ replication or employ servers or super-peers (churn-free peers) for
persistence, resulting in a partially centralized (hybrid) architecture.

• Availability: the game service must be available for players for a maximum amount
of time. For instance, a peer-to-peer MMOG where departing peers routinely take
parts of the virtual world’s state with them on disconnections is a solution with low
availability. Also, solutions which require large amounts of volunteer resources
may run out of peers to provide the service. The latter is an availability issue in
our model (FreeMMG 2) and is one of our main trade-offs (discussed later in this
thesis);

• Interactivity: referred in this text also as responsivity, this is a constraint on the
interaction latency imposed by the architecture: the amount of time between a hu-
man player issuing a command and perceiving its effects on its own machine. Like
with consistency, managing interactivity is mostly about dealing with network is-
sues such as delay, bandwidth and jitter. And, solutions that increase interactivity
(or responsivity) may decrease consistency (ROBERTS; WOLFF, 2004), and vice-
versa.

• Scalability: Though peer-to-peer is touted as being more scalable than client-server,
this cannot be taken for granted (SCHIELE et al., 2007). The idea of peer-to-peer,
in its way to becoming a concrete solution, may result in a system that scales worse
than the client-server alternative. For instance, a fully connected network (full mesh
network) is peer-to-peer but is also not scalable. By definition, a massive gaming
architecture is scalable, since it must support thousands of simultaneous users to be
called a MMOG. However, some architectures may scale better than others, that is,
degrade more gracefully than others as the amount of nodes in the system grows;

• Security: besides the phenomenon of player cheating, which currently dominates
security concerns in virtual worlds, MMOGs can present other security-related
challenges such as offensive language, monetary fraud, identity theft, virtual crime
and others (BARDZELL et al., 2007; KU et al., 2007; ALEMI, 2007; BAROSSO
et al., 2008; WHITE, 2008). Peer-to-peer MMOG architectures are, however, still
not mature enough to be able to afford tackling these problems. Also, by addressing
cheating first, the amount of ‘virtual crime’ that will need investigation later will be
naturally reduced;

• Efficiency: Schiele et al. note that, by departing from the client-server paradigm,
MMOGs must cope with limited CPU, memory and bandwidth resources typical of
player-owned nodes to not only render the game to the player, but to run the simula-
tion tasks that were being performed by the servers. In a server-based MMOG, this
can be solved by adding more servers, an option generally not available in a peer-
to-peer scenario. Thus, the architecture must make efficient use of the available
peer resources;

• Maintainability: some peer-to-peer MMOG models may impose more maintenance
burden than others. Schiele et al. note that cheat-proof solutions that depend on
cheat detection mechanisms may need such mechanisms to be regularly updated
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to counter new cheat techniques that avoid detection. Also, we remind that hybrid
client-server and peer-to-peer architectures present the burden of maintaining the
server-side infrastructure, which is absent from a pure peer-to-peer approach.

Considering the current Internet infrastructure, it is hard to design a peer-to-peer
MMOG model that flawlessly passes all these requirement checks. Aiming for such a
design that should, in addition, work for any conceivable MMOG design or deployment
scenario is infeasible. Thus, each MMOG support model will be based on a particular
approach to meeting MMOG support requirements, with its own particular requirement
trade-offs, supported game designs and specific deployment scenarios envisioned.

In this section, we review other proposed peer-to-peer architectures for MMOG sup-
port, presenting the key features of each. With the following review work, we intend to
show that there is a shortage of peer-to-peer MMOG architectures that adequately ad-
dress both the problems of state cheating and network-level attacks, which are particular
MMOG security requirements that we have raised as top priority due to reasons discussed
in earlier sections. By focusing on protection against state cheating and resilience to
network-level attacks, we can quickly establish the originality of FreeMMG 2 among
the bulk of the literature. In Chapter 6 we perform a more detailed comparison with se-
lected works which measure better against FreeMMG 2 under our own security-centric
approach, with the other requirements being used more often as evaluation criteria.

The sub-sections below separate architectures in a few broad categories: player mesh,
single arbiter, multiple arbiter, and peer-to-peer with fat server-side. These categories
correspond roughly to how we view other works in light of our specific motivation. After
that, we review other works that don’t fall into the previous categories under the other
models sub-section.

2.7.1 Player mesh

Peer-to-peer MMOG support models of the player mesh type focus on establishing
connections directly between player machines and letting players exchange events related
to their avatars with each other directly. Player mesh contrasts with cell-based archi-
tectures, where the virtual world terrain is split into cells, and the overlay, weaved with
playing (interactive) and non-playing (daemon volunteer) peer nodes, is designed mainly
to perform management of avatars and other game objects within each cell.

Player mesh architectures often result in the game state being limited to being a col-
lection of avatars, where each avatar’s state is, generally, to be controlled (arbitrated) by
the respective player machine. Players establish point-to-point socket connections to one
another and exchange events (commands or updates) directly between each other when-
ever their respective avatars are close to each other in the virtual world. Thus, connectivity
in the peer-to-peer overlay changes as avatars move in the virtual world. Cell-based ar-
chitectures, on the other hand, are more stable in this regard.

Yu and Vuong (YU; VUONG, 2005) refer to this type of architecture as unstruc-
tured P2P approaches in contrast to structured network overlays such as DHTs (DAR-
LAGIANNIS; HECKMANN; STEINMETZ, 2006). They have also identified three ma-
jor proposals that fitted into this category: Kawahara et al.’s A Peer to Peer Message
Exchange Scheme (KAWAHARA; AOYAMA; MORIKAWA, 2004), Keller et al.’s Solip-
sis (KELLER; SIMON, 2003, 2002) and Hu et al.’s VAST (Voronoi-based Adaptive Scal-
able Transfer) (HU; LIAO, 2004). Voronoi-based approaches have been further developed
by recent works (GENOVALI; RICCI, 2009; JIANG; CHIOU; HU, 2007; BACKHAUS;
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KRAUSE, 2007) which tackle pending issues such as maintaining global connectivity at
all times.

However, we see two main problems with player mesh approaches that still persist:

• It is likely that each player will hold part of the game state without supervision from
other peers. These works often focus on messaging scalability, interaction timeli-
ness and efficiency, and they revolve around the details on how players can send
events to interested peers directly with low latency and low overlay management
overhead. Though this is not generally discussed, we can only assume that these
outbound events are authoritative updates. In other words, each player will be able
to decide the state of its own avatar. As discussed earlier, this is highly problematic
due to cheating in a competitive MMOG. We haven’t seen a player mesh approach
that attempts to address this;

• Since avatar management is the focus, it is generally unclear who will be responsi-
ble for non-avatar objects such as non-player characters and other dynamic objects
which aren’t part of the static game terrain. We haven’t seen a player mesh approach
that addresses this in a satisfactory way, such as replicating avatar and non-avatar
objects;

Thus, though scalability, bandwidth efficiency, consistency and interactivity are maxi-
mized, these works in their current maturity result in desert-like, static virtual worlds (TY-
CHSEN; HITCHENS, 2006) where avatars can notify each other about their arbitrary,
unsupervised state. Thus, it becomes difficult to visualize such models supporting a
MMORPG with virtual economies and a persisted game state that can evolve in mean-
ingful, complex ways through years of play.

These schemes could be made to support virtual economies if the game objects were
somehow partitioned among players. However, the fact that these overlays are designed
to match proximity of avatars in the virtual world makes matters much worse for security
solutions. That is because peers that would be supervising each other or replicating data
together would be suddenly connecting and disconnecting due to avatar movement.

This would not be a problem if these overlays were supposed to be just communication
substrates for a distributed state replication scheme, which is what structured peer-to-peer
overlays (such as DHTs) provide. In the case of a DHT, the overlay would provide a vir-
tual address where objects can be stored. Each game object such as an NPC would hash
to a key, and that key would route to a peer which would be responsible for that game
object. Security could then be achieved by using DHT replication meachanisms (KTARI
et al., 2007). However, this only moves the security problem to the DHT layer. Secur-
ing the DHTs themselves is an active research topic (SANCHEZ-ARTIGAS; LOPEZ;
SKARMETA, 2008; DANEZIS et al., 2005; SRIVATSA; LIU, 2004).

An unique model that seems to also fit into the ‘player mesh’ category is Ahmed
and Shirmohammadi’s convex hull AoI (AHMED; SHIRMOHAMMADI, 2008). Their
idea is to create a peer-to-peer network dedicated for each cluster of nearby avatars. So,
whenever two packs of avatars approach each other, the underlying connection overlays
merge, and when a pack of avatar splits in two, the overlay likewise splits. To detect
(calculate) a group of avatars, they employ a well-known algorithm that attempts to fit
avatars inside convex hulls, where candidates for vertices of the hull are player avatars at
their current positions. This zoneless (not cell-based) solution does not require any syn-
chronization between the player groups. This contrasts with most zone-based (cell-based)
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models, which typically require cells (zones) to synchronize with each other. However,
the security concerns raised earlier also apply to this model.

Finally, Krause (KRAUSE, 2008) compares mutual notification (avatar AoI-based,
player mesh approach) with ALM (Application Layer Multicast) protocols27 and super-
node protocols28. Though a case is made that player mesh performs better in many aspects
such as responsivity and bandwidth efficiency, the problem of cheating is ignored.

2.7.2 Peer-to-peer with fat server-side

Several peer-to-peer MMOG models are hybrids which depend on some trusted server
machines to perform some tasks, but which also lets clients participate in the simulation
instead of relegating them to the role of consumers of simulation results computed by
the servers. The more tasks are delegated from servers to clients, the more decentral-
ized the model is, and smaller are the CPU and communication costs at the server-side
infrastructure.

We consider fat server-side models to be any hybrid MMOG proposals which do not
perform enough decentralization. Though these generally have a smaller server-side foot-
print if compared with a pure client-server approach, the reduction is not sufficient. We
don’t compare these models with FreeMMG 2 later on Chapter 6 because the compari-
son wouldn’t be fair: it is much easier to solve several problems in MMOG support if
significant computing and communication resources are available at reliable machines.
For instance, we have previously extended FreeMMG to require receiving all player com-
mands, and this allowed us to achieve immunity against state cheats (CECIN; BARBOSA;
GEYER, 2005). Also, this goes against one of our core motivations in using peer-to-peer
for MMOG support, which is to lower the barrier of entry to MMOG hosting.

In the list below we review a selection of such models: the ones which delegate some
network or CPU cost to client machines. We point out what causes them to be framed
as ‘fat server’ solutions, in spite of their partial CPU and communication decentralization
efforts:

• ACORN (NORDEN; GUO, 2007) is a model that was designed to run on top of a
DHT such as Pastry or Chord. It mitigates DoS (network) attacks and state cheat-
ing (called coordinator compromise which they regard as being ‘akin to the server
cheating (in a client-server architecture)’) by moving the coordinator functionality
around the DHT frequently and in unpredictable ways. Also, though they use a
DHT, they recognize that DHTs must have their routing secured in some way to be
used. We see two main problems with ACORN. First, all player nodes have to send
all of their commands, in real time, to a CAP (Coordinator Access Point) which is
a server-side process (similar to the PP-CA architecture (PELLEGRINO; DOVRO-
LIS, 2003)), resulting in a relatively significant communications cost for the game
operator. And second, coordinators are still unsupervised: any node, upon detecting
to be a coordinator, can modify the managed state to anything it pleases. However,
they do provide a cheat detection and a cheat undo mechanism (based on check-
pointing) for this kind of cheat. These mechanisms work by executing all player
commands at the trusted CAP and verifying the outcome;

27Application Layer Multicast (ALM) is any technique that compensates for the absence of IP multicast
support. Basically, it means emulating IP multicast through a logical connection overlay, such as in a DHT.

28Super-node protocol here means the same as single arbiter, which is an approach that we’ll look into
later. The use of super-node here is unrelated with the capacity or reliability of the nodes in question.
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• RACS (Referee Anti-Cheat Scheme) (WEBB et al., 2007) is another extension of
the PP-CA architecture by Pellegrino et al. (PELLEGRINO; DOVROLIS, 2003). It
provides protection to a wide array of cheats such as information exposure cheats,
suppress-correct cheat, fixed delay cheat, inconsistency cheat (a player sending two
commands with same timestamp and different content to different peers), timestamp
cheat and others. The authors note that it also integrates easily with other anti-
cheat schemes such as bot detectors. It provides two modes of operation, and both
require receiving and executing all player commands at the server-side. This results
in the CPU cost at the servers being the same as in a client-server setting since the
server must replay the whole virtual world simulation. It also results in a somewhat
significant client-server communication cost, much like in ACORN (NORDEN;
GUO, 2007) and other extensions of the PP-CA model to massive scale;

• Ito et al. (ITO et al., 2006) leave the whole virtual world simulation to be performed
by servers, resulting in the same CPU cost at the server-side as in a client-server
solution. However, they use ALM to significantly reduce server communication.
Instead of having the servers communicate directly with each client, servers com-
municate with reduced number of player-provided proxy nodes which, in turn, com-
municate with player machines. Thus, server world update messages travel multi-
ple hops through a multicast tree (the overlay) in order to reach the players, thus
increasing server-to-client communication latency to save server bandwidth. To
keep latency acceptable and avoid impact in responsivity, the maximum height of
the multicast trees are always three: servers (level 1, roots), proxy helpers (level 2,
intermediaries) and player machines (level 3, leaves). The system elects player ma-
chines to act as additional proxies as more bandwidth is required. Vik et al. (VIK;
GRIWODZ; HALVORSEN, 2007, 2006; VIK, 2005) propose a similar system, but
they approach ALM tree construction with Steiner Minimal Tree (SMT) or Mini-
mum Spanning Tree (MST) algorithms instead of using a predefined tree structure;

• Rooney et al. (ROONEY; BAUER; DEYDIER, 2004) propose a federated archi-
tecture. They found out that, while both CPU and network (communication) cost
at a client-server MMOG grow quadratically as the number of players increases,
the predominant cost in the client-server architecture is the processing of game
state (ROONEY; BAUER; DEYDIER, 2004; BAUER et al., 2004). Thus, they fo-
cus on reducing CPU cost by offloading it to client machines, but the full network
cost is left to the game operator. They propose the use of multicast reflector pro-
cesses at the server-side which are responsible for receiving unicast messages from
players and multicasting these to all players interested in it. To achieve this, mul-
ticast reflectors may need to exchange packets, which is done using an unreliable
protocol to reduce overhead. This is acceptable since they envision a scenario where
multicast reflectors are allocated in several different administrative domains (thus
forming the federation in question), all rented by the central game operator and all
having sufficient bandwidth (dedicated hosting), thus making packet loss between
reflectors unlikely. The idea is that the actual providers of hosting for the multi-
cast reflectors will have economy-of-scale gains by selling such service to other
MMOG operators or other clients of application hosting and thus achieving cost
savings. Their model is currently not applicable to a scenario where the multicast
reflectors have to be provided by home users with ‘Internet leaf’, consumer-grade
broadband links;
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• DaCAP (LIU; LO, 2008) is resistant to state cheating and achieves a significant
level of decentralization. DaCAP divides the game world into cells, and cells can
run in either peer-to-peer or client-server mode. The peer-to-peer mode is imple-
mented by a full mesh (all-to-all) network between all peers, which are players
interested (as in IM) in the cell. All clients (peers) in a cell supervise each other,
and if any inconsistency is found, the server rejects integrating the update informed
by the peer-to-peer cell, such as increasing an avatar’s amount of virtual currency at
the server-side character account. Additionally, random peers (non-interested) are
allocated to each cell to prevent undetectable collusion groups that could perform
state cheats. When the number of player peers interested in a cell exceeds some
threshold, this ‘hot-spot’ cell is converted to client-server mode, being served by a
H&R (Hotspot & Raid29) server, which is a trusted machine that synchronizes with
players using some client-server game protocol as seen in Section 2.4. Since it is
to be expected that, as the game world’s population grows, the number of hotsposts
will grow accordingly, this could result in a significant communication cost for the
game provider, but also significantly lower than that of a pure client-server solu-
tion (LIU; LO, 2008). Finally, the DaCAP paper is short on details such as how to
allow peers to join and leave a full replica simulation group dynamically, what is
the exact protocol adopted for intra-cell synchronization in a P2P-mode cell, and
how to allow for inter-cell avatar interaction.

Besides these works, there are others that retain the full processing and networking
costs at the server-side, and thus do not match at all our motivation of cost reduction and
lowering the barrier of entry to MMOG hosting. Below we list some of these:

• Peer-to-peer at the server-side: Rieche et al.’s Peer-to-Peer-based Infrastructure
Support for Massively Multiplayer Online Games (RIECHE et al., 2007) employs
a structured P2P overlay (a DHT) at the server-side. That is, the member nodes of
the DHT are trusted server nodes that are all maintained by a central game operator.
Their gain is in building a server infrastructure out of low-cost nodes instead of
expensive machines, but otherwise the server infrastructure operator pays for the
full CPU and networking costs;

• Load-balancing: Vleeschauwer et al. (VLEESCHAUWER et al., 2005) and Boss-
che et al. (VAN DEN BOSSCHE et al., 2006) divide the game world into microcells
which are dynamically passed around server machines to regulate load. The idea is
that once a large number of avatars moves to an area, the microcells of such area will
have to be handled by several server machines, thus solving the hot-spot problem
of virtual worlds. The 2Layer-Cell Method (JANG; YOO, 2007) also solves hot-
spots by dividing the game world dynamically in a quad-tree fashion and moving
the resulting smaller world pieces to different server machines as needed;

• MMOG development facilitation: Balan et al. (BALAN et al., 2005) see a prob-
lem with peer-to-peer approaches to MMOG support because they have to be ‘inti-
mately designed with the P2P network in mind’, and thus they developed a scalable

29As the name implies, DaCAP’s H&R server also serves raids. ‘Raid’ is another name for a private
instance. These are insulated game spaces that are dynamically added to the game world when demanded
by closed groups of players. Examples are World of Warcraft’s raids and the PvP instances in Guild Wars.
The difference between raid cells (or instanced spaces) and contiguous cells is that raid cells do not require
inter-cell synchronization, thus being much simpler to support.
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distributed system called Matrix, which isolates the MMOG developer from the
intricacies of map partitioning, consistency and reliability mechanisms. Glinka et
al. (GLINKA et al., 2008) and Gorlatch et al. (GORLATCH et al., 2008) propose
the Real Time Framework (RTF), a middleware which cooperates with the game
application layer on determining what goes into the ‘main loop’ of the game pro-
cess. This contrasts with communication middleware, which leave the game loop
and related tasks entirely to the application (maximum flexibility and more work
to the developer), and full game engines, which take over the main loop and only
call back the application when specific events occur (minimum flexibility and less
work to the developer30). Finally, Project Darkstar is a ‘research effort attempting
to build a server-side infrastructure that will exploit the multithreaded, multicore
chips being produced and scaled over a large group of machines while presenting
the illusion that the game programmer is developing in a single-threaded, single-
machine environment’ (WALDO, 2008);

• World state replication: In a mirrored-server model (CRONIN et al., 2004a), each
MMOG server manages a full replica (copy) of the virtual world, and thus the
servers mirror each other’s full contents. The Enhanced Mirrored Server (EMS)
architecture (WEBB; SOH; LAU, 2007) enhances Cronin et al.’s mirrored server
(MS) architecture (CRONIN et al., 2004a) by optimizing client-to-mirror assign-
ment (player latency reduction) and by reducing mirror processing (CPU) and band-
width requirements, which are issues in MS and also in RACS (WEBB et al.,
2007). The main issue we see in EMS is that its enhanced mirrors maintain replica-
tion through a Bucket Synchronization protocol (GAUTIER; DIOT, 1998a) which
does not guarantee deterministic execution under arbitrary communication laten-
cies (GAUTIER; DIOT, 1998a; CRONIN et al., 2004b)31. Finally, Ferreti et al. (FER-
RETTI; ROCCETTI; PALAZZI, 2007; FERRETTI et al., 2005) attempt to mostly
minimize inter-mirror communication and maximize player command responsivity
and fairness by employing Active Queue Management (AQM) techniques;

• World state partitioning (or ghost-based replication): Müller et al. (MÜLLER;
GÖSSLING; GORLATCH, 2006; MULLER et al., 2004) distribute authoritative
control of game objects among several proxy servers in such a way that each game
object is owned by a single server. However, a ghost or cached copy of each object
is kept at each server that is not the owner of that object. Thus, players can connect
to the nearest proxy server, to minimize interaction latency, and any server is still
able to inform the client about a fairly current state of any game object, regard-
less whether the object in question is owned by that proxy server or not. There is,
of course, a synchronization protocol between the proxies that synchronizes object
master copies and their ghosts. Assiotis and Tzanov (ASSIOTIS; TZANOV, 2006)
propose a similar model which is capable of transferring ownership of objects be-
tween servers, and also allows servers to own regions (region locks) in addition
to owning objects (object locks), which increases the granularity and reduces the
object management overhead;

30Provided that the game developer doesn’t want to achieve something unexpected by the developers of
the engine he is using, which ties back into the inflexibility aspect of engines.

31It should be noted that the TSS protocol of MS also doesn’t guarantee consistency between replicas at
all times (CECIN et al., 2006). We will discuss this in detail when we present our tweak to TSS, called
BSS, in Chaper 3.
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In short, there are other key motivations adopted by peer-to-peer MMOG researchers
beyond aggressive offloading of CPU and communication cost to outside of the game
service provider. Between the pure client-server MMOGs such as World of Warcraft and
fully decentralized peer-to-peer MMOGs, there is a large gap being explored by many
hybrid-architecture works. Naturally, each work is able to offload different kinds of tasks
to player or volunteer machines, and in different proportions, and some do not delegate
any tasks to clients.

2.7.3 Single arbiter

We have classified as single arbiter all peer-to-peer MMOG models which are both
decentralized and that can support MMOGs with virtual economies, but that are also sig-
nificantly vulnerable to state cheating due to letting single client-side machines arbitrate
over state. As we have discussed during our review on cheating, if a single anonymous
client machine is left with a piece of the virtual world to arbitrate over, that machine is
able to break the game’s virtual economy.

We have split single arbiter models further into four groups. First, there are single
zone owner models that let a single client machine be the sole coordinator32 of a virtual
world cell33. Second, there are single object owner models that let a single client machine
to be the sole coordinator of one game object or set of objects. Third, there are single
master coordinator models that employ multiple coordinators but one of them is fully
authoritative over the others. And finally, there is SimMud (KNUTSSON et al., 2004)
and a derived work which we classify as single arbiter for different reasons.

2.7.3.1 Single zone owner models

Load-balancing for Peer-to-peer Networked Virtual Environment (LEE; SUN, 2006)
divides the game world into a grid of rectangular subspaces (cells) and assigns each to a
subserver, which is a client-side machine. Each subserver knows in real-time the contents
of each one of its eight neighbor subspaces since it actively synchronizes with each one of
its eight neighbor subservers. Hot-spots are handled by allowing a subserver to optionally
delegate its functions to area servers (also client-side machines), but otherwise the cho-
sen subserver remains the final arbiter of that cell’s state. The authors acknowledge that
cheating occurs if the subserver is malicious and leave cheat-proofing for future work.

The Time Prisoners works (EL RHALIBI; MERABTI, 2005; MERABTI; EL RHAL-
IBI, 2004) are among several works that form a tree of client nodes for each cell. The
tree is constructed from player nodes that are interested in such cells. They mention
shortly that the multiple members of such trees could perform checks against each other
to prevent cheating. However, the way in which such trees are built is vulnerable to state
cheating. This is because cells with no interested players have no coordinators and the
first player to become interested in a cell becomes its sole coordinator until another player
becomes interested. That window of time in which a player is the sole coordinator of a cell
is enough for state cheating and virtual world economy-breaking to happen. Moreover,
the Time Prisoners papers do not specify how the multiple coordinators would perform
the checks against each other.

32Coordinators are also referred to as owners, managers, servers, masters, controllers, arbiters, etc.
33Cells, which are sections of contiguous virtual world land, are also referred to as zones, regions and

other terms. Cell have many advantages, such as providing a way to partition game objects while exploiting
intra-cell locality, a way to divide CPU and communication load, a way to shape an otherwise unstructured
peer-to-peer overlay, an indirect way for peers to find each other, etc.
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Using DHTs to MMOG event delivery or state partitioning seems to cause single-
arbiter designs to emerge among peer-to-peer MMOG architectures. We suspect that
this is due to the nature of DHTs: a resource (key) maps to exactly one ‘nearest’ node
which can then conveniently become the holder of the master copy of that resource. The
following works on this section all use DHTs to perform one or more core functions.

Iimura et al. (IIMURA; HAZEYAMA; KADOBAYASHI, 2004) does not prevent state
cheating due to malicious zone owners, but rathers chooses to detect malicious zone own-
ers and then punish them later. It does not describe how arbitrary modifications to game
state mandated by malicious zone owners are to be undone or compensated for.

MOPAR (YU; VUONG, 2005) divides the game world into hexagonal cells and then
employs a DHT that maps each cell to a home node – a hash over the cell ID is used as
key. The home node, however, does not hold state: it is only a kind of directory service
which can be used to locate the master node of a cell, which is its sole coordinator and the
definitive arbiter for the cell’s current state. The state cheating vulnerability is the same
as the one in the Time Prisoners works (EL RHALIBI; MERABTI, 2005; MERABTI;
EL RHALIBI, 2004): the first player to become interested in a cell is assigned the role of
master node. Finally, MOPAR does not have a mechanism to guarantee long-term state
persistence of cell data, since once the last interested player in a cell leaves it, the state is
lost since the home node does not hold cell state.

Jiang et al. (JIANG; SAFAEI; BOUSTEAD, 2007) also build a multicast tree out of
each game world cell. They argue that the typical ‘peer’ node of peer-to-peer networks,
with the typical low upstream bandwidth, is not able to service many interested players
in a cell. Thus, they make it so that the coordinator of a cell only has to send (large) state
update data to a few player nodes, which then help to disseminate it further to other play-
ers. Their focus is on communication scalability and they only employ one coordinator
(called a locale server) per cell, resulting again in a state cheating vulnerability.

2.7.3.2 Single object owner models

In Colyseus (BHARAMBE; PANG; SESHAN, 2006), ‘all updates to an object are
serialized though exactly one primary copy in the system’. It does not seem that objects are
to be grouped based on an arbitrary cell division of the virtual world. Instead, they support
range queries in their DHT which allows the game developer to retrieve arbitrary groups
of objects. They also perform replication, but such replication is made in a master-slave
way where exactly one master node can decide the state and the slave replicas must accept
what the primary owner announces as the object’s state. As before, this is vulnerable to
state cheating.

In Hydra (CHAN et al., 2007), the focus is on facilitating development by leveraging
client-server programming patterns. This is achieved by an architecture composed of Hy-
dra client and an Hydra server node APIs which hide the details of peer-to-peer operation
from the game developer. The game world is divided into slices, and each world slice is
hosted by a primary slice (now the term is used to denote a node, not a piece data) and also
by backup slices. The state of the backup slices is obtained from the primary slice, thus
a malicious primary slice can at least ‘boot’ some part of the game state to be anything it
wants.

Mediator (FAN; TAYLOR; TRINDER, 2007) combines three different styles of peer
connectivity. First, it uses structured P2P overlay (DHT) for bootstrapping, a task where
problems from DHT multihop routing are not an issue. Second, it uses Application Layer
Multicast (ALM) to achieve efficient zoning structure maintenance. And third, it connects
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players directly for dissemination of time-critical events. Mediator supports load balanc-
ing (BEZERRA; GEYER, 2009) and avoids hot-spots by dynamic splitting of zones as
needed, as in other words, and it assigns a group of super-peers (also called mediators) to
handle each zone. In Mediator, zone coordination tasks can be given to several different
super-peers, instead of relying on one node to perform all of them. However, whichever
node wins the Zone Mediator role becomes responsible for selecting which nodes will
perform the other roles, so this scheme does not warrant any added protection to single-
coordinator abuse. They also mention that single client machines can volunteer to host
individual non-avatar game objects such as NPCs, which is why we classify Mediator
in the single object owner sub-category of models that are vulnerable to state cheating.
However, it probably presents a similar state cheat vulnerability at its zoning layer, as per
the above discussion.

2.7.3.3 Single master coordinator models

Yamamoto et al. (YAMAMOTO et al., 2005) hands each cell to one coordinator and,
when one coordinator is unable to handle the load, it can split its cell into sub-cells which
are then handled given to subordinate coordinators, resulting in a tree overlay for each
cell where the coordinator of the parent cell is the root. The increased delay of having to
multicast through a tree of coordinators is addressed through a technique that expedites
the process. They employ back-up coordinators in each cell. The back-up nodes help
with event dissemination and they also serve as a replica should the master coordinator
fail. However, it is unclear whether the back-up nodes can prevent the master coordinator
from performing state cheating, as the paper doesn’t mention what happens if master and
back-up coordinators for the same cell diverge.

Proximity (MALIK, 2005) is a scalable P2P architecture for latency-sensitive MMOGs.
Each player keeps the state of its own avatar, and updates other nodes regarding the state
of the avatar. Non-avatar objects are hosted in game world zones, where each zone’s state
(collection of objects) is dictated by a zone coordinator which is elected out of player
nodes. Each zone coordinator maintains a chain of back-up replicas. This is vulnera-
ble to state cheating since the back-ups are just silent mirrors of the master coordinator.
Should the master coordinator be compromised, the state of non-avatar objects can be set
to anything it desires.

Peer Clustering (CHEN; MUNTZ, 2006) is an hybrid architecture that combines sev-
eral techniques. It is based on a cell division of the game world terrain as usual, and it
solves hot-spot cells by simulating these at the server-side. Each region is properly repli-
cated in a region manager and in several backup region managers. The paper states that
region manager ‘maintains official control of a given region’, thus we assume that the
region manager has ultimate authority in determining the contents of a region. Addition-
ally, the region manager is the only replica that receives commands from the players. The
backup region managers instead receive the player commands from the region manager.
Thus, even if a majority check is added to the model, the region manager is able provide
its own bogus commands to the backup region managers to force the region to hold any
state that it wants.

2.7.3.4 SimMud and related work

Knutsson et al.’s SimMud (KNUTSSON et al., 2004) employs a hybrid of client-server
and DHTs, separating game state into persistent and transient. Persistent state is to be
managed securely at trusted servers, while transient state is the state in each region (cell)
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of the game world. The transient state of each region is further classified in either player
state and object state. Player state is the state of each avatar, and players are authoritative
on their avatar’s transient state – we believe this doesn’t include the wealth of an avatar
since this is probably part of what they consider to be persistent state. Object state are all
non-avatar objects of the game world which are shared between avatars. Object state is
also maintained by a single coordinator of the region where the object resides. The single
region coordinator ‘not only coordinates all shared objects in the region, but also serves
as the root of the multicast tree’ (KNUTSSON et al., 2004), that is, object updates are
disseminated to interested players through a tree which works around bandwidth limita-
tions on the coordinator. Additionally, objects are not only grouped by region but also by
object type. Object types are to be defined by application, and each region can have one
coordinator for each object type defined, which further helps with load balancing.

The SimMud model employs replication over the single coordinator of each region.
However, that replication is a primary-backup mechanism that is built to ‘tolerate fail-
stop failures of the network and nodes’ (KNUTSSON et al., 2004). The paper suggests
that the system continues to work fine even if only one coordinator replica remains, and
that replication carries on in the background. This means that new replica data is obtained
from the replica that was the only one remaining earlier, which allows any last replica of
a region to perform state cheating. The paper argues that failures are sufficiently uncom-
mon, but in the face of highly motivated attackers with DoS capability and the high payoff
of state cheating, this cannot be assumed.

However, we must recall now that SimMud’s persistent state is kept securely at the
server-side. However, we do not believe that this avoids state cheating. Any persistent
state will necessarily be derived from transformations in the transient state. For instance,
if a coordinator is able to fabricate arbitrary items in the transient state, and it is able
to resolve the action of an avatar picking up such items in a cell, then we must assume
that the coordinator is able to send messages to the servers that add arbitrary amounts
of in-game wealth to the persisted account of the player in question. Thus, the problem
of state cheating is only obscured and not solved. However, this separation was probably
done in SimMud to achieve fault tolerance, since they acknowledge that their scheme does
not guarantee persistence of cell-hosted state (transient state) in all circumstances. The
separation was probably not intended as an anti-cheating measure. Thus, we conclude
that SimMud is vulnerable to state cheating, which is potentially too damaging to virtual
economies.

Wierzbicki and Kaszuba (WIERZBICKI; KASZUBA, 2007) is a significant extension
of Knutsson et al.’s SimMud. It employs a single coordinator in each cell which must
be trusted by all players. It also allows two players to interact directly, in which case
a trusted arbiter is elected to oversee the transaction. Each player keeps its own state,
but it must be able to prove the legality of its current state. This is achieved by having
players accumulate a chain (an history) of signed modifications and testimonials from
zone coordinators and arbiters. The model is much more complex than the ones reviewed
so far. It may be secure against state cheating, but accumulating an ever-growing history
of proof of the legality of avatar-held state seems infeasible in the long run. Their results
show an interaction response time which in the order of one second and that seems to be
mostly CPU-bound.
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2.7.4 Multiple arbiter

The single arbiter models discussed earlier either keep cell or object state in one peer,
or they replicate them in such a way that fault tolerance against non-intentional failure is
achieved. However, in a threat model that considers adversarial behavior, the state has to
be replicated in such a way that multiple replicas of state are authoritative. In other words,
if a subset of a replication group tries to perform state cheating, the honest replicas have
sufficient authority to either reliably eject the cheaters from the system or at least prevent
illegal modification to occur by forcing both the honest and the cheated versions of the
state to be dropped.

We found nine peer-to-peer MMOG models in the literature that fit the ‘multiple ar-
biter’ criteria and thus are resistant to state cheating. However, they do not consider
network-level attacks. In all these remaining works, either state cheating can be per-
formed against the model with the help of network-level attacks, or part of the game state
can be forced to be lost with the help of network-level attacks.

Initially, one might argue that network-level attacks are sufficiently uncommon. There
are studies that report worldwide monthly incidences of around 100 to 1,000 attacks per
month (GILES; MARCHETTE; PRIEBE, 2004) to around 10,000 attacks per month or
more (MOORE et al., 2006)34. Also, as most peer-to-peer systems, peer-to-peer MMOGs
tolerate attacks in the sense that failed peers are eventually replaced and cells eventually
resume processing and disseminating events to players. Thus, we can assume that peer-
to-peer networks cannot be neutralized by any dedicated attacker or group of attackers
performing network attacks.

However, if we assume that guaranteeing the correctness of the state of each single
cell in a MMOG is crucial to maintaining the virtual economy as a whole in a healthy
state, then these models do not actually tolerate network attacks. The system as a whole
is made out of thousands of peers, but each cell or object is perhaps replicated among ten,
twenty or maybe even thirty live replicas, at most. If the IP address of all these replicas
is known, and if they have low networking capacity, a DoS attack against a few replicas
becomes much more feasible. So, even if maybe only one replica of a cell is malicious,
that replica can become the only copy should a dedicated attacker decide to remove the
other few replicas through network attacks. So, ultimately, it doesn’t matter which cell
is compromised. If any cell is compromised, and cells are able to hold and generate
any amount of in-game virtual wealth, then the economy can be dominated by cheating
players.

Actually, most works that replicate cell state do not describe what happens should all
but one or a few replicas of a cell remain. That is, they consider that mass failure in a cell
is unlikely. That is true of non-intentional failure. The problem of a single compromised
cell wreaking havoc in the global game economy is not considered in any other work.
The only exception is our eariler model, FreeMMG (CECIN, 2005; CECIN et al., 2004),
which explicitly prevented state cheating from occuring. However, FreeMMG paid a
high price to achieve this. The main problem with FreeMMG is that cells attacked as
described above would simply lose their state. That can be as damaging to the game
economy as state cheating, not to mention that loss can break the global consistency of
the game. For example, state loss in a cell may remove an essential unique avatar or

34These works vary on several details such as the time when the measurements were made and what
constitutes an ‘attack’ in each work’s count of attacks. We have only checked these counts superficially as
we were interested in an approximate order of magnitude for world-wide DoS and DDoS attacks only –
thousands vs. millions.



83

item from the global game. Also, FreeMMG featured multiple negative game QoS issues
such as low responsivity (this was why we limited it to MMORTS support), no inter-
cell interaction support besides simple object transfers, and it also presented excessive
server-side involvement in the game due to object transfers being brokered by the server.
We attempt to address all these issues in FreeMMG 2 while also trying not to raise new
issues.

Besides FreeMMG, the other eight works in our multiple arbiter category are reviewed
below. We only review them briefly here since most of them will be compared in greater
detail with FreeMMG 2 in Chapter 6.

2.7.4.1 Non-architectures: NEO and SEA protocols

Among other works that suggested that employing replicas with equal standing in
determining the correct value of a shared piece of state within a small group of peers,
the NEO protocol (GAUTHIERDICKEY et al., 2004b) seems to be one of the first to-
gether with FreeMMG. NEO also proposed the use of randomly chosen witness nodes,
the same as FreeMMG’s randomly chosen replica peers, to prevent players from ma-
nipulating group composition by simply moving their avatars around the virtual world.
NEO proposed a novel voting algorithm which prevented several time cheats and also the
collusion cheat (state cheat) from happening. In NEO, the majority always determines
which events are input for each round (step) of the replicated simulation. The state of
each replica evolves deterministically since the set of events of each round is always the
same at all honest replicas. The SEA protocol (CORMAN et al., 2006) is an enhancement
over NEO which fixes problems identified in NEO. Both are not actual MMOG support
architectures. The authors of NEO mentioned an architecture in the works that would use
NEO as the synchronization algorithm for each world cell.

2.7.4.2 Models that are vulnerable to state cheating if network attacks are considered

In these works the vulnerability to state cheating in the presence of network attacks can
be more definitely established. This is not always the case since, as we noted earlier, most
works do not provide enough details about their replica failure detection and recovery
process to assess this.

RAP (ENDO; YANG; ZHANG, 2006) assigns exactly three peers to replicate the state
of each cell. A consensus of two out of the three nodes is required to make any decisions
that affect cell state, which is used to filter cheating attempts. State cheating in RAP re-
quires only a substantial amount of nodes to serve as volunteer replicas. Once two such
colluding cell replica maintainers land in the same cell by chance, the game’s economy is
compromised with blessing from the architecture. That is, the nodes that would be per-
forming network attacks against peers can instead simply volunteer as overlay maintainers
or players and wait.

Izaiku et al. (IZAIKU et al., 2006) propose an architecture whose cell synchronization
protocol is very similar to the one in FreeMMG 2. Their idea is that each cell’s state is
maintained by multiple replicating nodes. One of these replica nodes is the responsible
node, while the others are the monitor nodes. However, all nodes evolve the cell state
deterministically, and the role of responsible node continually changes hands among all
replicas to minimize the effects of minor cheating. The responsible node is the only one
that sends updates to players interested in the cell, while both the responsible node and
the monitor nodes receive commands from players. Since players deliver their commands
to all replicas and the deterministic simulation rules are static and previously known, the
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majority of honest replicas is able to have an agreeing state in spite of interference from
a minority of malicious replicas. Izaiku et al. does not consider network-level attacks, so
we can assume that the mutual checking between replicas would be vulnerable to state
cheating once there is only one replica left. Izaiku et al. also does not prevent state
cheating from happening, but instead relies on detection. This has the added issue of
requiring undoing of illegal state modifications or at least compensation. That problem is
not addressed.

Hampel et al. (HAMPEL; BOPP; HINN, 2006) employs a Region Controller (RC)
plus a number Backup Controller (BC) peers for each region. At least the communication
between RCs and BCs is performed through a DHT. The RC sends state update packets
to players interested in the region, like discussed in Section 2.4. Additionally, all BCs of
a region send hashes calculated over the state. So, the players can confirm that all con-
trollers agree on the exact state of the cell by comparing the hashes they receive between
each other. Since only the RC sends large update packets to players, their potentially low
download bandwidths are not saturated. Also, as with Izaiku et al. (IZAIKU et al., 2006)
and several other multiple arbiter works, both the RC and the BCs receive all player com-
mands directly from each player interested in the cell. Hampel et al. do not consider the
effect of network attacks, that is, of mass-failure of replicas.

2.7.4.3 Models that do not address network attacks and that peform excessive messaging

In addition to not dealing with network-level attacks, the three remaining multiple ar-
biter models require all or a majority of replicas of a cell to send a stream of large state
update packets to all players currently interested in the cell. These are Kabus and Buch-
mann’s Cheat-Resistant P2P Online Gaming System (KABUS; BUCHMANN, 2007),
Webb et al.’s Secure Referee Selection algorithms (WEBB; SOH; TRAHAN, 2008) and
Endo et al. (ENDO; KAWAHARA; TAKAHASHI, 2005).

The Cheat-Resistant P2P Online Gaming System (KABUS; BUCHMANN, 2007) em-
ploys a rather unique approach to maintaining the replicas of a region synchronized. Each
replica keeper of a region, referred to as a Region Controller (RC), receives a command
from a player, computes the next state, and sends back an update. Thus, players receive
one update from each RC, and they can detect faulty RCs. Since updates are digitally
signed, a player is thus able to prove that it has received a couple faulty or malicious up-
dates out of a large set of otherwise agreeing updates. Thus, synchronization among RCs
becomes unnecessary. However, since update messages can be large and the architecture
intends to draw RCs out of users that are also currently playing the game, this may end
up depleting the upload bandwidth of player machines. That would not be a problem if
the deployment scenario considered that, for some reason, the upload bandwidth of the
average player node is in the order of Mbps instead of a few hundred Kbps.

Webb et al.’s Secure Referee Selection (SRS) algorithms (WEBB; SOH; TRAHAN,
2008) draws inspiration both from RACS (WEBB et al., 2007) and Kabus and Buch-
mann’s Cheat-Resistant P2P Online Gaming System (KABUS; BUCHMANN, 2007) and
its multiple RCs technique. Actually, the SRS model carries the ‘referee’ terminology
from RACS (which in turn comes from PP-CA (PELLEGRINO; DOVROLIS, 2003)) but
the referees of SRS are converted into RCs as in Kabus and Buchmann’s model. Thus it
is easier to think of SRS as a way to securely select region controllers, not referees, since
they don’t work as referees like in RACS, EMS (WEBB; SOH; LAU, 2007) or PP-CA.

SRS is composed of two parts. First, it mimics Kabus and Buchmann’s RCs by making
all RCs send full updates to all players interested in a region. Second, it attempts to
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select a reduced number of RCs that are less likely to collude (for instance, to perform
state cheating) instead of blindingly choosing large amounts of RCs randomly hoping to
minimize the likelihood of collusion groups forming. They attempt to achieve this secure
selection by searching for RC candidates that are sufficiently far apart from each other
on the Internet. This does not prevent collusion if an attacker group controls machines in
several parts of the Internet, which would be the case if the system is being Sybil-attacked
by a botnet for example. The reduced RC count also aggravates the problem of network-
level attacks, which can either be used to facilitate collusion or at least force the state of a
region to be dropped.

Endo et al. (ENDO; KAWAHARA; TAKAHASHI, 2005) propose an adaptive system
where the simulation of regions is initially performed at the server-side and, whenever the
server detects that it exceeds some processing or communication load threshold, it dynam-
ically offloads game world regions to groups of peers. In this ‘peer-to-peer mode’, each
region is replicated among several peers which are referred to as site servers. Players send
their commands to all site servers of a region simultaneously. Site servers order the incom-
ing player events based on the median arrival time among all site servers, and the event is
not timestamped (and therefore executed) before that median value is known. Execution
of events must be deterministic as usual to maintain the replicas synchronized. Each user
receives (N −1)/2 full update messages and (N +1)/2 update hashes for each command
it broadcasts to site servers, where N is the (odd) amount of site servers managing the
region. The players only accept an update once a majority of agreeing locally-computed
update hashes (from the full updates received) or site server update hashes match. Though
the amount of full update messages sent by each site server (RC) is reduced to only half of
the site servers (RCs), we consider this cost to be still rather significant. One of the main
purposes of these multiple full updates is to cover for congestion: some updates may be
delayed for several seconds due to temporary congestion but at least one may get through
to the player.

Endo et al. assert that probability that a large number of colluding malicious replicas
will end up being randomly assigned to the same cell is small, which is an assertion that
our own work also depends on. However, they do not address the scenario where replicas
with public IP addresses can be selectively taken down by a highly-motivated attacker
that has enough resources to perform network-level attacks.

2.7.5 Other models

In this section we review two approaches that didn’t quite fit in the above categories.
The first is the PSMMO model which, instead of building a peer-to-peer MMOG archi-
tecture with virtual economy support, lays a virtual economy on top of the existing online
populations of thousands of unrelated servers of non-massive MOGs. The second is the
Asynchronous Synchronization (AS) protocol and related work which warrants dedicated
analysis.

2.7.5.1 The PSMMO model

The PSMMO model (CHAMBERS; FENG; FENG, 2006) leverages the Public Server
deployment model of small-scale client-server MOGs, where anyone is able to start and
stop their own server independently from others. The PSMMO model inserts long-term
game state persistence by adding support to shared ‘loot’ (items) that players can acquire
at one game server and later carry to any other server. For instance, in a 3D FPS game
such as Counter-Strike, players could accumulate more powerful or exclusive weapons
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as they play the game for years in hundreds of different servers. To prevent servers from
simply fabricating arbitrary amounts of loot and thus ruin the game economy, all pieces
of loot have to be cryptographically signed by a central loot authority which is the only
party that is able to mint loot. The loot server trades loot for authenticated player minutes
with each anonymous game server. Simply put, a server receives loot proportional to
the raw amount of time that human players spend at that server. To prevent servers from
fabricating minutes or from using bots to generate minutes, those have to be authenticated
by CAPTCHA tests that, using creativity, can be blended into the game environment to
avoid game disruption. Finally, game servers that distribute loot unfairly to its players
will naturally drive away real human players and cease receiving loot, which forces them
to be sufficiently fair in loot distribution.

2.7.5.2 Asynchronous Synchronization protocol and related work

Baughman and Levine (BAUGHMAN; LEVINE, 2001) introduced cheat-proof pro-
tocols for real-time peer-to-peer games: the Lockstep protocol, the Asynchronous Syn-
chronization (AS) protocol (an improvement over Lockstep) and the Cell-Based Hidden
Positions protocol (CBHP)35 for cell-based MMOG architectures. In a follow-on work,
Baughman et al. (BAUGHMAN; LIBERATORE; LEVINE, 2007) also propose the Sub-
Cell Hidden Positions (SCHP) protocol, which fixes problems in CBHP. Lockstep and
AS guarantee both cheat-proofing and consistency between player simulators (LPs) which
may be potentially affecting each other’s outcome, that is, which are sharing or can poten-
tially come to soon share an AoI over the virtual world due to increasing proximity. CBHP
and SCHP in turn avoid information exposure by allowing players to conceal their exact
position from each other and still detect whether there is AoI proximity or not. SCHP
does so by obfuscating player’s relative location into crypto hashes which can be sent to
nearby players and compared. Matches on such obfuscated hashes indicate that players
are approaching AoI reach and should start running the AS protocol.

Though in all these protocols the players have to connect to each other and send au-
thoritative updates to each other, they achieve more in terms of cheat-proofing than the
other ‘player mesh’ models. AS with SCHP detects time cheats (e.g., vulnerabilities in
dead-reckoning) and information exposure cheats.

However, Baughman et al.’s work doesn’t address state cheating explicitly. This is
probably because their work is geared towards action games where a virtual economy
is secondary. That is, in AS and the games envisioned for it, the generation and flow
of virtual wealth could be trivial to be handled by a central third party. Or maybe the
generation of virtual wealth could be limited to one-time cryptographic minting such as
in the PSMMO scheme.

Baughman et al.(BAUGHMAN; LEVINE, 2001) mentions a central observer service.
It is described as a cheat detection service that would monitor players in real-time to check
whether the secret information stored authoritatively at each avatar is legal. However, it
is unclear whether such service would guarantee the ultimate legal origins of secret and
public information which is stored only at each avatar. So, it is possible that avatars
could fabricate virtual items of arbitrary types and in arbitrary amounts. This is crucial if
play would be centered around a virtual economy. Baughman et al.’s work seems geared
towards a scenario where this problem could be solved adequately by add-on work due to

35The CBHP protocol is described by Baughman and Levine (BAUGHMAN; LEVINE, 2001) but it is
not named in the original paper. The CBHP name is given by the authors retroactively in Baughman et
al. (BAUGHMAN; LIBERATORE; LEVINE, 2007) which is an update on the original work.
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it not being its focus. Instead, the focus of AS and related protocols is clearly in cheat-
proofing against time and information exposure cheats, and in guaranteeing consistency
and timely resolution of conflicts.

Ghost (JOHN; LEVINE, 2005) is a peer-to-peer MMOG architecture that also extends
AS to massive scale. In Ghost, if two players are in Sphere of Influece (SoI) range, one
may unilaterally opt out from interacting with the other if the communication delay be-
tween them is too large. Alternatively, Ghost also allows players to be grouped into teams,
where any player P either plays with an entire team T or plays with no member of team T
at all. The description of Ghost doesn’t contain any considerations towards securing the
state that is dictated by each avatar and thus fits into our ‘player mesh’ classification.

2.8 Closing remarks

In this chapter, we have reviewed some diverse background information. In Sec-
tion 2.3 we have discussed how distributed simulation techniques can maintain consis-
tency among several simulator processes (LPs) which typically have equal status in a
simulation hierarchy. In Section 2.4, we have shown that online games employ a simpler
model where one simulator, running as the server, has no such synchronization issues.
Thus, client-server protocol developers were are able to ignore replication issues and ac-
tually experiment on several advanced techniques to improve responsivity, consistency,
etc. In Section 2.5 we discussed cheating in online games, attempting to show that for
MMOGs, state cheating dominates other forms of cheating in a scale of potential damage
to long-term game play. In Section 2.6 we introduced the issue of dealing with network-
level attacks in peer-to-peer MMOG architectures.

Finally, in Section 2.7, we performed short reviews of any and all existing peer-to-
peer MMOG architectures that we could find. To characterize a niche for our FreeMMG
2 model, presented in the upcoming chapters, we have split these works into a few broad
categories which helps us make our case. The first category was of player mesh models,
which either do not support MMOGs with relevant game economies or do so with security
holes. The second category was of fat server-side models which either leave too much
CPU-bound tasks or communication-intensive tasks to the server-side, sometimes both.
The third category was of single arbiter models, where state cheating is trivial. The fourth
category was of multiple arbiter models, which is where FreeMMG 2 fits in. We have
shown that existing multiple arbiter models do not consider the effects of network-level
attacks.

In our FreeMMG works, the whole design revolves around providing strong resistance
against illegal modifications to the game state. By illegal modification we mean any
transformation or update to the game state (e.g., a cell’s state) that does not abide to the
programmed rules of the game. By strong resistance we mean guaranteeing that it is
extremely unlikely that state cheating can be performed. In FreeMMG and FreeMMG
2, we have elected one way to guarantee such strong resistance together with significant
decentralization:

• Replicate state (e.g., cell state) among a significant number of volunteer nodes;

• Choose part or all replicas (of each state partition) randomly out of a sizable pool of
volunteers. That makes it unlikely that a majority of colluders for a state partition
is ever assembled out of the architectures’ own overlay construction algorithm;
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• Any observer of the replicated state must employ a consensus algorithm to deter-
mine if the cell’s state can be determined. However, if too few of the randomly-
chosen replicas remain, that algorithm should not trust the resulting consensus state,
if any. Thus, employing any consensus criteria such as Byzantine, Crusader, or ar-
bitrary quorums is not enough: the nature (legal origins) of each replica is also
important. This is because, in our view, one compromised cell defeats the purpose
of thousands of non-compromised cells in the global game.

In other words, we’d rather have the state of a cell be dropped, replaced by an old
snapshot (CECIN, 2005), or reconstructed from coarse-grained light-weight server-side
data (CHEN; MUNTZ, 2006) than allow a window for state cheating. We believe that
MMOGs have, at their heart, the motivation to compete in a long-term dispute with other
players in an economical meta-game that feeds from other subordinate game activities
such as dueling, hunting monsters, completing quests and performing social interactions.
That is our vision of what MMOGs are and we acknowledge that other peer-to-peer
MMOG designers may and do disagree.

Some may argue that our state integrity focus and our level of concern with network-
level attacks are premature or exaggerated. One can certainly make the case that peer-to-
peer MMOGs designers currently have more pressing issues to attend to, such as guar-
anteeing scalability, responsivity and efficient use of limited peer resources. However, if
and when peer-to-peer MMOGs (as in actual implemented and deployed massive games)
become popular, we believe that state cheating vulnerabilities will kill them regardless
of how scalable, responsive and efficient those architectures may be. No player will put
effort in evolving a shared state according to harsh rules, ‘grinding’ for character power
and status, when one can game the system to instantly apply arbitrary modifications to
the shared state. Thus, we have decided to focus on securing the game economy from the
start, even if that results in blatant QoS issues and other problems which is the case with
the original FreeMMG model (CECIN, 2005). The stance that protection against arbi-
trary state manipulation should be uncompromisable during peer-to-peer MMOG model
design is a small but original contribution of the FreeMMG works, as far as we can tell.
Even if we fail to reach real-world deployment, we hope that we have at least enriched
the discussion around peer-to-peer MMOG support.

There may be other ways to achieve both significant reduction of server-side infras-
tructure and protection against state cheating besides replication of state in multiple ar-
biter nodes (replicas with equal status). A few works attempt to leverage cryptography to
guarantee the integrity of distributed computation and state. Endo et al. (ENDO; KAWA-
HARA; TAKAHASHI, 2007, 2006) investigates the use of homomorphic encryption,
which could let peers act as proxy servers for some state while not being able to make
chosen (meaningful) modifications to that state. However, in this thesis we have not eval-
uated works that use cryptography as the main source of cheat mitigation.
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3 INTRA-CELL REPLICA SYNCHRONIZATION

As seen in the previous chapter, there are several peer-to-peer MMOG architectures
that are both cell-based and replication-based, be the replication in a single arbiter setup
(one master and multiple ghost copies) or multiple arbiter one (consensus based on some
quorum of voting replicas). In these cases, each cell in the MMOG architecture has
multiple replicas, and these replicas have to be constantly kept in synchrony. For example,
in FreeMMG 2, players will connect to one of the replicas of a cell to play the game. If
player commands are being issued individually to different replicas of the cell, the cell
replicas will have to somehow synchronize with each other to compute a unified result
out of executing the events submitted simultaneously by all players. That synchronization
has to be performed in a timely fashion, as players are interacting in a real-time virtual
environment and thus are expecting to see the results of their actions and that of their
peers sooner rather than later.

That general issue of coordinating the multiple replicas of a cell is what we call intra-
cell synchronization. In this chapter we describe the intra-cell synchronization approach,
called Baseline State Synchronization (BSS), that will be used in the FreeMMG 2 peer-
to-peer MMOG architecture, which will be presented in the next chapter.

The chapter is organized as follows. We begin the chapter by introducing the prob-
lem of intra-cell synchronization for cell-based, replication-based MMOG architectures
in Section 3.1. In that section we also explain that BSS is based on the Trailing State Syn-
chronization (TSS) mechanism. In Section 3.2 we explain the motivation behind TSS,
which is that of maintaining the multiple servers of a Mirrored Server (MS) system syn-
chronized. In Section 3.3 we explain how the TSS algorithm works. In Section 3.4 we
explain how BSS works, by showing the difference between BSS and TSS. Finally, In
Section 3.5 we show what the FreeMMG 2 cell looks like and how BSS fits as a synchro-
nization solution for it, and Section 3.6 concludes.

3.1 Introduction

A game world instance can be entirely simulated by one machine, but the task of
running a single instance can also be distributed among several machines. Typically,
game simulation is distributed for one of the following reasons:

• Scalability: Simulating the game instance becomes a more costly task, especially
in terms of CPU cost, as more players and more game objects and complexity are
added. To increase the amount of supported game complexity beyond what a sin-
gle machine can handle it becomes necessary to distribute the load across several
machines. Some perform a static distribution of tasks to machines, while others



90

dynamically balance the load among server machines by moving tasks away from
overloaded nodes (CHEN et al., 2005);

• Latency reduction: If a game world is being simulated by several server machines
distributed across the globe, players can connect to the nearest machine to have a re-
duced communication latency from and to the game world (BESKOW et al., 2008).
This works only if the connectivity between server machines is of high quality. In
this way, the cooperating servers are able to communicate more effectively across
significant geographical distances than the players. In other words, distant players
experience lower average latencies by taking the ‘server highway’ than if they had
to communicate with a distant party such as the other player directly or a single
server;

• Preventing state loss and state cheats: If a persistent-state game world is to be sim-
ulated by consumer-grade, untrustworthy nodes that can either cheat, fail or leave
the system at any time, then distributing the game world simulation among several
machines is essential to prevent the whole game state from being lost and to pre-
vent players from being able to alter the game state illegally (CECIN; BARBOSA;
GEYER, 2003).

The first two reasons are specific to server-centric (or ‘fat server-side’) architectures.
As discussed in Chapter 2, scalability of a client-server MMOG design is achieved by
partitioning: each server machine runs part of the game world and is responsible for
part of the game objects. The partitioning can be either completely visible to players,
such as in several commercial MMOGs that are instanced, or transparent to players as
in some commercial MMOGs such as EVE Online (BRANDT, 2005). Latency reduc-
tion, on the other hand, is achieved by replicating the state of the virtual world among
trustworthy and well-provisioned servers which can be geographically distant from each
other but that experience no congestion, no bandwidth limitation problems and near min-
imum latency when synchronizing with each other. In addition, the dedicated network
that the mirrored servers have at their disposal can be more easily arranged to support IP
multicast. IP multicast reduces the latency even further and also the cost of one server
broadcasting the updates or events that are supposed to be executed (mirrored) at all the
other servers (CRONIN et al., 2004a).

For peer-to-peer games, the state of a game instance can be replicated among un-
trustworthy and fault-prone nodes to make the simulation tolerant to a broad range of
intentional and non-intentional faults. As an example, the commercial RTS game Age
of Empires is a serverless (peer-to-peer) game where the game state is fully replicated
at each player machine (BETTNER; TERRANO, 2001). The player replicas in Age of
Empires synchronize event execution conservatively using a protocol similar in spirit, but
more advanced than the stop-and-wait protocol outlined in Section 2.3.6. Age of Empires
does that to achieve a serverless support for RTS games, but they mention that the cheat-
proofing is welcome side-effect of replicating the game state at each player (BETTNER;
TERRANO, 2001).

The replication approach alone doesn’t scale to massively-populated virtual worlds.
Even if thousands of players could somehow synchronize their replicas in real-time, we
would be left with the problem of storing and simulating a massive virtual world at each
consumer-grade node. Replication can however be combined with partitioning to build a
peer-to-peer MMOG architecture that is feasible. Thus, all replication-based approaches
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for peer-to-peer MMOGs reviewed in Chapter 2 also employ a partitioning scheme where
the game world is divided into cells (also called regions, zones, and others) which are,
in principle, separate game simulators. Each partition (cell) then replicates its contents
among several peers. After that, some architectures may optionally tie together the cells
in some way to try and assemble a unified game play instance with a large and contiguous
virtual world space. That latter issue (inter-cell synchronization) will be investigated in
Chapter 4 and in Chapter 6.

The original FreeMMG model, which was among the first works to outline the cell-
based replication approach for peer-to-peer MMOGs, was basically an extension of the
peer-to-peer instance replication idea of Age of Empires to massive scale. The cells in
FreeMMG were replicated among active player nodes, that is, players that owned at least
one unit (object) in that cell. So, a cell in FreeMMG was the same as one Age of Empires
game instance. And, similarly to Age of Empires, the replicas (which were also players of
the game) inside the same FreeMMG cell synchronized with each other conservatively to
avoid out-of-order event execution and thus inconsistencies among them. This resulted in
a high-latency interaction which was suited to MMORTS games but that wasn’t adequate
to support avatar-based or action games.

In this thesis, we propose the FreeMMG 2 architecture which, in a sense, is an evo-
lution of FreeMMG. What we carry over from the predecessor model is the basic idea of
joining replication and partitioning to achieve fault tolerance, security and scalability in a
peer-to-peer MMOG. However, in FreeMMG 2 we wanted to support avatar-based games
such as MMORPGs and, if possible, avatar-based action games such as a MMOFPS. To
achieve this, the intra-cell conservative synchronization algorithm had to be replaced with
an algorithm that would both guarantee consistency among replicas and allow low-latency
player interaction. Even if that algorithm didn’t itself minimize player latency, we wanted
it to be compatible with client-server latency compensation techniques such as the ones
presented in Section 2.4.

The Baseline State Synchronization (BSS), which we present in this chapter, fills that
gap for FreeMMG 2. BSS is a small modification of the Trailing State Synchronization
(TSS) algorithm (CRONIN et al., 2004a, 2002). The main difference between BSS and
TSS lies not in the algorithm but on the different purposes of each. TSS is a replica syn-
chronization algorithm created to synchronize Mirror Servers; it was created to achieve
player latency reduction in a server-centric game architecture. BSS on the other hand was
created to support replication among client machines. Thus, BSS focuses on fault toler-
ance: resisting intentional faults (from cheaters, griefers and other adversaries) as well as
non-intentional faults that can range from unplanned disconnections to fatal crashes. To
achieve that, only minor changes had to be made to TSS, resulting in the BSS algorithm.
The new name is mostly to avoid confusion; we published BSS first without giving it a
name (CECIN et al., 2006).

In the next section, we will explain the TSS algorithm. Next, we describe the tweaked
TSS, which we called BSS. Next, we show that BSS execution by nodes that aren’t server-
grade is feasible in terms of CPU cost (CECIN et al., 2006). We finish the chapter showing
how BSS fits as the synchronization solution in a FreeMMG 2 cell. By addressing the
problem of intra-cell synchronization in this chapter, which is the central and by far the
most critical component of FreeMMG 2, we will be able to concentrate on assembling the
overall architecture and in describing its many other parts in Chapter 4.
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3.2 The problem of keeping mirrored game servers synchronized

The motivation behind the creation of the Trailing State Synchronization (TSS) algo-
rithm was that ‘None of the existing distributed game or military simulation synchroniza-
tion algorithms introduced above are entirely suited to a game such as Quake1 that has
frequent updates, has a need for strong consistency and is very latency sensitive.’ (CRONIN
et al., 2004a). To put that in context, the ‘mentioned above’ synchronization algorithms
evaluated in the TSS paper were conservative protocols such as Fixed Time Bucket Syn-
chronization (STEINMAN, 1995), the optimistic Time Warp algorithm (or family of algo-
rithms (LOBATO; ULSON; SANTANA, 2004)), optimistic ‘Breathing’ algorithms (STEIN-
MAN, 1993) and the optimistic Bucket Synchronization algorithm used in the MiMaze
(Multicast Internet Maze) prototype (GAUTIER; DIOT, 1998b).

TSS was developed as a means to maintain servers synchronized in a Mirrored Server
(MS) architecture (see Figure 3.1). With a MS architecture, one can lower the overall
interaction latency and thus increase the visual consistency experienced by the players, as
well as balance the communication load across server machines. That is achieved by dis-
tributing the mirror servers across a significant geographical area (e.g., country, continent
or world-wide), interconnecting the servers with a well-provisioned and multicast-enabled
backbone and having players connect to the nearest server.

Since the goal of the MS distribution scheme is to achieve latency reduction and in-
creased consistency first and foremost, it makes no sense to partition the simulation load
across servers. Instead, each server maintains a full copy (replica) of the whole game
instance that is kept up-to-date. The focus of the synchronization strategy is in maintain-
ing the differences among mirrors to a minimum and in always correcting any differences
(inconsistencies) in a timely manner. That rules out a purely conservative approach to
synchronization.

Thus, player commands have to be executed optimistically at each Mirror Server. Each
mirror forwards the commands they receive from players to the other mirrors, resulting
that all mirrors will eventually have the same input and thus it becomes possible to main-
tain mirrored states. However, if each mirror just executes each command immediately
upon receipt, the different ordering and the different time of execution of each command
can make the copies diverge.

3.3 Trailing State Synchronization (TSS)

To synchronize the mirrors, TSS works as follows. All mirrors share a network-
synchronized clock, whose current value we will refer to as t. Each mirror maintains,
in RAM, N states, which are copies of the state of the whole game world, where N is a
fixed number. The several states stored in each mirror will represent the state of the world
at different simulation times and thus they are not supposed to be identical to each other.
Each state runs with a different and fixed event execution delay, called the synchronization
delay of that state. A state with a synchronization delay of d only executes an incoming
event with timestamp te when, locally, te ≤ t− d. As discussed in Chapter 2, the events,
which are typically avatar commands such as ‘fire’ or ‘move’ issued by players, can either
be timestamped when they are received by the mirror server (minimizing cheat opportu-
nities) or when they are generated at the player node (maximizing fairness) – it doesn’t

1Quake (ID SOFTWARE, 2008) was the first online First Person Shooter (FPS) for the PC platform
with true 3D rendering. It was released in 1996.



93

Figure 3.1: Mirrored Server architecture compared with pure Client-Server and Peer-to-
Peer architectures. Copied and adapted from Cronin et al. (CRONIN et al., 2004a).

really matter for now.
Thus, each state is running a delta d of simulation time ‘in the past’ and thus ‘waits

for d to elapse’ since an event ‘occurred’ to execute that event. For example, a state that
has d = 50ms, at t = 1000ms will have only executed events with timestamps earlier
than 950ms. Thus, at t = 1000ms, if the mirror receives a ‘late’ command (relative to t)
timestamped with te = 970ms, it won’t execute that event – not until t ≥ 1020ms, when
the simulation time of the state reaches 970ms (remember that it is running d = 50ms
behind the ‘current’ time t).

The reasoning behind this is that the chances of a state executing the incoming events
out of order, out of their intended round or time bucket, or out of their precise timestamp
(or any criteria for maintaining consistency) is minimized when d increases. If commu-
nication latency between mirrors can be bounded to a maximum, then by assigning d to
that maximum we can obtain states at each mirror that only execute events ‘correctly’.
However, with a large enough d the game becomes unresponsive to players, since their
commands (such as avatar weapon-fire and movement) have to wait for d to elapse at each
mirror before being executed.

So, instead of simulating just one copy of the world at each mirror and trying to come
up with a good value for d, TSS maintains N states at each mirror, each state with its
own d. For the following discussion, let i be a positive integer in the interval [0, N − 1]
which is used to refer to one of the states of a mirror. Thus, let Si denote the i-th state
of a mirror. Let di denote the synchronization delay of Si. Let S0 be the leading state,
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and states S1 through SN−1 be the trailing states. Finally, db > da if and only if b > a.
That is, the states are sorted in an ascending order of synchronization delay. The leading
state (S0) will always have the smallest synchronization delay, while the last trailing state
(SN−1) will have the largest synchronization delay.

Figure 3.2: Example scenario that illustrates TSS terminology. Copied from Cronin et
al. (CRONIN et al., 2004a).

When an event is received at a mirror, it is placed in an event list. The event will only
be removed when it is integrated into all states in a definitive manner, that is, at the correct
simulation time and order at all states. Figure 3.2, taken from a TSS paper (CRONIN
et al., 2004a), shows an example TSS node running two states: S0 and S1. In the figure,
the current simulation time is t = 250ms. The S0 state (leading state) has a delay of
d0 = 50ms, thus its state is the result of executing all known events generated before
t = 200ms, and any known events with timestamps greater than that have to wait on the
event list before they can be executed at S0. S1 is running with a delay of d1 = 100ms
behind t, thus it has only executed events up to t = 150ms. The leading state’s time is
said to be the render time since mirrors will send update packets which are constructed
from data in the leading state. Thus, the leading state is what is rendered at player screens.

3.3.1 Detecting inconsistencies between local states

Besides being placed in the event list, it is possible that an incoming event is executed
immediately by one or more states if it is already late for execution at that state. That is,
a state executes immediately an incoming event if that event falls in the ‘Executed Com-
mands’ region of that state as illustrated in Figure 3.2. However, in that case, it is possible
that the late event has introduced inconsistencies. That is to say, late event executions may
cause the local states of a mirror to diverge significantly. If an inconsistency is detected in
a state Si, then that state can restore consistency by performing a rollback to its following
(trailing) state Si+1 and re-executing the updated event list. But, before delving into the
TSS rollback mechanism, we will dissect how inconsistencies can be detected in TSS in
this section.

Detecting a potential inconsistency may be as simple as checking whether an incoming
command is late or not. However, the original TSS algorithm compares states to check for
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Figure 3.3: TSS inconsistency detection example (1 of 4): the example mirror server starts
with all its states consistent.

divergences. We now provide a sample example execution of TSS in a mirror which keeps
N = 2 states to illustrate the alternatives to inconsistency detection. Figure 3.3 shows the
mirror at an arbitrary simulation time t = 500ms where both S0 and S1 are in a consistent
state (e.g., the initial game state) but running with their separate synchronization delays
of d0 = 50ms and d1 = 100ms, thus the simulation time of S0, which we call t0 is at
t0 = t− d0 = 450ms. Similarly, t1 = 400ms.

t = 1000ms

Event list:
- “White shot Black at t=930ms”
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d
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0
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1

Incoming event
“White shot Black

At t=930ms”

Store in event list.

Execute late at S
0

Figure 3.4: TSS inconsistency detection example (2 of 4): incoming event that is late at
the leading state but early at the trailing state.

Figure 3.4 shows the mirror’s state at simulation time t = 1000ms, that is, approx-
imately 500ms of wall-clock time should also have elapsed. At that point in time, the
mirror receives an event with a timestamp of 930ms which informs that White has shot a
weapon at the Black avatar. Since t0 = 950ms the event is already late for execution at
S0, so it is executed immediately. In our example game rules, this results in a dead Black
avatar. And, since t1 = 900ms, S1 cannot execute the event yet. And, since the event
may still be relevant to the algorithm, it is placed in the event list of the mirror.

Figure 3.4 could be detected as potentially inconsistent by a simple implementation
of the general TSS technique. And, actually, that is what we did in our extension of
TSS. In Figure 3.4, the mere fact that an event is being executed late at S0 indicates
that S0 may have potentially diverged from timestamp order execution of events since, in



96

principle, late events are a source of inconsistency across a distributed simulation. The
only difference here is that, in TSS, all the ‘distributed’ states are local, that is, running at
the same node (e.g., a mirror server).

t = 1010ms

Event list:
- “White shot Black at t=930ms”
- “Black dodges at t=800ms”

d
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at t=800ms”

Execute late at S
0
:

No effect (Black is dead, can't move).

Execute late at S
1
:

Black dodges (moves).

Store in event list.

Figure 3.5: TSS inconsistency detection example (3 of 4): detectable inconsistency.

Figure 3.5 shows the system just 10ms later, at t = 1010ms. At that time, a (very)
late event has arrived, which tells that the Black avatar’s player has issued a ‘dodge’
command prior to the White avatar issuing its shot command. As discussed before, the
‘800ms’ timestamp of the event can either be the time the event is generated at the player
machine or the time in which it is received by the player’s mirror server. Let’s assume
that, in any case, the event will be late at both states when received by the mirror server
of our example. Since the event is late for both states, they both execute it immediately.
At S0, this results in the dead Black avatar doing nothing (remaining dead), while at S1

this results in the still live Black avatar ‘dodging’. For simplicity, let’s assume that the
‘dodge’ command grants permanent immunity from shots to any live avatar upon which
it is executed.

Figure 3.5 shows a second situation where a potential inconsistency may have been
detected. Considering only the object affected by the event, at S0 the Black avatar’s state
isn’t modified by the event, while at S1 the Black avatar’s state is modified to ‘dodged’.
With a bit of insight into application event and state semantics, we could conclude that an
avatar being able to ‘dodge’ or not is very likely to lead to significant divergences between
states. This criteria is more refined that simply considering that any late event execution
is a source of inconsistencies that can lead the states to diverge.

Finally, in Figure 3.6 the system reaches t = 1030ms, causing S1 to reach the point
where it can finally execute the event where White shoots at Black. This time, an event
is executed on time at a state; thus, that would not, in principle, cause an inconsistency.
However, with that execution it is possible to detect that S0 is inconsistent. At S1, exe-
cuting the shot event on time results in White missing the shot while, at S0, the execution
had resulted in the Black avatar being shot. Again, this is detectable if we compare the
effects of the event over game objects.

This example shows that there are several alternatives to determining whether a state
should be corrected or not. Simpler ones need less or no insight into game data structures
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Figure 3.6: TSS inconsistency detection example (4 of 4): another detectable inconsistent
situation.

and event semantics, while more sophisticated (and efficient) ones may need cooperation
between a generic implementation of TSS and application code. In the next section we
show how TSS corrects a state through a rollback procedure, regardless of the criteria
chosen by the TSS or game implementor for determining when a state must be corrected
through a rollback.

3.3.2 Fixing local state inconsistencies with rollbacks

As discussed in the previous section, a state may need correction. To correct a state,
the TSS algorithm performs rollbacks, like other optimistic algorithms such as Time
Warp. However, Time Warp rolls back to snapshots that are taken dynamically from
‘the’ local simulation state, while TSS keeps several ‘live snapshots’, which are versions
of the simulation, running at a node and uses them as source of rollbacks instead.

Rolling back a state Si only makes sense if its immediately trailing state, Si+1 is
considered consistent. Also, the last trailing state can never be corrected by a rollback
since it has no state trailing its execution. To correct Si, the state of Si+1 is first copied over
Si (Si = Si+1). After that operation, Si will be representing the same simulation time of
Si+1, which is not intended. That is, the simulation time of Si is now ti = ti+1 = t−di+1.
To complete the correction procedure, ti must be brought back to ti = t−di. To do so, all
events in the event list whose timestamps are in the [t−di+1, t−di] range are re-executed,
in order, at Si. The end result of this procedure is that Si remains representing the same
point in simulation time as before, but now it has re-evaluated its state to more accurately
represent the intended order and timing of event execution. This guarantees that all states
in a TSS simulation are able to sustain a consistent simulation in the long run, at least as
long as the last optimistic trailing state is never inconsistent.

3.3.3 Cascading rollbacks and the CPU cost of rollbacking

An incoming event may invalidate several states. As a result, the rollbacks can ‘cas-
cade’. Suppose that N = 4 and both S0 and S1 are detected as inconsistent after an event
arrives and is executed (so far) at S0, S1 and S2, while S3 has still not reached the time
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when that specific event ‘happened’. The inconsistency is detected because, while S0 and
S1 are consistent, S1 and S2 aren’t (S0 and S2 aren’t either, of course). Thus, the contents
of S2 are copied over S1, and S1 re-executes all events in the event list whose timestamps
are in the interval [t − d2, t − d1]. After that, S0, the leading state, has to be corrected
as well. The rollback procedure then ‘cascades’: the contents of S1, now corrected, are
copied to S0, followed by S0 re-executing all events in the [t− d1, t− d0] interval. Thus,
each event is re-executed only once in a rollback, though more state copies are required.

In an ideal world, these rollback tasks should happen instantly. In that ideal setting,
each mirror would always have, in its leading state, a real-time version of the game world
which would be adequate for feeding updates of a real-time game such as Quake to players
for rendering. In any case, the delay of the leading state, d0, must be set to a small
amount such as 50ms, since d0 is the minimum delay that will be applied to any event,
considering the time it is issued (its timestamp). Thus, d0 can be set, for instance, to a
minimum network delay expected for inter-mirror communication, or some other small
value close to it. The trailing states are then used solely as ‘live snapshots’ which can be
used to restore consistency to the leading state, should the leading state diverge from the
correct simulation outcome due to premature event execution.

But, in the real world, the rollback tasks can take too much CPU time to execute
and stall other tasks such as regular command execution and communication. Thus, the
TSS algorithm was evaluated by its authors in terms of amount of time taken to execute
rollbacks, among other parameters. It was shown that, when implemented over the Quake
game, TSS took around 1.4ms of real time to execute a rollback (CRONIN et al., 2004a).
The results indicate that the technique is feasible, considering that game code designed
and optimized specifically for TSS would perform much better.

The TSS paper also discusses optimizations such as avoiding rollbacks for some types
of events which can be integrated into the state by performing some custom correction
that is cheaper than the rollback and re-execution mechanism. We don’t want these opti-
mizations in FreeMMG 2 as we don’t want the middleware to have insight on the meaning
of events and their timestamps, nor do we want to call back application code to figure it
out. However, if optimizing rollbacks turns out to be a necessity in practice then these can
be developed in future works.

3.4 Baseline State Synchronization (BSS)

The Baseline State Synchronization (BSS) algorithm which we now describe is our
adaptation of TSS to work in an environment where the simulation is to be performed by
a group of potentially unreliable nodes which also may have no well-provisioned network
to connect them. We will use ‘peers’ to refer to these nodes. As with the mirrored servers
of the MS architecture, the peers that will now run the simulation may not be actually
playing the game. The TSS paper also considered a scenario where the nodes running
TSS are players. Likewise, BSS does not dictate whether the peers are playing the game
or serving as proxies, or ‘mirrors’, so that other players can play.

The only definitive difference between BSS and TSS is that BSS maintains a conser-
vative state on each peer. A minimal instance of the BSS algorithm should have at least
two states: the conservative state and an optimistic state. The optimistic state is the lead-
ing state and, in principle, the application should set it to have a synchronization delay
of zero, though that is not mandatory. The conservative state is the only and last trailing
state. It orders events conservatively, meaning that it is never inconsistent since, in princi-
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ple, the ordering and timing of events for the mirrored simulation in question are the only
aspects that affect its consistency. By performing conservative ordering, no late events
are ever received at the conservative state and thus the peer will never end up diverging
permanently from the intended simulation outcomes. Thus, the conservative state runs
the trivial stop-and-wait protocol described in Section 2.3.6, and the optimistic state just
executes events as TSS does.

In TSS, all states order events optimistically. The guarantee that a mirror server never
diverges permanently from the other mirrors comes from assigning a sufficiently high
synchronization delay to the last trailing state. Since the mirror servers and the network
that connects them are well-provisioned, estimating a sufficiently high synchronization
delay such as 900ms may be enough in practice. However, in our new ‘peer’ scenario of
BSS, we can not assume anything about the delay between the simulators. Thus, we en-
force replication guarantee by conservatively synchronizing the last trailing state of each
peer. Thus, the peers can be said to maintain replicas of each other, like in games such
as Age of Empires (BETTNER; TERRANO, 2001) and like the peers in the FreeMMG
architecture (CECIN, 2005).

In our original publication of our BSS idea (CECIN et al., 2006), which was an adapta-
tion of TSS to serve peer-to-peer ‘instanced games’ similar to Guild Wars (ARENANET,
2006), we have also fixed other parameters and introduced other modifications. For in-
stance, we set the synchronization delay of zero for the optimistic state, and we divided
the simulation in rounds (steps) of fixed duration. But these are peripheral changes. BSS
is thus essentially TSS with a stop-and-wait ordering at the last trailing state. For per-
formance or other reasons, additional optimistic states may be introduced beyond the
conservative and the optimistic states, or the leading state may have a synchronization
delay, etc. Our earlier work (CECIN et al., 2006) shows that even using BSS to synchro-
nize peers, with only the two default states, with a lossy and high-latency network, with a
maximized roll-back gap size (between zero and the maximum possible synchronization
delay), and executing rollbacks almost constantly (with no additional insight on applica-
tion code), resulted in an average CPU load that is manageable. Thus, for this thesis and
for FreeMMG 2, we assume that any BSS variant will not be prohibitive in terms of CPU,
especially if games are written from scratch to fit well with it.

3.5 FreeMMG 2: a MMOG architecture based on BSS/TSS

The BSS algorithm is a central component of FreeMMG 2, and the goal of this chap-
ter is to show where BSS fits into our MMOG architecture. Thus, we must provide an
overview of FreeMMG 2. The architecture will be explained in detail in the next chapter.

FreeMMG 2 is an hybrid peer-to-peer and client-server architecture for MMOG sup-
port. Following the architecture classification of Chapter 2, it would fit in the multiple
arbiter category. The focus of FreeMMG 2 is in achieving a significant reduction of
server infrastructure while, at the same time, achieving a high degree of resistance against
state cheats and state loss even in the presence of high peer churn, network-level attacks
and large groups of colluding malicious peers.

FreeMMG 2 is a cell-based architecture which represents the space or terrain of a vir-
tual world as a collection of contiguous cells, as illustrated in Figure 3.7. In the figure, the
white pins represent any kind of in-game object. They may be player-controlled avatars,
characters controlled by the simulator (or ‘NPCs’) or other game objects such as treasure
and items, terrain features, buildings, etc. In FreeMMG 2, objects can interact across cell
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Figure 3.7: Section of a cell-based virtual world in FreeMMG 2.

borders. That is, an object in one cell can affect and be affected by objects owned by other
cells. The quality (visual consistency, responsiveness, fairness, etc.) of inter-cell interac-
tions is, unfortunately, lower than the quality of intra-cell interactions, that is, interactions
between objects inside the same cell. However, to the game programmer, object inter-
action is the same whether objects are on the same cell or not; there is no need to write
dedicated code to handle inter-cell interactions at the application (game) layer2. Finally,
objects can be owned by one cell and be located at the terrain partition of an adjacent cell.
Thus, each cell also has to hold in RAM any relevant state from its adjacent cells which
can affect its own objects. The latter includes all the static terrain data of adjacent cells
or, if RAM optimization is necessary, only the relevant portion (the nearest portion) of it.

To achieve decentralization and saving on server processing and communication costs,
all cells in FreeMMG 2 are to be maintained (simulated) by client machines. As discussed
in Chapter 2, to do that in a secure manner each piece of delegated game state needs to
be replicated among several such untrustworthy client machines. In FreeMMG 2, each
cell is a replication group and each replication group maintains all game objects or state
variables that are currently owned by that cell. Thus, the bulk of game state is maintained
by the cell replication groups3.

Each client machine that acts as an active replica with arbitration power at a cell is
called a cell node. A single client machine cannot maintain more than one cell replica
since that would defeat the purpose of having multiple arbiters, though a single client
machine may act as cell node at several different cells at once.

In FreeMMG 2, the cell nodes need not be players of the game. More precisely, the
cell node process does not encompass game-playing capabilities. This does not rule out a
scenario where one player (client) machine is running two processes: one player process,
through which the player interacts with the game, and one or more cell node processes.
However, if sufficient non-interactive volunteer nodes can be gathered to serve as cell

2The only exception is if the game programmer wants to apply special compensation for the lowered
quality of inter-cell interactions. In that case, the game programmer can easily check the owner cell of each
object at each cell simulator.

3Some state can be stored at the server. This is discussed in Chapter 4.
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nodes and provide the game to actual players, the player nodes will have less processing
and communication tasks to perform and thus the quality of the game will improve. If the
network runs out of dedicated volunteer nodes then any idle resources on player machines
can be used to provide the missing cell nodes. However, we assume the best case scenario
where dedicated, non-playing volunteer clients are available to serve as cell nodes.

  

...

Back-up
cell nodes

Primary
cell nodes

Interactive host (active player)

Non-interactive host (simulation volunteer)

Players
at the cell

A cell

Stable unicast connection

Ad-hoc unicast communication (any primary
cell node may be the source or target)

Figure 3.8: An isolated FreeMMG 2 cell simulation network.

Thus, a FreeMMG 2 cell resembles the Mirrored Server (MS) architecture which uses
TSS to synchronize mirror servers. In FreeMMG 2, we instead use our adaptation of TSS
to synchronize cell nodes. Like in MS, in FreeMMG 2 the cell nodes serve the game
to player nodes. Figure 3.8 shows a network of cell nodes and player nodes that are
running an isolated FreeMMG 2 cell simulation. The cell simulation works as in the MS
architecture with TSS synchronization. The players in a FreeMMG 2 cell are the players
in a MS architecture, the cell nodes are the mirror servers of a MS architecture, and BSS
is used to synchronize cell nodes.

The main difference between MS and our cell is that the connections between cell
nodes are like player connections, thus we cannot rely on any maximum latency to main-
tain consistency and instead employ a conservative trailing state. Event timestamping, or-
dering and execution can be as specified in the TSS paper, or it can be an hybrid of round-
based and non-round-based execution as described in our earlier BSS work (CECIN et al.,
2006). Also, we can no longer rely on IP multicast to optimize dissemination (broadcast)
of events between the cell nodes, thus a full mesh of unicast logical connections is needed
between cell nodes. Thus, the upload bandwidth requirement of cell nodes becomes an
issue. The issue is aggravated by the currently low upload bandwidth available to con-
sumers through popular technologies such as ADSL. That is an issue because we expect
that volunteers in our peer-to-peer network will have the same average Internet connection
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found among Internet users at large.
For completeness, notice that Figure 3.8 also shows that there are two kinds of cell

nodes: primary cell nodes and back-up cell nodes. The primary cell nodes run BSS
and serve the game as in the TSS/MS architecture, and connect to each other forming
a full mesh of unicast connections. The back-up cell nodes run events using stop-and-
wait (conservative) only since they don’t have to serve the game to players, and they
only connect to a single primary cell node to which they serve as a back-up. Contrary
to primary cell nodes, the back-up cell nodes should impose a much lower load and thus
could be more easily provided by the active players of the game. Finally, it should be
noted that the number of primary and back-up cell node pairs, which in Figure 3.8 is set
to eight, is actually a parameter configurable by the application.

3.6 Closing remarks

In this chapter we have produced a synchronization algorithm that is suitable for main-
taining the state of the cells of a cell-based, decentralized and cheat-resistant MMOG ar-
chitecture. That algorithm, BSS, is a tweak of the TSS algorithm (CRONIN et al., 2004a),
whose target MS architecture resembles, topologically, our cell simulator. We have fo-
cused thus far in explaining how event synchronization is achieved inside a single cell.
The next chapter will show how a contiguous cell-based virtual world is achieved, that
is, how cells can affect each other’s state, how players connect and disconnect from cells,
etc. It will also show how players communicate commands and receive updates from
cells, how to recover from failures and other essential functionality.

Our adaptation of TSS to intra-cell synchronization in a peer-to-peer MMOG left
some open questions. The two main questions left are the following. First, it is unclear
how the potentially significant latency and packet loss between cell nodes would affect
audiovisual consistency, command responsiveness and fairness for players. Second, the
upload bandwidth required by a cell node may be significant for current consumer-grade
‘broadband’ solutions such as ADSL, aggravated by the lack of support for IP multicast
on the Internet at large. In Chapter 5 we will evaluate the bandwidth requirement and
show that the bandwidth requirements of FreeMMG 2 are realistic. As for latency issues,
these are not the focus of FreeMMG 2, though we tried to keep the number of hops
within an acceptable range to support MMORPGs, at least. We discuss interaction latency
later in this thesis, and much of latency minimization or compensation is left for game
development, deployment decisions (e.g., limit game instance to a country or region) and
future works to sort out.
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4 FREEMMG 2 ARCHITECTURE

This chapter presents FreeMMG 2, a new model for supporting the distributed simula-
tion of MMOGs. A FreeMMG 2 network presents a mix of client-server and peer-to-peer
topologies. The system needs trusted servers to be maintained by a centralized game
provider, but those servers are free from some important, CPU and network-intensive
tasks that are often delegated to them when a pure client-server approach is used. This
reduces significantly both the amount of server-side hardware and connection bandwidth
that is needed to be maintained by the game service provider.

As shown in Chapter 3, FreeMMG 2 is cell-based. The main motivation behind the
multiple-arbiter and conservative replication of cell state was security. By randomly
choosing a significant amount of untrustworthy peers to replicate each cell, and taking
other precautions elaborated in this chapter, we prevent collusion groups from forming in
any cell with high probability. Thus a high resistance (though not immunity) against state
cheats is achieved.

Our goal with this chapter is to provide the most important, core functionality that
would be required of a peer-to-peer MMOG. The idea is that the functionality described in
this chapter can be implemented as a generic ‘FreeMMG 2 library’ that provides support
for peer-to-peer MMOGs. The information provided in this chapter does not explain,
however, how a full game engine or a working game is built over the basic functions
offered by FreeMMG 2. In Chapter 5 we show how FreeMMG 2 can be complemented
by game or engine logic to provide higher-level functions such as reliable object transfers
between cells, global consistency guarantees, resolution of conflicting updates and others.

For simplicity, we assume that the virtual world to be supported by a FreeMMG 2
engine can be modeled as a 2D plane and that it can be split into a grid of square cells,
with each cell having exactly eight neighbors. Extending the model to other types of
virtual world spaces (e.g. 3D) or other types of divisions (e.g. hexagons) and evaluating
those extensions is left as future work.

4.1 Overview of a running FreeMMG 2 network

Figure 4.1 gives a top-level view of the main components that would be found on a
functioning FreeMMG 2 network. Notice that the network is a hybrid of client-server and
peer-to-peer topologies. The figure shows three roles filled by physical server machines:
master server, cell manager and cell filler. The remaining machines are clients which are
either machines where human players are playing the game or machines running daemon
(non-interactive) helper processes which actually run the virtual world simulation.

There are a set of security-sensitive tasks that are the responsibility of the server-
side of the network. This means that only machines trusted implicitly by all players
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Figure 4.1: Overview of a FreeMMG 2 network

can execute those tasks. These machines are to be maintained by the game developer
or publisher or a set of sufficiently trustworthy parties. In contrast, there are other tasks
which require use of the client-side of the network. These tasks are CPU and network
intensive and are off-loaded to machines outside of the game operator’s control so that
the network can scale to large player populations without incurring great hardware and
communications costs for the game operator.

As can be seen on the figure, each server-side cell manager will handle a set of cells.
It is not clear how many cells a cell manager could handle, and how this would be imple-
mented exactly. For instance, a program (single process) could implement support for a
single cell and accept socket connections to other processes that manage other cells, and
a single server machine could run several cell manager processes at once. Another option
would be implementing a single process with multiple threads, each thread managing a
single virtual world cell. To avoid confusion, from now on we will use cell manager
to refer to the process, thread or object that handles a single virtual world cell, and cell
manager server to refer to a machine that handles several virtual world cells by running
several cell manager processes.



105

4.1.1 Server-side overview

The main tasks carried by the server-side of a FreeMMG 2 network, as depicted in
Figure 4.1, are the following:

1. Volunteer management: Schedule volunteer client machines to help in simulating
(running) the virtual world cells;

2. Authentication: Authenticate client nodes;

3. Global state management: Store and serve any global state;

4. Vital cell state management: Store and serve the vital cell state of each cell, which
is basically a server-side digest (reduced version) of the cell state that is being kept
by the peers (see below);

5. Client tracking: Coordinate client nodes so that they can reach each other;

6. Cell fault handling: Manage the recovery of cells that have failed;

7. Certificate authority: Sign and distribute player certificates if a cryptosystem is
used. That is, the server operator should act as the Certificate Authority (CA) of the
game network;

Ideally, only one server machine would be employed in the network, and all server-
side tasks would be delegated to that machine. Although this will probably work for a
number of clients between 1,000 and 5,000, this would certainly not scale to a network
with tens or hundreds of thousands of clients.

Volunteer management is achieved by a single cell filler machine depicted in Fig-
ure 4.1. This machine just has to accept a few incoming UDP/IP packets from the vol-
unteer simulators when they start up and note their socket addresses. Since there is no
persisted communication involved with this machine it is reasonable to assume that it
could handle a few million clients easily. This machine is contacted by the cell managers
when they need a fresh volunteer to fill positions as simulators on the cells that those
machines manage (more on that soon). If there are several cell filler machines (unlikely),
then the cell servers can choose one at random to request volunteers from.

Authentication and global state management are ideally handled by the same, single
master server machine. The best possible example scenario that illustrates this task is
when a player tries to connect to the game world. When a player connects to the game, it
will obviously first have to authenticate with a server machine, so that real human players
will only be able to play with their own avatars and not with other player’s avatars. The
machine that accepts the client’s first connection, before authentication, is the master
server. Player credentials information might be stored in a database local to the master
server, as depicted in Figure 4.1.

After connecting and authenticating, the master server will have to decide to which
cell manager this player will connect to. Let’s assume that, when players rejoin the game,
their avatars should reappear at the last position in which they were located prior to log-
out. In this case, the master server might keep track of the cell ID where each player is
currently located. This information might be stored in the same local database as player
credentials information. So, the master server just looks up on which cell the avatar
should reappear, and issue a command to the appropriate cell manager process to re-insert
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the player’s avatar object in the cell. At this time, the master server will also arrange a
socket connection between the client process and the cell manager, which can then take
over from there.

Vital cell state management is performed by cell managers. The vital cell state is es-
sentially a reduced version of the cell’s complete state which is kept by client machines
(peers). Should the peers fail, the vital cell state can be used by the server to restore the
cell. What goes into the vital cell state and what doesn’t is decided by the application
depending on what’s important and what isn’t. That is, a running virtual world cell will
have lots of different state information, but some pieces of that state will be more impor-
tant than others. For instance, the fact that cell (X = 4, Y = 5) is currently populated
by a specific player’s avatar is more important than the exact position of that avatar in the
virtual terrain. Avatar positions change rapidly so if positions were part of the ‘vital’ state
of a cell, this would mean that every time the primary nodes of a cell changed the posi-
tion of an avatar, then these nodes would have to exchange messages with a server-side
machine (the cell manager server) in order to update that ‘vital state’. Keeping vital cell
state at servers allow cells that have failed completely, that is, that have lost their entire
state, to recover partially. Vital cell state can also be used during object transfers (between
cells) to achieve protection against global inconsistencies (CECIN et al., 2004). Object
transfers and global consistency will be elaborated later.

Client tracking and fault handling will be presented later in this chapter. These tasks
would, ideally, be carried out by the cell managers. However, the master server might also
be used for this. The master server will at least forward new player clients connecting to
the network to their initial cells and, maybe, the cell managers will be able to take over
from there. Currently, this is not defined in the model. That is also true of the cell filler
server, whose function could be integrated in the master server as well.

4.1.2 Client-side overview

The client-side of the FreeMMG 2 network is composed of ‘client machines’. Any
machine that is not directly owned or secured by the game provider is considered a client
machine, meaning that full trust cannot be granted to any message or computation result
reported by them. Client machines includes, for instance, the game player’s machines,
or server-grade computational resources donated to the network but maintained by third
parties. In other words, if the central game provider cannot guarantee that the software
running on a particular machine is the same genuine game software that was released,
then that machine is deemed a ‘client’ machine.

There are three different kinds of processes that will run in client machines, as illus-
trated by Figure 4.1:

1. Primary cell node: A primary cell node stores a replica (copy) of a cell’s current
state. It synchronizes constantly with all of the other primary cell nodes of that
cell, and with a single ‘back-up cell node’ (see below). It also synchronizes, less
frequently, with the primary nodes of neighboring cells. If it has the bandwidth
available, it will also serve one or more players with game updates (see below);

2. Back-up cell node: Similarly to a primary cell node, a back-up cell node stores
a replica (copy) of a cell’s current state. The difference is that the back-up copies
the state of a single primary cell node. So, all primary cell nodes, whenever they
update their own states, will send messages that bring its corresponding back-up
simulator node to the same state. A back-up cell node’s IP address is only known
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by the server-side cell manager and the primary node that synchronizes it. If the
primary node fails (e.g., due to a network-level attack such as a DDoS) then the
back-up node can tell, to the cell manager, what was the current state of the primary
node that just crashed, helping to avoid the loss of the cell state;

3. Player node: The player node is the interactive client-side process that allows hu-
man players to connect to the game and play it. It will continually collect user
input and present updated versions of the player’s view into the game world on the
screen. As in any client-server on-line action game, the player (client) will send an
almost constant stream of small network packets to the server, which are the com-
mand packets, and it will also receive an almost constant stream of larger network
packets from the server, which are the world-state update packets. The difference
is that in FreeMMG 2, the ‘server’ node will be a primary node of one of the cells
of the game world.

The rationale behind this separation of cell nodes and player nodes is the following.
In Chapter 3, we presented a way for a set of nodes to collectively keep a piece of data
in such a way that a small set of nodes cannot possibly ‘cheat’ all nodes in the group
in changing that data in an unintended way. In this regard, we have obtained a way
for emulating a trustworthy node out of a set of untrustworthy nodes. Those nodes are
the ‘primary nodes’ of a single cell in the virtual world. However, this does not cover
network-level attacks, as a group of malicious nodes inside the group could attack the
honest nodes and dominate all replicas 1. To counter network attacks, a single back-up
node is given to each primary node. And finally, being the primary nodes non-interactive,
a player’s machine will have to connect to the primary nodes in some way to inject its
commands into the replica simulators and pull out information about the game world that
immediately surrounds that player’s avatar.

Since the cell nodes maintain the state of the virtual world, the player nodes have to
synchronize with cell nodes in some way to play the game. In FreeMMG 2, each player
node will be interested in synchronizing with only one cell at any one time, which typi-
cally will be the cell that currently owns its avatar. The player does not have to synchro-
nize with several adjacent cells, even if its avatar is near the border of a cell, as inter-cell
synchronization is handled solely by cell nodes.

To synchronize players with their cells, a FreeMMG 2 implementor has several op-
tions at their disposal. In a later section we provide several such options. We did not
want to restrict the final game protocol or the semantics of events or updates. Thus, game
implementors have several alternatives such as trading off vulnerability to protocol-level
cheats for reduced interaction latency.

4.1.3 Delegating the simulation to volunteer client machines

To do away with the large bandwidth and computing costs at the MMOG provider’s
side of the service, the simulation of the virtual world must be distributed to machines
that lie outside of the provider’s domain. By ‘distributed’ we mean that this collective of

1That attack is addressed by having the server demand a minimum quorum of live replicas, out of the
original set, before it will accept any information from a consensus gathered out of the live replicas. For
example, if a cell is typically replicated by ten nodes, out of which nine fail (e.g., due to a network attack),
no game server, in any context, should trust the result presented by the remaining node for a cell recovery.
However, that means the state of the cell is lost. To avoid that, back-up nodes allow attacked primary
replicas to still count by having their protected back-ups step in for the recovery quorum.
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machines would be responsible for constantly recalculating the state of the shared virtual
world and communicating with the game players.

The machines that lie outside the game provider’s control will be called ‘volunteers’.
The presence of a substantial quantity of volunteers is a hard requirement for a game to
be deployed on a network that follows the FreeMMG 2 model.

A functioning FreeMMG 2 will require many volunteer nodes, since even unpopulated
cells need a minimum amount of cell nodes to maintain its state. The more volunteers the
better. Even when the fabric of cells is fully filled with volunteer simulator hosts, it is
important that a healthy dose of ‘surplus’ volunteers is readily available to replace the
hosts being used. Surplus volunteers (not allocated in cells) are shown in Figure 4.1 as
hosts inside a cloud.

So, it is in our interest to identify all possible sources of volunteering nodes. The
possible sources of volunteer hosts that we have identified are listed below:

1. Machines of game players, as they play the game;

2. Machines of game players, while they are not playing the game;

3. Machines of users that don’t even play the game and have chosen to volunteer for
the game project;

4. Machines of users that don’t even play the game but are being paid by the game
publisher for their CPU/networking time;

5. Machines of ISPs (Internet Service Providers) or other interested businesses;

6. Some combination of the above;

Assumption number 1 is the most common for most works that need volunteers for
a peer-to-peer game simulation network. Many proposals for peer-to-peer online gam-
ing, including the earlier ones such as MiMaze, design a system where player machines
connect directly to each other in some sort of overlay network 2 such that each player
machine is connected to other player machines whose avatars are near its own. In other
words, proximity of users in the virtual world translates more or less to direct, one-hop
peer-to-peer socket communication on the resulting overlay network, if possible. Some-
times the use of IP multicast is proposed such that the virtual world is divided into areas
and each area maps to at least one multicast group. In this scenario, when a player lo-
cally moves its avatar into a new area, it will start to broadcast its status, position updates,
and other events to that multicast group so that other players in that area will be able to
synchronize their views accordingly.

Assumption 5 has been considered by commercial projects. The Butterfly Grid could
be seen as an attempt at bringing MMOG subscription revenue to ISPs: game server
machines, running one or more games supported by the grid, would be installed at several
ISPs, saving on most of the traffic that needed to be hauled from the ISP to the provider’s
central server.

Our proposal assumes a combination of items 1, 2 and 3. However, the primary source
of simulation nodes for our proposed model (FreeMMG 2) is assumed to come from 2 and

2An overlay network is a ‘logical’ network that is typically formed by a mesh of socket connections
between pairs of machines (unicast sockets) or groups of machines (multicast or broadcast sockets). Overlay
networks usually feature multi-hop communications between hosts with some sort of routing logic, just like
the packet-switched IP network that lays under them.
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3: for some reason, users will want to support a particular MMOG project, and they will
leave a non-interactive, daemon process running on their machines. This process will
consume some of the CPU resources and, probably, most of the upload bandwidth of the
machine (if it is a home ADSL connection), and will be analogous to leaving a machine
running a P2P filesharing program such as a BitTorrent client that is seeding (serving) a
file.

The obvious question that pops up is whether users will have any motivation to leave
that daemon running on their machines. To answer this question, first we should note that
there are already a number of situations where users are not required in any way to vol-
unteer to a distributed effort but they do so anyway, which is the case with SETI@Home
or any Internet computing effort. This would also be the case of most peer-to-peer file-
sharing that happens after a file is retrieved by a certain peer. And secondly, if these
volunteers are also players of the virtual world (the more likely scenario) then it would
be trivial to reward those players that contribute with in-game virtual wealth. This would
provide extra incentive for users to contribute. Considering that other distributed com-
puting projects get volunteers just by providing them with on-line rankings and such, we
believe that the additional in-game wealth reward would potentially bring even more users
to a ‘distributed game computing’ effort. We believe that, in the end, what will matter is
whether the implemented game appeals to a large audience of players or not.

4.1.4 Software architecture suggestion for a FreeMMG 2 implementation

This thesis provides an abstract model. However, to be useful, the model needs to be
implementable. Figure 4.2 shows a suggestion of a software architecture that is suitable
for implementing a solution based on the model. What we provide below is an example;
FreeMMG 2 can be implemented in several ways.

Basic operating system support
UDP/IP unicast sockets, multi-threading, system timer, ...

Higher-level transport protocol
(e.g., SCTP or ZSTP tunneled

through UDP) 

FreeMMG 2 core
Communication overlay, BSS cell sync, inter-cell sync.

cell-to-cell and server-cell reliable messaging...

FreeMMG 2 extras
Object transfers, player sync., ...

Other 
application 

dependencies

(persistence, 
multimedia, 

etc.)

Application 
Game, engine or additional frameworks

Figure 4.2: Envisioned software architecture for implementing FreeMMG 2 as library.

As the foundation of the FreeMMG 2 library there should be the common operat-
ing system support that is present in any networked machine such as a high-resolution
timer, threads and UDP/IP sockets. If possible, implementing persistence (disk storage)
should be left for the application to do through callbacks. For instance, a FreeMMG 2
master server might receive some state from a cell that is to be persisted. In this case, the
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FreeMMG 2 master server code calls back the application equivalent of the master server
code, passing the data buffer to be stored and any other relevant parameters such as the
ID of the cell that is storing it. Thus, the application (whatever sits on top of FreeMMG
2) becomes free to choose any particular persistence mechanism such as a relational or
object database or a simpler engine such as Prevayler (WUESTEFELD, 2003). Also, any
multimedia support such as graphics and sound are also not provided through nor needed
by FreeMMG 2, and should be managed directly by the application.

A FreeMMG 2 implementation will be much easier if a more sophisticated trans-
port protocol such as SCTP is present to enhance UDP. What we need are mechanisms
for delivering messages of arbitrary sizes between hosts reliably (with retransmission)
and unreliably (without retransmission), and with our without ordering between different
message streams. The main problem with UDP is that it doesn’t provide reliable deliv-
ery. Also, it is more practical and efficient to encode multiple message ordering streams
between two hosts in a single stream of UDP packets, instead of implementing differ-
ent streams of messages between two hosts as independent flows of UDP packets. That
is a good idea because aggregating data saves on packet headers and, additionally, the
aggregation generates larger packets which offers more opportunities for gains in packet
compression. And finally, flow control can be achieved easily by discovering an adequate
packet rate and a maximum outgoing packet size for the UDP packet flow between any
two hosts while these are constantly communicating.

Using the stream-based UDP enhancement or UDP itself, the FreeMMG 2 core layer
implements basic communication and simulation functions. The core master server API
has methods to create and remove cells, which causes the master server implementation
to draw volunteer peers out of the pool and build the cell simulation overlays or to discard
existing cell overlays. The cell nodes in each cell can run the BSS algorithm, synchroniz-
ing their simulation clocks and exchanging event packets at every simulation step, whose
rate is fixed by server-side game code. The core also offers primitives for passing reliable
and unreliable messages between cells and for passing reliable and unreliable messages
between player nodes and cell nodes.

On top of the core layer, some higher-level functions that would be useful for many
games could be provided in an FreeMMG 2 extras layer. For instance, we can assume
that a MMOG is composed of relatively autonomous aggregates of state variables that all
share virtual coordinates in the game world and thus move together around it: the game
objects. Thus, it is necessary to have a mechanism for transferring game objects between
cells. The object transfer transaction can be implemented using the inter-cell messaging
support provided by the core. If the object being transferred can never be lost or duplicated
in the virtual world, the transaction can be implemented by, additionally, logging the
departure and arrival of the object at the respective server-side cell managers. Also, the
extras layer could include some ready-made solutions for player synchronization. For
instance, for a MMOFPS game, the layer could provide direct communication between
player machines to reduce latency and increase consistency. But this would imply that
players send authoritative updates to each other and to the cells. That is the kind of
assumption that we want to avoid making at the core layer. We suggest that the core
should have only irreductible functionality. Instead, the several options to player-cell
synchronization could be implemented and placed in the ‘extras’ layer, together with the
several object transfer options.

Finally, the application layer can be either monolithic game code or it can be broken
down into engine and application or other combinations. As mentioned, the application
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decides much of the functionality that is needed by the library such as data persistence.
Alternatively, an implementation of FreeMMG 2 can be made less generic and provide a
specific data persistence engine, a physics engine, a cryptosystem, etc. and thus become
a game engine.

4.2 Basic protocol definitions

In this section we provide a basic framework for supporting communication between
the different nodes that compose our distributed MMOG. These protocols are the base
upon which the simulation algorithms are to be implemented. For instance, the BSS pro-
tocol described in Chapter 3, in which a replica disseminates events to all other replicas,
should use the primary cell node synchronization protocol to implement that dissemina-
tion.

Each game based on FreeMMG 2 will have its own custom protocols. Thus, the speci-
fication provided here is incomplete, and it is intended to be used as basis for actual game
protocols. The idea is that an implementor of FreeMMG 2 can provide a communication
API using the specifications in this section as basis. Thus, the application should only
have to configure parameters such as packet rates and data rate limits, and otherwise just
call API functions to send and receive ‘messages’ (blocks of bytes opaque to FreeMMG
2) that are encoded to and decoded from the low-level transport protocol used (which in
practice will be always provided by unicast UDP/IP sockets only).

The first subsection below discusses what type of base transport protocol is required
by a FreeMMG 2 implementation. The following subsections discuss the higher-level
protocols which enable the different types of nodes in the FreeMMG 2 model to commu-
nicate and thus implement all the required algorithms.

4.2.1 UDP-based low-level transport protocol

FreeMMG 2 needs a ‘low-level’ transport protocol, such as SCTP, that is tunneled
through UDP and that enhances it, adding support for emulating multiple message streams
over a single packet stream between two hosts. Each message stream of an UDP packet
connection between two hosts should order messages independently and actually allow
for configuring whether reordering at the receiver is required or not, among other stream
properties.

Using that low-level, point-to-point protocol, the other higher-level protocols, de-
scribed in the following sections, are implemented. Some details are abstracted, such
as connection management. In FreeMMG 2, like in our previous work in MMOG sup-
port that uses only UDP unicast sockets, the typical client machine has to manage several
active connections at once. This is an implementation issue which has to be dealt with
by the model implementor. Generally, the application can be shielded from most of that
complexity.

4.2.1.1 Security-related assumptions over UDP sockets communication

One of the main sources of security problems in networking lies in the relative ease
of forging the source address of a packet. The higher-level cheat-resistant protocols in
FreeMMG 2 require (or assume) that an UDP packet’s payload and its header, including
the source IP address, are authentic. Most protocols that rely on peer consensus in particu-
lar can be broken if an attacker can forge a ‘vote’ or consensus-building message in behalf
of other nodes. There are several ways to address this. One would be to assume that most
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such attackers will only be able to find out the IP address and port of the source they want
to impersonate (since that is generally public information in a peer-to-peer system) and
the IP address and port of the target to which they want to send the forged messages. That
is, to assume that the attacker is not actually able to intercept traffic. Using this threat
model, a simple solution is to have each pair of peers send each other a customized ‘ses-
sion password’ (such as a random 64-bit or 128-bit number) which is then required in all
subsequent return traffic, at least until a new password is given. That and similar ‘weak’ or
‘security by obscurity’ solutions may improve the situation but they can be broken easily
if, for instance, the attacker is actually able to intercept packets. For a limited prototype
they may be useful as a deterrent against the least motivated and equipped attackers, and
one which is trivial to implement.

However, the definitive solution to the above problem is to add a proper cryptosystem
to the model. Our general suggestion to an implementor is the following, which uses a
combination of public-key and shared-key cryptography. First, a trusted server should act
as the Certificate Authority (CA). Each party, CA and clients, generates a public-private
key pair. The CA signs the public key of all clients using its private key. All valida-
tion of client public keys (or certificates) is done server-side and any client wanting to
validate a new public key from other client should contact its server. Once clients have
that secure way to validate each other’s public keys, they can, pairwise, establish secure
point-to-point connections in which they can negotiate shared (symmetric) keys for each
individual peer-to-peer communication session. The shared key of each session is then
used to efficiently authenticate the payload of outgoing UDP packets using a MAC (Mes-
sage Authentication Code) algorithm. The MAC guarantees authenticity and integrity
of the messages, but not secrecy, which isn’t needed. Replay attacks can be prevented
by having senders add a sequence number (serial number) to each outgoing UDP packet
which is unique for each session. We assume that the computational and networking over-
head of this system, compared with the costs of the rest of the functionality in the model,
should be negligible.

However, MACs do not offer non-repudiation. So, if a party B in an (A,B) point-to-
point channel forwards a message sent from A to B to a third client C, including the MAC
in the message, then C cannot rely on B to determine that the message is indeed from A.
Fortunately, that property is not necessary in most of FreeMMG 2’s higher-level protocols.
Our assumption is only that, pairwise, hosts (clients) can know that incoming packets are
authentic, that is, the sender IP address really sent that UDP payload. Whenever there is a
protocol or functionality which requires multi-hop communication in our overlay, we will
explicitly state any further security-related assumptions, such as requiring peers to sign
their messages using their public keys, which should be significantly slower than tagging
messages with MACs.

4.2.2 Basic primary cell node synchronization protocol

The primary cell nodes of each cell form a group that runs the BSS synchronization
technique described in the previous chapter. In this section, we define a concrete protocol
based on the general BSS algorithm described in Chapter 3. The protocol described here
is the same one described in our previous work (CECIN et al., 2006)3. The following
discussion is in the context of a single cell, and by ‘cell node’ it is meant a primary cell

3This paper delves in more detail than the basic protocol, such as offering suggestions on how to com-
pensate for the interaction latency. We have addressed this in Chapter 2. The reader can refer to the paper
for more ideas.
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node.
As we have specified earlier, to keep the conservative state synchronized, BSS exe-

cutes the stop-and-wait protocol described in Chapter 2. Also, the optimistic simulator
executes events such as, but not limited to, player commands, as they arrive. We have
specified that, in a FreeMMG 2 cell, players do not necessarily send their commands to
all cell nodes. However, the command of a player has to, eventually, reach all cell nodes,
otherwise replication of cell state is impossible. Thus, cell nodes have to disseminate
incoming player events to all other cell nodes in some way.

To minimize latency, a cell node broadcasts incoming events directly to all other cell
nodes through sending network packets in unicast to each one of them. But, instead of
broadcasting each incoming event individually, the cell node buffers all incoming events
and dispatches them together to all other cell nodes in regular intervals. The event dis-
patching mechanism is common for both the conservative and optimistic replicas at each
cell node. The only difference will be on how events are applied to each state.

Let CTICK be the duration of a round4 in the conservative simulator of each cell
node. For example, CTICK = 100ms. Let RC be the round number of the current
conservative state, starting at zero and increasing by one every time the conservative state
is able to advance. Let RO be the round number of the current optimistic state, starting at
zero and incrementing unconditionally by one every time CTICK of real-time elapses.

Every time a cell node receives an external event, that is, one that is not sent or times-
tamped by another cell node, it will do two things with said event:

• Execute it immediately at its optimistic state;

• Place it in a ‘pending input’ list.

Whenever CTICK of real-time elapses at a cell node, it will:

• Send the current contents of the pending input list, timestamped with the current
value of RO, through a reliable message stream, to all cell nodes, including itself.
That message is the round message for that round and for that cell node;

• Remove all elements in the pending input list;

• Increment RO;

• Generate an outgoing UDP packet to each other cell node (can use some hard-coded
loopback mechanism to send to itself).

Whenever a cell node receives a round message from another cell node (or from itself),
it:

• Places the message into a bi-dimensional array (let’s call it event array) which is
indexed both by cell node (the sender) and round number (the RO at the sender);

• Executes the events in the message in its optimistic state.

Whenever a cell node receives all round messages for round number RC and from all
active5 cell nodes, it will:

4This is synonymous with a simulation step or turn.
5An active primary cell node is one which has not failed. The mechanism that deals with failures, and

which allows us to describe this and other algorithms without worrying about failures, is described in a later
section.
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• Execute all events in the event array which are scheduled for RC over the conser-
vative state;

• Increment RC ;

• Discard sets of events from the event array pertaining to old rounds. It will be
necessary to keep a window of old rounds in this array to allow the fault recovery
algorithms to work (see Section 4.3.4). The exact size of this window is not an
important definition as it certainly won’t impact performance in any way.

With this basic mechanism, events are executed both optimistically and conservatively
at all cell nodes. Flow control for this protocol is achieved in the same way that we achieve
flow control in most of the other FreeMMG 2 protocols: by setting a fixed rate of outgoing
packets at each primary cell node (one outgoing packet every CTICK interval for each
other primary cell node) and by setting a maximum size for each outgoing packet. Since
UDP packet sizes gain from avoided fragmentation at the IP layer, it is probable that the
value for maximum packet size will be limited to the Path Maximum Transmission Unit
(PMTU) which, in theory, should be discovered but, in practice, will be set to around 1
kilobyte by a pragmatic implementor. If turn packets end up being larger than the maxi-
mum packet size allowed, there are several options to address this. The CTICK can be
increased, resulting in smaller packets since the amount of incoming input events remains
constant. Also, multiple UDP packets can be generated in a single turn, each respecting
the PMTU. Finally, the message retransmission strategy of the reliable streams can be
tuned to generate less traffic, resulting in fewer outgoing packet data. What’s important
is that intra-cell synchronization can use up to a predictable maximum percentage of the
node’s download and upload bandwidth. This is taken into consideration when checking
whether any given node in the volunteer pool will, a priori, be able to handle being a
primary cell node.

This protocol defines some of the delay components of event processing. First, once
a cell node receives the event, it will wait, on average, half of CTICK to send it to all
other cell nodes. After CTICK elapses, it sends it in one logical network hop to all other
cell nodes. Assuming that players in the same cell are served by different cell nodes,
our scheme only introduce one additional logical network hop into the interaction delay
equation. If interacting players are in the same cell and served by the same cell node, the
components of interaction delay are the same ones of a client-server system (that is, of a
star topology).

We haven’t come up with definitive mechanisms for determining when rollbacks are
necessary and how to perform them. We suggest the solution we evaluated in our pa-
per (CECIN et al., 2006), which is to simply execute rollbacks continually and spread
their execution over multiple rounds, using a third state as a buffer for executing them
while they don’t finish. Optimizing this is left for future works.

4.2.3 Extended primary cell node synchronization protocol

The basic protocol described in the previous section is vulnerable to the inconsistency
cheat (CORMAN et al., 2006; GAUTHIERDICKEY et al., 2004b) and thus needs to be
enhanced. Figure 4.3 illustrates the distributed lock-step6 conservative simulator that runs
on each cell being easily defeated by a single malicious primary cell node. The malicious

6We have also called it a stop-and-wait protocol. It means the same thing.
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node makes the conservative replicas diverge by simply sending different command mes-
sages for different primary nodes during the same turn. That is known as the inconsistency
cheat.

Input (T, “shoot”)

Input (T, “jump”)

Input (T, “crouch”)

Conservative state T+1 at P3: 
     “some avatar has jumped
      during T”

P1

P2

P3

P4

- Primary nodes P2, P3 and P4 have already received each other's inputs
  correctly for state T+1 to be computed;
- Soon after that, P1's input events for T are received by P2, P3 and P4;
- As a result of P1's attack, all nodes are diverging even though all waited
  for each other's input events for turn T.

Conservative state T+1 at P2: 
     “a shot has been fired by
      some avatar during T”

Conservative state T+1 at P4: 
     “some avatar has 
      crouched during T”

Figure 4.3: A single primary cell node causing the basic primary cell node synchroniza-
tion protocol to fail

In an instanced game model, this could be addressed by simply discarding the prob-
lematic instance upon detecting later that the conservative states have diverged. For ex-
ample, an infrequent exchange of state hashes is easy to perform and costs almost nothing
in terms of bandwidth. However, our fault recovery mechanisms, described later in this
chapter, cannot run if the conservative states are allowed to silently diverge from each
other. We need to perform an additional tweak to the stop-and-wait simulator so that
the attack shown by Figure 4.3 is blocked. This is accomplished by a modification that
we called turn flags, which is explained below. Other mechanisms to address this incon-
sistency cheat already existed prior to our development of this (CORMAN et al., 2006;
GAUTHIERDICKEY et al., 2004b) and our turn flags turned out to be quite similar to
these. Thus, one should consider this section as an explanation of an existing technique
rater than an original contribution of our work.

4.2.3.1 The turn flags mechanism

In addition to collecting all other node’s turn inputs received so far, each node of
the lock-step simulator will also keep a list of turn input collection hashes received from
each node, for each turn. A turn input collection is a set of serialized input events, each
element from the set being the events sent by one of the nodes for that turn. By ‘input
event’ we mean a full set of events that a single node sends with a single timestamp.
The hash is calculated over a concatenation of all input events received so far for a turn,
the concatenation being performed by sorting the serialized input events by node ID. That
concatenation is the serialized form of a collection of all node’s inputs (events) for a given
turn.
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When a node detects that the basic lock-step criteria has been satisfied locally, that
is, the node has received all inputs from all nodes for a given turn T , it concatenates the
serialized form of all inputs using a deterministic ordering (node IDs), calculates a hash
over that concatenation, and sends that hash for all nodes (including itself). It does not
immediately use the node inputs it has to advance its ‘conservative’ state to simulation
time T + 1.

Eventually, each node will receive one such ‘full turn inputs hash’ from every other
node. Receiving that hash from all nodes is a definitive signal that the turn can advance.
Thus we call that hash a ‘turn flag’, which is easier to visualize. In short, each node
will now wait for an additional ‘flag’ from each node during any given turn, in the same
way that it already waits for the ‘input’ from each node during any given turn. Once all
nodes have waived their ‘flags’ for a turn, and all ‘waived’ flags match at all nodes, a node
knows (locally) that all other nodes have received the same set of inputs that it did, and
that updating its replica locally won’t cause divergence with any other node, at least not
due to malicious or faulty input broadcast (as illustrated by Figure 4.3).

Figure 4.4 shows how the attack illustrated by Figure 4.3 is detected through turn flags.
To keep the explanation simple, the figure assumes that the cell has only 3 nodes (P1, P2
and P3), that all nodes have initially synchronized their states for an initial timestamp
‘T0’, and that the first simulation tick is about to be performed, which should advance the
state from time ‘T0’ to time ‘T1’. This example only concerns itself with the conservative
state of the cell.

The first step (1) on Figure 4.4 shows P2 and P3 correctly broadcasting their events
for turn T0. As an example, imagine that both P2 and P3 are issuing commands to move
two different player avatars. As a result of this dissemination, both P2 and P3 have their
own input and the input from the other node on their input lists. However, the lock-step
simulation cannot proceed since P1 has not answered yet.

Before P2 or P3 decides that P1 is taking too long, which would cause the cell to
fail, P1 decides to send its input for turn T0. So, in step (2) of Figure 4.4, P1 sends
two different turn T0 inputs for P2 and P3. Imagine that P1 is also controlling a third,
different player avatar, that P1 is telling P2 that P1’s avatar has shot P2’s avatar, and that
P1 is telling P3 that P1’s avatar has shot P3’s avatar instead.

In step (2), P1 is hoping that, by receiving his input for T0, both P2 and P3 will be
tricked in unlocking from the basic lock-step criteria and computing their next states for
time T1. However, if P2 and P3 did that, both would compute two different outcomes,
and their ‘conservative’ states would no longer be replicas. At P2, P2’s avatar was shot
by P1 on T1, and at P3, P3’s avatar was shot by P1 on T1.

However, because of the additional ‘turn flags’ matching criteria, P2 and P3 cannot
immediately update their states. Instead, on step (3), they compute a hash over their full
event lists for T0, that is, what they would be executing if they were running a simple
lock-step, and send the hashes to each other. Upon receiving each other’s ‘turn flag’ (the
input hashes for turn T0) they immediately detect a mismatch. The mismatch stems from
the different inputs sent by P1 at step (1). Even if P1 had sent a turn flag that matched
either flag (hash), it wouldn’t change the fact that the flags from P2 and P3 don’t match.
Any hash mismatch during a turn is enough to prevent the next turn from being silently
computed: there is no need to wait for all turn flags to arrive before a mismatch is reported.
The only way to avoid a turn flag mismatch for a given turn is having all nodes exchange
the exact same events (inputs) for the current turn.
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P1 P2 P3P1
I(P2,T0) I(P2,T0)

I(P3,T0)
I(P3,T)

Turn T0 at P2
Inputs: 
     P1: empty
     P2: I(P2,T0)
     P3: I(P3,T0)
Flags: 
     P1: empty
     P2: empty
     P3: empty

Turn T0 at P3
Inputs: 
     P1: empty
     P2: I(P2,T0)
     P3: I(P3,T0)
Flags: 
     P1: empty
     P2: empty
     P3: empty

P1 P2 P3
I(P1,T0)'

I(P1,T0)''

Turn T0 at P2
Inputs: 
     P1: I(P1,T0)'
     P2: I(P2,T0)
     P3: I(P3,T0)
Flags: 
     P1: empty
     P2: Hash( Inputs(P2,T0) )
     P3: empty

Turn T0 at P3
Inputs: 
     P1: I(P1,T0)''
     P2: I(P2,T0)
     P3: I(P3,T0)
Flags: 
     P1: empty
     P2: empty
     P3: Hash( Inputs(P3,T0) )

P1 P2 P3

Turn T0 at P2
Inputs: 
     P1: I(P1,T0)'
     P2: I(P2,T0)
     P3: I(P3,T0)
Flags: 
     P1: empty
     P2: Hash( Inputs(P2,T0) )
     P3: Hash( Inputs(P3,T0) )

Turn T0 at P3
Inputs: 
     P1: I(P1,T0)''
     P2: I(P2,T0)
     P3: I(P3,T0)
Flags: 
     P1: empty
     P2: Hash( Inputs(P2,T0) )
     P3: Hash( Inputs(P3,T0) )

Hash( Inputs(P2,T0) )

Hash( Inputs(P3,T0) )

 Inputs(P2,T0) ≠ Inputs(P3,T0)

Hash ( Inputs(P2,T0) ) 
≠  

Hash ( Inputs(P3,T0) )

Conflict for T0 detected 
at P2 and P3!

I(P,T)            Serialized (bytes) form of a set of events issued by node P for turn T.
Inputs(P,T)   Concatenation of all I(p,T) byte blocks received by node P from all  
                     cell nodes “p” (including p = P, or itself) for turn T.
Hash(X)        A hash function that operates over a variable-length byte block X.

(1)

(2)

(3)

P1 attacks by sending
different events, for 
turn T0, to P2 and P3.

P2 and P3 correctly disseminate 
their actions to all participants.

P1 is a malicious node preparing
to break the consensus between
P2 and P3.

Figure 4.4: Example of turn flags mechanism detecting inconsistent input dissemination
on a cell with 3 primary nodes

4.2.3.2 Performance impact of turn flags

The ‘flags’ mechanism certainly causes a negative impact on simulation rollback and
re-execution as described in Chapter 3. By requiring more conditions to be met before
the conservative state of each node can advance in simulation time, it will certainly widen
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the simulation time gap between each node’s optimistic and conservative states. This will
increase the CPU cost of rollback and re-execution, and also decrease visual consistency
for players due to the more drastic corrections performed by rollback and re-execution.

If this ever becomes a serious problem, splitting the conservative state in two repli-
cas, ‘optimistic conservative’ and ‘true conservative’ could mitigate this. The ‘optimistic
conservative’ would do simple lock-step, and the ‘true conservative’ would perform the
additional ‘flags’ check. So, assuming that the ‘flags’ criteria is unnecessary most of the
time, because almost all nodes are honest almost all of the time, then the rollbacks could
be performed against the ‘optimistic conservative’ state, which uses simple lockstep as
described in Chapter 3. However, when performing fault recovery, the ‘true conservative’
state would be used. The ‘true conservative’ state would use the ‘flags’ criteria and maybe
something even more strict such as an exchange of hashes of the state after it is computed
by the flags-approved inputs. In any case, this would result in three or four different state
snapshots being kept on each cell node, instead of the proposed two ‘conservative’ and
‘optimistic’. For now, we assume that the negative impact of the ‘flags’ mechanism over
the optimistic-conservative gap is acceptable for the sake of a more simple cell simulator
model.

4.2.3.3 Limited responsibility of the turn flags mechanism

This add-on ‘flags’ mechanism ensures that all cell nodes have the same inputs for up-
dating their replica states locally. However, it doesn’t guarantee that there isn’t a program-
ming error which introduces non-determinism in replica updating, which would cause di-
vergences regardless of perfectly synchronized turn events across all nodes. Furthermore,
malicious nodes will always be able to destroy their own replicas (and the ones at their
back-up nodes) at will, while never sending discrepant event lists (inputs) during the same
turn and thus never violating the turn flags.

So, the possibility that replicas will diverge will always be present. The ‘flags’ mech-
anism just ensures that a minority of nodes cannot destroy the majority replica consensus
by just manipulating their own events. The fault tolerance mechanisms, described later,
solves the remaining problem of dealing with, usually, a minority of divergent nodes and,
rarely, a majority of divergent nodes. Perceiving mismatched turn flags locally is a fail-
ure situation which, like all failures detectable by a node, are notified to the cell manager
through a simple network message (as will be explained in the upcoming ‘Fault detection’
section), and no further action is required by the cell

4.2.4 Backup cell node synchronization protocol

As hinted by the BSS explanation in Chapter 3, each primary cell node has a back-up
cell node assigned to it. The back-up node is a mirror of the state kept by the primary
node. The back-up node’s IP address is only known by server-side machines and the
primary node to whom it serves.

The purpose of the back-up node is twofold. First, it provides a means to discourage
attacks of whatever nature against the primary nodes. The back-up cannot be attacked,
since its IP address is unknown to any potentially rogue nodes. Once the primary node is
taken down, the back-up node takes its place, essentially avoiding the loss of the replica
state of the primary node. Unless the back-up node is part of a group of rogue nodes
that is trying to perform state cheating on that cell, there would be no point in attacking
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primary nodes besides vandalism 7

The second reason for employing back-up nodes is preventing ‘normal’ node failures
from invalidating the state of a cell. Normal failures include power outages, software
crashes and any other source of ungraceful disconnection from the network. This is a
problem because, whenever replicas are taken out from a cell, the server-side is left with
a reduced number of working replicas of the cell state to trust. If that number is small
enough, the server-side cell manager is presented with a tough choice between accepting
what a small number of cells agree upon (window for state cheating) or scraping the cell
state and replacing it with some arbitrary ‘recovery’ content (and watching disfavored
players quit the game after this). If we ignore the existence of large mobs of nodes co-
operating to sabotage the network for a moment, we can say that the adoption of back-up
nodes pretty much filters out all unintentional failures from reducing the number of copies
of the cell state. Even in the rare cases where a primary and its back-up node fail at the
same time, this would only reduce the replica count by one, which will hardly be a prob-
lem if the original node count for the cell was healthy. This will be discussed in more
depth later.
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X
   Primary cell node

B
X
   Back-up cell node of primary cell node N

X

(a) Updating a back-up cell node 
     without aggregation

(b) Updating a back-up cell node
      with aggregation

1 dispatch of size Compress(4 events) 
on every network tick.

1 dispatch of size Compress(12 events) 
on every 3 consecutive network ticks.

Optimistically-synchronized cell state copy

Conservatively-synchronized cell state copy

Figure 4.5: Example: using aggregation for back-up cell node updates in a cell of size 4

The back-up cell nodes only have to keep one simulator state, which is the conserva-
tively synchronized one. Back-up cell nodes don’t have to update any other node about
the state of the cell, nor do they have to display the simulation state to a human player
on a screen, so executing events optimistically would be pointless. The primary cell node
that ‘owns’ a respective back-up cell node is responsible for forwarding all of the events
it receives from the other primary cell nodes to its back-up node and also forwarding the

7Vandalism in a P2P simulator such as FreeMMG 2 can be seen as the same as ‘poisoning’ attacks
against P2P file-sharing networks. In both cases, the goal of the attacker is to disrupt the network itself,
not gain any advantage inside the network, such as cheating in a game simulator or downloading more data
from a file-sharing service.
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events it generates (broadcasts) to the other primary cell nodes.
Updating the back-up cell node takes significant upload bandwidth from the primary

node. If there are 10 primary nodes in a cell, this means that, on each network simulation
tick of the cell (which we defined as CTICK earlier), a primary node will receive, on
average, 9 events from each remote primary cell node, and it will have to forward 10
messages (nine remote plus one from itself) worth of bandwidth to its back-up cell node
in a single network tick’s time. This might be seen as a serious problem. However, since
the back-up cell node has no time constraints to receive the events, since it won’t execute
them optimistically, the primary cell node can reduce the bandwidth usage significantly
by aggregating a few turns worth of events into a single UDP packet (saving on headers
and routing) and also compressing the resulting packet before sending it to the back-up
node. See Figure 4.5 for an example considering a cell of size 4 (cell with 4 primary and
4 back-up nodes).

However, waiting too long to dispatch events to the back-up node can have a negative
impact on the failure recovery procedures of FreeMMG 2. There is some gain to be
obtained with aggregation here but a packet certainly won’t be held for more than a few
seconds. This may give a few tens of turns worth of average-sized events forwarded on
a single packet, which might represent significant savings due to aggregation and, more
importantly, in data compression. Evaluating those gains is left as a future work.

4.2.5 Inter-cell synchronization protocol

One of the great advantages of replicating simulation among cell nodes is that there
is no need to disseminate potentially expensive update messages between them. Instead,
only a few events or commands are exchanged, usually related to player avatars. If cell
nodes had to exchange updates for all objects then, for instance, a horde of NPCs or
other AI-controlled objects in a cell would generate a huge traffic to allow the cell nodes
to synchronize. This would probably be coupled with a scheme where the AI objects
are split evenly among cell nodes (a ‘partitioning’ distribution scheme). But, with our
conservative ordering of events coming into the cell, which are the only source of non-
determinism in the simulation, we can ensure that the simulation is deterministic and that
the state is effectively replicated across all cell nodes. With this, we can guarantee that
the AI-controlled objects will take the same decisions on all cell nodes and no messages
concerning changes in their state have to be exchanged. This allows a cell nodes to multi-
cast its small BSS ‘round’ packets directly to all other cell nodes through unicast, and we
are able to compensate the lack of IP multicast without consuming unrealistic amounts of
upload bandwidth from cell nodes.

However, the drawback of synchronization schemes such as the stop-and-wait proto-
col in BSS is that they aren’t scalable. Waiting for all replicas is always necessary. One
way to scale a cell beyond ten or so replicas would be to employ ALM. In this scheme,
a node doesn’t have to send, through unicast, its round packet directly to all other cell
nodes. Instead, it sends it to a ‘neighborhood’, which then becomes responsible for dis-
seminating it further, and so on. The drawback of this is the increased latency which, in
TSS/BSS results in an enlarged distance between the conservative and optimistic states,
which aggravates the potential problem of CPU usage and the wall-clock time needed to
perform rollbacks. Also, latency is never good for games, and achieving cell scalability
by introducing multiple hops of communication between cell nodes is simply not a good
idea if we ever hope to achieve support for MMOFPS games with future works that don’t
completely change the architecture. So, the FreeMMG 2 cell is not scalable by design.
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That is on purpose.
This leads us to the problem of inter-cell synchronization. So far, two juxtaposed cells

simply won’t interact at all. There is no way to engage two nearby cells into conservative
ordering, for that would simply mean that the cells are merged and the cell scalability
(or lack thereof) problem appears. One possible solution would be to run other larger
conservative synchronization groups, in parallel, that encompassed several cells. For in-
stance, all cell nodes of two adjacent cells engage in stop-and-wait, but at a reduced rate.
This solution creates more problems than it solves. The actual solution we propose for
FreeMMG 2 is described below.

The solution is to let adjacent cells exchange update packets. At every CTICK net-
work or simulation tick of a cell O, any primary cell node of an originating cell O sends
a single update packet to any (chosen by the sender, e.g. a circular sequence) primary cell
node of an adjacent destination cell D. The receiving node treats the incoming update
in the same way it treats incoming player command packets, with the exception that in-
coming cell updates are authoritative updates, that is, they modify the shared state at the
receiver unconditionally. The source of these updates is the optimistic state of the send-
ing cell node. That is necessary because the resulting inter-cell synchronization scheme
will have a significantly increased latency if compared with intra-cell synchronization,
and using the conservative state of O as source of inter-cell updates would aggravate the
situation.

The ‘cell tick’ (CTICK) periodic event happens asynchronously at each primary cell
node. However, due to clock synchronization between cell nodes, we can assume that
CTICK happens at the same time at all primary cell nodes. When it happens, each
of the N primary cell nodes at a cell O will send their small round packets to all other
N − 1 primary cell nodes of O and now, additionally, send large update packets to its
neighbor cells. Since there are potentially malicious primary cell nodes in each cell, we
recommend that a cell D which is adjacent to O should always receive an update from
the next primary cell node of O in a circular sequence. In this way, D is never bound
to a continuous stream of bogus updates from any of its adjacent cells and discrepancies
between different updates from the same originating cell could be detected at D by the
application or other cheat detection heuristics.

Let’s assume that the game world is a 2D rectangular grid, and that N = 8 primary
nodes in each cell. In this case, each cell will have eight (8) neighbor cells. In this
scenario, at every CTICK, each primary cell node of a cell O will be responsible for
sending exactly one update packet to one primary cell node of one of the adjacent cells.
That is, at every CTICK, we have eight primary cell nodes and eight neighbor cells, thus
each primary cell node becomes responsible for updating one adjacent cell. However, if
N 6= 8, then adjustments are needed. For N < 8, either some of the neighbor cells of O
won’t receive packets on each tick of O or some of the nodes at O will send more than
one packet at each tick of O. For N > 8, some of the nodes at O will not send packets at
each tick of O.

This specification results in a regular and predictable amount of uploaded UDP pack-
ets by each cell node due to inter-cell synchronization. If N = 8 in a world that is
a rectangular grid of cells, then inter-cell synchronization costs just 1 additional UDP
packet to be uploaded per network tick, at each individual primary cell node. The payload
size of this UDP packet will vary. It can go from zero bytes if there are no game objects
near the border that divides the two adjacent cells being considered, to a very large pay-
load if there are hundreds of dynamic game objects moving along the border that divides
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the cells. Since hot-spots are to be expected on cell borders as in any place of the virtual
world, there must be a mechanism to deal with this. A combination of packet-size cap, a
message prioritization scheme that increases the score of pending messages with time so
that they don’t starve in the queue, and AoI filtering will have to do the job. The latter
should be provided by the application.

The UDP packets exchanged between cells have the same stream-based point-to-point
protocol described earlier over them. This means that a primary cell node will have the
state for such protocol (such as pending messages to re-send, acknowledgements, etc.)
for each primary cell node of each cell. That is, a primary cell node is always actively
communicating with N ∗ M − 1 nodes, where N is the number of primary cell nodes
in each cell and M is the number of neighbor cells that all cells have. However, there
is a difference: all logical links between two primary cell nodes of different (adjacent)
cells will require very large timeout values. Considering two such cell nodes P1 and
P2, the interval between P1 sending two packets to P2 is CTICK ∗M ∗ N . Assuming
M = N = 8 and CTICK = 100ms, that results in 6.4 seconds between packets sent
from P1 to P2, and vice-versa. That is assuming that P1 alternates the destination node at
P2’s cell fairly (circular selection).

Due to this delay, doing reliable or ordered delivery of messages across cell borders
becomes inefficient. Thus, FreeMMG 2 itself only uses message streams that do not
guarantee neither the delivery of messages nor their order for inter-cell communication.
However, if the application requires it, inter-cell reliable or ordered messaging between
pairs of cell nodes is available. The application is not limited to the UDP packet exchange
described here, and it can make cell nodes communicate in any way desired. What we
describe here is a level of functionality which makes the architecture compatible with
current consumer-grade broadband technology. In other words, we want the ADSL users
that have only 256 Kbps of upload bandwidth to be able to participate as cell nodes as
well.

In this section, we have described how cells can send object updates to their adjacent
cells, allowing adjacent cells to ‘see’ each other’s objects in real time. In this way, a
player avatar at one cell is able to see objects that are owned by its current cell and also by
all the adjacent cells, though with some added delay and thus lowered visual consistency.
This scheme leaves two problems open. The first one is how to transfer object ownership
between cells. As objects move into other cells, it becomes necessary to hand them over
between cells or else objects would only be ever perceived by its original spawning cell
and its immediately adjacent cells. The second problem are update conflicts. In the
scheme above, we are implicitly allowing objects to be owned by one cell and be located
at an adjacent cell temporarily. That is a problem because, a ‘foreign’ object can be
ordered, by its owner cell, to move over a local object. The local cell simulator will then
have to resolve the conflict, which isn’t trivial because, sometimes, the foreign update will
need to be honored and at other times it will not. These issues are addressed in upcoming
sections.

4.2.6 Player-cell synchronization protocol

The FreeMMG 2 core should provide a set of basic communication primitives that
allow several different schemes for synchronizing player nodes and primary cell nodes.
Ideally, any player node should be able to send packets to any primary cell node in the
system. Then, game code would be responsible for filtering out irrelevant packets. For
instance, consider that a player sends a command to a primary cell node that orders its
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avatar to move. The cell node receives the network message and quickly discovers that
the player has no means to interact with the cell in question. For example, the cell has
no avatar object for that player. Then, the cell node can simply discard the packet. Thus,
the communication primitives to be provided by a FreeMMG 2 core layer are simple
communication primitives that allow for sending messages (packets) to specific primary
cell nodes in the system. In other words, it just forwards the API of the low-level point-to-
point protocol. Some minor improvements can be made in the process, such as changing
the destination address format from an IP address to a node ID in the system. Other than
that, the core only provides raw messaging between player and primary cell nodes. There
is no need for prior authorization of communication, interest management or the like at
this level. In following sections, this primitive messaging mechanism is used by some
specific player-cell interaction protocols which should be able to support several different
games with different requirements.

4.2.7 Client-server protocol

All client nodes must be able to connect to and communicate with server machines
while they participate in the system. These client-server connections should remain idle
on average, though significant communication can occur between a server and a client on
some occasions. For example, if a cell fails in a way such that its state is unrecoverable,
the server-side process responsible for managing the cell must rebuild the cell state and
transfer it to a full new set of replicas (this is explained in Section 4.3). Another example
is if two cells start performing numerous reliable object transfers between each other
(explained in following sections).

We suggest that the low-level socket protocol used for this be the same used for the
other protocols. Like the player-cell communication support at the core, the client-server
support provides just plain point-to-point messaging. That is not so important. What is
important is how the potentially several server machines allocate processes that commu-
nicate with subsets of client machines. We have already defined that cell nodes should
communicate with a cell manager process on the server-side. These processes should be
either allocated statically to machines or the available server machines should distribute
the load of managing cells dynamically. The players, on the other hand, could connect to
the cell manager processes of the cell that owns its avatar. Alternatively, players could be
assigned to player manager machines which would each manage a maximum amount of
players. In any case, the bottleneck would be, probably, the shared data store upon which
the separate manager processes would operate.

4.3 Fault tolerance at cells

All of the client and server machines on a FreeMMG 2 network may experience a
myriad of different software or hardware failures, both due to unintentional failures and
intentional ones, such as attacks. Providing full fault tolerance coverage, in detail, to the
whole FreeMMG 2 network is not the goal of this thesis.

We do not touch on any kind of server-side fault tolerance. We assume that server-side
fault tolerance can be performed as an add-on work. For instance, if a machine running
several cell manager processes crashes, those processes should be restarted in another
machine. Several practical issues arise, such as reuniting the client-side cell nodes with
the new cell manager. It is clear that recovering from server-side failures is not a trivial
task, but it is certainly a task that can be detailed as future work or left for implementors to
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resolve. For now, we can assume that the server-side infrastructure is sufficiently robust.
As for the client-side, we are concerned with failing nodes. We are not concerned with

player node failures, as those can freely crash or drop out of the network with no effect
on the cell infrastructure.

So, in the context of this thesis, we are specifically concerned with the client-side
cell nodes (primary and back-up) failing. In our model, virtual world cells are served by
untrustworthy client nodes which may drop in and out of the network frequently, which
causes player serving outages and temporarily reduces the amount of replicas in a cell,
potentially weakening it against state cheating. And when cell nodes are not dropping
in and out, they might be trying to cheat the game, or they may fail unintentionally, for
instance due to programming bugs.

So, in this section, we address our only real fault tolerance concern which is the cell
failure. A cell is actually a set of hosts, so we have first to define what makes that set fail,
and how and where the failure is detected. So, we first address fault detection, or when
does a cell fail. Then we propose a mechanism for fault recovery, which is managed by
the cell manager. This mechanism eventually restores the cell to a working state.

Our two main concerns in regards to cell fault tolerance are, in order of importance:

• Minimizing or eliminating the possibility of a successful peer collusion for state-
cheating;

• Minimizing or eliminating the possibility of a complete loss of the client-held cell
state, forcing the cell manager to restore the state from its ‘vital cell state’ record.
This happens if all cell peers die at the same time (very unlikely) or if the remaining
amount of cell peers is so low that it opens the possibility of state-cheating (more
likely).

The fault tolerance mechanism’s design stems from those two top-priority issues.
Having those settled, we try to address the following secondary concern:

• Minimize the average cell serving outage for players due to fault recovery. In other
words, recover the cells quickly so that players stay only a few seconds out of
gameplay, instead of minutes;

Before detailing our proposed mechanisms, the next section discusses how far we
could ever get in regards to attending to the two main points: state-cheating resistance
and avoidance of cell state loss.

4.3.1 Limits of fault tolerance effectiveness in a FreeMMG 2 network

In this section we set some upper limits on how far can we could ever get on fault
tolerance, considering the FreeMMG 2 architecture described so far. By ‘effectiveness
limit’ we do not mean how transparent a cell fault recovery procedure can be, or how
much coverage does our fault detection is. Rather, we want to check, assuming the best
possible detection and recovery mechanisms, how well we can steer away from state-
cheating and state loss while doing fault recovery.

First of all, state cheating, which is an intentional failure, cannot be detected automat-
ically by the FreeMMG 2 model described in this text if all of the primary cell nodes are
colluding to subvert the state of the cell into something illegal which favors the player
accounts of those colluding clients. This cannot be solved unless some other method is
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used to detect illegal alterations. For instance, adopt an heuristic that tries to deduce, us-
ing knowledge of the game rules and some degree of confidence, if a cell has grown too
much of in-game, ‘virtual resources’ in a period of gameplay that is too short, much like
the tools that governments have to detect tax fraud.

Secondly, the loss of the entire state of a cell is always a possibility, the question
being only the probability of that happening on the network as a whole under normal
circumstances and under varied styles and magnitudes of intentional attacks. Consider
that it might be rare, but all cell nodes, primary and back-up, can be shut down at the
same time. This implies that to offer a 100% guarantee of global consistency, you need a
trustworthy and available machine to keep the cell state. In other words, you need one of
the cell servers for that. This brings the central consequence that, in order to achieve any
degree of decentralization and also guarantee 100% consistency, we need to split the cell
state in two parts: the bits that are essential to maintain global consistency and the non-
essential bits. The essential bits are synchronized with the servers and the non-essential
bits are not. In the event that the entire state of a cell is lost because the peers’ states
cannot be used (for whatever reason) then the cell state is reconstructed from the essential
bits synchronized at the server-side and those bits being the essential part of the cell state
that guarantees global consistency, the game world as a whole can have some invariants
that are never violated. This also means that all of the gains related to client-server traffic
reduction in FreeMMG 2 are related to the proportion of essential to non-essential bits
inside the cell states. Thus, the previously mentioned ‘vital cell state’ feature depends
on infrequent, but important (vital), updates being sent from the cell nodes to the cell
manager.

Those two are problems that the FreeMMG 2 model, as designed, cannot fully solve,
even if its parameters are tweaked to whatever values (e.g. set N=100 cell nodes per cell
or whatever high value).

In FreeMMG 2, the last line of defense against collusion cheating in our model is
making it unattractive or unrewarding for groups of coordinated cheaters to even attempt
cell collusions in the first place. As will be seen in the experiments chapter, a very large
group of colluding nodes (in proportion to the total amount of volunteers) have to serve
as cell nodes for a long time on average before they get a shot at subverting a cell. We can
argue that the good that this large set of nodes does to the network offsets any cheating
that they can do. So, we believe that, in the end, this preventive ‘last line’ can be effective.

Also, the last line of defense against complete loss of a cell state is synchronizing a
low-fidelity version of the cell on the server-side cell manager using the vital cell state
feature, as suggested in earlier sections. We also believe that this last resort measure can
be effective. It complements the main approach, which is to make it highly unlikely that
a cell’s running state is going to be lost in the first place.

In short, collusion cheating and complete loss of state are the two most catastrophic
events that can happen to a cell. We make it highly unlikely for them to happen in the
first place. For collusion, we prevent it by making it very unrewarding to be attempted,
or forcing the attempters into contributing to the network first, which compensates the
damage. The game designers can even lay their own game-dependent checks over those
basic mechanisms to further discourage collusion. For complete loss of state, we recover
from the highly unlikely cell state losses with a game-dependent recovery procedure based
on game-dependent ‘vital cell state’ that is synchronized at the server-side cell manager in
a game-dependent way, thus effectively mitigating this (already rare) damaging situation.
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4.3.2 Fault detection: cells and cell nodes

All of the client and server machines on a FreeMMG 2 network may experience a
myriad of different software or hardware failures, both due to unintentional failures and
intentional ones, such as attacks. The FreeMMG model is not designed to treat each
and every type of individual node failure differently. Rather, we are only concerned on
detecting if a node is behaving in a faulty manner. The individual reasons that may lead a
cell node to fail will be discussed in passing through the text but we are not concerned in
building an exhaustive list.

A cell ‘fails’, that is, a cell failure is officially ‘detected’ when its cell manager decides
that it has failed. The cell manager decides (or ‘detects’) that a fault has occurred in a cell
if any of the following conditions are met (the list is intended to be complete):

• It receives a FAULT message from any cell node. When a cell node observes any
kind of local faulty behavior, or when it decides to try to slow-down or sabotage the
network for whatever reason, it can send a FAULT message to that cell’s server;

• While communicating with a cell node, the server detects a local communication
timeout or error on the socket connected to that node;

• While communicating with a cell node, the server receives a network message that
violates the protocol (invalid message) from that node.

A cell node may send a FAULT message to the cell manager for any number of rea-
sons. As discussed earlier, we are not concerned in enumerating all possible types of
individual node failures. The sending of a FAULT message to the server may be due
to the cell node detecting a fault locally, or because the node is malicious and wants to
somehow cause harm to the network. The following is a list of events that a cell node can
perceive programmatically and, when perceived, are considered as failures:

• A primary node loses its overlay network (logical) connection to any of the other
primary nodes in the cell, its own back-up node, or the cell server. This is detected
by a middleware-defined (or game-defined) timeout rather than the sockets library
or operating system;

• A back-up node loses its logical connection to the primary node or the cell server;

• A cell node receives a malformed message from another cell node or the cell server
which it cannot just discard and ignore;

• A cell simulator hits an exception handling point or software crash where it does
not know how to recover from that situation;

• A cell node is unable to keep up with the other simulators on the cell: not enough
computing (CPU) resources to run the conservative and optimistic simulator, and
the rollbacks (see Chapter 3 for an analysis of this problem);

• A cell node is unable to keep up with the other simulators on the cell or neighbor
cells: not enough bandwidth for clearing the backlog of pending messages to send.
This increases latency up to a point where this node will harm the network as a
whole;
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• A cell node detects that the replica (conservative) simulation has gone out of syn-
chrony. Although the conservative simulation requires deterministic inputs, a game
programming error can be inadvertently relying on non-deterministic values, pulling
the replicas out of synchronization. This can be detected through the exchange of
conservative state checksums, and can be denounced by a FAULT message.

The FAULT message has only one (optional) parameter, which is the ID of a single
cell node which is being accused by the sender cell node of having failed 8. If no such
parameter is provided, then the cell manager assumes that the sending node is accusing
itself of faulty behavior (same as sending its own ID as parameter).

During fault detection, primary and back-up nodes are treated differently by the cell
manager. Below is a list of all possible combinations of sender (accuser) node and re-
ported (blamed) node in an incoming FAULT message, and how the cell manager should
interpret the incoming message:

• Accuser (primary or back-up) is blaming itself: that node is considered faulty;

• Accuser is primary, blaming its own back-up node: the back-up node is considered
faulty;

• Accuser is primary, blaming another primary node: both primary nodes (accuser
and blamed) are considered faulty;

• Accuser is back-up, blaming its own primary node: the back-up node is considered
faulty;

• Accuser is blaming an invalid node ID (e.g., a back-up node blaming a primary
node not its own, or a primary node reporting a non-existent node ID): the accuser
is considered faulty;

Back-up nodes cannot accuse their primary nodes. If that were allowed, back-up
nodes could take primary nodes out of the cell at will. This concern overrides the opposite
concern of the primary node being the faulty one and the back-up honestly trying to point
that out. However, if a primary node is faulty, then its back-up node is not essential for
this to be detected, since there are several other primary nodes that can detect the faulty
behavior of that would-be accused primary node.

When a primary node accuses another primary node, then both have to be considered
faulty. This solves the problem of determining if the accuser is being honest or malicious.
If the accuser is being malicious, then the optimal solution would be to mark only the
accuser as faulty. If the accuser is not being malicious, then at least the blamed node must
be considered faulty. However, in some situations, even if the accuser is being honest, the
optimal solution could include it as faulty too. For instance, when two honest cell peers
lose the peer-to-peer socket connection to each other, it is initially unclear which one is
to blame or, more precisely, which one should be removed from the cell and replaced.

8Originally, we designed the FAULT message to carry a list of faulty node IDs. However, due to the
way we ultimately designed fault recovery, it became apparent that a list of IDs would not be of any use.
In the event that a primary node detects several faulty primary nodes at once (unlikely), an implementation
should instead send a series of FAULT messages, each one with a single ID in it. Even if two nodes A and
B fail and an observer node O detects the failures at the same time, node O will have to elect either A or B
to be the one that has ‘failed first’. It doesn’t matter which one.
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Both would send FAULT messages accusing each other, and the cell manager would have
to allow some wall-clock time for all simultaneous accusations to arrive and try to figure
out what happened. It is easy to see that trying to be completely fair here would be too
complex, would take too long in wall-clock time, and ultimately wouldn’t matter because
cell nodes are just daemon nodes: no human players are being denied play in a world cell.

One of the main advantages of an immediate attribution of ‘faulty’ status to cell nodes
once a FAULT message arrives is that it shortens the overall wall-clock time for the fault
recovery algorithms. This should become clear on the next subsection.

Fault recovery starts as soon as the first cell node is marked as ‘faulty’, and the fault
detection process described here can continuously change the course of recovery. In
other words, faulty node detection (this subsection) and cell fault recovery are concur-
rent. While fault recovery runs, the list of faulty cell nodes can grow, as new FAULT
messages arrive at the cell manager. The only exception is when a FAULT message is
received from a cell node that is already marked as faulty. In this case, the message is
disregarded and no additions to the faulty nodes list are made. The next subsection ex-
plains how the cell fault recovery process reacts to this dynamic list of ‘faulty’ cell nodes
to restore the cell to ‘working’ status.

4.3.3 Cell fault recovery

Fault recovery is a disrupting process for the players on an affected cell and possibly
on its surrounding cells, so a recovery procedure should try to minimize that disruption
by completing instantly or at least quickly, so that players don’t notice it or aren’t too
bothered by it. However, quickness cannot justify recklessness. We must design in some
deterrent so that a malicious group of cell nodes won’t be able to easily game the fault
recovery mechanism to allow illegal state cheating. Our first priority is to avoid those
windows of opportunity for cheating.

As it turns out, there is no perfect solution for fault recovery that achieves maximum
security and maximum quickness. Thus, we have developed two separate recovery strate-
gies:

• A ‘quick recovery’ strategy, which completes quickly but also widens the window
of opportunity for illegal state cheating on the cell being recovered. The quick
strategy is based on replacing individual faulty cell nodes and avoiding any lengthy
operations such as downloads and uploads of cell state snapshots between remote
hosts;

• A ‘full recovery’ strategy, which takes a long time to complete, but does not widen
the window of opportunity for illegal state cheating on the cell being recovered.
The full strategy replaces all faulty cell nodes with a fresh set of volunteers from
the volunteer pool, and it may involve lengthy operations such as downloads and
uploads of cell state snapshots between remote hosts.

Our over-arching recovery strategy is the following: if the number of nodes marked
as ‘faulty’ (as seen in the previous section) is below a certain threshold, then we employ
the quick recovery strategy. If the number of faulty nodes exceeds the threshold, then we
switch to the full recovery strategy. Since the number of faulty nodes can only grow during
a single recovery process, then the quick strategy can be replaced by the full strategy
during the same over-arching recovery process, but the reverse is not possible.
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From now on, let q be the number of cell nodes marked as ‘faulty’ by the cell manager
during a single cell failure and recovery process, and Q the maximum number of faulty
cell nodes for quick recovery to be considered. So, if q ≤ Q, then a ‘quick recovery’
algorithm can be running. If q > Q is detected during the recovery process, then a ‘full
recovery’ algorithm must be running.

Choosing a good value for Q will depend on each game deployment, and it might
have to be tweaked during a game’s lifetime. However, we can try to define a good
default value. For that, we do an analysis below of some candidates:

• Q = 0: This would be the safest option. However, in this case quick recovery
never runs. Upon any sign of failure whatsoever, the cell manager would perform a
full recovery. This presents maximum security and can actually be a good solution,
when coupled with the ‘grief system’ which is described in a later subsection;

• Q = 1: This presents the smallest window for state-cheating while, at the same
time, allowing some room for quick recovery to actually run. However, with this
threshold, any time a primary node accuses a different primary node, quick recovery
will not run. This brings the central consequence that a single malicious node can
trigger a full recovery in any cell it is at, at will. Thus, this setting might not be
optimal. However, by that same analysis, neither would Q = 0 be;

• Q > 1: Any value from 2 and above avoids the disadvantage listed for Q = 1: now
at least two coordinated malicious primary nodes are needed on a cell to trigger a
full recovery. However, as the value of Q increases, the window for state cheating
increases. This, on the other hand, can be countered by increasing the number of
cell nodes on each cell. For instance, if a game is being constantly vandalized by
malicious fault reporting, both Q and the number of cell nodes in each cell can be
increased simultaneously.

Therefore, we establish Q = 2 as a default value, since it is the safest value that also
prevents lone malicious nodes from triggering full recoveries at will. If maximum security
is desired, Q = 0 can be employed instead. The Q = 1 setting might be useful if it can
be coupled with some additional trick, such as temporarily banning ‘accuser’ nodes from
serving in cells for a short time (e.g., two hours).

It should be noted that whenever q > Q, the quick recovery algorithm is completely
aborted, without any kind of additional ‘transition’ or ‘hand-off’ to full recovery. Full
recovery is designed to start from whatever is remaining from the smoldering wrecks of
the failed cell simulator. As will be seen later, even if all cell nodes have vanished, full
recovery can complete successfully.

4.3.4 Quick recovery

The quick recovery algorithm is performed for a single cell node that has failed. If
multiple cell nodes have failed then one instance of the algorithm should be started in-
dependently to replace each failed node. So, while using the ‘quick recovery’ strategy
for the cell, a cell manager can actually be running several instances of quick recovery
algorithms.

The quick recovery algorithm is also different, depending on the type of cell node be-
ing recovered, either primary or back-up. Replacing a back-up node should be completely
transparent and shouldn’t affect player nodes in any way. Replacing a primary node is a
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bit more complicated, but still the algorithm is optimized for minimum gameplay disrup-
tion. Replacing the primary node causes the corresponding back-up node to be replaced
also, so the quick recovery algorithm for back-up nodes can be seen as a subset of the
algorithm for replacing the primary node.

An important limitation of the quick recovery algorithm is that it only works if the
cell node to be replaced still has its pair alive. In other words, a back-up node can only
be replaced if its corresponding primary node is still working in the cell. Conversely,
to replace a primary node, the back-up must be alive and up-to-date. If this condition
does not hold, for any cell node being replaced, then quick recovery must be abandoned
completely and the cell manager should enter into ‘full recovery strategy’ mode, the same
as if the q > Q threshold were just crossed.

4.3.4.1 Quick recovery for back-up nodes

Let B be the failed back-up node and P its primary node. The recovery of a back-up
node works as follows:

1. Cell manager selects a new node B’ from the volunteer pool, and sends the message
REPLACE_BACKUP to both P and B’. That message contains the network (socket)
addresses of P and B’ and the cell ID of P;

2. P, upon receiving REPLACE_BACKUP:

(a) P immediately disconnects completely from B. Any further messages from B
will be ignored;

(b) P Also connects to B’ (or accepts a connection from B’). When the connection
to B’ is successful, P sends REPLACE_BACKUP_OK to the cell manager, and
starts to synchronize B’.

3. Upon receiving REPLACE_BACKUP, B’ keeps trying to connect to P until it accepts
the connection. When that is successful, B’ sends REPLACE_BACKUP_OK to the
cell manager;

4. If the cell manager times out while waiting for a pair of REPLACE_BACKUP_OK
messages, it fails the replacement back-up node and re-starts this algorithm;

5. If the cell manager receives REPLACE_BACKUP_OK messages from P and B’, the
cell manager assumes the recovery is complete.

Step 2 ends with P synchronizing B’. Since B’ is a blank volunteer node, it has no cell
state whatsoever stored in it. P needs to first send a copy of its most current conservative
state, followed by a continuous stream of all subsequent events. The bigger is the cell
snapshot data, the longer the back-up node will take to download it. Since the download
can take a long time to finish, before uploading it P needs to save a copy of the current
conservative cell state into a buffer. Though P’s cell state is constantly being updated, the
download continues until B’ finishes downloading the now ‘old’ snapshot. B’ will then
have to execute the potentially large backlog of events until it catches up. There are no
constraints placed on how long this can take. If B’ takes half an hour to catch up, then
so be it. P will have to hold all of the relevant event data in process memory until it can
be dispatched to the outgoing socket buffer. As always, if P or B’ can’t perform the task
(e.g., not enough memory) it is simply a matter of sending a FAULT message to the cell
manager, which will take over from there.
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4.3.4.2 Quick recovery for primary nodes

Let P be the failed primary node, B its back-up node, and X any of the primary nodes
that are not P. The recovery of a primary node works as follows:

1. Cell manager sends a REPLACE_PRIMARY message to all primary nodes (except
P) and to B. The message contains the ID of P, which is the node being removed,
the ID of B and the network (socket) address of B, and the network address of all
primary nodes (except P);

2. B, upon receiving REPLACE_PRIMARY, knows that it will replace P, so B discon-
nects and ignores P. B then attempts to first connect to all primary nodes (or accept
their connections);

3. Any X, upon receiving REPLACE_PRIMARY:

(a) X knows that P will be replaced by its back-up node, and that back-up nodes
are always running their simulators a little late relative to their primary nodes.
This means that some old events that X had already timestamped and dis-
patched to the cell will have to be re-issued to B. The size of that ‘back-off
window’ depends on many factors, including the amount of aggregation that is
performed between primary and back-up nodes. So, to avoid losing any more
stored events before X knows which old events B will need, X temporarily
suspends its ‘fossil collection’ (FUJIMOTO, 2001), or elimination of events
by age;

(b) X now know that B will replace P, so X disconnects from P;

(c) X tries to connect to B (or accept B’s connection attempt);

(d) X immediately disregards any turn flags from P, counting from and including
the simulation time CST of X’s conservative simulator, regardless if a turn flag
from P was already received for the current turn CST or not;

(e) X may have received an input from P timestamped for turn CST, the cur-
rent conservative simulator turn at X. However, X cannot just disregard inputs
from P for CT because other simulators may be at CT-1 still, and if they do the
same, they will discard P’s input for CT-1, which was already used by X (this
node) to compute its CT-1, since it is now at CT. So, all remaining primary
cell nodes have to run a voting round to discover when exactly, in simula-
tion time, P’s inputs can be taken off the lock-step simulation. To that end,
X broadcasts a VOTE_PRIMARY_REMOVAL_TIME message which contains
MIN_CT, which is the last local conservative simulation time which already
incorporated an input from P at X. It is probably the case that the following
will always hold at X: MIN_CT = CT − 1.

4. When a node X receives all VOTE_PRIMARY_REMOVAL_TIME from all other
primary nodes except nodes being replaced (such as P), it computes the minimum
value among all MIN_CT values received, which will be called LAST_VALID_CT,
or the last conservative simulation time where the input of P should be counted by
all primary nodes. If X verifies that CT > LAST_V ALID_CT , then it means that
X has already incorporated an ‘illegal’ input from X on its conservative state, which
X cannot recover from. So, X sends a FAULTmessage to the cell manager, accusing
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itself. If X verifies instead that CT ≤ LAST_V ALID_CT , then it instead just
discards any and all input events received from P so far which have a timestamp ET
such that ET > LAST_V ALID_CT , and the lock-step simulator at X will not
lock waiting for any input from P after LAST_VALID_CT.

5. If a node X times out while waiting for one VOTE_PRIMARY_REMOVAL_TIME
message from a remote primary node (excluding the ones being replaced), it issues a
FAULT message to the cell manager accusing the timed out peer (the other primary
node).

6. When a network connection is successfully established between any X and B:

(a) Both X and B send a REPLACE_PRIMARY_CONNECTION message to the
cell manager with both node IDs as parameter;

(b) B sends a REPLACE_PRIMARY_EVENT_REQUEST message to X telling
the current timestamp T of its latest conservative state copy CST, along with a
Hash(CST) so that X will be able to check that B is really synchronized with
the cell;

7. Any X, upon receiving a REPLACE_PRIMARY_EVENT_REQUEST message from
B, will re-send all events it had already sent to the cell, starting from the T times-
tamp given in the message, up to the current conservative simulation time at X. If X
doesn’t have events corresponding to T, it sends a FAULT message to the cell man-
ager sending its own node ID as parameter. X also checks if the state hash matches
what it had already calculated for its local conservative state at simulation time T;

8. If any X times out while waiting for a REPLACE_PRIMARY_EVENT_REQUEST
message from B, it will send a FAULT message to the cell manager with B’s node
ID as a parameter;

9. If the cell manager times out while waiting for a NEW_PRIMARY_CONNECTION
message pair from any X and B, both that X and B are marked as failed. This
necessarily causes a ‘full recovery’ to run, because B was the last member of the
pair (P,B) of nodes. Now that both are failed, full recovery has to run and this
algorithm is aborted 9.

10. When the cell manager receives all NEW_PRIMARY_CONNECTIONmessage pairs,
it knows that the cell’s overlay network is restored, with B in place of P. It also
knows that all X nodes and B are already working to synchronize B, and that if
there are any further problems, such as B not being able to catch up due to unre-
coverable, missing events at one of the primary nodes, that they will complain with
FAULT messages. At this point, the cell manager continues running the ‘quick re-
covery for back-up nodes’ algorithm described in the previous subsection, which
will eventually grant a new back-up node to B, which is now the primary node.

9Certainly, the quick recovery algorithms could be designed to not require each pair to have at least one
member alive. Or, a back-up node could be allocated and synchronized to B before promoting B to primary
node, thus allowing B to fail here without falling back to full recovery. However, those introduce additional
problems on their own right and also add an amount of complexity that, in our opinion, doesn’t pay off.
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Several instances of this algorithm can be running concurrently. For instance, if two
primary nodes fail at the same time, both will be replaced at the same time by two in-
stances of this algorithm. However, there is no complete isolation. For instance, the
set of nodes named ‘X’ in the above algorithm is common for all concurrent instances.
If there are two nodes P1 and P2 being replaced, then set of ‘valid’ primary nodes (in-
cluded in ‘X’) in both algorithms will exclude both P1 and P2, and not only the individ-
ual ‘P’ being replaced by each algorithm separately. If this care is not taken, then the
exchange of VOTE_PRIMARY_REMOVAL_TIME messages won’t work, as all ‘failed’
primary nodes won’t be answering for that messages, regardless that a single exchange
of VOTE_PRIMARY_REMOVAL_TIME is specific to a single primary node being taken
out. Besides this caveat, we have not yet verified if there should be any other interaction
between concurrent instances of the algorithm.

As with quick recovery for back-up nodes, the primary node recovery algorithm ends
with an optimistic assumption that the replacement node will successfully ‘catch up’.
And, the primary replacement actually ends with a call to the back-up replacement algo-
rithm, so there will actually be two optimistic ‘catch-up’ processes running concurrently.
Both algorithms are designed to cause minimal disruption to game-play, assuming that
they complete successfully.

The central idea here is that, like back-up nodes, a single missing primary node can
take all the time it needs to recover, without needing to halt the whole cell for this. For
example, if a cell has N = 8 primary nodes, and one fails, the remaining seven primary
nodes can share the load in serving any ‘orphaned’ player nodes that were being served
by the missing primary node, and they can also temporarily supply neighbor cells with
updates, probably at a slightly reduced rate.

During quick recovery, although well-behaved nodes should complete the algorithm
successfully, many different things can go wrong for varied reasons. In the case of fail-
ures, the cell manager is notified with additional FAULT messages from the cell peers. If
the Q threshold is crossed during additional fault reporting, then the cell manager finally
decides that its optimism is no longer warranted.

The Q threshold allows the cell manager to be highly optimistic and trust the peers
on resolving most of the situation in a peer-to-peer fashion, with minimal coordination
performed by the cell manager. That is, while Q is not crossed. The threshold allowed us
to design two very simple, and diametrically opposed algorithms, and bring them together
by using a simple fault detection scheme and a simple criteria for choosing which should
be running. In this section we have presented the quick algorithms, and the next section
will present the more disruptive, full recovery algorithms.

4.3.5 Full recovery

Full recovery is started whenever quick recovery no longer applies during cell fault
recovery. At the end of full recovery, all cell nodes will have been replaced by new nodes
drawn from the volunteer pool. None of the original cell nodes will remain on the cell.

However, before replacing the cell nodes, the cell manager attempts to download an
up-to-date snapshot of the cell state from the cell nodes. Since the cell manager is, most
of the time, out of the loop in regards to the current state of the cell, the cell manager is
not in the best position to seed the new nodes with the current cell state. Instead, it must
first query the old cell nodes that have ‘survived’ so far to try and extract a copy of the cell
state from them. While doing this, the cell manager must make sure that a large enough
number among the old cell nodes agrees on a common cell state, to minimize the chance
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of illegal state cheating being successfully performed.
We will call the minimum quorum of agreement over a single state M . M is the

smallest number of cell node pairs that must be ‘in agreement’ over a common cell state
(let’s cal it ‘S’). Assuming a node pair is formed by two nodes P and B, for that node pair
to ‘agree’ on S, one the following must hold:

• P is alive and agrees with S, and B is dead;

• B is alive and agrees with S, and P is dead;

• P and B are alive and both agree with S;

• P and B are alive, and P agrees with S (B is disregarded);

Agreement means that a cell node knows for a fact that a given state S is valid for its
cell. A node tests for validity of S when it receives a hash H from the cell manager, which
corresponds to S. The cell node then looks up H on its list of past cell state hashes and
verifies if there is a match. If there is a match, then it means that the cell node recognizes
S as a valid cell state. It doesn’t necessarily mean that the cell node still has the actual
cell state data for S, since each node only keeps one ‘live’ copy of the conservatively-
synchronized state, which is constantly updated.

If the cell manager gathers a distributed agreement on a given cell state S, such that
an amount of agreeing node pairs A satisfies A ≥ M , then the cell manager verifies if
at least one cell node (any one) has the actual cell state data for S. If that is true, the cell
manager attempts to download the data for S from the cell node(s), and then it uses that
to initialize the full new set of cell nodes.

If no agreement can be reached by at least M cell node pairs, or if the only agreements
are on state hashes and no cell node actually has kept the state data for that hash, then the
cell manager completely abandons the old cell nodes and recreates the cell state itself
from whatever up-to-date cell data it has stored locally (this is the ‘vital cell state’ data at
the cell manager). This is a last resort measure which is preferred to having a too small
agreements decide the state of the cell. Similarly to the Q threshold, the M threshold
should probably be tuned so that a good balance between security and full discards of
client-side cell state can be achieved.

To clarify the explanation, we will split the full recovery algorithm in two: ‘full recov-
ery from client-side state’ and ‘full recovery from server-side state’. Client-side recovery
is always attempted first but, while it runs, the cell manager can decide that it can no
longer recover from client state. In this case, the algorithm jumps to the steps described
in server-side recovery.

4.3.5.1 Full recovery from client-side state

The full recovery from client-side state is attempted first. Let X be any cell node. Full
recovery works as follows:

1. The cell manager verifies if the potentially reachable set of cell nodes is sufficient
to meet the M threshold of agreeing cell node pairs. As examples, if M = 0, or
if M > 0 but all primary cell nodes are unreachable (disconnected from the cell
manager), then the full recovery from client state is aborted and the server-side
recovery starts instead;
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2. The cell manager sends a FREEZE_STATE_QUERY message to all cell nodes
which are still connected (reachable);

3. Any cell node X, upon receiving FREEZE_STATE_QUERY:

(a) X stops (freezes) all simulation. Incoming and outgoing updates, input, turn
flags, etc. are all discarded;

(b) X sends a FREEZE_STATE_RESPONSE message back to the cell manager,
which contains a list of tuples in form (CT, Hash(CST), HasData), where CT
is a past (or the current) simulation time of the conservative simulator at X,
CST is the actual conservatively-synchronized state data computed by X at
simulation time CT (which may have already be discarded by X), Hash(CST)
is a hash computed over CST (which is kept for a longer time at all nodes),
and HasData is a boolean flag which tells the cell manager if X still has the
CST data locally (HasData = TRUE) or not (HasData = FALSE).

4. If a cell node X does not answer to a FREEZE_STATE_QUERY message in time,
or if the cell manager detects that X is actually unreachable by other means, it re-
moves X from the set of reachable nodes and re-checks the M threshold, potentially
aborting full client-state recovery and jumping directly to full server-state recovery;

5. When the cell manager is finished waiting for all FREEZE_STATE_RESPONSE
messages (either got all responses early or timed out waiting for some of them), it
attempts to obtain a state copy S from the clients:

(a) If there is at least one state S, whose simulation time is T, such that a tuple (T,
Hash(S), TRUE) exists among the tuples received, and that, among all tuples,
there is an agreement on S (by verifying the submitted hashes) such that the
amount of agreeing node pairs A satisfies A ≥M , then the cell manager elects
S as the ‘official’ state of the cell. If there are multiple states S that satisfy
those constraints, then the one with the greater timestamp T is selected. If no
S satisfies the constraints, the cell manager aborts the algorithm and jumps
directly to ‘full recovery from server-side state’;

(b) The cell manager attempts to download S from one of the cell nodes X that
reportedly had it by reporting (T, Hash(S), TRUE). If the download fails, S is
requested from another cell node that has it (also, M is re-checked since that
X node just became unreachable). If no cell nodes can successfully upload S
to the cell manager, that S is discarded and the next best S is selected from the
reported tuples. If no S remains, then the cell manager aborts the algorithm
and jumps directly to ‘full recovery from server-side state’;

6. Now that the cell manager has valid cell state data S obtained from a minimum
quorum of agreeing cell node pairs in hands, it disbands all cell nodes back to the
volunteer pool and draws a full set of new volunteers to the cell;

7. The cell manager sends S directly to each new cell node, including the back-up
ones;

8. Once the upload of S is complete, the cell manager sends a message which autho-
rizes the new cell nodes to start the simulation.
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If this algorithm completes, it means that the state of the cell was not lost. However,
there is a potential problem related to simulation time ‘going back’. As is, the algorithm
described above may choose a state S that could be even a few seconds behind the most
recent state R that the cell had collectively computed. If between S and R there were
events such as object transfers between cells, those may have been unintentionally un-
done. The game (application) code at the cell manager should be able to use the results
of the consensus gathered out of the tuples to decide whether it should undo something
or not. To do that, the cell manager may have to interact with the managers of neighbor
cells and maybe negotiate some specific object removals or re-insertions. This restora-
tion of global game consistency has to be performed by application (game) code. In a
following section, we explain how the FreeMMG 2 primitives can be used to implement
object ownership transfer between cells in a way which prevents objects from being lost
or duplicated in the process.

4.3.5.2 Full recovery from server-side state

This is the last resort algorithm for recovery. At this point, the cell manager has
completely given up on whatever cell state data might be left at the cell nodes that are
still alive. The cell manager will instead rebuild the cell state from scratch. This should
be done using whatever server-side information the cell manager had about the cell, or
maybe use fixed rules such as to use a default ‘blank’ cell state.

In FreeMMG 2 we will make a ‘vital cell state’ feature available. It allows the cell
nodes to periodically send updates about the cell state to the manager. The frequency of
vital cell data updates and their contents is completely left for the application. Likewise,
the function that maps vital cell state back to an actual cell state is completely left for the
application. The middleware will just call back application code at the cell manager to
return a valid cell snapshot.

Besides this vital cell state aspect, the full recovery from server-side state is actually
trivial:

1. The cell manager decides on the new state S using whatever server-side data it has
available;

2. The cell manager draws a full set of cell nodes from the volunteer pool;

3. The cell manager sends S directly to each new cell node, including the back-up
ones;

4. Once the upload of S is complete, the cell manager sends a message which autho-
rizes the new cell nodes to start the simulation.

Like with full client-side state recovery, some object transfers may have to be undone
or re-done, or other consistency checks may have to be run between this recovered cell
and its neighbors. This is left for the application to do. In a following section, we show
how the application can implement global consistency checks and restoration procedures
using the primitives that are described in this chapter such as vital cell state storage and
inter-cell reliable messaging.

4.3.6 Grief system: filtering problematic cell nodes

The grief system of FreeMMG 2 is named after the grief points system employed in
many persistent-state games such as PlanetSide (SONY ONLINE ENTERTAINMENT,
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2008). To maintain realism and to encourage well-thought team-play, most real-time
combat games allow team-mates to (accidentally) damage each other, an event which
is often called ‘friendly-fire’. However, there are griefers, which are players that inten-
tionally attack team-mates10. Since it is impossible to determine, in the heat of battle,
whether friendly-fire was intentional or not, PlanetSide and other similar games simply
assigns negative points, or grief points, to a player which damages a team-mate. If the
amount of grief points assigned to a player reaches a certain high value the player is first
warned and, if another higher threshold is reached, the player is temporarily or perma-
nently banned from the game. A grief points system works because players will fall in
one of the four categories below, which are all adequately treated:

• Infrequent unintentional attackers: those will almost never trigger the grief thresh-
old and will be able to keep playing normally;

• Infrequent intentional attackers: those seasoned griefers will be able to do some
damage, but will have to stop after a very short time or risk triggering the thresholds;

• Frequent unintentional attackers: those honest but extremely clumsy players will be
warned first, which will make them know that their skill is probably incompatible
with the in-game situations they are putting themselves into;

• Frequent intentional attackers: those will be permanently banned eventually, or at
least be on a temporary ban most of the time.

In FreeMMG 2, we employ the exact same concept to detect volunteer nodes that
cause cells to fail. Since the cell manager can’t really tell which peers have caused the
cell to fail, he simply distributes ‘grief points’ equally to all cell nodes of a failed cell.
Once a volunteer node accrues too many grief points, it can be temporarily or permanently
barred from serving as a cell node. As in the original player-oriented grief systems, the
FreeMMG 2’s node grief points ‘heal’ over time, so a node that fails infrequently and
unintentionally over a long period of time will never reach the threshold for banning.
The idea is that, as with the original player-oriented ‘grief’ systems, this will create a
tendency to, over time, prevent malicious nodes from triggering cell failures on purpose
and go unpunished (or worse, punish the honest nodes instead). The damage is limited,
for each rogue node, to what fits below the grief threshold.

However, the grief problem doesn’t map automatically from players to cell nodes. For
one, players in MMOGs such as PlanetSide are always authenticated and they pay actual
real-world money for their accounts. This means that a dedicated attacker cannot create
an arbitrarily large amount of fake accounts for griefing without spending real money,
which is an effective deterrent. In FreeMMG 2 however, we are envisioning a scenario
where we would be drawing unauthenticated volunteers to the network. In this case, we
can only track volunteers by their previous track record in serving the network or by their
IP addresses, which can be dynamic.

To use volunteer track records, they would have to authenticate every time they con-
nected themselves to the volunteer pool. Even if authentication was required, this would
not be a deterrent since volunteer accounts can’t have a real-world, concrete cost attached
to them, besides something light such as requiring users to fill out a form and provide a

10More generally, a griefer is a player in a multiplayer game which is playing solely to harass other
players (WARNER; RAITER, 2005), causing much grief to them and hence the name.
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working e-mail address. We certainly don’t want volunteers paying real money the game
provider for the ‘privilege’ of serving as volunteers, since that would defeat the whole
idea.

To make the grief system work in this scenario, the best solution is to require authenti-
cation of volunteers through freely available accounts, and couple that with a mechanism
that prefers volunteers with good track record to serve in cells. This is analogous to busi-
nesses that don’t trust bank checks issued from persons that have just opened an account
at the bank in question. Assuming that there is a large amount of honest volunteers, those
will tend to ‘rise’ above the mass of fake, single-purpose accounts created all the time
by persistent griefers. Once in a while, blank accounts could be chosen to serve in cells,
allowing them to develop a history of good service. For instance, deserted cells (cells that
are not serving player nodes currently) could be used to test blank volunteer accounts.

We have not defined specific thresholds for grief points, and we leave that for the mid-
dleware implementation or the game implementor. However, this ‘grief points’ tracking
is an essential part of a FreeMMG 2 implementation, and will be its last line of defense
against nodes that cause failures on purpose.

4.3.7 Fault tolerance: comparing with FreeMMG

In the predecessor FreeMMG (CECIN et al., 2004) model and middleware implemen-
tation, there was a concern about communicating different faults to the server-side, and
trying to guess whether cell nodes were telling the truth when they accused a peer from
failing them or not. The resulting fault detection and recovery procedure was overly com-
plex to program. Every time an exception handler was being written, there was a question
of what message it should send to the cell manager, and what parameters should it have,
and how that would be handled by the cell manager exactly. Often, the different parame-
ters and messages ended up being handled the same at the cell manager because it could
not decide, for instance, if a peer reported as faulty really failed or the reporting peer (or
group of peers) was lying.

So, instead of preemptively classifying every possible failure situation and trying to
handle each one in an optimal, customized way, the middleware and game implementors
can now discover or define particular problematic situations and slap the ‘fault’ label on
them easily, as needed. To do that, it is enough to send the cell manager a FAULTmessage
on the exception handling point, and no further analysis is needed. In the end, everything
is solved naturally by replacing the cell nodes until a group that works well is obtained.

We believe that the FreeMMG 2 FAULT message coupled with the new ‘Grief sys-
tem’ is a superior approach to the one employed in the original FreeMMG design and
implementation, which involved several different failure reporting messages and specific
handling mechanisms. Overall, FreeMMG 2 relies much more on strong tendencies than
guarantees for fault tolerance. A strong tendency of filtering out bad nodes by blaming all
cell nodes equally replaces the need to accurately point out the actual offending nodes in
any particular failure situation.

The only downside of this new approach is the reliance on the assumption that all
actual, running FreeMMG 2 networks will be well provided of ‘good’ cell nodes, that
is, large groups of stable nodes which have good peer-to-peer connections to each other.
This can only be addressed tangentially. For instance, deploying a game network which
only accepts peers with IP addresses that can be mapped to same continent or country.
Or, dividing the pool of volunteers into groups that share a common network proximity
feature, and draw all volunteers of each cell from a single group. However, for this thesis
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we decide to leave this assumption as it is. Working the ‘volunteer pool’ concept further
is left as future work.

4.3.8 Remaining issues

The fault recovery algorithms presented earlier do not deal with all issues. There are a
lot of small pending problems, but those should not be hard problems. For instance, when
full recovery finishes, the network (socket) addresses of the new primary nodes should be
informed to all primary nodes of the neighbor cells, since that information is vital so that
adjacent cells can send object updates to each other. Similarly, player nodes should be
informed of the new cell primary nodes, so that they can resume playing after the several
minutes or so of cell outage are over. We designed FreeMMG 2 so that the ties between
neighbor cells and the ties between cells and their player nodes are completely flexible.
So, there are no hard timing or event ordering constraints associated with those tasks. This
re-tying can be implemented without worries of interacting badly with the fault recovery
algorithms and vice-versa.

4.4 Player-cell synchronization

Thus far, we have defined how the cells work. But, for the game to be playable, the
player machines must be able to send something to the cells, such as requests to change
the shared state or authoritative updates to the shared state, and also receive something
back from the cells, such as state updates. In this section we provide some alternative
ways to make player nodes and primary cell nodes interact.

For player-cell synchronization we have identified several possibilities, and there may
be other solutions available still. In the next section we describe three alternative mecha-
nisms suitable for connecting player nodes and the cell overlay. The first one, the ‘default
protocol’, which is primarily a bandwidth-efficient protocol, is more formally defined.
The others, which optimize for reduced interaction latency, are ideas whose further devel-
opment is left as future work.

4.4.1 Why focus on bandwidth efficiency

In this section we discuss our view on what are the important properties for the player-
cell synchronization mechanism. This explains why we have chosen to focus on band-
width efficiency instead of latency reduction for the default protocol.

The cell simulator mechanism that was described in previous sections focuses on se-
curity. The cell is a way to keep a piece of shared state safely synchronized in real time
by a group of ‘client’ nodes which are each unreliable if considered individually. That
focus on security however comes at the price of additional latency and scalability. The
additional latency is mainly introduced by the additional hop that events must travel be-
tween one primary cell node that is introducing the event to the cell and its peers. We
avoid multi-hop event dissemination inside the cell to avoid increasing latency beyond
the minimum necessary (it’s still a penalty, though). And, which is more important to the
point we will make below, by forbidding multi-hop dissemination of events inside the cell
we limit the scalability of the cell since a full mesh protocol is O(N2) messages. Thus,
the number of primary cell nodes allowed in a cell will not increase linearly as client
bandwidth increases. It is reasonable to expect that the number of primary cell nodes in
a cell should linger around ten or so, regardless of any game or middleware parameters
such as the expected average and peak avatar populations of cells.
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The relatively few primary cell nodes of the cells are the nodes which have to serve
the game to the player nodes. Thus, the amount of bandwidth available for serving the
game to players is limited. As the amount of player nodes interested in the state of a
given cell grows, the only way the cell could reliably increase the available bandwidth is
to replace primary cell nodes with ‘super peers’ which have greater available bandwidth.
We do not actually explore that option in the present work; instead, we assume that the
available bandwidth for serving players in each cell is limited. To deal with hot spots, that
is, cells which have to serve a very large number of interested player nodes, we propose
that the primary cell nodes just split whatever bandwidth is available among all player
nodes. Thus, as the player population in a cell increases, the game quality can decrease to
and below acceptable quality.

With these design decisions taken, it results that making a bandwidth-efficient player-
cell synchronization mechanism is now imperative. Cutting the cell bandwidth required to
serve a player in half means doubling the amount of players supported in a cell, which also
minimizes the hot spot problem. As broadband technology, broadband market penetration
and the Internet evolve, the hot spot problem will become less and less severe and the
supported player population in a cell will increase. To have limited bandwidth is actually
a good thing since it encourages rational game protocol design, which will carry over as
the Internet improves. After all, UDP-based game traffic has to play fair with all other
traffic.

For now, let’s consider, for instance, that most cell nodes will be supplied by home
users with ADSL connections that feature upload bandwidth caps of 256 Kbps. That’s 32
kB/s. We can expect a significant portion of that to be drained by the O(N2) intra-cell
mechanism and the inter-cell mechanism which generates O(N) packets but which are
larger in size than intra-cell packets. If the cell node machine happens to be doing any
other networking tasks we can expect even less to be available to player serving.

Considering that FreeMMG 2 is more likely to be applied to MMORPGs than to
MMOFPSs, at least at first, we have thus decided that bandwidth efficiency should be a
priority over latency reduction for the default player-cell protocol. However, it should be
noted that since cells function independently of how player nodes connect to them, there
is a greater degree of freedom in designing the player-cell interaction support.

One of the main avenues for future work in FreeMMG 2 is experimenting with dif-
ferent player-cell protocols. For now, we just want to define one working solution which
contributes towards showing that our core idea of secure cells is feasible when put together
with other modules such as player-cell interaction. We actually expect that a FreeMMG 2
implementation will be comprised of a collection of primitives that allow an application
to define any kind of player-cell protocol for itself, as well as provide a few ready-made
mechanisms that the application can base itself on such as the ‘default protocol’ presented
below.

4.4.2 Default protocol

The default player-cell synchronization (interaction) protocol optimizes first for band-
width efficiency, second for security and third for latency. Its only contribution to main-
taining interaction latency acceptable is in connecting player nodes and primary cell nodes
directly, that is, by tying them by only one logical hop in the FreeMMG 2 overlay network,
as shown in Figure 4.6 below.

Each player will be interested, at any one time, in only one cell. However, that is not
a hard requirement. A player node may, at some times, interact with two cells simulta-
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Figure 4.6: Default player-cell protocol. A player node connects to all primary cell nodes
of the cell which currently owns its avatar.

neously. That can happen for a short time if the game object that represents the player
avatar in the game is being transferred from one cell to another. We will address this
issue in a later section. For now, let’s assume that, at any one time, a player node will be
synchronizing with only a single cell at any given time, which is the cell that currently
owns (has authority to change the state of) its avatar object. In the default protocol, each
player node has to connect to all primary nodes of its cell. By connect we mean only that
these nodes can potentially exchange packets at arbitrary times.

The basic idea is that, whenever a player has to send a command packet, it chooses a
random primary cell node to receive it. Upon receipt, the primary cell node submits that
command to the rest of the cell as specified by BSS. In the opposite direction, the primary
cell nodes pool together their available upload bandwidth to serve any number of players
that are currently connected to the cell in the best manner possible. There is a coordination
mechanism that guarantees that each player node will receive (most of the time) one
update packet from the cell at every BSS cell tick. A player node receives an update
packet from a different primary cell node at every BSS tick, according to a deterministic
sequence that is indirectly negotiated among the primary cell nodes without the need for
additional network messaging. The result is a bandwidth-efficient protocol which, from
the point of view of the player node, is similar to a client-server MOG protocol, with
the exception of when hot-spots occur. In the following subsections we explain these
mechanisms in more detail.

4.4.2.1 Player-to-cell command packets

Each player node will issue command packets which, as far as the FreeMMG 2 mid-
dleware is concerned, are abstract requests to change the game state in some way. We
assume that command packet issuance is at a fixed rate such as 10Hz or 20Hz at each
player. That covers FPS games which is the worst-case scenario. However, in contrast to
most client-server protocols, the player node will send each command packet to a different
primary cell node. The choice is fully random each time, which results on average in an
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uniform distribution of command packets among all cell nodes. Since command packets
are small and downstream bandwidth is more abundant in current home user broadband
technology, there is, in principle, no need for player nodes to coordinate with other player
nodes in choosing which primary nodes will receive commands at any given time. The
odds that a primary cell node will be swamped by incoming command packets is very
low. Thus, player nodes are free to choose any target for their command packets among
all primary cell nodes, without the need for an explicit coordination mechanism.

The goal of this random distribution of command packets among primary cell nodes
is to ‘increase security’, which is the secondary concern of the default protocol. More for-
mally, this contributes towards mitigating the effects of protocol-level cheating that can
be performed by individual primary cell nodes. If a player node only sent commands to a
single cell node, that cell node could delay or drop all of the player’s command packets.
By choosing a different primary cell node to receive it every time, we get a transparent
mechanism that mitigates the effects of intentionally delayed or dropped command pack-
ets, as well as a basic way to uniformly distribute the load of command processing among
primary cell nodes. And it is still a single UDP command packet being uploaded at ev-
ery client network tick, which is as bandwidth-efficient as in a client-server FPS game
protocol.

Another security advantage of the random command distribution is that it helps with
the problem of primary cell nodes forging updates from players. In FreeMMG 2, we
do not assume that players cryptographically sign their command packets. For now, we
leave that for the application to define. Whenever it is possible for primary cell nodes to
forge player commands, the scheme we described helps to detect that forgery is occurring
as follows. If a player sends each command packet with an unique sequence number
(serial number), and if the player sends each packet to a random primary cell node every
time, then a malicious primary cell node has no way to know if it will be chosen to
relay any particular command packet in a player’s sequence. Thus, if a primary cell node
forges a command F with sequence number S for player P, and P sends a command C
with sequence number S through other relay, then cell nodes will eventually receive two
commands, C and F, with the same S and P parameters. That is enough to detect that
either some primary cell node is forging updates or the player is doing so. In other words,
that ‘group’ (the cell nodes and the player in question) have collectively failed. That can
be the starting point of a detection mechanism based on the grief system idea described
earlier that, in the long run, can identify malicious cell nodes as well as players that are too
frequently involved in groups that fail. However, since the cell is more important than a
single player, the thresholds should first assume that the player is the one being malicious.
Then, if primary cell nodes too frequently show up with conflicting player commands for
several players, then they should be replaced and punished.

4.4.2.2 Cell-to-player update packets

In the reverse direction, the primary cell nodes have to use whatever upload bandwidth
they have left to collectively sustain a stream of large game state update packets to each
player node to which the cell owns the corresponding avatar object. Since cell nodes are
heterogeneous, each one will have a different amount of upload bandwidth available for
serving players. We assume that this bandwidth amount can be computed and updated
in real time by each cell node individually. That estimate should be conservative enough
so that the node will never overflow its UDP socket buffers with outgoing data. The
mechanism described below operates inside the upload bandwidth share that is reported
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as available to it. Obviously, reporting a wrong value that exceeds the actual bandwidth
available to the node will cause it to malfunction. Also, the bandwidth consumed by a
single stream of updates (for one player) is a global constant defined by the application.
That should be conservatively estimated as well by the application programmer.

When a primary node first joins a cell, all other cell nodes assume that it has no
upload bandwidth available for serving player nodes. The amount of upload bandwidth
that each primary node has available for serving player nodes is actually part of the cell
state, and is conservatively synchronized using the same mechanisms used to synchronize
the execution of any other kind of input that changes the cell state. The list of fully
active primary cell nodes is also part of the conservatively-synchronized state, though
intermediary states (such as when a node is downloading a state snapshot) have to be
modeled outside of the conservative protocol, since they are steps into establishing the
node as a member of the conservative protocol itself. Finally, the official list of player
nodes that are being served by the cell is also conservatively synchronized among all
cell nodes. The latter can be simply inferred from the list of avatar objects currently
represented in the conservative state. That may result in players receiving updates from
two different cells for a short period during avatar object transfers between cells, but that
is of minor concern – the player can simple choose one cell as its current source of updates
at any given time. We will discuss object transfers in a later section.

Among the first events submitted to the cell by a primary cell node is an event that
conservatively changes its reported upload bandwidth that is available for serving players.
We suggest that this be communicated as a 16-bit unsigned integer number which repre-
sents an amount in kilobytes per second, rounded down from the actual value. Needless to
say, the node can send a new event whenever it detects that its available upload bandwidth
has changed. For one, this allows for an implementation of an adaptive protocol which
‘discovers’ safe values for cell node upload bandwidth by trial and error.

Now, the primary nodes have a way to know each other’s upload bandwidth avail-
able for serving update packets to players. They also have a synchronized view of the
player nodes that need to be served. With that information in hand, each node locally,
and without any additional coordination, can determine which player nodes it should up-
date whenever an unconditional, periodic network ‘tick’ occurs at the cell11. The function
should ensure that, most of the time, the primary cell nodes will distribute updates uni-
formly among all players. As an example, consider that the collective upload bandwidth
available at a cell is of 512 Kbps (for example, each of eight nodes reports 64 Kbps avail-
able for serving players), and that the cost of a stream of updates is globally and statically
defined as 32 Kbps (4 kB/s). This allows the cell to send 16 update packets to players at
every BSS tick. Thus, up to 16 players can be served by the cell with maximum quality.
If there were 32 players instead, then half of these should be updated at even ticks and
the other half at the odd ticks, thus lowering game quality by half. By knowing the ID of
all primary cell nodes and all player nodes, as well as all bandwidth parameters involved
and having a synchronized sequence of numbered ticks, coming up with a deterministic
function that distributes the load fairly should not be hard, thus we do not specify it any
further in this thesis.

Another key characteristic of the update distribution function is that it should not

11One should remember that in BSS, each cell node ‘ticks’ at a fixed rate. The tick event triggers the
sending of BSS synchronization packets from each primary cell node to all other cell nodes, as well as
inter-cell packets and primary-to-backup packets. Now, in addition, it will also trigger the cell-to-player
update packet sending function.
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bind players to the primary cell nodes. Even if the set of players and cell nodes and
the reported bandwidth remains constant, at each tick a player should be served by a
different cell node. The distribution should be uniform in such a way that a player node
will get a given update from any of the primary cell nodes with approximately equal
probability. The distribution can not be fully random however, since it is derived from
a known, deterministic function. As with player commands, by having players receive
updates from all cell nodes we mitigate the effects of protocol-level cheats. If a single
primary cell node drops, delays or forges updates to a player, it will happen only for a
fraction of the incoming updates.

That is as far as we can get in protocol-level cheat mitigation without increasing the
bandwidth required to update a player beyond a single stream of update packets. Without
insight into game rules, having primary cell nodes sign their outgoing updates or having
several cell nodes send several updates simultaneously to the same players doesn’t help us
because the source of the updates is the optimistic state of each primary cell node. Since it
is legal for optimistic states to diverge for any given simulation turn value, the middleware
has no way to detect forged updates using a transparent mechanism such as doing bitwise
comparison of updates issued by different cell nodes. As we have stated before, dealing
with most protocol-level cheating is left for the application or for future work. Our goal
here was simply to mitigate its effects by leveraging the fact that we already have several
sources of cell state due to our replication approach.

4.4.2.3 Additional remarks

As an additional measure for dealing with hot-spots, player nodes can detect when
a cell is overloaded by checking the frequency in which they are receiving updates. In
these cases, players can pro-actively scale back their command sending frequency using
a hard-coded function to be supplied by the application. This should be just a last-resort
measure to avoid overflowing primary cell nodes with incoming command packets when
very bad hot-spots occur in a cell. At this point the game should be already unplayable,
so a trivial function such as reducing command rates in direct proportion to the drop in
update rates should be sufficient.

Finally, it should be noted that there is no harm whatsoever when player commands
or cell updates go to ‘wrong’ recipients. We model that as being equivalent to packet loss,
which should be tolerated by the application anyway. We assume that player commands
model implicit requests such as reporting the current state of player input devices, and
thus the cell doesn’t need to keep a ‘complete history’ of all commands of all players.
Likewise, updates incoming into player nodes supersede each other, and the application is
responsible for making the best use out of whatever updates it can get using the techniques
discussed in Section 2.4.

Thus, the application should guarantee correctness and never assume anything about
these packets arriving or not. Assuming that the mechanics defined above tend to con-
verge after the parameters settle and the conservative state evolves, it becomes largely
unnecessary to model what happens, for instance, during a change of reported upload
bandwidth by a primary cell node, or during players joins and leaves. We consider that
the above description of the default protocol covers the player-cell synchronization fea-
ture in a satisfactory way for now, considering the security and decentralization focus of
FreeMMG 2.
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4.4.3 Fixed cell node protocol (draft)

An alternative for decreasing interaction latency and for increasing consistency lies
in optimizing the mapping between player nodes and primary cell nodes. Instead of the
current security-oriented random mapping, a player node could instead measure the net-
work distance between itself and all primary cell nodes and choose the closest one for
sending commands and receiving updates. Or, alternatively, players in the same cell shar-
ing an AoI could be assigned to a common primary cell node, reducing latency and thus
increasing visual consistency for interactions between them. These two techniques could
be combined in the same mapping algorithm for optimal results. Figure 4.7 illustrates this
proposal. In the figure, the single links between a player node and the cell represent the
relative stability of the choice of primary cell node by each player node. Of course, these
can change, which would possible trigger a socket ‘connection’ procedure and change the
overlay in a ‘lazy’ fashion.

Player nodes

Cell nodes

Cell A Cell B
World state
(approximation)

Cell A Cell B

Figure 4.7: Fixed cell node protocol. A player node connects to the cell which currently
owns its avatar, and to the primary node to which it has the best network connection.

This change, however, affects the security profile of the model. Forcing player nodes
to depend on a single primary cell node aggravates the issue of a single primary cell
node misbehaving by, for example, sending fake updates to its players or dropping their
commands. These can be mitigated if players communicate both with the best primary
node and also with another node at each turn as discussed in the previous section. But
there is also the issue of the limited and varied amount of upload bandwidth available at
each primary cell node. A player node may find out that its preferred primary cell node
cannot handle any more clients, and thus need to fall back to the next best primary node
in a list, and so on. It may be necessary to weight in the RTT reported by each player
to every primary cell node in order to achieve an optimal allocation of player nodes to
primary cell nodes, for whatever definition of ‘optimal’. We have not developed this idea
further and we leave it for future work.



146

4.4.4 Player mesh protocol (draft)

Players could exchange packets directly between each other. That could be lever-
aged somehow to decrease the interaction latency and increase consistency among player
views. In practice, what we mean is that this could be leveraged to allow players to inform
their current positions to each other directly, since avatar position is the only factor that
is guaranteed to generate a constant stream of temporal inconsistencies across the whole
game session and across any MOG or MMOG imaginable12.

Player nodes

Cell nodes

Cell A Cell B
World state
(approximation)

Interaction 
groups with 

mutual proximity

Cell A Cell B

Figure 4.8: Player mesh protocol. A player node connects to the cell which currently
owns its avatar, and to the primary node to which it has the best network connection and,
additionally, to all player nodes in range.

One path to such a solution would be one where each player dictates its own position
to its cell and also to other players in its AoI. Figure 4.8 provides an example of what the
resulting logical overlay would look like, compared to the previous two protocols. Notice
that the player also connects to the ‘nearest’ cell node as in the previous section’s protocol.
To avoid speed cheating (or speedhack), the hack-proof synchronization protocol (FUNG;
LUI, 2009) could be employed between players and between player and its cell, or maybe
a detection approach could be employed. However, the current FreeMMG 2 model does
not descend into such details. By having players send out multiple packets, FreeMMG 2
would be probably assuming more about the game protocol, since it would be difficult to
have players exchange movement requests (such as input device state) between each other
in this kind of setting. Player mesh (or mutual notification) protocols generally imply
that the players are authoritative over their avatar state. That is actually optimal from the
point of view of overall reduction of interaction latency, but this introduces some cheating
opportunities.

Besides the issue of cheating, there is also the issue that player nodes will also use
more bandwidth. That has the potential side effect of reducing the idle bandwidth of

12We are not aware of any work that discusses latency or consistency in MOGs and that does not include
avatar position in its evaluation.
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player nodes and reduce even further the possibility that player’s machines act simultane-
ously both as cell nodes and player nodes. However, using this kind of overlay may be
necessary to achieve consistent support for MMOFPS games. We leave this as an option
to be explored in future works.

4.5 Server-cell reliable messaging service

In some situations, an individual cell node will communicate individually with servers.
For instance, whenever a cell node needs to find out the IP address of other nodes. How-
ever, sometimes a cell has to send a message to the server, and vice-versa. This occurs
when the server cannot trust the information from a single cell node and instead has to be
informed by a given quorum of cell nodes about a message before it considers the mes-
sage to be valid. Let N be the number of primary cell nodes in a cell. Let QCTS be the
required quorum of primary cell nodes that agree on a cell-to-server message before the
server will actually receive the message, that is, pass the message to server-side applica-
tion code for parsing. As with most other quorum values, the value of QCTS , as well as
the value of N , are left for the application to determine. We recommend QCTS to be at
most N − 1 to avoid single malicious cell nodes from being able to break the quorum and
thus prevent all cell-to-server communication before that situation is detected and the cell
has a chance to ‘fail’ and recover13.

Once the server receives one cell-to-server message from a single cell node, it will
create a data structure which tracks the completion of the quorum. That data structure is
indexed by a message hash and the ID of the originating cell (e.g. its coordinates). The
data structure also receives a (wall-clock) time value upon creation, which is the time
when it should be deleted. The structure is only discarded when that time limit is reached,
regardless of whether and when the quorum is reached. That time limit is determined by
the application. If the tracking structure receives enough message copies from enough
distinct primary cell nodes, the message is ‘received’ and sent to the application. That
fact is registered in a flag in the tracking structure, which lingers until it times out. This
is to prevent late messages from other nodes, after the quorum is reached, from being
considered as a new message. When the tracking structure times out, the flag is checked
to see whether a silent discard is done (message was delivered) or if a failure of some
sort has occurred. If the latter, we recommend that the server (the manager for that cell)
should just run a full recovery procedure for the cell (see Section 4.3.5).

The opposite communication direction is simpler. When the server wants to send a
message to a cell, it just sends packets to each primary cell node individually and directly.
Since the server is a trusted party, there is no need to gather a quorum. However, applying
the message into the shared cell state may require synchronization. The cell nodes can
use the regular BSS synchronization mechanism used to synchronize player input to indi-
rectly agree with a round number (simulation time) in which the incoming server message
should be executed by all replicas. As usual, the event is only executed in the conserva-
tive state when all primary cell nodes conservatively agree on a time for that event. This
implicitly prevents a potential security problem where a primary cell node would forward
fake server messages to the other cell nodes.

Server-to-cell messages is the means by which the primary cell nodes of a cell will
obtain a collective and conservatively-synchronized list of all current primary cell nodes

13This will become clearer in a following section which deals with the fault tolerance mechanism that
ensures that each cell behaves as expected in the long run.
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of all neighbor cells. Of each one, the server will tell the IP address and UDP port of each,
and also their IDs and security certificates, if any. This mechanism is also used to obtain a
conservatively-synchronized view of all current primary cell nodes of the cell in question
(the one receiving the message), though this is not the only means by which primary cell
nodes get that information. Other such lists, dissociated from the conservative state, are
necessary to implement the early connection steps by which the cell nodes connect to each
other. For inter-cell relationships, no such lists are necessary and any information is to be
retrieved from the conservative state only. This use of the conservative state and server-
to-cell messaging to have conservatively-synchronized lists of nodes for the current cell
and all adjacent cells is essential for the implementation of inter-cell reliable messaging,
described in Section 4.6.

As a final remark, all point-to-point communication being considered here between
primary cell nodes and servers is using reliable delivery streams. Also, it should be noted
that the source of cell-to-server messages is, probably, the execution of a simulation step
by the conservative simulator of each primary cell node. In the stop-and-wait protocol, a
conservative step is very likely to take place at approximately the same time at all replicas.
That step is also deterministic, thus, it follows that the conservative state update logic
is the best place to take a simultaneous decision such as deciding to send an identical
message to the server. That sort of guarantees that the ‘timeout’ value for the message
quorum tracking structure at the server can be proportional to network round-trip times
and network clock synchronization errors only. Five or ten seconds should be more than
enough for the timeout value and shouldn’t cause any significant side-effects elsewhere.

4.6 Inter-cell reliable messaging service

In this section we describe how to achieve what we call inter-cell reliable messaging.
Currently, we have it so that each cell will arbitrate over the state of its own set of objects.
Each object in the game is the property of one cell, though its state is communicated by
the cell that owns it to the neighbor cells in some cases, as discussed in Section 4.2.5.
Inter-cell reliable messaging is a basic mechanism or ‘primitive’ that the FreeMMG 2
middleware provides that allows the implementation of other higher-level functionali-
ties. One such functionality is transferring objects between cells in a fault-tolerant, cheat-
resistant and decentralized (peer-to-peer) way, by allowing cells to communicate directly
in a peer-to-peer fashion as if the cells were single nodes and not a set of nodes each.

To be able to transfer object ownership between cells reliably, there must be a way
for two adjacent cells to perform some sort of negotiation so that objects can be removed
from one cell and be added to another cell. One way to accomplish this would be to have
the originating cell send the object to a trusted server, and have the trusted server send
the object to the destination cell. That could be implemented using the simple Server-
cell reliable messaging primitives described in Section 4.5. That is precisely what we
did in FreeMMG (CECIN; BARBOSA; GEYER, 2003). That, however, increases the
involvement of server-side resources in the game. What’s worse, that involvement be-
comes dependent on game design: the game designer has to worry about the amount of
objects it creates and their speed to avoid flooding the servers with traffic. In FreeMMG
2, we decentralized most of the object transfer task. To do that, first we have designed a
basic mechanism that allows one cell to send a message with guaranteed delivery to the
other cell. It is achieved by having a sufficiently high number of nodes in the originating
cell send the same message through reliable point-to-point IP-based communication to a
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sufficiently high number of nodes in the destination cell.

4.6.1 Service overview and preliminary definitions

Figure 4.9 will help to illustrate what this service is about. The service allows any cell
S to send a message to any other cell D. What we have here is a point-to-point protocol that
allows two groups of nodes, S and D, to exchange a message in a virtual, unidirectional
channel that delivers messages reliably and in an ordered fashion. In a FreeMMG 2
network, a cell will have two such channels, one outgoing and one incoming, for each
neighbor cell14. The API is very simple:

• On S, a Send function allows the cell to send a message. The function returns an
integer which is the sequence number assigned to the outgoing message;

• On D, an Incoming callback is called so that the cell can receive the message. The
ID is the same assigned to the message at the time of sending;

• On S, an Ack callback is called when S knows that D has acknowledged the receipt
of a given message ID.

The Send function can be called only from the logic that updates the state of the con-
servative state of the cell. That is, during a conservative ‘tick’ or conservative simulation
time (step) advancement. This guarantees that, generally, all primary nodes of the cell
will agree that a message has to be sent to the destination cell. Likewise, the Incoming
and Ack callbacks are invoked during middleware code execution that is triggered due
to the conservative state of the cell being updated due to conservative simulation time
advancement.

  

Cell S (source) Cell D (destination)
   Reliable and
ordered delivery

int Send (D, message):
At conservative state tick only 
(returns ID)

Incoming (S, message, ID):
At conservative state tick only
(callback function)

Ack (D, message, ID):
At conservative state tick only
(callback function)

Messages 1, 2, ...

Cumulative ack

Figure 4.9: Inter-cell reliable messaging service (overview)

The Send function is implemented partially by adding the outgoing message to the
cell’s conservative state. That is, the queue of non-acked, pending, outgoing messages is

14In the event that non-neighbor cells have to interact, they should do so through the servers.
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stored at the cell’s conservative state. The application does not have to actually read it.
This only means that the middleware uses the same mechanism to implement this internal
functionality (as well as others). An implementor may choose to create another separate
state and call it, e.g., ‘conservative middleware state’. That’s an implementation detail
that doesn’t concern us, for now. Other key feature required to implement this service and
that is stored on conservative state memory is the list of current (valid) primary cell nodes
of both S and D, at both S and D. There are others which we will describe as we unroll
the service description.

Since the outgoing message queue is cell state, and cell state can be lost, this means
that messages once sent through Send calls may be lost if S fails. Also, after the message
is delivered and processed through the Incoming callback at D, the state of D can also be
lost, resulting that the message is delivered and received, but its results are lost. Thus,
this messaging mechanism does not offer actual long-term guarantees (e.g., durability).
This example is analogous to any distributed system where two nodes S and D commu-
nicate through a TCP/IP stream. Even if D receives the message and acknowledges to
S, this doesn’t guarantee that D won’t later fail and lose the side-effects of processing
the message. What the protocol should guarantee (it is our intent, at least) is ordered
and guaranteed message delivery while both cells do not lose any of their conservatively-
synchronized state.

To achieve guaranteed persistence in applying the side-effects of inter-cell messages
at D, D has to save portions of its state at the server, and any persistence is only obtained
for those portions of cell state that are saved and when they are saved. The idea is that,
instead of performing any and all inter-cell messaging through the server, the application
programmer will instead determine when the servers have a too-outdated view of the D’s
state and have D send digests of cell state (vital cell state updates) to the server. Upon a
failure that requires the full recovery from server-side data algorithm to run, the amount
of such losses are then minimized. In short, the reliable in inter-cell reliable messaging
service means just that packet loss, regular peer churn and a few malicious nodes alone
won’t prevent the message from being delivered and acknowledged.

All actual communication carried out by the service implementation is over the basic
inter-cell synchronization protocol described in Section 4.2.5. That is, at any given cell
tick event at S, at most a single UDP packet is outgoing from one of S’s primary cell
nodes to one of D’s primary cell nodes. Thus, this service competes with any outgoing
object state updates (unreliable delivery blocks) from the application for space in these
outgoing packets. We assume that the time between any pair of primary cell nodes of
both S and D exchanging inter-cell synchronization UDP packets is bounded to a few tens
of CTICKs (proportional to a cell’s N or number of primary cell nodes). Assuming
CTICK is at most 100ms, this means that any two given nodes should exchange these
UDP packets once one or two seconds. From that, we can establish that the service would
take at least a few seconds to deliver and acknowledge each message. That is assuming
enough bandwidth to transmit the messages. Needless to say, inter-cell reliable messages
should be as small as possible to avoid overflowing the sender.

Our proposed implementation of the service does not assume that the basic point-to-
point socket protocol supports (adds) reliable messaging over UDP. Even if the socket
protocol does support it, we believe it is better to not assume this. Thus, our algorithm,
described in the next section, assumes only UDP for the communication between cell
nodes of adjacent cells. One main advantage of this is in avoiding any doubts related
to configuring connection timeouts, measuring RTTs to decide message re-send times,
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overhead of managing a large mesh of connections to all adjacent cells and their primary
nodes, etc. All this is aggravated by the discussion of the previous paragraph, which
was about the large time between packets in each one of the numerous cross-cell socket
connections of all primary cell nodes. Having said that, the algorithm certainly can be
simplified if a reliable protocol over UDP is to be used. The main difference then would
be in the elimination of the variables with ‘P2P’ in their names and associated logic (see
next section). We leave that as exercise to the reader.

4.6.2 Service description

We now explain how the service works. First, follows a definition of variables and
constants that are used. These definitions make reference to each other and thus some
won’t be understood by sequential reading. The reader will hopefully acquire an under-
standing of how the service works by iterating between these definitions and the algorithm
description. In the next section, we also provide an example execution of the service,
which shows the algorithm execution step-by-step.

• The function Send, and the callbacks Incoming and Ack, are the interface to the
service, as shown in the previous section;

• N is the number of primary cell nodes on each cell;

• S is the source cell (the sending end of the channel);

• D is the destination cell (the receiving end of the channel).

• Si and Di denote a node i on either S or D, where i is in the range [0,N-1];

• QDID and QDIS are constant primary cell node quorum thresholds that must hold
at some node Di, during its execution of a conservative simulation tick, in order for
a pending incoming cell-to-cell message to be officially received by the cell (that is,
to be handed to the application through an Incoming callback). A node Di considers
a pending message to be received when at least QDID nodes at D have informed to
the cell that at least QDIS nodes at S have sent the message directly to them;

• QSP is a constant quorum threshold. It is used to detect when a node Si receives
at least QSP direct notifications from different D nodes that report D’s current
OUTC2CACK above S’s current value for INC2CACK. When that occurs, the Si

node in question decides that it is likely that the acknowledgement value is valid
and commits an acknowledgement vote to S in favor of raising the value of the
cell’s INC2CACK;

• QSC is a constant quorum threshold. It is used to detect, during S’s conservative
tick, whether the value of INC2CACK should be raised or not. Once at least QSC
nodes from S vote in favor (see the QSP constant above) of raising INC2CACK,
it is raised. Whenever the INC2CACK cell variable is raised from a value X to a
greater value X’, this has the effect that all pending outgoing messages at S with
message IDs in the interval [X+1,X’] are acknowledged at S (that is, S knows that
D has received these cell-to-cell messages and thus calls the Ack callback);

• Each Si keeps two transient data structures which are private to each node and
which need not to be synchronized with that of other nodes: INP2PACKS and
INC2CACKS;
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– INP2PACKS means ‘incoming peer-to-peer cumulative cell message acknowl-
edgements’. It is an array of integers which stores the largest P2P message
acknowledgement received from each Di. It is just an optimization which
allows each Si to avoid re-sending messages that a specific Di has already re-
ceived through the inter-cell UDP packets that flow from S to D as described
in Section 4.2.5;

– INPEERC2CACKS means ‘incoming cell-to-cell cumulative cell message ac-
knowledgements from peers’. It is an array of integers which stores the largest
cell-to-cell message acknowledgement received from each Di. This is neces-
sary since, when a single Di informs a single Si that D is acknowledging a
cell-to-cell message ID, that is not necessarily a consensus in D (Di may be
malicious). Thus, this array is stored at each Si to track the stance of all Di

nodes about the current cumulative cell-to-cell message ID acknowledgement
marker;

• Each Di keeps a transient data structure which is private to the node and which
needs no synchronization: OUTP2PACKS, which means ‘outgoing peer-to-peer
cumulative cell message acknowledgements’. It is an array of integers which stores
the highest cell-to-cell message ID received directly from each Si so far. At a given
Di, its value of OUTP2PACKS for a given Si determines the value it sends back to
that Si which is then stored at its INP2PACKS structure at the Di index (see above
the description of INP2PACKS);

• Each Di keeps, as part of its conservative state, the following variables: INMSG-
PENDING and OUTC2CACK;

– INMSGPENDING is the list of possible incoming messages from S. For in-
stance, when a single Si node sends a cell-to-cell message through an UDP
packet to some Di, that message will end up being stored at the cell’s collec-
tive (replicated) INMSGPENDING state variable. But since that Si may be
a malicious node that has fabricated that message, D will gather more such
individual node messages from S before it actually receives the message and
forwards it to the application (through the Incoming callback). These par-
tial messages that trickle in from S are conservatively stored at the collective
(replicated) INMSGPENDING structure. Once a message is successfully re-
ceived, or if its gathering operation times out, it is removed from INMSG-
PENDING;

– OUTC2CACK is an integer variable that stores the ID of the largest cell-to-cell
message from S that was received by D thus far. Whenever a Di node sends
one (or more) UDP packets to an Si node due to a network tick occurring at
D, the value of that variable is sent. Thus, this is an ‘outgoing cell-to-cell
acknowledgement’. Once a majority of nodes at D manages to send this value
to a majority of nodes at S, S is able to confirm the amount of its cell-to-cell
messages that D has received so far and thus clean up its OUTMSGPENDING
structure;

• Each Si keeps, as part of its conservative state, the following variables: INC2CACK,
OUTMSGPENDING, OUTC2CID and INC2CACKS;
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– INC2CACK is an integer variable that stores the greatest outgoing message
ID acknowledged by D. For instance, if INC2CACK is 10, then all outgoing
cell-to-cell messages from S to D with an ID less than or equal to 10 are
acknowledged and no longer have to be retransmitted to D;

– OUTMSGPENDING stores the cell-to-cell messages that are buffered for
sending to D and that haven’t been acknowledged by D yet. A message with
a given ID is removed from OUTMSGPENDING when the local value of
INC2CACK is greater or equal than the message ID, meaning that the mes-
sage is acknowledged by D;

– OUTC2CID is an integer variable that simply stores the ID to be used by
the next outgoing message from S to D. Whenever a new message is sent,
OUTC2CID is incremented by one;

– INC2CACKS is an one-dimensional array that has one entry for each Si node.
Each entry is an integer value which represents the current committed value
(committed to the cell through conservative synchronization), by each Si, of
its perception of incoming OUTC2CACK values that are sent by Di nodes and
that are greater than the current INC2CACK value. In other words, when an
Si node receives several OUTC2CACK values from a majority of D nodes,
and that value is greater than the current INC2CACK value, that Si node is
convinced that D is acknowledging more messages and commits a vote to the
cell to raise the INC2CACK value. That vote is stored in the INC2CACKS
array. When a majority of positions in INC2CACKS agrees with a higher
value for INC2CACK, the latter is incremented;

Figure 4.10 shows a fragment of the service implementation in C++ pseudo-code.
The service is to be built on top of the BSS/TSS simulator and many other pieces of
infrastructure which won’t add anything by being included here. Figure 4.10 shows only
part of the essence of the functionality that is added by the inter-cell reliable messaging
service.

Figure 4.10 shows the simple implementation of the Send function. It can only be
called from inside code that executes a conservative state ‘tick’ logic at S. Thus, this
guarantees that the execution of the Send function has identical side-effects at all nodes
at S. That is, assuming that there are no malicious nodes at S or some other kind of
failure that prevents the execution at each Si from being identical. In that case, there are
the other mechanisms that detect whenever the replicas at S are not all agreeing with a
common evolution of the conservative state. The same mechanism that is used to ensure
that the game state is properly replicated is used to ensure that these replicated variables
used by inter-cell messaging service are properly replicated. In the event that they go out
of synchrony, this is detected by one or more nodes by way of exchanging conservative
state hashes and the fault recovery mechanisms described earlier are executed to restore
consistency to the cell.

Successive calls to the Send function will place pending messages on the replicated
outgoing message queue (OUTMSGPENDING). The variables depicted in Figure 4.10,
including OUTMSGPENDING, are specific to a pair of S and D cells. If a cell has X
neighbors, it will have X copies of these variables, one for each sending channel.

As discussed in Section 4.2.5, at every synchronized BSS ‘tick’ event of the cell, one
UDP packets are sent from each cell to its neighbor cells. The function SendData in
Figure 4.10 is what is called by BSS when it decides that the Si node (that is running the
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/ / Send Logic a t p r i m a r y c e l l nodes o f S f o r a g i v e n d e s t i n a t i o n D ( i m p l i c i t )

/ / P r i v a t e s t a t e ( j u s t t h e p a r t r e q u i r e d f o r s e n d i n g )
map<NodeID , MessageID > INP2PACKS ;

/ / C o n s e r v a t i v e s t a t e ( j u s t t h e p a r t r e q u i r e d f o r s e n d i n g )
MessageID OUTC2CID = 0 ;
map<MessageID , Message > OUTMSGPENDING;

/ / Send a message ( d e s t i n a t i o n c e l l D i s i m p l i c i t ) .
/ / N e c e s s a r i l y invoked from t h e c o n s e r v a t i v e s i m u l a t o r t i c k code .
i n t Send ( Message m) {

OUTMSGPENDING[ ++OUTC2CID ] = m;
r e t u r n OUTC2CID ;

}

/ / C a l l e d when an S i has t o send an i n t e r −c e l l p a c k e t t o a Di .
/ / Code shown i s j u s t p a r t o f t h e l o g i c r e q u i r e d t o send an i n t e r −c e l l p a c k e t !
vo id SendData ( Node Di ) {

P a c k e t p = new P a c k e t ;

/ / . . . more send l o g i c . . .

i n t mbudget = number o f message r e t r a n s m i s s i o n s t h a t f i t i n t h e o u t g o i n g p a c k e t ;
i n t mcount = minimum ( mbudget , e l e m e n t s i n OUTMSGPENDING ) ;

p . p u t ( mcount ) ; / / How many messages we ’ r e s e n d i n g t o Di

/ / Avoid re−s e n d i n g messages t h a t t h e t a r g e t Di p e e r has a l r e a d y acknowledged .
MessageID f i r s t i d = minimum ( l o w e s t MessageID i n OUTMSGPENDING, INP2PACKS [ Di ] + 1 ) ;

/ / Pu t a l l messages b e i n g r e t r a n s m i t t e d i n t h e o u t g o i n g p a c k e t .
/ / We a t t e m p t t o r e t r a n s m i t a l l non−acknowledged messages i f t h e r e i s room .
f o r ( MessageID mid = f i r s t i d ; mid < f i r s t i d + mcount ; mid ++) {

Message mdata = OUTMSGPENDING[ mid ] ;
p . p u t ( mid ) ;
p . p u t ( mdata ) ;

}

/ / . . . more send l o g i c . . .

/ / Send t h e UDP p a c k e t p from Si t o Di
s e n d _ p a c k e t ( Di , p ) ;

}

Figure 4.10: C++ pseudo-code: logic required at the sender (S) to support the Send func-
tion.

code) must send one UDP packet to a given Di primary cell node at cell D. For clarity, the
provided listing of SendData abstracts many aspects, such as determining the maximum
size of the packet so that flow control is achieved, and splitting a single large UDP packet
into many smaller packets to avoid fragmentation at the IP layer.

In essence, the SendData function implementation ensures that any messages still in
OUTMSGPENDING at the time the function is called are re-sent, in order from lowest
ID to highest ID, to the chosen Di node every time an outgoing inter-cell synchronization
packet is being sent from S to D. Assuming a working BSS algorithm at both S and D, this
logic tends to a state where all Sì nodes will have communicated at least the first pending
message in the cell’s OUTMSGPENDING queue directly to all Di nodes. In other words,
each Di node will receive the exact same message directly, through a secure point-to-
point channel, from every Si. If that happens, an additional consensus step at D would be
sufficient to ‘receive’ the message, which is precisely what we do. The pseudo-code for
that, which runs at each D node, is shown in Figure 4.11 and Figure 4.12.
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/ / Incoming ( r e c e i v e ) Logic a t p r i m a r y c e l l nodes o f D f o r a g i v e n s o u r c e S ( i m p l i c i t )

/ / P r i v a t e s t a t e ( c o m p l e t e ) .
map<NodeID , MessageID > OUTP2PACKS ;

/ / C o n s e r v a t i v e s t a t e ( c o m p l e t e ) .
c l a s s MsgVote {

map<NodeID , map<NodeID , Hash > > v o t e s ; / / I n n e r a r e S node IDs , o u t e r a r e D node IDs .
map<Hash , Message > v e r s i o n s ; / / S t o r e s t h e f u l l message f o r each known hash .

}
map<MessageID , MsgVote> INMSGPENDING ;
MessageID OUTC2CACK = 0 ;

/ / C a l l b a c k f u n c t i o n implemented by t h e a p p l i c a t i o n . Source c e l l ( S ) i s i m p l i c i t .
/ / Must be invoked from t h e c o n s e r v a t i v e t i c k f u n c t i o n .
i n t Incoming ( MessageID id , Message m) ;

/ / F u n c t i o n c a l l e d whenever a Di r e c e i v e s an UDP p a c k e t from a Si . Di i s ‘ t h i s ’ node .
/ / Code shown i s j u s t p a r t o f t h e l o g i c r e q u i r e d t o r e c e i v e an i n t e r −c e l l p a c k e t !
vo id Rece iveDa ta ( Node Si , P a c k e t p ) {

/ / . . . more r e c e i v e l o g i c . . .

i n t mcount = p . g e t ( ) ; / / How many messages t o be r e a d .
f o r ( i n t i =0 ; i <mcount ; i ++) {

MessageID mid = p . g e t ( ) ;
Message mdata = p . g e t ( ) ;

/ / Sk ip l a t e v o t e e v e n t s f o r messages t h a t have a l r e a d y been r e c e i v e d .
i f ( mid <= OUTC2CACK )

c o n t i n u e ;

/ / Check whe the r t h i s Di has a l r e a d y f o r w a r d e d a v o t e f o r mid f o r t h i s S i .
i f ( i f e x i s t s a v a l u e mapped t o INMSGPENDING[ mid ] . v o t e s [ Di ] [ S i ] )

c o n t i n u e ; / / I g n o r e and go t o t h e n e x t message .

/ / Submit an ‘ i n p u t ’ t o t h e c e l l i n t h e same way t h a t a p l a y e r i n p u t would .
/ / These e v e n t s have no e f f e c t when a p p l i e d t o t h e o p t i m i s t i c s t a t e .
Event e = new Event ( ) ;
e . p u t ( "C2C Incoming v o t e " ) ;
e . p u t ( Di ) ; / / Th i s i s checked so t h a t nodes a t D c a n n o t i m p e r s o n a t e each o t h e r .
e . p u t ( S i ) ; / / The p e e r t h a t s e n t t h e c e l l −to−c e l l message t o t h i s Di .
e . p u t ( mid ) ; / / The c e l l −to−c e l l message ID t h a t was r e c e i v e d by Di from Si .
e . o u t ( mdata ) ; / / The d a t a o f t h a t message .
P u s h C e l l I n p u t ( e ) ; / / Execu te t h i s e v e n t i n t h e f u t u r e , c o n s e r v a t i v e l y .

/ / Update t h e o u t g o i n g ack v a l u e s e n t t o S i ( r e d u c e s r e t r a n s m i s s i o n s by S i ) .
OUTP2PACKS[ S i ] = maximum ( mid , OUTP2PACKS[ S i ] ) ;

}

/ / . . . more r e c e i v e l o g i c . . .
}

Figure 4.11: C++ pseudo-code: logic required at the receiver (D) to support the Incoming
callback (1 of 2).

The code in Figure 4.11 begins by defining all the main state variables needed by
the nodes at D to receive the cell-to-cell ‘reliable’ messages. The most complex struc-
ture is INMSGPENDING. It maps incoming message ID values to a struct that contains
two other structures: a bi-dimensional votes array which maps pairs of (D,S) nodes to a
message hash value, and a versions array which maps a message hash value to the corre-
sponding message content.

After the variables, the ReceiveData function is shown in Figure 4.11. It simply un-
packs the message retransmissions from Si and commits them to the cell as votes, making
sure that it is not committing a vote that has already been integrated in INMSGPENDING,
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or a vote for a message that has already been received and acknowledged, which would
just waste bandwidth.

/ / C o n s e r v a t i v e s i m u l a t i o n t i c k f u n c t i o n .
/ / e v e n t s : l i s t o f e v e n t s c o n s e r v a t i v e l y s y n c h r o n i z e d f o r e x e c u t i o n i n t h i s t i c k .
/ / Code shown i s j u s t p a r t o f t h e l o g i c !
vo id C o n s e r v a t i v e T i c k ( v e c t o r <Event > e v e n t s ) {

/ / P r o c e s s e v e n t s f o r e x e c u t i o n i n t h i s c o n s e r v a t i v e t i c k
f o r e v e r y e v e n t ‘ e ’ i n t h e ‘ e v e n t s ’ l i s t {

S t r i n g even tType = e . g e t ( ) ;
i f ( even tType == "C2C Incoming v o t e " ) {

NodeID Di = e . g e t ( ) ;
NodeID Si = e . g e t ( ) ;
MessageID mid = e . g e t ( ) ;
Message mdata = e . g e t ( ) ;
Hash msg_hash = c a l c u l a t e _ h a s h ( mdata ) ;

/ / Sk ip l a t e v o t e e v e n t s f o r messages t h a t have a l r e a d y been r e c e i v e d .
i f ( mid <= OUTC2CACK )

c o n t i n u e ;

/ / Update t h e INMSGPENDING s t r u c t u r e t o w a r d s a c o n s e n s u s f o r message ‘ mid ’
INMSGPENDING[ mid ] . v o t e s [ Di ] [ S i ] = msg_hash ;
INMSGPENDING[ mid ] . v e r s i o n s [ msg_hash ] = mdata ;

}
e l s e / / . . . h a n d l e a l l o t h e r t y p e s o f e v e n t s . . .

}

/ / Check f o r messages t h a t can be r e c e i v e d ( quorum r e a c h e d ) .
/ / S i n c e we g u a r a n t e e t h a t messages a r e r e c e i v e d i n t h e same o r d e r t h e y a r e s e n t ,
/ / we have t o scan t h e INMSGPENDING map from l o w e s t t o h i g h e s t message ID .
f o r e v e r y ‘ mid ’ MessageID i n t h e ‘INMSGPENDING’ map , from l o w e s t t o h i g h e s t v a l u e {

boo l m e s s a g e _ r e c e i v e d = f a l s e ;
map<Hash , i n t > d_quorum ;
f o r e v e r y ‘d ’ NodeID i n t h e ‘INMSGPENDING[ mid ] . v o t e s ’ map {

map<Hash , i n t > s_quorum ;
f o r e v e r y ‘ s ’ NodeID i n t h e ‘INMSGPENDING[ mid ] . v o t e s [ d ] ’ map {

Hash h v o t e = INMSGPENDING[ mid ] . v o t e s [ d ] [ s ] ;
s_quorum [ h v o t e ] ++;

}
f o r e v e r y ‘ hs ’ Hash i n t h e ‘ s_quorum ’ map {

i f ( s_quorum [ hs ] > QDIS )
d_quorum [ hs ] + + ;

}
}
f o r e v e r y ‘ hd ’ Hash i n t h e ‘ d_quorum ’ map {

i f ( d_quorum [ hd ] > QDID) {

/ / Message r e c e i v e d .
OUTC2CACK = mid ; / / D w i l l s t a r t acknowledg ing t h a t up t o ‘ mid ’ was r e c e i v e d .
INMSGPENDING . remove ( mid ) ; / / Clean up a l l v o t e d a t a f o r message ‘ mid ’ .
Incoming ( mid , mdata ) ; / / Pa s s incoming c e l l −to−c e l l message t o app .
m e s s a g e _ r e c e i v e d = t r u e ;
b r e a k ;

}
}

/ / To g u a r a n t e e r e c e i p t o f messages i n o r d e r , must s t o p c h e c k i n g now
/ / i f t h e c u r r e n t message IDs i n t h e a s c e n d i n g s e q u e n c e c a n n o t be r e c e i v e d .
i f ( m e s s a g e _ r e c e i v e d == f a l s e )

b r e a k ;
}

/ / . . . o t h e r c o n s e r v a t i v e t i c k l o g i c . . .
}

Figure 4.12: C++ pseudo-code: logic required at the receiver (D) to support the Incoming
callback (2 of 2).
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INMSGPENDING keeps track of all message data reported by any nodes of D on
behalf of any nodes of S. A Di node is constantly receiving cell-to-cell messages from Si
nodes, stating that a message of ID ‘mid’ has a given content ‘mdata’. If a malicious S
node is reporting a corrupted ‘mdata’ version for an ‘mid’ that is being currently negoti-
ated, that corrupted message version will be included in the INMSGPENDING structure,
but it is unlikely that it will be accepted as the official version of message ‘mid’ since a
minimum quorum must be reached for a message version is accepted. That filter is shown
in Figure 4.12. Once a quorum is reached for a given message ID, it is forwarded to
the application through the Incoming callback, and removed from the INMSGPENDING
structure since it is no longer pending to be received. Finally, the OUTC2CACK counter
is increased to keep track of the largest message ID successfully received by D thus far.

/ / C a l l e d when a Di has t o send an i n t e r −c e l l p a c k e t t o a S i .
/ / Code shown i s j u s t p a r t o f t h e l o g i c r e q u i r e d t o send an i n t e r −c e l l p a c k e t !
vo id SendData ( Node S i ) {

P a c k e t p = new P a c k e t ;

/ / . . . more send l o g i c . . .

/ / Th i s s h o u l d p r o b a b l y be a t t h e b e g i n n i n g of a l l i n t e r −c e l l p a c k e t s . . .
p . p u t ( OUTC2CACK ) ; / / S i i s c o n s t a n t l y u p d a t e d on Di ’ s v a l u e f o r OUTC2CACK.
p . p u t ( OUTP2PACKS [ S i ] ) ; / / Le t S i know t h e messages t h a t Di has a l r e a d y r e c e i v e d .

/ / . . . more send l o g i c . . .

/ / Send t h e UDP p a c k e t p from Di t o S i
s e n d _ p a c k e t ( Si , p ) ;

}

Figure 4.13: C++ pseudo-code: logic required at the receiver (D) to support the sending
of an acknowledgement to S for its cell-to-cell messages that have been received by D.

Figure 4.13 shows that Di acknowledges inter-cell message retransmissions to an Si by
sending the current OUTP2PACKS[ Si ] on every outgoing packet. It also shows that D ac-
knowledges inter-cell messages to S by having every Di send their copy of OUTC2CACK
to the Si’s at S. As with the SendData functionality at S which sends messages, the Send-
Data at D will tend to have every Di send the current OUTC2CACK value to every Si.
Eventually, S will be able to reach a consensus on the increased value of the incoming
OUTC2CACK value, which is recorded at S in the INC2CACK replicated variable.

Figure 4.14 shows what happens when a Si node receives an inter-cell packet from
a Di node. Each Si node has an idea about what is the greatest cell-to-cell Message ID
ever received by D, that is, what is the latest message ID acknowledgement value from
D. That is stored at INC2CACKS[ Si ], which is a replicated (cell) variable. That is the
‘official’, synchronized position of Si on the matter. Si also has a private data structure
which it uses to track a more up-to-date, but private, version of that information, which is
the INPEERC2CACKS map. Notice that, in Figure 4.14, Si scans its INPEERC2CACKS
maps to see if a majority (a quorum of at least ‘QSP’ nodes) of D nodes has reported an
ack value that is greater than its current official vote. If that is the case, Si submits a new
vote to the cell to raise its INC2CACKS[ Si ].

Figure 4.15 shows the final stage of the algorithm. When the conservative state ex-
ecution advances at S’s primary cell nodes, these will execute the vote acknowledge-
ment events, which updates the shared data structure which keeps track of every S node’s
current vote about what is the current value of acknowledgement message ID marker.
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/ / Ack r e c e i v e l o g i c a t p r i m a r y c e l l nodes o f S f o r a g i v e n d e s t i n a t i o n D ( i m p l i c i t )

/ / P r i v a t e s t a t e ( j u s t t h e p a r t r e q u i r e d f o r r e c e i v i n g acknowledgements )
map<NodeID , MessageID > INPEERC2CACKS ;

/ / C o n s e r v a t i v e s t a t e ( j u s t t h e p a r t r e q u i r e d f o r r e c e i v i n g acknowledgements )
MessageID INC2CACK = 0 ;
map<NodeID , MessageID > INC2CACKS ; / / Indexed by S nodes .

/ / C a l l b a c k f u n c t i o n implemented by t h e a p p l i c a t i o n .
/ / Must be invoked from t h e c o n s e r v a t i v e t i c k f u n c t i o n .
i n t Ack ( MessageID id , Message m) ;

/ / F u n c t i o n c a l l e d whenever a S i r e c e i v e s an UDP p a c k e t from a Di . S i i s ‘ t h i s ’ node .
/ / Code shown i s j u s t p a r t o f t h e l o g i c r e q u i r e d t o r e c e i v e an i n t e r −c e l l p a c k e t !
vo id Rece iveDa ta ( Node Di , P a c k e t p ) {

/ / . . . more r e c e i v e l o g i c . . .

MessageID p_pack = p . g e t ( ) ;
MessageID p_cack = p . g e t ( ) ;

INP2PACKS [ Di ] = maximum ( INP2PACKS [ Di ] , p_pack ) ;
INPEERC2CACKS[ Di ] = maximum ( INPEERC2CACKS[ Di ] , p_cack ) ;

/ / Check whe the r t h i s S i i s c o n v i n c e d t h a t a m a j o r i t y o f nodes a t D i s
/ / r a i s i n g t h e c u m u l a t i v e acknowledgement ID f o r c e l l −to−c e l l messages
/ / r e l a t i v e t o Si ’ s l a s t p e r c e p t i o n ( INC2CACKS[ S i ] −− n o t t h e c e l l ’ s
/ / p e r c e p t i o n o f t h e acknowledgement ) .
i n t quorum = 0 ;
MessageID m i n r a i s e = INFINITY ; / / Value t h a t i s n e v e r t h e s m a l l e r among two .
f o r e v e r y ‘ mid ’ MessageID i n t h e ‘INPEERC2CACKS’ map {

i f ( mid > INC2CACKS[ S i ] ) {
quorum ++;
m i n r a i s e = minimum ( m i n r a i s e , mid ) ;

}
}
i f ( quorum > QSP) {

/ / Commit a v o t e t o t h e c e l l t o r a i s e Si ’ s own p e r c e p t i o n o f t h e acknowledgement .
/ / Submit an ‘ i n p u t ’ t o t h e c e l l i n t h e same way t h a t a p l a y e r i n p u t would .
/ / These e v e n t s have no e f f e c t when a p p l i e d t o t h e o p t i m i s t i c s t a t e .
Event e = new Event ( ) ;
e . p u t ( "C2C Acknowledgement v o t e " ) ;
e . p u t ( S i ) ; / / Th i s i s checked so t h a t nodes a t S c a n n o t i m p e r s o n a t e each o t h e r .
e . p u t ( m i n r a i s e ) ; / / H e i g h t e n e d D message acknowledgement v a l u e as p e r c e i v e d by S .
P u s h C e l l I n p u t ( e ) ; / / Execu te t h i s e v e n t i n t h e f u t u r e , c o n s e r v a t i v e l y .

}

/ / . . . more r e c e i v e l o g i c . . .
}

Figure 4.14: C++ pseudo-code: logic required at the cell-to-cell message sender (S) to
receive acknowledgements from the message receiver (D) (1 of 2).

Whenever a majority (a quorum of ‘QSC’ nodes) at S decides that the current value of
INC2CACK is to be increased, it is increased as far as a majority of nodes agrees to. That
results in the Ack callback being called for application code at S and messages being
removed from the OUTMSGPENDING message queue at S.

For simplicity, it is not shown in all the pseudo-code listings the logic that cleans up
these data structures whenever nodes are removed from S or D. For instance, if a node
Di fails, all entries related to Di have to be removed, to avoid Di’s votes from helping to
receive a message, for instance. These cleanups are to be performed at the ConservativeT-
ick function, at least for the conservatively-synchronized, replicated data structures such
as INMSGPENDING.
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/ / C o n s e r v a t i v e s i m u l a t i o n t i c k f u n c t i o n .
/ / e v e n t s : l i s t o f e v e n t s c o n s e r v a t i v e l y s y n c h r o n i z e d f o r e x e c u t i o n i n t h i s t i c k .
/ / Code shown i s j u s t p a r t o f t h e l o g i c !
vo id C o n s e r v a t i v e T i c k ( v e c t o r <Event > e v e n t s ) {

/ / P r o c e s s e v e n t s f o r e x e c u t i o n i n t h i s c o n s e r v a t i v e t i c k
f o r e v e r y e v e n t ‘ e ’ i n t h e ‘ e v e n t s ’ l i s t {

S t r i n g even tType = e . g e t ( ) ;
i f ( even tType == "C2C Acknowledgement v o t e " ) {

NodeID Si = e . g e t ( ) ;
MessageID m i d _ r a i s e = e . g e t ( ) ;

INC2CACKS[ S i ] = m i d _ r a i s e ;
}
e l s e / / . . . h a n d l e a l l o t h e r t y p e s o f e v e n t s . . .

}

/ / Check f o r a r a i s e on o u t g o i n g MessageID acknowledgement ( quorum r e a c h e d ) .
i n t quorum = 0 ;
MessageID m i n r a i s e = INFINITY ;
f o r e v e r y ‘ s ’ NodeID i n t h e ‘INC2CACKS’ map {

i f ( INC2CACKS[ s ] > INC2CACK) {
quorum ++;
m i n r a i s e = minimum ( m i n r a i s e , INC2CACKS[ s ] ) ;

}
}
i f ( quorum > QSC) {

/ / Acknowledge a l l messages between o l d and new v a l u e o f INC2CACK .
f o r ( MessageID mi = INC2CACK + 1 ; mi <= m i n r a i s e ; mi ++) {

Ack ( OUTMSGPENDING[ mi ] , mi ) ; / / N o t i f y a p p l i c a t i o n
OUTMSGPENDING. remove ( mi ) ; / / Remove message from t h e o u t g o i n g queue

}

/ / Advance t h e acknowledgement marker a t S
INC2CACK = m i n r a i s e ;

}

/ / . . . o t h e r c o n s e r v a t i v e t i c k l o g i c . . .
}

Figure 4.15: C++ pseudo-code: logic required at the cell-to-cell message sender (S) to
receive acknowledgements from the message receiver (D) (2 of 2).

4.6.3 Considerations on selecting values for the quorum thresholds

We have not researched into adequate values for the quorum thresholds QDID, QDIS,
QSP and QSC, as we were first trying to come up with any algorithm that seemed cor-
rect and workable (an initial solution). In the initial version of this algorithm we simply
demanded that every individual node notified every other node correctly, which would
be equivalent to setting QDID = QDIS = QSP = QSC = N , where N would be
the constant, global number of primary cell nodes allocated to each cell. That was prob-
lematic for several reasons. The main problem was that a single malicious primary node
in either the source or destination cell could start preventing any message from getting
across simply by ignoring the messages. Even with an outer mechanism to detect and
correct such situations, the power for a single primary node to individually interrupt the
flow of messages between any cell and all its neighbors is too damaging in a vandalism
(griefing) sense. Therefore, some faulty pairwise negotiations between individual primary
cell nodes would have to be tolerated, and thus the quorums were introduced as to allow
future works to experiment with them.

On the other hand, the QDID = QDIS = QSP = QSC = N thresholds are the
safest against state cheating. As we will see in the next section, the reliable inter-cell
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negotiation mechanism is to be used for implementing object ownership transfer between
cells – that is, to support one object moving from one cell to another. The lower the
quorum thresholds above are, the easier it is for a given quantity of malicious nodes to
transfer nonexistent objects to adjacent cells. If these objects can be made to be arbitrarily
valuable (e.g. treasure chests in an RPG with arbitrary amount of treasure), this could
break the economy of the game.

So, we do not know exactly how far we can go into reducing the quorums without
opening it up for state cheating, and we do not know how far we must go into reducing
the quorums to avoid a small minority of malicious nodes from stopping transfers alto-
gether. We do not also know if the quorum variables could be combined into fewer global
configuration variables for the same or similar effect. For instance, maybe they can all
safely be set to a byzantine quorum (LAMPORT; SHOSTAK; PEASE, 1982), or maybe
not. Due to our primary focus on cheat prevention, we consider that evaluating this will
more important, initially, than evaluating the performance of the protocol, which is also
required and which we have also not done. We leave these for future work.

4.6.4 Summary and additional remarks

In the previous sections, the basic communication overlay and its basic protocols were
described. One of such basic protocols was the regular inter-cell synchronization packet
stream (Section 4.2.5), which created a series of UDP packet streams between pairs of
primary cell nodes of distinct cells. In this section, we defined a ‘reliable messaging
service’ (a higher-level protocol) which, building on top of these inter-cell packet streams,
provides the means for adjacent cells to signal each other in a fairly reliable and cheat-
resistant way.

The algorithm’s worst case scenario, in a performance (messaging cost) perspective,
is when QDID = QDIS = QSP = QSC = N , as per the previous section. In
this case, the cost of the algorithm is O(N2) messages, which is not efficient. However,
we believe the algorithm still can be made to be feasible for several reasons. First, N
(number of primary nodes in a cell) is already small enough. Second, inter-cell messages
should be no longer than a few tens of bytes (including the service overhead). Third,
it doesn’t have to guarantee the timeliness of message delivery. Fourth, the cost can be
amortized by reducing the quorum thresholds. And fifth, individual messages do not
increase the amount of UDP packets sent; instead, all messages are aggregated to packets
that are already outgoing, maximizing gains from packet compression and minimizing
packet overhead.

However, any logic that depends on this service will certainly have to be frugal in the
amount of messages generated and their size. We can, for now, ignore the timeliness of
delivery, but we can’t ignore the fact that, on average, less bytes must be sent than what
the individual sender and receiver nodes can cope with (flow control). Again, we have not
prototyped this service nor evaluated how much bandwidth would be available for inter-
cell reliable messaging. In this way, we cannot currently shed light on how many bytes
per second of inter-cell traffic, in practice, a game designer would be able to generate. We
only know that, with the current design, it could turn out to be as low as 1% of the upload
bandwidth available to the average primary cell node, or maybe even less. We’re guessing
that a cell could generate something in the order of a few hundreds of bytes per second of
outgoing inter-cell messages for each adjacent cell. Certainly, there are games that could
already be made to work with this kind of constraint.

The algorithm, as it is defined, does not guarantee liveness in the presence of cell
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recoveries (from cell failures) that cause the conservative simulation time to decrease. For
example, consider a destination cell D which has, in its conservative state, OUTC2CACK
= 500 for a sender adjacent cell S. Now, consider that D has failed and the server recovers
an old conservative snapshot where OUTC2CACK = 400. Now, it is very likely that the
unidirectional communication channel between D and S is broken, since D will be waiting
for message 401 to be received before it will forward newer messages to the application
(due to the ordered delivery constraint). Conceptually, this scenario is no different than a
socket disconnection. However, we have not defined the service to cope with the channel
failing, so either these virtual channels have to be checked and fixed when a failure occurs,
or a proper ‘inter-cell socket’ abstraction and API must be created, with accompanying
code that handles these ‘cell socket’ connections and disconnections, etc. For now, the
simplest solution is to have the cell managers query the potentially broken cell nodes and
fix the inter-cell reliable messaging channels as needed. As this is ‘leaf’ functionality that
doesn’t affect anything else, and that there are several ways to address this (including a
redesign of the service), and that there are enough open ends already, we have left it for
future work.

We see two immediate ways to optimize the service. The first would be to simply have
some Si nodes issue hashes of messages instead of the contents of such messages, either at
random or in a coordinated way. For large messages, this could save a significant amount
of bandwidth, since when any message copy is received by the destination cell, no more
full message copies are required, only hashes which are in practice votes that confirm that
the message is legit. The caveat is that the hash function would have to be a secure one,
and secure hash functions produce large hashes. As a reference, SHA-1 produces 160 bit
(20 byte) hashes. So, if the message is smaller than the hash, the message would always
be sent instead. The overhead introduced by this optimization would be a single bit to tell
if a node is sending a hash or a message.

Another easy optimization would lie in implementing a public-key cryptosystem, hav-
ing each Si sign its outgoing messages with its private key, and having each Di validate
the signatures using the sender’s public key. In this way, the messaging inside D can be
greatly reduced, as now a single Di can forward a message from an Si to its cell peers
as definitive proof that Si approves the message. Once a node at D receives the signed
vote from Si, it will no longer forward the same message to D should it receive it from
Si directly, and it will also update its own OUTP2PACKS structure as if it had received
the message directly from Si. If all that is implemented, the QDIS quorum check can
be eliminated entirely. The trade-off would be the added requirement that a public-key
cryptosystem be present, which is not a requirement imposed by any other module in the
FreeMMG 2 architecture so far.

Describing an inter-cell reliable messaging protocol in this section was important be-
cause one of the key motivations of FreeMMG 2 lies in allowing cells to reliably transfer
objects between each other, and to allow some high-consistency interactions to be re-
solved, though not timely, directly between cells. In the next section we show how these
mechanisms could be implemented, assuming that a working and validated inter-cell reli-
able messaging protocol is present to support them.

4.7 Supporting complex inter-cell object interactions

So far, it is not clear how objects can be made to move freely around the virtual world.
As it currently stands, our description of FreeMMG 2 suggests that objects would belong
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to their originating cell forever. An object can move into the terrain of a cell that is
adjacent to its original cell, but ownership would be retained at the original cell.

It is also unclear so far how more complex interactions could be supported. For ex-
ample, if a ‘missile’ object from a cell S collides with an ‘avatar’ object from a cell D,
how to resolve that interaction? What if the collision is detected only at S, and what if it
is detected only at D? What if it is detected at both S and D but at each cell’s different
simulation times which bear no correlation to each other?

These questions point to the so-called complex object interactions across multiple
cells. These are places in simulation ‘tick’ logic where a cell has to write to foreign
objects as well as to its own objects. In other words, objects owned by different cells have
to modify each other’s state. Simple interactions are the ones that do not require this. For
instance, if a cell S detects that its own object OS is going to collide with a foreign object
OD owned by an adjacent cell D, it can simply move OS out of the way (assuming that
the collision has no side-effects such as projectile detonations and such). That may not
be the optimal solution in terms of visual quality in some cases, but it is simpler. This
example could be turned into a complex interaction if S decided to move OD out of the
way instead.

We have defined three main protocols that can be used to support these complex cell
interactions: the inter-cell reliable messaging service (Section 4.6), the inter-cell syn-
chronization protocol (Section 4.2.5) and the server-cell reliable messaging service (Sec-
tion 4.5). These protocols were primarily built for security and not low latency. Thus,
any mechanism built over these tools will certainly perform worse in terms of visual con-
sistency and interaction response times than regular interaction between objects owned
by the same cell. That is especially significant because the better-performing support of
intra-cell interactions was also not fully optimized for latency. Future works that attempt
to decrease latency and increase visual consistency in FreeMMG 2’s complex inter-cell
interaction support should therefore start improving on the three fundamental protocols
described above.

Thus, in this section, we will describe how a few in-game situations can be made to
work across cell borders using the previously described protocols. Our main goal with
this section is to show that, assuming that the relevant support protocols could be shown
to work, it would be possible to have adjacent cells coordinating to achieve correct and
cheat-resistant interaction across their borders with a reduced involvement of server-side
resources.

In the remainder of this section it will be assumed that the application will model the
state of a cell as a collection of objects. The FreeMMG 2 core functionality does not
require this. Core functions only handle pieces of game state as opaque blocks of bytes.
However, most games benefit from having the state modeled as an object-oriented sys-
tem. That is also easier to visualize, which is why we will assume that for this and the
following examples. In an implementation of FreeMMG 2, we would recommend an in-
termediate ‘object module’ between the core protocols and the application. Such module
would be responsible for layering the object metaphor on top of the basic functions for
the application to use. That module could then implement object transfer services that
would work for several types of game objects to be supported.

4.7.1 Maintaining global consistency in a peer-to-peer cell-based MMOG

In the original FreeMMG model, we have identified what we called a ‘global consis-
tency problem’ (CECIN et al., 2004). In FreeMMG, whenever a segment (same as a cell)
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failed, its state was restored to the last snapshot (segment state copy) that the peers running
the segment had sent to the server. However, if a segment S had a given object X when its
last snapshot was taken, that means that a restore of S from that snapshot would restore
the presence of X to S, disregarding the case where the object X had already moved out of
S. That global inconsistency scenario is illustrated by Figure 4.16. By ‘global’ we mean
that, although consistency is maintained inside individual cells (segments), it is broken if
the collection of cells is considered. In the figure, a duplicated object is shown, which is
inconsistent since, obviously, objects should not be erased or duplicated gratuitously by
the middleware.

Figure 4.16: Global consistency problem in the original FreeMMG model.

In FreeMMG 2, there is the same problem. The main difference is that instead of
blindly backing up the full state of all cells at the server, FreeMMG 2 lets the application
decide which objects are ‘important’ and thus should be regularly backed up and protected
from loss or duplication, and which objects aren’t important and thus should be left to be
duplicated or lost upon failures. The important objects can be then backed up at the
server-side both periodically and when they are about to be transferred from one cell to
another. The collection of important objects and variables of a cell constitute what we
call its ‘vital state’. The vital state has the same purpose as the back-up snapshots from
FreeMMG: to restore the state of cells from server-side data whenever needed.

The core realization here is that we do not have a mechanism that truly guarantees
the consistency of the game state stored at the cell replicas at all times. It will be always
possible, though generally unlikely for adequate replication and quorum parameters, that
a cell is composed exclusively of malicious colluding nodes that set its state to arbitrary
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contents. It would be trivial for the members of a compromised cell to not only fabricate
arbitrary amounts of virtual wealth, but also to break the game’s global consistency. For
instance, a compromised cell may create a copy of an unique item, avatar or NPC that
is already located elsewhere on the virtual world, or delete such object if it is currently
located at the compromised cell.

In essence, the only way to completely guarantee global consistency is to store cell
data at the server-side. Thus, when a cell manager receives a new update for a cell’s vital
state record, it should check whether that update breaks global consistency or not. For
example, if a compromised cell commits a snapshot to its server-side cell manager that
contains a duplicated unique object, the cell manager has the means to verify if that unique
object is fake. One way that could be done would be by checking in with every other cell
manager or with a central database of unique objects to see whether that unique object
reported by the compromised cell is already registered as being in another cell. If the
unique object is found elsewhere, the state reported by the compromised cell is rejected.

Thus, the server-side infrastructure has the means to always guarantee invariants over
the global game state. However, using server-side data to restore cells is supposed to be
only a last-resort measure. Ideally, the cell nodes themselves will be able to coordinate
and prevent cell state from being corrupted by unintentional or intentional failures. The
goal of keeping the essential parts of the game state consistent at servers is only to have
a fall-back mechanism. Whenever there is any doubt whether the state of the cells is
consistent or not, the server-side data can be checked to dissolve any inconsistencies found
at the client-held cell state storage network.

In the next sections, we will describe how to support some complex interaction be-
tween objects owned by different cells. Each scenario will be explained both for when the
affected objects are not important (no server-side involvement) and for when the objects
are important and thus cannot be lost or duplicated (with updates to server-side vital cell
state). In the latter, we explain how the server-side cell managers can use the ‘vital cell
state’ to protect the important objects from a permanent situation of global inconsistency.

4.7.2 Example 1: transferring an object between two cells (no server)

A complex interaction that is probably required in any game is moving ‘game objects’
between cells. That is, transferring the ownership of a game object between two cells.
Even more specifically, deleting an object from a source cell’s replicas and inserting a
copy if it at the destination cell’s replicas.

       Cell A                       Cell B Avatar still owned by cell A,
but moving towards cell B

Threshold for starting an
avatar transfer  to cell B

Figure 4.17: In-game situation that precedes the following object transfer examples.

Figure 4.17 shows the starting state of the in-game situation that we want to support.
A single avatar object, owned by Cell A, has already moved inside the virtual terrain that
comprises Cell B. One should remember that objects are allowed to be owned by a cell
and be positioned at an adjacent cell. In the figure, the avatar is moving further into the
territory of Cell B. After it crosses a certain threshold (to be set by the application), the
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avatar will be transferred to B. Instead of handing off objects as soon as they cross the
borders, a threshold is used to reduce the amount of object transfer operations between
cells. Ahmed et al. (AHMED; SHIRMOHAMMADI; OLIVEIRA, 2007) features a con-
ceptually identical mechanism, and explains it in greater detail.

OBJ(A, AUTH) OBJ(A, GHOST)

Cell A Cell B

Figure 4.18: State of cells A and B prior to the object transfer being triggered.

Figure 4.18 shows the avatar that is switching cells as a game object OBJ. The termi-
nology used in Figure 4.18 will be used in the following figures as well. In parentheses
after the object name, we describe where (in which cell) that copy resides (either A or B)
and its role. The possible roles are: AUTH, meaning the authoritative copy of the object
(meaning the specified cell owns it); GHOST, meaning a copy of an object owned by an
adjacent cell; and TEMP_AUTH, meaning that the specified cell has started to delegate
ownership of the object to an adjacent cell but hasn’t completed the operation yet (this
means the specified cell has partial ownership over the object).

Figure 4.18 shows the state of cells A and B before the transfer is triggered. For
simplicity, the current and following figures will show only a single, simplified state for
the cell, abstracting away replication and the movement of the object. In Figure 4.18 the
game state is stable. Both the optimistic and conservative states of all cell nodes are the
same. All cell nodes at A contain the authoritative copy of OBJ, while all cell nodes at B
contain the ghost copy of OBJ.

In Figure 4.19, OBJ crosses the threshold at the conservative state of Cell A and the
transfer process is initiated. Due to this, two actions are executed at all primary nodes of
Cell A:

• First, OBJ is marked as a ‘temporary authority’. To this end, it is marked by the
application (or object management layer) with the state TEMP_AUTH. The only
reason for a TEMP_AUTH object state is to avoid objects blinking in and out of
existence during the object transfer procedures which, being based on the inter-
cell reliable messaging service, can take several seconds to complete. The ap-
plication must ensure that any side-effects to game state caused by a short-lived
TEMP_AUTH object cannot cause the game’s global consistency to break;

• Second, Cell A sends a message to Cell B informing that the game object ‘OBJ’
(whose relevant state is provided in the message) is to be now owned by Cell B.
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OBJ(A, TEMP_AUTH) OBJ(A, GHOST)

Cell A Cell B

Threshold just
crossed at
conservative
state

Send message
“Transfer (OBJ)”

Figure 4.19: Object transfer triggered at Cell A during the conservative simulation step.

Note that all such inter-cell messages in the examples use the reliable inter-cell
messaging service.

In other words, OBJ is now temporarily ‘locked’. The application will be responsible
for ensuring that the behavior of OBJ is now minimal. For instance, an NPC may keep
being moved by the AI, but it may be prevented from attacking or taking damage, for
instance. The extent to which restrictions apply to TEMP_AUTH objects is to be deter-
mined by the application. Alternatively, important modifications to the TEMP_AUTH
object can be forwarded to Cell B through inter-cell messaging. Then, after the object
arrives, the pending modifications that were committed after the transfer operation could
then be applied. For now, we assume that TEMP_AUTH objects just keep moving and
animating, and that arbitrary movement and animation commands are not meaninful to
the long-term consistency of the game state.

OBJ(A, TEMP_AUTH) OBJ(A, AUTH)

Cell A Cell B

Inccoming message
“Transfer (OBJ)”

Outgoing acknowledgment
to “Transfer (OBJ)”

Figure 4.20: Object transfer message received by Cell B.

Figure 4.20 shows Cell B receiving the inter-cell reliable message. Upon receiving



167

the message, Cell B replaces its ghost copy of OBJ with the authoritative copy. The
application can either simply use the object state informed in the message or, which seems
more reasonable, merge the state informed in the message for OBJ with the latest updates
from the TEMP_AUTH object at A. For instance, while the transfer was being negotiated,
the object may have already moved a lot. Using the state from the ghost copy would
provide a better visual result.

Now, the cell nodes that can observe the state of both cells A and B will receive
updates from two masters: the TEMP_AUTH object at A, as well as the AUTH object at
B, are both sending object updates for neighbor cells and player nodes. Observers that
can perceive both updates (such as a common adjacent cell) should drop the updates from
TEMP_AUTH and use the ones from AUTH only. Others, such as player nodes, will
use the one that is available. Naturally, Cell B ignores updates from the TEMP_AUTH
version of the object now that it knows it holds the authoritative copy. Cell A can now
behave as a hybrid of master and ghost copy, obeying (consuming) the updates from Cell
B to correct its object (as a ghost copy would), but still propagating OBJ updates (as a
master copy would).

OBJ(A, GHOST) OBJ(A, AUTH)

Cell A Cell B

Incoming acknowledgment
to “Transfer (OBJ)”

Figure 4.21: Cell A receives the message acknowledgement from Cell B, completing the
transfer.

Finally, in Figure 4.21, Cell A receives the confirmation that Cell B has received the
object transfer message. Since the message is unconditional, all cell nodes at A can now
remove OBJ. Actually, instead of deleting, the optimal action is to convert OBJ into a
GHOST at Cell A, since it should already be receiving updates from the AUTH version
of OBJ at Cell B.

This mechanism works consistently because the sending, receiving and acknowledg-
ing of these inter-cell messages are reliable, ordered, and happen always inside conserva-
tive simulation step code. However, the mechanism described can lose or duplicate OBJ
if there is a cell failure, as discussed earlier. In the following section, this problem is ad-
dressed with additional steps that can be taken whenever OBJ is an important object that
should not be lost or duplicated.
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4.7.3 Example 2: transferring an object between two cells (with server)

To transfer important objects that cannot be lost or duplicated, it becomes necessary
to contact the servers to inform whenever an object moves from one cell to another. To
achieve this, the mechanism described in the previous section is preceded with some
additional steps which we present below.

OBJ(A, AUTH)

Cell A

Cell Manager
for cell A

Send Cell-to-Server message:
“Transfer (OBJ) to (B)”

Cell Manager
for cell B

Figure 4.22: Object transfer registered at the server-side first (1 of 3).

Figure 4.22 shows the first step, which is having the cell send a reliable message to its
cell manager telling that OBJ is moving to Cell B.

OBJ(A, AUTH)

Cell A

Cell Manager
for cell A

Move object to Cell B's vital
cell state at the server-side

(atomic operation)

Cell Manager
for cell B

Figure 4.23: Object transfer registered at the server-side first (2 of 3).

Figure 4.23 shows the second step, which is an internal synchronization between the
cell managers of cells A and B. Basically, the vital cell state of both cells must be updated
atomically, moving OBJ from one cell manager to the other. That simple negotiation will
guarantee that, should the state of cells A and B be lost, OBJ will be restored to exactly
one of them (Cell B).
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OBJ(A, AUTH)

Cell A

Cell Manager
for cell A

Cell Manager
for cell B

Send Server-to-Cell message:
“Transfer (OBJ) to (B) OK!”

Figure 4.24: Object transfer registered at the server-side first (3 of 3).

Finally, in Figure 4.24, the primary nodes of Cell A receive, inside conservatively-
synchronized logic, the notification that OBJ has already been moved to Cell B at the
server-side. Now, the peer-to-peer transfer specified in the previous section may be initi-
ated.

An alternative to this would be transferring important objects through the servers only,
bypassing the need for the more complex peer-to-peer object transfer protocol presented
in the previous section. However, that would double the bandwidth cost at the server per
transfer. First, Cell A would notify the server of the departure of OBJ to B, changing
OBJ at Cell A to the state TEMP_AUTH. Second, the server would notify Cell B of the
insertion of OBJ. Third, Cell B confirms to the server that OBJ is inserted. And fourth,
the server notifies Cell A to change the object’s status from TEMP_AUTH to a GHOST.
The solution presented in the figures above requires only two messaging steps with the
server, instead of four. However, the server transfer method may be simpler to implement
and may resolve faster.

4.7.4 Example 3: picking up a foreign object

Besides transferring objects due to movement, objects may have to be transferred for
other reasons. In this section we consider a scenario where an avatar tries to pick-up an
object that is owned by a different cell.

  

 

     Cell A                       Cell B

WHITE (A, AUTH)
WHITE (B, GHOST)

BALL (A, GHOST)
BALL (B, AUTH)

BLACK (A,GHOST)
BLACK (B, AUTH)

Figure 4.25: Starting scenario for the concurrent ball pick-up example.
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Figure 4.25 shows the scenario. The WHITE object (an avatar) is owned by Cell
A, while its ghost version is perceived at Cell B. The BLACK object is owned by Cell B,
while its ghost version is perceived at Cell A. Finally, a BALL object that is to be disputed
by the two avatars, is located at Cell B together with BLACK.

Now, the example consists of considering what happens if WHITE tries to retrieve the
ball. How that is modeled depends on the application. Let’s consider that the object is
deleted upon retrieval and that some attribute of the avatar that picks it up is modified such
as an integer counter of ‘balls retrieved’. Using that modeling, one way to allow WHITE
to retrieve the ball would be the following:

• First, an invisible object BALL’ is created at Cell A, at both the conservative and
optimistic states. It links both BALL and WHITE. Whenever an update is gener-
ated from WHITE, BALL’ causes the update to send an increased ‘balls retrieved’
attribute (assuming that it can be viewed by third parties). BALL’ also works as
a negator of the BALL object: both Cell A and Cell B, upon having a copy of it
(authoritative or ghost), suppress the sending of updates for the BALL object to ob-
servers such as players and neighbor cells. Effectively, the creation of BALL’ works
as a speculative (and easily reversible) mechanism for trying to retrieve BALL;

• After that, Cell A sends a reliable inter-cell message to Cell B that requests that the
ownership of BALL be passed to Cell A;

• Upon receiving the request, Cell B may provide two different answers:

– If some other avatar such as BLACK has already retrieved BALL by the time
the request is received, the request is denied and a message is sent from B to
A notifying that BALL is not available. In that case, when Cell A receives
the negative reply, the BALL’ object is simply deleted, effectively undoing the
tentative (optimistic) retrieval operation performed by Cell A;

– If BALL is available, then B transfers it to A. Upon receiving ownership of
BALL, both BALL and BALL’ are deleted, and the effect of ball retrieval is
executed upon WHITE (e.g., increase by one the counter attribute of balls
retrieved at the WHITE object).

Note that this applies both for important and non-important objects. In the case of
important objects, the transfer of BALL to Cell A is done with updates sent to the cell
managers as explained previously.

The solution presented above may cause some other complications. For one, WHITE
cannot be transferred to another cell while BALL’ exists. If that was possible, BALL
could be transferred to Cell A but the avatar would have already moved to other cell. That
could be addressed by creating a BALL” at wherever WHITE moves in and so on, but the
benefit of this is questionable. Holding the avatar at the cell while the transfer is pending
would be simpler. However, that presents yet another complication. If Cell B suffers a
fatal failure while Cell A has BALL’ and is waiting for the answer from B, then Cell A
may end up stuck without an answer and a left-over BALL’ object that disallows WHITE
from moving out of Cell A forever. A solution to that would be having the BALL’ object
time out or re-send the request for transferring BALL to Cell A. Actually, a method or
behavior of the BALL’ object could be left responsible for drawing the remote object
in, in the true spirit of object orientation. These issues are to be resolved by whatever
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layer creates the concept of objects in the simulation, using the communication primitives
we have described earlier. Studying the issues that arise from object-oriented game state
modeling is left for the application or for future work in a reusable object simulation layer.

4.7.5 Example 4: projectile collision and damage (a Quake ‘rocket’)

Finally, let’s consider another typical scenario in an avatar-based game: some sort of
projectile object is hurled towards an avatar in an attempt to destroy the latter. Figure 4.26
shows the scenario setup. A MISSILE object owned by Cell A is about to collide with an
AVATAR object owned by Cell B. The main difference in this example is that no object
transfers are required. The objects will only be deleted or modified in some way.

  

 

     Cell A                       Cell B

MISSILE (A, AUTH)
MISSILE (B, GHOST)

AVATAR (A,GHOST)
AVATAR (B, AUTH)

Figure 4.26: Inter-cell complex interaction between a rocket and its victim.

We will now assume, for simplicity, that the avatar is not moving and that there is
no way for the rocket to miss its target at any simulator in the network. In that case, we
would recommend the following solution:

• When a collision is detected at any cell node of Cell B, nothing happens;

• When a collision is detected at any cell node of Cell A:

– First, the MISSILE object is transformed into an explosion at the point of
impact. That object should stay alive long enough to allow Cell A to perceive
the transformation through the inter-cell unreliable object updates mechanism.
This allows for Cell B to perceive the explosion as quickly as possible, without
the overhead of the inter-cell reliable messaging;

– Second, Cell A calculates the damage that is to be done on all affected avatars.
For local avatars, Cell A applies the damage instantly. For foreign avatars, Cell
A sends reliable messages to the relevant neighbor cells informing which of
their objects were damaged and by how many damage points. In our example,
a single inter-cell reliable message from Cell A to Cell B is sent, informing
that AVATAR has suffered damage proportional to a direct MISSILE hit;

• When (and if) the transformation of the MISSILE object into an animating explo-
sion is perceived at Cell B, it generates damage special effects and animation as
quickly as possible for AVATAR. That is, other players may see AVATAR being
tossed around the room and hear a sound clip of pain, and the player controlling
AVATAR may additionally see its screen blink or tilt, etc.;

• Finally, Cell B receives the reliable damage message and applies it to the avatar.
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This solution presents two main advantages. For one, individual cell nodes cannot
cheat and fabricate damage messages. Second, timely events such as visual rocket det-
onations and avatar reactions resolve relatively quickly. The main disadvantage is that
avatars may take some time from being hit to dying. There may be ways to make this
visually acceptable. Also, there are certainly many other possible solutions that trade off
between security, bandwidth usage, latency and consistency. If the FreeMMG 2 primitives
are actually implemented, future works could certainly experiment with several different
solutions for supporting the different kinds of interactions.

4.8 Closing remarks

In this chapter we have provided a description of the FreeMMG 2 middleware model.
We started by describing the basic protocols. Then, we considered how cells could de-
tect and recover from failures. And finally, we explored how reliable and ordered group
communication could be achieved while still keeping the middleware secure against state
cheating and also bandwidth-efficient.

We cannot say at this time whether our model, as described, is of practical use or not.
The only definitive test would be to finish and deploy a game that uses a working version
of a middleware whose implementation is based on the model. Even then, we believe
some aspects of the model would be changed due to practical insights that would be
inevitably gained during implementation. Thus, FreeMMG 2 is still a work in progress.
The model presented in this chapter is just the result of a lot of reasoning and a bit of
experimentation. No more, no less. In the next chapter we present a partial validation of
FreeMMG 2, mainly through a network simulation.
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5 VALIDATION

In this chapter, we argue for the feasibility of the FreeMMG 2 model. Ideally, we
would be able to implement all of FreeMMG 2, tie it to a very representative piece of
game logic, and then test the resulting software in order to validate several aspects of
the model such as bandwidth usage, interaction latency, latencies between visual incon-
sistency occurrence, detection and recovery, the correctness and feasibility of the fault
recovery procedure, resistance to state cheating, etc. However, our validation by experi-
mentation of the model is partial: we have not used experiments to cover for all aspects
that would be interesting to inspect and validate.

At first, it seems it would be natural to prioritize the security-related aspects of the
model for validation since that was our primary focus during its design. However, that
was not our priority for the experimentation phase because there are already other results
in the literature that point towards the feasibility of replication as a fault-tolerance and
anti-cheating measure. With that out of the way, the second most important aspect for
evaluation would be the bandwidth efficiency of the model, which we cannot draw from
existing results. Thus, that has become the focus of our experiments. More specifically,
we have studied the bandwidth usage at client nodes (primary and backup cell nodes, and
player nodes) through simulation.

We have used the Simmcast framework (BARCELLOS; FACCHINI; MUHAMMAD,
2006) to implement the basic parts of the FreeMMG 2 model as a network simulation1.
The simulator logic includes not only middleware logic but also the game layer logic. For
the game logic, we have modeled a very simple 2D world were player avatars move using
a Random Walk algorithm. With that simulator we then evaluate whether the amount of
bandwidth consumed at the client nodes of the architecture (cell nodes and player nodes)
is realistic or not. To that end, we perform simulations on a series of scenarios with
different amounts of cell nodes per cell and different amounts of total player nodes in the
virtual world.

5.1 Simmcast functionality used

We have built our FreeMMG 2 simulation on top of the Simmcast network simu-
lation framework (BARCELLOS; FACCHINI; MUHAMMAD, 2006). Simmcast is a
Java-based, multi-threaded, discrete event simulator. The Simmcast simulator is not dis-
tributed, that is, a single experiment run cannot be cooperatively executed by multiple
machines, but a single Simmcast process is able to simulate a distributed system com-

1The source code of the FreeMMG 2 simulator is available at http://sourceforge.net/projects/freemmg/
(module ‘freemmg2’ on public CVS). The Simmcast website is at http://www.simmcast.org/.
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posed of thousands of hosts.
At the heart of any network simulation lies the representation of the physical network.

Simmcast supports any complex network topology consisting of host nodes, which are the
actual participants in the distributed system, and router nodes, which together represent
the autonomous routing infrastructure that allows the host nodes to exchange data packets
with each other. Unidirectional network links between nodes can have a given bandwidth,
a chance of packet loss, and an emulated latency which can follow one of the probability
distributions available for use. Simmcast supports multicast, but for our simulation we
only used its unicast support.

Each host node in the system must have its behavior defined in a class, and running the
behavior of a host node requires at least one thread. Simmcast supports the sending and
receiving of network packets between the simulated host nodes (threads). When sending
a packet, a host informs the destination and the payload, which is a Java object, which is
then retrieved by the receiver if the routing is successful. With those basic pieces from
Simmcast, we have built our FreeMMG 2 simulator.

5.2 The FreeMMG 2 network simulator

In our simulator, the physical network is abstracted into a star topology. The center
of the star is a single router node, named INTERNET in the code, which represents the
Internet routing infrastructure. All other nodes in the simulation are host nodes which
connect bidirectionally to the INTERNET router node. Since we are not particularly
interested in what happens when congestion or flow problems appear, modeling Internet
routing details did not seem to be essential.

In practice, a flow control problem in FreeMMG 2 would mean that a host is mis-
configured such that the bandwidth it reports to the middleware as available is incorrect.
Regular Internet congestion is to be tolerated through sensible time-out parameter tuning,
and severe congestion is not to be tolerated at all. A node with severe congestion simply
isn’t interesting to the network and should fail. We partly model connectivity problems
through the emulation of packet loss and the fluctuating latency of the links.

The simulator does not model the entering and leaving of nodes. The physical net-
work configuration is static from start to finish of a simulation run. Node failures and
attacks from malicious nodes were also not simulated. From a bandwidth assessment
perspective, these are not essential. The model, as discussed in the previous chapter, indi-
cates that cells keep running normally when a client node fails. The failure of individual
cell nodes decreases the game quality but otherwise does not increase bandwidth usage
beyond whatever the cell nodes themselves have advertised as available.

Our simulator builds a network of WORLD_WIDTH × WORLD_HEIGHT cells,
where WORLD_WIDTH and WORLD_HEIGHT are integer simulation parameters which
define the dimensions of the world, which is a rectangular grid of cells. Each cell is
modeled as a collection of simulated primary cell nodes (PCNs) and backup cell nodes
(BCNs). Each cell contains 2 × NCELL cell nodes: NCELL PCNs and NCELL BCNs.
Thus, NCELL is the simulation parameter which specifies the amount of (primary, backup)
node pairs that every cell requires to run. The cell overlay network and other aspects of
the FreeMMG 2 logical connections are entirely our additions. We did not use any of the
Simmcast group communication facilities. Finally, the TOTAL_PLAYERS input param-
eter specifies the number of player nodes (controllers of individual avatars) in the simu-
lation. The player population remains constant and no players join or leave the network



175

during the simulation. We have not modeled server nodes in the simulation.
The connection overlay guarantees that packets between cell nodes of the same cell

(primary-to-primary and primary-to-backup) arrive despite packet loss. This emulates the
reliable messaging streams required for the BSS messages. Packets in these logical links
are re-sent until an acknowledgement is received by the original sender. Retransmissions
of reliable packets are separated by an amount of time equal to 1.25 times the round-trip
latency between sender and receiver (as per simulation parameters). The receiver sends
out one acknowledgement packet immediately when it receives one reliable packet re-
transmission, regardless whether the receiver logic has already forwarded the packet to
the overlay application or not. So, even if both the reliable packets and the acknowledge-
ments packets are sometimes lost, a reliable packet is eventually both delivered at the
intended recipient and later acknowledged at the original sender.

On top of the modeled FreeMMG 2 connection overlay, there is a simplified version
of the intra-cell synchronization (BSS), back-up node updating and inter-cell synchro-
nization protocols. Communication is implemented as a reliable packet exchange inside
the cell (BSS) and between PCNs and their BCNs, only. Reliability is implemented as a
simple re-sending of packets that are not acknowledged in a fixed time window (we have
added the acknowledging and re-sending logic). Player nodes have their avatars owned by
one cell at a time. Player nodes send one stream of command packets to randomly-chosen
PCNs of their current cells, and receive one stream of update packets from its cell’s PCNs
in a round-robin fashion. Each PCN keeps two copies of the game state, conservative
and optimistic, and an event table to resolve the pending conservative steps. We did not
implement the rollback and re-execution procedure as the game we modeled on top of the
simplified BSS did not need it.

And finally, on top of the BSS, primary-backup, inter-cell and player-cell protocols,
we have placed a very simple 2D game logic. In our game protocol, each player is given
the ability to dictate its own position. All avatar-related messages (commands or updates)
are 32 bytes long, which we particularly think is too big but, then again, it could be even
larger such as the 200 byte messages found on the EverQuest protocol (NORDEN; GUO,
2007). So, we think that choice of size is a good trade-off. Players send 32 byte update
messages and receive back a list of 32 byte update messages inside each packet, comprised
of updates to its own avatar and all avatars that the PCN that sent the update knows to be
in the player’s AoI, which is a cirular area around the avatar of radius SOI_RADIUS.

The primary cell nodes of one cell also notify the primary cell nodes of all neigh-
bour cells about avatars of interest, as specified by the inter-cell synchronization protocol.
There is also an Area of Interest (AoI) filtering in this case, as PCNs of the source cell
only notify neighbour PCNs about local avatars that are of potential interest to players
owned by the neighbour cells. That is also calculated from SOI_RADIUS, but is instead a
rectangular area calculated inside the cell that has the interesting objects. That area is the
part nearest the cell that is interested in the objects. In other words, it is as if the interested
cell looked up a distance of SOI_RADIUS deep into the cell that it wants to know about,
calculated from all points on the border. Thus, the result is approximated as a rectangular
area with SOI_RADIUS as its smaller dimension (either horizontal or vertical, or both) at
all times.

To maintain simplicity, the player nodes themselves decide when they change cells
by locally evaluating their own position. Player nodes move around the world using a
Random Walk algorithm at a specified constant velocity (a simulation parameter). When
changing cells, players simply stop sending updates to the old cell and start sending up-
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dates to the new cell. The conservative state of the cell detects when a player stops sending
updates to it for several consecutive cell ticks and, in that case, the avatar times out and
is removed. Both the optimistic and the conservative state of a cell keep separate the list
of avatars owned by the cell (that is, avatars being updated directly by player nodes) and
ghost avatars, which are avatars hosted by neighbour cells. Finally, since players are re-
sponsible for determining their current cell, we have not modeled the inter-cell reliable
messaging service nor the reliable object transfer procedure. These are unaccounted for
in the bandwidth results.

Even with the simplifications in BSS, the absence of server nodes, and the lack of
inter-cell reliable messaging in the simulation, we consider that have modeled the bulk of
the packet load specified in the previous chapters in several separate protocols. We assert
that the bandwidth figures we can obtain from the flows we did model are sufficient to
draw some a conclusion about the general feasibility of the FreeMMG 2 model in regards
to peer bandwidth usage.

5.3 Simulation scenarios

The following are invariants in all the simulation scenarios:

• Mean link latency. All scenarios use a 25ms mean latency with a standard deviation
of 5ms. Note that a 25ms average latency in our star topology means an average
one-hop latency in the overlay of 50ms, and an average 100ms latency for the round-
trip time between any two overlay nodes;

• WORLD_WIDTH = 5 and WORLD_HEIGHT = 5, resulting in a 25-cell game
world. There are no borders in the virtual world: as an avatar reaches a corner of
the grid, its coordinates wrap around. That is, the virtual world is a torus;

• CELL_SIZE = 4096 units. Each cell is an 4096 × 4096 square;

• SOI_RADIUS = CELL_SIZE
4

, or 1024 units. Each avatar is only interested in other
objects that are inside a circle of a 2048 unit radius;

• Avatars move at CELL_SIZE
32

units per second. In all our scenarios, that means 128
units/s. Thus, an avatar would take at least 32 seconds to traverse a cell moving
either horizontally or vertically;

• Messages sent through the physical links take a random amount of time to reach
the destination. The random packet latency generator uses a normal distribution.
During the simulation, all links share the same mean (varies between scenarios)
and the same standard deviation which is always 20% of the mean value;

• Links are configured for emulating 2% packet loss;

• Links have 1 Gbps of bandwidth available for downloading and uploading packets.
This is the maximum traffic that a node can generate. We have set it to a high
value since we wanted to measure how much bandwidth the model demands. If we
had limited it, the simulator could end up queuing packets, which would mask the
real bandwidth demand. And since we are not studying the behavior of the system
upon paths becoming congested or links overflowing, there is no reason to set this
parameter to a realistic value;
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• Links can enqueue up to 1000 packets. For instance, the INTERNET node can hold
up to 1000 outgoing packets on each of its links to each host node;

• All nodes tick, that is, run their main logic and send out batches of packets, at
100ms intervals. That includes players sending commands and cell nodes sending
BSS synchronization messages, updates to players and updates to neighbour PCNs;

• Packets sent to players from primary cell nodes are limited to around 1500 bytes
(avatar updates are added to outgoing packets until the 1500 byte limit is exceeded
during packet construction). Since players receive up to 10 packets per second,
players may receive an inbound traffic of up to, approximately, 15 kilobytes per
second. That should be sufficient for many types of games. In the event that players
have more avatars in their SoI than they can be updated about, the servers (cell
nodes) should decide which updates are more important and send those;

• Likewise, inter-cell synchronization packets are limited to one per cell tick and to a
maximum size of about 1500 bytes. Even if the area of interest of one cell, in regard
to a neighbor, may be much larger than that of a single avatar, what we really wanted
to discover was the minimum bandwidth required for a node to participate in a
FreeMMG 2 network. In that context, the limit of 1500 bytes allows, approximately,
45 avatar updates of 32 bytes each to be exchanged between two neighbor cells
every at cell tick (100ms intervals), which is already a significant update rate;

• The measured part of the simulation lasts 5 minutes (300 seconds) of simulation
time, with an additional ten seconds at the beginning and two seconds at the end
discarded from the results, for a total of 312 seconds duration in simulation time;

• All results we present are the average of 10 runs with the same parameters.

Based on the invariants above, our simulation scenarios are the following:

• Scenario 1. The NCELL parameter, or number of cell node pairs on each cell (pri-
mary and backup), is tested for the values 6, 8, 10 and 12. The TOTAL_PLAYERS
parameter is set to 500, or a density of 20 players per cell (since there are 25 cells);

• Scenario 2. The NCELL parameter, or number of cell node pairs on each cell (pri-
mary and backup), is tested for the values 6, 8, 10 and 12. The TOTAL_PLAYERS
parameter is set to 2000, or a density of 80 players per cell (since there are 25 cells).

For both scenarios, we measure the average and maximum upload and download band-
width consumed by each primary cell node. We measured bandwidth usage by observing
each second of simulation separately. The ‘average’ value in the charts is the average
among all simulation seconds of all primary cell nodes and of all simulation runs. The
‘maximum’ value in the charts is obtained as follows. For each primary cell node, during
all of the simulation, the simulation second which yielded the maximum bandwidth usage
is considered that primary cell nodes’s maximum for that run. Then, for a given simula-
tion run, the average of all those maxima is then taken as the maximum of the simulation.
Finally the maximum value in the charts is the average of such values among all runs.
Thus, the maximum is actually the average of all maxima among all primary cell nodes,
which we believe is more representative than considering an arbitrarily large spike from
a specific simulation second of a specific primary cell node.
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5.4 Simulation results

Figure 5.1 shows the average bandwidth used by a cell node when there are, on aver-
age, 20 players to be served by each cell (500 players on a 25-cell world). With NCELL
at 6, approximately 33,000 bytes/s of upload bandwidth, on average, is required of a pri-
mary cell node. With an NCELL of 12, approximately 43,000 bytes/s of average upload
bandwidth is required. Though each additional cell node brings more upload bandwidth
to the pool to serve players and adjacent cells with updates (inter-cell synchronization),
that is not enough to offset the quadratic cost of the intra-cell synchronization protocol,
thus resulting in a quadratic curve that is amortized. As NCELL increases beyond the low
values shown, the bandwidth curve should approximate N2. We did not test with higher
values of NCELL because the time to complete simulations was already too large for a
NCELL of 12. Also, because the number of cell nodes on each cell is a global static pa-
rameter, the smaller NCELL is, the less volunteer nodes are needed in the pool to enable
a virtual world of a given size in cells to be served.
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Figure 5.1: Average primary cell node bandwidth usage (Scenario 1)

Figure 5.3 shows the maximum bandwidth used by a cell node when there are, on
average, 20 players to be served by each cell (500 players on a 25-cell world). For a
NCELL of 6, the result is approximately 41,600 bytes/s for upload, and for a NCELL
of 12, the result is approximately 56,400 bytes/s for upload. The latter is equivalent to,
approximately, 450 Kbps of user traffic. Thus, it seems that, for Scenario 1, cell nodes
seem to be compatible with ADSL broadband technology, though perhaps not exactly a
low-end, capped connection (e.g., a 256 Kbps ADSL connection). However, it should
be noted that there are several parameters that can be tuned to, perhaps, allow low-end
broadband connections to be supported. For example, there can be gains with packet
compression and by using smaller update messages (32 bytes can be considered too much
for an update message). On the other hand, some games may require more in-game
objects (e.g. NPCs, projectiles, etc.) or more frequent updates, so these results could be
seen as a fair estimate. They could certainly be made either much smaller or much larger
by an application programmer.

Scenario 2 does a better job of stressing the model. In Scenario 2 we set the number
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Figure 5.2: Maximum primary cell node bandwidth usage (Scenario 1)

of player nodes to 2000, or a density of 80 players per cell since there are 25 cells in
the virtual world. Figure 5.3 shows the average bandwidth consumed at cell nodes in
this scenario. For a NCELL of 6, the average upload bandwidth is approximately 58,100
bytes/s (about 465 Kbps), and for a NCELL of 12, it is approximately 66,200 bytes/s
(about 530 Kbps). Again, the explanation for the bandwidth curves looking linear rather
than quadratic is the compensating effect of sharing the player update and adjacent cell
update traffic among all primary cell nodes. Again, testing with greater NCELL values
should yield curves that approximate the quadratic shape.
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Figure 5.3: Average primary cell node bandwidth usage (Scenario 2)

Figure 5.4 shows the maximum bandwidth usage for primary cell nodes and for Sce-
nario 2. An NCELL of 6 yields 111,800 bytes/s for maximum upload bandwidth (about
895 Kbps), and an NCELL of 12 yields 139,200 bytes/s for maximum upload bandwidth
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(about 1.11 Mbps). The maximum values from Figure 5.4 indicate that, for a large player
density, it may become infeasible to allocate the primary cell node functionality in a
FreeMMG 2 network to nodes that have low-end broadband connections, which is not
a positive result. On the other hand there is still room for improvement such as by em-
ploying compression, by sending smaller updates, or by reducing the frequency of player
commands and cell updates as the player density increases in a cell.
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Figure 5.4: Maximum primary cell node bandwidth usage (Scenario 2)

Considering that consumer broadband continues to evolve, we can conclude that the
cell nodes of FreeMMG 2 use a realistic amount of bandwidth, at least for NCELL values
of 12 or less, and for an amount of players on each cell in the order of tens of players.
Upcoming broadband technologies such as VDSL and VDSL2 are capable of sustaining
several megabits per second of upload traffic (ERIKSSON; ODENHAMMAR, 2006).
Those existing technologies would already support the load generated by our experiments,
especially the upload traffic portion which is significant due to FreeMMG 2 not relying
on IP multicast.

Table 5.1: Average and maximum avatar cell change events

Amount of Player Average cell changes Maximum cell changes
players density per second per second

250 10/cell 10.1 30.3
500 20/cell 19.9 44
1000 40/cell 40.8 74.8
2000 80/cell 76.1 121.2

As stated in the simulator description, we did not model inter-cell object transfers.
In our simulation, players just advertise their avatar positions to what they decide to be
their current cell. Table 5.1 shows our final experiment, where we measured the average
number of times per second that player avatars change from one cell’s area to another
one. On these experiments, we varied the amount of players while maintaining the world
size at 25 cells (so, player density was varied). The results show that avatar changes per
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second increases linearly with player density. Thus, even in cell-based multiple arbiter
MMOG models, hot-spots should not result in inter-cell object transfer mechanisms that
do not scale, even if the bandwidth or time cost per transfer is high. This is important
because FreeMMG 2’s inter-cell reliable messaging, required for object transfers, is ex-
pensive, both when it is done through the server (increasing the game operator’s cost) and
when it is done in a peer-to-peer fashion (due to our many-to-many messaging scheme).
It shoud be remembered, however, that the results shown in Table 5.1 are without the de-
layed zone crossing optimization (AHMED; SHIRMOHAMMADI; OLIVEIRA, 2007)
(see Section 4.7.2) and that player movement was simplfied to a Random Walk algorithm.
As always, the best answer to these and other uncertainities would be the evaluation of a
concrete, deployed virtual world based on FreeMMG 2.

5.5 Resistance to state cheating

One important aspect that we have not validated through experiments is whether the
replication approach, coupled with random selection of cell nodes, is enough to offer
strong resistance against state cheating. However, existing works show that, as the num-
ber of replicas increases, the probability of drawing a colluding majority to a group
decreases exponentially (CORMAN; SCHACHTE; TEAGUE, 2007; ENDO; KAWA-
HARA; TAKAHASHI, 2005). We have also performed some initial experiments which
pointed out that, even in a virtual world with thousands of cells, it is reasonable to ex-
pect that, on average, less than one cell gets compromised in a period of months or years.
The exact odds of a cell being corrupted depend on a host of factors such as the percent-
age of colluding attackers on the volunteer pool, the number of replicas, the minimum
quorum for accepting peer-held cell state after a fatal failure, the threat model (attacker
capabilities), and others. Future works could assess these odds considering the FreeMMG
2 architecture. In any case, with the multiple arbiter approach, it is clear that the odds are
naturally in favor of state cheating resistance.

One interesting preliminary result that we obtained is that, considering that there is
a large group of colluding attackers in the pool, it is very advantageous to remove cell
nodes on purpose after they have served in a cell for a while. We found out for our specific
simulation scenarios that four hours was the optimal maximum serving time for cell nodes
at a given cell, minimizing the chance of a successful collusion at a cell. Removing cell
nodes now after several hours of serving would certainly not impact the game play too
much, as cell nodes can be replaced transparently by their back-up nodes. In that way, the
resistance to state cheating is greatly enhanced almost for free.

5.6 Closing remarks

In this chapter we have presented results obtained from a network simulation of
FreeMMG 2. These results allow us to have an idea about the amount of bandwidth that
would be required of the peer nodes of a FreeMMG 2 network running an avatar-based
game. The results show that at least the base protocols of FreeMMG 2 demand a realistic
amount of bandwidth of the peer nodes, considering current broadband technology such
as ADSL or Cable.

Though the validation performed so far is not ideal, we consider that it at least warrants
us a comparison with related work. That is done in the next chapter.
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6 FREEMMG 2 COMPARED WITH RELATED WORK

This chapter compares FreeMMG 2 with other seven recent peer-to-peer MMOG ar-
chitectures that stand up well to our focus on decentralization with security. It also com-
pares FreeMMG 2 with the original FreeMMG model (CECIN et al., 2004) for complete-
ness. Through the comparison we aim to show that FreeMMG 2 is an original and relevant
contribution.

6.1 Introduction

In Section 2.7, we have reviewed several peer-to-peer MMOG architectures. Most
of these architectures were then classified into one of four categories: player mesh, fat
server-side, single arbiter and multiple arbiter. We briefly review these categories below:

• Player mesh models achieve significant decentralization, but they become essen-
tially peer-to-peer overlays where nodes are players and players with proximity in
the virtual world become neighbors in the overlay. They usually do not address
the issue of state cheating and thus are not suitable for MMOGs where the virtual
economy is encoded as part of the peer-kept virtual environment state;

• Fat server-side models are ones where the general peer-to-peer paradigm was ap-
plied in a way to the MMOG system which did not result in sufficient offloading of
computing or communication tasks to volunteer (client) machines. In other words,
by still requiring significant server-side infrastructure, they do not achieve sufficient
decentralization;

• Single arbiter models achieve significant decentralization and replicate the contents
of virtual world cells among several client machines, but they become vulnerable to
state cheating if the ‘master’ replica of a cell is compromised and thus state cheating
becomes possible;

• Multiple arbiter models achieve significant decentralization and they also achieve
resistance to state cheating and (sometimes) network-level attacks by replicating
the contents of virtual world cells and not assigning a special role to any one of the
replicas of a cell.

Since FreeMMG 2 is a multiple arbiter model that focuses on both decentraliza-
tion and resistance to state cheating and network-level attacks, most works chosen for
the comparison with FreeMMG 2 are of the multiple arbiter kind: Kabus and Buch-
mann (KABUS; BUCHMANN, 2007), Endo et al. (ENDO; KAWAHARA; TAKAHASHI,
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2005), Hampel et al (HAMPEL; BOPP; HINN, 2006) and Izaiku et al. (IZAIKU et al.,
2006). These are papers that, among all other reviewed works, more closely satisfy our
core requirements.

However, we have also have included in the comparison two fat server-side models,
ACORN (NORDEN; GUO, 2007) and DaCAP (LIU; LO, 2008) because they present
many interesting features and they do achieve significant decentralization if compared
solely to other server-intensive designs. Also, the Peer Cluster (CHEN; MUNTZ, 2006)
architecture from the single arbiter category was chosen because it presents some inter-
esting features in spite of its excessive reliance on a single master region controller.

Table 6.1: Meaning of the symbols used in the architecture comparison tables

Symbol Meaning
X Feature provided or issue addressed.
X- Feature provided with significant limitations or issue partially addressed.
X- - Feature provided with severe limitations or issue tangentially addressed.
X($) Feature provided by server-side infrastructure.
X($/2) Feature provided partially by server-side infrastructure.
X- ($/2) Feature provided partially by server-side infrastructure, and with limitations.

Blank: feature not provided or issue not addressed.
NC Number of controllers (replicas) in one cell.
NP Number of players in one cell.
W Number of witness nodes (GAUTHIERDICKEY et al., 2004a) in one cell.
NN Number of neighbour cells that one cell has.

The comparison is made in three separate sections. Section 6.2 performs feature com-
parison, Section 6.3 presents an assessment of how far each model decentralizes tasks,
and Section 6.4 assesses the coverage of relevant security threats. Each section comes
with a comparison table which sums up the comparison. The meaning of the symbols
shown in the comparison tables is listed in Table 6.1.

6.2 Feature comparison

As of April 2008, about 98% of all commercial MMOGs were RPGs (WOODCOCK,
2008b). MMORPGs have two key characteristics that are important for the architecture
designer. The first one is, in our view, present in any conceivable MMOG: the presence
of long-term challenges. In other words, any other genre of MMOG will have this ‘RPG
element’ simply because a massive game in a persistent-state virtual world requires either
a virtual economy, some form of character enhancement, or some other form of long-term
challenge. One of the few MMOFPS games, PlanetSide (SONY ONLINE ENTERTAIN-
MENT, 2008), had long-term character enhancement though it didn’t feature a virtual
economy. RPG games have always been about long-term challenges since their inception
as tabletop games. This explains in part the success of RPGs as online virtual worlds.

The second key characteristic of MMORPGs is a high tolerance to interaction la-
tency (CHEN; HUANG; LEI, 2006; FRITSCH; RITTER; SCHILLER, 2005), especially
if compared to FPS games (CLAYPOOL; CLAYPOOL, 2006). Since interaction latency
is one of the many weaknesses or trade-offs of most peer-to-peer MMOG architectures,
and that the MMORPG is currently the most popular genre of MMOG, most peer-to-peer
MMOG architectures end up being sold as MMORPG support solutions. That includes



184

FreeMMG 2 and all other models chosen for comparison, as shown in the first line of
Table 6.2. The only exception in the comparison is FreeMMG which aimed at MMORTS
support and would probably be less adequate as a MMORPG platform due to its high in-
teraction latency – it orders all events conservatively – and hot-spot problem. We know of
no P2P MMOG model which can claim support to MMOFPS games, and this includes all
models in the comparison. Hampel et al. (HAMPEL; BOPP; HINN, 2006) and FreeMMG
2 both indicates that MMOFPS support is to be investigated by future work.

Table 6.2: Feature comparison

Feature ACORN DaCAP Hampel Endo Kabus and Izaiku Peer Free- Free-
et al. et al. Buchmann et al. Cluster MMG MMG 2

MMORPG support X X X X X X X X- - X
MMORTS support X
Inter-cell object in-
teraction X- ($/2)

Inter-cell transfer
of objects X X($) X($) X X($) X($/2)

Hot-spot handling X X($) X($)
State persistence X($) X($) X X X X X X X
Authentication X($) X($) X($) X($) X($) X($) X($) X($)

Besides game genre support, Table 6.2 also compares support for common features.
The more centralized approaches, ACORN and DaCAP, both address the problem of hot-
spots, while the decentralized models do not. ACORN and DaCAP, like all the other
models framed as fat server-side in Chapter 2, are able to handle hot-spots with much
more ease than replication-based models.

• DaCAP solves hot-spots by running hot-spot cells in C/S mode (client-server), that
is, it moves cells with high player populations to servers. DaCAP also attempts
to partition cells dynamically, but it is unclear how that plays with the C/S mode
migration mechanism;

• The Peer Cluster paper suggests that only a few tens of players are to be supported
in most cells. Peer Cluster also states that temporary hot-spots (such as an army
of avatars gathering at an otherwise deserted region) and fixed hot-spots (game
hub locations such as virtual cities) are to be handled by the powerful commercial
servers of the game service provider. This is the same that DaCAP does;

• We are not completely sure how ACORN’s single (and moving) coordinator of one
world region is able to is able to handle 1,000 players (NORDEN; GUO, 2007).
However, serving 1,000 players in one region is effective hot-spot support by any
measure. As a reference, consider that most massive encounters supported by com-
mercial MMOGs peak at a few hundred avatars. In any case, the mechanisms for
handling hot-spots in ACORN are moving the coordinator functionality to more
powerful nodes and ACORN’s underlying DHT which can trade-off increased la-
tency to leverage ALM bandwidth-saving techniques such as packet aggregation
and increased hops in the DHT;

• The other, more decentralized models, do not address hot-spots in any definitive
way, at most tolerating them to some degree. Kabus and Buchmann states that their
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model is to support instanced games. These don’t have hot-spot problems by defi-
nition since the amount of players in each instance is limited by game rules. Endo
et al.’s architecture includes a server-side infrastructure that handles sites (cells) by
default. Their idea is that sites are to be off-loaded to peers when the server be-
comes overloaded. However, they do not mention whether the server-side is to be
dimensioned to handle any or all hot-spots, which is why we didn’t classify it as a
‘fat server’ model, nor as a decentralized one that handles hot-spots;

The other major feature yet to be delivered consistently by P2P MMOGs (especially
multiple arbiter and secure models) is transparent interaction across cell borders. It is
especially difficult to synchronize distinct groups of nodes, each group replicating one
cell, in a many-to-many fashion without IP multicast and considering the limited upload
bandwidth of home users. Some sort of synchronization is required if the borders between
neighbouring cells are to disappear to players. None of the chosen models achieves this
ideal. However, the player mesh models reviewed in Chapter 2 are able to achieve this
with ease due to their focus of connecting players in AoI reach directly without arbitrary
cell borders getting in the way. However, that is only one of the few advantages of these
models. Below we sum up the support for inter-cell interaction offered among the chosen
works:

• FreeMMG 2 is the only one among the chosen works to explicitly address direct
interaction between neighbour objects (objects owned by different cells), which in-
cludes neighbour avatars. However, the latency of inter-cell interaction between
objects is greater than that of intra-cell interaction, resulting that probably the dif-
ference is to be perceptible by players, so the transparency ideal is not fully met.
FreeMMG 2 is also able to transfer ownership of objects between cells in a lazy
fashion which also avoids objects blinking out of existence during transfers, which
was a problem in the original FreeMMG model. Also, the original FreeMMG model
transferred objects through the server, while in FreeMMG 2 the server participation
in object transfer is only required whenever global consistency is an issue. For ex-
ample, when the transferred object cannot be lost or duplicated during or after the
transfer (CECIN et al., 2004);

• ACORN and Kabus and Buchmann both achieve decentralized object transfers be-
tween cells, but they do not explicitly address the issue of neighbour objects inter-
acting. ACORN lets players carry their own character state between regions as in
SimMud (KNUTSSON et al., 2004), which in the case of ACORN we assume is
a procedure protected against state cheating due to all ACORN region simulation
being replicated at trusted servers. So, if players in ACORN lie about their char-
acter state during region migration they are risking being detected as cheaters and
banned;

• DaCAP and Endo et al. transfer objects between cells with the help of servers,
like in FreeMMG. DaCAP’s cheat prevention relies heavily on servers checking the
gains of player avatars whenever a region border is crossed. If the cell is running
in P2P mode, all current peer members report the results (gains) for the migrating
avatar and the server checks for a consensus. Both DaCAP and Endo et al. do not
explicitly address the issue of neighbour objects interacting;

• Hampel et al., Izaiku et al. and Peer Clustering do not mention inter-cell synchro-
nization at all.
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All compared works address the issue of providing long-term state persistence. In con-
trast, the MOPAR (YU; VUONG, 2005) architecture is one that doesn’t persist cell state.
ACORN simulates a full copy of the MMOG simulation at the server, and that server-
simulated state is used as the ultimate source of state whenever the state maintained on
the P2P overlay fails. That is one of the main benefits of ACORN and any proposal where
servers receive all player events and thus are able to keep an up-to-date version of the
virtual world being served by the P2P overlay. DaCAP achieves server-side persistence
by storing all relevant world data in a server-side database. The other more decentralized
models achieve persistence mainly by mass replication, among client machines, of the
MMOG state.

Finally, most compared works authenticate players using a centralized source of trust,
which is what most hybrid MMOG architectures do. The only exception in Table 6.2 is
Hampel et al. which neither addresses the issue of player authentication nor mentions any
kind of server infrastructure. However, their work could be trivially extended to include
an authentication server so this is not an issue.

So, as far as the core features are of concern, ACORN, DaCAP and FreeMMG 2
arguably share the lead. DaCAP may however be too reliant in server-side infrastructure.
ACORN seems to handle hot-spots effectively and in a decentralized way. FreeMMG 2
explicitly addresses direct object interaction across cell borders, though with increased
interaction latency. FreeMMG 2 also helps the application in maintaining a globally-
consistent game state even when individual cells fail and roll back to old server-side data.
The latter comes at the cost of involving server-side resources in the specific inter-cell
interactions and object transfers that can potentially break the global consistency when
they fail.

6.3 Decentralization and communication cost comparison

One of the main motivations behind peer-to-peer MMOG architectures is reducing or
eliminating the costly server-side infrastructure. In this section we evaluate the chosen
works according to the amount of CPU and communication load that they leave at the
server-side and also the load that the proposed architectures impose upon ‘peer’ nodes
(client-side nodes) that are to replace the bulk of MMOG servers. Table 6.3 summarizes
that comparison.

The first criteria for comparison is whether the client-side hosts that replace servers
can be provided solely by active player nodes or whether extra nodes like dedicated volun-
teers or super-peers are required. The ACORN paper mentions that either is a possibility
and their 1,000-player region simulation indicate that some super-peers might have to
be moved to act as coordinators in hot-spot areas. Endo et al. handle some regions at
the server but that is not a hard requirement – it seems to be a just way to use up all
available server resources first and thus to help minimize the site (cell) simulation load
left for client hosts. Izaiku et al.’s region controller, whose function is constantly passed
around all monitors (replicas) of a region, needs to be able to dispatch NP updates in a
single network step, where NP is the number of players in the region. It is reasonable
to assume that, currently, at least some home users’ nodes may not be able to cope with
this upload bandwidth requirement for some values of NP . FreeMMG requires additional
witness nodes on each region which might increase the amount of peer resources needed
to serve in the overlay beyond the resources that can be obtained from active players. Fi-
nally, FreeMMG 2 is the one that needs the most amount of peer resources. In FreeMMG
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Table 6.3: Decentralization and communication cost comparison

Criteria ACORN DaCAP Hampel Endo Kabus and Izaiku Peer Free- Free-
et al. et al. Buchmann et al. Cluster MMG MMG 2

Playing
peers only X- X X X- X X- X X-
RCs per cell 1 [1, NP ] NC NC NC NC NC NP + W 2NC

Updates
sent per RC NP NP

NP
NC

≈ NP
2

NP
NP
NC

[0, NP ] 0
NP+NN

NC

Updates
received per
player

1 [1, NP ] 1 NC+1
2

NC 1 1 0 1

Commands
sent per
player

[2, NP + 1] [1, NP ] NC [1, NC ] NC NC 1 NP + W 1

Low server
CPU X- - X X X X X- X X

Low server
upstream X X- - X X- X X X- X- X

Low server
downstream X- X- X X- X X X- X- X

2 it is explicitly assumed that non-playing volunteer nodes will be available to help in
composing the peer-to-peer cell simulation overlay for active players to play into.

The above comparison criteria is complemented by the number of region controllers
(RCs) required to compose a cell. Note that the number of RCs does not correspond
directly to the network or CPU load of cell nodes. Rather, it only indicates the amount
of distinct simulation processes (LPs) needed to compose a cell. Most works require
NC RCs, which just means a small amount of RCs which can cope with all-to-all (full
mesh) synchronization schemes. ACORN requires 1 coordinator (RC) per region. That
coordinator responsibility is constantly passed around peers to minimize the window of
time where a coordinator may cheat before being detected. Additionally, trusted servers
(called ‘CAP’ nodes) are able to roll back any cheats since they execute a replica of the
simulation performed by the coordinator of each region. A DaCAP cell is either running
in C/S mode with 1 server-side coordinator or in P2P mode where each player in the cell
is also an arbiter. FreeMMG runs all cells in peer-to-peer mode similar to DaCAP with
an additional amount of randomly chosen witness nodes present in each cell. Finally,
FreeMMG 2 requires 2NC cell nodes: NC primary cell nodes and one backup cell node
for each primary cell node, resulting in a relative 2NC cell node count when compared to
the other multiple arbiter models.

From the third to the fifth line of Table 6.3 we assess the bandwidth that is required of
both RC and playing peers.

The third line show that ACORN, DaCAP and Kabus and Buchmann require RCs
to send out NP updates every network step, while Endo et al. amortizes this to about a
half. In the case of DaCAP, this is because any increased NP amount is to be handled
by well-provisioned servers. In the case of ACORN, it is either a well-provisioned super-
peer or the game protocol imposes a reduced packet rate between players and the region
coordinator for some reason. However, Kabus and Buchmann and Endo et al. just do not
exploit all the bandwidth reduction that can be obtained by cell state replication. Hampel
et al., Izaiku et al. and Peer Clustering have each cell send out only one update per player
resulting in an average of NP

NC
update packets being sent per each RC on each network step.

In the original FreeMMG, no update (large) packets are exchanged between peers, which
allows for RTS game support where each player controls large amounts of avatars. Finally,
FreeMMG 2 adds the overhead of inter-cell synchronization where each neighbour cell
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is counted as an additional player for simplicity. The actual cost of updating a neighbour
cell may be either larger, when too many avatars are near the cell border, or smaller, if
two neighbour cells are not currently interacting.

The fourth line shows the amount of updates received per player on each network
tick. Kabus and Buchmann and Endo et al. require each player node to receive NC

and NC+1
2

updates per network tick respectively which is rather wasteful if compared
to the single update that client-server architectures and most others send to its players.
DaCAP’s updates that players send to each other in P2P mode are probably small single
avatar position updates and similar messages, and NP is limited to a small amount so this
network load is not a problem. Finally, the original FreeMMG had no constant exchanges
of state updates anywhere, and FreeMMG 2 requires players to receive only one update
at any given simulation tick time, which is as bandwidth-efficient for a player node as it
can get.

The fifth line shows the amount of command messages (in practice, UDP unicast pack-
ets) that a player has to send at every client-side network tick1. From all the bandwidth-
related criteria, this is the one where a high count will have the least impact. That is,
requiring each player to send a few tens of unicast command packets per network tick
is feasible since they are always small packets. However, it would be desirable to leave
clients sending a single stream of unicast UDP packets if possible since all overhead im-
posed by the base architecture will add up with other overhead from other libraries and
the application. Below we sum up the design of the chosen works for outgoing player
commands:

• ACORN has players sending at least two updates, one to the region coordinator and
one to the CAP (trusted server). In addition, player nodes in an ACORN region that
share an AoI exchange messages directly like in ‘player mesh’ models, causing an
additional [0, NP − 1] command streams to be uploaded by each player. We are not
sure what are the semantics of these messages but we assume they are authoritative
player updates that get corrected (or not) by the coordinator;

• DaCAP and Endo et al. has player nodes sending either one stream of command to
a server-side RC or has player nodes sending multiple command streams when the
region is in P2P mode. In the latter case, DaCAP has players sending messages to
each other (NP streams) and Endo et al. has players sending messages to all site
servers (NC streams);

• Endo et al., Kabus and Buchmann and Izaiku et al. have player nodes always send-
ing out commands to all RCs (NC streams);

• FreeMMG has players and witness nodes sending commands to each other con-
stantly (NP +W streams);

• A FreeMMG 2 cell will generate, at most, a single stream of update packets for
each player node that is interested in its state. In FreeMMG 2 we assume and
recommend that applications bind a player node to only one cell at any given time,
which is always the cell that currently owns the player’s avatar object.

1As discussed in Chapter 2, the rate of outgoing command packets from players is usually greater than
the rate of incoming updates. But for comparison purposes we can assume that they both lie somewhere
around 10 or 20 packets per second which is enough for most networked games.
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Finally, the bottom of Table 6.3 compares the server-side load in terms of CPU and
bandwidth of each architecture:

• ACORN’s servers are CPU-intensive since they have to simulate the whole virtual
world. Also, they receive command packets from all players. However, the player
packets can probably be aggregated and compressed to reduce significantly the
bandwidth usage of both player nodes and the CAP (server-side simulator) nodes,
so the server-side bandwidth usage issue of ACORN seems manageable;

• DaCAP handles hot-spots, object transfers and cheat-detection server-side, but the
proliferation of hot-spots can be prevented with game design and with the cell sub-
division scheme that is mentioned in the paper. Thus, its server-side CPU usage
will be lower than ACORN’s. The server uses bandwidth to serve hot-spots and
to perform inter-cell object transfers. Even if the proliferation of hot-spots is con-
trolled, the server bandwidth has to be dimensioned to serve peak loads. The Da-
CAP server has to send player update packets, which are large, probably resulting
in significant server upload bandwidth usage as the number of total players in the
system increases to massive scale;

• Peer Clustering, like DaCAP, handles hot-spots server-side, if any. These include
both temporary hot-spots and ‘hub’ locations like virtual cities. Peer Clustering
however does not run cheat detection server-side and it does not specify any inter-
cell interaction, thus resulting in lower server-side resource impact than DaCAP for
now;

• Endo et al. and FreeMMG use server-side bandwidth to manage object transfers
between regions in addition to other light-weight tasks that are performed by other
architectures. The actual communication load or cost of this function depends on
many factors, including game design;

• Hampel et al., Kabus and Buchmann, Izaiku et al. and FreeMMG 2 do not force
any of the server-side involvement mentioned above and thus achieve the greatest
level of decentralization among the chosen works. The main trade-off seems to be
their poor handling of hot-spots (see Table 6.2).

In this cost comparison there is no clear winner. In developing FreeMMG 2, our
particular criteria was to prioritize both vital security attributes (which is compared in
the next section) and decentralization. To this end, we have come up with a solution
that requires the larges amount of LPs allocated to each cell, and we have left the hot-
spot problem unsolved. Still, some works perform better than FreeMMG 2 in reducing
the amount of messages: Hampel et al., Izaiku et al. and Peer Clustering. However,
considering the earlier feature comparison and the following security comparison, we
believe the extra cost paid by FreeMMG 2 is worth the extra functionality if compared to
these works.

6.4 Security comparison

Finally, the most important comparison in our view is the security-related one. Our
top priority is to protect the state of a MMOG being illegally altered at any cost. We have
chosen the prevention route since, in our view, automated detection and correction of state
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cheats and other non-preventive solutions to state cheating are inconvenient in many ways.
There are several alternatives to achieve this, and ACORN’s approach of a ‘silent’ server-
side execution that is queried every once in a while to correct peer-held state is one such
approach – we also tried that approach with the VFreeMMG model (CECIN; BARBOSA;
GEYER, 2005). The other known approach is the multiple arbiter one, where peers form
replication groups and a high quorum of colluding malicious nodes in each state partition
is required to pass illegal state modifications ‘under the radar’ of the trusted servers that
manage the peer network.

Table 6.4 shows the security comparison. ACORN is the most safe model across all
chosen works, and among the practical works we encountered during our literature review
it is the safest among all. ACORN is better than FreeMMG 2 because, since it simulates
the whole virtual world server-side, no state loss is possible in practice. In FreeMMG
2, state loss is always a possibility in the long run if attackers are granted maximum
attack power. The fact that back-up cell nodes have hidden IP addresses however is a
significant deterrent to network-level attacks being used to cause loss of cell state. Thus,
we assert that except for the most dedicated groups of attackers, losing peer-held cell
state is possible but unlikely in FreeMMG 2. But the application must also set adequate
replication parameters to FreeMMG 2 so that cell state is not discarded when only a few
nodes are marked as ‘failed’ during cell fault recovery.

In any case, in the event that any cell’s state is lost, a FreeMMG 2 game application
can use the ‘vital cell state’ facilities of FreeMMG 2 to partially restore it. This feature
can and should be used by the application to guarantee a globally-consistency game state.
In other words, this allows the game to always maintain invariants over the global game
object collection (the global set of simulation state variables), even in the unlikely scenar-
ios of cells losing their state. We believe that, in any hybrid model, servers should be used
to selectively persist the most valuable in-game data, such as the amount of virtual cur-
rency of each player, since these are hardly synchronization tasks that can deplete server
resources.

The Peer Clustering model employs the same state ‘vital state’ storage at the server-
side of FreeMMG 2. Kabus and Buchmann take periodic (and probably complete) snap-
shots of cell state to servers, which partially prevents state loss due to network-level at-
tacks or otherwise, but that is less efficient than prioritizing state items. Additionally, they
also do not explicitly address the issue of maintaining global consistency. FreeMMG also
prevented state loss by taking full cell snapshots, but it did also not address the problem of
global consistency nor it helped the application to do so. In FreeMMG we only identified
the problem.

Table 6.4 shows that most chosen works address state cheating if network-level attacks
(NLAs) are excluded from the threat model. The only exception is the Peer Clustering
model which, though it maintains multiple replicas of a cell, one of them is authorita-
tive over the others and it concentrates the receiving of player command packets. Thus,
it features a single point of arbitration which is prone to cheating as discussed earlier.
Also, without network-level attacks, regular peer churn or single peers failing on pur-
pose (griefers) does not cause state loss nor it facilitates state cheats to occur, considering
reasonable peer churn rates.

If network-level attacks are included in the thread model, only ACORN and FreeMMG
2 are able to prevent state cheating from happening. Though it is possible in theory to
perform state cheating in FreeMMG 2, it is mathematically unlikely to happen for any
slightly realistic scenario if the replication parameters are chosen adequately by the ap-
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Table 6.4: Security threat coverage comparison

Threat ACORN DaCAP Hampel Endo Kabus and Izaiku Peer Free- Free-
et al. et al. Buchmann et al. Cluster MMG MMG 2

State loss (NLAs
considered) X X- - X- X- - X-

State cheats (NLAs
considered) X X- - X

State cheats (NLAs
excluded) X X X X X X X X

Information expo-
sure cheats X- X- - X- - X- -

Griefers (single
nodes misbehaving
intentionally)

X X X X X X X X X

Tolerance to regu-
lar peer churn X X X X X X X X X

plication. The only possibility is if a large enough amount of malicious colluding nodes
are drawn by chance from the volunteer pool and placed on the same cell. Again, this
is unrealistic as discussed in Chapter 5. Our trade-off is in, perhaps, the large amount
of replicas needed in each cell, which may be pushed further up due to a possibly high
quorum of replicas required to stand up as ‘non-failed’ after a cell failure is detected.

Finally, as far as protection against other forms of cheating, no chosen work addresses
time cheats or most protocol-level cheats, and most of them are vulnerable to informa-
tion exposure cheats due to the use of peer-held cell state and cell replication strategies.
ACORN is surprisingly resistant to information exposure cheats due to its single and,
most importantly, moving coordinator, and they also assume secure DHT routing which
we believe includes (optionally) cyphered dissemination of updates over the (potentially)
multi-hop DHT path between the coordinator and the update recipients. DaCAP and
Peer Clustering are immune to information exposure only on hot-spots whose data is
kept by trusted servers. Kabus and Buchmann partially address information exposure by
cyphering data at peers that are supposed to help in disseminating or serving it but are not
supposed to either alter that data or peek at its contents.

Thus, based on the assumptions that protecting MMOG state against illegal modifi-
cation is a non-negotiable requirement and that attackers may be sufficiently motivated
to orchestrate network-level attacks against peer-to-peer MMOGs, the only peer-to-peer
MMOG models we know that both achieve some degree of decentralization and that are
also sufficiently secure are ACORN and FreeMMG 2. Both also address the issue of
state loss, with ACORN’s solution guaranteeing that no state loss is actually possible,
while in FreeMMG 2 that absolute guarantee only covers vital state, whose scope is to be
determined by the application.

6.5 Closing remarks

The following assumptions, which have been laid out throughout this thesis, dismissed
the need to compare FreeMMG 2 with the player mesh, fat server-side and single arbiter
peer-to-peer MMOG models:

• Significantly reducing the cost of service providers for hosting a MMOG service is
desirable;
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• Supporting virtual economies or at least some form of long-term challenge is impor-
tant for any game design that claims to be a MMOG design. A player count is not
sufficient, and there are other basic requirements such as the game being real-time
and presenting a graphical interface;

• Protecting MMOG state against illegal modification is an essential requirement for
any peer-to-peer MMOG architecture;

• Network-level attacks are a threat that cannot be ignored, since they can cause the
architecture to lose or drop game state, or they can be combined into more sophis-
ticated attacks to perform state cheating. Attackers may be motivated to do so due
to the real value of MMOG state;

• Information exposure cheats, time cheats, automation cheats and any remaining
protocol-level cheats can be either ignored or addressed by the application or add-
on detection modules.

This chapter performed a detailed comparison of a few works which stand up well to
those assumptions, especially those which we identified as belonging to the multiple ar-
biter approach. From this comparison, we have shown that ACORN and FreeMMG 2 are
the only models that meet our security requirements. Between these, ACORN is signifi-
cantly more server-intensive, which also clashes somewhat with our basic motivations.

Hopefully, we have also shown that FreeMMG 2 provides an interesting feature set.
We consider inter-cell interaction support to have priority over proper hot-spot support,
and among the relatively secure works FreeMMG 2 is the first to explicitly address this
issue, as far as we can tell. This may stem from our idea of what the first deployed peer-to-
peer MMOG would look like. The idea of handling hot cells with servers, which we have
found in DaCAP and Peer Clustering models, is a very interesting and elegant solution.
FreeMMG 2 could be extended to include such support. For now, FreeMMG 2 cells just
handle hot cells by sending fewer updates to players, until most that players see on-screen
is either frozen objects or seconds-long dead reckoning sequences. This may not be an
issue if the hot area is a city where player’s cannot shoot at each other (CRIPPA; CECIN;
GEYER, 2007), but it is certainly an issue if massive player battles are to be supported.

Lastly, we should note that our comparison has disregarded visual consistency and
player command responsivity (interaction latency) issues. In FreeMMG 2 we tried to
address this indirectly through trying to minimize the amount of hops between players.
However, peer-to-peer cell-based models in general, and multiple arbiter models in par-
ticular, cannot really compete with server-centric designs in terms of latency. Due to the
difficulties imposed by our focus on security and decentralization, our approach to latency
and game genre support was left to be simply a matter of considering FreeMMG 2 capa-
ble of serving MMORPGs because RPGs tolerate latency and because other architectures
with similar multi-hop designs also claim to offer that support.
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7 CONCLUSION

Massively multiplayer online games such as World of Warcraft, PlanetSide, EverQuest,
Lineage, and many others are Internet-enabled, massively-populated virtual worlds where
players can interact with a virtual environment and with each other’s avatars through a
graphical and real-time interface. To human players, the state of a virtual world is per-
ceived as being like the state of the real world: persistent and evolving over an arbitrary
span of time depending on some transformation rules. A MMOG virtual world neces-
sarily supports competition and thus protecting the system against various attacks from
cheaters, griefers and vandals is vital.

MMOGs are an example of virtual worlds, which is a broader concept. Other non-
MMOG examples of virtual worlds include the text-based MUDs or the current turn-
based, web-based MMOGs (not graphical or not real-time) and virtual worlds created for
collaboration or training (non-competitive). However, some virtual worlds such as Second
Life defy that categorization by including support for both competitive play, purely social
interaction and ‘e-commerce’. The definition of a MMOG in this work was provided as
a means to limit its scope, more than anything. Others may label Second Life, MUDs or
turn-based persistent worlds as MMOGs.

As of 2009, virtually all MMOGs are client-server systems, where the world is simu-
lated at a trusted server infrastructure and then served to client (player) machines which
either just display the server-provided results as-is or derive a smoother graphical ren-
dition from them. This results in a recurring server-side computing, communication and
administrative cost which can only be afforded by a few. This contrasts with other Internet
applications such as the World-Wide Web (WWW) which have thrived on the client-server
paradigm in such a way that almost anyone is able to host a massively-popular website,
as far as the monetary cost of hiring space on website servers is of concern.

FreeMMG 2 is an alternative distribution architecture for MMOGs. Like the many
MMOG architectures evaluated in Chapter 2, FreeMMG 2 follows the peer-to-peer de-
sign paradigm. When applied to distributed computing architectures, this peer-to-peer
paradigm results in distributed computing systems which are more decentralized than
client-server systems. FreeMMG 2 is hybrid: though most costly tasks are to be delegated
to a network of players and other kinds of volunteer nodes, the servers retain ultimate con-
trol of the game. Our goal was not to remove control over the application from a central
operator, which may be among the leading goals of other peer-to-peer systems such as
FreeNet (CLARKE et al., 2001). Instead, our goal was to lower the costs of being a game
operator, thus lowering the barrier of entry in such a way that hosting a MMOG would be
an endeavor as accessible as it is to host a website.

Since our work on the original FreeMMG (CECIN et al., 2004) we have chosen to
view a running MMOG as a large distributed system in which thousands of concurrent
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users commit modifications in real-time to a valuable shared piece of state. And due to
the competitive nature of games it can be expected that many users will want to modify or
bypass the state transformation rules, and act to do so if the task seems feasible. Thus, if
what the players are fighting each other over for has value, then the main technical chal-
lenge of a peer-to-peer MMOG seems to lie in maintaining the persistence and integrity
of the world’s state in the long run. This state integrity cannot be taken for granted by a
peer-to-peer MMOG, or any other decentralized stateful system for that matter.

The originality of FreeMMG 2 lies in it being a peer-to-peer MMOG architecture for
avatar-based games (MMORPGs) which offers both significant server-side cost reduction
and strong integrity and persistence of game state even in the presence of malicious nodes
and network-level attacks such as DoS and DDoS attacks. Even if DoS and DDoS attacks
are disregarded as threats, FreeMMG 2 also presents some unique features such as a
light-weight inter-cell synchronization mechanism which supports both object transfers
and interaction across cell borders. In FreeMMG 2 we have also dealt with the problem
of maintaining the global game consistent across cell borders, such as ensuring that an
unique object does not disappear or is duplicated, which is a problem rarely considered in
the literature.

FreeMMG 2 is a cell-based, replication-based, multiple arbiter, hybrid of client-server
and peer-to-peer model that supports MMOGs. As discussed in Chapter 5, existing results
in the literature already show that multiple arbiter approaches can be significantly resistant
to collusion attacks intended as facilitators to state cheating. Through network simulation,
we have shown that FreeMMG 2 is also bandwidth-efficient. Thus, we consider our hy-
pothesis verified: the multiple arbiter approach for peer-to-peer MMOG support not only
is naturally state cheating resistant, but can be made to work with realistic broadband
connectivity such as peers on ADSL connections, and in a scenario where no global IP
multicast is available.

7.1 Summary of contributions

We have identified the following contributions in this work:

• Distributed simulation and peer-to-peer games: we provide a background discus-
sion that identifies a synergy between distributed simulation and peer-to-peer games.
That is because in both problems there is the need for multiple distributed processes
to synchronize in applying modifications (events) to a shared state.

• Client-server game protocol review: we provide a didactic overview of a broad
range of techniques used to build client-server game protocols and to make them
mask or compensate for network inconveniences such as delay, jitter and packet
loss, and thus be able to support action games such as FPS games;

• An assessment of security issues for peer-to-peer MMOGs: we provide a simplified
and focused assessment of the security threats to MMOGs. We focused on the
threats that could possibly cause the most damage to a MMOG which, as argued,
are cheats and attacks that can cause the shared state of a MMOG to be illegally
altered or lost;

• A review of peer-to-peer MMOG architectures: we have reviewed several recent
peer-to-peer MMOG architectures, focusing on security and level of processing
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and communication decentralization. In Chapter 2, we fit most of them in one of
four categories (player mesh, fat server-side, single arbiter and multiple arbiter). In
Chapter 6, we perform a more detailed analysis of a few selected works, comparing
them to FreeMMG 2;

• A new cell event and state synchronization protocol suitable for a multiple ar-
biter MMOG architecture: we have developed the Baseline State Synchronization
(BSS) protocol, which is a simple modification of the Trailing State Synchroniza-
tion (TSS) protocol (CRONIN et al., 2004a). BSS combines the security and verifia-
bility of state replication based on conservative event ordering with the responsivity
of optimistic event execution: all replicas agree on the conservative state snapshot,
but may disagree on the optimistic state snapshot;

• A new hybrid peer-to-peer and client-server MMOG architecture: Chapter 4 de-
scribes in detail the FreeMMG 2 architecture. FreeMMG 2’s originality is in being
highly resistant to important security threats and in achieving significant decentral-
ization of services. In its current form, FreeMMG 2 already provides security guar-
antees comparable to the ones provided by default by a client-server architecture,
while allowing smaller game companies or researchers to operate MMOGs;

• Verification that ‘multiple arbiter’ replication approaches can be bandwidth-efficient:
Chapter 5 shows, through network simulation, that a feature-filled, peer-to-peer
MMOG model based on ‘multiple arbiter’ (or consensus) cell replication can in-
deed work on realistic bandwidth constraints and without relying on IP multicast.
Together with the natural resistance of replication approaches to collusion-based
cheating attempts, multiple arbiter approaches are shown to be promising, war-
ranting more research into other aspects of these models such as their interaction
latency.

7.2 Future work

FreeMMG 2 can be improved in several directions. Below we discuss some of these
directions. These mix both add-on and redesign work opportunities.

7.2.1 Dealing with hot-spots

Hot-spots are areas (cells) of the virtual world which, at any given time, host an un-
usually large amount of player avatars. In FreeMMG 2, a clear case of hot-spot would
be a cell hosting 100 or 200 avatars. The only way that this kind of concentration would
not be a problem is if the hosting cell is comprised of ‘super-peers’ with server-grade
bandwidth available to them. The neighbour cells would also have to cope with this kind
of network load if the ‘hot’ cell has many avatars near one or more of the cell borders,
since neighbor cells would receive large update packets from the hot cell due to the large
amount of object status updates on each packet incoming from the hot cell.

FreeMMG 2 does tolerate hot-spots. By ‘tolerate’ we mean that FreeMMG 2’s simu-
lator nodes and the overlay network don’t just collapse. As the avatar count increases, the
available bandwidth on the network stays the same, so the overall frequency of updates, be
it between cells or from cells to player machines, decreases proportionally. This decrease
of update frequencies increases the latency perceived by players and decreases the sim-
ulation consistency as very due updates make remote avatars ‘jump’ from one predicted
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position to the correct position far away from the prediction, for instance.
FreeMMG 2 uses a static mesh of simulator nodes, and the inability to handle hot-

spots stems directly from that. More dynamic methods such as Asynchronous Synchro-
nization (AS) (BAUGHMAN; LEVINE, 2001) are more appropriate for tolerating hot-
spots. The AS is a good example because it also employs lock-step (conservative) sim-
ulation, just as FreeMMG 2. However, AS does this only between avatars that intersect
their spheres of influence (SoI), that is, only when the avatars get close enough to each
other. In FreeMMG 2, hot-spots are much easier to cause due to the coarse-grained ‘cell’
data distribution. A ‘cell’ can be visualized as a ‘map’ of an FPS game such as Quake (ID
SOFTWARE, 2008) or Counter-strike (WIKIPEDIA, 2008a). So, one could easily have
100 avatars that are far away from each other but they happen to be at the same ‘cell’ so
they are forced to engage in lock-step synchronization.

In FreeMMG 2 we have chosen the static cell division mainly because it is simpler.
For one thing, it treats dynamic avatars, NPCs and environment equally. All are modeled
as game-dependent simulation ‘state’, and the FreeMMG 2 middleware needs very little
insight on the actual representation of game objects. At most, it needs timestamps and
‘state’ of cells or individual objects as serialized blocks of bytes. We think that this
particular benefit that arises from the simplicity of static ‘cell’ division already offsets the
inconveniences caused by a lack of adequate support for hot-spots.

One way to mitigate the hot-spot problem in FreeMMG 2 would be to detect when
a cell has a certain large count of avatars and then start moving the more potent (‘super-
peer’) volunteer nodes to that cell. These nodes, having more bandwidth, would be able to
serve more player machines, and would be able to send and receive larger ‘tick’ messages
on the peer-to-peer overlay network of the cell. However, this would modify the scenario
for collusion-based cheats: a cheater that could afford to donate several high-capacity
nodes to the network could draw those nodes to a cell by somehow gathering a large mob
of players into a cell. We have not simulated this super-peer optimization for hot-spots,
nor the possibilities of collusion cheating that can occur due to that optimization. This
could be done as future work.

Another strategy for coping with hot-spots would be increasing the cell node count of
a particular cell when it starts hosting many avatars. Having more cell nodes, more band-
width to serve player machines is available at that cell. This could be coupled with the
super-peer allocation strategy mentioned above for maximum effect. However, this strat-
egy can back-fire as this increases the size of the full-mesh peer-to-peer network formed
between all cell nodes, which does not scale well. The cell node count is a sensitive pa-
rameter, and in FreeMMG 2 we assume that a fixed number of nodes for all cells should
be chosen prior to deploying the game. But maybe there will be some gain in allowing
it to vary during each cell’s lifetime. However, the model will need to be revised to see
if this affects inter-cell synchronization, for instance. Exploring the effect on varying cell
node count for hot-spots is also left as future work.

7.2.2 Informed choice of nodes from the volunteer pool

In FreeMMG 2, the virtual world cells have to be served by groups of volunteer nodes,
which are drawn from a pool of volunteers (see Figure 4.1 in Chapter 4). Currently,
volunteer selection is completely random: all nodes in the pool have the same chance of
being selected when a new cell node is needed by the network. It is possible that more
informed choices would yield better results, such as decreasing the chance of collusion
cheating and reducing the occurrence of vandalism (nodes that fail on purpose).
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For instance, nodes that have just been removed from a cell that failed could have a
lowered chance from being selected in the future, or they could be outright banned for
several hours or days from being selected. However, care must be taken to avoid the
entire pool from being ‘banned’. For instance, a large group of colluding nodes could
purposefully sacrifice a few of their own cheater nodes to ban a large number of honest
nodes. Simulations could be performed to determine safe levels of punishment to apply
to cells that have failed, as well as the rate in which the punishments expire.

Several other pieces of information could be used for informed choices. For instance,
the IP addresses of the volunteer nodes could also be checked. Peers hosted on the same
sub-network could be barred from participating on the same cell, and IP addresses could
be matched against IPs or IP address masks present in public blacklists (e-mail spamming,
etc). Blacklisting volunteers would not damage the network as it damages an e-mail
network, since false positives only result in a shrinked pool of volunteer nodes to choose
from. However, if a particular game deployment starts running out of volunteers, it might
be necessary to use blacklisted nodes or risk putting cells off-line (off the game).

In the end, the several pieces of information that can be inferred from a volunteer could
be used to compute a probability of that node being selected: history of being present in
cells that failed, IP address history, and even game-play behavior if that volunteer is tied
to a particular player account. Tuning those heuristics so that measurable gains in cheat-
proofing, vandalism (griefing) avoidance and overall network stability are obtained is a
good opportunity for future work.

7.2.3 Improving the inter-cell synchronization protocol

Cells know about the state of objects owned by neighbour cells due to incoming update
packets. However, at each tick, two neighbour cells only exchange one such packet. It
might be the case that a significant gain is achieved if two or more packets are exchanged
per tick between neighbour cells. That would help minimize the impact of packet loss,
delay and packets being dropped on purpose by the sender or the receiver.

If additional packets are sent by different primary cell nodes on the same tick to the
same neighbour cell, then there is the issue that these nodes can and probably do have
different views of the world on their optimistic cell snapshots. So, the receiving cell will,
on average, receive two or more distinct updates corresponding to the same time tick
and for the same neighbour cell. Obviously, one of them will be selected and the others
discarded. The trivial solution is to consider the first one that is committed to conservative
ordering at the receiving cell and discard the others. If many such packets are committed
to the same conservative step at the receiving cell, then one of them is selected based on
some tie-breaking criteria. This resulting scheme does minimize packet loss, delay and
intentional drops, but we think that the single-packet inter-cell synchronization design
must be tested and ruled out first.

This simple increase in outgoing packets does not help to decrease interaction latency
between ‘neighbour objects’ – objects owned by two different cells which are neighbours
to each other. To significantly decrease interaction latency between, the number of hops
would have to be cut. The inter-cell packets currently travel one hop between cells and
one hop inside the receiving cell which is when the foreign update packet is disseminated
as cell input for deterministic execution. These two hops in particular could be condensed
into one of the originating cell sent the update directly to all primary cell nodes of the
destination cell. All these would have to be sent by the same sender node at the origi-
nating cell, since the multiple update packets would have to be identical. However, this
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might not be feasible without assuming IP multicast support or without raising the mini-
mum requirements for cell node upload bandwidth. In the current scheme, the inter-cell
synchronization overhead weights to each primary cell node roughly the same as serving
one additional player. Having each primary cell node broadcast an inter-cell packet each
turn would raise that overhead to serving N additional players, where N is the number of
neighbour cells. Considering that the average peer currently has ADSL connectivity with
low upload bandwidth, that additional cost may forbid peers from serving updates to any
players at all after performing the inter-cell synchronization task.

There may be several other ways to improve the quality of inter-cell interaction. For
example, the FreeMMG 2 player nodes only upload one stream of short command packets
to the cell that currently owns its avatar, which is the same that client nodes of client-server
MOGs do. They have idle upload bandwidth which could be exploited in some way to
accelerate interaction. For instance, players could exchange updates directly between
each other, or they could send commands to multiple cells at once, or receive updates
from multiple cells at once. We didn’t develop that for two main reasons. The first one is
that the focus of this thesis is in securing the state of a MMOG and such schemes open
even more security issues which would then have to be addressed or at the very least
discussed. The second, and main reason, is that we wanted player nodes to remain low-
profile for multiple sub-reasons. We wanted player nodes to, perhaps, simultaneously play
and serve as cell nodes. We also wanted to allow any player to play the game regardless
of its available bandwidth. And finally, we wanted the application or the users themselves
to have extra player bandwidth to implement other features such as peer-to-peer voice
communication (TRIEBEL et al., 2009). Nevertheless, that extra player bandwidth is
there to be tapped into, perhaps by an improvement of inter-cell interactions.

7.2.4 Detection strategies for protocol-level cheating and griefing

In FreeMMG 2, the focus was on protecting the state of each and every cell among
thousands of cells. Unfortunately, FreeMMG 2 does not directly address most protocol-
level cheats with the exception of inconsistency cheats (WEBB; SOH, 2007). We left
protocol-level cheats such as time cheats to be addressed by the application or an addi-
tional middleware layer that would provide higher-level services. Alternatively, future
work could extend FreeMMG 2 to deal with cheats that we have not addressed.

Regardless of software engineering concerns, a detection approach for the remaining
cheats is probably better suited to FreeMMG 2 than prevention. There are works that
fit as add-ons and that detect protocol-level cheats quickly and with low false positive
rates, such as the AC/DC algorithm (FERRETTI; ROCCETTI, 2006). Other authors of
multiple arbiter MMOG models also suggest that protocol-level cheats can be dealt with
adequately by add-on modules (KABUS; BUCHMANN, 2007).

Some works (CHAN; HU; JIANG, 2008; KABUS; BUCHMANN, 2007; WEBB
et al., 2007) that detect protocol-level cheats rely on the cryptographic property of non-
repudiation. Non-repudiation is the ability to prove beyond doubt the origin of a message.
This translates to being able to prove that a peer has misbehaved with an effective zero
false-positive rate. An example of this is the inconsistency cheat, where a peer sends
two different packets that are supposed to be identical. If the packets are required to be
digitally signed by the sender then there is no way that the sender can claim that it did
not send two distinct packets. Thus, a peer that attempts an inconsistency cheat can be
detected and banned by live or post-mortem auditing of protocol-level (packet) activity.

Finally, some cheat detection schemes cause the level of abstraction (the generality) of
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FreeMMG 2 to decrease. By offering protection to some protocol-level cheat, for instance
time-based cheats, we are assuming more about the meaning of the event data exchanged
between players and cell nodes. For instance, we might assume that players are able to
timestamp outgoing events. We leave these and other optimizations of FreeMMG 2 to
specific games, game genres, or interaction models to future work.

7.2.5 Implementing a MMOFPS over FreeMMG 2

FreeMMG 2 was originally an attempt at peer-to-peer support for MMOFPS games.
Supporting a peer-to-peer MMOFPS that is more than a shooter over a large area – that
is, one that also has a virtual economy and perhaps mutable terrain – turned out to be
a daunting task when considering other limitations such as an Internet without widely-
deployed IP multicast and peers with ADSL upload bandwidth. Also, supporting low-
latency MMOFPS games with players from all over the globe may be difficult to realize
simply due to the sheer geographic distance even if network delay were to be reduced
to the minimum required by the light speed barrier (BOSSER, 2004). The FreeMMG 2
model described in this thesis maximizes state integrity and low bandwidth usage above
everything else, which resulted in several trade-offs elsewhere, including in player inter-
action latency. However, we believe that FreeMMG 2 could be used to serve MMOFPS
games in a limited way. For instance, if it is deployed in the same country or region
only. Coupled with an evolution of consumer-grade broadband technology and some extra
work, MMOFPS support could be achieved. In any case, significant work over FreeMMG
2 is required before MMOFPS game support can be claimed.

7.2.6 MMOG virtual currency as an incentive to volunteering as cell node

In Chapter 6 it was shown that, among similar proposals, FreeMMG 2 is the one that
requires the largest amount of volunteer nodes to provide the distributed simulation of
the virtual world where active players are to play the game. Many peer-to-peer MMOG
architectures assume that a P2P MMOG should work like most file-sharing networks
where the bulk of peers ‘serving’ (files) is provided by active users of the service which are
also ‘consuming’ (files). In the case of MMOGs, this means that the players serving the
game are the same ones that are also playing the game. However, having peers serving and
playing is sub-optimal because of the combined CPU cost of playing and serving. Also,
any pending outgoing packets at an active player’s machine will increase the interaction
latency of that player since packets in the socket architecture are non-preemptable.

Ideally, the volunteers that serve as cell nodes would be continually provided by play-
ers while they are not playing the game. This is feasible since, unlike modems over a
telephony network, most broadband users are not billed for connection duration or traffic.
However, there are a few downsides. One are other costs for serving such as electricity:
it is cheaper if you just turn your PC off after playing. Second, players may want their
bandwidth for other things while they’re not playing. And third, players from the same
region would likely play at the same peak hours so most serving peers would be located
across the globe at that time, resulting in a prohibitive average latency between active
players and the volunteering cell nodes.

As we see it, the definitive solution for this problem is to reward players automatically
with in-game currency or virtual items for the computational resources they provide to
the overlay. This is feasible since, as we have shown, virtual wealth is actually worth
real money (LEHTINIEMI; LEHDONVIRTA, 2007). This would open a new category
of player: the legitimate Gold Farmer (DIBBELL, 2007). It would not be surprising if
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a business model emerged out of providing dedicated and high-quality overlay nodes in
return for in-game wealth. This may actually be the greatest strength of hybrid client-
server and peer-to-peer MMOG architectures: allowing for a centralized party to create
a concept, virtual wealth, which then motivates swaths of player-provided machines to
band together to run the virtual world as a decentralized (distributed) simulation.
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APPENDIX A VERSÃO RESUMIDA EM PORTUGUÊS

Este apêndice oferece um resumo em português desta dissertação. A Seção A.2 ofer-
ece uma breve revisão do estado da arte em arquiteturas descentralizadas de suporte a
MMOGs par-a-par, e é equivalente ao Capítulo 2 do texto original em inglês. A Seção
A.3 expõe o FreeMMG 2, o modelo proposto, e é equivalente aos capítulos 3 e 4 do
texto original. A Seção A.4 faz uma breve comparação do FreeMMG 2 com os trabalhos
relacionados, sendo um resumo da comparação realizada no Capítulo 6 do texto original.

A descrição do modelo FreeMMG 2 compõe a maior parte deste resumo. Apesar de
já ser uma simplificação de uma implementação real, o projeto constante no texto original
cobre muitos dos problemas que seriam relevantes para trabalhos futuros. Já o resumo
deste projeto, oferecido pela seção A3, não seria um ponto de partida satisfatório para
um esforço de implementação ou derivação do FreeMMG 2, de forma que para estas
finalidades recomenda-se a leitura dos capítulos 3 e 4 do texto original.

A.1 Introdução

Jogos online multijogador (em inglês, multiplayer online games, ou MOGs) têm se
tornado populares desde a comercialização do acesso à Internet iniciada na década de
1990. Existem vários tipos de MOGs, desde versões de jogos tradicionais como Xadrez
até simulações em 3D de aventura e combate com milhares de participantes.

A maioria dos MOGs são análogos à maioria dos jogos ou esportes praticados no
mundo físico: uma sessão de jogo suporta um pequeno número de jogadores e se dá em
um período relativamente curto de tempo, e de forma que múltiplas sessões de um jogo
são consideradas distintas umas das outras, mesmo que os mesmos jogadores estejam
presentes em todas. Por exemplo, um MOG de tiro em primeira pessoa (em inglês, First-
Person Shooter ou FPS) suporta algumas dezenas de jogadores em partidas que duram
algumas dezenas de minutos. Quando o jogo acaba, a pontuação final é exibida e uma
nova partida começa, sem ser afetada pelos resultados da anterior.

Esta tese é sobre jogos online maciçamente multijogador (em inglês, massively mul-
tiplayer online games ou MMOGs), que são um tipo especial de MOG. Esses MOGs em
escala ‘maciça’ (ou ‘massiva’) podem ser melhor vistos como simulações de um mundo,
ao invés de simulações de atividades praticadas em um mundo. Um MMOG é, basica-
mente, uma simulação online de um mundo virtual que é repleta de oportunidades tanto de
interação social quanto de atividades competitivas como as encontradas em MOGs como
combate, estratégia e gerência de recursos. Por exemplo, o MMOG mais popular e bem-
sucedido, ‘World of Warcraft’, é um mundo de ‘fantasia medieval’ onde, ao conectar-se
ao jogo, o jogador encontra-se controlando um avatar tridimensional humanóide dentro
de uma espécie de cidade virtual, cercado por outros avatares controlados por outros jo-
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gadores. Em World of Warcraft e outros MMOGs, ao conectar-se ao jogo, o jogador não
se percebe como um participante da versão eletrônica de uma ‘partida’ de um jogo tradi-
cional, e sim como um participante em um mundo virtual que contém várias atividades
sociais. Outra característica marcante dos MMOGs são que estes geralmente possuem
sua própria moeda virtual, e a gerência das posses virtuais do jogador é geralmente um
aspecto importante do jogo.

Ao contrário dos MOGs tradicionais que geralmente permitem aos próprios jogadores
rodarem tanto clientes do jogo quanto servidores, os numerosos e caros servidores dos
MMOGs comerciais são todos centralizados na empresa que desenvolveu ou publicou
cada jogo, o que gera um custo muito alto de manutenção desta infra-estrutura servidora.
Um dos maiores custos é a largura de banda necessária para servir a milhares ou milhões
de jogadores simultâneos. Por exemplo, um operador de servidores de MMOG revelou
que os custos de comunicação consumiam um terço do faturamento com mensalidades de
jogadores (FENG, 2007).

Existem propostas alternativas a MMOGs puramente cliente-servidor. Atualmente,
suporte par-a-par para MMOGs é uma área ativa de pesquisa. As propostas de de-
scentralização de MMOGs possuem motivações distintas como a redução de custos para
o operador de servidores, a total eliminação do lado servidor (tornando o MMOG um
sistema par-a-par puro), a redução da latência (através da comunicação direta entre jo-
gadores, sem intermediação de servidores), e o suporte a diferentes tipos de jogos ou para
melhorar a infra-estrutura servidora utilizando técnicas de rede par-a-par apenas entre os
servidores (sem que os clientes conectem-se diretamente uns aos outros).

A motivação deste trabalho é a redução significativa de custos de computação (CPU)
e de comunicação (largura de banda) para o provedor do MMOG. Nós esperamos que a
redução dos custos de operação de servidores de MMOGs viabilize o desenvolvimento
e hospedagem de MMOGs inovadores ou experimentais por pequenos grupos ou mesmo
indivíduos. Porém, desenvolver uma arquitetura par-a-par para MMOGs é desafiador.
Um MMOG cliente-servidor tradicional vale-se da homogeneidade e confiabilidade das
máquinas servidoras, bem como da baixa latência e alta largura de banda de comunicação
entre servidores interligados por uma rede local. Já em uma arquitetura par-a-par, o ob-
jetivo é o de transferir, parcial ou totalmente, as responsabilidades dos servidores para as
máquinas clientes, e isto implica em adaptar a simulação do jogo para nós heterogêneos,
não confiáveis (tanto no sentido de trapaça no jogo quanto no de disponibilidade, já que
um cliente pode desligar a sua máquina quando quiser), e com largura de banda reduzida
e maior latência de comunicação (comparado a rede local ou, no mínimo, dedicada ou
superdimensionada, que tradicionalmente interliga servidores de MMOGs).

A descentralização de um MMOG introduz desafios significativos de segurança, e esta
é uma das preocupações principais deste trabalho. Em especial, este trabalho preocupa-se
com a possibilidade de alteração arbitrária de uma parte do mundo virtual de forma que
a economia do jogo seja completamente destruída. Por exemplo, se uma arquitetura par-
a-par proposta para MMOGs simplesmente distribui ‘fatias’ do mundo virtual para serem
hospedadas por diferentes jogadores, basta que um único jogador entre milhares decida
violar as regras e fabricar uma quantidade arbitrária de ‘riqueza virtual’ e depositá-la na
sua partição para arruinar a economia do jogo. Este tipo arrasador de trapaça, chamado
de trapaça de estado no restante do texto, é por nós considerado como fatal, de forma
que um MMOG é inutilizável se não é suficientemente resistente a trapaça de estado.
MMOGs cliente-servidor são naturalmente imunes a este problema, já que não delegam
nenhuma decisão de alto impacto sobre a economia do mundo virtual aos clientes.
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Nesta tese nós propomos o FreeMMG 2, um modelo novo de suporte a MMOGs. O
FreeMMG 2 é um híbrido entre cliente-servidor e par-a-par onde a maior parte da comu-
nicação e carga computacional é transferida para os clientes. A arquitetura do FreeMMG
2 é dirigida por dois objetivos-chave. O primeiro é o de prover alta resistência a trapaça
de estado em um ambiente hostil, incluindo a possibilidade de ataques em nível de rede
como o ataque de ‘negação de serviço’ (Denial of Service). O segundo é o de garantir
que um mundo virtual baseado no FreeMMG 2 possa executar sobre uma rede par-a-par
formada de máquinas e de conexões Internet tipicamente disponíveis para jogadores, fo-
cando em protocolos eficientes em termos de uso de largura de banda, sem necessitar de
suporte a IP multicast.

O FreeMMG 2 é baseado em uma abordagem presente em trabalhos relacionados
que, neste texto, será chamada de ‘múltiplos árbitros’. Em um modelo de simulação dis-
tribuída com múltiplos árbitros, vários clientes mantém uma cópia igualmente autoritativa
da mesma ‘célula’, que é uma parte do mundo virtual. Isto torna difícil para uma minoria
de clientes replicadores de uma célula organizarem um conluio para silenciosa e trivial-
mente introduzirem modificações arbitrárias no estado da célula e, como consequência
direta, na economia do mundo virtual como um todo.

Existem várias propostas de descentralização de MMOGs que não utilizam a abor-
dagem de múltiplos árbitros, pois uma das suas desvantagens é o aumento significativo na
troca de mensagens e, como consequência, da utilização da banda dos nós participantes,
na medida em que as várias réplicas de uma célula precisam manter-se sincronizadas
enquanto o estado do mundo virtual é modificado em tempo real. De fato, a maioria das
soluções propostas aos problemas de segurança inerentes a um MMOG par-a-par resultam
em algum aumento significativo nos custos de comunicação, em algum ponto da arquite-
tura. Por exemplo, para evitar trapaças, alguns modelos de múltiplos árbitros causam o
envio de múltiplos pacotes de atualização de estado do jogo para um único cliente jo-
gador ao mesmo tempo (WEBB; SOH; TRAHAN, 2008; KABUS; BUCHMANN, 2007;
ENDO; KAWAHARA; TAKAHASHI, 2005), ao passo que no FreeMMG 2 cada máquina
de jogador só precisa receber um único pacote de atualização de cada vez, assim como
em uma arquitetura cliente-servidor de jogo online típica.

Neste contexto, a hipótese central desta tese é a de que existe um modelo híbrido
(cliente-servidor e par-a-par), baseado em células e replicação do estado do mundo vir-
tual, com múltiplos árbitros por célula, que suporta MMOGs com um baixo custo de co-
municação e que é suficientemente resistente a trapaças de estado, mesmo na presença de
ataques em nível de rede. Para verificar esta hipótese, nós propomos o modelo FreeMMG
2, que deve satisfazer estes critérios. Neste texto, nós primeiro iremos descrever o modelo
FreeMMG 2 em detalhe, mostrando que este é uma solução para MMOGs par-a-par coer-
ente e suficientemente abrangente. A seguir, verificamos que os protocolos principais do
FreeMMG 2 são escaláveis em termos de utilização da largura de banda dos clientes. E fi-
nalmente, mostramos que a abordagem de múltiplos árbitros do FreeMMG 2 é resistente
a trapaças de estado e a ataques em nível de rede. Após esta apresentação e validação
básica do modelo proposto, nós comparamos o FreeMMG 2 com outros trabalhos rela-
cionados, caracterizando o seu grau de originalidade e contextualizando a contribuição na
área de pesquisa em que se insere.
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A.2 Suporte par-a-par para MMOGs

Em 2001, Fitch (FITCH, 2001) argumentou que ‘o espaço cibernético é simplesmente
o caminho lógico de evolução dos sistemas par-a-par’, onde os MMOGs são uma pos-
sível instanciação do conceito de espaço cibernético (em inglês, ‘cyberspace’). A partir
daquele ano, de forma grosseiramente aproximada, têm se formado um corpo de trabalhos
de pesquisa relacionados a suporte par-a-par para MMOGs. Guo e Norden (NORDEN;
GUO, 2007) dizem que ‘Redes P2P lógicas (em inglês, P2P overlays) são um encaixe
natural para MMOGs, devido a sua escalabilidade e a naturalidade com que realizam
processamento distribuído’.

Schiele et al. (SCHIELE et al., 2007) identificaram dez características importantes
que devem ser providas por suluções par-a-par para MMOGs. Estas características são
a Distribuição (descentralização, que primariamente diferencia um MMOG par-a-par de
um MMOG cliente-servidor, centralizado), a Consistência (consistência semântica global
do jogo e consistência temporal, no sentido de latência de sincronização entre os pares e
os efeitos negativos disto), a Auto-Organização (lidar com frequentes entradas e quedas
de pares, bem como balanceamento de carga), a Persistência (prevenir ou remediar perda
de estado do jogo devido a dependência parcial ou total de armazenamento em pares não-
confiáveis), a Disponibilidade (prevenir ou remediar perda de conexão ao mundo virtual
por, por exemplo, desconexão de pares), a Interatividade (ou Responsividade, referente
à latência entre um comando ser emitido por um jogador humano e a apresentação dos
efeitos deste comando ao jogador), a Escalabilidade (referente à capacidade de absorção
de jogadores, bem como à degradação graciosa da qualidade de serviço na medida em
o número de participantes aumenta), a Segurança (referente à tentativas de trapaça no
jogo, bem como a outros tipos de ameaças de segurança como roubo de identidades de jo-
gadores e de posses virtuais), a Eficiência (uso dos limitados recursos computacionais dos
pares, que são limitados principalmente pelo número de jogadores conectados, em con-
traste ao uso de recursos de máquinas servidoras, que são limitados principalmente pela
arquietura interna a cada rede servidora), e a Manutenibilidade (por exemplo, referente
à necessidade de alguns mecanismos anti-trapaças de serem regularmente atualizados).
Considerando-se a atual infra-estrutura da Internet, é difícil de se projetar um modelo
de suporte par-a-par a MMOGs que lida com todos estes requisitos de forma absoluta-
mente satisfatória. Adicionalmente, é impraticável almejar tal ideal enquanto tenta-se
suportar todos os tipos de jogos massivos concebíveis. Portanto, cada modelo de suporte
a MMOGs proposto irá de encontro a estes requisitos básicos utilizando uma estratégia
própria em seu projeto, com seus próprios prós e contras, tipos de jogos suportados e tipos
específicos de ambientes operativos em mente.

No restante desta seção nós analisaremos outras arquiteturas propostas para suporte
par-a-par de MMOGs, apresentando as características-chave de cada uma. As arquite-
turas foram agrupadas em quatro categorias: malhas par-a-par de jogadores, par-a-par
com servidor pesado, árbitro único e múltiplos árbitros. Com este trabalho de revisão,
nós pretendemos mostrar que há uma escassez de modelos que lidam com os problemas
de trapaça de estado e de ataques em nível de rede de forma adequada, visto que estes são
os requisitos de segurança eleitos por nossa motivação como aspectos de prioridade máx-
ima, como discutidos anteriormente no texto. Estes dois critérios-chave, utilizados para
analisar estes quatro grandes agrupamentos de trabalhos, fornecem a base da caracteriza-
ção da originalidade do FreeMMG 2 frente à maior parte dos trabalhos relacionados. Na
Seção A.4 nós realizamos uma comparação mais detalhada com trabalhos individuais, se-
lecionados, que melhor atendem aos requisitos centrais de segurança da nossa motivação.
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A.2.1 Malhas par-a-par de jogadores

Alguns modelos par-a-par de suporte a MMOGs do tipo malha de jogadores focam
em estabelecer conexões diretas entre as máquinas dos jogadores, deixando estas trocarem
eventos autoritativos de atualização dos seus respectivos avatares diretamente. Este tipo
de arquitetura geralmente limita o estado do jogo a uma coleção de avatares, onde cada
par da rede é um jogador que é a autoridade final sobre o estado do seu próprio avatar. As
conexões entre pares são estabelecidas quando os seus respectivos avatares encontram-se
suficientemente próximos no mundo virtual, de forma que a conectividade da rede lógica
par-a-par muda na medida em que os avatares locomovem-se no mundo virtual.

Yu e Vuong (YU; VUONG, 2005) referem-se a este tipo de arquitetura como re-
des par-a-par não-estruturadas, em contraste com redes lógicas par-a-par estruturadas
como as DHTs (tabelas hash distribuídas, em inglês, distributed hash tables) (DARLA-
GIANNIS; HECKMANN; STEINMETZ, 2006). Eles também identificaram três pro-
postas principais que se encaixam nesta categoria: A Peer to Peer Message Exchange
Scheme (KAWAHARA; AOYAMA; MORIKAWA, 2004), Solipsis (KELLER; SIMON,
2003, 2002) e VAST (Voronoi-based Adaptive Scalable Transfer) (HU; LIAO, 2004).
Abordagens baseadas em Diagramas de Voronoi foram também exploradas em trabal-
hos recentes (GENOVALI; RICCI, 2009; JIANG; CHIOU; HU, 2007; BACKHAUS;
KRAUSE, 2007) que lidam com questões pendentes como a manutenção da conectivi-
dade global da rede.

Frente às motivações de segurança deste trabalho, discutidas anteriormente, as abor-
dagens do tipo ‘malha de jogadores’ apresentam dois problemas importantes. O primeiro
é o fato de que cada máquina de jogador irá, provavelmente, ditar o estado do seu próprio
avatar sem nenhum tipo de supervisão, o que torna o modelo imediatamente vulnerável a
trapaças de estado. Além disso, os objetos de jogo que não são avatares precisam ser dis-
tribuídos entre as máquinas dos jogadores, e como a malha de conectividade acompanha
a proximidade entre objetos, torna-se um problema decidir quais máquinas de jogadores
devem ficar responsáveis por hospedar e arbitrar por quais objetos que não são avatares,
além de tornar a cooperação de longo prazo entre as máquinas para replicação de objetos
mais complicada. Todos estes modelos de suporte a MMOGs por malhas de conectivi-
dade baseadas em proximidade de avatares não tratam destes problemas de maneira satis-
fatória, sendo o foco destes a escalabilidade, responsividade e eficiência, principalmente.
Em outras palavras, eles suportam jogos massivos que são populados apenas por avatares,
e talvez até sem economias virtuais competitivas.

Este foco na qualidade da interação entre os avatares não inviabilizaria a resistência
à trapaças de estado se a malha de conectividade entre máquinas de jogadores também
servisse para replicar o estado dos objetos de forma segura. Isso é algo almejado na
construção de DHTs, que também são redes lógicas par-a-par, no caso, estruturadas em
forma de uma tabela hash. No caso de DHTs, a rede lógica poderia prover um endereço
virtual onde objetos de jogo podem ser armazenados. Cada objeto de jogo receberia
uma chave para a tabela hash, e esta chave seria roteada para uma máquina de jogador
que seria responsável por arbitrar sobre aquele objeto. Proteção contra trapaça de estado
poderia então ser obtida utilizando-se de replicação na própria DHT (KTARI et al., 2007).
Infelizmente, a construção de uma DHT que seja de fato segura ainda é um objeto ativo de
pesquisa (SANCHEZ-ARTIGAS; LOPEZ; SKARMETA, 2008; DANEZIS et al., 2005;
SRIVATSA; LIU, 2004).
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A.2.2 Par-a-par com lado servidor pesado

Vários modelos de suporte par-a-par para MMOGs são híbridos que dependem, em
algum grau, de máquinas servidoras confiáveis para realizarem algumas tarefas, mas que
também permitem que máquinas de clientes participem na simulação do mundo virtual.
Na medida em que mais tarefas são delegadas a máquinas clientes, mais descentralizado
é o modelo, e menores são os custos de processamento (CPU) e de comunicação restantes
no lado da infra-estrutura servidora. Nós consideramos como modelos par-a-par com lado
servidor pesado qualquer modelo híbrido, cliente-servidor e par-a-par, que não delegam
tarefas suficientes dos servidores para os clientes, de forma que o custo computacional e
de comunicação no lado servidor é insuficiente para os nossos objetivos. Isto é, mesmo
quando estes modelos atendem às nossas necessidades de segurança, os nossos critérios
de eficiência e de descentralização não são atendidos.

Existem vários trabalhos que encaixamos nesta categoria e que delegam uma quan-
tidade significativa do custo total de simulação do mundo virtual à máquinas clientes,
como o RACS (WEBB et al., 2007), o modelo de Ito et al. (ITO et al., 2006), e o de
Rooney et al. (ROONEY; BAUER; DEYDIER, 2004). A seguir, revisaremos dois mod-
elos selecionados que, apesar de possuírem um lado servidor pesado, possuem outras
características interessantes e, portanto, serão comparados com o modelo FreeMMG 2 na
Seção A.4. Estes modelos são o ACORN (NORDEN; GUO, 2007) e o DaCAP (LIU; LO,
2008).

A arquitetura ACORN foi projetada para executar sobre uma DHT como Pastry ou
Chord. Ela mitiga os efeitos de ataques de negação de serviço (DoS, em inglês, Denial of
Service) em nível de rede e de trapaça de estado (denominada coordinator compromise,
ou subversão de coordenador, e considerada como ‘algo parecido com o servidor realizar
trapaças, em uma arquitetura cliente-servidor)’). Esta mitigação é obtida ao mover o
papel de nó coordenador de forma aleatória e imprevisível entre os nós da DHT. Uma das
desvantagens principais do ACORN é a necessidade de envio de todos os comandos de
todos os jogadores, em tempo real, para o lado servidor. A segunda desvantagem principal
é que os coordenadores não são supervisionados, de forma que qualquer nó, ao descobrir-
se coordenador, pode modificar o estado por ele gerenciado para ser o que ele quiser.
O ACORN lida com esse problema através da detecção e correção da trapaça após ela
ocorrer, baseada na re-execução dos comandos de jogadores recebidos no lado servidor,
conferência dos resultados, e possível restauração do estado feita pelo servidor.

A arquitetura DaCAP é resistente a trapaças de estado e alcança um nível significativo
de descentralização. Ela divide o mundo virtual em células, e simulação das células pode
executar tanto em modo par-a-par quanto cliente-servidor. O modo par-a-par é implemen-
tado através de uma malha de conexões de rede completa (todos conectam com todos) en-
tre os pares, que são os jogadores interessados na célula. Os clientes (pares) de uma célula
supervisionam uns aos outros, e se alguma inconsistência é encontrada, o servidor recusa-
se a integrar as atualizações enviadas pela célula em modo par-a-par como, por exemplo,
uma requisição para aumentar a quantidade de moeda virtual associada à conta global de
um jogador. Além disso, pares aleatórios (não interessados em uma célula) são alocados a
cada célula para prevenir conluios indetectáveis que poderiam realizar trapaças de estado.
Quando o número de jogadores interessados em uma célula se torna muito grande para
a malha completa par-a-par, a célula é convertida ao modo cliente-servidor, transferindo
todo o custo de servir aquela célula para o lado servidor. Isto poderia causar um custo
significativo para o lado servidor. Por fim, o artigo do DaCAP não provê mecanismos
para interação entre as células, como trasnferência de avatares e interação entre avatares
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localizados em células adjacentes.

A.2.3 Árbitro único

Nós classificamos como de árbitro único todos os modelos que são descentralizados e
que suportam MMOGs com economias virtuais, mas que também são significativamente
vulneráveis a trapaças de estado devido a permitirem que uma máquina cliente, por si só,
arbitre sobre o estado do jogo. Se uma única máquina cliente anônima é deixada com a
responsabilidade de arbitrar sobre o estado de uma parte do mundo virtual, esta máquina
pode, sozinha, quebrar a economia virtual do jogo. A maioria dos modelos encontrados
na literatura encaixam-se nesta categoria e, tendo-se a resistência a trapaças de estado
como foco, pode-se dividir os modelos desta categoria em outros sub-tipos.

Um tipo de modelo de árbitro único é o de controlador único de zona, que deixam
uma máquina de cliente ser a única responsável por uma zona ou célula do mundo vir-
tual (por exemplo, de uma parte contígua do terreno ou espaço virtual). Estes mod-
elos arbitram sobre o estado dos objetos que encontram-se na célula ou zona em um
determinado momento. Exemplos de modelos de controlador único de zona incluem
o Load-balancing for Peer-to-peer Networked Virtual Environment (LEE; SUN, 2006),
o Time Prisoners (EL RHALIBI; MERABTI, 2005; MERABTI; EL RHALIBI, 2004),
o de Iimura et al. (IIMURA; HAZEYAMA; KADOBAYASHI, 2004), o MOPAR (YU;
VUONG, 2005) e o de Jiang et al. (JIANG; SAFAEI; BOUSTEAD, 2007). Outro tipo
de modelo de árbitro único é o de controlador único de objeto, que deixam uma máquina
cliente ser a única responsável por um conjunto específico de objetos de jogo, em um
determinado tempo. Exemplos de modelos de controlador único de objeto incluem o
Colyseus (BHARAMBE; PANG; SESHAN, 2006), o Hydra (CHAN et al., 2007) e o Me-
diator (FAN; TAYLOR; TRINDER, 2007). Estes dois subtipos sofrem do mesmo prob-
lema, que é o de permitirem a ocorrência de trapaças de estado devido à total ausência de
supervisão de controladores de uma parte do estado do jogo.

Um terceiro subtipo são os de controlador mestre único. Nestes modelos, partições do
estado são controladas por um conjunto de máquinas de clientes, mas um destes clientes
possui poder sobre os demais, sendo o ‘mestre’ dos controladores, e este tem o poder
de realizar alterações ilegais ao estado do jogo. Exemplos deste tipo de modelo são o
de Yamamoto et al. (YAMAMOTO et al., 2005), o Proximity (MALIK, 2005) e o Peer
Clustering (CHEN; MUNTZ, 2006). Apesar de ser vulnerável a trapaças de estado, o
modelo Peer Clustering possui algumas características interessantes que serão detalhadas
quando da comparação com o FreeMMG 2 na Seção A.4.

A.2.4 Múltiplos árbitros

Os modelos de árbitro simples discutidos anteriormente ou mantém estado de células
ou de objetos em um único par, ou eles replicam-nos de tal maneira que a tolerância a fal-
has não-intencionais é atingida. Porém, considerando-se que clientes possuem uma moti-
vação para, intencionalmente, subverter o estado do jogo, este estado precisa ser replicado
de tal maneira que múltiplas réplicas de cada partição do estado são autoritativas. Desta
forma, um consenso ou, no mínimo, um quórum entre todas as réplicas autoritativas é
necessário para aprovar uma modificação ao estado do jogo que viola as regras do jogo.

Existem vários modelos do tipo ‘múltiplos árbitros’ na literatura que, como conse-
quência do emprego de consenso ou quórum entre várias réplicas de uma partição do
estado, são mais resistentes a trapaça de estado do que os modelos do tipo árbitro sim-
ples. Porém, eles não consideram ataques em nível de rede. Nestes trabalhos, ou a trapaça
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de estado pode ser executada com a ajuda de ataques em nível de rede, ou pode-se forçar a
perda de parte do estado do jogo com a ajuda de ataques em nível de rede. Selecionamos
alguns destes trabalhos para revisão a seguir, no restante desta seção. Estes trabalhos
serão comparados com a nossa proposta na Seção A.4.

Inicialmente, poderia argumentar-se que ataques em nível de rede são suficientemente
incomuns. Além disso, qualquer sistema par-a-par tolera ataques em nível de rede natu-
ralmente na medida em que pares que falham podem ser substituídos, visto que em uma
rede descentralizada não há pontos centrais de falha. Desta forma, uma rede par-a-par,
inclusive uma de suporte a MMOGs, não poderia ser neutralizada por um ataque em nível
de rede a não ser que uma proporção significativa da rede como um todo fosse atacada
simultaneamente, o que em geral é proibitivamente custoso. Porém, um MMOG pode
ter sua economia destruída, seja por inserção de estado ilegal, seja por perda de parte do
estado, através de ataques concentrados em poucos nós. Por exemplo, em um modelo que
divide o mundo virtual em células, onde um pequeno número de nós públicos é respon-
sável por uma célula, basta atacar todos os nós de uma célula simultaneamente para forçar
a perda do estado daquela célula ou, o que é talvez pior, atacar apenas os nós honestos,
deixando apenas réplicas de uma célula que são controladas pelo próprio atacante. Não
importa qual célula de um mundo virtual é subvertida; em princípio, uma única célula
subvertida permite danos graves ao estado global do jogo.

A maioria dos trabalhos que replicam o estado das células não descrevem o que acon-
tece se a maioria das réplicas falharem. Isto é, eles consideram que falhas simultâneas da
maioria ou de quase todas as réplicas de uma célula seria algo muito improvável, o que é
verdade se falhas intencionais são ignoradas. O problema de uma única célula subvertida
causar danos graves à economia virtual de um MMOG não é considerado em nenhum
dos trabalhos encontrados. A única exceção é o predecessor do nosso modelo atual, o
FreeMMG (CECIN, 2005; CECIN et al., 2004). Porém, apesar de oferecer resistência
a alterações ilegais ao estado de uma célula mesmo sob a presença de ataques em nível
de rede, não oferecia protecão contra a perda do estado caso todas as réplicas fossem
atacadas simultaneamente.

Izaiku et al. (IZAIKU et al., 2006) propuseram uma arquitetura cujo protocolo de sin-
cronização de células é bastante similar ao do FreeMMG 2. A idéia central é que o estado
de cada célula é mantido por múltiplos nós replicadores. Um destes nós réplicadores é o
nó responsável, enquanto os outros são os nós monitores. Porém, todos os nós simulam
o estado da célula deterministicamente, e o papel do nó responsável é rotacionado entre
todas as réplicas para minimizar os efeitos de trapaças de baixo impacto. O nó respon-
sável é o único que envia atualizações para os jogadores interessados na célula, enquanto
tanto o nó responsável e os nós monitores recebem comandos dos jogadores. Já que os
jogadores entregam os seus comandos para todas as réplicas e as regras da simulação de-
terminística são fixas, a maioria de réplicas honestas consegue um consenso válido sobre
o estado, mesmo quando uma minoria de réplicas maliciosas está presente na célula. Este
trabalho não considera ataques em nível de rede, o que em princípio indica que trapaças
de estado são possíveis quando apenas uma réplica restaria após um ataque de rede às
outras réplicas.

Hampel et al. (HAMPEL; BOPP; HINN, 2006) emprega um Controlador de Região
(em inglês, Region Controller ou RC) e vários Controladores Reserva (em inglês, Backup
Controller ou BC) para cada região do mundo virtual. A comunicação entre RCs e BCs
é realizada através de uma DHT. O RC envia pacotes de atualização de estado para todos
os jogadores interessados na sua região. Adicionalmente, todos os BCs de uma região
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enviam hashes calculados sobre o estado. Desta forma, os jogadores podem confirmar
que todos os controladores concordam com exatamente o mesmo estado da célula através
da comparação dos hashes que eles recebem. Como apenas o RC envia os pesados pa-
cotes de atualização aos jogadores, a largura de banda de recebimento dos jogadores não
é saturada. Além disto, assim como em Izaiku et al. (IZAIKU et al., 2006) e vários outros
modelos de múltiplos árbitros, tanto o RC quanto os BCs de uma célula recebem direta-
mente os comandos de todos os jogadores interessados na célula. Este trabalho também
não considera os efeitos de ataques em nível de rede, isto é, de falhas em massa e si-
multâneas de réplicas.

O Cheat-Resistant P2P Online Gaming System (KABUS; BUCHMANN, 2007) aborda
de forma bastante original o problema de se manter as réplicas de uma região em sincro-
nia. Cada nó que mantém uma réplica de uma região, denominado Controlador de Região
(RC), recebe um comando de um jogador, computa o próximo estado, e envia uma at-
ualização de estado como resposta. Desta forma, cada jogador recebe uma atualização
de cada RC, e eles podem detectar RCs que falham. Como as atualizações são assinadas
digitalmente, um jogador consegue provar que ele recebeu algumas atualizações defeitu-
osas ou maliciosas entre todas as atualizações recebidas de todos os controladores de uma
célula, para um dos seus comandos. Desta forma, sincronização explícita entre os RCs
torna-se desnecessária. Porém, como as mensagens de atualização pode ser grandes e
o papel de Controlador de Região é preenchido pelas próprias máquinas dos jogadores
que estão jogando o jogo, isto pode acabar por saturar a largura de banda de envio das
máquinas dos jogadores. Isto não é um problema grave caso o cenário de uso considerar
que a largura de banda dos jogadores é da ordem de Mbps (megabits por segundo), ao
invés de Kbps (kilobits por segundo).

Endo et al. (ENDO; KAWAHARA; TAKAHASHI, 2005) propuseram um sistema
adaptativo onde a simulação de regiões é realizada inicialmente no lado servidor e, sem-
pre que o servidor detacta que ele excede algum limiar de carga de processamento ou de
comunicação, ele dinamicamente delega regiões do mundo virtual para grupos de pares.
Neste ‘modo par-a-par’, cada região é replicada por vários pares que são chamados de site
servers. Os jogadors enviam seus comandos simultaneamente para todos os site servers
de uma região. Os site servers ordenam os eventos de jogadores recebidos com base no
tempo mediano de chegada dos eventos em todos os site servers, e o evento não recebe
um timestamp e não é executado até que este tempo mediano seja computado. A execução
dos eventos precisa ser determinística para manter as réplicas sincronizadas. Cada usuário
recebe (N − 1)/2 mensagens de atualização e (N +1)/2 hashes de atualização para cada
comando que envia para todos os site servers, onde N é o número (ímpar) de site servers
que estão simulando uma região. Os jogadores aceitam uma atualização apenas quando
uma maioria de hashes computados localmente sobre atualizações de estado recebidas ou
de hashes recebidos de site servers estão de acordo. Apesar de que o número de men-
sagens de atualização enviadas por cada site server é reduzida para apenas a metade do
número de site servers, nós consideramos este custo como sendo significativo. Além
disso, os autores afirmam que a probabilidade é baixa de que um número grande de répli-
cas maliciosas em conluio sejam aleatóriamente alocadas para a mesma célula. Porém, o
trabalho não avalia o impacto de ataques em nível de rede que visam as réplicas de uma
célula qualquer.
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A.3 FreeMMG 2

Esta seção apresenta o FreeMMG 2, um novo modelo de suporte a simulação dis-
tribuída de MMOGs. Uma rede FreeMMG 2 é uma mistura de topologias cliente-servidor
e par-a-par. O sistema necessita de servidores confiáveis mantidos por um provedor de
jogo central, mas estes servidores são liberados de algumas tarefas importantes e pesadas
em termos de custos de processamento (CPU) e de comunicação que são delegadas à
máquinas de jogadores e de voluntários. Isto reduz significativamente os custos opera-
cionais do provedor do jogo, ao mesmo tempo em que uma significativa resistência a
trapaça de estado é oferecida através de uma abordagem de partição do estado do jogo em
células controladas por múltiplos árbitros escolhidos entre clientes voluntários.

Para simplificar, consideramos que o mundo virtual a ser suportado pelo FreeMMG 2
é um plano 2D, e que ele pode ser dividido em uma grade de células quadradas, com cada
célula possuindo exatamente oito células vizinhas, como ilustrado na Figura A.1. Cada
célula possui seus próprios estado ou objetos de jogo, o que inclui avatares de jogadores,
NPCs ou qualquer outro tipo de objeto definido pela aplicação. Os objetos podem in-
teragir através das bordas entre as células, porém, a qualidade da interação entre objetos
controlados por células distintas é inferior a qualidade de interação entre objetos contro-
lados pela mesma célula.

... ...

...

...

Figura A.1: Uma secção de um mundo virtual baseado em células do FreeMMG 2.

A Figura A.2 dá uma visão geral dos principais componentes de uma rede FreeMMG
2 em atividade. A figura mostra três funções exercidas por máquinas servidoras: servi-
dor mestre, gerente de célula e preenchedor de célula. Todas as máquinas restantes são
clientes que são ou máquinas onde jogadores humanos estão jogando o jogo ou máquinas
executando processos daemon, não interativos que executam a simulação do mundo vir-
tual. O servidor mestre é responsável por toda a autenticação, roteamento inicial de
conexões e em armazenar todo o estado de jogo que não pode ser perdido sob nenhuma
circunstância (sob pena de quebra da consistência global do jogo, como definida pela apli-
cação), considerado o estado “vital” do jogo. Os gerentes de célula coordenam a formação
e manutenção de redes par-a-par entre clientes para a manutenção das múltiplas réplicas
do estado de cada célula. Por fim, o lado servidor também mantém uma lista de clientes
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interessados em servirem como voluntários na simulação de células, e sempre que há a
necessidade de preencher uma célula com clientes simuladores, o servidor preenchedor
de células sorteia clientes com garantia de aleatoriedade para servirem de réplicas, o que
dificulta a formação de grupos de conluio em uma célula.
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Figura A.2: Visão geral de uma rede FreeMMG 2

A Figura A.2 também mostra a estrutura interna de suporte a uma célula do mundo
virtual. Como ocorre em todos os modelos de suporte do tipo árbitros múltiplos, cada
célula no FreeMMG 2 é um grupo de replicação, onde várias máquinas clientes replicam
o estado de uma célula do mundo virtual. Cada máquina cliente que age como uma réplica
ativa, com poder de arbitrar sobre o estado da célula, é chamada de nó da célula. As
réplicas primárias são chamadas de nós primários da célula, e todas as réplicas primárias
possuem uma conexão com todas as outras réplicas primárias da célula. Elas também
são responsáveis por manter uma réplica de backup atualizada, cujo endereço na rede é
conhecido apenas pela réplica primária e pelos servidores, sendo protegida de ataques
em nível de rede. Isto não ocorre com as réplicas primárias, cujos endereços de rede são
públicos, conhecidos por vários outros clientes, inclusive clientes jogadores.

O protocolo de sincronização utilizado entre as réplicas primárias de uma célula é
complexo, e será visto na próxima subseção. As subseções subsequentes detalham alguns
dos protocolos e mecanismos principais, como a sincronização entre clientes e nós de
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célula, sincronização ente células, e sincronização entre uma célula e o seu gerente de
célula. A sincronização entre um nó primário e o seu nó de backup é uma simples cópia do
estado calculado de forma conservadora naquele nó primário, como será visto na próxima
subseção.

A.3.1 Sincronização intra-célula

Como visto na seção anterior, existem várias arquiteturas par-a-par de suporte a MMOGs
que são baseadas em células e também em replicação: cada célula tem múltiplas réplicas,
e cada réplica de uma célula tem que se manter em sincronia com as outras réplicas. No
FreeMMG 2, os jogadores vão conectar com uma das réplicas de uma célula para jogar.
Se comandos de jogadores diferentes estão sendo enviados para diferentes réplicas de uma
célula, as réplicas terão que se sincronizar umas com as outras para computar um resul-
tado único a partir da execução de todos os eventos recebidos por qualquer réplica. Nesta
seção, descreveremos a nossa abordagem de sincronia, o Baseline State Synchronization
(BSS), que é apenas uma derivação simples do algoritmo Trailing State Synchronization
(TSS) (CRONIN et al., 2004a, 2002), que descreveremos a seguir.

O TSS foi projetado para manter os servidores de uma arquitetura de servidores es-
pelhados (Mirrored Server, ou MS, para abreviar) em sincronia (ver Figura A.3). Uma
arquitetura MS reduz a latência de interação entre clientes jogadores e servidores simu-
ladores ao espelhar o estado do jogo em várias máquinas servidoras dispersas geografi-
camente. Os servidores-espelho são interconectados por uma rede dedicada, de latência
mínima, com suporte a IP multicast, e cada jogador conecta-se ao servidor mais próximo.

Os comandos de jogadores precisam ser executados de forma otimista em cada servidor-
espelho. Cada espelho encaminha os comandos que recebe dos seus jogadores para outros
espelhos, de forma que, eventualmente, todos os espelhos possuam a mesma lista de even-
tos, o que permite a replicação exata do estado do jogo em cada espelho. Porém, se cada
espelho apenas executar cada comando imediatamente após recebê-lo, o ordenamento
diferente de eventos em cada espelho fará com que as réplicas se tornem divergentes.

Para sincronizar os espelhos, o TSS funciona como a seguir. Todos os espelhos com-
partilham um relógio de rede sincronizado, t. Cada espelho mantém N estados, que são
cópias do estado do mundo inteiro do jogo. Os vários estados gravados em cada espelho
representam o estado do mundo em diferentes tempos de simulação. Cada estado executa
com um atraso de execução de eventos fixado para aquele estado. O estado com um atraso
de execução de eventos d apenas executa um evento que recebeu com um timestamp te
quando, localmente, te ≤ t− d. Desta forma, cada estado está executando “no passado”
com um atraso do tempo de simulação de d, e espera o tempo de simulação d decorrer
antes de executar cada evento.

A chance de um estado executar um evento fora de ordem é minimizada quando d
aumenta. Se a latência de comunicação entre espelhos possuir um valor máximo, então
pode-se escolher um valor de d maior que este máximo para um estado, e esse estado
sempre irá executar eventos na ordem correta. Porém, com um d suficientemente alto, o
jogo torna-se pouco responsivo para os jogadores. Portanto, ao invés de simular apenas
uma cópia do mundo em cada espelho, o TSS mantém N estados em cada espelho, onde
cada estado possui seu próprio d.

Para a exposição a seguir, seja i é um inteiro positivo no intervalo [0, N−1] , utilizado
para se referir a um dos estados de um espelho. Seja Si o i-ésimo estado de um espelho.
Seja di o atraso de execução de eventos de Si. Seja S0 ser o primeiro estado leading state),
e os estados S1 a SN−1 serem os estados seguintes (trailing states). Finalmente, db > da
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Figura A.3: Arquitetura de Servidores Espelhados comparada com Cliente-Servidor e
Par-a-Par (CRONIN et al., 2004a).

se e somente se b > a, isto é, os estados são ordenados em uma ordem ascendente de
atraso de sincronização. O primeiro estado (S0) sempre terá o menor atraso de sincronia,
e o último (SN−1) sempre terá o maior.

Figura A.4: Cenário de exemplo que ilustra a terminologia do TSS (CRONIN et al.,
2004a).
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Quando um evento é recebido em um espelho, ele é colocado em uma lista de eventos.
O evento só será removido quando ele for integrado em todos os estados, isto é, quando
for incluído na ordem correta em todos os estados. A Figura A.4 mostra um exemplo de
um nó TSS rodando dois estados: S0 e S1. Na figura, o tempo de simulação é t = 250ms.
O estado S0 tem um atraso de d0 = 50ms, e portanto seu conteúdo é o resultado da
execução de todos os eventos conhecidos gerados antes de t = 200ms, e qualquer evento
conhecido com um timestamp maior que este deverá esperar na lista de eventos até que
ele seja executado em S0. S1 está executando com um atraso de d1 = 100ms atrás de t, e
portanto só executou eventos até t = 150ms. O tempo do primeiro estado é considerado
o “tempo de apresentação” (render time), visto que os espelhos irão enviar pacotes de
atualização construídos com dados do primeiro estado. Isto é, o primeiro estado é o que
será utilizado como base para produzir o visual do jogo nas telas dos jogadores, em tempo
real.

É possível que um evento seja executado imediatamente em um ou mais estados se ele
já está atrasado para execução nestes estados. Porém, neste caso, é possível que aquele
evento atrasado introduza incosistências. Se uma inconsistência é detectada em um estado
Si, este estado pode restaurar o ordenamento correto de eventos realizando um rollback
para o seu estado seguinte Si+1 e re-executar a lista de eventos atualizada, considerando
o novo evento.

Fazer o rollback de um estado Si só faz sentido se o seu estado seguinte (Si+1) está
consistente. Para corrigir Si, o conteúdo de Si+1 é copiado sobre Si (Si = Si+1). Após
esta operação, Si vai estar no mesmo tempo de simulação de Si+1, o que não é a intenção.
Para completar o procedimento de correção, ti precisa avançar para ti = t − di. Para
que isso ocorra, todos os eventos na lista de eventos cujos timestamps estão no intervalo
[t − di+1, t − di] são re-executados, em ordem, em Si. Desta forma, Si mantém-se rep-
resentando o mesmo ponto no tempo de simulação do que antes do rollback, mas com
o conteúdo recomputado para integrar todos os eventos conhecidos e escalonados para
a execução neste estado na ordem correta. O único estado que não pode ser corrigido
é o último, pois este não possui um estado anterior, com mais atraso de execução, para
usar como fonte para o rollback. Um evento recebido fora de ordem pode invalidar vários
estados, de forma que os rollbacks sejam feitos em “cascata”.

O algoritmo BSS é a nossa adaptação do TSS para uma rede onde a simulação é feita
por nós cliente, não-confiáveis, sem uma rede dedicada e com suporte a IP multicast para
interconectá-los. A única diferença entre os algorimos é que no BSS o último estado
(trailing state) ordena os eventos de forma conservadora. Isto é, cada nó que espelha
o estado dos outros possui uma cópia do estado que avança regularmente o tempo de
simulação com uma notificação explícita e bloqueante de cada outro nó espelho para
aquela rodada, onde constam todos os eventos recebidos por cada espelho até então. Desta
forma, o estado conservador nunca diverge, de forma que os estados otimistas, incluindo
o primeiro estado, sempre podem efetuar rollback e sempre podem ter a consistência
restaurada, independente do atraso de comunicação entre os vários nós espelho.

Desta forma, um simulador distribuído de célula no FreeMMG 2, executando o BSS
para manter as réplicas da célula em sincronia, lembra uma arquitetura de servidores
espelhados (MS) que se utiliza do TSS para sincronia dos espelhos. Assim como no MS,
no FreeMMG 2 os nós jogadores conectam aos espelhos (réplicas da célula, no caso)
para participar do jogo. A principal diferença entre uma rede MS e uma rede de célula
do FreeMMG 2 está nas conexões. As conexões entre os nós da célula são conexões IP
unicast, de forma que, sem garantias de latência ou mesmo de estabilidade das conexões,
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é necessário ordenar os eventos de forma conservadora no último estado mantido em cada
réplica. O timestamping, ordenamento e execução de eventos pode ser como especificado
nas publicações do TSS, ou pode ser um híbrido de um esquema com e sem rodadas fixas,
como descrito no nosso trabalho anterior com o BSS (CECIN et al., 2006).

Um problema importante que não está presente no TSS e na arquitetura MS, é a possi-
bilidade de um ou mais espelhos serem agentes maliciosos. Espelhos maliciosos poderiam
introduzir inconsistências no estado conservador se eles enviarem listas de eventos difer-
entes para espelhos diferentes, em um mesmo passo de simulação do estado conservador.
Isto é conhecido como a “trapaça de inconsistência” (inconsistency cheat), e pode ser evi-
tada ao adicionar-se uma rodada adicional no simulador conservador para troca de hashes
de listas de comandos recebidas de cada espelho, por cada espelho. A trapaça torna-se
então detectável, e exemplifica uma situação de falha da célula, que precisa ser tratada. A
próxima subseção explica como falhas detectadas em uma célula são tratadas.

A.3.2 Detecção e recuperação de falhas em uma célula

Todos os clientes e servidores em uma rede FreeMMG 2 podem falhar de várias
maneiras e devido a várias causas diferentes. Neste trabalho, focamos na tolerância a
falhas para nós clientes que servem como réplicas de células. Estes nós podem perder
suas conexões à rede física, reduzindo o número de réplicas de uma célula, reduzindo a
sua resistência a trapaças de estado. Além disso, estas réplicas podem falhar intencional-
mente, se estão tentando trapacear ou vandalizar o jogo.

Nosso objetivo principal ao projetar os mecanismos de tolerância a falhas da célula é
o de reduzir a possibilidade de que trapaças de estado sejam bem-sucedidas. A seguir, o
mecanismo também tenta evitar a perda total do estado de uma célula e posterior recon-
strução de baixa fidelidade deste estado a partir de informação mantida no lado servidor.
Por fim, o mecanismo também tenta evitar que a simulação de uma célula seja interromp-
ida durante a recuperação de uma falha.

O servidor gerente da célula é responsável por decidir (detectar) quando uma célula
falha, e gerenciar a recuperação da célula a um estado funcional. Uma célula é consid-
erada falha quando o gerente detecta um problema de comunicação com qualquer nó da
célula, ou se um nó da célula envia uma mensagem do tipo FAULT para o gerente. Esta
mensagem é usada pelos nós da célula para informar qualquer tipo de falha ao servidor
ou, no caso de clientes maliciosos, pode ser um falso aviso. A mensagem FAULT possui
um parâmetro opcional, que é o ID de um nó da célula sendo acusado pelo remetente de
ter falhado. Se o parâmetro é omitido, ou se o remetente é um nó de backup, o remetente
está acusando a si mesmo como falho.

Quando um nó primário acusa outro nó primário de ter falhado, ambos são considera-
dos faltosos, pois não há como saber se algum deles está sendo desonesto, tentando criar
um quórum de conluio para trapaça de estado. Este cuidado não é necessário quando um
nó primário acusa o seu nó de backup, já que este será apenas substituído por outro nó
aleatoriamente escolhido, sem reduzir o número de réplicas em atividade na célula.

A recuperação da falha inicia assim que o primeiro nó da célula é marcado como
falho. Na medida em que o algoritmo de recuperação executa, mais nós podem ser con-
siderados falhos. Se o número de réplicas concordantes (com cópias idênticas do estado)
restantes, não-falhas na célula, for suficientemente alto, um algoritmo de recuperação ráp-
ida é executado. Caso contrário, se poucas réplicas concordantes restam, um algoritmo
de recuperação total é executado.

O algoritmo de recuperação rápida permite que réplicas faltosas de nós primários
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sejam substituídas sem que a simulação da célula seja interrompida: os nós primários
não-falhos continuam servindo o jogo a todos os jogadores conectados, com largura de
banda total para servir a célula temporariamente reduzida enquanto o gerente da célula
recompõe as réplicas que desapareceram. Isto é feito reconfigurando os nós de backup
dos nós primários faltosos como nós primários. Caso a falha seja de nós backup, basta
substituí-los, sem nenhuma redução de banda para servir o jogo. Caso um nó primário e
o seu backup falhem, a recuperação rápida não é possível, e a recuperação total precisa
executar.

A recuperação rápida é executada para substituir apenas um nó, seja ele primário ou
backup. Caso haja mais de um nó faltoso, uma cópia do algoritmo irá executar para cada
nó faltoso, em paralelo. Recomenda-se que apenas duas cópias executem em paralelo,
pois quanto mais nós podem ser maliciosamente acusados de falha e substituídos, maior a
chance de um ataque de conluio para trapaça de estado ser bem-sucedido. A substituição
de dois nós, no mínimo, garante que um único nó primário malicioso em uma célula pode
acusar a outro nó primário sem que a recuperação total execute.

A recuperação total, quando acionada, tenta verificar se há um quórum mínimo de
réplicas restantes da célula em acordo, isto é, com uma versão idêntica do estado para um
tempo de simulação recente. O número de nós para um quórum mínimo é o parâmetro
M , a ser configurado pela aplicação. Se o quórum é atingido, o gerente da célula obtém
esta cópia do estado, reinicializa a célula com réplicas novas obtidas da lista de nós vol-
untários, e envia a cópia do estado para os novos nós da célula, completando a recuper-
ação. Note que este procedimento pode demorar um tempo arbitrário para completar com
sucesso e, durante este tempo, a célula está inativa; o mundo virtual simplesmente não
possui aquela região durante este tempo.

Se não é possível um acordo entre até M cópias restantes do estado da célula, o servi-
dor reconstrói o estado da célula a partir do “estado vital” da célula, que é toda a infor-
mação sobre o estado da célula que é salva no servidor. Esta informação engloba todo
o estado da célula que é crítico para a manutenção da consistência global do jogo e da
economia do jogo. Este estado é utilizado, inclusive, quando a recuperação do estado da
célula a partir de um quórum de M réplicas é bem-sucedida, mas causa o tempo de sim-
ulação da célula a recuar, desfazendo transações com outras células, como transferências
de objetos únicos (o que será visto no fim desta seção).

A.3.3 Sincronização entre células e jogadores

O mecanismo de sincronização interna das células descrito anteriormente foca em se-
gurança. Este foco em segurança causa, porém, um custo em aumento de latência de
interação e de escalabilidade. O aumento de latência é introduzido pelo aumento de pulos
(hops) de comunicação na rede que um evento precisa atravessar entre um nó primário da
célula e os seus pares. Para que haja apenas um pulo adicional introduzido pelo mecan-
ismo de replicação, a topologia de comunicação interna a uma célula é do tipo malha
completa de comunicação, com um custo de O(N2) mensagens, o que torna o número
de réplicas em uma célula (N ) um parâmetro não-escalável. Desta forma, a largura de
banda disponível para a comunicação entre os nós primários de uma célula e os clientes
que estão jogando naquela célula sempre vai ser limitada.

Portanto, é imperativo que o protocolo de comunicação entre os nós jogadores e os
nós simuladores de células utilize o mínimo de largura de banda possível. Quanto mais
largura de banda este protocolo utilizar, mais provável é a formação de hot-spots, que
no FreeMMG 2 são células que possuem um número maior de jogadores a serem servi-
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dos com a resolução ideal de atualizações de rede do que banda disponível entre os nós
primários daquela célula.

A aplicação pode projetar qualquer protocolo para atualizar os seus clientes, já que o
middleware do FreeMMG 2 proverá apenas primitivas de comunicação que permitem a
um cliente jogador enviar e receber pacotes UDP de e para um nó primário qualquer, em
qualquer célula. Como sugestão, definimos um protocolo padrão que otimiza primeira-
mente para uso eficiente de banda, em segundo lugar para segurança e em terceiro lugar
para latência. O protocolo é ilustrado na Figura A.5.

Player nodes

Cell nodes

Cell A Cell B
World state
(approximation)

Cell A Cell B

Figura A.5: Protocolo padrão jogador-célula. Um nó jogador pode contactar qualqer nó
primário da célula que controla o seu avatar.

Em um jogo baseado em avatares, como um MMORPG, cada jogador se interessará,
em um dado momento, em uma única célula. Porém, isto não é um requisito imposto
pela arquitetura. Um nó jogador pode interagir com duas ou mais células simultanea-
mente. Isto pode ocorrer por um curto período de tempo se o avatar do jogador está sendo
transferido de uma célula a outra. Porém, para simplificarmos a explicação do proto-
colo, consideraremos apenas a interação de um nó jogador com uma única célula: a que
atualmente controla o seu avatar no jogo.

Neste protocolo padrão, sempre que um nó jogador tem que enviar um pacote de rede
UDP com um comando, o que ocorre em uma taxa fixa (por exemplo, a cada 100ms), ele
escolhe um nó primário da célula aleatoriamente para recebê-lo. Ao receber este pacote
de comando, o nó primário escolhido envia este comando para o resto da célula seguindo o
protocolo BSS. No sentido inverso, os nós primários de uma célula comunicam, de forma
síncrona e confiável (como se parte do estado do jogo fosse) as suas larguras de banda de
envio individuais disponíveis e, também de forma síncrona e confiável, escalonam o envio
de pacotes UDP de atualização de forma simultânea para todos os nós jogadores interes-
sados na célula, seguindo alguma taxa fixa (por exemplo, a cada 100ms, de acordo com o
relógio do simulador BSS). Cada nó jogador irá receber cada pacote de atualização sub-
sequente de um nó primário diferente; esta sequência é negociada de forma automática,
derivada de uma fórmula determinística aplicada sobre o estado conservativamente sin-
cronizado do simulador da célula. O resultado é um protocolo eficiente em termos de
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uso de largura de banda que, do ponto de vista de um nó jogador, é indistinguível de um
protocolo cliente-serivdor de um MOG, com exceção de quando ocorrem hot-spots.

A chave para o entendimento deste mecanismo determinístico e livre de mensagens
de negociação entre os nós primários da célula é o fato de que a lista de nós jogadores a
serem atualizados, bem como a largura de banda dispoinível em cada nó primário, fazem
parte do estado da célula. Como o estado é garantidamente replicado e idêntico, todos
os nós podem aplicar a mesma fórmula, em um determinado tempo de simulação, para
decidir quais nós primários (também modelados como parte do estado) devem atualizar
quais nós jogadores. Caso a largura de banda disponível seja menor do que o necessário
para atualizar todos os jogadorem em um determinado tempo de simulação, esta sincro-
nia também pode ser utilizada para reduzir a frequência de atualizações para todos os
jogadores, desta forma tolerando hot-spots através da redução da qualidade de serviço.

A.3.4 Sincronização inter-célula de objetos

Quando um objeto controlado por uma célula O está próximo da borda de uma célula
adjacente D, a célula O fica responsável por enviar atualizações autoritativas deste objeto
para a célula D. Ao receber estas atualizações, a célula D as incorpora ao estado da sua
célula como o estado de um objeto externo e passa a atualizar os seus clientes jogadores a
respeito deste objeto. Desta forma, os jogadores não precisam se conectar a mais de uma
célula ao mesmo tempo para conseguirem enxergar os objetos de várias células, mantendo
o protocolo entre jogador e célula simples, como visto na seção anterior.

O protocolo que implementa este mecanismo não pode utilizar muita largura de banda,
pois a comunicação interna à célula e a comunicação com os jogadores da célula são
prioritárias para um nó primário de célula. Por outro lado, objetos que movem-se em
tempo real não devem ficar mais do que um turno de simulação (por exemplo, de 100ms)
sem serem atualizados; isto é pior do que a atualização ser percebida no cliente jogador
com latência elevada.

Para conciliar estas duas preocupações, o FreeMMG 2 faz com que, a cada turno
de simulação em uma célula, os nós primários desta célula dividam a responsabilidade
de enviarem um pacote de atualização por turno para as células vizinhas, de forma que,
idealmente, cada nó primário de O envia um único pacote por turno de simulação para
um nó primário qualquer de uma célula vizinha diferente. Desta forma, todas as células
vizinhas de O recebem, a cada turno de simulação, uma atualização de estado referente
a objetos próximos o suficiente à borda da célula. Quando o nó primário de uma célula
D recebe uma destas atualizações, ele fica responsável por disseminar esta atualização
ao resto da célula como se fosse um comando de jogador, exceto de que se trata de uma
atualização autoritativa. A entrega deste pacote não é garantida.

Esta sincronização deve ser utilizada primariamente para fornecer atualização de posição
e de estado de objetos, sem modificar a economia do jogo de forma significativa. Inter-
ações inter-células mais complexas serão vistas na próxima subseção.

A.3.5 Suportando interações complexas inter-célula

O FreeMMG 2 suporta um canal virtual de comunicação com garantia de ordenamento
e de entrega de mensagens, tanto entre uma célula e o seu servidor gerente, quanto duas
células adjacentes. Ambos os protocolos são baseados em redundância, isto é, em cada
nó receptor, seja o servidor gerente ou outro nó primário da célula destino, receber uma
cópia da mesma mensagem de todos ou de uma maioria dos nós primários da célula de
origem. Através deste quórum (configurável pela aplicação) é possível filtrar mensagens
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inválidas. O envio de mensagens idênticas a serem coletadas e comparadas em um nó
receptor é possível devido à simulação ser deterministicamente replicada em cada nó
primário que irá enviar a mensagem, visto que estas mensagens só são geradas a partir de
eventos gerados no simulador conservador da célula de origem.

Adicionalmente, quando o receptor deste canal virtual é outra célula, existe um pulo
adicional de comunicação interno à célula, onde todos os nós primários da célula receptora
irão submeter as mensagens que receberam ao estado da célula que, conservadoramente,
irá determinar se a quantidade de mensagens idênticas recebidas é suficiente para formar
um quórum. Isto introduz ainda mais latência à comunicação, de forma que o uso destes
mecanismos deve ser feito apenas quando necessário.

Estes mecanismos são utilizados para resolver interações complexas entre células,
baseadas em eventos discretos cuja garantia de ocorrência (registro) e de ordenamento
em relação a outros eventos é necessaria e, além disso, podem potencialmente afetar a
consistência global do estado do jogo. Um uso básico destes mecanismos, e que provavel-
mente ocorrerá em qualquer jogo baseado na movimentação de objetos em um espaço 2D,
é a transferência de objetos entre células. A seguir, veremos como isto é feito: removendo-
se o objeto de uma célula e inserindo-o em uma célula adjacente.

OBJ(A, AUTH) OBJ(A, GHOST)

Cell A Cell B

Figura A.6: Estado das células A e B antes da transferência ocorrer.

A Figura A.6 mostra um objeto OBJ controlado autoritativamente (AUTH) por uma
Célula A, mas já presente no espaço de coordenadas de uma Célula B, adjacente (à direita,
no espaço de coordenadas), que o vê como um objeto “visitante” (GHOST). Ambas as
células, na figura, vêem o objeto dentro do espaço de B. O objeto move-se para a direita
no espaço e irá cruzar uma fronteira que determina que ele será transferido para B.

Na Figura A.7, a Célula A detecta que OBJ cruza a fronteira e inicia o processo de
transferência. Em todos os nós primários de A, OBJ será considerado como um objeto
TEMP_AUTH, significando que a célula possui, temporariamente, autoridade sobre este.
Isto é necessário para que OBJ não desapareça do jogo, pois ele ainda não foi confirmado
como transferido para B. Objetos TEMP_AUTH não podem afetar o estado vital do jogo
(isto é, a economia do jogo) durante a sua (curta) existência; eles existem apenas para
reduzir desconforto visual. Após marcar OBJ com TEMP_AUTH, a Célula A envia uma
mensagem para a Célula B, transferindo a responsabilidade sobre OBJ para B.
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OBJ(A, TEMP_AUTH) OBJ(A, GHOST)

Cell A Cell B

Threshold just
crossed at
conservative
state

Send message
“Transfer (OBJ)”

Figura A.7: Transferência iniciada na Célula A.

OBJ(A, TEMP_AUTH) OBJ(A, AUTH)

Cell A Cell B

Inccoming message
“Transfer (OBJ)”

Outgoing acknowledgment
to “Transfer (OBJ)”

Figura A.8: Célula B recebe a mensagem de transferência de objeto.

Na Figura A.8, a Célula B recebe a mensagem e marca sua cópia de OBJ como autori-
tativa. Temporariamente, o sistema possuirá duas células controlando o mesmo objeto.
Caso um observador perceba OBJ em ambas as células, a cópia AUTH prevalece.

Finalmente, na Figura A.9, a Célula A recebe a confirmação de que a Célula B recebeu
a ordem de transferência de OBJ. Como esta mensagem é incondicional, todos os nós da
Célula A podem transformar OBJ em um GHOST, já que este está próximo da fronteira
entre as células e deve continuar sendo atualizado pela Célula B, sua nova controladora.

Caso o objeto a ser transferido não possa ser duplicado ou perdido, o que pode ocorrer
se a célula de origem ou a célula de destino falharem durante o processo, a transferência
do objeto deve ser feita através dos gerentes das células envolvidas. Para isso, utiliza-se
o canal de comunicação entre uma célula e o seu gerente de célula, além do canal de
comunicação entre células.
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OBJ(A, GHOST) OBJ(A, AUTH)

Cell A Cell B

Incoming acknowledgment
to “Transfer (OBJ)”

Figura A.9: Célula A recebe a confirmação de transferência de B.

A.4 Comparação

Na Seção A.2, vários modelos par-a-par de suporte a MMOGs foram analisados.
Nesta seção, iremos comparar algumas destas arquiteturas com o FreeMMG 2. A maio-
ria dos trabalhos selecionados para esta comparação utilizam, assim como o FreeMMG
2, múltiplos árbitros para controlar uma partição do estado do jogo: Kabus e Buch-
mann (KABUS; BUCHMANN, 2007), Endo et al. (ENDO; KAWAHARA; TAKAHASHI,
2005), Hampel et al. (HAMPEL; BOPP; HINN, 2006), Izaiku et al. (IZAIKU et al., 2006)
e o nosso modelo anterior, FreeMMG (CECIN, 2005; CECIN et al., 2004). Porém, tam-
bém incluímos três trabalhos de outras categorias para a comparação: ACORN (NOR-
DEN; GUO, 2007), DaCAP (LIU; LO, 2008) e Peer Cluster (CHEN; MUNTZ, 2006).

Tabela A.1: Significado dos símbolos utilizados nas tabelas de comparação

Símbolo Significado
X Funcionalidade provida ou questão tratada.
X- Funcionalidade provida com limitações ou questão parcialmente tratada.
X- - Funcionalidade com severas limitações ou questão tangencialmente tratada.
X($) Funcionalidade provida por servidores.
X($/2) Funcionalidade provida parcialmente por servidores.
X- ($/2) Funcionalidade provida parcialmente por servidores, e com limitações.

Em branco: funcionalidade ausente ou questão não abordada.
NC Número de controladores (réplicas) em uma célula.
NP Número de jogadores em uma célula.
W Número de nós-testemunha (GAUTHIERDICKEY et al., 2004a) na célula.
NN Número de células vizinhas que cada célula tem.

A comparação é feita em três seções. A Seção A.4.1 compara o que cada modelo
oferece, enquanto a Seção A.4.2 avalia o grau de descentralização de tarefas alcançado por
cada modelo, e a Seção A.4.3 avalia a cobertura de cada modelo em relação a ameaças de
segurança. Cada seção resume o aspecto comparativo em uma tabela que utiliza símbolos
que são listados e explicados na Tabela A.1.
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A.4.1 Comparação de funcionalidades

Um dos problemas centrais quando da partição de uma simulação de um mundo vir-
tual em regiões é o tratamento de hot-spots, ou áreas do mundo virtual com grande con-
centração de jogadores. ACORN e DaCAP, sendo os modelos mais centralizados, ofer-
ecem soluções para este problema; ACORN diz suportar até 1.000 jogadores em uma
região, e DaCAP e Peer Cluster executam regiões hot-spot em modo puramente cliente-
servidor. Endo et al. servem todas as regiões como cliente-servidor, exceto quando há
pares disponíveis suficientes para assumirem a carga dos servidores; isto impede sua clas-
sificação como um modelo do tipo par-a-par com lado servidor pesado, mas seu suporte a
hot-spots é provavelmente obtido da mesma maneira, através da centralização destes em
servidores. O modelo de Kabus e Buchmann é projetado para oferecer suporte a jogos
baseados em instâncias (várias pequenas salas de jogo), que não geram hot-spots.

Tabela A.2: Comparação de funcionalidades

Feature ACORN DaCAP Hampel Endo Kabus and Izaiku Peer Free- Free-
et al. et al. Buchmann et al. Cluster MMG MMG 2

Interação inter-
célula de objetos X- ($/2)

Transferência
inter-célula de
objetos

X X($) X($) X X($) X($/2)

Tratamento de hot-
spots

X X($) X($)

Persistência de es-
tado

X($) X($) X X X X X X X

Uma funcionalidade importante e de difícil suporte por parte de MMOGs P2P do tipo
árbitros múltiplos ou focados em segurança é o suporte a interação, de forma transparente
ao jogador, entre objetos localizados ou controlados por regiões adjacentes. Nenhum dos
modelos escolhidos alcança este ideal. O FreeMMG 2 é o único modelo constante na
comparação que lida com este problema, porém, a interação não pode ser considerada
transparente (aos jogadores) devido ao seu alto custo em termos de comunicação e de
tempo de sincronização.

Já a transferência de objetos entre células é um problema mais fácil de ser resolvido.
DaCAP e Endo et al. transferem objetos através do servidor. ACORN resolve transfer-
ências quase que automaticamente, já que simula o mundo virtual inteiro em servidores.
Hampel et al., Izaiku et al. e Peer Clustering não mencionam nenhum tipo de suporte a
comunicação entre células.

Finalmente, todos os modelos provêem persistência do estado do jogo. ACORN man-
tém uma cópia total autoritativa do estado do jogo em servidores, enquanto DaCAP man-
tém uma cópia parcial. Os outros modelos utilizam-se principalmente de replicação mas-
siva das partições do estado do MMOG em máquinas clientes.

A.4.2 Comparação de nível de descentralização e de custos de comunicação

Uma das principais motivações para a adoção de arquiteturas par-a-par para MMOGs
é a redução ou eliminação da custosa infra-estrutura servidora. A Tabela A.3 compara os
trabalhos escolhidos em termos dos custos impostos ao lado servidor e aos clientes.

A maioria dos modelos, em princípio, suportaria a delegação de responsabilidades dos
servidores para pares (clientes) que já estão jogando o jogo. O FreeMMG 2 é a exceção,
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Tabela A.3: Comparação de nível de descentralização e de custos de comunicação

Critério ACORN DaCAP Hampel Endo Kabus and Izaiku Peer Free- Free-
et al. et al. Buchmann et al. Cluster MMG MMG 2

Pares que
jogam,
apenas

X- X X X- X X- X X-

RCs por
célula

1 [1, NP ] NC NC NC NC NC NP + W 2NC

Atualizações
enviadas
por RC

NP NP
NP
NC

≈ NP
2

NP
NP
NC

[0, NP ] 0
NP+NN

NC

Atualizações
recebidas
por jogador

1 [1, NP ] 1 NC+1
2

NC 1 1 0 1

Comandos
enviados
por jogador

[2, NP + 1] [1, NP ] NC [1, NC ] NC NC 1 NP + W 1

Baixo uso
de CPU no
servidor

X- - X X X X X- X X

Baixo custo
de envio no
servidor

X X- - X X- X X X- X- X

Baixo custo
de recebi-
mento no
servidor

X- X- X X- X X X- X- X

explicitamente sendo projetado para que voluntários que não estão jogando o jogo sirvam
como controladores (réplicas) de células. Na Tabela A.3, isto aparece como a necessidade
do FreeMMG 2 de 2NC controladores (réplicas autoritativas) distintos por célula.

A terceira, quarta e quinta linha da Tabela A.3 comparam os custos de comunicação
impostos tanto aos pares que são RCs quanto aos pares que estão jogando o jogo. Os
modelos centralizados (ACORN e DaCAP) naturalmente imprimem os menores custos
sob os clientes. O FreeMMG 2 imprime os maiores custos de comunicação sob um RC
devido ao suporte oferecido a interação inter-célula, mas reduz o custo de comunicação de
pares jogadores ao mesmo padrão imposto a clientes em uma arquitetura cliente-servidor,
o que também é oferecido pelo modelo Peer Cluster, mas sob pena de utilização de um
árbitro único por célula.

Finalmente, as últimas três linhas da Tabela A.3 comparam os custos de CPU e de
comunicação mantidos no lado servidor. Hampel et al., Kabus e Buchmann, Izaiku et al.
e FreeMMG 2 são os modelos que menos envolvem o servidor na simulação das células
e que portanto atingem o maior nível de descentralização entre os trabalhos escolhidos.
É interessante notar que isto parece ter uma correlação com um pobre tratamento de hot-
spots (ver Tabela A.2).

A.4.3 Comparação de segurança

Finalmente, a comparação mais importante, do nosso ponto de vista, é a compara-
ção de segurança, incluindo-se neste critério tanto ataques maliciosos quanto tolerância a
falhas de forma a evitar perdas de estado do jogo. A prioridade principal é evitar que o
estado de um MMOG seja alterado de forma ilegal, custe o que custar. Nós escolhemos
a abordagem preventiva pois, do nosso ponto de vista, a detecção e correção automática
de trapaças de estado e outras soluções não-preventivas para o problema da trapaça de es-
tado são, de diversas formas, inconvenientes. Uma maneira de fazer isto é simular o jogo
inteiro no lado servidor, que é o que o modelo ACORN faz, por exemplo. Outra maneira
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é a utilização de múltiplos árbitros escolhidos entre pares que, individualmente, não são
confiáveis.

A Tabela A.4 mostra a comparação nos quesitos relacionados à segurança. ACORN
é o modelo mais seguro que encontramos entre todos os trabalhos que encontramos e
revisamos durante a elaboração desta dissertação. Isto se dá pelo fato do ACORN replicar
todas as transformações de estado no lado servidor e, portanto, tornando impossível a
perda de estado devido a queda de clientes. No FreeMMG 2, na presença de boas escolhas
para os parâmetros de replicação de células, a perda de estado do jogo é improvável,
mesmo quando ataques em nível de rede são disparados contra células específicas. Isto
ocorre devido à utilização de réplicas de backup com endereços de rede conhecidos apenas
pelos servidores do jogo e que não podem, portanto, ser alvo direto destes ataques.

Tabela A.4: Comparação de segurança

Ameaça ACORN DaCAP Hampel Endo Kabus and Izaiku Peer Free- Free-
et al. et al. Buchmann et al. Cluster MMG MMG 2

Perda de estado
(considerando
NLAs)

X X- - X- X- - X-

Trapaça de estado
(considerando
NLAs)

X X- - X

Trapaça de estado
(desconsiderando
NLAs)

X X X X X X X X

A Tabela A.4 mostra que a maioria dos trabalhos escolhidos trata do problema de
trapaça de estado se ignoramos a possibilidade de ataques em nível de rede (NLAs). Se
consideramos ataques em nível de rede, apenas o ACORN e o FreeMMG 2 são resistentes
a trapaça de estado. Apesar de ser tecnicamente possível a um atacante dedicado realizar
uma trapaça de estado no FreeMMG 2, isto é matematicamente improvável de acontecer
para qualquer cenário realístico se os parâmetros de replicação são escolhidos pela apli-
cação de forma adequada. A única possibilidade de uma modificação de estado ilegal ser
bem-sucedida envolve a seleção, a partir do estoque de nós voluntários, de um número
suficientemente grande de nós maliciosos em conluio para servirem como réplicas da
mesma célula. Trabalhos relacionados mostram que, na medida em que o número de ré-
plicas aumenta, a probabilidade de selecionar uma maioria em conluio diminui exponen-
cialmente (CORMAN; SCHACHTE; TEAGUE, 2007; ENDO; KAWAHARA; TAKA-
HASHI, 2005). Sendo a seleção de réplicas voluntárias realmente aleatória e o número
de réplicas por célula adequado, é possível projetar uma rede FreeMMG 2 que torna um
ataque ao estado do jogo algo muito desvantajoso, economicamente.

Com base na escolha de que a proteção de MMOGs contra alterações ilegais de estado
é imperativo e um requisito não-negociável, e que atacantes poderão ser suficientemente
motivados ao ponto de se utilizarem de custosos ataques em nível de rede para alcançar
tal objetivo, os únicos modelos par-a-par de suporte a MMOGs que conhecemos que
alcançam tanto um certo nível de descentralização e que ainda assim são suficientemente
seguros são ACORN e FreeMMG 2. Ambos também tratam da questão da perda de
estado, onde ACORN a previne totalmente, ao passo que o FreeMMG 2 oferece garantia
total contra perdas de estado e de consistência global apenas para itens de “estado vital”
demarcados pela aplicação. Em comparação com ACORN, o FreeMMG 2 atende também
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a uma das motivações centrais deste trabalho: uma redução em ordens de magnitude dos
custos de processamento e de comunicação do lado servidor, além da redução percentual
que os modelos par-a-par com lado servidor pesado oferecem.

A.5 Conclusão

Quando do desenvolvimento deste trabalho, praticamente todos os MMOGs disponíveis
para uso eram sistemas cliente-servidor, resultando em um alto custo de manutenção do
lado servidor em termos de poder computacional, comunicação e administração que só
podiam ser bancados por poucos. Em contraste, o FreeMMG 2 é uma solução híbrida de
suporte a MMOGs, onde protocolos par-a-par (comunicação direta entre clientes) repas-
sam a maior parte dos custos para uma rede de nós clientes, de jogadores e de colab-
oradores voluntários, enquanto um lado servidor de custo de manutenção significativa-
mente reduzido mantém o controle sobre o jogo.

Um simulador de uma versão simplificada da arquitetura FreeMMG 2 foi implemen-
tado sobre o simulador de rede Simmcast (BARCELLOS; FACCHINI; MUHAMMAD,
2006) com o objetivo de verificar o custo de largura de banda imposto aos clientes. Ape-
sar de que alguns protocolos não foram incluídos na simulação, como o de transferência
de objetos entre células, os protocolos fundamentais, como os de sincronização entre as
réplicas de uma célula e atualização de jogadores, foram modelados. Com um mundo vir-
tual simplificado, e variando-se o número de réplicas por célula de 6 a 12, e a densidade de
jogadores por célula de 20 a 80, a largura de banda de envio exigida de uma réplica variou
entre 33.000 bytes/s e 139,200 bytes/s. Os resultados situam-se dentro do que é suportado
por tecnologias atuais de banda larga disponíveis para consumidores domésticos.

Nós consideramos que a trapaça de estado é uma vulnerabilidade fatal em um MMOG
descentralizado. Tornar um MMOG cuja arquitetura não é exclusivamente centralizada
em um sistema resistente a trapaças de estado é um desafio significativo. Ao projetar o
FreeMMG 2, optamos por uma abordagem de múltiplos árbitros para replicar e prover
cada célula do mundo virtual. Também partimos do princípio que atacantes teriam o
poder de causar a falha de clientes arbitrários cujo endereço IP é conhecido através de
ataques em nível de rede e, para impedir que todas as réplicas de uma célula possam ser
destruídas simultaneamente, adicionamos nós de reserva (backup nodes) a uma célula,
cujos endereços IP não são publicados e portanto são imunes a ataques em nível de rede.

Não validamos, através de experimentos, a resistência do modelo a trapaça de estado.
Porém, trabalhos relacionados demonstram que na medida em que o número de réplicas
de uma célula aumenta, a probabilidade de o servidor selecionar uma maioria de nós ma-
liciosos que realizem um conluio para a alteração arbitrária do estado da célula diminui
exponencialmente (CORMAN; SCHACHTE; TEAGUE, 2007; ENDO; KAWAHARA;
TAKAHASHI, 2005). Existem vários parâmetros que afetam, na prática, a probabilidade
de uma célula ser comprometida, como a fração de nós maliciosos no conjunto total de
voluntários à replicação de células, o número de réplicas por célula, o quórum mínimo
de réplicas concordantes após a falha fatal de uma célula, dentre outros. De qualquer
maneira, a abordagem de árbitros múltiplos oferece a possibilidade de uma redução ex-
ponencial na probabilidade de comprometimento de alguma célula na medida em que,
no pior caso, há um aumento quadrático no custo de comunicação (largura de banda)
necessário para sincronizar uma célula.

Consideramos o FreeMMG 2 uma contribuição original na medida em que é uma ar-
quitetura descentralizada de suporte a MMOGs baseados em avatares (MMORPGs) que
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oference tanto uma redução significativa dos custos de operação dos servidores quanto
uma forte proteção da integridade e da persistência do estado do jogo, mesmo na pre-
sença de clientes maliciosos e de ataques em nível de rede. Além disso, o modelo oferece
algumas funcionalidades originais como um mecanismo leve de sincronização entre célu-
las que suporta tanto transferências de objetos e interações entre objetos hospedados em
células adjacentes. O modelo também mantém o estado do jogo globalmente consistente,
certificando-se que um objeto globalmente único não desapareça ou seja duplicado.

Neste contexto, consideramos a nossa hipótese verificada. Com o modelo FreeMMG
2 como exemplo, mostramos que a abordagem de múltiplos árbitros para suporte par-a-
par a MMOGs não somente é naturalmente resistente a trapaças de estado, como também
pode ser adaptada para que funcione com tecnologia de comunicação de banda larga atual,
disponível ao consumidor, mesmo com a ausência de suporte a IP multicast.


