UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMATICA
PROGRAMA DE POS-GRADUACAO EM COMPUTACAO

GUILHERME SPERB MACHADO

Rollback Support in IT Change
Management Systems

Thesis presented in partial fulfillment
of the requirements for the degree of
Master of Computer Science

Prof. Dr. Lisandro Zambenedetti Granville
Advisor

Porto Alegre, March 2009

CIP - CATALOGING-IN-PUBLICATION

Machado, Guilherme Sperb

Rollback Support in IT Change Management Systems / Guil-
herme Sperb Machado. — Porto Alegre: PPGC da UFRGS, 20009.

551l

Thesis (Master) — Universidade Federal do Rio Grande do Sul.
Programa de P6s-Graduacdo em Computacdo, Porto Alegre, BR—
RS, 2009. Advisor: Lisandro Zambenedetti Granville.

1. IT Change Management. 2. Rollback plan. 3. Change fail-
ures. 4. ITIL. I. Granville, Lisandro Zambenedetti. II. Titulo.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

Reitor: Prof. Carlos Alexandre Netto

Vice-Reitor: Prof. Pedro Cezar Dutra Fonseca

Pr6-Reitora de P6s-Graduacdo: Prof®. Valquiria Linck Bassani

Diretor do Instituto de Informatica: Prof. Flavio Rech Wagner
Coordenador do PPGC: Prof. Alvaro Freitas Moreira

Bibliotecdria-chefe do Instituto de Informatica: Beatriz Regina Bastos Haro

First of all, to God.

To my parents Liana and Sezefredo,

my brothers Tiago and Augusto,

my special girlfriend Cynthia,

and my grandmother Maria,

who launched me into the computer world.
In the memory of my grandfather, Lydio.

“If a cluttered desk is a sign of a cluttered mind,
of what then, is an empty desk?”
— ALBERT EINSTEIN

ACKNOWLEDGEMENTS

First of all, I want to thank God. Without the Lord, this thesis would never ever
become possible. God gave me the power and motivation to turn concrete the research.

Second, but not less important, I want to thank my parents Liana and Sezefredo for all
the conditions granted through my life. They supported me through hard moments, and
taught me innumerous lessons. However, one of them I can consider the most precious:
reach your goals in a honest manner so you will be always remembered. Also, I want
to thank my brothers Tiago and Augusto that, even do not understanding what I really
do for a living (researching what?!), they somehow participated positively during my
Master’s degree. Mainly playing some games together to relax after paper deadlines. My
grandmother Maria, [have no words to express my gratitude for giving me that gift which,
by coincidence or not, opened many doors in my life. My grandfather Lydio, I wish you
were here to see all of this.

Special thanks for Profs. Ana Cristina Benso and Joao Batista Oliveira, who gave me
the opportunity to “fall in love” with the academic world. I can say that they stimulated
me in order to use my knowledge to really produce something in an advantageous aspect.
Thanks again. Also, my regards for colleagues and friends from the Pontifical Catholic
University of Rio Grande do Sul (PUCRS) by their support and friendship.

Thanks to my Master’s colleague Weverton Cordeiro, who participated actively in
my research. Opinions, discussions (hard ones), and laughs (not necessary about the
academic world) were part of these two years together. Among other things, during our
stay in Bristol, UK, I've learned with him how early people should arrive in the airport
for a flight. It was terrible. Weverton, success for you in the PhD, and always count on
me for anything that you need.

Talking about Bristol, UK, special thanks to David Trastour, Abdel Boulmakoul, Clau-
dio Bartolini, and Robert Fink. Not only for the opportunity to develop research inside a
big Lab (HP Labs), but also to make my stay in the UK a great time.

I cannot forget to mention Profs. Lisandro Granville and Luciano Paschoal. They
really taught me on how to be a top researcher, and I will never ever forget those lessons.
Thanks a lot. I owe much to you.

Thanks to the members of the II/UFRGS Network Group. We learn together so many
things, and all of you helped me somehow to conclude this thesis: Ewerton, Raniery,
Clarissa, Giovane, Juliano, Roben, Jeferson, Flavio, Fabio, Alan, Cristiano, and Fabricio.

Finally, thanks to my girlfriend Cynthia, who probably suffered a lot during these two
years. However, we overcame things like an endless paper deadline, travel to conferences,
and the internship in HP Labs. More challenges are bounded to come, and I’'m sure we
have strength enough to endure. Anyway, thanks for your immense comprehension and
support.

AGRADECIMENTOS

Primeiramente, gostaria de agradecer a Deus. Sem Ele, essa dissertacdo de mestrado
nunca seria possivel. Deus me concedeu forcas e motivagdo para tornar concreta essa
pesquisa.

Em segundo lugar, mas ndo menos importante, gostaria de agradecer aos meus pais
Liana e Sezefredo por todas as condicdes que tive durante a minha vida. Eles me aju-
daram em momentos dificeis, € me deram indmeros ensinametos. Porém, um deles eu
posso considerar o mais precioso: atinja todos os seus objetivos de uma maneira honesta
que todos irdo se lembrar de vocé. Também, gostaria de agradecer aos meus irmaos Tiago
e Augusto, que, mesmo ndo entendendo o que eu realmente fago no mundo académico
(pesquisando o qué?!), eles de alguma forma participaram positivamente durante a con-
clusd@ao do mestrado. Principalmente jogando alguns jogos no video-game para tirar o
stress apOs a entrega de artigos para conferéncias. Minha v6 Maria, eu ndo tenho palavras
para expressar minha gratiddao quando me deste aquele presente que, por coincidéncia ou
ndo, abriu muitas portas na minha vida. Ao meu v Lydio, eu realmente queria que vocé
estivesse aqui para ver tudo isso.

Agradecimentos especiais aos Profs. Ana Cristina Benso e Jodo Batista Oliveira, pois
me deram a oportunidade para me “apaixonar” pelo mundo académico. Eu posso dizer
que estes professores me estimularam a usar o meu conhecimento para realmente produzir
algo em um aspecto vantajoso. Obrigado novamente. Também, comprimentos aos meus
colegas e amigos da PUCRS.

Obrigado ao meu colega de mestrado Weverton Cordeiro, quem participou ativamente
da minha pesquisa. Opinides, discussdes (fortes e filoséficas), e gargalhadas (ndo neces-
sariamente sobre o mundo académico), foram parte desses dois anos juntos. Entre outras
coisas, durante a nossa estadia em Bristol, GB, aprendi com ele o qudo cedo as pessoas
precisam chegar no aeroporto para um voo. Foi terrivel. Weverton, muito sucesso no
Doutorado, e sempre conte comigo para qualquer coisa que precisar.

Falando sobre Bristol, GB, agradecimentos especiais ao David Trastour, Abdel Boul-
makoul, Claudio Bartolini, e Robert Fink. Nao sé pela oportunidade de desenvolver
pesquisa de ponta dentro de um grande laboratério como a HP, mas também por tornar a
nossa estadia no Reino Unido um 6timo momento.

N3ao posso esquecer de mencionar os Profs. Lisandro Granville e Luciano Paschoal.
Eles realmente me ensinaram como ser um pesquisador de ponta, € nunca irei esquecer
os seus ensinamentos. Muito obrigado. Devo muito a voceés.

Obrigado aos membros do Grupo de Redes da UFRGS. N6s aprendemos juntos muitas
coisas, e todos vocé€s me ajudaram de alguma forma a concluir essa dissertacdo: Ewerton,
Raniery, Clarissa, Giovane, Juliano, Roben, Jeferson, Flavio, Fabio, Alan, Cristiano, e
Fabricio.

Por tltimo, gostaria de agradecer minha namorada Cynthia, que provavelmente sofreu
muito durante esses dois anos. Porém, superamos muitas coisas como deadlines de arti-
gos que eram “intermindveis”, viagens para conferéncias, e o estdgio na HP Labs. Mais
desafios estdo por vir, e tenho a real certeza que temos forca suficiente para aguenté-los.
De qualquer forma, obrigado pelo seu apoio e imensa compreensao.

TABLE OF CONTENTS

LIST OF ABBREVIATIONS AND ACRONYMS 9
LISTOFFIGURES. it et e e e e s 10
LISTOFTABLES it it et et eeen 11
ABSTRACT i et e e e e e e e e e e e e 12
RESUMOttt e e e e e e e e e e e e e 13
1 INTRODUCTION ittt it et e eeen 14
2 BACKGROUND i it e e e e e e e e ae 17
21 Definitions 17
22 RelatedWork 18
2.2.1 Rollback in the Different Levels 18
2.2.2 Treatment of Failures in Actual IT Scenarios 19
2.3 ITIL and Change Management 20
3 ROLLBACKSOLUTION ittt et e e e a 23
3.1 IT Change Management Architecture and Rollback Support Components 23
3.2 Marking Rollback-enabled Change Plans 25
33 RollbackModel 26
3.4 Producing Actionable Rollback Plan Workflows from Marked Change
Plans e 28
4 PROTOTYPE IMPLEMENTATION 31
4.1 BPEL Constructions to Support Rollback 32
4.2 Deployment System, 33
5 EXPERIMENTAL EVALUATION & ANALYSIS 36
5.1 Case Study #1: Improve the Emergency Load Threshold and Com-
pany’s Resources 36
5.1.1 Scenario L e 36
5S.1.2 0 Analysis e 40
5.2 Case Study #2: Installing a project management web-based application 40
5.2.1 Scenario e 41

522 Analysis e e 42

6 CONCLUSION. e e e e 45

6.1 Considerations and Contributions of this Thesis 45
6.2 Additional Issues related to the Treatment of Failures in IT Change
Management Systems for Future Investigation 46
REFERENCES e e e e s e e e e 48
APPENDIX A RESUMO ESTENDIDO DA DISSERTAQAO 51
A.1 Resumo das Principais Contribuicoes 52
A2 Conclusdes 53

A.3 TrabalhosFuturos 53

AMN
API
BPEL
CAB
CI
CIM
CMDB
COBIT
DAO
DB
DBMS
DML
DMTF
DNS
ITIL
IT
ITSM
MTTR
OASIS
O0GC
oS
RFC
ROC
SLA
WIMC
XML

LIST OF ABBREVIATIONS AND ACRONYMS

Activity Modeling Notation

Application Programming Interface

Business Process Execution Language
Change Advisory Board

Configuration Item

Common Information Model

Configuration Management Database

Control Objectives for Information and related Technologies
Data Access Object

Data Base

Database Management System

Definitive Media Library

Distributed Management Task Force

Domain Name Server

Information Technology Infrastructure Library
Information Technology

Information Technology Service Management
Mean Time To Recover

Advancing Open Standards for the Information Society
Office of Government Commerce

Operating System

Request for Change

Recovery-Oriented Computing

Service Level Agreement

Workflow Management Coalition

Extended Markup Language

Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4:

Figure 3.5:

Figure 4.1:
Figure 4.2:

Figure 5.1:
Figure 5.2:
Figure 5.3:
Figure 5.4:
Figure 5.5:

LIST OF FIGURES

IT change management architecture
Examples of atomicity marks and atomic groups
RFC and change plan model with rollback support
Change plan workflow example with atomic groups and the reversed
form.
Rollback plan workflows for activities 7, 8 and 4, respectively

Deployment system
Cost of recovery X Percentage of failures cured, according to ROC

Case study RFC showed in a general and hierarchical view
Creating the case study RFC using the CHANGELEDGE interface

Parallel changeplans
Change plan workflow with marked atomic groups
Rollback plan workflow for the install dotProject activity

LIST OF TABLES

Table 5.1: Rollback plan generation results. Times represented in milliseconds. . 43

ABSTRACT

The current research on IT change management has been investigating several aspects
of this new discipline, but they are usually carried out assuming that changes expressed in
Requests for Change (RFC) documents will be successfully executed over the managed
IT infrastructure. This assumption, however, is not realistic in actual IT systems because
failures during the execution of changes do happen and cannot be ignored. In order to ad-
dress this issue, we propose a solution where tightly-related change activities are grouped
together forming atomic groups of activities. These groups are atomic in the sense that if
one activity fails, all other already executed activities of the same group must rollback to
move the system backwards to the previous consistent state. The automation of change
rollback is especially convenient because it relieves the IT human operator of manually
undoing the activities of a change group that has failed. To prove concept and technical
feasibility of our proposed solution, we have implemented a prototype system that, using
elements of the Business Process Execution Language (BPEL), is able to control how
atomic groups of activities must be handled in IT change management systems. Results
showed that the rollback solution not only generates complete and correct plans given a
set of atomicity marks, but also that the rollback plan generation minimally interferes in
the change scheduling process.

Keywords: IT Change Management, rollback plan, change failures, ITIL.

Suporte a Rollback em Sistemas de Gerenciamento de Mudancas em TI

RESUMO

As atuais pesquisas em geréncia de mudanca em um ambiente de TI (Tecnologia de
Informacdo) tém explorado diferentes aspectos desta nova disciplina, porém normalmente
assumindo que as mudangas expressas em documentos de Requisi¢do de Mudangas (RFC
— Request for Change) sdo sempre executadas com sucesso sobre uma determinada infra-
estrutura de T1. Esse cendrio, muitas vezes, pode nao refletir a realidade em sistemas de
TI, pois falhas durante a execu¢do de mudangas podem ocorrer € ndo devem ser simples-
mente ignoradas. Para abordar esta questdo, esta dissertacdo propde uma solu¢do onde
atividades em um plano de mudancga podem ser agrupadas, formando grupos atdmicos.
Esses grupos sdo atdmicos no sentido de que quando uma atividade falha, todas as ou-
tras atividades ja executadas do mesmo grupo precisam retroceder para o dltimo estado
consistente. Automatizar o processo de rollback em mudangas pode ser especialmente
conveniente no sentido de que ndo seja necessario um operador humano desfazer manu-
almente as atividades que falharam de um determinado grupo atdmico. Para avaliar a
solucdo proposta e a sua viabilidade técnica foi implementado um protétipo que, usando
elementos da linguagem BPEL (Business Process Execution Language), torna-se possi-
vel definir como sistemas de gerenciamento de mudangas em TI devem se comportar para
capturar e identificar falhas. Os resultados mostram que a solu¢do proposta nao somente
gera planos completos e corretos com base em marcagdes de atomicidade, mas também
que a geracao dos planos de rollback interfere minimamente no processo de agendamento
de mudancas.

Palavras-chave: Gerenciamento de Mudangas em T1, planos de rollback, falhas em mu-
dancgas, ITIL.

14

1 INTRODUCTION

Currently, modern companies and organizations are often unable to deliver high qual-
ity services without employing sophisticated IT infrastructures to support their final busi-
nesses. Sophisticated IT infrastructures, in turn, are usually accompanied by complex
management challenges that often lead to increasing maintenance costs. A rational man-
agement of IT infrastructures then becomes a critical issue for any organization that aims
at keeping a good financial health. In order to provide a more systematic IT infrastructure
management — and thus reduce management costs — the widely recognized Information
Technology Infrastructure Library (ITIL) (ITIL, 2009) presents a set of best practices and
processes that helps organizations to properly maintain their IT infrastructures.

Among the ITIL processes, change management (IT Infrastructure Library, 2007a)
is the one that defines how changes in IT infrastructures should be planned, scheduled,
implemented, and assessed. The importance of change management resides in the fact that
changes in IT infrastructures must be executed in a way that does not lead the managed
systems to unknown or inconsistent states. To address this issue, changes required over
the IT infrastructures are firstly expressed in Requests for Change (RFC) documents that
define which changes are needed but not how they must be performed. The definition of an
RFC is the first step of a process that will generate a final change plan, which is essentially
a workflow of low level activities that, when executed, will evolve the managed system to
a new consistent state according to the changes expressed in the original RFC.

Although change management is a relatively new discipline, several important chal-
lenges have already been investigated in research projects (KELLER et al., 2004) (BAR-
TOLINI; SAUVE; TRASTOUR, 2006) (REBOUCAS et al., 2007). Given the complexity
of the subject, these investigations have naturally made some assumptions that enabled the
investigations to progress. One of these assumptions is that once an RFC is approved and
ready to be deployed, the activities of the associated change plan will always succeed
and lead the IT infrastructure to the next consistent state. This assumption does not in
fact represent a realistic and practical situation in actual IT environments because fail-
ures during the execution of changes do happen and cannot be ignored. If it is necessary
to completely avoid failures, a company should never change anything on their systems.
However, change is an everyday part of IT. In fact, is a key element of successful IT, and
for a successful business as well.

According to a survey (PATTERSON et al., 2002), well-managed servers today achieve
99.9% to 99%, or 8 to 80 hours of downtime per year. Therefore, taking availability as
a parameter to measure failures during changes, it shows that each hour of unavailability
can cost from $200,000 per hour for an Internet service like Amazon.com, to $6,000,000
per hour for a stock brokerage firm. These high values are a representative sample on
how failures in IT changes may impact from the whole business to the financial health of

15

a given company.

In this thesis we focus our attention to the necessity of handling failures on change
plan execution, in order to avoid managed IT infrastructures of ending up in undesired
states. To address this problem, we firstly define that, after the deployment of an RFC, the
managed infrastructure must have either successfully evolved to a new state, or returned
to the state previous to the change request. In other words, RFC deployment is treated as
a single atomic transaction. To support this behavior, we have proposed a rollback model
to support failures in change plans. Whenever a failure occurs during a change plan
execution, a rollback procedure is invoked to undo changes executed so far and abort the
ongoing change plan. In fact, we go further in our proposal and observe that for some IT
scenarios it would be too restrictive to consider an RFC the only possible atomic element.
We thus propose that additional atomic elements can be complementarily defined in a
granularity finer than an RFC, for example, at the change plan level (i.e. change actions).
Therefore, the operator can define which specific actions should have a rollback procedure
using the atomic concept.

In order to materialize atomic transactions on IT management in the different lev-
els of a change, we have employed a set of techniques in a prototype system called
CHANGELEDGE, developed to evaluate our proposed solution. In particular, we have
explored some exception-related mechanisms (e.g., fault handlers, asynchronous notifica-
tions, and flow controllers) present in the Business Process Execution Language (BPEL)
(OASIS Standards, 2007). In our prototype, atomic transactions, that are defined by hu-
man system operators at RFC and change plan levels, are translated into BPEL construc-
tions by a translating algorithm. This algorithm basically converts instantiated classes
from our proposed model to a BPEL document using the WS-BPEL standard, turning
the model-based change plan into an actual deployable plan. The translating algorithm
is important in the process, since it adds BPEL constructions in order to catch failures in
the change deployment, then enabling to invoke rollback plans in failure events. How-
ever, we do not address, in details, the translating algorithm that takes change plans and
transforms it into BPEL documents. We assume that such translating algorithm is some-
how trivial, since the proposed model and the WS-BPEL standard are expressed as a
workflow. Nevertheless, this thesis discuss all BPEL constructions that are used in order
to build mentioned BPEL documents. In addition, the algorithm that generates rollback
plans is addressed, showing how rollback actions are organized to undo failures occured
in a given change plan. Therefore, a set of experiments has been carried out to observe
the impact of our proposal in the whole management system as well as on the managed
IT infrastructure. These experiments are focused in scenarios aiming to observe both
qualitative and quantitative analysis.

Considering the whole proposal, this thesis presents an end-to-end solution to enable
rollback support in IT change management systems. Essentially, the end-to-end solution
is composed by all steps contained in the change plan specification process with rollback
support: from building a change plan with recovery capabilities to the change deployment
scheme invoking rollback plans for execution.

The remainder of this thesis is organized as follows. In Chapter 2 we briefly review
some definitions, discuss the rollback support for computing systems, and introduce the
ITIL also showing the change management process as well. The proposed solution to
incorporate rollback support in change plans is presented in Chapter 3, while the asso-
ciated prototype is described in Chapter 4. The evaluation carried out in this research is
then presented in Chapter 5, that also includes a set of commented results for different

16

scenarios. Finally, we present the Chapter 6, where conclusions with the contributions are
considered, closing this thesis with a section to discuss a set of additional issues in the

field of the research.

17

2 BACKGROUND

In this chapter we present some definitions related to rollback recovery (Section 2.1),
the most relevant related work related to this thesis (Section 2.2), and a briefly description
about concepts in the field of IT change management with a succinct comparison between
standards (Section 2.3).

2.1 Definitions

Since rollback recovery has been studied in various forms and in connection with
many fields of research, it is perhaps impossible to provide an extensive coverage of all
the issues related to rollback within the scope of this thesis. However, and despite of
the word rollback be a widely and well-known used term in the computer science, its
definition and different techniques are reviewed for a better reading comprehension of the
thesis. In this way, such definitions are explained and commented on how they are applied
inside of the context of the research.

According to the American Heritage Dictionary of English Language (AMERICAN
HERITAGE DICTIONARY, 1996), the word rollback (data management) has the follow-
ing definitions:

1. A turning back or retreat, as from a previously position or policy.

2. Reverting data in a database to an earlier state, usually in response to an error or
aborted operation.

3. In a transaction based database system, transactions are considered atomic. If an
error occurs while performing a transaction, the database is automatically rolled
back to the state at the previous commit.

Therefore, even then that such definition is applied to data management, it is possible
to observe that a general definition to rollback is “to revert something to a previous state”.
In this thesis, the act of “revert something” may be faced as any process or mechanism
that return to a former state of the IT enviroment. For example, if it is performed an
action to modify a server configuration, the rollback for such action is to “revert the server
configuration” to reach the previous state of the IT infrastructure.

According to Elnozahy ef al. (ELNOZAHY et al., 1996), rollback recovery techniques
can be separated in two primary categories: checkpoint-based rollback recovery, which
relies solely on checkpointed states for system state restoration; and log-based rollback
recovery, that uses checkpointing and message logging. The first scheme finds a set of
mutually consistent checkpoints, one per node, and returns each node to the state saved

18

in its checkpoint. In the log-based scheme, a process can deterministically recreate its
pre-failure state even if this state has not been checkpointed, by logging and replaying the
nondeterministic events in their exact original order.

In the context of this thesis, we do not explore in details the internal algorithm of
the employed rollback recovery technique. In fact, this research focuses on enabling the
rollback support in IT change management systems, which the main processes are to
specify atomic elements and generate a consistent rollback plan. However, we mention
and explain which recovery techniques are used in the implemented prototype.

The last definition to be addressed in this section is closely related to rollback, and
needed to perform the rollback process. In the aforementioned definition of rollback we
can observe that transactions are considered “atomic”. According to the American Her-
itage Dictionary of English Language (AMERICAN HERITAGE DICTIONARY, 1996),
the word “atomic” is defined as indivisible or immeasurably small. On the other hand, the
definition of “atomic transaction” is one which is guaranteed to complete successfully or
not at all. For this reason, applying this concept to the rollback in IT change management,
atomic change parts may be faced as indivisible. In other words, whether the change part
is performed successfully, or the change cannot be persisted over the I'T environment.

2.2 Related Work

In recent years, some research has been carried out in the area of rollback-recovery on
network/service operations and management community. In parallel, and to have a com-
parison parameter, we describe relevant aspects based on studies in actual IT scenarios
aiming to show the importance of employing a recovery mechanism in I'T management
systems. Therefore, in this section, we cover some of the most important investigations
and scenarios concerning these topics. First, Subsection 2.2.1 presents some researches
covering rollback in the different levels, and what is the main gap to be fulfilled regarding
such problem. Second, Subsection 2.2.2 briefly describes some surveys made in actual IT
companies in order to analyze the treatment of failures in the industry and how failures
may impact on their business.

2.2.1 Rollback in the Different Levels

As mentioned before, rollback support is a complex subject in diverse computer sci-
ence disciplines. Several aspects of computing systems (e.g., faulty underlying com-
munications, dependencies among distributed components, services unavailability) make
saving consistent states and subsequent rolling back to them a task that cannot always be
properly or successfully accomplished. Nevertheless, some mechanisms to support roll-
back have already been proposed in research investigations and even market products. In
this subsection we review rollback-related work in different levels that has inspired the
design of our proposed solution.

At the device level, a common way to implement rollback support is to download a
device’s configuration file to a configuration server, deploy a new configuration, and use
the previous one again if the new configuration turns the device behavior unstable. An
evolution of this solution can be seen in devices where candidate configurations are stored
inside the managed devices themselves, dispensing with an external configuration server.
Recently, the NETCONF protocol (ENNS, 2006), proposed by the Internet Engineering
Task Force (IETF), has incorporated the notion of transactions in a configuration task,
which prevents the managed devices of evolving to unknown states.

19

Solely, rollback at the device level is not sufficient for complex IT scenarios because
often different devices and services are dependent of one another. For example, if the in-
stallation of a new Web server that requires additional configuration of the border firewall
fails, not only the server installation itself needs to be undone, but also the configurations
on the border firewall must be returned to the previous state. Rollback at the network level
(above the device level) is then required. In an earlier work, we have proposed a Policy-
Based Network Management (PBNM) system (ALVES et al., 2006) where failures in the
deployment of QoS policies return the managed devices to the previous state using an
adapted version of the two-phase commit protocol.

Andrzejak et al. (ANDRZEJAK; HERMANN; SAHALI 2005) have investigated auto-
matic workflow generation that can adapt the underlying IT system in reaction to failures.
However, this initial work does not present many details about automatic correction of
graphs in response to partial failures. In addition, the authors recognize that the pro-
posed solution has some bottlenecks, such as complexity limit related to the number of
objects and existing operators, upper bound on the sum of costs, and on specification of
the actions.

Candea et al. have proposed the Recovery-Oriented Computing project (ROC) (CAN-
DEA et al., 2004) that focuses on the construction of systems with a fast and high failure
recovery capability, in spite of building systems that are immune to any kind of error.
Among the recovery techniques discussed in the ROC project, the system-level undo/redo
can be closely observed. This technique is based on a system that controls actions to be
undone (or redone), taking into consideration actions previously executed. However, the
ROC project techniques do not consider dependencies between managed elements in the
network level to perform the recovery process.

Among the current researches, it is possible to verify that no solution consider the
failure recovery process in a wider view of the IT infrastructure, specially when changes
are deployed. As mentioned before, this fact may result into a problem when changes
modify managed elements that have interdependencies (e.g., services, firewalls, load bal-
ance policies, and others). Therefore, a solution that consider interdependencies between
managed elements in IT infrastructures, building a consistent rollback plan related to the
actual IT environment scenario, becomes necessary.

In the change management research field, as far as the authors of this paper are aware
of, there is no other research line that addresses the question of employing rollback as
a mechanism to maintain the managed IT infrastructure in a consistent state. The im-
portance of rollback in IT change management can be also directly observed in the ITIL
documents, where remediation plans are explicitly mentioned as a requirement of change
management. Moreover, ITIL defines that an RFC should have remediation plans in order
to be approved by the Change Advisory Board (CAB). This fact requires not only reme-
diation plans to be generated, but also that the generation process should be optimized
enough for not interfering on the change scheduling. However, even with the ITIL best
practices, no proper support is found in the current systems.

2.2.2 Treatment of Failures in Actual IT Scenarios

According to Murphy, anything that can go wrong, will go wrong. That seems to
be true for IT environments, and especially true during changes. Thus, many impacts
may rise from failures in ongoing production IT infrastructures. However, the most easy
perceptible impact is the cost. As an example, the business cost of service downtime may
vary from industry to industry, and from one kind of failure to another. For companies

20

like Amazon, e-Bay, and Google, any failure regarding online transactions represents a
potential loss of revenues and reputation — sometimes the latter can be even worse than
the former. Even 99.999% in the level of availability may not be sufficient, since this
represents a full eight hours of downtime each year. Therefore, especially for companies
as mentioned above, the value of availability and the consequences of IT failure can justify
almost any cost.

In a study commissioned by Dimension Data (UK) — in partnership with technology
vendors InfoVista, OPNET, and EMC? — it was taken 200 interviews with companies
listed on the FTSE Group! (FTSE Group, 2009), in order to provide a real depth of insight
into the issues of I'T operations management (WHITEPAPER: IT Operations Management
Solutions, 2005). From such survey, it was reported that, on average, a company will
lose 235 hours per year in different faults, or nearly 14% of a typical man year (1,725
contracted hours). More precisely, it was established that, on average, 5.3 network faults
were reported in three months, with an average resolution time of 2.3 hours. Server faults
were slightly less common, with the same average resolution time. Finally, application
faults were the main cost, taking each one an average of 4.5 hours to be solved. Since it
were reported that there are around eight application faults per three-month period, strong
impacts may be faced if no back-out plans are previously defined.

Nevertheless — and not being a surprise by talking about big enterprises — all areas,
from servers to networks and applications, are monitored for faults by the majority of
companies interviewed in the survey. However, only 22% of firms currently use root
cause analysis tools to identify the exact point of failure and recover the system in some
manner — even if it has simple actions.

Talking specifically about changes, and still based on the mentioned survey, 50% of
the CIOS admitted they lacked effective change management processes (also the stan-
dards) and tools. In addition, only 8% of all companies reported plans to make an invest-
ment in change management solutions in the years to come.

Observing such survey results, despite it was released in the end of 2005, it gives
concrete values to conclude that change management systems with recover capabilities
tend to be very promising in the near future. This conclusion can be strengthened in a
survey commissioned by Hewlett-Packard and conducted by GCR Custom Research in
the year of 2007 (HEWLETT-PACKARD NEWS WEBSITE, 2007). Such survey shows
that backup and recovery efforts, with an improved I'T management, are one of the targets
for higher investments in the future years. It means that, comparing both studies in a
rude manner, we can note a possible growth in the interest of IT management standards
(including change management) and recovery capabilities.

2.3 ITIL and Change Management

The Information Technology Infrastructure Library (ITIL) is a set of concepts and
policies for managing information technology (IT) infrastructure, development and oper-
ations. It is published in a series of books, each one covering an IT management topic.
Basically, the ITIL library is divided by the ITIL Core, which provides best practices ap-
plicable to organizations of all sizes and types; and the ITIL Complementary Guidance,
which comprises a complementary set of publications with guidance specific to industry
sectors, organization types, operating models, and technology architectures (ITIL, 2009).

'FTSE is a British provider of stock market indices and associated data services. It is a private company,
50/50 joint venture of Financial Times and London Stock Exchange.

21

The ITIL Core is composed of five books, which presents best practises and guidelines
for service management: Service Strategy, Service Design, Service Transition, Service
Operation, and Continual Service Improvement.

The ITIL Service Transition book relates to the delivery of services required by the
business into live/operational use, and often cover the “project” side of IT rather than
the whole picture of business (IT Infrastructure Library, 2007a). It includes the manage-
ment of IT changes, in a subject called Change Management. Here, change means any
modification made to the IT environment in different levels. From the high level, as to
implement new services due to business requirements, to the finest level of granularity, as
to install a new router firmware or configure a new system user.

To accomplish a change, ITIL recommends to follow a set of steps (IT Infrastructure
Library, 2007a). These steps are explained in order as follows:

1. Create RFC: a Request for Change (RFC) is raised by a change initiator or opera-
tor, which is an individual who requires the change. As mentioned before (Subsec-
tion 2.2.1), one of most critical information recommended by ITIL for a successful
and complete RFC creation is the existence of a back-out or remediation plan.

2. Record RFC: the newly requested change is recorded in the Configuration Man-
agement Database (CMDB). Some information must be recorded in the change cre-
ation process (e.g., change description, reason for the change, contact information
of the person who proposed it, back-out or remediation plans), whereas other in-
formation are continuously created/updated throughout its lifecycle (e.g. executed
actions).

3. Review RFC: the RFC is evaluated regarding the completeness, status (e.g., ac-
cepted, rejected, under consideration), and technical or financial feasibility. Changes
that are not in accordance with the evaluation may be filtered and returned to the
change initiator, as well as with a reject report.

4. Assess and Evaluate Change: the RFC document is evaluated by the Change Ad-
visory Board (CAB). The CAB is a group of people capable of analyzing and as-
sessing changes from a technical as well as from a business point of view.

5. Authorize Change: the CAB actually authorize the change to be deployed.

6. Plan Updates: the required actions needed to deploy such RFC are planned, up-
dated, and tested.

7. Co-ordinate Change Implementation: the RFC is forwarded to a team who actu-
ally deploy the changes over the IT infrastructure.

8. Review and Close Change Record: by the end of the deployment, results should
be reported for evaluation to the team responsible for managing changes. Incidents
or other managed failures need to be explicitly included in the report for a future
evaluation.

In the change management process, all change activities shoud be executed in con-
comitance with the Configuration Management. For that purpose, ITIL recommends
the use of Configuration Management Systems (CMS) and Configuration Management

22

Databases (CMDB), to manage information about all configuration items involved with
Service Management processes.

In the context of this thesis, ITIL recommendations are followed related to the Change
Management area. However, other promising standards that cover IT management may
be observed. The Control Objectives for Information and related Technology (COBIT),
as the ITIL, is a set of best practices (framework) for IT management created by the
Information Systems Audit and Control Association (ISACA), and the IT Governance In-
stitute (ITGI) in 1992 (ISACA, 2009). Basically, COBIT is focused on the control, while
the ITIL concentrates on the processes, the fact which most of times makes COBIT to
be perceived as a kind of audit framework. Also, another COBIT characteristic is the
use of IT metrics and critical success factors. However, COBIT’s books Control Prac-
tices, IT Assurance Guide, IT Governance Implementation Guide, and User’s Guide for
Service Managers have grown to offer a credible alternative to ITIL (RIDLEY; YOUNG;
CARROLL, 2004).

Despite that COBIT demonstrate to be a promising standard to IT management, ITIL
best practises are followed in this thesis mainly due to: a) big companies such HP, IBM,
and EDS uses ITIL recommendations over its products; b) ITIL describes processes, and
it is important to be based on consolidated and well-known steps when defining recovery
procedures.

23

3 ROLLBACK SOLUTION

In this chapter we present our solution for rollback support in IT change manage-
ment systems. We first describe a general I'T management architecture where the rollback
support is introduced. We then discuss how atomic actions take place and how system ad-
ministrators are able to group critical activities in atomic groups. Finally, we present the
modeling of IT infrastructure classes to support the proposed approach and the algorithm
used to generate rollback plans.

3.1 IT Change Management Architecture and Rollback Support Com-
ponents

Although there is not a single, widely employed architecture to support IT change
management, it is possible to identify a set of basic functional components that, grouped
together, form a general architecture. We introduce in such an architecture complemen-
tary elements to explicitly support rollback in change plans. Figure 3.1 depicts the general
IT change management architecture highlighting in black the required components for the
rollback support.

Change requester Operator

Rollback
Change support
designer generator

Change
deployer

Definitive Rollback
Media Library engine
Deployment
Change management system system
k_/_/——v

Managed IT infrastructure

E—!lJ

Figure 3.1: IT change management architecture

The specification of a new RFC begins when the change requester describes, in a
high-level document, his/her change necessities. This is achieved by interacting with the
change designer, which is a tool that helps the change requester to fulfill the RFC doc-

24

ument in a clear and consistent way. It is important to remember that an RFC express
what is required, but not how to achieve that. This is initially defined when the operator,
also interacting with the change designer, come up with a preliminary change plan. For
example, consider the statement “install a new Web-based project management system on
server A”, which is typical of an RFC. Here, nothing defines whether a new Web server
is needed or if an additional database must be created prior to the installation of the Web
application; this is, however, informed by the operator that, consulting the Configura-
tion Management Database (CMDB) is able to check whether Web servers and required
databases are available.

The output of the change designer is then a preliminary change plan that needs to be
further complemented. The change planner component is the one responsible for auto-
matically computing an actionable workflow that defines the final change plan. The algo-
rithm for such computation has been already addressed by other authors (KELLER et al.,
2004) and is the subject of a complementary research of our group (COSTA CORDEIRO
et al., 2008). The change planner, in its process of complementing the preliminary change
plan, needs to consult two other components: the Configuration Management Database
(CMDB) and the Definitive Media Library (DML). CMDB stores updated information
about the managed IT infrastructure, enabling the change planner to discover which el-
ements must be manipulated in order to fulfill the original RFC. The Definitive Media
Library, on its turn, maintains information about software dependencies, which is con-
sulted during the installation/uninstallation process. Actually, DML is a secure place that
stores and protects definitive authorized versions of all media for Configuration Items
(CIs). Therefore, DML does not only store software, but also hardware information and
their dependencies. For example, CMDB lists the software already available on server
A, but it is the DML that informs, during the installation process, that the Web-based
management system requires a pair of Web server and database to work properly.

In a change system with no rollback support, the workflow computed by the change
planner would be ready to be submitted, upon the operator’s order, to the deployment sys-
tem. It then executes, using off-the-shelf solutions, the changes over the IT infrastructure
(according to the change plan). One central point of this thesis is that, in this case, if
any fault occurs during the change plan deployment, the system will possibly enter in an
inconsistent state, because no reactions to faults are usually defined. In our approach, we
address this issue by complementing the change plan with rollback information. That is
accomplished through the rollback planner component. As can be seen in Figure 3.1, it
takes as input an actionable workflow as well as additional marks informed by the op-
erator. These additional marks allow the rollback planner to create an enhanced version
of the original change plan, that now includes marks to support rollback actions if fails
occur.

Internally, the deployment system is composed of: rollback support generator, change
deployer, and rollback engine. The rollback-enabled change plan is submitted to the roll-
back support generator that creates internal structures to support rollback actions (ex-
plained with more details in Section 4.2), while the change deployer performs changes
over Configuration Items of the IT environment. If any fail occurs in the change pro-
cess, the rollback engine is invoked and executes such rollback plan for the failed activity,
following the marks provided in the rollback-enabled change plan.

Whether a change plan has been successfully deployed or a fail triggered a rollback

procedure, the deployment system must update CMDB at the end of the process. This en-
sures that the configuration database will provide an updated view of the IT infrastructure,

25

which is required by the change planner to compute future change plans.

3.2 Marking Rollback-enabled Change Plans

As mentioned before, the operator is responsible, in a rollback-enabled IT change
management system, to mark the original change plan in order to complement it with
rollback information. To present how these marks are defined, we first need to observe
how RFCs and change plans are internally organized.

A single RFC is composed of one or more operations. Each operation is an indepen-
dent element that must be executed to accomplish the change requested in the RFC. Since
operations are independent from each other, two different operations of the same RFC can
be executed in parallel. Internally to each operation, a single change plan is found, which
means that one change plan is associated to each operation. In fact, all change plans from
the same RFC could be merged into a single one to optimize the deployment process, but
for the sake of simplicity we assume here that RFCs with more than one operation will
present one change plan for each operation. Finally, each change plan is composed of a
set of activities that are chained to form the final actionable workflow.

In order to support rollback-enabled RFCs, we define that some elements (RFCs, op-
erations, or activities) can be marked as atomic elements using atomicity marks. The
simplest case is the one where the whole RFC is marked as atomic. It means that, if any
problem happens during the execution of any of its change plans, all activities must go
backward, moving the IT infrastructure to the state previous to the RFC deployment. If no
mark is defined at all, any failure will abort all change plans in execution, but no rollback
action will be performed, leaving to the system administrator the responsibility of leading
the infrastructure back to a consistent state.

Limiting the atomicity marks at the RFC level may be too restrictive in some scenar-
i0s. Consider, for example, that one does not want to uninstall a Web server in the event
of a failure in the process of installing an associated database. We thus further define that
besides marking an RFC as atomic, one can mark each operation of an RFC as individ-
ually atomic as well. In this case, only the change plan of a failing operation rolls back,
leaving the change plans of other operations untouched.

Finally, atomicity can be defined at the activity level. Here, if an activity defined as
atomic fails, it will only rollback itself, but the next subsequent activities will be executed.
If a failing activity is not atomic, no rollback is executed, but the associated change plan
is aborted at all. An additional mechanism is incorporated at the activity level: we define
that a group of activities that are closely related to each other may form an atomic group.
Once any activity of such a group fails, all other activities in the same group must roll-
back. Using atomic groups, one can define an atomic operation in two different ways: (a)
by marking, at the operation level, the operation as atomic, or (b) by grouping all activ-
ities inside of an operation in a single atomic group. The option (a) is obviously easier
to choose, but the fact that (a) and (b) are a possible indicative that, in fact, an atomic
operation is a particular case of an atomic group composed of all activities from a single
change plan.

In order to exemplify the use of atomicity marks, Figure 3.2 depicts how atomicity
is defined at the aforementioned three levels, i.e., at RFC, operation, and activity levels.
Figure 3.2-a shows an RFC composed of three operations: OP1, OP2, and OP3. In this
case, the whole RFC is marked as atomic, implying that any problem on any operation
will revert all actions executed. Figure 3.2-b presents the same RFC and operations, but

26

@ RFC o RFC

[orr | [or2] [om] [Torr | [or2 | [om |

Figure 3.2: Examples of atomicity marks and atomic groups

atomicity is defined differently now. If OP1 fails, its internal actions will be undone, but
it will not affect other operations of the RFC. The same happens with OP2. Since OP3 is
not marked, any fail in its actions will abort the associated change plan without executing
any rollback procedure. Figure 3.2-c presents marks at the activity level. In this case, a
change plan composed of activities numbered from 1 to 6 has two atomic groups: one
formed by activities 1 and 2, and another formed by activities 4 and 5. Note that, in the
first group, the activities are executed sequentially. In this case, if activity 2 fails, activity
2 itself and activity 1 are reversed. After that, the workflow continues evolving to the
execution, in parallel, of activities 3, 4, and 5. In the second atomic group, if activity 4 or
5 fail, both will be undone. In this case, activity 3 is not affected at all. Once activity 3
finishes, and activities 4 and 5 rollback or complete successfully, activity 6 will be ready
to be executed. In the event of a failure in activity 3, it is important to emphasize that the
whole change plan is aborted, skipping the execution of activity 6. Finally, Figure 3.2-d
shows the case where the whole change plan is made atomic. The same effect can be
achieved by defining that the operation that generated this change plan is atomic, in this
case without requiring the definition of an atomic group of all operations’ activities.

3.3 Rollback Model

In order to enable change plans to include rollback support, it is necessary to model
change plan information with rollback in mind. As mentioned before, a change plan con-
sists in a workflow of activities that when executed lead the managed infrastructure to
a new consistent state. Therefore, for our solution, a model for change plan informa-
tion must thus express actionable workflows that include rollback support. We design
our solution thus defining a Requests for Change and Change Plan Model. Our model is
strongly based on the change management guidelines presented in the ITIL Service Tran-
sition book (IT Infrastructure Library, 2007a), and on the approach to specify workflows
defined by the Workflow Management Coalition (WfMC) (The Workflow Management
Coalition Specification, 2007). It is not our goal here to stress which information is re-
quired to fully express workflows. Rather, we are interested in modeling the information

27

required for rollback support in a change management system. Considering these assump-
tions, Figure 3.3 presents a partial view of the defined model, highlighting the elements
required for the rollback support, while omitting others that are not related to rollback.

RFC Operation

-name: String -name: String
-reason: String 1 * | -priority: int 1
- priority: int ¢ -type: int ChangePlan =
- status: int operatior™ | -, ., changePlan» 1

-type : String 1
oo allActivitySet”
*

1

[N

-

<« allActivity

A g
V) Y

1
aIITransitioﬂ'T
*

* fromp * -
Transition
Information

AtomicOperation Activity

+ 4o =

| activitySet).

BlockActivit
SubProcess Block Activity Y
Specification

|-

Leaf Activity

hangeP!
JR— guﬁg?ﬁceig > D CPM: Change Plan Model
D RFCM: Request for Change Model
-groupName : String [RV: Rollback Model

Figure 3.3: RFC and change plan model with rollback support

An RFC is composed of Operations that, in turn, are composed of one or more
ChangePlans. RFC and Operation hold more abstract information of a change
request, and thus form the Requests for Change part of our model. An AtomicRFC
is a specialized RFC whose final actions must be treated as a single transaction by the
deployment system, i.e., one marks an RFC as atomic by using the At omicRFC class.
In the same way, an AtomicOperation is an Operation whose associated actions
will rollback in the event of a problem in their deployment.

Each operation in an RFC has a change plan composed of ActivitySets, which
are groups of one or more activities intended to implement a change plan. An Activity
can be either a low-level, non refinable activity (LeafActivity), which is the lowest
level of granularity that an action can represent, or grouped activities (SubProcess
Definition and BlockActivity), which are activities composed of another activ-
ity set or by a new change plan. The TransitionInformation class models how
activities are chained in the final workflow. The classes ChangePlan, ActivitySet,
Activity, LeafActivity, TransitionInformation, SubProcess
Definition, and BlockActivity form the Change Plan part of our model.

In order to define an atomic activity, one should mark it using the AtomicLeafActivity
class. Since several atomic activities can be grouped together in atomic groups, each
atomic activity needs to provide the identification, in a string, of the atomic group it be-
longs to. If no name is provided, the activity will belong to a group formed solely by
itself. Notice that it is not possible, for a single activity, to be part of more than one
atomic group. If that was possible, the activity would work as a mechanism to merge the
rollback behavior of those groups. That is so because if one atomic group rolls back, the
common activity of both groups should rollback too, leading the activities of the second
atomic group to rollback as well.

28

It is important to note that the design of rollback actions is made by dealing with low-
level activities (LeafActivity class). As mentioned before, at this level, activities
should carry the information of what action should be performed and where. This infor-
mation is expressed using the Activity Modeling Notation (AMN) proposed by Cordeiro
et al. (COSTA CORDEIRO et al., 2008), and is filled in as a sentence into the attribute
description at the LeafActivity class. In Some examples that AMN can handle
are uninstall SoftwareElement <X> at ComputerSystem <Y> with <parameters>, con-
figure ManagedSystemElement <X> at ComputerSystem <Y> using Setting <Z> with
<parameters>, and stop Service <X> with <parameters>. The AMN can easily be
extended to express almost any kind of actions performed over an IT infrastructure, just
being necessary to define the correct interface between the deployment system and man-
aged elements.

3.4 Producing Actionable Rollback Plan Workflows from Marked
Change Plans

In order to produce actionable workflows to deploy an RFC with rollback support,
it is necessary an algorithm to generate such rollback plans. In the proposed solution,
atomic marks are attached to workflows in order to associate activities to atomic groups.
However, plans to undo such previously marked activities must be generated. Therefore,
in this section we will present the proposed algorithm that takes as input a marked change
plan, and generate as output a set of rollback plans.

In order to explain the rollback plan generation process, we define an example that is
used until the end of this section. After the process of marking change plans with atomic
information, it is possible to assume that the final change plan result is shown in Figure
3.4-a, i.e., a workflow having eight activities and two atomic groups named AG1 and
AG2.

Atomic Groups:
AG1:1,2,4,7
AG2:5,6,8

Figure 3.4: Change plan workflow example with atomic groups and the reversed form

The first step to generate rollback plans is to reverse the change plan workflow. The

29

reversion process is an important step towards the generation of rollback plans, since it
preserves workflow transitions and the dependency order. It means that if activity 8 fails
(Figure 3.4-a), the generated rollback plan will first undo activity 8, following the roll-
back of other activities respecting each dependency relationship. The reversion process
i1s made by using the information contained in TransitionInformation class (pre-
sented in Section 3.3). In fact, the TransitionInformation represents transitions
between activities, including attributes as from and fo, which are, respectively, source
and destination. In this way, to reverse the whole change plan workflow, the algorithm
needs to change the order of the mentioned attributes. Figure 3.4-b shows the result of the
reversion process following the introduced change plan example (Figure 3.4-a).

The identification of existing atomic groups is made in the reversion process. In fact,
the reversion process walks through the workflow, visiting all activities and building a
new reversed change plan. Therefore, at this point it is possible to retrieve all the atomic
information to save processing. Such atomic information is retrieved from the classes
named AtomicRFC, AtomicOperation, and AtomicLeafActivity. During
the reversion process, the algorithm will only collect data from groupName attribute
(AtomicLeafActivity), butjustif such activities do not belong to any At omicRFC
or AtomicOperation class. That occurs because there are different ways to express
atomicity in higher levels (i.e., RFC and operation levels). For example, if an operation
1s marked as atomic, all activities will logically belong to the same atomic group, being
unnecessary to walk through it. On the other hand, the algorithm will collect data from
groupName if such activities do not belong to any atomic operation or atomic RFC.

The second step to generate rollback plans consists in analyzing the existing atomic
groups. The analysis is made by recursively removing activities following a set of premises.
To achieve that, the algorithm takes each activity that belongs to an atomic group and,
following such premises, builds a new workflow which is, in fact, the rollback plan. It is
important to note that a different rollback plan is generated for each activity, using a re-
versed workflow copy to the algorithm execution. Thus, the algorithm removes activities
that match the following premises:

e Activities that do not belong to the same atomic group;

e Activities that do not have atomic group, and consequently are represented by the
LeafActivity class —and not by AtomicLeafActivity;

e Activities that belong to the same atomic group, but succeed the activity which is
taken to generate the rollback plan.

The first premise discards the execution of any rollback action related to other atomic
group. In other words, the first premise has the function to maintain the atomic group
concept: if a failure occurs in any atomic group participant, only activities that belong
to that group will have rollback actions. The second premise discards any activity that
was not marked as atomic in the change plan. As a consequence, such activities will not
have any rollback actions, and being unprotected from any type of failure. Finally, the
last premise guarantees that activities which have not been performed in the change plan,
will not be affected by rollback actions triggered by any rollback plan. For example, if
the activity 4 in the change plan workflow fails (Figure 3.4-a), even belonging to the same
atomic group AG1, the algorithm will generate rollback actions to activities 4, 2, and 1,
not adding rollback actions to the activity 7, which has not been executed yet. Figure 3.5
shows rollback plans for activities 7 (Figure 3.5-a), 8 (Figure 3.5-b), and 4 (Figure 3.5-c).

30

Rx — Rollback actions
D — Dummy activities

Figure 3.5: Rollback plan workflows for activities 7, 8 and 4, respectively

It is possible to note that discarded activities appear as “dummy activities" in the gen-
erated rollback plan workflows. A dummy activity is characterized by the lack of any
kind of action, despite of having the representative activity structure in the rollback plan
workflow. This approach has been used due to the high processing in rebuilding transi-
tions, if an activity is completely removed from the workflow. In other words, supposing
the use of a complete activity removal, the rollback plan shown in Figure 3.5-a will be
the following: R7 with a split transition (parallel) to R2 and R4, and then a join transition
from R2 and R4 to R1. In order to generate the cited workflow without dummy activities
(removing activitities completely), the algorithm would need to iterate again over each
transition, finding out which activities are in parallel or in sequence. In this way, the al-
gorithm would need to rebuild the workflow, wasting processing time. Therefore, the use
of dummy activities recycles the change plan workflow structure, leading the algorithm
to walk through the workflow only once to match the presented premises.

Finally, it is important to note that the second step (analyzing atomic groups) is exe-
cuted over a reversed workflow copy for each activity belonging to an atomic group. It
means that, for each atomic group participant, the algorithm will generate a new reversed
workflow copy, and consequently produce a rollback plan for that activity. However, roll-
back plans can be generated in an identical manner for two or more activities, depending
on where the activity is located in the change plan workflow. An example to demonstrate
the occurrence of this fact can be observed in the rollback plan for the activity 4 (Fig-
ure 3.5-c), that is identical to the activity 2 rollback plan. Detecting the occurrence of
identical rollback plans, for a possible optimization, is a subject to be addressed in future
work.

31

4 PROTOTYPE IMPLEMENTATION

In order to prove concept, we have developed a prototype system called CHANGELEDGE
that implements our rollback proposed solution. Our implementation is based on Web ser-
vices technologies and standards, mainly due to the following reasons:

e Web services is a widely accepted solution for interprocess communication over the
Internet;

e Several organizations in the industry use Web services for internal communication,
and have been increasingly adopting them for the communication between services
with other different organizations;

e Network and service management can be implemented using Web services, and
some important standards to support that (e.g., WS-Notification, WS-Management,
etc.) seems to have a good approval by both academia and industry;

e Standards for Web services composition, such as the BPEL, are gaining popularity
in the industry as well, and can thus be used to coordinate distributed actions over
an IT infrastructure.

In this context, our implementation is based on the following Web services solutions:

e At the final Configuration Items side, we assume that target elements that need to be
managed (e.g., hosts, servers, clusters, storage) implement a management interface
as a Web service. It can, for example, be materialized following the Configura-
tion Description, Deployment, and Lifecycle Management (CDDLM) specification
(The GGF CDDLM working group, 2008). In our assumption, such management
interface needs to be able not only to perform actions over the Cls, but also to de-
tect eventual errors. Once such management interface detects any failure during
the deployment, it should generate an exception through the Web service for whom
invoked the execution of the action. Associated with the Web service management
interface, we assume that a Web Service Description Language (WSDL) (W3C
Note, 2009) document is also available, describing the management interface itself;

e In order to deploy the required changes over an IT infrastructure, actionable work-
flows are described in BPEL documents that can be read and executed by a BPEL
engine, such as ActiveBPEL (Active Endpoints, 2009). The BPEL engine operates
as the deployment system of the previously presented architecture. The communi-
cations with the BPEL engine are accomplished using Web services as well;

32

e The change management system is implemented as a simple Web application ac-
cessed by both change requester and operator, and works as the Web service client
of the deployment system.

In addition, the prototype interface uses Flash technologies that enable an easy inter-
action for building and marking change plans, for example. The interface was developed
in Flex', and is supported by the Apache/Tomcat. As a consequence, for each interaction
with the Web interface, Tomcat invokes a service through Java, the language employed to
implement the system’s kernel. The interface allows defining atomic marks in the three
RFC levels, also having the possibility to view the generated rollback plans. The use of
the prototype with the interface is presented in the first evaluation case study scenario
(Subsection 5.1.1), where the scenario is constructed using the implemented system.

The following subsections present BPEL constructions used in the rollback plans that
are expressed in BPEL documents, and how the deployment system is internally imple-
mented.

4.1 BPEL Constructions to Support Rollback

While executing a change plan, the deployment system must keep track of the orga-
nization in which actions will be performed. To orchestrate the system such as expressed
in a given workflow, four BPEL constructions have been used: sequence, flow, if,
and 1inks. The sequence is a BPEL construction which arranges and executes all of
its enclosed activities in an ordered list. F'1ow is a construction that executes all activities
inside it in parallel. It means that two or more activities can be defined to start at the same
time. F1ows are complete only when all the activities in the constructions have also com-
pleted. They can be used in two situations: to explore parallelism by executing multiple
activities simultaneously in one machine, or to invoke actions (without dependencies) dis-
tributed in different machines. The i f construction, as the name suggests, implements the
conditional branch, which is common in most programming languages. Finally, 1inks
is a basic BPEL construction to create links between activities, representing transitions in
a workflow. BPEL link construction is the main controller of the executing order of the
actionable workflow.

The BPEL invoke activity has been used to represent a workflow activity, allowing
to call a remote Web service to perform the given task. It can thus be used to perform
remote operations using two-way (request-response) or one-way messages. In a one-way
communication, the invoker sends a message and does not wait for any response. It can,
however, be used in a two-way fashion if an explicitly provided receive activity is
placed to retrieve the result of a remote call, thus implementing an asynchronous com-
munication. In other words, the receive activity waits for an input (remote webservice
call) just after that invoke has called a Web service. In the request-response communica-
tion, a message is sent by the BPEL engine and the processing of the workflow is blocked
until a response arrives. In this case, the communication is synchronous and timeout-
related issues must be taken into account. Our prototype supports both synchronous and
asynchronous communications combining sequence, flow, if and 1inks to guide
the execution of workflows.

Finally, in order to detect configuration problems and thus trigger rollback actions,
additional BPEL constructions have been employed. For example, an invoke activity

! Adobe Flex version 2.0. More information is available at http://www.adobe.com/products/flex/.

33

can include fault handlers to deal with errors associated with the invoked service. In this
case, the invoke activity must be added to a scope and errors can be caught by a catch
all construction at execution time, deviating the normal execution flow to a different one
that handles the failure. Since we assume in the solution that rollback actions do not fail,
no additional fault handlers are attached to a catch all construction.

4.2 Deployment System

The deployment system is implemented in Java and organized internally in three
blocks already introduced in Figure 3.1: the rollback support generator, the change de-
ployer, and the rollback engine. The complete diagram for the deployment system is
presented in Figure 4.1.

Rollback support generator

Import
WSDL
Add rollback
support

I
Validate
WSDL
Create rollback
actions
Create depl.

Convert to
descrintor

Change deployer Rollback engine

Build depl. Select the
file rollback plan
¥
Execute
change plan <] Rollback
Update
CMDB

BPEL

Deployment system

Figure 4.1: Deployment system

First, the rollback support generator receives a marked change plan, and after reading
the internal information, imports the set of WSDL files from all the endpoints that will
be affected by the change plan. The WSDL files are then validated to guarantee that all
required resources and operations are available in the managed elements. In this step, a
verification is also done in order to determine what kind of communication will be used
to perform each activity (synchronous or asynchronous).

Next, the workflow translation is used to convert the original marked workflow into a
BPEL workflow. In our implementation, the change plan file is already a BPEL document
that contains no rollback support but only atomicity marks. In order to transform these
marks in BPEL rollback structures, the add rollback support component is issued. In
fact, the add rollback support component is where the rollback algorithm is implemented
(Section 3.4), producing not only the rollback-enabled change plan that is able to catch
activity failures, but also rollback plans for each activity.

Finally, with all information ready to be delivered for execution, the create deployment
descriptor component creates a complementary file called Process Deployment Descrip-
tor (PDD) required by the ActiveBPEL engine (which we also used in our implementa-
tion) to execute a whole actionable workflow. Therefore, the complete set of files is then
forwarded to the change deployer. Just to mention, the ActiveBPEL engine is a robust
runtime environment capable of executing process definitions created for the Business
Process Execution Language (BPEL) standard. Besides that, it is an open source engine,
allowing to extend its functionalities if needed.

The change deployer expands the BPEL engine functionality by adapting its resources
to the deployment system intention. Primary, it builds a file packing of all previously

34

generated files (WSDL, BPEL, and PDD), called Business Process Archive File, in order
to turn the change plan fully available for execution. Finally, ActiveBPEL engine is called
to execute the change plan effectively. In fact, the ActiveBPEL engine is responsible for
executing the change plan and handling the faults. Once a fail is detected, the normal
flow of the change plan is stopped and the rollback engine is called. The first thing is to
select the correct rollback plan, depending of the failure source. After that, the rollback
engine actually performs all rollback actions that belong to the selected rollback plan.
In other words, if a failure occurs in the install apache activity, for example, the change
deployer will handle the failure using already mentioned catch all BPEL construction,
and will invoke the rollback engine. Afterwards, the rollback engine performs all rollback
actions accordingly to the fail source by selecting the generated rollback plan. Therefore,
the rollback engine is able to correctly perform the rollback related to the install apache
activity failure.

In this thesis we assume that such rollback actions are operations that undo the failed
activities. For example: if an original activity was an install instruction, the reverse of
it will be an uninstall instruction. In addition, assuming that the configurable items
interfaces are implemented in Web services, we also assume that for each remote action
there will be another action able to undo the first one. If that does not happen, however,
the rollback procedure itself may lead the managed system to another unpredicted state.
It is thus crucial that not only the rollback support works properly, but that the endpoints
present reversible operations as well. These reversible operations are aligned to Recovery-
Oriented Computing (ROC), where the undo/redo is one proposed recovery technique that
is able to heal a high percentage of failures (CANDEA et al., 2004). Figure 4.2 shows that
such technique is the closest to the manual repair. However, the ad hoc manner may be
not an opportune solution when the time of recovery is considered, and as a consequence
being a costly solution. The system undo/redo is also costly (in terms of operations), but
less than ad hoc manual technique, and with the advantage to be automated.

~ Ad hoc manual

= \
System-
. level
undo~

Cost of recovery

icrareboot)

Y

Percentage of failures cured

Figure 4.2: Cost of recovery X Percentage of failures cured, according to ROC

As a matter of fact, and being more generic, the proposed solution uses a kind of
log-based recovery scheme as a discussed technique in the Section 2.1. The main char-
acteristic of such technique is that a process can recreate its pre-failure state even if this

35

state has not been checkpointed, by logging and replaying the nondeterministic events
in their exact original order. Such characteristic reflect in part the CHANGELEDGE im-
plementation and the whole solution as well. The deployment system executes a plan
where activities may be performed over different nodes, or in the context of this thesis,
configuration items (CIs). If a fail occur, the deployment system detects such failure and,
following a rollback plan, replay such actions in the reverse order respecting the exact
original workflow. The difference is that the deployment system will not reach the pre-
failure state by replaying activities occured in past changes. The system will return to the
pre-failure state by replaying the activities of the current change plan, undoing what was
done over the IT infrastructure.

In actual IT scenarios, a variety of operations/changes over IT environments may keep
some side effects during the recovery process of systems. This side effects are, for ex-
ample, configuration files that may remain after an uninstall, other services that may be
affected if the DNS daemon is stopped, or entries that are created in the system reg-
istry during an install process. However, since this research assumes the existence of the
CMDB, which stores updated information about the IT infrastructure, it is possible to
map exactly what is modified and by which action some managed element may be mod-
ified. This assumption is completely aligned to ITIL recommendations (as well as the
whole solution proposed), and turns possible the construction of consistent rollback plans
respecting dependencies and also considering effects.

After performing a rollback, the execution flow may return to the original change plan,
or then evolve directly to its end, depending on how the atomic activities and groups have
been defined by the system operator. The last action, as already mentioned, is to update
CMDB (configuration management database) to reflect the new state of the managed IT
infrastructure.

36

5 EXPERIMENTAL EVALUATION & ANALYSIS

To evaluate our proposal, we have conducted two experimental deployments consid-
ering real-life scenarios. The first scenario (Section 5.1) is characterized as a more quali-
tative evaluation, involving a high-level environment and company’s strategy. In addition,
we show the RFC creation process expressing atomic elements using the CHANGELEDGE
interface. The second scenario (Section 5.2) aims to present a more quantitative evalua-
tion, in order to analyze the algorithm that produces rollback plans.

5.1 Case Study #1: Improve the Emergency Load Threshold and
Company’s Resources

The case study is based on a telecommunication company that provides some man-
agement services to its customers using the Internet. To illustrate, these services are
basically bill payments, access to the voice mailbox, send free online text messages to
mobile phones, and others. Therefore, this case is focused on how the rollback solution
is applied, taking into account the company’s business strategy. As follows, Subsection
5.1.1 depicts the study case scenario while in Subsection 5.1.2 some analyses regarding
the change deployment are presented.

5.1.1 Scenario

In order to cope with the heavy demands of the provided services, a given company
employs a high-performance cluster composed of 10 nodes. Each node is equipped with
a Dual Core Xeon processor and 2GB of RAM memory. In addition to the cluster, an
authentication server responsible for customer’s authentication is available as well. Fi-
nally, an HP 9000 server, configured using optimal performance options, hosts a MySQL
database used to persist the information manipulated by the provided services. This IT
environment is responsible for handling users’ request, always respecting the Emergency
Load Threshold (ELT). The ELT is an appropriated performance threshold that describes
the difference between the maximum system load capability and the system load level
in rush times. For the mentioned infrastructure, the ELT was calculated in 50%. This
difference may appear too high, but since the whole IT environment is a big part of their
business, abrupt variations must be taken into account not to compromise the entire sys-
tem. The ELT is monthly calculated and measured considering the average number of
customers’ accesses, and typically varies when the company releases a new service. Once
the ELT decrease, the availability of the provided services may be severely compromised.

As soon as the company intends to release a new service, an increase in the access load
is expected. The company quantify and qualify such increase through a poll estimative.

37

It was verified that, with such new service, the ELT will significantly decrease to 30%
— which breaks the company ELT policy. The company policy says that the ELT value
must not fall below 45%. In order to support the load increase and maintain the system
health, the company decides to upgrade its IT infrastructure, and consequentially have
an ELT increase from 30% to 55%, having a comfort edge with additional 10%. It is
important to observe that the IT infrastructure was improved reflecting a strategic action to
release a new service, since the ELT could not remain in the same old value. Considering
this IT upgrade strategy, the previous decisions are materialized in the IT infrastructure
accordingly to the RFC document presented in Figure 5.1. Using the CHANGELEDGE
prototype, such RFC is created through the user interface that is shown in Figure 5.2-a.

RFC
name: Improve the ELT and Company’s
Resources
description: Renew software and
hardware for a better performance...

priority: High

= has operation

AtomicOperation Operation

name: Update Database Service name: Access Capability Upgrade
description: Update the database description: Install/Configure new
version... components...

priority: High priority: High

target: Database Server target: Access Cluster

E has changeplan E has changeplan

o Za

Figure 5.1: Case study RFC showed in a general and hierarchical view

In this RFC, two operations are defined: (a) a database service update, and (b) an
access capability upgrade. The first operation intends to improve the database reliability
by updating MySQL 4.1 to the Enterprise Edition (EE). The second operation installs a
new machine in the access cluster, and tunes the configuration of older machines in order
to increase their performance. After being created by the CHANGELEDGE (Figure 5.2-
b and Figure 5.2-d) and processed by the change planner, the operations generate the
change plans depicted in Figure 5.3.

Considering the first operation as a critical one, the change requester marks this opera-
tion as an atomic operation. He creates and marks the operation using the CHANGELEDGE
interface as showed in Figure 5.2-b. The second operation, however, is not marked (Fig-
ure 5.2-d); in fact, the change manager delegates that to the operator, which must define,
among the internal operation’s activities, those that must be grouped in atomic groups.
The operator, accessing the interface using the operator role, will mark activities as shown
in Figure 5.2-e which is part of the CHANGELEDGE workflow editor. Also it is impor-
tant to note that, in the first operation, since it is marked as atomic, the CHANGELEDGE
disabled the possibility of creating non-atomic activities, as shown in Figure 5.2-c.

The change plan for the second operation is composed of the installation of a new
machine with better hardware resources, and performance improvements on each old ma-
chine by the installation of additional memory. The first action of the change plan is to
physically install and configure the hardware for the new access cluster, including a RAM
installation for each old machine. This action is performed by humans, and we assume, in

38

7
Template Management Change Specification C
Y
RFC Settings RFC Operations ‘
Creating Activity
Operation Settings Operation Change Plan J Activity Settings | Participant Specification
Name: Update Database Service i Name: | Install MySOL EE
Description: Update the database r Type: Install -
» version from MySQL 4.1 to
q MySOL EE 4= | atomicity Information:
(a) f (=) Atomic Activity
Type: Install v ¥
Template Management Change Specification ! Atomic Group:
Priority: Required R 3
RFC Setti RFC Operations ! f << Back Next >> Cancel
etiings = ! Atomicity Information: () Non-Atomic Operation - . |) J
RFC General Settings l‘! (=) Atomic Operation
{ I i
i
Reason: Renew software and ‘
hardware for a better L
performance...),
Negatives Effects: none {
4
Priority: High v 1 (d)
/ -
Atormicity Information: (=) Non-Atomic RFC \ Template Management Change Specification D% (e)
() Atornic RFC i ;
- } RFC Settings RFC Operations E
Suggested Deployment Date 09/072008 g g Creating Activity
—_ {
Suggested Deployment Time: | 21:15.00 i Operation Settings Operation Change Plan Activity Settings | Participant Specification
e i M e il R f -
Name: Access Capability Upgrade H Name: Configurs Performance Opti
Description: Install/Configure new 4 Type: | Config —
J
> compaonents as RAM, ‘-_> Ataricity Infarmation: () Non-Atomic Activity

servers, etc
) Atomic Activity
@

Type: Install A 7 Atomic Group:| AG2 -
i
Priority: Required v i

I << Back | | Next >> J L Cancel J

Atomicity Information 0 Mon-Atomic Operation

Atomic Operation
(>

S B SO S

-
3
L
5

Figure 5.2: Creating the case study RFC using the CHANGELEDGE interface

this example, that no fail occurs. In this case, such activity can increase the ELT in 5% if
it succeed. As the change plan evolves, it executes the software installation/configuration
in parallel. The technical conditions are an important redfactor to define which activities
will participate in the atomic groups, which are set in our case study in a way to prevent
the system of being unavailable.

Considering this scenario, the operator evidenced that to guarantee the access cluster
availability and the new user access demands, the process of marking the change plan with
atomic elements must consider the following: the activity related to the new machine must
succeed (install and configure software), and the activities related to the old machines
(i.e., a configuration in performance options) may either succeed or fail. In other words,
the new machine must be successfully deployed to minimally ensure the access cluster
availability and the new release of the service, even having a failure in the performance
options related to old machines’ activities (independently). The result of the performance
options configuration (old machines) is not critical, because even with a failure, the access
cluster will remain available — whether or not a rollback action is performed. In this case,
the performance configuration will lead to an increase of 5% in ELT, which is not solely
sufficient to the new services release, but it does not affect the current company’s services
in case of failure. However, if all activities of both cases succeed, the release of the new
service is ensured. These evidences were taken by consulting the company’s IT Service

39

Update Database Service Operation Access Capability Upgrade Operation

Activity
id: 1
name: Stop DB service

target: Database Server ’

Activity
Activity id: 1
id: 2 name: Connect/configure
name: Backup Data new machine and RAM
target: Database Server target: HP 9000 rp7470 and
Dual Core Xeon machines
Activity /L
id: 2
name: Install MySQL EE T
target: Database Server Activity icGroup Activity. i p ActivityAtomicGroup
id: 3 id: 12
id: 2) !)
name: Configure name: Configure
name: Install and " i f i
erformance options
Activity configure the software r £ Dual C. P X LI] rer Otrml:nclecop |c>>(ns
arget: Dual Core Xeon :
id: 2 target: HP 9000 rp7470 8 N AG2 arge! N ua ::2 eon
groupName: roupName:
name: Restore backup groupName: AG1 group
target: Database Server

)

Activity
id: 2

name: Start DB service
target: Database Server

®

Figure 5.3: Parallel change plans

Continuity plans produced by the IT Service Continuity Management (ITSCM). One of
the ITSCM main objectives is to provide advice and guidance to all other areas of the
business and IT on all continuity and recovery-related issues (IT Infrastructure Library,
2007b). Therefore, to justify operator’s choices of marking the change plan with atomicity
information, some conditions are described as follows:

e If one activity related to an old machine fails, the system must rollback all other old
machines to the previous consistent and working configuration. In this case, one
machine configured differently from others may turn customer’s services unavail-
able. Performing the rollback just for old machines, in case of one fail, guarantees
at least the cluster functionality with a better memory specification (due to the ac-
tivity with Id number 1 in Figure 5.3). In other words, having a independent view
of this case, the ELT will be maximally increased in 5%;

e [f the new machine installation/configuration fails, the system must identify and
rollback its actions. In this case, the change plan will not be interrupted and the
access cluster will work normally as before. Therefore, the confort ELT edge of
55% for customer’s access demand, which was accorded to the new service release,
cannot be assured. On the other hand, the success of this activity guarantees the
company’s new service release, since the new machine configuration can elevate
ELT to 45% (additional 10%).

40

For these reasons, expressing consistent atomic marks in the activity level can guar-
antee at least the access cluster availability. In this case, the single activity related to the
new machine are set as participant of “Atomic Group 1" (AG1), and all activities related
to old machines, in turn, are set as “Atomic Group 2" (AG2).

5.1.2 Analysis

In the first operation performed by the change deployer, which is a database service
update (Figure 5.1), we suppose a failure in the MySQL Enterprise Edition installation.
Therefore, the change deployer invokes the rollback engine, immediately executing the
following actions:

1. Request the database server to rollback the installation: wipe out all installation
files related to the MySQL Enterprise Edition, resulting in the previous untouched
MySQL server;

2. Request the database server to undo the backup process;

3. Request the database server to start MySQL again.

Note that the backup data activity (Figure 5.1) does not affect the system for the
rollback procedure, meaning that whether undoing the backup data or keeping it will
make no difference.

The second change plan operation, which has the goal of increasing the access cluster
capability, has activities marked in atomic groups as presented in Figure 5.1. Supposing
a situation where the configuration of the first old machine fails (activity with id number
3), the change deployer identifies the failure inside the BPEL constructs, and invokes
the rollback engine, then ordering the atomic group to rollback by remotely invoking
rollback operations in all 10 old machines. The rollback requests happen in parallel, since
the change plan activities were also originally expressed in parallel.

Supposing that both the first old machine and the new machine
installation/configuration fail, the change plan will not succeed at all and the final re-
sult will not be sufficient to allow the release of the new service. Despite of that, the
failing requested change does not lead to the unavailability of all other services previ-
ously available because the access cluster is still active. The same case occurs if the new
machine installation/configuration fails, but the old machines performance configuration
succeeds: the access cluster is still active, but ELT was not increased to release the new
service. Finally, supposing that the new machine installation/configuration succeeds, the
result of the performance options configuration at old machines will not affect the new
service release, since it can increase ELT in 45%.

5.2 Case Study #2: Installing a project management web-based ap-
plication

In order to look into a more quantitative evaluation, we have constructed a real-life
scenario focusing in a low-level view for a better comprehension. The quantitative evalu-
ation consists in the measurement of rollback plan generation times. Such measurement
allows analyzing the feasibility of the proposed solution to generate rollback plans for
emergency changes, as an example. Moreover, it is important to observe that the compar-
ison related to the quantitative evaluation is made among two cases using our proposed

41

algorithm. This fact occurs since no other existing solution is available to construct a
comparison table with times and atomic elements. Therefore, Subsection 5.2.1 presents
the RFC environment, while in Subsection 5.2.2 presents times related to the rollback
plan generation algorithm with the proper analysis.

5.2.1 Scenario

As aresult to administrative requirements in a company, a change requester describes
an RFC with the following description: install the dotproject application into a new ded-
icated server. Among these administrative requirements we can highlight: the project
management team discontentment regarding the lack of several special features in the cur-
rent project management platform, and the high cost for maintaining a non open source
software that does not have all features needed. Therefore, it was decided to test a new
project management platform called dotProject, which has an open source license and can
be easily extended to company’s needs. Such RFC has one operation, and the generated
change plan has 16 low-level activities. The change plan workflow is shown in Figure
5.4, and is generated by the change planner component respecting dependencies inquired
at the Definitive Media Library. Also, the described change plan contains marked activ-
ities and its atomic groups, defined by the operator in the rollback planner component.
Since the main objective is to analyze the algorithm, the current case study will focus on
how plans are composed and less on company’s business strategy or constraints. In other
words, we are not concerned about operator reasons to define such atomic groups, or
about the importance of each activity in the change plan workflow. In fact, the concept of
atomic groups can be used in any way, being the operator the responsible for unfavorable
results regarding the misuse of rollback techniques. However, it is important to highlight
that ITSCM can guide the operator in such decision, as mentioned in Section 5.1.1.

|

-
A

(@

install

linux
v

P

2

P

|

AL

] » J - .]
install install install install install
apache2-utils php-common libjpeg62 zliblg mysal-common
' 3 g 3 ' 3 g 3 g 3
install install install install install
apache-common libapache-mod-php5 libfreetype6 libpng12-0 libmysalclient15off
4 ./
O O —@® %

install
apache
|

install
php5
|

install

libgd2-noxpm

install

mysql-server

¥
P

>
install

Atomic Groups:

AG1: dotProject, mysql-server
AG2: php5, libapache-mod-php5
AG3: apache, apache-common, apache2-utils

dotProiect

Figure 5.4: Change plan workflow with marked atomic groups

In this case study scenario, the operator defines three atomic groups that are covered
by rollback in any failure event. However, activities as install linux, install mysql-common
and others are susceptible to lead the infrastructure to an inconsistent state. The proposed

42

algorithm will generate 7 rollback plans — for all atomic group participants.

5.2.2 Analysis

Before the RFC deployment, the rollback support generator component needs to an-
alyze such atomicity information in order to generate rollback plans. After the aforemen-
tioned algorithmic process, all rollback plans are ready in the rollback engine component,
waiting for any failure event. As an example, we can highlight the generated rollback plan
for the install dotProject activity shown in Figure 5.5. We can observe that dummy struc-
tures (represented by brackets) are taking the most part of the workflow. However, the
rollback algorithm maintained the workflow structure, just removing actions off. In other
words, the algorithm just removed the semantic action from those activities, preventing,
for example, to perform an uninstallation that do not participate from the same group of
the install dotProject activity.

?

e

l l unin)stall l l
[l [] o= []

dummy dummy dummy
apache phps libgd2-noxpm

| —
[1—TI] []

dummy dummy
apache-common libapache-mod-php5 libfreetype6

dummy d—u‘mmy
apache2-utils pho-common

— &

uninstall
mysql-server

!
d-l:mmy
libpng12-0

dummy
libmysalclient150ff

dummy
mysal-common

da‘mmy
zliblg

dummy
libjpeg62

'
[]

dummy
linux

®

Atomic Groups:

AG1: dotProject, mysql-server

AG2: php5, libapache-mod-php5

AG3: apache, apache-common, apache2-utils

Figure 5.5: Rollback plan workflow for the install dotProject activity

Another critical element of this process is how long the algorithm takes to generate all
rollback plans for a given RFC. Even though this thesis is not focused on optimizations,
an optimized rollback plan algorithm is extremely important due to two aspects. First, the
Change Advisory Board (CAB), which is encharged to approve RFCs, cannot authorize
changes expressed in RFCs that do not have associated remediation plans (IT Infrastruc-
ture Library, 2007a). Second, but assuming that the first aspect is solved, RFCs can be
scheduled immediately (as in an emergency change). As a result, both cases require an
optimized rollback plan generation algorithm to minimize critical delays. This subject is
also discussed in the Subsection 6.2.

To analyze these two aspects, we have executed two cases (using the proposed algo-
rithm) based on the workflow described in the current case study (Figure 5.4). In fact,
we just created one additional case scenario aiming to have comparison parameters. In
the described case study change plan, the operator expressed atomicity information in the
activity level, creating three distinct atomic groups. On the other hand, we just created a

43

parallel case to analyze how much time the rollback plan generation process can raise by
expressing the whole RFC as atomic. Therefore, having executions with the same RFC
(and thus with the same change plan), but with different atomicity marks, it is possible to
compare time results. Below is shown both cases description:

e Atomic Groups case: it is the same change plan shown in Figure 5.4 with its atomic
groups — unchanged;

e Atomic RFC case: the whole RFC marked as atomic in spite of marking only some
activities. It means that all change plan activities are participating to the same
atomic group — a particular case of marking the change plan in the activity level, as
explained in Section 3.2. In this case, all sixteen activities shown in Figure 5.4 will
have a rollback plan associated.

For each case, the algorithm was executed 30 times generating all rollback plans ac-
cordingly to its atomicity specification. Furthermore, it was calculated a confidence in-
terval of 95% related to all repetitions. Table 5.2.2 shows the results for the described
cases.

Table 5.1: Rollback plan generation results. Times represented in milliseconds.

Cases
Atomic RFC Atomic Groups
Number of activities 16 16
Number of atomic activities 16 7
Time Average 205.73 206.10
Standard deviation 2.03 7.48
Lowest generation time 204 203
Highest generation time 213 245
Total generation time 11923.53 1442.70
Confidence Interval Lower bound 201.67 191.13
Upper bound 209.79 221.07

The results evidenced that considering the original case study scenario (Atomic Groups
case showed in Table 5.2.2), the RFC could be ready to the scheduling process — and con-
sequently the deployment — with approximately 2 seconds of delay. This fact is observed
by looking to the total rollback plan generation time, meaning that after the operator
finishes its interaction, the system produces in 2 seconds an RFC ready to be approved
by CAB and, afterwards, properly scheduled for deployment. Representing the worst
case, when the whole RFC is marked as atomic (Atomic RFC case), the RFC could be
scheduled with approximately 12 seconds of delay. The whole RFC marked as atomic
is considered as being the worst case because the algorithm must generate rollback plans
for all activities. However, the mentioned delays can be slightly higher, since that other
factors like BPEL documents deployment and network communication must be taken into
account.

We can also observe that in the Atomic Groups case the standard deviation value is
considerable higher compared to the Atomic RFC case. The main cause to this fact is
the highest generation time (245 milliseconds) that was performed to generate the roll-
back plan for the install dotProject activity. However, the highest generation time value

44

reached in the Atomic RFC case (213 milliseconds) also was generated by the same ac-
tivity. Actually, the main difference consists in transforming activities in dummy. To
generate the rollback plan for the install dotProject in the Atomic RFC case, the algo-
rithm does not need to transform any activities to dummy: if any activity fails, all other
activities must have rollback actions. On the other hand, within the Atomic Groups case
the algorithm needs to walk through the workflow and match the premises presented in
Section 3.4, taking more time to generate such rollback plan. Therefore, rollback plan
generation times for cases where atomic groups are expressed tend to be scattered due
to further algorithmic processing. Overall, the quantitative results show that the rollback
plan generation algorithm not only generates complete and correct plans (as showed in
Section 5.1), but also the rollback plan generation minimally interferes in the change
scheduling process regarding to delays.
Finally, we can highlight two other important aspects for this case study analysis:

1. A factor that really matter for service availability — taking as an example — is the
Mean Time to Recover (MTTR). However, in the scope of this thesis, using the
MTTR to evaluate the effectiveness of rollback plans in different scenarios is not
relevant at all. The recover time of such a failure really depends on the root of such
failure: some can take hours to be repaired due to a complex uninstallation, and
others can last just some minutes due to a simple device reboot. Thus, the analysis
process of the root of failures is not taken into consideration in this work. On the
other hand, evaluating that a reasonable fast rollback plan generation process is
feasible — as made in this subsection — is possible to observe that the presented
solution may minimize efforts and service unavailability as well.

2. The workflow showed in Figure 5.5 was generated by the rollback algorithm. Tak-
ing into consideration that one human operator could take the change plan workflow
and generate the rollback plan manually, the total time for generating ONE rollback
plan (showed in the Figure 5.5) is estimated in 670 seconds (11.16 minutes). The
estimation takes into account the number of transitions, dummy activities, activi-
ties that really have associated actions, and technical BPEL details. These details
are, in fact, time assumptions related to the BPEL technology: 30 seconds to create
dummy activities, 5 seconds to create one transition (source and destination), and
60 seconds to create activities with actions. Such estimative is able to show that
generating rollback plans using the proposed solution may be several times better
compared to the crafted manner.

45

6 CONCLUSION

In this chapter we first present the considerations and main contributions of this the-
sis, also highlighting results and some analysis (Section 6.1). In a second moment, it is
described some issues in the area of IT change management related to the treatment of
failures (Section 6.2). Such issues had not been covered in this thesis but are promising
subjects for future investigation.

6.1 Considerations and Contributions of this Thesis

In this thesis we have discussed how organizations currently implement their changes,
and the importance of having a change management system able to identify fails and
rollback the managed system. Most of organizations have a complex IT infrastructure
where changes are deployed by humans, increasing the failure probability. For this reason,
we have proposed a solution to express atomic activities in a change plan, informing the
system which activities must rollback to a previous consistent state in a failure case. Also,
in our solution, there are three ways to express atomicity: in RFC, operation, and activity
levels. This can turn the system more specialized, making possible not only the operator
to express atomicity in a low-level, but also the change manager to define which actions
of a given RFC must rollback.

The obtained results shows to be coherent in the sense that they guarantee what the
change requester or operator have expressed. The use of atomic groups showed that activi-
ties can be involved as a single transaction, not affecting activities of other atomic groups.
Also, the algorithm that generates rollback plans demonstrated to work in compliance
with the atomic groups specification, respecting the original change plan dependencies
and actions.

Moreover, both case studies presented that the rollback solution helps change man-
agers/operators to define atomicity in a more consistent way, also taking into considera-
tion scheduling time related to the rollback plan generation. In the second case of study,
even whether this thesis did not focused on optimizations, the rollback plan generation
ran on the order of hundreds of milliseconds to dozens of seconds. This time is somehow
lower than the time that would be spent by an experienced human operator to design the
same rollback plan from scratch. Generating automatic rollback plans may help to speed
up the entire change management process: from the scheduling phase to the actual change
deployment.

46

6.2 Additional Issues related to the Treatment of Failures in IT Change
Management Systems for Future Investigation

The previous sections have presented a solution to support rollback in change man-
agement systems as a manner to recover the I'T environment from failures. However, other
issues may represent further interesting research opportunities related to the treatment of
failures in the field of IT change management.

Among the recommendations described in the ITIL Service Transition book (IT In-
frastructure Library, 2007a), a consistent failure remediation plan is one of the essential
parts that a change plan should contain. In this context, and considering the word defi-
nition itself, to remediate would be the act or process of correcting a fault or deficiency.
Thus, a natural interpretation for the ITIL best practices regarding remediation, is that
a change plan can either return to a previous state (rollback) or counterbalance failures
trying to reach the RFC goal (compensation). In this thesis, we cover the rollback support
in change management systems, which is an important method to remediate failures in a
change. However, a compensation technique may also be extremely important when com-
bined together with rollback, since both have complementary functions: the latter returns
the infrastructure back to a consistent state, while the former performs some predefined
actions to reach the RFC goal even with failures. The construction of a consistent com-
pensation technique is considered an issue to the field of IT change management. Since
compensation actions performed during the change may modify the original flow, it can
be necessary to recalculate in which workflow point the execution must continue after the
compensation is done.

Another issue that can be considered is the optimization of the rollback plan gener-
ation process. Inside this context, there are three types of optimization that can be ob-
served: (a) the rollback plan generation time, (b) how the algorithm generates such plan
in terms of organization (actions, parallelism, etc), aiming to minimize the rollback time
execution, and (c) the rollback plan generation taking into account available resources
(e.g., human power, machine power, and others).

In the first type of optimization, reducing the rollback plan generation time can be very
important due to two aforementioned aspects. The first one is when the Change Advisory
Board (CAB) must approve the RFC. In this case, the generation of rollback plans could
not take a long period of time since the CAB just authorize changes expressed in RFCs
that do have associated remediation plans. For example, if the algorithm that generates
such plan takes 4 hours, the CAB will just have the meeting, whether to decide if the plan
is feasible or not, after that period. Second, and combined with the first aspect, a possible
delay can be even worse if the RFC needs to be scheduled immediately. Therefore, the
rollback plan generation time must keep to a minimum in order to avoid critical delays.

In the second type of optimization, having a rollback plan with a better degree of
paralelism could, for example, minimize the rollback time execution. In fact, this is an
important optimization since the IT environment should not remain in an inconsistent
state for a long period of time. This result may be reached considering that the rollback
process is not only based on the system undo/redo technique, where the rollback plan
originally undo failed actions as proposed in this research. The algorithm that generates
the rollback plan may also include other rollback actions depending on the context of the
failure. For example, if a rollback plan is to undo activities A, B, and C sequentially, an
optimized rollback plan for activity A would be: execute in parallel activity Z (new one),
the reverse of B, and the reverse of C. In other words, depending on how the activities

47

that compose the original change plan are organized, the rollback plan would have new
activities or even a better degree of parallelism if such optimization keep the effectiveness
of the rollback process.

Finally, in the area of optimization, the generation of rollback plans could take into
consideration available resources. The rollback plan was generated aligned to human
and/or machine resources? Can it be executed if the company just have three available
humans (in spite of ten) to perform manual rollback actions? And if the server processor
does not support hundreads of parallel rollback actions? There is another way to gen-
erate such plans? The answer to these questions are not trivial and needs a consistent
information model to represent such resource availability as the base to the rollback plan
generation algorithm.

In the conclusion of this thesis was also identified a new trend in the area of treatment
of failures in IT change management. The rollback technique presented can be classified
as reactive, since rollback plans are invoked by the deployment system when failures
happen. However, a proactive manner, combined with the reactive (rollback), may be
more effective when dealing with uncertainty. In this case, quantifying risks in change
plans may be faced as a proactive method in order to predict some possible problems
before the deployment of changes.

48

REFERENCES

Active Endpoints. ActiveBPEL Open Source Engine. [S.1.: s.n.], 2009. Available at:
http://www.activebpel.org. Visited on: Jan. 2009.

ALVES, R. S.; GRANVILLE, L. Z.; ALMEIDA, M. J. B.; TAROUCO, L. M. R. A Pro-
tocol for Atomic Deployment of Management Policies in QoS-Enabled Networks. In:
IEEE INTERNATIONAL WORKSHOP ON IP OPERATIONS AND MANAGEMENT
(IPOM 2006), 6. Anais... Springer, 2006. p.132—-143. (Lecture Notes in Computer Sci-
ence, v.4268).

American Heritage Dictionary. 3.ed. Boston: Houghton Mifflin, 1996.

ANDRZEJAK, A.; HERMANN, U.; SAHAI, A. FEEDBACKFLOW-An Adaptive Work-
flow Generator for Systems Management. In: INTERNATIONAL CONFERENCE ON
AUTOMATIC COMPUTING (ICAC 2006), 2. Anais... IEEE Computer Society, 2005.
p.335-336.

BARTOLINI, C.; SAUVE, J.; TRASTOUR, D. IT Service Management driven by Busi-
ness Objectives - An Application to Incident Management. In: IEEE/IFIP NETWORK
OPERATIONS AND MANAGEMENT SYMPOSIUM (NOMS 2006), 11., Vancouver,
Canada. Anais... [S.L.: s.n.], 2006. p.45-55.

CANDEA, G.; BROWN, A. B.; FOX, A.; PATTERSON, D. A. Recovery-Oriented Com-
puting: building multitier dependability. IEEE Computer, [S.1.], v.37, n.11, p.60-67,
2004.

COSTA CORDEIRO, W. L. da; MACHADO, G. S.; DAITX, F. F; BOTH, C. B.; GAS-
PARY, L. P.; GRANVILLE, L. Z.; SAIKOSKI, K.; SAHAI A.; BARTOLINI, C.; TRAS-
TOUR, D. A Template-based Solution to Support Knowledge Reuse in IT Change De-
sign. In: IEEE/IFIP NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM
(NOMS 2008), 11., Salvador, Brazil. Anais... [S.l.: s.n.], 2008. p.355-362.

ELNOZAHY, M.; ALVISI, L.; WANG, Y. min; JOHNSON, D. B. A survey of rollback-
recovery protocols in message-passing systems. [S.1.]: ACM Computing Surveys, 1996.

ENNS, R. NETCONF Configuration Protocol. 2006. n.4741. (Request for Comments).

FTSE Group. [S.L]: Stock Market Indices Provider, 2009. Available at:
http://www.ftse.com. Visited on: Mar. 2009.

49

HEWLETT-PACKARD News Website. [S.].]: Survey: Business Continuity and Avail-
ability Solutions, a High Priority for Corporate Spending in 2007, 2007. Available at:
http://www.hp.com/hpinfo/newsroom/press/2007/070326a.html. Visited on: Mar. 2009.

ISACA. Control Objectives for Information and related Technologies (COBIT).
[S.L: s.n.], 2009. Available at: http://www.isaca.org/cobit. Visited on: Jan. 2009.

IT Infrastructure Library. ITIL Service Transition Version 3.0. [S.1.]: Office of Govern-
ment Commerce, 2007.

IT Infrastructure Library. ITIL Service Design Version 3.0. [S.1.]: Office of Government
Commerce, 2007.

ITIL. Information Technology Infrastructure Library (ITIL). [S.l.]: Office of Gov-
ernment Commerce (OGC), 2009. Available at: http://www.itil.co.uk/. Visited on: Jan.
2009.

KELLER, A.; HELLERSTEIN, J. L.; WOLF, J. L.; WU, K.-L.; KRISHNAN, V. The
CHAMPS System: change management with planning and scheduling. In: IEEE/IFIP
NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM (NOMS 2004), 9.,
Seoul, Korea. Anais... [S.1.: s.n.], 2004. p.395-408.

OASIS Standards. Business Process Execution Language Version 2.0. [S.1.: s.n.], 2007.
Available at: http://docs.oasis-open.org/wsbpel/2.0/. Visited on: Apr. 2007.

PATTERSON, D.; BROWN, A.; BROADWELL, P.; CANDEA, G.; CHEN, M.; CUT-
LER, J.; ENRIQUEZ, P.; FOX, A.; KICIMAN, E.; MERZBACHER, M.; OPPEN-
HEIMER, D.; SASTRY, N.; TETZLAFF, W.; TRAUPAMN, J.; TREUHAFT, N. Recov-
ery Oriented Computing (ROC): motivation, definition, techniques, and case studies.
[S.1.]: UC Berkeley, 2002.

REBOUCAS, R.; SAUVE, J.; MOURA, A.; BARTOLINI, C.; TRASTOUR, D. A deci-
sion support tool to optimize scheduling of IT changes. In: IFIP/IEEE INTERNATIONAL
SYMPOSIUM ON INTEGRATED NETWORK MANAGEMENT (IM 2007), 10., Mu-
nich, Germany. Anais... [S.l.: s.n.], 2007. p.343-352.

RIDLEY, G.; YOUNG, J.; CARROLL, P. COBIT and Its Utilization: a framework
from the literature. In: HICSS ’04: PROCEEDINGS OF THE PROCEEDINGS OF
THE 37TH ANNUAL HAWAII INTERNATIONAL CONFERENCE ON SYSTEM SCI-
ENCES (HICSS’04) - TRACK 8, Washington, DC, USA. Anais... IEEE Computer So-
ciety, 2004. p.80233.

The GGF CDDLM working group. Configuration Description, De-
ployment, and Lifecycle Management. [S.I.: s.n.], 2008. Available at:
https://forge.gridforum.org/projects/cddlm-wg. Visited on: Sept. 2008.

The Workflow Management Coalition Specification. Workflow Process Definition
Interface - XML Process Definition Language. [S.l.: s.n.], 2007. Available at:
http://www.wfmc.org/standards/docs/TC-1025_10_xpdl_102502.pdf. Visited on: Sept.
2007.

W3C Note. Web Services Description Language 1.1 (WSDL). [S.1.: s.n.], 2009. Avail-
able at: http://www.w3.org/TR/wsdl. Visited on: Jan. 2009.

50

WHITEPAPER: IT Operations Management Solutions. [S.1.]: Dimension Data Holdings,
2005. Available at: http://www.coleman-parkes.co.uk/material/Whitepaper-v3.pdf. Vis-
ited on: Mar. 20009.

51

APPENDIX A RESUMO ESTENDIDO DA DISSERTACAO

Atualmente, empresas e organizacdes de grande porte nao podem oferecer servigos de
qualidade sem empregar uma sofisticada infra-estrutura de TI para suportar seus negdcios.
Por sua vez, infra-estruturas de TI geralmente possuem complexidade de geréncia con-
sideravel, trazendo assim custos elevados para sua manutenc¢do. Neste contexto, adotar
politicas de geréncia racionais para infra-estruturas de TI torna-se um ponto critico para
as organizagdes. Para alcangar uma geréncia apropriada — e assim reduzir custos — o ITIL
(Information Technology Infrastructure Library) (ITIL, 2009) compilou um conjunto de
processos e boas praticas que ajudam as organizagdes a manter suas infra-estruturas de
maneira adequada.

Entre os processos propostos pelo ITIL, o gerenciamento de mudancas (IT Infrastruc-
ture Library, 2007a) é aquele que define como mudancas em TI devem ser planejadas,
agendadas, implementadas e avaliadas. A importancia da geréncia de mudancas reside
no fato de que as mudancas em uma infra-estrutura de TI devem ser executadas de forma
que ndo levem o sistema gerenciado a um estado desconhecido ou inconsistente. Assim,
mudangas em infra-estruturas de TI sdo expressas primeiramente em documentos intitu-
lados requisi¢des de mudanga (Request for Change - RFC), que definem quais mudangas
sd0 necessdrias, mas ndo especifica porém como elas devem ser executadas. A defini¢dao
de uma RFC € o primeiro passo do processo que ird gerar um plano de mudanga (change
plan), que essencialmente € um workflow composto por atividades concretas e de um nivel
de abstracdo mais baixo. O papel do plano de mudanca, uma vez executado, € o de levar o
sistema gerenciado para um novo estado de execugao consistente que reflita as mudancas
solicitadas na RFC original.

Apesar de a drea de gerenciamento de mudangas ser nova e ainda pouco explorada, al-
guns problemas em potencial ja foram investigados (KELLER et al., 2004) (BARTOLINI;
SAUVE; TRASTOUR, 2006) (REBOUCAS et al., 2007). Devido a complexidade in-
trinseca do assunto, as pesquisas desenvolvidas até o0 momento se basearam em algumas
premissas que permitiram chegar a diversas conclusdes importantes sobre varios aspectos
em gerenciamento de TI. Uma destas premissas € a de que uma vez aprovadas, as ativi-
dades de uma RFC irdo sempre ser implantadas com sucesso, levando a infra-estrutura
de TI para o préximo estado consistente. Na verdade, essa suposicdo ndo reflete a real-
idade dos ambientes de T1I, ja que falhas durante a execugc@o das mudancas efetivamente
ocorrem, € assim nao podem ser ignoradas.

Esta dissertacio aborda a necessidade de tratar falhas durante a execu¢@o de um plano
de mudanca, evitando assim que a infra-estrutura gerenciada evolua para um estado in-
consistente e desconhecido. Para atacar este problema, esta pesquisa propde uma solugao
que garanta que depois da implantagdo de uma RFC, a infra-estrutura gerenciada evoluira
para um novo estado consistente, ou entdo retornard ao estado imediatamente anterior a

52

RFC. Em outras palavras, objetiva-se que a implantagdo de uma RFC seja tratada como
uma transacio atdmica. Para suportar este comportamento, é proposto um modelo de
rollback para suportar falhas em planos de mudangas. Quando uma falha ocorrer durante
a execucao de um plano de mudanca, um procedimento de rollback € chamado para des-
fazer as mudancas executadas até entdo. Na verdade, pode-se observar que para alguns
cendrios de TI pode ser muito restritivo se s6 considerarmos uma RFC como o unico
possivel elemento atbmico. Entdo, € proposto que outros elementos atdmicos possam ser
complementarmente definidos em uma menor granularidade do que uma RFC (por exem-
plo, a nivel do plano de mudanga). Assim, o operador pode definir — usando o conceito de
atomicidade — quais as acdes de baixo nivel em especifico irdo possuir um procedimento
de rollback.

Para fornecer suporte a transagdes atdmicas no contexto de gerenciamento de TI,
empregamos um conjunto de técnicas em um protétipo desenvolvido para avaliar nossa
solu¢cdo. Em particular, exploramos alguns mecanismos relacionados ao disparo de ex-
cecoes definidos na Business Process Execution Language (BPEL) (OASIS Standards,
2007). No protétipo implementado, transacdes atomicas no nivel de RFC e planos de
mudanca associados, definidos por operadores do sistema, sdo traduzidos em construgdes
BPEL por um algoritmo de mapeamento. Este algoritmo de mapeamento € de extrema
importancia no processo, pois adiciona constru¢cdes BPEL que identificam falhas na exe-
cucdo, invocando entdo acdes de rollback. As ag¢des de rollback por sua vez, sdo geradas
automaticamente por um algoritmo que leva em considerag@o a especificagdo de atomi-
cidade dos planos de mudanca. Assim, um conjunto de experimentos € apresentado para
observar o impacto da proposta em um sistema de gerenciamento de mudancas sobre uma
infra-estrutura de TI. Esses experimentos sdo focados em cendrios para a obtencao de uma
andlise tanto qualitativa quanto quantitativa.

Considerando a proposta como um todo, essa dissertacao apresenta uma solucao fim a
fim para habilitar rollback em sistemas de gerenciamento de TI. Essencialmente, a solu¢ao
fim a fim € composta por todos os passos contidas na especificacao de planos de mudancgas
com suporte a rollback: desde a constru¢do de planos de mudanga com capacidade de
recuperagdo de falhas, até a implantagdo da mudanca invocando planos de rollback.

A.1 Resumo das Principais Contribuicoes

As principais contribuicdes desse trabalho estdo sucintamente descritos em itens a
seguir:

e Apesar de ndo existir uma Unica arquitetura amplamente utilizada para gerencia-
mento de mudangas em TI, este trabalho propde uma arquitetura genérica com os
componentes basicos para que a solu¢do de suporte a rollback seja funcional;

e Para que o suporte de rollback seja possivel, € proposto que o conceito de atomici-
dade em planos de mudangas seja introduzido. Assim, o operador tem a possibili-
dade de expressar atomicidade em diferentes niveis de uma RFC: desde o mais alto
nivel, até a granularidade mais baixa que sao as atividades finais de um plano de
mudanca.

e Um modelo de planos de mudancas com componentes para a solucdo de rollback é
proposto. Nesse modelo € definido todas as classes para a representacao conceitual
de uma mudanga com suporte a definicdo atdmica de partes da mudanca.

53

e Os principais passos da geracao de um plano de rollback € descrito, formando assim
o algoritmo que produz planos de rollback a partir da instancia¢do de classes do
modelo proposto.

e A implementacao do protétipo desenvolvido € abordado, bem como seus principais
componentes e as estruturas BPEL que foram utilizadas para identificar falhas no
processo de mudanga.

A.2 Conclusoes

Nesta dissertacao, discutimos como organizagdes implantam suas mudangas e a im-
portincia de se ter um sistema de gerenciamento de mudangas com suporte a rollback.
Muitas das organizagdes tem uma infra-estrutura de TI complexa, onde mudancas sdo
implantadas por humanos, aumentando a probabilidade de ocorrerem falhas. Por esta
razdo, com base em trabalhos passados desenvolvidos por este grupo de pesquisa, propo-
mos um algoritmo de geragcao de a¢des de rollback que se encaixa em uma arquitetura de
gerenciamento de mudancas. Assim, nesta arquitetura, um administrador/operador possui
a possibilidade de marcar diversas partes de uma RFC como atomica. Caso haja alguma
falha na implantacdo desta RFC, um workflow de acdes de rollback previamente gerado
serd executado para levar o estado do sistema para um estado consistente.

Os resultados obtidos demonstram coeréncia entre a especificacdo de grupos atdmicos
em um change plan e o workflow de acdes de rollback. Ou seja, seguindo as regras de
especificagdo de grupos atomicos, e executando os passos do algoritmo proposto, pode-se
chegar em um workflow que reverte falhas de um change plan real. Também foi possivel
observar que apesar do grande tamanho dos arquivos BPEL gerados para o workflow, o
uso de atividades dummy nao influenciou no processamento destes. Além disso, podemos
salientar a reutilizacdo das estruturas do workflow original no algoritmo de geracdo de
acoes de rollback, otimizando o seu processamento.

Ainda, ambos os casos de estudo apresentam que a solucdo proposta ajudam os oper-
adores a definir atomicidade em planos de mudanca de uma forma consistente, também
levando em consideracdo o tempo de agendamento das mudancgas relacionado ao tempo
de geracdo de planos de rollback. No segundo caso de estudo, mesmo que este trabalho
ndo seja focado em otimizacdes, a geragdo de planos de rollback foi obtido na ordem de
centenas a dezenas de milisegundos. Esse tempo de certa forma é menor do que o tempo
gasto por um operador humano em construir planos de rollback. A geragdao automatica de
planos ajuda a melhorar a velocidade do processo de gerenciamento de mudangas: desde
a fase de agendamento, até a implantacdo das mudancas sobre a infra-estrutura.

A.3 Trabalhos Futuros

Esta tese apresentou uma solucdo para o suporte de rollback em sistemas de geren-
ciamento de mudangas como uma maneira de recuperar de falhas um ambiente de TI.
Porém, outros problemas podem representar oportunidades de pesquisa relacionados ao
tratamento de falhas no campo de gerenciamento de mudancas.

Entre as recomendagdes descritas pelo livro ITIL Service Transition (IT Infrastruc-
ture Library, 2007a), um plano de remediacao consistente € uma das partes essenciais que
um plano de mudanca deve conter. Nesse contexto, e considerando a palavra remediacao
por si s6, remediar pode ser encarado como o ato ou processo de corrigir uma falha ou

54

deficiéncia. Assim, uma interpretacdo natural para as boas préaticas do ITIL relacionado
a remediacgdo, seria que um plano de mudancga pode tanto voltar para um estado anterior
(rollback) como contrabalancear falhas para atingir o objetivo de uma RFC (compen-
sacdo). Nesta tese, € apresentado a solucdo para o suporte de rollback em sistemas de
gerenciamento de mudancas, o que € um importante método para remediar falhas em mu-
dangas. Porém, uma técnica de compensagdo pode também ser extremamente importante
quando combinado com rollback, pois ambos possuem fun¢des complementares: o dltimo
retorna a infra-estrutura para um estado consistente, enquanto o primeiro executa agdes
pré-definidas para atingir o objetivo da RFC mesmo havendo falhas. A constru¢cdo de uma
técnica de compensacgao consistente € considerado um problema para a drea de gerencia-
mento de mudangas em TI. Dado que a¢des compensatdrias executadas durante mudancas
podem modificar o fluxo natural do plano, pode ser necessdrio recalcular em qual ponto
do workflow a execugdo deverd continuar apds que a compensacao estiver concluida.

Outro problema que pode ser considerado € a otimizagdo do processo da geracio de
planos de rollback. Nesse contexto hd trés tipos de otimizagdes que podem ser observa-
dos: (a) o tempo de geragao de planos de rollback, (b) como o algoritmo gera esses planos
em termos de organizacao (actions, paralelismo, etc.) objetivando minimizar o tempo de
execucdo do rollback, e (c) a geracao de planos de rollback levando em consideracao re-
cursos disponiveis (por exemplo, unidade de for¢ca humana de trabalho, unidade de forca
de méquinas, e outros).

No primeiro tipo de otimizagdo, reduzir o tempo de geracao dos planos de rollback
pode ser bastante importante por dois aspectos. O primeiro é quando o Change Advisory
Board (CAB) precisa aprovar a RFC. Nesse caso, a gera¢ao dos planos de rollback nao
pode levar um longo periodo de tempo se considerar que o CAB s6 autoriza mudancgas
expressadas em RFCs que tiverem um plano de remediacdo associado. Por exemplo, se o
algoritmo que gera tal plano demorar 4 horas, o CAB s6 terd a reunido para decidir se o
plano é factivel ou ndo depois deste periodo de tempo. Além disso, e combinado com o
primeiro aspecto, um possivel atraso pode ser ainda pior se a RFC precisa ser agendada
imediatamente. Entdo, o tempo de geracdo de planos de rollback precisa ser o minimo
possivel para evitar atrasos altamente criticos.

No segundo tipo de otimizag¢do, ter um plano de rollback com um melhor grau de
paralelismo pode, por exemplo, minimizar o tempo de execuc¢do de rollback. Na verdade,
essa € uma importante otimizacdo dado que o ambiente de TI ndo pode permanecer em um
estado inconsistente por um longo periodo de tempo. Esse resultado poderia ser alcangado
considerando que o processo de rollback ndo € somente baseado na técnica de system
undo/redo, onde o plano de rollback originalmente desfaz as a¢des que falharam (como
proposto nessa tese). O algoritmo que gera o plano de rollback poderia incluir outras
acoes dependendo do contexto da falha. Por exemplo, se um plano de rollback é desfazer
as atividades A, B e C sequencialmente, um plano de rollback otimizado para a atividade
A seria: executar em paralelo a atividade Z (new one), desfazer a B, e desfazer a C.
Em outras palavras, dependendo de como as atividades que compde o plano de mudanga
original estdo organizados, o plano de rollback teria novas atividades ou até mesmo conter
um melhor grau de paralelismo.

Por ultimo na drea de otimizacdo, a geracdo de planos de rollback poderia levar em
consideragdo recursos disponiveis. O plano foi gerado alinhado com recursos humanos
e/ou tecnolégicos? Pode ser executado se a determinada empresa tiver somente trés hu-
manos disponiveis (ao invés de dez) para executar a¢des de rollback de forma manual?
E se o processador de um servidor nao suportar centenas de acdes de rollback parale-

55

lamente? Existe outra maneira de gerar esses planos? A resposta para essas perguntas
ndo sdo triviais e precisam de um modelo de informacgdo consistente para representar a
disponibilidade de recursos servindo como base para o algoritmo de geracdo de planos de
rollback.

Na conclusio desta tese também foi identificado um novo desafio na area de trata-
mento de falhas no gerenciamento de mudangas em TI. A técnica de rollback apresentada
nesta tese pode ser classificada como reativa, dado que planos sdo invocados pelo de-
ployment system quando falhas ocorrem. Porém, uma maneira pré-ativa, combinado com
a reativa (rollback), pode ser mais eficaz quando estiver sendo lidado com a incerteza.
Nesse caso, quantificar riscos em planos de mudanca pode ser encarado como um método
pré-ativo para predizer alguns possiveis problemas. Assim, falhas poderiam ser evitadas
antes de ocorrer a implantacdo da mudanca em um amibente de TI.

