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We have performed longitudinal magnetoresistance measurements on heavily n-doped silicon for donor
concentrations exceeding the critical value for the metal-nonmetal transition. The results are compared to those
from a many-body theory where the donor electrons are assumed to reside at the bottom of the many-valley
conduction band of the host. Good qualitative agreement between theory and experiment is obtained.
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I. INTRODUCTION

Magnetoresistance, the property of a material where its
electrical resistivity changes when exposed to an external
magnetic field, was first discovered by Lord Kelvin [1].
More recent discoveries are the giant magnetoresistance
(GMR) [2,3], the colossal magnetoresistance (CMR) [4,5],
the tunnel magnetoresistance (TMR) [6], the extraordinary
magnetoresistance (EMR) [7], and the large magnetoresistance
(LMR) [8]. All these spectacular properties were found in
either magnetic systems or in special geometrical structures.

Even in ordinary nonmagnetic bulk materials there are
interesting magnetoresistance effects. For all conducting pure
single crystals it is experimentally found that the application of
a magnetic induction B results in an increase of the resistivity
ρ; the magnetoresistance ratio, or just magnetoresistance,
defined as �ρ/ρ = [ρ (B) − ρ (0)] /ρ (0) is positive. This
general behavior of the crystalline state is in sharp contrast
to the conduction properties of a number of heavily doped
semiconductors where one observes a negative magnetore-
sistance. There are many different models [9–16] in the
literature trying to explain this anomalous behavior. They are
all related to a model by Toyozawa [17] where the conduction
electrons scatter against localized spins. We refer the reader
to the review article by Alexander and Holcomb [18] for
the discussion of some of these models. The discussion is
organized around a model which includes three main features:
above the critical donor concentration nc the electrons are
delocalized; above a second critical donor concentration ncb

the Fermi level passes into the conduction band of the host
crystal; and for nc < nd < ncb the electrons exist in a poorly
understood “impurity band” leading to anomalous properties.
We proposed a different description [19] where the donor
electrons end up in the conduction band of the host already
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at the critical concentration nc. The anomalous properties
on the metallic side of and close to the transition point we
suggested were caused by many-body effects. Examples of
anomalous behavior is that the resistivity, the heat capacity,
and the spin susceptibility are all enhanced close to nc. Another
example is the negative magnetoresistance that we treat in this
work.

Lately much research has been devoted to systems with
positive magnetoresistance showing a linear dependence on the
applied magnetic field [20,21]. Several mechanisms have been
suggested to explain this behavior from geometrical [22], clas-
sical [23–25], quantum [26,27], and effective medium [28,29]
perspectives.

In this work we focus on the magnetoresistance of heavily
doped semiconductors near and on the metallic side of the
metal-nonmetal transition.

The material is arranged in the following way. In Sec. II
we present the experimental details. Section III is devoted to
the theoretical model and derivations. Our experimental and
theoretical results are compared in Sec. IV. Finally, Sec. V is
a brief summary and conclusion section.

II. EXPERIMENTAL DETAILS

We use p-type, (100)-oriented Si wafers with resistivity
in the range of 16–25 � cm. Phosphorous was implanted at
room temperature. Six implantations with energies of 180,
120, 80, 55, 30, and 15 keV were accumulated in each sample
with proper doses to result in a plateaulike profile of P from the
surface to the depth of 0.30 μm with ∼5% deviation, according
to TRIM code simulation [30]. The implanted P doses were
1.4 × 1014 cm−2 (at 180 keV), 5.4 × 1013 cm−2 (at 120 keV),
3.6 × 1013 cm−2 (at 80 keV), 3.0 × 1013 cm−2 (at 55 keV),
2.2 × 1013 cm−2 (at 30 keV), and 1.2 × 1013 cm−2 (at 15 keV)
in order to achieve a P concentration of 1 × 1019 cm−3. The
simulated concentration profile is shown in Fig. 1. The doses in
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FIG. 1. Simulated concentration profile for nominal concentra-
tion 1 × 1019 cm−3.

the other samples were scaled to this sample, according to the
ratio of the desired P concentration. Samples with implanted
P concentrations of 2 × 1018, 4 × 1018, 6 × 1018, 8 × 1018,
and 1 × 1019 cm−3 were prepared. The damage annealing and
the electrical activation of P were performed at 900 ◦C for
20 min in argon atmosphere in a conventional furnace. Van
der Pauw structures [31] were fabricated by manually applied
indium contacts at the corners of square 6 × 6 mm2 samples.
Annealing at 300 ◦C on a hot plate was performed to improve
the contacts. The implantation process as well as the obtained
values of the electron concentrations are also described in
detail in Refs. [32,33].

We performed magnetotransport measurements on the
described structures with Van der Pauw geometries, exploiting
conventional lock-in technique with frequencies 7–13 Hz, in
the temperature range of 1.5–4.2 K and bias current of 10 μA
which is low enough to prevent heating effect and at the same
time provide a well defined signal for our measurements. Both
Hall and longitudinal resistance measurements were done in
an Oxford cryostat with VTI (variable temperature insert), in
the presence of perpendicular magnetic field provided by a
superconducting coil, capable of generating fields up to 12 T
in 4He refrigerator.

III. THEORY

We start with our approximations and notation. Si is
a semiconductor with ν = 6 anisotropic conduction band
valleys. For heavily n-type doped silicon, on the metallic side
of the metal-nonmetal transition (n > nc), the donor electrons
are up in the conduction band valleys. The anisotropy has some
effects on the resistivity [34] but we neglect this here and let
the electrons be distributed in ν Fermi spheres. The relation
between the Fermi wave vector k0 and the doping density n is
given by

k0 = (3π2n/ν)1/3. (1)

The Fermi energy is

E0 = �
2k2

0/(2m) = �
2k2

0/(2mdeme), (2)

where me is the electron mass and the density of states
effective mass for a Fermi sphere is mde = (mlm

2
t )1/3 = 0.322.

Apart from the kinetic energy there are contributions from
the interactions between the electrons (the exchange and
correlation energy Exc) and from the interactions with the
ionized-donor potentials (the band-structure energy Eb). These
interaction energies lead to a deformation of the parabolic band
dispersion and a modification of the density of states. This
modification is important for the effects discussed in this work
so we discuss the density of states here.

The density of states is the number of states per energy and
volume. The density of states from one valley is

DE = Dk/[dE(k)/dk] = 2 · 4πk2

(2π )3[dE(k)/dk]

= k2

π2[dE(k)/dk]
, (3)

where we have taken into account that in each valley there
are two states for each k, one with spin up and one with spin
down. For noninteracting electrons the corresponding density
of states is

D0
E = k2

π2[dE0(k)/dk]
= km

π2�2
. (4)

We may express the density of states for interacting electrons
on an analogous form by introducing a wave-number depen-
dent effective mass,

DE = km∗

π2�2
. (5)

The effective mass can be written as

m∗(k) = m/[1 − β(k)], (6)

where β (k) gets a contribution from each of the interaction
energies, β (k) = βxc (k) + βb (k), where

βxc(k) = − m

π2k

∂

∂k

δNExc

δn(k)
,

(7)

βb(k) = − m

π2k

∂

∂k

δNEb

δn(k)
.

The quantity n (k) is the occupation number of the state with
wave-vector k, and N is the total number of electrons. One
effect of the interactions, that turns out to be very important
for the present work, is that the effective mass and density of
states are enhanced in a region around the Fermi level (see
Fig. 3 of Ref. [35]).

Before we continue let us introduce some dimensionless
variables that we will use throughout,

Q = q/2k0,

W = �ω/4E0,
(8)

P = k/2k0,

y = νme2

�2κk0
,

where κ = 11.4 is the background dielectric constant of Si.
In RPA (random phase approximation) the β functions at the
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Fermi level are

βxc = y

νπ

{[
1 −

∫ 1

0
dQ

1

Qε̃(Q,0)
+ 1

π

∫ ∞

0
dQ

∫ ∞

0
dW

[
1

ε̃(Q,iWQ)
− 1

]

×
[

ln

∣∣∣∣W 2 + (Q + 1)2

W 2 + (Q − 1)2

∣∣∣∣ − 2(Q + 1)

W 2 + (Q + 1)2 − 2(Q − 1)

W 2 + (Q − 1)2

]}
, (9)

βb = 2y2

3νπ2

∫ ∞

0
dQ

1

Q2(Q2 − 1)ε̃2(Q,0)

[
1 − Q2 − 1

2Q
ln

∣∣∣∣Q + 1

Q − 1

∣∣∣∣
]
,

where ε̃ (q,ω) = 1 + α (q,ω) is the dielectric function in RPA
for an electron system of ν Fermi spheres embedded in Si
with an effective dielectric constant κ . In the expression for
βb we have assumed that there are as many ionized donor
potentials as there are electrons in the Fermi spheres and that
these potentials can be represented by randomly distributed
pure Coulomb potentials.

The analytical expressions for the polarizabilities needed
in the calculations are

α(Q,iWQ) = y

2πQ2

{
1 + W 2 + 1 − Q2

4Q

× ln

[
W 2 + (1 + Q)2

W 2 + (1 − Q)2

]

−W

[
tan−1 (1 + Q)

W
+ tan−1 (1 − Q)

W

]}
(10)

and

α(Q,0) = y

2πQ2

[
1 + 1 − Q2

Q
ln

∣∣∣∣1 + Q

1 − Q

∣∣∣∣
]
. (11)

The resistivity we calculate by using the so-called gen-
eralized Drude approach [36–38]. In the static case which is
what we need here the results agree with the so-called Ziman’s
formula [39]:

ρ = 1

σ
= 1

ne2τ/m∗ ,

(12)
1

τ
= 4

3

νe4m

π�3κ2

∫ 1

0
dQ

1

Qε̃2(Q,0)
,

where ρ, σ , and τ are the resistivity, conductivity, and transport
time, respectively.

When a static and spatially homogeneous magnetic field
(magnetic induction B) is applied the bands with spin-up
electrons (spin parallel to B) move up in energy and those
with spin-down electrons (spin antiparallel to B) move down.
There is a redistribution of the electrons so that more electrons
have spin down than have spin up. This has the effect that
the density of states, the effective mass at the Fermi level,
the contribution to the conductivity, and the transport time
are no longer the same for the two groups of electron. Let us
introduce the spin-polarization parameter s that varies from
zero in absence of B to 1 at full polarization (all electrons have
spin down),

s = n ↓ −n ↑
n

. (13)

The density and Fermi wave number of spin-up and spin-
down electrons are

n ↑ = 1 − s

2
n, n↓ = 1 + s

2
n,

(14)
k0 ↑ = k0/a, k0↓ = k0/b,

where

a = (1 − s)−1/3, b = (1 + s)−1/3. (15)

The resistivity is now

ρ = 1

n ↑ e2τ ↑ /m∗ ↑ +n ↓ e2τ ↓ /m∗ ↓
= 1

n↑e2τ↑(1−β↑)
m

+ n↓e2τ↓(1−β↓)
m

= m/e2

n ↑ τ ↑ (1 − β ↑) + n ↓ τ ↓ (1 − β ↓)
. (16)

The polarizability can be divided into a contribution from
each group of electrons

α(Q,iWQ) = α ↑ (Q,iWQ) + α ↓ (Q,iWQ),

α ↑ (Q,iWQ) = a

2
α(aQ,ia2WQ), (17)

α ↓ (Q,iWQ) = b

2
α(bQ,ib2WQ),

and the new transport times become

1

τ ↑ = 4

3

νe4m

π�3κ2

1

(1 − s)

∫ 1

0
dQ

× 1

Q{1 + (a/2)α(Q,0) + (b/2)α[(b/a)Q,0]}2 ,

1

τ ↓ = 4

3

νe4m

π�3κ2

1

(1 + s)

∫ 1

0
dQ

× 1

Q{1 + (b/2)α(Q,0) + (a/2)α[(a/b)Q,0]}2 . (18)
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We also need the modified β functions. For spin-up electrons we have

β ↑ = ya

νπ

{[
1 −

∫ 1

0
dQ

1

Q{1 + (a/2)α(Q,0) + (b/2)α[(b/a)Q,0]}
]

+ 1

π

∫ ∞

0
dQ

∫ ∞

0
dW

×
[

1

1 + a
2 α(Q,iWQ) + b

2α
[

b
a
Q,i

(
b
a

)2
WQ

] − 1

][
ln

∣∣∣∣W 2 + (Q + 1)2

W 2 + (Q − 1)2

∣∣∣∣ − 2(Q + 1)

W 2 + (Q + 1)2 − 2(Q − 1)

W 2 + (Q − 1)2

]}

+ 2y2a5

3νπ2

∫ ∞

0
dQ

1

Q2(Q2 − 1){1 + (a/2)α(Q,0) + (b/2)α[(b/a)Q,0]}2

[
1 − Q2 − 1

2Q
ln

∣∣∣∣Q + 1

Q − 1

∣∣∣∣
]
. (19)

To get β ↓ one just interchanges a and b in Eq. (19).
Now we have all formalism needed for the calculation

of the magnetoresistance �ρ/ρ = [ρ (s) − ρ (0)] /ρ (0) as a
function of spin polarization s. The experiments are not given
as a function of s but as a function of B. If the fields are small
enough we can assume a linear relation between B and s. It
can be written as

B[T] = 2.099879 × 10−11(n[cm−3]/ν)
2/3

mde(χ/χ0)
s. (20)

IV. EXPERIMENTAL AND THEORETICAL RESULTS

Our theoretical and experimental results are compared
in Figs. 2–6. We have adjusted the spin-susceptibility
enhancement-factor (χ/χ0) appearing in Eq. (20) to get a
reasonable fit between the theoretical and experimental curves.
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FIG. 2. (Color online) The magnetoresistance at 4.2 K as a
function of magnetic induction B for a Si:P sample with doping
concentration 6.69 × 1018 cm−3. The red dots denote our experimen-
tal result and the solid curve with solid circles our theoretical result.
The upper horizontal axis shows the spin-polarization parameter s.
The inset shows schematically the energy dispersion of the spin-up
and spin-down bands in the presence of a magnetic field. The circles
indicate which states are involved in the enhancement of the density
of states. See the text for details.

The adjustment only affects the theoretical curves in the
horizontal direction. The enhancement factor is the only fitting
parameter we have introduced. The enhancement of the density
of states at the Fermi level increases when the density comes
closer to nc (nc = 3.5–4.4 × 1018 cm−3 [32]) from the metallic
side. It is furthermore well known that the spin susceptibility
χ is more and more enhanced the closer to nc one gets and
that the enhancement is reduced when the temperature goes
up [40–43]. Our extracted (χ/χ0) comply with this behavior. In
the figures the upper horizontal axes show the spin polarization
parameter s defined in Eq. (13). The relation between s (upper
horizontal axis) and B (lower horizontal axis) is given by
Eq. (20).

Now, what causes the negative magnetoresistance? As we
mentioned above the density of states is enhanced at the Fermi
level in absence of a magnetic field. This leads to an enhance-
ment of the resistivity. In absence of magnetic field the spin-up
and spin-down bands are degenerate and the Fermi wave num-
bers are the same for both spin types. When the magnetic field
is introduced the spin-down bands move down in energy and
the spin-up bands move up. There is a redistribution of elec-
trons from the spin-up bands to the spin-down bands so that the
Fermi level is the same in all bands. The Fermi wave numbers
are now different in the two band types. See the inset of Fig. 2.
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FIG. 3. (Color online) The same as Fig. 2 but now for 1.5 K.
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FIG. 4. (Color online) The same as Fig. 2 but now for the doping
concentration 6.34 × 1018 cm−3.

When the magnetic field is introduced the density of states
of both electron types, i.e., spin-up and spin-down electrons,
are enhanced for states with wave number k0 ↑ and k0 ↓. This
means that the peak in the density of states at the Fermi level is
for each spin type split up into two. The states involved in the
enhancement of the density of states are indicated by circles in
the inset of Fig. 2. For spin-up electrons one peak remains at
the Fermi level while the other moves up into the unoccupied
part of the bands. For spin-down electrons one peak remains
at the Fermi level and one moves further down in the occupied
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FIG. 5. (Color online) The same as Fig. 3 but now for the doping
concentration 6.34 × 1018 cm−3.
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FIG. 6. (Color online) The same as Fig. 3 but now for a sample
with two donors, P and Bi, with the total doping concentration 8.4 ×
1018 cm−3.

part of the bands. For both spin types the enhancement at the
Fermi level is hence reduced. It is only the enhancement at the
Fermi level that effects the resistivity. This causes the initial
negative magnetoresistance. The enhancement of the density
of states at the Fermi level for both spin types as function
of magnetic induction is shown in Fig. 7 for the sample with
doping concentration 6.69 × 1018 cm−3 at 4.2 K.

There is another effect that acts in the same direction.
There are Friedel oscillations [44] in the screening-charge
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FIG. 7. (Color online) The enhancement of the density of states
at the Fermi level for both spin types as function of magnetic induction
B. The results are valid for the doping concentration 6.69 × 1018 cm−3

at 4.2 K.
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FIG. 8. (Color online) The modulus of the maximum negative
magnetoresistance from our theoretical calculations. It shows linear
relation on a log-log plot which means a power-law dependence on
the doping concentration.

density centered around each impurity potential with Fourier
component q = 2k0 or Q = 1. This leads to an enhanced
scattering rate in the back-scattering direction across the
Fermi spheres and an enhancement of the resistivity. At
zero magnetic field the Friedel oscillations have the same
periodicity for spin-up and spin-down electrons; both types
of electrons scatter equally strongly against both Friedel
oscillations. When the magnetic field is turned on the Friedel
oscillations will split up into two; one with Fourier component
q = 2k0 ↑; one with Fourier component q = 2k0 ↓. This
means that the back-scattering rate for an electron of a certain
spin against the Friedel oscillations of the opposite spin is
reduced. The enhancement of the resistivity is thus reduced
leading to a negative magnetoresistance. However, this effect
is expected to give a much smaller contribution to the negative
magnetoresistance than the density of states effect since the
electron can scatter with a wave number ranging from zero up
to two times the Fermi wave number.

All our calculations are for zero temperature. What
happens for nonzero temperatures? If we study classical
experiments [9] we find that the negative magnetoresistance
effect is gradually reduced when the temperature is enhanced.
This is consistent with our theory. The peak at the Fermi level
of the density of states is expected to be broadened. Besides,
at zero temperature only states at the Fermi level takes part in
the conductivity. When the temperature goes up also states
away from the Fermi level where the enhancement in the
density of states is weaker take part. Both these effects are
expected to gradually remove the negative magnetoresistance.
The temperature effects are expected to be more and more
important the lower the density. This is also what is found
experimentally [9].

In Fig. 8 we see that the maximum negative magnetoresis-
tance increases linearly on a log-log plot when the density is
reduced. For finite temperature the maximum is expected to
start decreasing at a density that depends on the temperature.

The higher the temperature the earlier the decrease is expected
to set in. In Fig. 8 of Ref. [9] this decrease is observed.

V. SUMMARY AND CONCLUSIONS

We have performed magnetoresistance measurements of
heavily phosphorous doped silicon and compared the results to
theory. The resistance was calculated using the so-called gener-
alized Drude approach taking many-body effects into account.
We propose that the origin of the negative magnetoresistance is
a combination of two effects. The many-body effects lead to an
enhancement of the density of states at the Fermi level which
in turn results in an enhancement of the resistivity. Friedel
oscillations in the screening charge density cause an enhanced
back-scattering rate across the Fermi volumes leading to an
additional enhancement of the resistivity.

When the magnetic field is turned on the enhancement of
the density of states for each spin type is split up into two
peaks, one at the Fermi level and one that moves away from
the Fermi level with enhanced magnetic field. This reduces
the resistivity. Also, the back-scattering rate against the Friedel
oscillations will be reduced in the presence of a magnetic field.
Both these effects act towards a negative magnetoresistance.
The first effect is expected to be dominating. We would
have liked to have samples that cover a broader range of
doping concentrations from closer to nc to a much higher
value. Unfortunately, we have had contact problems preventing
high quality measurements. We hope to come back with
complementary results in the near future.

From our work we can deduce that the metal-nonmetal
transition in heavily n-doped Si is driven by electron-electron
and electron doping-ion interactions and not by spin-flip
scattering or spin-orbit scattering. This is in line with the
findings in Ref. [45] for p-doped Si (Si:B) where these
conclusions could be drawn from the universal scaling of the
magnetoconductance of that system.

We have not been able to find any recent work on
the magnetoresistance of heavily doped Si near the metal-
nonmetal transition. We hope that the present work will inspire
the readers to perform new such measurements. Recently [46]
one has managed to produce samples of sulfur-doped silicon
at nonequilibrium concentrations in a range covering the
concentration of the metal-nonmetal transition. This was
achieved by using ion implantation followed by pulsed-laser
melting and rapid resolidification. Sulfur is a deep level
impurity in crystalline silicon and nc is much higher than for
phosphorus doping. One estimated nc to be between 1.8 and
4.3 × 1020 cm−3, i.e., two orders of magnitude higher than
for phosphorous doping. It would be very interesting to see
magnetoresistance measurements being performed on these
samples.
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