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Influence of disordered porous media on the anomalous properties of a simple water model
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The thermodynamic, dynamic, and structural behavior of a water-like system confined in a matrix is analyzed
for increasing confining geometries. The liquid is modeled by a two-dimensional associating lattice gas model
that exhibits density and diffusion anomalies, similar to the anomalies present in liquid water. The matrix is a
triangular lattice in which fixed obstacles impose restrictions to the occupation of the particles. We show that
obstacles shorten all lines, including the phase coexistence, the critical and the anomalous lines. The inclusion
of a very dense matrix not only suppresses the anomalies but also the liquid-liquid critical point.
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I. INTRODUCTION

The phase behavior of systems of particles interacting via
the so-called core-softened (CS) potentials has received a lot of
attention recently. They show a repulsive core with a softening
region when particles are very close and an attractive region
when particles are more distant. These CS can be modeled
as continuous potentials or lattice gas models. For the lattice
structure the two competing scales arise from two equilibrium
configurations: low density and high density. This procedure
generates models that are analytically and computationally
tractable and that one hopes are capable of retaining the
qualitative features of the real complex systems. The physical
motivation behind these studies is the assumption that two
length scales systems exhibit the same anomalous behaviors
present in water. Confirming this hypothesis a number of
continuous [1–7] and lattice gas models [8–16] show the
presence of density, diffusion, and structural anomalous
behavior as observed in water [17,18].

Within the other 72 anomalies [19], water has at very low
temperatures two coexisting amorphous phases with distinct
densities: the low-density amorphous (LDA) and high-density
amorphous phases (HDA) [20–24]. These two amorphous
phases led to the hypothesis of the existence at higher
temperatures of two liquid phases: a low-density liquid and
high-density liquid phases. Such conjecture establishes that the
coexistence between these two liquid phases ends in a second
critical point or also called, liquid-liquid critical point (LLCP)
[24]. Experiments for testing the existence of this criticality
are difficult since the region in the pressure versus temperature
phase diagram where the alleged critical point exists is
located beyond the homogeneous nucleation limit. In order
to circumvent this difficulty for testing the existence of the
liquid-liquid critical point, recently confined geometries have
been employed [25,26]. In these nanoconfined geometries the
disruption of the hydrogen bonds suppresses the solidification
of the system and allows for maintaining the system liquid
in temperatures in which otherwise would be solid [25,26].
These experimental systems show convincing evidences that
water exhibits two liquid structures at low temperatures.
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The use of water confined, however, brings another set of
issues. What guarantees that the same thermodynamic and
dynamic anomalies and criticality present in the unconfined
system are not destroyed as the system is confined? Can
confinement bring up new phenomena not present in the
unconfined geometries? In order to answer these questions
water-like atomistic or continuous effective potential models
were explored. The confining geometries could be plates
[27–37], one pore [38–46], and a disordered matrix
[43,52,53,55–57]. The results for the melting temperature
obtained within these approaches are controversial, while
results for SPC/E water show that the melting temperature for
hydrophobic plates is lower than the melting for the unconfined
system and higher than for the system confined by hydrophilic
walls, for the mW model no difference between the melting
temperatures due to the hydrophobicity [47] is found.

Other quantities, such as the TMD and the diffusion extrema
show a definitive trend. In confined systems the TMD occurs at
lower temperatures for the hydrophobic confinement [48,49]
and at higher temperatures for the hydrophilic confinement
[50] when compared with the unconfined system. The diffusion
coefficient, D, in the direction parallel to the plates exhibits
the same anomalous behavior observed in unconfined water.
However, the temperatures of the maximum and minimum of
D are lower for the confined system when compared with the
unconfined water [49]. In the direction perpendicular to the
plates, no diffusion anomalous behavior is observed [51].

In addition to the usual density and diffusion anomalous
behavior, these confined systems show a variety of new effects
not present in the unconfined system. For example, fluids
confined in carbon nanotube exhibit formation of layers,
crystallization of the contact layer [58,59], and a superflow not
present in macroscopic confinement [60,61]. The confinement
by a pore, within plates or nanotubes, is symmetric, and even
though it introduces a breaking of the water-hydrogen bond
network, this is done in an ordered way. Confining matrix such
as the ones present in plants and underground water are not
ordered. The idea of exploring the random confinement is quite
appealing and have generated some discussion in the literature
[62,63]. For instance, recently the effects of a water-like liquid
confined in a disordered matrix have been analyzed using a
model in which the bonds are introduced by the inclusion of
Potts variables [53,54]. This study shows that the liquid-liquid
coexistence line is affected by the increase of the density of
random porous in the matrix.
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In all these studies, however, the liquid-liquid transition is
preserved and the density of confining matrix is not very high.
Here, we give a further step by investigating effects imposed
by disordered porous when the random matrix exhibits a high
density. The system is defined in a triangular lattice where
the obstacles are fixed and randomly distributed. The fluid
is modeled as the associating lattice gas (ALG) model [12]
defined in terms of an occupational variable together with a
bond orientational variable. This model shows the density and
diffusion anomalies present in real water and also exhibits the
liquid-gas and liquid-liquid phase coexistence [12]. Here we
explore the effects in the chemical potential versus temperature
phase diagram of the presence of the random fixed obstacles
in an attempt to mimic the natural random structures.

This paper is organized as follows. In Sec. II we present the
model used here. In Sec. III we outline details of Monte Carlo
(MC) simulations and how the thermodynamic properties of
system were calculated. Results are presented in Sec. IV,
followed by conclusions in Sec. V.

II. THE MODEL

The ALG model is defined in a triangular lattice, in which
each accessible site i can be empty or occupied by a water
molecule. Empty sites have σi = 0, while occupied sites
have σi = 1. Each water molecule has orientational states
represented by the variable τ that presents six arms, two being
inert arms with τi = 0 and four being active arms with τi = 1.
They represent the possibility of a molecule to form hydrogen
bonds with up to four neighbor molecules. The two inert arms
are diametrically positioned, in such a way that there are just
three different orientational states. Figure 1 exemplifies the
geometry of the model.

A bond is formed only when the active arms of two neighbor
molecules point out to each other, namely τiτj = 1. In this
case, the interaction energy between two bonded arms reads
−v while nonbonded arms contribute with a higher energy of
−v + 2u (punishment for nonforming hydrogen bonds). The
Hamiltonian of the system is given by

H = 2u
∑
〈i,j〉

σiσj

[(
1 − v

2u

)
− τiτj

]
− μ

∑
i

σi . (1)

The phase behavior of the system in the absence of obstacles
was already analyzed in a previous publication [15] and it

(a) (b)

FIG. 2. Examples of a configuration for the HDL (a) and LDL
(b) phases for the associating lattice gas (ALG) model. The solid and
dashed lines indicate the bonding and inert arms, respectively.

is reviewed as follows. At ground state, T ∗ ≡ T/v = 0, the
grand potential per site is � = e − μN where e = 〈H〉/L2.
At low chemical potentials, the lattice is empty and the system
is constrained in gas phase, ρ = 0. In this phase the grand
potential is �G = 0. Increasing the chemical potential the
system reaches a point at which the gas phase coexists with a
low-density liquid phase (LDL). In this phase, the density
is ρ = 3/4 and each particle forms four hydrogen bonds
with its neighbors, resulting in a grand potential per site
�LDL/L2 = −(3/2)v − (3/4)μ and consequently in a gas-
LDL coexistence chemical potential μ∗

G-LDL = μG-LDL/v =
−2. For high chemical potentials, all sites of lattice are
occupied by particles, resulting in a density ρ = 1 and grand
potential per site �HDL/L2 = −3v + 2u − μ. The coexistence
between the LDL phase and the HDL phase occurs at
μ∗

LDL-HDL = μLDL-HDL/v = 8u/v − 6. The main features of
LDL and HDL phases are exemplified in Fig. 2 for two possible
configurations at T ∗ = 0.

At temperatures T ∗ ≡ T/kBv > 0, the model was also
already analyzed by Monte Carlo simulations [15]. The
chemical potential versus temperature phase diagram is shown
in the Fig. 3(a).
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FIG. 3. (Color online) For the ALG model, panel (a) shows the
phase diagram μ∗ vs. T ∗, illustrating the gas-LDL (empty circles)
and the LDL-HDL (filled circles) phase transitions, the λ-line (empty
squares), and the TMD line (filled triangles). In panel (b) we plot
the c∗

V vs. T ∗ for μ∗ = −0.80 (circles), μ∗ = 0.60 (diamonds), and
μ∗ = 1.20 (squares). In (c) the system density ρ vs. T ∗ for fixed μ∗

along the TMD line (dashed line).
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FIG. 4. Left panel shows a lattice configuration where the solid
gray, the solid black, and the dashed circles describe water molecules,
obstacles, and empty sites, respectively. For clarity, the bonds are not
shown. Right panel shows a lattice configuration with the subdivision
in four sublattices.

The gas-LDL and LDL-HDL transition lines are first-
order transitions, ending in the tricritical points T ∗

c1 and T ∗
c2,

respectively. These two tricritical points are connected by a line
of continuous transitions, the λ line. For the ALG model with
no obstacles the tricritical temperatures, T ∗

c1 = 0.65 and T ∗
c2 =

0.825, respectively. In order to understand the differences
between the LDL and HDL phases, the lattice as shown in
the Fig. 4(a) is divided in four sublattices as illustrated in
the Fig. 4(b). The LDL phase is characterized by one of the
sublattices being empty while all the others are filled, in such
a way that the transition to the HDL phase occurs when the
empty sublattice is filled. Also, it is signed by a rotation in the
inert arms, in which in the HDL phase they are all parallel. In
the LDL phase, each particle forms four bonded arms that show
a zigzag structure, whereas in the HDL phase each particle also
forms four bonded arms but with parallel lines.

The density of bonds, ρhb = 1

L2

∑L2

i=1

∑
i+δ σiσi+δτiτi+δ

is also an important quantity for characterizing the phase
transitions. At T ∗ = 0 the gas, LDL, and HDL phases has ρhb

reading 0,1.5, and 2, respectively. Thus the phase transitions
are also signed by changes in the fraction of hydrogen
bonds. At very high temperature the system is disordered.
The sublattice occupations do not exhibit any ordering. By
lowering T ∗, the λ line is crossed, which one sublattice is
emptied and the others remaining filled with an reorganization
of the inert arms that form the above ordered zig-zag structure.
This the λ line transition is identified by the peak of the specific
heat at constant volume cV [15].

In this work the disordered porous media is introduced by
considering fixed obstacles that are randomly distributed in
the lattice. Each obstacle occupies a single site and interacts
with the particles via a “hard-core” constraint. The density of
obstacles is given by ρo = No/L

2, where No is the number of
obstacles and L2 is the system volume. In Fig. 4(a), a lattice
configuration composed of water, obstacles, and empty sites
is exemplified.

III. THE METHODS AND SIMULATION DETAILS

Numerical simulations have been performed for the trian-
gular lattices of size L = 35 and periodic boundary conditions.

Three representative values for the density of obstacles ρo =
0.08, 0.24, and 0.40 have been considered.

In all cases, we have used 106 MC steps to equilibrate the
system and 106 MC steps for evaluating the relevant quantities.
Each Monte Carlo step is defined as the number of L2 trials for
generating new configurations, including the choice of empty
sites and water molecules. Additional simulations for L =
24, 35, 40, 56, and 80 and finite-size scaling analysis were
performed in order to study the critical lines and to test size
effects in the porosity.

All the thermodynamic properties have been obtained
by performing grand canonical MC simulations for fixed
T ∗, μ∗ ≡ μ/v, and ρ0 [64]. Microscopic configurations are
generated according to the Metropolis algorithm [65] de-
scribed as follows. First, the obstacles are randomly dis-
tributed. Then, a site k not occupied by an obstacle is randomly
selected. If the site k is not occupied, an attempt to occupy
the site with a water molecule in a randomly selected arm
orientation is made. If the site k is already occupied by a water
molecule one of the following actions are tried: to empty the
site or to change the arm configuration of the water molecule
to one of the other two possible states. Next, to accept or
not the attempts to change the site occupation, the energy
difference �H between the original and the new configuration
is computed. The configuration change is accepted according
to the Metropolis prescription min{1,e−β�H}, where β =
1/kBT . As mentioned previously, this process is first repeated
106 times without computing and after this, thermodynamic
quantities are averaged over 106 Monte Carlo steps.

Some remarks over the obstacles distributions are required.
In principle, a random distribution might lead to statistical
problems. According to some works [66,67], systems with
random disorder lose the self-averaging, and averages over
many distributions of obstacles are required. However, this
affects mainly the computation of critical temperatures and
exponents. In the present case, by performing tests with dif-
ferent random distributions of obstacles, we have verified that
the tested temperatures and chemical potentials led to results
not sensitive to the specific distribution of obstacles. Then, for
simplicity only one random distribution was employed. For
calculating the critical λ line, we considered the peak of the
specific heat at constant volume, given by

cV = 1

V T 2

[〈
δH2〉

gcan − 〈δHδN〉2
gcan〈

δN2
〉
gcan

]
+ 3NkB

2V
, (2)

where δX = X − 〈X〉 with X = H and N and averages
are evaluated in the ensemble of T ,μ fixed. The chemical
potentials and temperatures of the λ line were obtained
through the finite-size scaling analysis of cV employing
L = 24, 35, 40, 56, and 80.

In addition to the thermodynamic quantities, the influence
of obstacles in the dynamic properties was also investigated.
Since we perform Monte Carlo simulations, the dynamics is
characterized through the diffusion coefficient D given by
Einstein’s relation

D = lim
t→∞

〈�r(t)2〉
4t

, (3)
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where 〈�r(t)2〉 = 〈[r(t) − r(0)]2〉 is the mean-square dis-
placement per particle and time is measured in Monte Carlo
steps. Although the diffusion coefficient (measured under
Monte Carlo simulations) is a stochastic dynamics and not
a real space mobility, it is possible to associate the former
with the concept of diffusion anomalous like the behavior
observed in liquid water [16]. The numerical MC procedure
for calculating the diffusion is described as follows. First, the
system is equilibrated by employing the previous Metropolis
dynamics for fixed T ∗ and μ∗. After the equilibrium is
reached, an occupied site i and it’s neighbor j are chosen
randomly. If neighbor site j is empty, the molecule moves to
the empty site also following the above Metropolis prescription
min{1,e−β�H}, where �H is the difference of energy due to
the movement. A Monte Carlo step t is defined through the
number of trials of movement for all system particles. After
repeating this algorithm nt times, where n is the number of
molecules in the lattice, the diffusion coefficient is calculated
from Eq. (3). Here we employ t = 800 for the evaluations.

IV. RESULTS

A. Structural and thermodynamic behavior

First, let us examine what happens with the phases present
in the system as the obstacles are introduced. Figure 5 shows
the water density ρ, versus the reduced chemical potential μ∗,
for distinct porous densities at the fixed temperature T ∗ =
0.40. Figure 5 also shows that for T ∗ = 0.40 the gas-LDL

−4 −2 0 2 4

μ∗

−0.1

0.3

0.7

1.1

ρ∗

bulk

ρ∗o = 0.08

−4 −2 0 2 4

μ∗

−0.1

0.3

0.7

1.1

ρ∗

bulk

ρ∗o = 0.24

−4 −2 0 2 4

μ∗

−0.1

0.3

0.7

1.1

ρ∗

bulk

ρ∗o = 0.40

−4 −2 0 2 4

μ∗

0.0

0.5

1.0

1.5

2.0

ρhb

bulk

ρ∗o = 0.08

−4 −2 0 2 4

μ∗

0.0

0.5

1.0

1.5

2.0

ρhb

bulk

ρ∗o = 0.24

−4 −2 0 2 4

μ∗

0.0

0.5

1.0

1.5

2.0

ρhb

bulk

ρ∗o = 0.40

FIG. 5. (Color online) ρ vs. μ∗ for distinct porous densities ρo

for T ∗ = 0.40.
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FIG. 6. (Color online) For ρo = 0.08: (a) Chemical potential μ∗

vs. reduced temperature T ∗ phase diagram showing the Gas-LDL
(empty circles), the LDL-HDL (filled circles) phase transitions, the λ-
line (empty squares), and the TMD line (filled triangles). (b) Specific
heat at constant volume cV vs. T ∗ for the system with obstacles (filled
squares) and system with no obstacles (empty circles) at μ∗ = −1.00.
Panel (c) ρ versus T ∗ for μ∗ = 0.0, . . . ,2.2 showing the TMD line
(dashed line).

phase exhibits a smaller hysteresis loop when compared with
the LDL-HDL transition. This indicates that the gas-LDL
free-energy barrier is smaller than the LDL-HDL barrier.
This also reflects in the difference between the gas-LDL
tricritical temperature, T ∗

c1, which is smaller than the LDL-
HDL tricritical temperature, T ∗

c2. The size of the hysteresis
loops change with the temperature and lattice size but in all
the analyzed cases the gas-LDL is much smaller than the
LDL-HDL loop.

The inclusion of obstacles changes the temperature and
chemical potential locations of the gas-LDL and the LDL-
HDL phase transition. In particular, the increase in the number
of obstacles leads to the disruption of the hydrogen bonds,
decreasing the free-energy barriers separating the coexisting
phases. This explains the decrease in the hysteresis loop when
obstacles are included. In addition, the density gap between
the two liquid phases becomes less abrupt and the inclusion
of obstacles moves the transition points to larger chemical
potentials.

Figures 6, 7, and 8 illustrate the chemical potential versus
temperature phase diagrams for ρo = 0.08, 0.24, and 0.40,
respectively. In particular, by increasing ρo the tricritical points
T ∗

c1 and T ∗
c2, in which the gas-LDL and LDL-HDL coexistence

lines meet the λ line, decrease as shown in Figs. 6, 7, and
8. More specifically, while for the system without obstacles
the gas-LDL tricritical point is located at Tc1 = 0.65, it moves
to T ∗

c1 = 0.60, 0.55, and 0.52 for ρo = 0.08, 0.24, and 0.40,
respectively.

This scenario becomes even more drastic in the case of
the LDL-HDL phase transition. The tricritical point not only
decreases its value from T ∗

c2 = 0.825 (no obstacles) to Tc2 =
0.57 and Tc2 = 0.52 for ρo = 0.08 and 0.24, respectively, but
the critical line disappears for ρo = 0.40, implying the absence
of liquid-liquid transition line.
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FIG. 7. (Color online) For ρo = 0.24: (a) Chemical potential μ∗

vs. reduced temperature T ∗ phase diagram showing the Gas-LDL
(empty circles), the LDL-HDL (filled circles) phase transitions, the λ-
line (empty squares), and the TMD line (filled triangles). (b) Specific
heat at constant volume cV vs. T ∗ for the system with obstacles (filled
squares) and system with no obstacles (empty circles) at μ∗ = −1.00.
Panel (c) ρ versus T ∗ for μ∗ = 0.0, . . . ,2.0 showing the TMD line
(dashed line).

The changes in the transition points can be understood by
verifying that the inclusion of obstacles suppress partially the
structured patterns found in the LDL and HDL phases (see,
e.g., Figs. 2(a) and 2(b) for the zero obstacle system). In the
case of the LDL phase the ordered structure is distorted as
ρo increases, as illustrated in Fig. 9 for μ∗ = −0.5. For the
lowest case ρo = 0.08, the degree of confinement is low and
most occupied sites preserve at least three bonds. As ρo is
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FIG. 8. (Color online) For ρo = 0.40: (a) Chemical potential μ∗

vs. reduced temperature T ∗ phase diagram showing the Gas-LDL
(empty circles), the LDL-HDL (filled circles) phase transitions, the λ-
line (empty squares), and the TMD line (filled triangles). (b) Specific
heat at constant volume cV vs. T ∗ for the system with obstacles (filled
squares) and system with no obstacles (empty circles) at μ∗ = −1.00.
Panel (c) ρ versus T ∗ for μ∗ = 0.0, . . . ,2.0 showing the TMD line
(dashed line).

(a) (b)

(c) (d)

FIG. 9. (Color online) Spatial snapshot (35 × 35 sites) of tri-
angular lattice. Each site is represented by hexagon, with its six
nearest-neighbor sites. White hexagons represent vacancies, black
represent obstacles, and gray represent water-like particles. The
snapshots exhibit character configurations of system with chemical
potential μ∗ = −0.5 and temperature T ∗ = 0.3. In (a) we present
the unconfined system. In (b) the system submitted at low degree
of confinement ρo = 0.08 and the blue rectangles denote the regions
where the characteristic geometry of LDL of ALG is preserved. In (c),
intermediate degree of confinement ρ = 0.24, and green rectangles
denote the LDL structure. The highest degree of confinement ρ =
0.40 is shown in (d).

raised (here exemplified for ρo = 0.24 and 0.40) the fraction
of disrupted bonds increases, reaching a limit in which the
connectivity of the network is lost. Similar effect is verified
in the HDL phase, but the effect is more pronounced in such
case. This can be understood by recalling that in the LDL
phase, obstacles occupy partially empty sites with neighboring
molecules not forming hydrogen bonds. Thus, the disruption
of hydrogen bonds is more relevant in the HDL phase.

This loss of connectivity also explains why the transition
from the disordered structure to the LDL through the λ line
occurs for lower temperatures when compared with the temper-
atures obtained for the system with no obstacles. For example,
for 1 − μ∗ = −1 and distinct obstacle densities ρo = 0.08 and
ρo = 0.24, analysis of the peak of c∗

V show (in all cases) a scal-
ing with L−1, from which we obtain the critical temperatures
T ∗

c = 0.795(1) and 0.717(1), respectively. These estimates
are lower than 0.866(1), obtained for the unconfined system.
This transition is an order-disorder transition in which one
of the sublattices becomes empty while the others are filled;
consequently, the increase of number of obstacles increases
the entropy by breaking bonds that favor a disordered phase.

Thus, all transition points move for lower temperatures as
a way for “compensating” the above increase of disorder. In
other words, due to the inclusion of obstacles, the structured
phases exist only for lower temperatures than in the unconfined
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FIG. 10. (Color online) Chemical potential versus temperature
illustrating (a) the TMD lines, (b) the gas-LDL tricritial point, and
(c) the LDL-HDL critical point values for the unconfined (circles) and
the system with different concentrations of obstacles. The squares,
triangles, and diamonds correspond to ρo = 0.08, 0.24, and 0.40,
respectively.

system, whose decreasing become more pronounced as ρ0

increases. Finally, for high density of obstacles the λ-line
transition is destroyed by fluctuations. The last comment
concerns the comparison between the TMD as ρ0 increases,
as shown in Fig. 10. As for the transition lines, the TMD
shortens and move for lower temperatures (with maximum ρ

decreasing) as ρ0 increases. However, in contrast with previous
results, for ρ0 = 0.40 a tiny TMD (ranged from T ∗ = 0.50 to
0.70 with ρ = 0.56 to 0.64) is verified.

B. Diffusion and dynamic anomaly

Besides the influence of the immobile obstacles in the
thermodynamic quantities, another relevant question concerns
what happens with the water mobility as the density of
obstacles increases.

Figure 11 shows the diffusion coefficient computed using
Eq. (3) for different T ∗’s and ρ0’s. Similar to what happens
for the ALG model with no obstacles, the diffusion coefficient
presents a region in densities in which D increases with ρ.
This is the so-called diffusion anomaly also present in water.
The addition of obstacles shrinks the region in temperatures
and pressures in which the diffusion anomaly is present and
for ρo = 0.40 no diffusion anomaly is observed.

The dynamic anomaly depends crucially on the presence
of a high number of neighbor sites occupied by the fluid [68].
The obstacles make this difficult, and for a very high number
of obstacles, the mobility becomes even impossible.

Since for water-like systems, typically the region in the
μ∗-T ∗ phase diagram in which the density anomaly is present
is close to the region where the diffusion anomaly appears.
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FIG. 11. (Color online) Diffusion coefficient versus density at
fixed temperatures for: (a) ρo = 0.08, (b) ρo = 0.24, and (c) ρo =
0.40. The solid gray lines are the values of the diffusion coefficient for
T ∗ = 0.30 . . . 1.00 with �T ∗ = 0.05 (from bottom to top), the blue
dashed and dot-dashed lines connect the minimum and maximum in
D, respectively.

Therefore, one expects that the suppression of the first is
directly related to the disappearance of the other.

V. CONCLUSION

The effects of fixed obstacles in thermodynamic and
dynamic properties of a simplified water-like model have
been investigated. For low degree of confinement, the ther-
modynamic, structural, and dynamic properties of model are
almost totally preserved due to the low steric effects. For the
intermediate case, ρo = 0.24, the system suffers significant
changes, such as the decrease of the critical and tricritical
points to lower temperatures, resulting in a reduction of
coexistence regions. This effect is more dramatic for the
liquid-liquid coexistence that disappear for ρo = 0.40. The
density and diffusion anomalous regions are also shifted to
lower temperature, keeping the reduction in temperature-
chemical potential phase diagram. The disappearance of the
liquid-liquid temperature also reflects in the absence of density
and diffusion anomalous regions in the limit of large density of
obstacles. Both effects are related to both the entropy increase
due to the presence of the obstacles and the disruption of the
bonds network.
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