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We study infrared contributions to semihard parton-parton interactions by considering an effective
charge whose finite infrared behavior is constrained by a dynamical mass scale. Using an eikonal QCD-
based model in order to connect this semihard parton-level dynamics to the hadron-hadron scattering, we

obtain predictions for the proton-proton (pp) and antiproton-proton (p̄p) total cross sections, σpp;p̄ptot , and
the ratios of the real to imaginary part of the forward scattering amplitude, ρpp;p̄p. We discuss the
theoretical aspects of this formalism and consider the phenomenological implications of a class of energy-
dependent form factors in the high-energy behavior of the forward amplitude. We introduce integral
dispersion relations specially tailored to relate the real and imaginary parts of eikonals with energy-
dependent form factors. Our results, obtained using a group of updated sets of parton distribution functions,
are consistent with the recent data from the TOTEM, AUGER, and Telescope Array experiments.
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I. INTRODUCTION

The study of hadron-hadron total cross sections has been
a subject of intense theoretical and experimental interest.
The recent measurements of proton-proton (pp) elastic,
inelastic, and total cross sections at the LHC by the
TOTEM Collaboration [1–4] have enhanced the interest
in the subject and become a pivotal source of information
for selecting models and theoretical methods. At present
one of the main theoretical approaches for the description
of the observed increase of hadron-hadron total cross
sections is the QCD-inspired formalism [5–8]. In this
approach the energy dependence of the total cross section
σtotðsÞ is obtained from the QCD using an eikonal
formulation compatible with analyticity and unitarity
constraints. More precisely, the behavior of the forward
observables σtotðsÞ and ρðsÞ is derived from the QCD
parton model using standard QCD cross sections for
elementary parton-parton processes, updated sets of quark
and gluon distribution functions and physically motivated
cutoffs that restrict the parton-level processes to semihard
(SH) ones. These semihard processes arise from hard
scatterings of partons carrying very small fractions of
the momenta of their parent hadrons, leading to the
appearance of jets with transverse energy ET much smaller
than the total energy

ffiffiffi
s

p
available in the hadronic collision.

In this picture the scattering of hadrons is an incoherent
summation over all possible constituent scattering and the
increase of the total cross sections is directly associated
with parton-parton semihard scatterings. The high-energy
dependence of the cross sections is driven mainly by
processes involving the gluon contribution, since it gives
the dominant contribution at small x.
However, despite this scenario being quantitatively

understood in the framework of perturbative QCD, the

nonperturbative character of the theory is also manifest at
the elementary level since at high energies the soft and the
semihard components of the scattering amplitude are
closely related [9]. Thus, in considering the forward
scattering amplitude, it becomes important to distinguish
between semihard gluons, which participate in hard parton-
parton scattering, and soft gluons, emitted in any given
parton-parton QCD radiation process.
Fortunately, our task of describing forward observables

in hadron-hadron collisions, bringing up information about
the infrared properties of QCD, can be properly addressed
by considering the possibility that the nonperturbative
dynamics of QCD generate an effective gluon mass.
This dynamical gluon mass is intrinsically related to an
infrared finite strong coupling constant, and its existence is
strongly supported by recent QCD lattice simulations [10]
as well as by phenomenological results [6,7,11]. More
specifically, a global description of σpp;p̄ptot ðsÞ and ρpp;p̄pðsÞ
can succeed in a consistent way by introducing a non-
perturbative QCD effective charge in the calculation of the
parton-level processes involving gluons, which dominates
at high energy and determines the asymptotic behavior of
hadron-hadron cross sections.
With this background in mind, the main purpose of this

paper is to explore the nonperturbative dynamics of QCD in
order to describe the total cross section, σtotðsÞ, and the
ratio of the real to imaginary part of the forward scattering
amplitude, ρðsÞ, in both pp and antiproton-proton (p̄p)
channels, assuming the eikonal representation and the
unitarity condition of the scattering matrix. In our analysis
we introduce a new class of energy-dependent form factors
that represents the overlap density for the partons at impact
parameter b. We relate the real and imaginary parts of the
eikonal by means of suitable dispersion relations for
amplitudes with energy-dependent form factors. We also
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explore the effects of different updated sets of parton
distributions on the forward quantities, namely CTEQ6L,
CTEQ6L1, and MSTW.
The paper is organized as follows: in the next section we

introduce a QCD-based eikonal model where the onset of
the dominance of semihard gluons in the interaction of
high-energy hadrons is managed by the dynamical gluon
mass. Within this model we investigate a class of form
factors in which the spatial distribution of semihard gluons
changes with energy. We introduce integral dispersion
relations tailored to connect the real and imaginary parts
of eikonals with this kind of form factor. In Sec. III we
present the underlying physical picture of the infrared-finite
QCD effective charge, and introduce the elementary
parton-parton cross sections connected to the gluon and
quark dynamical masses. In Sec. IV, motivated by the
recent TOTEMmeasurements of cross sections at the LHC,
we perform a detailed analysis of pp and p̄p forward
scattering data using our eikonal model, and obtain
predictions for σpp;p̄ptot and ρpp;p̄p at Tevatron, CERN-
LHC, and cosmic-ray energies. The uncertainty on these
forward observables is inferred from the uncertainties
associated with the dynamical mass scale and the parton
distribution functions at

ffiffiffi
s

p ¼ 8, 13, 14, 57, and 95 TeV. In
Sec. V we draw our conclusions.

II. THE DYNAMICAL GLUON MASS MODEL

In the QCD-based (or “minijet”) models the increase of
the total cross sections is associated with semihard scatter-
ings of partons in the hadrons. These models incorporate
soft and semihard processes in the treatment of high-energy
hadron-hadron interactions using a formulation compatible
with analyticity and unitarity constraints. In the eikonal
representation the total and inelastic cross sections, as well
as the parameter ρ (the ratio of the real to imaginary part of
the forward scattering amplitude), are given by

σtotðsÞ ¼ 4π

Z
∞

0

bdb½1 − e−χRðs;bÞ cos χIðs; bÞ�; ð1Þ

σinelðsÞ ¼ σtotðsÞ − σelðsÞ ¼ 2π

Z
∞

0

bdbGinðs; bÞ

¼ 2π

Z
∞

0

bdb½1 − e−2χRðs;bÞ�; ð2Þ

ρðsÞ ¼ − R
∞
0 bdbe−χRðs;bÞ sin χIðs; bÞR

∞
0 bdb½1 − e−χRðs;bÞ cos χIðs; bÞ�

; ð3Þ

respectively, where s is the square of the total center-of-
mass energy, b is the impact parameter, Ginðs; bÞ is the
inelastic overlap function, and χðs; bÞ ¼ Reχðs; bÞ þ
iImχðs; bÞ≡ χRðs; bÞ þ iχIðs; bÞ is the (complex) eikonal
function.

The unitarity of the S-matrix requires that the absorptive
part of the elastic scattering amplitude receives contribu-
tions from both the elastic and the inelastic channels. In
impact parameter space this condition may be written as

2ReΓðs; bÞ ¼ jΓðs; bÞj2 þ Ginðs; bÞ; ð4Þ

where Γðs; bÞ is the profile function, which describes the
absorption resulting from the opening of inelastic channels.
It can be expressed by the inverse Fourier-Bessel transform
of the elastic scattering amplitude, fðs; tÞ,

Γðs; bÞ ¼ −i
Z

∞

0

d
ffiffiffiffiffiffi−tp ffiffiffiffiffiffi−tp

J0ðb
ffiffiffiffiffiffi−tp Þfðs; tÞ; ð5Þ

where t is the usual Mandelstam variable. The physical
consequence of Eq. (4) is that no scattering process can be
uniquely inelastic, and thus the usual statement that the
elastic amplitude results from shadow scattering from the
inelastic channels. In this picture the probability that neither
hadron is broken up in a collision at impact parameter b is
therefore given by Pðs; bÞ ¼ e−2χRðs;bÞ.
We assume that the eikonal functions for pp and p̄p

scatterings are additive with respect to the soft and SH
parton interactions in the hadron-hadron collision:

χðs; bÞ ¼ χsoftðs; bÞ þ χSHðs; bÞ: ð6Þ

In the semihard limit of strong interactions hadron-
hadron collisions can be treated as an incoherent sum of
the interactions among quarks and gluons. More specifi-
cally, the QCD cross section σQCD is obtained by con-
voluting the cross sections σ̂ for the QCD subprocesses
with their associated parton distributions. It follows from
the QCD parton model that the eikonal term χSHðs; bÞ can
be factored as [5]

ReχSHðs; bÞ ¼
1

2
WSHðbÞσQCDðsÞ; ð7Þ

where WSHðbÞ is an overlap density for the partons at
impact parameter space b,

WSHðbÞ ¼
Z

d2b0ρAðjb − b0jÞρBðb0Þ; ð8Þ

and σQCDðsÞ is the usual QCD cross section

σQCDðsÞ ¼
X
ij

1

1þ δij

Z
1

0

dx1

Z
1

0

dx2

Z
∞

Q2
min

djt̂j dσ̂ij
djt̂j ðŝ; t̂Þ

× fi=Aðx1; jt̂jÞfj=Bðx2; jt̂jÞΘ
�
ŝ
2
− jt̂j

�
; ð9Þ

with jt̂j≡Q2 and i, j ¼ q, q̄, g. In the above expression the
integration limits satisfy x1x2s > 2jt̂j > 2Q2

min, where Q
2
min
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is a minimal momentum transfer in the semihard scattering,
ŝ and t̂ are the Mandelstam variables of the parton-parton
subsystem, and x1 and x2 are the fractions of the momenta
of the parent hadrons A and B carried by the partons i and j.
The term dσ̂ij=djt̂j is the differential cross section for ij
scattering, and fi=Aðx1; jt̂jÞ (fj=Bðx2; jt̂jÞ) is the usual parton
i (j) distribution in the hadron A (B).
The eikonal function is written in terms of even and odd

eikonal parts connected by crossing symmetry. In the case
of the proton-proton (pp) and antiproton-proton (p̄p)
scatterings, this combination reads χp̄pppðs; bÞ ¼ χþðs; bÞ�
χ−ðs; bÞ, with χþðs; bÞ ¼ χþsoftðs; bÞ þ χþSHðs; bÞ and
χ−ðs; bÞ ¼ χ−softðs; bÞ þ χ−SHðs; bÞ. However, in the QCD
parton model χ−SHðs; bÞ decreases rapidly with increasing s,
since the difference between pp and p̄p cross sections is
due only to the different weighting of the quark-antiquark
(valence) annihilation cross sections in the two channels.
Hence the crossing-odd eikonal χ−ðs; bÞ receives no con-
tribution from semihard processes at high energies. As a
result, for our purposes it is sufficient to take χSHðs; bÞ ¼
χþSHðs; bÞ and, consequently, χ−ðs; bÞ ¼ χ−softðs; bÞ. The
connection between the real and imaginary parts of
χþðs; bÞ and χ−ðs; bÞ, obtained by means of dispersion
relations, will be discussed in the following sections.

A. Energy-dependent form factors

For the overlap densities, the simplest hypothesis is to
assumeWSHðbÞ is the same asWsoftðbÞ. This prescription is
not however true in the QCD parton model, since soft
interactions are mainly related to interactions among
valence quarks, while semihard interactions are dominated
by gluons. Moreover, a scenario where quarks and gluons
exhibit a somewhat different spatial distribution seems
plausible, since gluons are expected to be distributed
around the quarks. Furthermore, in contrast with gluons,
quarks have electric charges, and the (matter) distribution
of the valence quarks can be associated in a reasonable way
with the proton’s charge distribution. As a consequence, a
commonly used choice for the soft overlap densities
W−

softðbÞ and Wþ
softðbÞ comes from the charge dipole

approximation to the form factors GAðk⊥Þ and GBðk⊥Þ
of the colliding hadrons A and B, where

WðbÞ ¼
Z

d2b0ρAðjb − b0jÞρBðb0Þ

¼ 1

2π

Z
∞

0

dk⊥k⊥J0ðk⊥bÞGAðk⊥ÞGBðk⊥Þ; ð10Þ

and

GAðk⊥Þ ¼ GBðk⊥Þ≡Gdipðk⊥; μÞ ¼
�

μ2

k2⊥ þ μ2

�
2

: ð11Þ

Here, ρðbÞ is the parton density, which gives the probability
density for finding a parton in the area d2b at impact

parameter b. In terms of the form factor it is simply
written as

ρðbÞ ¼ 1

ð2πÞ2
Z

d2k⊥Gðk⊥Þeik⊥·b: ð12Þ

Thus, using the dipole form factor Gdipðk⊥; μÞ one gets

Wþ
softðb; μþsoftÞ ¼

1

2π

Z
∞

0

dk⊥k⊥J0ðk⊥bÞG2
dipðk⊥; μþsoftÞ

¼ ðμþsoftÞ2
96π

ðμþsoftbÞ3K3ðμþsoftbÞ; ð13Þ

where K3ðxÞ is the modified Bessel function of the second
kind and μþsoft is a free adjustable parameter that accounts
for the matter (valence quark) distribution inside the
hadron. The Wðb; μÞ function is normalized so thatR
d2bWðb; μÞ ¼ 1. In the same way, the odd soft density

is written as

W−
softðb; μ−softÞ ¼

ðμ−softÞ2
96π

ðμ−softbÞ3K3ðμ−softbÞ; ð14Þ

where μ−soft ≡ 0.5 GeV (its value is fixed since the odd
eikonal just accounts for the difference between pp and p̄p
channels at low energies).
In the case of semihard gluons, which dominate at high

energy, we consider the possibility of a “broadening” of the
spatial distribution. Our assumption suggests an increase of
the average gluon radius when

ffiffiffi
s

p
increases. More impor-

tantly, it in fact does provide an excellent description of
σpp;p̄ptot ðsÞ and ρpp;p̄pðsÞ data, as shown in the next section,
strongly suggesting an energy dependence for the semihard
overlap density. The way for introducing this effect can be
paved by looking at previous approaches, particularly in
geometrical ones, in which the role of phenomenological
energy-dependent form factors is central [12]. Our
assumption, based on the QCD parton model, can be
properly implemented using two Ansätze for the energy-
dependent form factors, namely a monopole

GðmÞ
SH ðs; k⊥; νSHÞ ¼

ν2SH
k2⊥ þ ν2SH

; ð15Þ

and a dipole

GðdÞ
SHðs; k⊥; νSHÞ ¼

�
ν2SH

k2⊥ þ ν2SH

�
2

; ð16Þ

where νSH ¼ ν1 − ν2 lnð ss0Þ, with
ffiffiffiffiffi
s0

p ≡ 5 GeV. Here, ν1
and ν2 are constants to be fitted. In the case of the monopole
the overlap density is
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WðmÞ
SH ðs;b;νSHÞ ¼

1

2π

Z
∞

0

dk⊥k⊥J0ðk⊥bÞ½GðmÞ
SH ðs; k⊥;νSHÞ�2

¼ ν2SH
4π

ðνSHbÞK1ðνSHbÞ; ð17Þ

where K1ðxÞ is a modified Bessel function of the second
kind. In analogy with the Eq. (13), in the case of the dipole
we are led to

WðdÞ
SHðs; b; νSHÞ ¼

ν2SH
96π

ðνSHbÞ3K3ðνSHbÞ: ð18Þ

Note that, as mentioned earlier, semihard interactions
dominate at high energies. Thus, we consider an energy-
dependence behavior for the spatial distribution exclusively
in the case of WSHðs; bÞ. In this way, the soft overlap
densities W−

softðbÞ and Wþ
softðbÞ will emerge only from the

“static” dipole form factor, i.e., from the Eqs. (13) and (14),
whereas the semihard overlap density WSHðs; bÞ will be
directly associated with Eqs. (17) and (18). Moreover, in
the semihard sector we have another form in which the
eikonal can be factored into the QCD parton model, since
now χSHðs; bÞ ¼ 1

2
WSHðs; bÞσQCDðsÞ.

B. Integral dispersion relations and high-energy eikonal

The analyticity of the scattering amplitude fðs; tÞ leads
to dispersion relations with crossing symmetry condition.
In the case of elastic processes in the forward direction
(t ¼ 0), the crossing variable is the energy E of the incident
particle in the laboratory frame [13]. If F ðEÞ is the analytic
continuation of the forward elastic scattering amplitude,
fðE; t ¼ 0Þ, the pp and p̄p forward amplitudes are the
limits of the analytic function F according to

fp̄pppðE; t ¼ 0Þ ¼ lim
ϵ→0

F ð∓E∓iϵ; t ¼ 0Þ: ð19Þ

The Cauchy theorem implies that

F ðEÞ ¼ 1

2πi

I
dE0 F ðE0Þ

E0 − E
ð20Þ

and, after choosing an appropriate contour, the above
expression can be written as

F ðEÞ ¼ 1

2πi

�Z
∞

m
dE0 F ðE0 þ iϵÞ − F ðE0 − iϵÞ

E0 − E

þ
Z −m
−∞

dE0 F ðE0 þ iϵÞ − F ðE0 − iϵÞ
E0 − E

�
; ð21Þ

where E ¼ −m and E ¼ m are cuts on the real axis.
For an even amplitude (F ¼ Fþ) we have F ðE0 þ iϵÞ ¼
F ð−E0 − iϵÞ. Thus,

FþðEÞ ¼ 1

π

Z
∞

m
dE0ImFþðE0 þ iϵÞ

�
1

E0 − E
þ 1

E0 þ E

�
;

ð22Þ

and the real and imaginary parts of fþðEÞ are connected by
the dispersion relation

RefþðEÞ ¼ 2

π
P
Z

∞

m
dE0

�
E0

E02 − E2

�
ImfþðE0Þ; ð23Þ

where P stands for the Cauchy principal-value integral. In
our model the eikonals are written in terms of even and odd
eikonal parts connected by crossing symmetry, namely
χp̄ppp ¼ χþ � χ−, where χþ and χ− are therefore real analytic
functions of E, i.e., they take real values on a real-axis
segment, with the same cut structure as fþ and f−,
respectively. Hence, taking the limit E ≫ m and changing
the variable from E to s, we find that the even eikonal also
satisfies the reverse dispersion relation

Imχþðs; bÞ ¼ − 2s
π
P
Z

∞

0

ds0
Reχþðs0; bÞ
s02 − s2

: ð24Þ

Thus, integrating by parts,

Imχþðs; bÞ ¼ lim
ϵ→0

s00→∞

− 2s
π

�Z
s−ϵ

0

ds0
Reχþðs0; bÞ
s02 − s2

þ
Z

s00

sþϵ
ds0

Reχþðs0; bÞ
s02 − s2

�

¼ lim
s00→∞

1

π

�
Reχþðs00; bÞ ln

�
s00 þ s
s00 − s

�
−
Z

∞

0

ds0 ln
�
s0 þ s
js0 − sj

�
dReχþðs0; bÞ

ds0

�

¼ −
1

π

Z
∞

0

ds0 ln
�
s0 þ s
js0 − sj

�
dReχþðs0; bÞ

ds0
; ð25Þ

where in the last step we have observed that the first term vanishes in the limit s00 → ∞. Applying this dispersion relation to
ReχSHðs; bÞ ¼ ReχþSHðs; bÞ ¼ 1

2
WSHðs; bÞσQCDðsÞ, we get
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ImχSHðs;bÞ ¼ − 1

2π

Z
∞

0

ds0 ln
�
s0 þ s
js0 − sj

��
σQCDðs0Þ

dWSHðs0; bÞ
ds0

�
−

1

2π

Z
∞

0

ds0 ln
�
s0 þ s
js0 − sj

��
WSHðs0; bÞ

dσQCDðs0Þ
ds0

�
: ð26Þ

The second integral on the right side involves the derivative of the QCD cross section σQCDðs0Þ. We should at this point note

that the s0 dependence in dσ̂ij
djt̂j terms can be ignored, since their derivatives are of order 1=s02. In this way, the only energy

dependence appears in the Heaviside function Θ [see (9)], in which

d
ds0

Θ
�
ŝ0

2
− jt̂j

�
¼ d

ds0
Θ
�
s0 − 2jt̂j

x1x2

�
¼ δ

�
s0 − 2jt̂j

x1x2

�
: ð27Þ

The δ-function removes the integration over ds0; thus, the second integral can be expressed as

I2ðs; bÞ ¼ − 1

2π

Z
∞

0

ds0 ln
�
s0 þ s
js0 − sj

�
WSHðs0; bÞ

dσQCDðs0Þ
ds0

¼ −
1

2π

X
ij

1

1þ δij
WSH

�
2jt̂j
x1x2

; b
�Z

1

0

dx1

Z
1

0

dx2

Z
∞

Q2
min

djt̂j dσ̂ij
djt̂j ðŝ; t̂Þ

× fi=Aðx1; jt̂jÞfj=Bðx2; jt̂jÞ ln
�
ŝ=2þ jt̂j
ŝ=2 − jt̂j

�
Θ
�
ŝ
2
− jt̂j

�
: ð28Þ

The energy-dependent form factor WSHðs; bÞ can have a monopole or a dipole form, namely, WðmÞ
SH ðs; b; νSHÞ or

WðdÞ
SHðs; b; νSHÞ [see Eqs. (17) and (18)]. In the case of a monopole form, the first integral on the right side of (26) can be

rewritten as

IðmÞ
1 ðs; bÞ ¼ − 1

2π

Z
∞

0

ds0 ln
�
s0 þ s
js0 − sj

�
σQCDðs0Þ

dWðmÞ
SH ðs0; b; νSHÞ

ds0

¼ −
b
8π2

X
ij

1

1þ δij

Z
∞

0

ds0

s0
ln

�
s0 þ s
js0 − sj

�Z
1

0

dx1

Z
1

0

dx2

Z
∞

Q2
min

djt̂j dσ̂ij
djt̂j ðŝ

0; t̂Þ

× fi=Aðx1; jt̂jÞfj=Bðx2; jt̂jÞ½bν2ν3SHK0ðνSHbÞ − 2ν2ν
2
SHK1ðνSHbÞ�Θ

�
ŝ0

2
− jt̂j

�
;

in the case of a dipole we get

IðdÞ1 ðs; bÞ ¼ − 1

2π

Z
∞

0

ds0 ln
�
s0 þ s
js0 − sj

�
σQCDðs0Þ

dWðdÞ
SHðs0; b; νSHÞ

ds0

¼ −
b3

192π2
X
ij

1

1þ δij

Z
∞

0

ds0

s0
ln

�
s0 þ s
js0 − sj

�Z
1

0

dx1

Z
1

0

dx2

Z
∞

Q2
min

djt̂j dσ̂ij
djt̂j ðŝ

0; t̂Þ

× fi=Aðx1; jt̂jÞfj=Bðx2; jt̂jÞ½bν2ν5SHK2ðνSHbÞ − 2ν2ν
4
SHK3ðνSHbÞ�Θ

�
ŝ0

2
− jt̂j

�
:

The soft eikonal is needed only to describe the lower-energy forward data, since the main contribution to the asymptotic
behavior of the hadron-hadron total cross section comes from parton-parton semihard collisions. Therefore, it is enough to
build an instrumental parametrization for the soft eikonal with terms dictated by the Regge phenomenology [14]. For the
even part of the soft eikonal we therefore take

χþsoftðs; bÞ ¼
1

2
Wþ

softðb; μþsoftÞ
�
A0 þ B0

ðs=s0Þγ
eiπγ=2 − iC0

�
ln

�
s
s0

�
− i

π

2

��
; ð29Þ
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where
ffiffiffiffiffi
s0

p ≡ 5 GeV and A0, B0, C0, γ, and μþsoft are fitting
parameters. The phase factor eiπγ=2, which ensures the
correct analyticity properties of the amplitude, is a result of
the integral dispersion relation (24).
The odd eikonal χ−ðs; bÞ which accounts for the differ-

ence between pp and p̄p channels and vanishes at high
energy, is given by

χ−ðs; bÞ ¼ 1

2
W−

softðb; μ−softÞD0 e
−iπ=4ffiffiffiffiffiffiffiffiffi
s=s0

p ; ð30Þ

where D0, the strength of the odd term, is also a fitting
parameter. The expression (30) was written with its correct
analyticity property, since the phase factor e−iπ=4 is a result
of the dispersion relation (valid at s ≫ m)

Imχ−ðs; bÞ ¼ − 2s2

π
P
Z

∞

0

ds0
Reχ−ðs0; bÞ
s0ðs02 − s2Þ : ð31Þ

III. INFRARED MASS SCALE
AND THE ROLE OF GLUONS

The calculation of the QCD cross section σQCDðsÞ
implies the sum over all possible parton types, but it is
sufficiently accurate for our purposes to fix the number of
flavors nf ¼ 4 and keep only the gluon g and the quarks u,
d, s, and c. As a matter of fact ReχSHðs; bÞ and ImχSHðs; bÞ
have to be determined taking into account all the heavy
quarks, where each heavy quark h ¼ c, b, t with mass Mh
is effectively decoupled from physical cross sections at
momenta scales below the thresholds Qh ¼ Mh, nf being
an increasing function of Qh. However, our numerical
results show that the contributions of the quarks b and t to
χSHðs; bÞ are very small indeed. In fact even the charm
contribution is tiny, and was included only for high-
precision purposes. Hence, there is no fundamental role
for heavy quarks (mq ≈Mh, h ¼ c, b, t) in our analysis,
and this result can be understood as follows: heavy quarks
are produced (perturbatively) from the splitting of gluons
into h̄h pairs at energies above the thresholds Qh ¼ Mh. At
sufficiently small x, the ratio of the heavy-quark parton
distribution function, hðx;Q2Þ, to the gluon one, gðx;Q2Þ,
is [15]

hðx;Q2Þ
gðx;Q2Þ ∼

αsðQ2Þ
2π

ln

�
Q2

M2
h

�
; ð32Þ

where hðx;Q2Þ ¼ 0 at Q ¼ Mh. However, the angular
dependencies of the dominant subprocesses in (9) are very
similar and all dominated by the t-channel angular dis-
tribution; as a consequence, the parton-parton differential
cross sections vary essentially as dσ̂ij=djt̂j ∼ 1=Q4. Hence,
the effects of distribution functions as well as current
masses of heavy quarks on σQCDðsÞ are absolutely
negligible.

In order to obtain χSHðs; bÞ we select parton-parton
scattering processes containing at least one gluon in the
initial state. The reason for this choice comes from the
behavior of the partonic splitting dictated by the DGLAP
evolution equations at leading order [16], in which the
gluon splitting functions Pgq →

4
3z and Pgg →

6
z are singular

as z → 0. As a result, the gluon distribution becomes very
large as x → 0 (in the convolution integrals z < x), and its
role in the evolution of parton distributions becomes
central. Thus, we select the following processes in the
calculation of χSHðs; bÞ: gg → gg (gluon-gluon scattering),
qg → qg and q̄g → q̄g (quark-gluon scattering), and gg →
q̄q (gluon fusion into a quark pair). The gluon-gluon and
quark-gluon scattering processes in fact dominate at
high energies. For example, at

ffiffiffi
s

p ¼ 7 TeV and with
Qmin ¼ 1.3 GeV, their relative contribution to the cross
section σQCDðsÞ is around 98,84% (98,66%) for the
CTEQ6L (MSTW) set of parton distributions. The relative
contribution of the process gg → q̄q is tiny; nevertheless, it
was included for completeness.
These elementary processes are plagued by infrared

divergences, which have to be regularized by means of
some cutoff procedure. One natural regulator for these
infrared divergences was introduced some time ago [17],
and has become an important ingredient of our eikonal
models [6,7]. It is based on the increasing evidence that
QCD develops an effective, momentum-dependent mass
for the gluons, while preserving the local SUð3Þc invari-
ance of the theory. This dynamical mass MgðQ2Þ intro-
duces a natural scale that, in principle, sets up a threshold
for gluons to pop up from the vacuum [18]. Moreover, it is
intrinsically linked to an infrared-finite QCD effective
charge ᾱsðQ2Þ, therefore being the natural infrared regu-
lator in our eikonal model.
Since the gluon mass generation is a purely dynamical

effect, the formal tool for tackling this nonperturbative
phenomenon, in the continuum, is provided by the
Schwinger-Dyson equations [19]. These equations consti-
tute an infinite set of coupled nonlinear integral equations
governing the dynamics of all QCD Green’s functions. The
functional forms of Mg and ᾱs, obtained by Cornwall
through the use of the pinch technique in order to derive a
gauge invariant Schwinger-Dyson equation for the gluon
propagator and the triple gluon vertex, are given by [17]

ᾱsðQ2Þ ¼ 4π

β0 ln ½ðQ2 þ 4M2
gðQ2ÞÞ=Λ2� ; ð33Þ

M2
gðQ2Þ ¼ m2

g

2
64ln

�
Q2þ4mg

2

Λ2

�

ln
�
4mg

2

Λ2

�
3
75
−12=11

; ð34Þ

where Λð≡ΛQCDÞ is the QCD scale parameter,
β0 ¼ 11 − 2

3
nf, and mg is an infrared mass scale to be

adjusted in order to provide reliable results concerning
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calculations of strongly interacting processes. As men-
tioned in the earlier section, the existence of the gluon mass
scale mg is strongly supported by QCD lattice simulations
and phenomenological results, and its value is typically
found to be of the order mg ¼ 500� 200 MeV. Note that
in the limitQ2 ≫ Λ2 the dynamical massMgðQ2Þ vanishes,
and the effective charge matches with the one-loop per-
turbative QCD coupling αpQCDs ðQ2Þ. It means that the
asymptotic ultraviolet behavior of the LO running cou-
pling, obtained from the renormalization group equation
perturbation theory, is reproduced in solutions of
Schwinger-Dyson equations,

ᾱsðQ2 ≫ Λ2Þ ∼ 4π

β0 lnðQ
2

Λ2Þ
¼ αpQCDs ðQ2Þ; ð35Þ

provided only that the truncation method employed in the
analysis preserves the multiplicative renormalizability [7].
However, in the infrared region, the coupling αpQCDs ðQ2Þ
has Landau singularities on the spacelike semiaxis
0 ≤ Q2 ≤ Λ2, i.e., it has a nonholomorphic (singular)
behavior at low Q2 (for a recent review, see [20]). This
problem has been faced in the past years with analytic
versions of QCD whose coupling αsðQ2Þ is holomorphic
(analytic) in the entire complex plane except the timelike
axis (Q2 < 0) [21]. Our effective charge ᾱsðQ2Þ, on the
other hand, shows the existence of an infrared fixed point as
Q2 → 0, i.e., the dynamical mass term tames the Landau
pole and ᾱs freezes at a finite value in the infrared limit.
Thus, providing that the gluon mass scale is set larger than
half of the QCD scale parameter, namely, mg=Λ > 1=2, the
analyticity of ᾱsðQ2Þ is preserved. This ratio is also
phenomenologically determined [6,7,11] and typically lies
in the interval mg=Λ ∈ ½1.1; 2�. Moreover, as recently
pointed out by Cvetič [22], evaluation of renormalization
scale-invariant spacelike quantities at low Q2, in terms of
infrared freezing couplings, can be done as a truncated
series in derivatives of the coupling with respect to the
logarithm of Q2, which in turn exhibit significantly better
convergence properties.
Hence, taking into account the mechanism of dynamical

mass generation in QCD, the required parton-parton cross
sections for calculating σQCDðsÞ are given by

dσ̂
dt̂

ðgg → ggÞ ¼ 9πᾱ2s
2ŝ2

�
3 − t̂û

ŝ2
− ŝû

t̂2
− t̂ŝ
û2

�
; ð36Þ

dσ̂
dt̂

ðqg → qgÞ ¼ πᾱ2s
ŝ2

ðŝ2 þ û2Þ
�
1

t̂2
− 4

9ŝû

�
; ð37Þ

dσ̂
dt̂

ðgg → q̄qÞ ¼ 3πᾱ2s
8ŝ2

ðt̂2 þ û2Þ
�

4

9t̂û
− 1

ŝ2

�
: ð38Þ

We call attention to the fact that, in the limit of large enough
Q2, the expressions (36)–(38) reproduce their pQCD
counterparts. In these expressions the kinematic constraints
under consideration are given by ŝþ t̂þ û ¼ 4M2

gðQ2Þ in
the case of gluon-gluon scattering, and ŝþ t̂þ û ¼
2M2

gðQ2Þ þ 2M2
qðQ2Þ in the cases of quark-gluon and

gluon fusion into a quark pair. Here, MqðQ2Þ is the
dynamical quark mass,

MqðQ2Þ ¼ m3
q

Q2 þm2
q
; ð39Þ

which assumes a nonzero infrared mass scale mq, to be
phenomenologically adjusted. Notice that the effective
mass for quarks is a sum of the dynamical mass and the
running one. However, as discussed above, only the
contributions of lighter quarks are relevant in calculating
the QCD cross section σQCDðsÞ and as a result the effective
mass behavior is dominated by the dynamical part. The
expression (39), which decreases rapidly with increasingQ,
is the simplest Ansatz for a dynamical quark mass in
agreement with the operator product expansion (OPE)
[23–26]. According to the OPE the dynamical mass is a
function of the quark condensate hψ̄ψi. More specifically,
MqðP2Þ ∝ hψ̄ψi=P2, where P2 ¼ −p2 is the momentum in
Euclidean space. The quark mass scalemq can be related to
the quark condensate [hψ̄ψi ∝ m3

q by dimensional consid-
erations] and general constraints are satisfied for
mq ∈ ½100; 250� MeV. The simple power-law behavior
of MqðQ2Þ is finally obtained by introducing the factor
m2

q in the denominator in order to get the right infrared
limit M2

qðQ2 → 0Þ ¼ m2
q.

IV. RESULTS

First, in order to determine the model parameters, we fix
nf ¼ 4 and set the values of the gluon and quarkmass scales
tomg ¼ 400 MeV andmq ¼ 250 MeV, respectively. These
choices for the mass scales are not only consistent with our
leading order (LO) procedures, but are also the ones usually
obtained in other calculations of strongly interacting proc-
esses [6,7,27,28]. Next, we carry out a global fit to high-
energy forward pp and p̄p scattering data aboveffiffiffi
s

p ¼ 10 GeV, namely, the total cross section σpp;p̄ptot and
the ratio of the real to imaginary part of the forward
scattering amplitude ρpp;p̄p. We use data sets compiled
and analyzed by the Particle Data Group [29] as well as the
recent data at LHC from the TOTEMCollaboration,with the
statistic and systematic errors added in quadrature. The
TOTEMdata set includes the first and secondmeasurements
of the total pp cross section at

ffiffiffi
s

p ¼ 7 TeV, σpptot ¼ 98.3�
2.8 [1], and σpptot ¼ 98.58� 2; 23 [2] (both using the optical
theorem together with the luminosity provided by the
CMS [30]), the luminosity-independent measurement at
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ffiffiffi
s

p ¼ 7 TeV, σpptot ¼ 98.0� 2.5 [3], the ρ-independent
measurement at

ffiffiffi
s

p ¼ 7 TeV, σpptot ¼ 99.1� 4.3 [3], and
the luminosity-independent measurement at

ffiffiffi
s

p ¼ 8 TeV,
σpptot ¼ 101.7� 2.9 [4]. We include in the data set the first
estimate for the ρ parameter made by the TOTEM
Collaboration in their ρ-independent measurement atffiffiffi
s

p ¼ 7 TeV, namely, ρpp ¼ 0.145� 0.091 [3]. In all the
fits performed in this paper we use a χ2 fitting procedure,
assuming an interval χ2 − χ2min corresponding, in the case of
normal errors, to the projection of the χ2 hypersurface
containing 90% of probability. In our model (eight fitting
parameters) this corresponds to the interval χ2 − χ2min ¼
13.36.
In our analysis we have investigated the effects of some

updated sets of parton distribution functions (PDFs) on the
high-energy cross sections. In performing the fits one uses
tree-level formulas for the parton-parton cross sections. In
this way we have to choose parton distributions functions
evolved with LO splitting functions, as in case of LO sets
CTEQ6L, CTEQ6L1, and MSTW. For the coupling αsðQ2Þ
it is usual to use either the LO formula for formal
consistency or even the next-to-leading order (NLO)
one. In the specific case of CTEQ distributions [31], the
CTEQ6L1 uses the LO formula for αsðQ2Þ with

Λð4flavorÞ
CTEQ6L1 ¼ 215 MeV, whereas CTEQ6L uses the NLO

formula for αsðQ2Þ with αsðMZÞ ¼ 0.118, consistent with

the value Λð4flavorÞ
CTEQ6L ¼ 326 MeV. Since the dynamical mass

MgðQ2Þ practically vanishes at scales where four flavors
are active, we choose these same values of Λð4flavorÞ in
our effective charges ᾱLOs ðQ2Þ and ᾱNLOs ðQ2Þ, where
ᾱLOs is given by the expression (33) whereas ᾱNLOs ðQ2Þ
is given by [7]

ᾱNLOs ðQ2Þ¼ 4π

β0 ln
�
Q2þ4M2

gðQ2Þ
Λ2

�
2
641−β1

β20

ln
�
ln
�
Q2þ4M2

gðQ2Þ
Λ2

��

ln
�
Q2þ4M2

gðQ2Þ
Λ2

�
3
75;

ð40Þ

where β1 ¼ 102 − 38
3
nf and Λ ¼ Λð4flavorÞ

CTEQ6L. This NLO non-
perturbative coupling is built by saturating the two-loop
perturbative strong coupling αNLOs , that is, by introducing
the replacement αNLOs ðQ2Þ → ᾱNLOs ðQ2Þ ¼ αNLOs ðQ2 þ
4M2

gðQ2ÞÞ into the perturbative result. Note that we are
using the same dynamical mass M2

gðQ2Þ expression for
both LO and NLO couplings, since the results from the
reference [7] give support to the statement that the
dynamical mass scale mg is not strongly dependent on
the perturbation order. The MSTW set uses an alternative
definition of αs, where the renormalization group equation

TABLE I. Values of the model parameters from the global fit to the scattering pp and p̄p data. Results were
obtained using a monopole form factor in the semihard sector.

CTEQ6L CTEQ6L1 MSTW

ν1 [GeV] 1.712� 0.541 1.980� 0.745 1.524� 0.769
ν2 [GeV] ð3.376� 1.314Þ × 10−2 ð5.151� 1.627Þ × 10−2 ð9.536� 8.688Þ × 10−3
A0 [GeV−1] 125.3� 14.7 107.3� 9.0 107.2� 13.6
B0 [GeV−1] 42.96� 24.91 28.73� 14.78 30.54� 16.20
C0 [GeV−1] 1.982� 0.682 1.217� 0.402 1.186� 0.466
γ 0.757� 0.189 0.698� 0.212 0.644� 0.250
μþsoft [GeV] 0.777� 0.176 0.407� 0.266 0.475� 0.300
D0 [GeV−1] 23.78� 1.97 21.37� 2.67 21.92� 2.83
χ2=DOF 1.060 1.063 1.049

TABLE II. Values of the model parameters from the global fit to the scattering pp and p̄p data. Results were
obtained using a dipole form factor in the semihard sector.

CTEQ6L CTEQ6L1 MSTW

ν1 [GeV] 2.355� 0.620 2.770� 0.865 2.267� 0.845
ν2 [GeV] ð5.110� 4.203Þ × 10−2 ð7.860� 5.444Þ × 10−2 ð3.106� 2.920Þ × 10−2
A0 [GeV−1] 128.9� 13.9 108.9� 8.6 108.5� 11.5
B0 [GeV−1] 46.73� 26.13 30.19� 15.78 31.63� 16.16
C0 [GeV−1] 2.103� 0.669 1.260� 0.437 1.230� 0.467
γ 0.780� 0.170 0.719� 0.200 0.660� 0.227
μþsoft [GeV] 0.821� 0.150 0.457� 0.209 0.506� 0.236
D0 [GeV−1] 23.96� 1.92 21.73� 2.26 22.14� 2.38
χ2=DOF 1.064 1.062 1.047
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for αs is truncated at the appropriate order and solved
starting from an initial value αsðQ2

0Þ. This input value is one
of their fit parameters and replaces the Λ parameter [32]. In
the usual matching-prescription scheme the behavior of
αsMSTW

ðQ2Þ can be properly reproduced from the choice

Λð4flavorÞ
MSTW ∼ 319 MeV.

The values of the fitted parameters are given in Tables I
and II. In Table I (II) we show the values of the parameters
in the case of a monopole (dipole) form factor in the
semihard sector. The χ2=DOF for all fits was obtained for
154 degrees of freedom. The sensitivity of the χ2=DOF to
the cutoff Qmin is shown in Fig. 1. We observe that the
χ2=DOF is not very sensitive to Qmin in the interval

FIG. 2. Total cross section for pp (filled circle) and p̄p (open
circle).

FIG. 3. Total cross section for pp (filled circle) and p̄p (open
circle).FIG. 1. The χ2=DOF as a function of the cutoff Qmin for the

monopole (open circle) and the dipole (filled circle) semihard
form factor.

FIG. 4. Ratio of the real to imaginary part of the forward
scattering amplitude for pp (filled circle) and p̄p (open circle).
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[1.0,1.5] GeV for all PDFs we have considered. The
results of the fits to σtot and ρ for both pp and p̄p channels
are displayed in Figs. 2–5, together with the experimental
data. In Fig. 6 we show the theoretical predictions for the
pp cross sections at cosmic-ray energies; the comparison
of the curves with the AUGER experimental datum atffiffiffi
s

p ¼ 57 TeV [33] and the Telescope Array (TA) datum atffiffiffi
s

p ¼ 95 TeV [34] shows good agreement. The curves

depicted in Figs. 2–6 were all calculated using the cutoff
Qmin ¼ 1.3 GeV, the value of the CTEQ6 fixed initial scale
Q0. In the case of the MSTW set the slightly lower value
Q0 ≡ 1 GeV is adopted, and the condition Qmin ≥ Q0 is
always satisfied in our analysis. In the case of fits using the
CTEQ6 set, calculations in the regionQmin < Q ≤ Q0 were

FIG. 5. Ratio of the real to imaginary part of the forward
scattering amplitude for pp (filled circle) and p̄p (open circle).

FIG. 6. TOTEM, AUGER, and TA results compared with
theoretical expectations obtained using CTEQ6L (solid curve),
CTEQ6L1 (dashed curve), and MSTW (dotted curve) parton
distribution functions.

TABLE III. Predictions for the forward scattering quantities σpp;p̄ptot and ρpp;p̄p using different sets of parton
distributions.

σtot [mb] ρffiffiffi
s

p
[TeV] Monopole Dipole Monopole Dipole

CTEQ6L 8.0 100.9þ8.6−7.3 101.0þ8.6−7.3 0.115þ0.009−0.008 0.106þ0.009−0.007
13.0 111.5þ9.7−8.4 111.7þ9.7−8.4 0.110þ0.010−0.008 0.101þ0.009−0.008
14.0 113.2þ9.9−8.6 113.5þ9.9−8.6 0.110þ0.010−0.008 0.100þ0.009−0.008
57.0 152.5þ15.4−14.7 154.1þ15.6−14.9 0.097þ0.010−0.010 0.088þ0.009−0.009
95.0 170.3þ17.2−16.5 172.9þ17.5−16.8 0.092þ0.010−0.010 0.083þ0.009−0.009

CTEQ6L1 8.0 101.1þ8.6−7.3 101.2þ8.6−7.3 0.134þ0.012−0.009 0.124þ0.011−0.009
13.0 112.4þ9.8−8.5 112.9þ9.8−8.5 0.131þ0.012−0.010 0.120þ0.011−0.009
14.0 114.2þ10.0−8.7 114.9þ10.0−8.7 0.130þ0.012−0.010 0.119þ0.011−0.009
57.0 159.3þ16.1−15.4 163.7þ16.5−15.8 0.117þ0.012−0.012 0.106þ0.011−0.011
95.0 181.5þ18.3−17.6 188.9þ19.0−18.4 0.112þ0.012−0.012 0.101þ0.011−0.011

MSTW 8.0 101.3þ8.6−7.3 101.3þ8.7−7.3 0.142þ0.013−0.010 0.131þ0.012−0.009
13.0 113.3þ9.9−8.5 113.6þ9.9−8.5 0.139þ0.012−0.011 0.128þ0.011−0.010
14.0 115.4þ10.1−8.7 115.7þ10.1−8.8 0.139þ0.013−0.011 0.128þ0.012−0.010
57.0 162.1þ16.4−15.6 164.7þ16.6−15.9 0.127þ0.013−0.013 0.116þ0.012−0.011
95.0 183.0þ18.5−17.8 187.3þ18.9−18.2 0.123þ0.013−0.013 0.112þ0.012−0.012
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carried out with PDFs fixed at the scale Q ¼ Q0 ¼
1.3 GeV. In Table III we show the theoretical predictions
for the forward scattering quantities σpp;p̄ptot and ρpp;p̄p using
different sets of parton distributions.

V. CONCLUSIONS

In this paper we have studied infrared contributions to
semihard parton-parton interactions by considering LO and
NLO effective QCD charges with finite infrared behavior.
We have investigated pp and p̄p scattering in the LHC
energy region with the assumption that the observed
increase of hadron-hadron total cross sections arises exclu-
sively from these semihard interactions. In the calculation
of σpp;p̄ptot and ρpp;p̄p we have investigated the behavior of
the forward amplitude for a range of different cutoffs and
parton distribution functions, namely CTEQ6L, CTEQ6L1,
and MSTW, and considered the phenomenological impli-
cations of a class of energy-dependent form factors for
semihard partons. We introduce integral dispersion rela-
tions specially tailored to connect the real and imaginary
parts of eikonals with energy-dependent form factors. In
our analysis we have included the recent data at LHC from
the TOTEM Collaboration. We have paid attention to the
sensitivity of the χ2=DOF to the cutoffQmin, which restricts
the parton-parton processes to semihard interactions. Our
results show that very good descriptions of σpp;p̄ptot and
ρpp;p̄p data are obtained by constraining the cutoff to the
interval 1.0 ≤ Qmin ≲ 1.5 GeV. The χ2=DOF for the
best global fits lies in the range [1.05, 1.06] for 154
degrees of freedom. This good statistical result shows that
our eikonal model, where nonperturbative effects are
naturally included via a QCD effective charge, is well
suited for detailed predictions of the forward quantities to
be measured at higher energies. In fact our predictions for
pp total cross section are statistically compatible with the
AUGER result at

ffiffiffi
s

p ¼ 57 TeV, namely, σpptot ¼ ½133�
13ðstatÞþ17−20ðsystÞ � 16ðGlauberÞ� mb [33], as well as with
the Telescope Array result at

ffiffiffi
s

p ¼ 95 TeV, namely, σpptot ¼
½170þ48−44ðstatÞþ17−19ðsystÞ� mb [34]. However, it is worth not-
ing that both results are model dependent, since they come
from the conversion of the proton-air production cross
section via a Glauber calculation. Moreover, as stressed by
the AUGER group, the total uncertainty of converting the
proton-air to pp cross section may be larger than the
published one. Clearly new results from AUGER and
Telescope Array at higher energies would be extremely
informative.
The uncertainty in our theoretical predictions for the

forward observables at
ffiffiffi
s

p ¼ 8, 13, 14, 57, and 95 TeV
(Table III) has been estimated by varying the gluon mass
scale within a typical uncertainty δmg while keeping all
other model parameters constant, and by exploring the

uncertainties of parton distributions on production cross
sections. This procedure does not determines the formal
uncertainty in σtot and ρ, since the variance-covariance
matrix method, necessary for proving this quantity, was not
employed. However, at high energies the forward observ-
ables are dominated by semihard interactions represented
by the eikonal term χSHðs; bÞ, which depends only on three
parameters, namely, ν1, ν2, and mg. In all χ2 analyses we
have observed that the correlation coefficients of these
parameters are very small. Moreover, the values of σtot and
ρ are actually more sensitive to the gluon mass scale than to
variations of other parameters of the model. A reliable
estimate of δmg, namely, around 7.1% of the value of mg,
was obtained from the analysis of the proton structure
function F2ðx;Q2Þ at small x [7]. Hence, in our case, where
mg was set at 400 MeV, the gluon mass uncertainty is
δmg ∼ 28 GeV. In order to estimate the uncertainty of
parton distributions on the forward predictions we simply
adopt the conservative stance that the PDF uncertainties on
the total cross sections are of the same order of magnitude
as the uncertainties on the production cross sections of
the W and Z bosons at the LHC. The uncertainties on the
production cross sections are estimated to be �5% by the
CTEQ group [31,35]. So, in sum, the total uncertainty of
our theoretical predictions is obtained from the quadrature
sum of the uncertainties coming from the gluon mass
uncertainty δmg and the parton distributions.
In the semihard sector we have considered a new class

of form factors in which the average gluon radius
increases with

ffiffiffi
s

p
. With this assumption we have

obtained another form in which the eikonal can be factored
into the QCD parton model, namely, ReχSHðs; bÞ ¼
1
2
WSHðs; bÞReσQCDðsÞ. The imaginary part of this semi-

factorizable eikonal was obtained by means of appropriate
integral dispersion relations that take into account eikonals
with energy-dependent form factors. Although these
dispersion relations are quite accurate at high energies,
detailed studies using derivative dispersion relations [36]
would be needed to quantify the effect of dispersion-relation
subtractions on the imaginarypart of the eikonal.Ananalysis
using derivative dispersion relations is in progress.
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