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Abstract 

This report describes the framework-based PREVAIL-DM design environment for for­
mal hardware verification. PREVAIL-DM integrates proof tools that are available in the 
PREVAIL environment around a common, VHDL-based conceptual schema. Tools are 
encapsulated according to a black-box approach. Design data are stored in a uni que data 
base, and the environment o:ffers a common main user interface, which gives access to 
design tools and methods and allows browsing through the database objects. Available 
methods to be applied on the design objects are oriented to the application semantics, 
thus helping to maintain ali desired schema-related integrity constraints. PREVAIL-DM 
is implemented upon the Cadlab framework and uses most of its main features. 

Resumé 

Ce rapport présente l'environnement de projet PREVAIL-DM, orienté vers la preuve 
de circuits et systemes éler.troniques et basé sur un framework. PREVAIL-DM integre 
des outils de preuve disponibles dans l'environnement PREVAIL autour d'un schéma 
conceptuel de données commun et basé sur VHDL. Les outils sont encapsulés selon une 
approche black-box. Les objds de projet sont stockés dans une base de données unique, et 
l'environnement o:ffre une interface-usager communne qui permet l'acces à tous les outils 
ainsi que la navigation à tr<'l.vers la base de données. Les méthodes qui sont exécutables 
sur les objets de projet sont orientées vers la sémantique de l'application, de façon à aider 
l'usager à préserver toutes les contraintes d'intégrité liées au schéma. PREVAIL-DM est 
réalisé en utilisant le framework Cadlab comme plateforme et se sert de la plupart de ses 
plus importants services. 

* On leave from the Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil 
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1 INTRODUCTION 

Design frameworks [1] are general-purpose platforms for building application-specific, in­
tegrated design environments. They offer services like data management mechanisms, 
usually comprising facilities for modelling complex electronic systems and a common 
database system, tool integration mechanisms, version and configuration management, 
design methodology management, data distribution with concurrency control, and sup­
port for building new, integrated tools, such as mechanisms for the construction of uni­
forro user interfaces and for intertool communication. 

PREVAIL [2] is an environment that offers specialized tools for the formal proof of 
hardware. It allows the user to specify hardware structure and behavior by means of a 
subset of VHDL [3], and offers translators that automatically generate proof-oriented in­
ternai representations. The environment offers three different provers (TACHE, LOVERT, 
and the Boyer-Moore theorem prover), that are applicable to combinational and certain 
classes of sequential circuits. 

This report describes PREVAIL-DM, a framework-based version of PREVAIL which 
integrates the above mentioned proof tools around a common, VHDL-based conceptual 
schema. The main motivation for this development is the addition of powerful data 
management facilites to the PREVAIL environment, and in particular the automatic 
verification of integrity constraints during the design and proof processes. As a main 
requirement for the PREVAIL-DM development, a "black-box" tool integration approach 
was adopted, because changing the tool codes would be a too great effort. 

PREVAIL-DM design data are stored in a unique data base, and the environment 
offers a common main user interface, which gives access to design tools and methods 
and allows browsing through the database objects. A vailable methods to be applied on 
the design objects are oriented to the application semantics, thus helping to maintain 
ali desired schema-related integrity constraints. PREVAIL-DM is implemented upon the 
Cadlab framework [4] and uses most of its main features. 

The conceptual schema (object classes, methods, and relationships) gives special sup­
port for the proof of equivalence and implication between VHDL architectures, as well 
as for the proof of properties expected from these architectures. It includes a specific, 
powerful support for the utilization of the Boyer-Moore prover by experienced users. 

PREVAIL-DM thus supports some of the framework-supported features expected 
from integrated design environments, mainly those related to data management (thus 
the name PREVAIL-DataManagement) and consistency. Future work will specially con­
centrate on support for design methodology management. 

The reminder of this report is organized as follows. Section 2 gives an overview of 
the main features of PREVAIL-DM. Section 3 details the conceptual schema. Section 4 
describes implementation aspects, such as the integration of the design tools according 
to the black-box approach and the schema realization by means of the TIDL language 
offered by the Cadlab framework A detailed analysis of the environment features can be 
found in Section 5. Finally, Section 6 discusses future work. 
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2 GENERAL OVERVIEW 

Main features 
PREVAIL-DM presents some of the main features expected from an integrated design en­
vironment implemented upon a design framework. The design tools are integrated around 
a common conceptual schema, in such a way that their execution preserve application­
specific integrity constraints. The design data are stored in a unique data base, thus 
avoiding data redundancy and inconsistency. The tools are activated from a common, 
graphical-interactive user interface based on Motif, which also gives access to a database 
browser. The schema can be easily extended so as to include new object classes and 
methods. 

Other useful features expected from integrated environments and I or supported by 
design frameworks that are not implemented in PREVAIL-DM are discussed in Sec­
tion 5.6. 

Cadlab framework 
PREVAIL-DM is implemented upon the Cadlab framework and uses most of its main 
services, as introduced below. Other services supported by the framework that are not 
used in PREVAIL-DM are discussed in Section 5.7. 

The basic layer of the Cadlab framework is a database system which implements a 
general-purpose data model, named IDM [5],.specially conceived for representing complex 
design objects. The PREVAIL-DM schema is defined by means of the object-oriented 
modelling facilities of the TIDL language [6, 7] available in an additional framework 
layer. For each object class the schema defines methods, attributes, and a graphical 
representation. Facilities available in both layers allow the definition of the application­
specific PREVAIL-DM access management policies. 

PREVAIL-DM automatically inherits very useful features presented by the Cadlab 
framework. The framework automatically builds the main user interface of the design 
environment: the graphical-interactive MOTIF-based framework dektop [8] gives access 
to the application-specific methods and allows browsing through the data base oh jects 
and relationships. The TIDL language supports an easy extension of the environment, 
allowing the definition of new object classes, relationships, and methods, as discussed in 
Section 5.4. The database system can be used in a distributed way over a network of 
UNIX-based workstations and controls the concurrency of user accesses. 

Conceptual schema 
Design tools are integrated around a VHDL-based, common conceptual schema. It is a 
coarse-grain schema, where objects are entities, architectures, configurations, and pack­
ages. The schema does not represent any data that are internai to the VHDL descriptions, 
such as components, interface signals, or processes. This kind of information is handled 
by the VHDL software. This schema granularity is consistent with the black-box tool 
integration approach, adopted for ali design tools (VHDL analyzer and access functions, 
translators from VHDL to the proof-oriented internai representations, provers ). 
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The schema includes object classes that are specially oriented to the proof process, 
such as proof-specific translated descriptions, theorems, Boyer-Moore shells, and Boyer­
Moore working environments. 

Ali methods o:ffered by PREVAIL-DM are oriented to the application semantics, thus 
helping to maintain all desired schema-related integrity constraints. Methods help the 
user to guarantee that ali necessary relationships between the oh jects are created and 
maintained. Furthermore, methods can only be applied when certain semantic conditions 
are verified. As an example, the method for removing a VHDL architecture can only be 
executed if this description has not been proved equivalent against other one. 

Library and user management 
Design and proof-related objects are stored in two kinds of libraries. System libraries 
store permanent data, that can be used in several projects. Project libraries contain 
design data that are particular to given projects. At the beginning of a project, initial 
data can be retrieved from system libraries. Methods corresponding to design activities, 
such as creation, compilation, translation to a proof-oriented format, proof, and so on, 
can be applied only to objects in project libraries. Copy methods allow the transfer of 
objects between libraries. These methods guarantee the integrity of the data copied into 
another library, making sure that ali necessary relationships to other objects will be also 
present in the target library. 

The environment distinguishes a system administrator from other users. The adminis­
trator has full acess to objects and methods. Other users have access to particular project 
libraries and cannot execute administration methods. User groups can be assigned to 
di:fferent project libraries. 
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3 CONCEPTUALSCHEMA 

3.1 VHDL source objects 
The kernel of the PREVAIL-DM conceptual schema is shown in Figure 1 and considers 
all VHDL descriptions. A project library contains entities and packages. Each entity 
may have severa! architectures. The model allows the designer to designate a single par­
ticular architecture as the specification architecture for the entity, from which all other 
implementation architectures should be designed. In order to ease the data management, 
the model restricts a configuration to contain component bindings for a single implemen­
tation architecture. A specification architecture is assumed to contain no components, 
because of its behavioral nature. Packages may be used by entities, architectures, and 
configurations. 
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Figure 1: Conceptual schema- VHDL kernel 

All objects shown in Figure 1 are source descriptions. For each one of them, there 
may be an attached compiled. description, containing only meta-data (user name and 
compilation date), whereas their "real" compiled contents are stored in the libraries 
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owned by the VHDL software, that are not integrated into the data base. Each of these 
VHDL sources may also have an attached listíng documenting a compilation process. 

Table 1 lists the basic methods for handling VHDL descriptions 1
• In this and in ali 

subsequent tables, (u) indicates a method which can be executed by any user, while (a) 
indicates a method which can be executed only by the system administrator. PREVAIL­
DM makes intensive use of the polymorphism feature of the TIDL language. A method 
with same name may have different implementations for different object classes. Methods 
Remove and Edit are typical examples. A package may be removed only if it is not used 
by any VHDL description, while an implementation architecture may be removed only 
if it has not been proved equivalent against other descriptions. 

Display .Attributes ( u) 
Read (u) 

for Print (u) 
packages, Copy _to_System..Library (a) 
entities, Copy _to_Pro ject..Li brary ( u) 

architectures, Create (u) 
configurations Compile (u) 

Edit (u) 
Remove (u) 

only for CreateJmplementation ( u) 
entities lmportJmplementation ( u) 

Create_Specification ( u) 
only for implem. Create_Configuration (u) 

architectures lmport_Configuration ( u) 
for compiled Display_Attributes (u) 
descriptions Remove (u) 

for compilation Display_Attributes (u), Remove (u) 
listings Read (u), Print (u) 

Table 1: Design methods for VHDL descriptions 

3.2 Translated objects for the proof process 

For supporting the proof process, the schema also includes three object classes corre­
sponding to the internai representations created for the TACHE, LOVERT, and Boyer­
Moore provers, as shown in Figure 2. Each instance of these object classes may be 
attached to a specification architecture, to an implementation architecture, or to a con­
figuration (generally designa.ted as VHDL bodíes). In the case of TACHE and Boyer-

1 A complete functional specification of all methods, including the integrity constraints they preserve, 
can be found in a separate project report [9]. 



3 CONCEPTUAL SCHEMA 6 

Moore, only a single translated description may exist for each VHDL body. In the case 
of LOVERT, two translated descriptions may be attached to implementation architec­
tures and configurations, one of them of type "ert" ( used as an "implementation" in the 
proof process) and the other one of type "srt" (used as. a "specification"). 

SPECIFICATION IMPLEMENTATION 
CONFIGURATION ARCHITECTURE ARCHITECTURE 

1 1 

t"+ t"+ 
I I 

t"+ t"+ 

o o 

2 2 

TACHE BOYER-MOORE LOVERT 
TRANSLA TION TRANSLA TION TRANSLA TION 

~1 ~ 1 
Q) Q) 

:::l :::l 
(/) (/) -I I 
t"+ t"+ 

o 1 o 1 

TACHE LISP 
GRAPH FUNCTIONS 

Figure 2: Conceptual schema - translated descriptions 

for architectures Translate_for_TACHE (u) 
and configurations Translate_for_LOVERT (u) 

Translate.ior ..Boyer ( u) 
for ali translations Remove (u) 

for Boyer-Moore translations Generate_LISP _Functions ( u) 
for TACHE translations Generate_TACHE-Graph (u) 

Table ~: Methods for the translation process 

Table 2 lists additional methods for handling these descriptions. They are created 
by prover-specific translation methods, that retrieve from the VHDL owned libraries the 
necessary compiled data corresponding to the VHDL descriptions. In the case of the 
Boyer-Moore prover, an additional method generates, from the internai representation, 
LISP functions that are necessary in building the theorem( s) to be proved. In the case 
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of the TACHE prover, the binary decision diagram generated for a proof can be stored 
as a separate object and re-used in future proofs. This avoids re-building the diagram, a 
time-consuming task. 

3.3 Equivalence and implication proof 

Figure 3 shows extensions to the kernel that are necessary for supporting the equivalence 
and irnplication proof. As a result of a successfull proof, equivalence relationships rnay 
be established between any two irnplernentation descriptions ( either irnplernentation ar­
chitectures without cornponents or configurations of irnplernentation architectures with 
components). lmplication relationships may be established frorn an irnplernentation or 
a configuration to the specificátion architecture. In a process of successive refinernents, 
in which each implementation (or configuration) is considered as a kind of specification 
for a next design step, implication relationships may also directly connect two irnple­
mentations f configurations. Equivalence and implication relationships are in fact irn­
plemented as database objects that are attributed with the name of the proof tool that 
established the relationship. Listings documenting the proof result ~ay be attached to 
these relationship-objects. 

is e uivalent to 

is e uivalent to 

Figure 3: Conceptual scherna - equivalence and irnplication proof 
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Additional methods, listed in Table 3, include the equivalence and implication proofs 
by means of each one of the provers, and theorem generation ( either stating an equivalence 
or an implication). Objects of the class theorem will be discussed later on. The method 
Hierarchical_Proof (see Section 6.2) builds a new configuration for an implementation 
architecture X, replacing each implementation architecture I bound to a component of 
X by the corresponding specification architecture S (but only if it has been proved that 
S is implied by I). 

for architectures ProveJmplication_by_TACHE (u) 
and configurations ProveJmplication_by_LOVERT (u) 

ProveJmplication_by ..Boyer ( u) 
Generate_Theorem.ior_Equivalence ( u) 

for implementation Generate_Theorem.iorJmplication ( u) 
architectures Prove_Equivalence_by_TACHE (u) 

and configurations Prove_Equivalence_by ..LOVERT ( u) 
Prove_Equivalence_by _Boyer ( u) 

for implem.architect. HierarchicaLProof ( u) 
for equivalences and Display_.Attributes (u) 

implications Remove (u) 
for proof listings Display_.Attributes (u), Remove (u) 

Read (u), Print (u) 

Table 3: Methods for the equivalence and implication proof 

3.4 Proof of properties 

Figure 4 shows an additional extension for supporting the proof of properties. An object 
properties contains one or several assertions on object qualities, described in an appro­
priate way for the provers. It may be attached to one or several entities, if it contains 
general properties expected from di:fferent design objects. Properties expected from a 
single design oh ject may be attached to one or several implementation architectures o f 
a same entity. These attachments represent only "expected" properties. An additional 
relationship is created between an object properties and an implementation architecture 
or configuration for which these properties have been proved. This relationship is im­
plemented as a database object, to which a listing documenting the proof result may 
be attached. Each object properties may have an internai translation for the LOVERT 
prover, since this is currently the only tool providing capabilities for proving properties. 

Additional methods, listed in Table 4, include the creation, edition, attachment and 
detachment (to / from entities or implementation architectures), translation, and proof 
of properties. As examples of integrity constraints verified by these methods, an object 
properties cannot be simultaneously attached to entities and architectures and may not 
be removed nor modified if it has been already proved for a certain description. 
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Figure 4: Conceptual schema - proof of properties 

for entities and implem.architect. Create_properties (u) 
for implem.architect. and configurations Prove_properties (u) 

Display_Attributes (u) 
Read (u), Print (u) 

for properties Edit (u), Remove (u) 
Translate (u), Proof (u) 
Attach (u), Detach (u) 

for property proof Display_Attributes (u) 
relationships Remove (u) 

Table 4: Methods for the proof of properties 

9 
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3.5 Support for the Boyer-Moore prover 

Figure 5 shows additional support which is specialized for the Boyer-Moore prover. This 
tool proves a theorem in the context of a given proof environment (a BM-environment), 
which contains shells (abst1act data types), functions (operations on these data types), 
other theorems, and axioms ( theorems that are to be considered as already proved in 
a particular proof context). While proving an equivalence or implication, the user may 
choose either a user-defined BM-environment or the bootstrap library, which contains a 
pre-defined set of shells, functions, and axioms. As examples of relationships involving 
these objects, shells are used by functions and theorems, and theorems are attached to 
two VHDL descriptions (architectures I configurations). 
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PROJECT 
LIBRARY 

BM-ENVIRONMENT 
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ARCHITECTURE 
o r 

CONFIGURATION 
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(/) 

O" ... 
CDO" c;- co 
-.-c 
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n ~ .__ _ _,c. 

ARCHITECTURE 
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CONFIGURATION 

Figure 5: Conceptual schema- support for Boyer-Moore 

Theorems may be created in three different situations. Firstly, they are created by 
the Boyer-Moore pre-processor as a result of a Prove_Equivalence or ProveJmplication 
method. Secondly, they may be created, also by the Boyer-Moore pre-processar, by ap­
plying a Generate_Theorem method, regarding a future equivalence or implication proof. 
In these two cases, PREVAIL-DM automatically builds relationships between the theo­
rem and the VHDL descriptions originating it. Thirdly, theorems may be interactively 
created by the user. This provides experienced users with a powerful facility for usage of 
the Boyer-Moore prover. 

PREVAIL-DM offers methods for creating, editing, and removing these objects, as 
well as including them in I removing them from BM-e~vironments, as listed in Table 5. 
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It is also possible to store a theorem as an axiom in the context of a particular BM­
environment, to restore it back as a theorem, and to prove it (if it has been generated 
but not proved). Methods guarantee for instance that, if a theorem is included in a 
BM-environment, the shells and functions it depends ón will be also contained in this 
environment. 

for shells, functions, Display..Attributes (u) 
theorems, axioms, Read (u), Print (u) 
BM-environments Remove (u) 

for shells, functions, Create (u) 
theorems Edit (u) 

for theorems Prove (u) 
Store_as..Axiom (u) 

for axioms Restore_to_Theorem ( u) 
Create (u) 

for Attach_Shell (u), Detach..Shell (u) 
BM- Attach_Function (u), Detach..Function (u) 

environments Attach_Theorem (u), Detach_Theorem (u) 

Table 5: Methods for the proof by means of Boyer-Moore 

When the user asks for a proof with Boyer-Moore, the pre-processar may generate, 
depending on the circuit type, not only a single theorem stating the equivalence ( or 
implication) between the output functions of the selected descriptions, but also other 
auxiliary theorems, that should be proved before the main theorem, as well as a general­
ized theorem obtained from the main theorem, since the prover is best suited for proving 
general properties than particular ones. The schema supports the management of the 
precedence relationships between these theorems. 

3.6 Library and user management 

Figure 6 shows that design and proof-related objects are stored in two kinds of libraries. 
System libraries store permanent data, that can be used in several projects. Project 
libraries contain design data that are particular to given projects. At the beginning 
of a project, initial data can be retrieved from system libraries. The bootstrap library 
contains an initial set of shdls, functions, theorems, and axioms that may be used with 
the Boyer-Moore prover. {-;)py methods allow the transfer ofobjects between libraries. 
These methods guarantee the integrity of the data copied into another library, making 
sure that ali necessary relationships to other oh jects will be also present in the target 
library. 

PREVAIL-DM distinguishes a system administrator from other users. The adminis­
trator has full access to objects and methods. Users are attached to particular project 
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Figure 6: Conceptual schema - libraries 

12 

libraries and cannot execute administrative methods. Ali methods corresponding to de­
sign activities, described previously in this section, can be applied by users only to objects 
in the project libraries the users are attached to. Only four methods may be applied by 
users to objects in system libraries and in project libraries they are not attached to: 
Display_Attributes, Read, Print, and Copy_toYroject.Library. The administrator may 
additionally execute methods Remove and Copy_to_System_Library on oh jects stored in 
system libraries, and the method Copy_to_System.Library on objects stored in project 
libraries. 

Table 6 shows the administrative methods for library and user management. Users are 
created outside the scope of particular project libraries. When a project library is created, 
the administrator may initialize the composition of its user group. The administrator 
may also attach and detach users to f from pro ject libraries dynamically. 

methods applied Create_project..Library (a) 
to the root of Create_8ystem..Library (a) 

PREVAIL-DM Create_User (a) 
Remove_U ser (a) 

methods applied Attach_User (a) 
to the root of Detach_ U ser (a) 

a pro ject library Remove..Library (a) 

fable 6: Administrative methods 

3. 7 Examples of methods 

Figure 7 gives, as a first example, the complete functional specification of the method 
Detach_Shell, applied only to objects of the class BM_Environment. This method does 
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not encapsulate any existing tool. It is a completely "white-box" programmed method. 
It can be seen that the method requires user interaction (selection of items from a menu 
presented by the system according to the context), and that the system verifies if each 
selected shell may be really detached from the current BM-environment. If positive, 
the BM-environment is modified and relationships are removed so as to maintain the 
database consistency. 

Function: 
.Detach shells from the current BM-environment 

Description: 
- user interactively selects shells from a list of shells that 

are attached to the BM-environment 
- for each selected shell: 

- remove the relationship from the shell to the BM-environment 
- remove the shell contents from the BM-environment contents 

- copy relationships from the BM-environment to other libraries 
are automatically removed 

Constraints: 
- a selected shell cannot be detached if it is used by functions 

or theorems related to the BM-environment 

Figure 7: Method Detach_8hell, for BM.:.environments 

Figure 8 gives, as a second example, the complete functional specifi.cation of the 
method Edit, when applied to implementation architectures. This method encapsulates 
a conventional text editor with integrity-preserving pre- and post-activities. It can be 
seen that, when the user decides to store the new description back in the same object, the 
system automatically remoYes some attached objects (such as the compiled description) 
and copy relationships to objects in other libraries, if they exist, and guides the user to 
modify existing relationships to other oh jects, such as packages and properties. When 
the new description is stored as a new object, the system only guides the user to estab­
lish desired relationships to other objects. Different constraints apply to each situation 
( creation of a new object or modification of an existing one)~ 

As a final example, Figure 9 shows the complete functional specification of the method 
Copy_to-ProjecLLibrary, when applied to VHDL sources ( entities, architectures, configu­
rations, and packages). This method does not encapsulate any existing tool. In order to 
preserve the data consistency in the target library, the copy is only possible when certain 
"father" objects are already present in the target library. Furthermore, certain attached 
objects and relationships are also copied together. 

--l 
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Function: 
Edit contents of the current implementation architecture 

Description: 
- user chooses whether to store the new description in the same 

obj ect or not 
- if new description is stored back in the same object: 

- compiled description and listing, translated descriptions, 
LISP-functions, and TACHE-graphs, if existing, are automatically 
removed 

- user may change the relationships from packages to the 
architecture 

- user may change the relationships from the architecture to 
properties 

- objects "property-proven" attached to the architecture (proof 
"relationships" to properties) are automatically removed 

- copy relationships from the architecture to other libraries aré 
removed 

- if a new architecture is created: 
- user may establish relationships from packages to the architecture 
- user may establish relationships from the new architecture to 

properties already related to other architectures of the same 
entity 

Constraints: 
- storage of the new description in the same object is possible only 

if: 
- there are no theorems attached to the architecture 
- the architecture has no configurations 
- the architecture has no "equivalence" relationships to other VHDL 

descriptions 
- the architecture is not implied by other VHDL descriptions 

- if a new architecture is created: 
- name of new object must be unique among all architectures of the 

entity 
- if architecture is stored under the same name: 

- properties cannot be simultaneously attached to entities and 
architectures 

Figure 8; Method Edit, for implementation architectures 

14 
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Function: 
Copy object from the current project library to another project 
library 

Description: 
- the compiled description and listing, if existing, are also 

copied 
- if applied to architectures and configurations, the translated 

descriptions, the LISP functions, and the TACHE-graphs, if 
existing, are also copied 

- relationships to father objects are also copied (except when 
the father is the project library itself) 

- if an "equivalent" description is already in the target library, 
the "equivalence" object (and an eventual attached "proof 
result" listing) is also copied 

- if an "implied" description is already in the target library, 
the "implication" object (and an eventual attached "proof 
result" listing) is also copied 

- if "properties" already proved for the description is in the 
target library, the "property-proven" object is also copied 

- for objects of classes Entity and Package, a son-relationship 
to the target library is established 

Constraints: 
- user must belong to the user group of the target library, but not 

of the source library 
- copy is not possible if object already exists in the target 

library 
- name of the copied object must be unique in its context in the 

.target library 
if father objects are not yet in the target library, copy is not 
possible; this rule does not apply to "equivalence", "implication", 
"property-proven", anJ "library" father-objects 

Figure 9: Method Copy_to-Project.Library, for VHDL sources 

15 
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4 IMPLEMENTATION ASPECTS 

4.1 TIDL realization 

TIDL [6, 7] is an object-oriented language offered by the Cadlab framework to define 
design environments. Besides the schema description (object classes and their attributes, 
methods applied to the object classes, relationships ), TIDL also offers facilities for asso­
ciating graphical representations to the oh jects, for defining access management policies, 
for initializing the data base contents, and for "black-box" integrating design tools. The 
language supports inheritance of methods and attributes between classes and sub-classes, 
redefinition of methods by ~ uh-classes, and polymorphism. All these features have been 
used in the implementation of PREVAIL-DM. 

There is almost a one-to-one mapping between the PREVAIL-DM objeot classes pre­
sented in the previous section and TIDL classes. Exceptions are due to three mod­
elling problems. Firstly, TIDL-methods are applicable to object classes in a context­
independent way. In PREVAIL-DM, however, most design methods may be applied only 
to the object "copies" that are stored in project libraries. It was therefore necessary to 
build, for almost all PREVAIL-DM object classes, two particular TIDL-classes, corre­
sponding to the object copies in the project and system libraries, so that most design 
methods are defined only for the first ones. Secondly, TIDL-relationships may not be 
attributed. Equivalence, implication, and copy relationships, that must hold attributes, 
had to be mapped to TIDL-object classes. Thirdly, TIDL does not allow two different 
relationships between the same objects. This would be needed for relating implemen­
tation architectures to properties through an "attachment-relationship" and a "proof­
relationship". This latter relationship is thus mapped in to an additional TIDL-object 
class Properties-Proven . 

. Mainly because of the "black-box" tool integration approach and the coarse-grain 
schema, all classes corresponding to objects that are visible to theuser are mapped into 
database complex objects [f]. Most of the object classes are mapped into unstructured 
complex objects, or uco 's, that have a file as their contents, while some classes are mapped 
into equivalence complex ob.iects, or eco 's, that have no files as contents. This is the case 
of libraries, for instance, that serve only to structure the database objects, but are not 
"objects" in a real sense themselves. Only the object class BM-environment has been 
mapped into a structured complex object, or sco, whose contents is a graph of primitive 
objects, or po 's. These primitive oh jects, not visible from the user interface, allow the 
system to find the contents of the shells, functions, axioms, and theorems contained 
within the BM-environments. As an example, an object of the class po_shell instantiates 

. a complex object of the class shell. 

4.2 Realization of the methods 

The Cadlab framework offcrs a particular black-box tool integration service which is 
directly available through TlDL constructs. A black-box integrated tool can be associated 
to a TIDL-method by specifying: database objects to be exported as input files to the 
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tool; the command for the tool activation, including the exact syntax of optional and 
mandatory parameters and their data types; and the output files generated by the tool to 
be imported as database objects. When the corresponding method is selected by the user, 
the framework automatically calls the tool, handling input and output files as defined in 
the TIDL script. This service allows a very rapid "encapsulation" of the design tools. 

Although its design tools are "black-box" integrated in a general sense (i.e., their 
input and output files are exported from / imported to the data base, and their codes 
have not been modified), PREVAIL-DM does not use in fact the specific black-box inte­
gration services of the Cadlab framework. This occurs because the environment aims at 
guaranteeing the schema-related integrity constraints. Therefore, there are always some 
pre-conditions for executing design tools, such as the existence of given relationships, that 
must be automatically verified by the methods, as well as integrity-preserving activities 
that must be automatically executed by the methods after the design tool is executed, 
such as establishing relationships to other objects. 

Therefore, a method does not consist in a single design tool execution. It includes 
other activities before and after the tool execution. These activities correspond to the 
most important environment feature, i.e. the automatic verification and maintainance of 
the integrity constraints. The methods are thus "white-box" integrated, in the Cadlab 
framework sense (10]. They are C processes that are activated from the framework 
desktop, receiving as input parameters the identifications of the design object to which 
the method has been applied and of the current user. 

If a method would' correspond to a direct execution of a design tool, two alternatives 
would be possible for the verification of the integrity constraints: 

• The user himself/herself would have to manually verify the pre-conditions for the 
tool execution and establish, after the tool execution, the relationships that preserve 
the data integrity, through activation of adequate methods. The environment would 
offer a very weak support for data management, in this case. 

• The tools would have o be modified, so that they would contain, in their codes, ali 
necessary verification :)f pre-conditions and execution of integrity-preserving post­
activities. This appr· •ach is difficult to implement, because of the need of tool 
re-writing. 

The Cadlab framework also offers an event-handling mechanism which is useful for 
implementing routines that execute integrity-preserving actions. This mechanism allows 
the application to define functions that are automatically triggered when certain IDM in­
terface operations are executed or when certain objects or object classes are manipulated 
(a combination of both kinds of conditions is also possible). Unfortunately, this mech­
anism cannot be used in the implementation of the integrity-preserving actions of the 
PREVAIL-DM methods, because the event-functions are triggered on primitive database 
access operations, not on the activation of TIDL-methods, as would be necessary. 
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4.3 Access management 

The Cadlab framework o:ffers two kinds of services for implementing access management 
policies. Policies where di:fferent users have specific acess rights to di:fferent object classes 
and methods can be implemented by an Access Manager (11]. Client roles, associated 
to the cross product object class x method, may be defined in the TIDL script of the 
application. Clients have to be dynamically assigned to client roles when new objects are 
created, in order to gain access to these objects. 

As another basic service, the Cadlab framework o:ffers a simple set of user admin­
istration functions (5] for defining users, handling user membership in user groups, and 
handling user passwords. These functions have no relation to clients and client roles. 
They may help the application to implement the management of users and user groups. 

In PREVAIL-DM, to each project library a group of users is associated. These users 
may execute any methods on any objects stored in this library. However, users may 
execute only "read" methods on objects in system libraries and in project libraries other 
than theirs. Therefore, the PREVAIL-DM access management policy does not define 
access rights that depend on the object classes or methods, but on the context where the 
ob jects are located. 

In the TIDL script of PREVAIL-DM, two roles Designer and Reader are thus defined. 
The role Reader is associated to "read" methods (Read, Print, Copy_toYrojecLLibrary, 
and Display.;.Attributes). The role Designeris associated to all other methods that can be 
executed by users on objects stored in project libraries. All users attached by the system 
administrator to a given project library play the same role Designerfor all objects within 
this library. When a user calls one of the methods to which the role Designer is associated, 
the first function executed by the method is to verify if the user really belongs to the 
user group of the current project library. Ali users of PREVAIL-DM play the role Reader 
for ali objects in ali system and project libraries. For the methods to which this role is 
associated, there is no need of an additional verification of access rights by the methods 
themselves. 

Each time a new object is created within a project library, all users belonging to 
the user group of the librarv must be assigned to the role Designer with respect to this 
object, in order to gain access to the methods defi.ned for the corresponding object class. 
Furthermore, all users of F REVAIL-DM must be assigned to the role Reader for this 
object. This dynamic role assignment is implemented by one of the functions o:ffered by 
the Access Manager. 

As another consequence of the framework features, each time a new user is attached 
to a project library, he/she must be assigned to the role Designer for each of the objects 
already existing in the library. Inversely, when a user is detached from a project library, 
the user must loose the role Designer for each of the objects already existing in the 
library. 

As already stated in Section 4.1, in the Cadlab framework the executability of methods 
defined for a certain object class does not depend on the context where objects of this 
class are situated. This resulted in the definition of special classes for objects located in 
the system libraries, so that for these classes only "read" methods are available for the 
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users. 
Methods that can be executed only by the PREVAIL-DM administrator have no client 

role associated in the TIDL script. As a consequence, only the framework administrator 
(pre-defined role dba) can execute them. The dba thus directly implements the PREVAIL­
DM administrator. 

4.4 U ser interaction 

The PREVAIL-DM user interface is implemented by two di:fferent mechanisms. The main 
user interface of the application is automatically available through the framework desktop 
[8], which displays the database contents and allows the user to browse through the 
objects and relationships. For each object there is pop-up menu containing all methods 
available for the object class. This desktop is based on Motif and offers many other 
control facilities, described in [8]. Access to objects and methods is possible according to 
the client roles the current user plays. As a result, the PREVAIL-DM users can navigate 
through all libraries and select any "read" methods. The execution of "write" methods 
on objects located on libraries to which the user has no "write" access will be refused by 
the method execution itself, and not by the framework mechanisms. 

Furthermore, each design method builds its own user interface. Many methods have 
to interact with the user, for displaying menus with lists of objects, receiving menu selec­
tions, displaying messages, receiving textual input, and so on. These method interfaces 
are also based on Motif, so that the PREVAIL-DM user has a comfortable and homoge­
neous interaction with the whole environment. 
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5 ANALYSIS OF THE ENVIRONMENT 

5.1 Support for VHDL and schema granularity 

PREVAIL-DM implements a coarse-grain VHDL-based schema, where the main objects 
are entities, architectures, configurations, and packages. As a restriction, the schema 
considers that a configuration is related to a single architecture, and not to an entity. 
This restriction eases the data management. 

All design tools are black-box integrated. This integration approach considerably 
eases the development of the environment prototype, since the code of tools is not 
touched. 

The schema does not represent any design data that are internai to VHDL objects, 
such as interface signals, attributes, processes, functions, data types, etc. In particular, 
components within architectures are not modelled. Therefore, the environment does not 
have knowledge about the structural decomposition of the architectures and the binding 
of these components to other entities f architectures. All internai data of VHDL objects, 
including the information about this structural decomposition, is handled by the VHDL 
software and by the design tools ( analyzer, translators, provers). 

Because of the schema granularity and tool integration approach, the environment 
is not responsible for verifying any integrity constraints related to design data that are 
internai to the VHDL objects. These constraints are verified by the design tools. 

The compiled representations created by the VHDL analyzer are not stored as database 
objects. The environment only maintains a record of which VHDL sources have been 
successfully compiled, by attaching to them objects of the class Compiled_Description, 
that contain only meta-data for management purposes. 

5.2 Support for equivalence, implication, and properties proof 

The schema includes all auxiliary objects that are needed in the proof process, when 
using the TACHE, LOVERT, and Boyer-Moore provers: translated descriptions obtained 
from the VHDL sources and used as input for the provers; listings documenting the proof 
results; theorems, shells, fuHctions, and axioms; and working environments for the Boyer­
Moore prover. 

The coarse-grain approach is used also for these objects. Their internai data are 
handled only by the design tools. The environment is responsible for maintaining the 
relationships between these objects and from them to the VHDL objects. 

The model includes objects of a class Properties, for storing properties of entities and 
architectures that are to be proved. 

The model distinguishes a particular architecture as the entity specification. Only 
one such architecture may exist for each entity. For this architecture there are no con­
figurations, since it is supposed that it contains no components. Other architectures are 
considered as implementatjon architectures. 

The model includes rela.tionships specially suited for supporting the equivalence, im­
plication, and properties proof: 
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• implication from an implementation / configuration to the specification; 

• implication from an implementation I configuration to other implementation I 
configuration; 

• equivalence between two implementations I configurations; 

• properties proved for an implementation I architecture. 

5.3 Design data integrity 

Two main requirements in the PREVAIL-DM development were the "black-box tool 
integration approach", adopted because changing the tool codes would be a too great 
effort, and the automatic verification of integrity constraints, so that the environment 
really offers more than the already available PREVAIL system. 

In a design environment, we can identify three leveis of integrity constraints that must 
be verified during a design process: 

• low-level, fine-grain data constraints, such as the compatibility of signal data types; 

• high-level, coarse-grain data constraints, such as equivalence relationships between 
VHDL architectures; 

• high-level methodology constraints, such as the achievement of design qualities like 
cell area or maximum delay. 

Design constraints at the first levei are normally verified by using tools like HDL 
compilers, simulators, and verifiers. In the PREVAIL cont~xt, the VHDL analyzer verifies 
syntactical conditions, the translators verify if the proper VHDL subset is being used, 
and the provers verify if the design data that are "internai" to the VHDL · descriptions 
have the desired qualities. 

It would be meaningless to build a framework- based environment that verify these 
constraints at the database levei (either by the schema or by the methods), since they 
can be much more efficiently verified by the already existing tools. This is in fact the 
main reason for adopting a coarse-grain conceptual schema. 

The design data integrity constraints that are automatically verified and maintained 
by PREVAIL-DM are at the second levei and regard the relationships between the coarse­
grained objects of the schema. As examples, it can be remembered that: 

• methods for creating oh jects enforce or guide the user to establish the cortect 
relationships to other )bjects; 

• objects can be removedor modified only if they do not participate in relationships 
that must be maintained, such as equivalences; 

• copy methods guarantee that an object is copied into another library in such a way 
that data integrity is maintained (for instance, other objects and relationships are 
copied together). 



5 ANALYSIS OF THE ENVIRONMENT 22 

Design constraints at the third levei are methodology-specific and their verification 
should not be integrated nor into the design tools neither into the conceptual schema. 
Their formalization is tipically used for controlling the design fl.ow. This is the objective 
of a further development in the PREVAIL context, discussed in Section 6.1. 

5.4 Environment extensibility 

PREVAIL-DM offers the extensibility capabilities that are intrinsic of the Cadlab frame­
work. 

The schema is defined by means of a TIDL script, which specifies object classes, 
relationships, and methods. This script may be extended by new definitions of classes, 
relationsips, and methods. The TIDL compiler automatically verifies the consistency 
of the extensions with regard to the already implemented script. The already existing 
database contents is preserved. 

It is not possible however to remove definitions of existing classes, relationships, and 
methods. 

The TIDL script in fact does not contain the methods themselves, only references to 
functions that implements them. As already explained in Section 4.2, the Cadlab black­
box integration services cannot be used for integrating new tools into the environment. 
A "white-box" method that encapsulates the new design tool must be written, if we want 
to preserve the integrity constraints. 

5.5 Support for experienced users 

PREVAIL-DM supports the use of formal provers by experienced designers. In the case 
of Boyer-Moore, for instance, the systems supports the definition of shells, functions, and 
theorems and their integration in to a working environment for the prover, as well as the 
proof of isolated theorems. 

These features would be of no use for designers with little experience on formal proof. 
These designers need in fact a proof process as automated as possible, following a system­
guided interactive dialogue for giving the information which is needed for the proof, as 
in the currently available P REVAIL environment. 

Such a kind of process automation can be also obtained in this environment, when 
design methodology management is added. In this case, task sequences that correspond 
to sequences of the available methods can be defined and automatically executed. 

5.6 Features not found in the environment 

Other useful features expected from integrated environments and f or supported by 
design frameworks are are not implemented in PREVAIL-DM: 

• version management; 

• configuration management; 
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• design methodology management; 

• common internai formats; 

• intertool communication; 

• uniform user interface for all design tools. 

The last two features from the list above have not been implemented because of the 
black-box tool integration approach. Configuration management would be only useful if 
a fine-grain schema had been implemented, so that the environment would be responsible 
for handling components inside structural descriptions and their bindings to other entities 
f architectures. In PREVAIL-DM, configuration management is realized by the VHDL 
software and is not integrated into the environment. 

Version and design methodology management are goals to be pursued in next envi­
ronment releases, as discussed in the Section 6. A common internai format for ali design 
tools is still a research theme in the :field of formal hardware veri:fication. 

5. 7 Features of the Cadlab framework not used in the envi­
ronment 

The following features are supported by the Cadlab framework but have not been used 
in the implementation of PREVAIL-DM: 

• version management; 

• black-box tool integration mechanisms; 

• event handling; 

• support for modelling complex structured objects; 

• intertool communication services. 

As already stated, version management is a goal of a future environment release. Al­
though design tools integrated in PREVAIL-DM are "black-box" integrated in a general 
sense, the reasons for not using the specific Cadlab black-box tool integration mecha­
nisms have been discussed in Section 4.2. The same section explain why the event han­
dling mechanisms have not been used. Intertool communication services have not been 
used because of this black-box tool integration approach adopted in the environment. 
Complex structured object.s have been used in a very limited extent for implementing 
BM-environments. This fea.ture would be used more extensively if a fine-grain schema 
had been adopted. 
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5.8 Environment features that cannot be used by the current 
PREVAIL tools 

Some of the features implemented in PREVAIL-DM cannot be used by the proof tools 
currently available in the PREVAIL environment. Nevertheless, these features have been 
implemented in the conceptual schema because an evolution of the proof capabilities in 
their direction is expected or desired in the near future. There are two basic reasons that 
explain why some features cannot be used. 

Firstly, the proof tools, in fact, handle currently only very simple VHDL descriptions. 
The provers only accept fully configured architectures ( architectures already containing 
the binding from their corr.ponents to other entities / architectures), so that all proof 
relationships envolving VHDL configurations cannot be used. Furthermore, the tools 
search ali necessary VHDL data types and functions in a single package, so that the 
definition of multiple packages and their attachment to VHDL descriptions will not be 
used for the moment. 

Secondly, in the case of the implication proof there is currently no experience or 
established proof capabilities that correspond to this environment feature. 
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6 FUTURE WORK 

6.1 Design methodology management 

Design methodology management [1] is an additional service supported by design frame­
works. It has multiple possible goals: 

• automatically execute user-defined task sequences, eventually speci:fied in a hierar­
chical way; 

• associa te multiple tools to a task and choose ( either automatically or guided by the 
user) the most pro~ising one in a given situation; 

• verify if tasks have achieved desired goals (for instance object qualities), and if not 

displty possible alternatives to the user, o r 

autorhatically execute another task sequence alternative; 
I 

• evaluate design alternatives, either using some evaluation tools or executing the 
alternatives and comparing the results; 

• in conjunction with data management capabilities, automatically guarantee design 
data consistency as the tasks are executed; 

• store task sequences defined on-the-fly and allow their re-execution, eventually mod­
ifying tool or object selections. 

When performing a complete proof process in the PREVAIL environment, some task 
sequences may be easily identi:fied. As an example, for an equivalence proof using Boyer­
Moore the following sequenc·e is necessary: 

1. select an entity and verify if it has been successfully compiled; if not, compile it; 

2. select two architectures / con:figurations and verify if they have been successfully 
compiled; if not, compile them; 

3. identify the circuit types of the chosen descriptions, in order to choose the most 
appropriate prover; 

4. translate the descriptions into the input format for the chosen prover - a pre­
processar generates the theorem to be proven; 

5. relationships between the theorem and the two descriptions must be established; 

6. if the proof succeeds, the theorem is marked as proved, and an equivalence rela-
tionship between the 1iescriptions is established. . 
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Since it is expected that this sequence will be repeated very often, the application to 
its execution of some of the above features listed for a design methodology management 
mechanism would be valuable. 

As already mentioned in Section 5.5, these features are very useful for non-experienced 
users that follow methodologies defined by a "methodology manager". They are however 
also useful for experienced users, that may define their own methodologies and try many 
alternative proof strategies. 

It is also clear that the execution of a task sequence must conform to a data schema, 
and specially to data integrity constraints, as implemented for instance in the PREVAIL­
DM environment. 

Methodology management adds another levei of integrity control to a design environ­
ment, which is related to the task sequence integrity, as presented in Section 5.3. 

A prototype of a design methodology manager, also based on the Cadlab framework, 
is now under design. It will implement some of the features listed above. In particular, it 
will bring together design methodology management mechanisms speci:fied for the STAR 
framework [12], under development at the University of Rio Grande do Sul, at Porto 
Alegre, Brazil, with the data management capabilities of PREVAIL-DM. 

6.2 White-box tool integration 

In a general sense, white-box tool integration means that the tool code "knows" the data 
base schema and directly manipulates data base objects and relationships. 

This tool integration approach has two consequences. Firstly, as already mentioned 
in Section 4.2, the tool can automatically verify and preserve the design data integrity, 
without the need of writing' complex methods that encapsulate the tool. Secondly, this 
approach is also consistent with a fine-grain schema, which models design data that are 
internai to VHDL and other proof-related objects. 

If a tool already exists, which makes such fine-grain integrity verification (such the 
VHDL analyzer, which verifies the integrity between entities, architectures, configura­
tions, and packages), the automation of this verification in the data management system 
does not add too much value to the environment, making the schema unnecessarily more 
complex. 

There are cases, however, when only a white-box integrated tool, with knowledge 
of the schema, can add a valuable feature to the environment. This is the case of the 
method HierarchicaLProof proposed in PREVAIL-DM for VHDL architectures. This 
method verifies, for each component C of an architecture A, if the architecture X ( of 
another entity E) bound to C ( either by means of a configuration declaration inside A 
or o f an externai configurat.ion body attached to A) has been already proved against 
the specification architecture S of E. If X has been proved against S, then the method 
replaces X by S in a new configuration it creates for A. This strategy replaces an 
eventually very deep hierarchy inside A by a configuration which is only one-level deep 
and which binds a behavioral specification to each component of A. This replacement 
may ease the proof o f another oh ject containing an instance o f A. 

This method accesses internai design data information of VHDL architectures and 
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configurations as well as schema information about implication proofs already performed. 
It remains as a further goal of PREVAIL-DM the development of such specialized "white­
box" integrated design methods. 

6.3 Version management 

PREVAIL-DM offers the version management facilities that are intrinsic of the VHDL 
language. Each entity may have several architectures. Architectures of a same entity may 
correspond to different design alternatives, to representations ( views) at different design 
abstraction leveis, and to successive re:finements ( revisions) of a given alternative at a 
given abstraction levei. ThEre is no means of distinguishing among these three situations 
in VHDL, as opposed to more powerful version management models [12, 13]. 

Although the support for the identification of design alternatives and views is out of 
the scope of PREVAIL-DM because of VHDL, it is possible to implement a revision con­
trol for each architecture, and even for each configuration. This would have an immediate 
benefit in avoiding an explosion in the number of architectures for each entity, since in 
the current environment each design change must be stored in a different architecture. 

PREVAIL-DM has no intrinsic versioning capabilities for other object classes, like 
packages, theorems, shells, and so on. Revision control may be also implemented for 
these classes, having a similar impact on the explosion of design objects. 

The Cadlab framework already supports a versioning mechanism for database objects 
[5). This support can be used to build a revision control for all PREVAIL-DM object 
classes. This control impacts the design methods in different ways. 

Always when a method fP-t.ches a design object, an object version must be selected. It 
is possible to implement a default mechanism, so that the most recent version is always 
selected, except when the user explicitly wants to select an old version. 

Always when a method creates an object, it must be decided whéther this object 
corresponds to a new version of an already existing object, to the replacement of the 
most recent version of the object (if the version model allows this possibility), or to the 
first version of a new object. There are two possible solutions for implementing this 
choice: 

• new methods are introduced for creating versions for already existing objects- in 
this case, the default mechanism can correspond to the creation of a new version, 
and the user must explicitly indicate when the new representation should replace 
the most recent version; 

• in the already available methods, if the user indicates the name of an already exist­
ing object, a new veHion is created for it (or the most recent version is replaced); 
if the user indicates a new name, a new ob ject is created. 

These considerations does not apply to certain objects that are not created under 
explicit user control, but as an "indirect" consequence of the method execution, such as 
compiled descriptions and listings, "equivalence" and "implication" objects, and son on. 
In these cases, the method must be implemented with an already "embedded" solution. 
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In the case of a compilatior: listing, for instance, where only an object of the class may 
be attached to a VHDL description, the creation of a new object is not possible. 

It must not be overseen that the version control has a great impact also on the rela­
tionships between objects. If two objects have many versions each, a relationship between 
them must be established between selected versions. This feature is also supported by 
the Cadlab framework. Integrity constraints must be therefore changed according to 
this fact. In the above mentioned situation, for instance, only one object of the class 
Compiled..List may be attached to each version of a VHDL description. 

From the above discussion, it is clear that the implementation of even a very simple 
revision control mechanism represents a big re-design and re-programming effort. 
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