
• SABI

~ 1111 Wl
UFRGS 06980784

RAPPORT DE RECHERCHE
PREV AIL-DM: A FRAMEWORK-BASED
E~ONMENTFORFO~
HARDWARE VERIFICATION

Flávio Rech Wagner

RR-899 Juillet 1992

CFD{03/ Jo{S
RJO,OA

PREVAIL-DM: A FRAMEWORK-BASED ENVIRONMENT
FOR FORMAL HARDWARE VERIFICATION

Flávio Rech Wagner*

Abstract

This report describes the framework-based PREVAIL-DM design environment for for­
mal hardware verification. PREVAIL-DM integrates proof tools that are available in the
PREVAIL environment around a common, VHDL-based conceptual schema. Tools are
encapsulated according to a black-box approach. Design data are stored in a uni que data
base, and the environment o:ffers a common main user interface, which gives access to
design tools and methods and allows browsing through the database objects. Available
methods to be applied on the design objects are oriented to the application semantics,
thus helping to maintain ali desired schema-related integrity constraints. PREVAIL-DM
is implemented upon the Cadlab framework and uses most of its main features.

Resumé

Ce rapport présente l'environnement de projet PREVAIL-DM, orienté vers la preuve
de circuits et systemes éler.troniques et basé sur un framework. PREVAIL-DM integre
des outils de preuve disponibles dans l'environnement PREVAIL autour d'un schéma
conceptuel de données commun et basé sur VHDL. Les outils sont encapsulés selon une
approche black-box. Les objds de projet sont stockés dans une base de données unique, et
l'environnement o:ffre une interface-usager communne qui permet l'acces à tous les outils
ainsi que la navigation à tr<'l.vers la base de données. Les méthodes qui sont exécutables
sur les objets de projet sont orientées vers la sémantique de l'application, de façon à aider
l'usager à préserver toutes les contraintes d'intégrité liées au schéma. PREVAIL-DM est
réalisé en utilisant le framework Cadlab comme plateforme et se sert de la plupart de ses
plus importants services.

* On leave from the Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil

Contents

1 INTRODUCTION 1

2 GENERAL OVERVIEW 2

3 CONCEPTUALSCHEMA 4
3.1 VHDL source objects 4
3.2 Translated objects for the proof process . 5
3.3 Equivalence and implication proof . . 7
3.4 Proof of properties 8
3.5 Support for the Boyer-Moore prover . 10
3.6 Library and user management 11
3. 7 Examples of methods 12

4 IMPLEMENTATION ASPECTS 16
4.1 TIDL realization 16
4.2 Realization of the methods . 16
4.3 Access management 18
4.4 User interaction 19

5 ANALYSIS OF THE ENVIRONMENT 20
5.1 Support for VHDL and schema granularity 20
5.2 Support for equivalence, implication, and properties proof . 20
5.3 Design data integrity 21
5.4 Environment extensibility 22
5.5 Support for experienced users 22
5.6 Features not found in the environment 22
5. 7 Features of the Cadlab framework not used in the environment . 23
5.8 Environment features that cannot be used by the current PREVAIL tools 24

6 FUTURE WORK 25
6.1 Design methodology management 25
6.2 White-box tool integration . 26
6.3 Version management 27

11

1 INTRODUCTION 1

1 INTRODUCTION

Design frameworks [1] are general-purpose platforms for building application-specific, in­
tegrated design environments. They offer services like data management mechanisms,
usually comprising facilities for modelling complex electronic systems and a common
database system, tool integration mechanisms, version and configuration management,
design methodology management, data distribution with concurrency control, and sup­
port for building new, integrated tools, such as mechanisms for the construction of uni­
forro user interfaces and for intertool communication.

PREVAIL [2] is an environment that offers specialized tools for the formal proof of
hardware. It allows the user to specify hardware structure and behavior by means of a
subset of VHDL [3], and offers translators that automatically generate proof-oriented in­
ternai representations. The environment offers three different provers (TACHE, LOVERT,
and the Boyer-Moore theorem prover), that are applicable to combinational and certain
classes of sequential circuits.

This report describes PREVAIL-DM, a framework-based version of PREVAIL which
integrates the above mentioned proof tools around a common, VHDL-based conceptual
schema. The main motivation for this development is the addition of powerful data
management facilites to the PREVAIL environment, and in particular the automatic
verification of integrity constraints during the design and proof processes. As a main
requirement for the PREVAIL-DM development, a "black-box" tool integration approach
was adopted, because changing the tool codes would be a too great effort.

PREVAIL-DM design data are stored in a unique data base, and the environment
offers a common main user interface, which gives access to design tools and methods
and allows browsing through the database objects. A vailable methods to be applied on
the design objects are oriented to the application semantics, thus helping to maintain
ali desired schema-related integrity constraints. PREVAIL-DM is implemented upon the
Cadlab framework [4] and uses most of its main features.

The conceptual schema (object classes, methods, and relationships) gives special sup­
port for the proof of equivalence and implication between VHDL architectures, as well
as for the proof of properties expected from these architectures. It includes a specific,
powerful support for the utilization of the Boyer-Moore prover by experienced users.

PREVAIL-DM thus supports some of the framework-supported features expected
from integrated design environments, mainly those related to data management (thus
the name PREVAIL-DataManagement) and consistency. Future work will specially con­
centrate on support for design methodology management.

The reminder of this report is organized as follows. Section 2 gives an overview of
the main features of PREVAIL-DM. Section 3 details the conceptual schema. Section 4
describes implementation aspects, such as the integration of the design tools according
to the black-box approach and the schema realization by means of the TIDL language
offered by the Cadlab framework A detailed analysis of the environment features can be
found in Section 5. Finally, Section 6 discusses future work.

2 GENERAL OVERVIEW 2

2 GENERAL OVERVIEW

Main features
PREVAIL-DM presents some of the main features expected from an integrated design en­
vironment implemented upon a design framework. The design tools are integrated around
a common conceptual schema, in such a way that their execution preserve application­
specific integrity constraints. The design data are stored in a unique data base, thus
avoiding data redundancy and inconsistency. The tools are activated from a common,
graphical-interactive user interface based on Motif, which also gives access to a database
browser. The schema can be easily extended so as to include new object classes and
methods.

Other useful features expected from integrated environments and I or supported by
design frameworks that are not implemented in PREVAIL-DM are discussed in Sec­
tion 5.6.

Cadlab framework
PREVAIL-DM is implemented upon the Cadlab framework and uses most of its main
services, as introduced below. Other services supported by the framework that are not
used in PREVAIL-DM are discussed in Section 5.7.

The basic layer of the Cadlab framework is a database system which implements a
general-purpose data model, named IDM [5],.specially conceived for representing complex
design objects. The PREVAIL-DM schema is defined by means of the object-oriented
modelling facilities of the TIDL language [6, 7] available in an additional framework
layer. For each object class the schema defines methods, attributes, and a graphical
representation. Facilities available in both layers allow the definition of the application­
specific PREVAIL-DM access management policies.

PREVAIL-DM automatically inherits very useful features presented by the Cadlab
framework. The framework automatically builds the main user interface of the design
environment: the graphical-interactive MOTIF-based framework dektop [8] gives access
to the application-specific methods and allows browsing through the data base oh jects
and relationships. The TIDL language supports an easy extension of the environment,
allowing the definition of new object classes, relationships, and methods, as discussed in
Section 5.4. The database system can be used in a distributed way over a network of
UNIX-based workstations and controls the concurrency of user accesses.

Conceptual schema
Design tools are integrated around a VHDL-based, common conceptual schema. It is a
coarse-grain schema, where objects are entities, architectures, configurations, and pack­
ages. The schema does not represent any data that are internai to the VHDL descriptions,
such as components, interface signals, or processes. This kind of information is handled
by the VHDL software. This schema granularity is consistent with the black-box tool
integration approach, adopted for ali design tools (VHDL analyzer and access functions,
translators from VHDL to the proof-oriented internai representations, provers).

2 GENERAL OVERVIEW 3

The schema includes object classes that are specially oriented to the proof process,
such as proof-specific translated descriptions, theorems, Boyer-Moore shells, and Boyer­
Moore working environments.

Ali methods o:ffered by PREVAIL-DM are oriented to the application semantics, thus
helping to maintain all desired schema-related integrity constraints. Methods help the
user to guarantee that ali necessary relationships between the oh jects are created and
maintained. Furthermore, methods can only be applied when certain semantic conditions
are verified. As an example, the method for removing a VHDL architecture can only be
executed if this description has not been proved equivalent against other one.

Library and user management
Design and proof-related objects are stored in two kinds of libraries. System libraries
store permanent data, that can be used in several projects. Project libraries contain
design data that are particular to given projects. At the beginning of a project, initial
data can be retrieved from system libraries. Methods corresponding to design activities,
such as creation, compilation, translation to a proof-oriented format, proof, and so on,
can be applied only to objects in project libraries. Copy methods allow the transfer of
objects between libraries. These methods guarantee the integrity of the data copied into
another library, making sure that ali necessary relationships to other objects will be also
present in the target library.

The environment distinguishes a system administrator from other users. The adminis­
trator has full acess to objects and methods. Other users have access to particular project
libraries and cannot execute administration methods. User groups can be assigned to
di:fferent project libraries.

3 CONCEPTUAL SCHEMA 4

3 CONCEPTUALSCHEMA

3.1 VHDL source objects
The kernel of the PREVAIL-DM conceptual schema is shown in Figure 1 and considers
all VHDL descriptions. A project library contains entities and packages. Each entity
may have severa! architectures. The model allows the designer to designate a single par­
ticular architecture as the specification architecture for the entity, from which all other
implementation architectures should be designed. In order to ease the data management,
the model restricts a configuration to contain component bindings for a single implemen­
tation architecture. A specification architecture is assumed to contain no components,
because of its behavioral nature. Packages may be used by entities, architectures, and
configurations.

n

n

PACKAGE

SPECIFICATION
ARCHITECTURE

is used by

PROJECT
LIBRARY

1 n o
::I
rl
11)

:;·
n C/)

ENTITY

m

IMPLEMENT ATION
ARCHITECTURE

1 g
::s
rl
11)

::I n C/)

CONFIGURATION

Figure 1: Conceptual schema- VHDL kernel

All objects shown in Figure 1 are source descriptions. For each one of them, there
may be an attached compiled. description, containing only meta-data (user name and
compilation date), whereas their "real" compiled contents are stored in the libraries

3 CONCEPTUAL SCHEMA 5

owned by the VHDL software, that are not integrated into the data base. Each of these
VHDL sources may also have an attached listíng documenting a compilation process.

Table 1 lists the basic methods for handling VHDL descriptions 1
• In this and in ali

subsequent tables, (u) indicates a method which can be executed by any user, while (a)
indicates a method which can be executed only by the system administrator. PREVAIL­
DM makes intensive use of the polymorphism feature of the TIDL language. A method
with same name may have different implementations for different object classes. Methods
Remove and Edit are typical examples. A package may be removed only if it is not used
by any VHDL description, while an implementation architecture may be removed only
if it has not been proved equivalent against other descriptions.

Display .Attributes (u)
Read (u)

for Print (u)
packages, Copy _to_System..Library (a)
entities, Copy _to_Pro ject..Li brary (u)

architectures, Create (u)
configurations Compile (u)

Edit (u)
Remove (u)

only for CreateJmplementation (u)
entities lmportJmplementation (u)

Create_Specification (u)
only for implem. Create_Configuration (u)

architectures lmport_Configuration (u)
for compiled Display_Attributes (u)
descriptions Remove (u)

for compilation Display_Attributes (u), Remove (u)
listings Read (u), Print (u)

Table 1: Design methods for VHDL descriptions

3.2 Translated objects for the proof process

For supporting the proof process, the schema also includes three object classes corre­
sponding to the internai representations created for the TACHE, LOVERT, and Boyer­
Moore provers, as shown in Figure 2. Each instance of these object classes may be
attached to a specification architecture, to an implementation architecture, or to a con­
figuration (generally designa.ted as VHDL bodíes). In the case of TACHE and Boyer-

1 A complete functional specification of all methods, including the integrity constraints they preserve,
can be found in a separate project report [9].

3 CONCEPTUAL SCHEMA 6

Moore, only a single translated description may exist for each VHDL body. In the case
of LOVERT, two translated descriptions may be attached to implementation architec­
tures and configurations, one of them of type "ert" (used as an "implementation" in the
proof process) and the other one of type "srt" (used as. a "specification").

SPECIFICATION IMPLEMENTATION
CONFIGURATION ARCHITECTURE ARCHITECTURE

1 1

t"+ t"+
I I

t"+ t"+

o o

2 2

TACHE BOYER-MOORE LOVERT
TRANSLA TION TRANSLA TION TRANSLA TION

~1 ~ 1
Q) Q)

:::l :::l
(/) (/) -I I
t"+ t"+

o 1 o 1

TACHE LISP
GRAPH FUNCTIONS

Figure 2: Conceptual schema - translated descriptions

for architectures Translate_for_TACHE (u)
and configurations Translate_for_LOVERT (u)

Translate.ior ..Boyer (u)
for ali translations Remove (u)

for Boyer-Moore translations Generate_LISP _Functions (u)
for TACHE translations Generate_TACHE-Graph (u)

Table ~: Methods for the translation process

Table 2 lists additional methods for handling these descriptions. They are created
by prover-specific translation methods, that retrieve from the VHDL owned libraries the
necessary compiled data corresponding to the VHDL descriptions. In the case of the
Boyer-Moore prover, an additional method generates, from the internai representation,
LISP functions that are necessary in building the theorem(s) to be proved. In the case

3 CONCEPTUALSCHEMA 7

of the TACHE prover, the binary decision diagram generated for a proof can be stored
as a separate object and re-used in future proofs. This avoids re-building the diagram, a
time-consuming task.

3.3 Equivalence and implication proof

Figure 3 shows extensions to the kernel that are necessary for supporting the equivalence
and irnplication proof. As a result of a successfull proof, equivalence relationships rnay
be established between any two irnplernentation descriptions (either irnplernentation ar­
chitectures without cornponents or configurations of irnplernentation architectures with
components). lmplication relationships may be established frorn an irnplernentation or
a configuration to the specificátion architecture. In a process of successive refinernents,
in which each implementation (or configuration) is considered as a kind of specification
for a next design step, implication relationships may also directly connect two irnple­
mentations f configurations. Equivalence and implication relationships are in fact irn­
plemented as database objects that are attributed with the name of the proof tool that
established the relationship. Listings documenting the proof result ~ay be attached to
these relationship-objects.

is e uivalent to

is e uivalent to

Figure 3: Conceptual scherna - equivalence and irnplication proof

3 CONCEPTUAL SCHEMA 8

Additional methods, listed in Table 3, include the equivalence and implication proofs
by means of each one of the provers, and theorem generation (either stating an equivalence
or an implication). Objects of the class theorem will be discussed later on. The method
Hierarchical_Proof (see Section 6.2) builds a new configuration for an implementation
architecture X, replacing each implementation architecture I bound to a component of
X by the corresponding specification architecture S (but only if it has been proved that
S is implied by I).

for architectures ProveJmplication_by_TACHE (u)
and configurations ProveJmplication_by_LOVERT (u)

ProveJmplication_by ..Boyer (u)
Generate_Theorem.ior_Equivalence (u)

for implementation Generate_Theorem.iorJmplication (u)
architectures Prove_Equivalence_by_TACHE (u)

and configurations Prove_Equivalence_by ..LOVERT (u)
Prove_Equivalence_by _Boyer (u)

for implem.architect. HierarchicaLProof (u)
for equivalences and Display_.Attributes (u)

implications Remove (u)
for proof listings Display_.Attributes (u), Remove (u)

Read (u), Print (u)

Table 3: Methods for the equivalence and implication proof

3.4 Proof of properties

Figure 4 shows an additional extension for supporting the proof of properties. An object
properties contains one or several assertions on object qualities, described in an appro­
priate way for the provers. It may be attached to one or several entities, if it contains
general properties expected from di:fferent design objects. Properties expected from a
single design oh ject may be attached to one or several implementation architectures o f
a same entity. These attachments represent only "expected" properties. An additional
relationship is created between an object properties and an implementation architecture
or configuration for which these properties have been proved. This relationship is im­
plemented as a database object, to which a listing documenting the proof result may
be attached. Each object properties may have an internai translation for the LOVERT
prover, since this is currently the only tool providing capabilities for proving properties.

Additional methods, listed in Table 4, include the creation, edition, attachment and
detachment (to / from entities or implementation architectures), translation, and proof
of properties. As examples of integrity constraints verified by these methods, an object
properties cannot be simultaneously attached to entities and architectures and may not
be removed nor modified if it has been already proved for a certain description.

3 CONCEPTUALSCHEMA

ENTITY n

1 n
o
:::3 ,...
OJ s·

n In m

IMPLEMENTATION
ARCHITECTURE m n

PROPERTIES

L..---..,.-:--_. are proved for L..--~-~~ ...
1 g 1 ~

:::3 OJ
,... :::3
OJ rr.,o'< cn
:::3 0 I

n cn Ne S
ç'<o

'a-'<e

CONFIGURATION m LOVERT
TRANSLA TION

Figure 4: Conceptual schema - proof of properties

for entities and implem.architect. Create_properties (u)
for implem.architect. and configurations Prove_properties (u)

Display_Attributes (u)
Read (u), Print (u)

for properties Edit (u), Remove (u)
Translate (u), Proof (u)
Attach (u), Detach (u)

for property proof Display_Attributes (u)
relationships Remove (u)

Table 4: Methods for the proof of properties

9

3 CONCEPTUALSCHEMA 10

3.5 Support for the Boyer-Moore prover

Figure 5 shows additional support which is specialized for the Boyer-Moore prover. This
tool proves a theorem in the context of a given proof environment (a BM-environment),
which contains shells (abst1act data types), functions (operations on these data types),
other theorems, and axioms (theorems that are to be considered as already proved in
a particular proof context). While proving an equivalence or implication, the user may
choose either a user-defined BM-environment or the bootstrap library, which contains a
pre-defined set of shells, functions, and axioms. As examples of relationships involving
these objects, shells are used by functions and theorems, and theorems are attached to
two VHDL descriptions (architectures I configurations).

n

SHELL

n

FUNCTION

PROJECT
LIBRARY

BM-ENVIRONMENT

AXIOM

ARCHITECTURE
o r

CONFIGURATION

1

THEOREM

3
c:
(/)

O" ...
CDO" c;- co
-.-c
co a

n ~ .__ _ _,c.

ARCHITECTURE
o r

CONFIGURATION

Figure 5: Conceptual schema- support for Boyer-Moore

Theorems may be created in three different situations. Firstly, they are created by
the Boyer-Moore pre-processor as a result of a Prove_Equivalence or ProveJmplication
method. Secondly, they may be created, also by the Boyer-Moore pre-processar, by ap­
plying a Generate_Theorem method, regarding a future equivalence or implication proof.
In these two cases, PREVAIL-DM automatically builds relationships between the theo­
rem and the VHDL descriptions originating it. Thirdly, theorems may be interactively
created by the user. This provides experienced users with a powerful facility for usage of
the Boyer-Moore prover.

PREVAIL-DM offers methods for creating, editing, and removing these objects, as
well as including them in I removing them from BM-e~vironments, as listed in Table 5.

3 CONCEPTUAL SCHEMA 11

It is also possible to store a theorem as an axiom in the context of a particular BM­
environment, to restore it back as a theorem, and to prove it (if it has been generated
but not proved). Methods guarantee for instance that, if a theorem is included in a
BM-environment, the shells and functions it depends ón will be also contained in this
environment.

for shells, functions, Display..Attributes (u)
theorems, axioms, Read (u), Print (u)
BM-environments Remove (u)

for shells, functions, Create (u)
theorems Edit (u)

for theorems Prove (u)
Store_as..Axiom (u)

for axioms Restore_to_Theorem (u)
Create (u)

for Attach_Shell (u), Detach..Shell (u)
BM- Attach_Function (u), Detach..Function (u)

environments Attach_Theorem (u), Detach_Theorem (u)

Table 5: Methods for the proof by means of Boyer-Moore

When the user asks for a proof with Boyer-Moore, the pre-processar may generate,
depending on the circuit type, not only a single theorem stating the equivalence (or
implication) between the output functions of the selected descriptions, but also other
auxiliary theorems, that should be proved before the main theorem, as well as a general­
ized theorem obtained from the main theorem, since the prover is best suited for proving
general properties than particular ones. The schema supports the management of the
precedence relationships between these theorems.

3.6 Library and user management

Figure 6 shows that design and proof-related objects are stored in two kinds of libraries.
System libraries store permanent data, that can be used in several projects. Project
libraries contain design data that are particular to given projects. At the beginning
of a project, initial data can be retrieved from system libraries. The bootstrap library
contains an initial set of shdls, functions, theorems, and axioms that may be used with
the Boyer-Moore prover. {-;)py methods allow the transfer ofobjects between libraries.
These methods guarantee the integrity of the data copied into another library, making
sure that ali necessary relationships to other oh jects will be also present in the target
library.

PREVAIL-DM distinguishes a system administrator from other users. The adminis­
trator has full access to objects and methods. Users are attached to particular project

3 CONCEPTUAL SCHEMA

BOOTSTRAP
LIBRARY

PREVAIL

SYSTEM
LIBRARY

n

PROJECT
LIBRARY

Figure 6: Conceptual schema - libraries

12

libraries and cannot execute administrative methods. Ali methods corresponding to de­
sign activities, described previously in this section, can be applied by users only to objects
in the project libraries the users are attached to. Only four methods may be applied by
users to objects in system libraries and in project libraries they are not attached to:
Display_Attributes, Read, Print, and Copy_toYroject.Library. The administrator may
additionally execute methods Remove and Copy_to_System_Library on oh jects stored in
system libraries, and the method Copy_to_System.Library on objects stored in project
libraries.

Table 6 shows the administrative methods for library and user management. Users are
created outside the scope of particular project libraries. When a project library is created,
the administrator may initialize the composition of its user group. The administrator
may also attach and detach users to f from pro ject libraries dynamically.

methods applied Create_project..Library (a)
to the root of Create_8ystem..Library (a)

PREVAIL-DM Create_User (a)
Remove_U ser (a)

methods applied Attach_User (a)
to the root of Detach_ U ser (a)

a pro ject library Remove..Library (a)

fable 6: Administrative methods

3. 7 Examples of methods

Figure 7 gives, as a first example, the complete functional specification of the method
Detach_Shell, applied only to objects of the class BM_Environment. This method does

3 CONCEPTUAL SCHEMA 13

not encapsulate any existing tool. It is a completely "white-box" programmed method.
It can be seen that the method requires user interaction (selection of items from a menu
presented by the system according to the context), and that the system verifies if each
selected shell may be really detached from the current BM-environment. If positive,
the BM-environment is modified and relationships are removed so as to maintain the
database consistency.

Function:
.Detach shells from the current BM-environment

Description:
- user interactively selects shells from a list of shells that

are attached to the BM-environment
- for each selected shell:

- remove the relationship from the shell to the BM-environment
- remove the shell contents from the BM-environment contents

- copy relationships from the BM-environment to other libraries
are automatically removed

Constraints:
- a selected shell cannot be detached if it is used by functions

or theorems related to the BM-environment

Figure 7: Method Detach_8hell, for BM.:.environments

Figure 8 gives, as a second example, the complete functional specifi.cation of the
method Edit, when applied to implementation architectures. This method encapsulates
a conventional text editor with integrity-preserving pre- and post-activities. It can be
seen that, when the user decides to store the new description back in the same object, the
system automatically remoYes some attached objects (such as the compiled description)
and copy relationships to objects in other libraries, if they exist, and guides the user to
modify existing relationships to other oh jects, such as packages and properties. When
the new description is stored as a new object, the system only guides the user to estab­
lish desired relationships to other objects. Different constraints apply to each situation
(creation of a new object or modification of an existing one)~

As a final example, Figure 9 shows the complete functional specification of the method
Copy_to-ProjecLLibrary, when applied to VHDL sources (entities, architectures, configu­
rations, and packages). This method does not encapsulate any existing tool. In order to
preserve the data consistency in the target library, the copy is only possible when certain
"father" objects are already present in the target library. Furthermore, certain attached
objects and relationships are also copied together.

--l

3 CONCEPTUAL SCHE!I!JA

Function:
Edit contents of the current implementation architecture

Description:
- user chooses whether to store the new description in the same

obj ect or not
- if new description is stored back in the same object:

- compiled description and listing, translated descriptions,
LISP-functions, and TACHE-graphs, if existing, are automatically
removed

- user may change the relationships from packages to the
architecture

- user may change the relationships from the architecture to
properties

- objects "property-proven" attached to the architecture (proof
"relationships" to properties) are automatically removed

- copy relationships from the architecture to other libraries aré
removed

- if a new architecture is created:
- user may establish relationships from packages to the architecture
- user may establish relationships from the new architecture to

properties already related to other architectures of the same
entity

Constraints:
- storage of the new description in the same object is possible only

if:
- there are no theorems attached to the architecture
- the architecture has no configurations
- the architecture has no "equivalence" relationships to other VHDL

descriptions
- the architecture is not implied by other VHDL descriptions

- if a new architecture is created:
- name of new object must be unique among all architectures of the

entity
- if architecture is stored under the same name:

- properties cannot be simultaneously attached to entities and
architectures

Figure 8; Method Edit, for implementation architectures

14

~~--------------

3 CONCEPTUAL SCHEMA

Function:
Copy object from the current project library to another project
library

Description:
- the compiled description and listing, if existing, are also

copied
- if applied to architectures and configurations, the translated

descriptions, the LISP functions, and the TACHE-graphs, if
existing, are also copied

- relationships to father objects are also copied (except when
the father is the project library itself)

- if an "equivalent" description is already in the target library,
the "equivalence" object (and an eventual attached "proof
result" listing) is also copied

- if an "implied" description is already in the target library,
the "implication" object (and an eventual attached "proof
result" listing) is also copied

- if "properties" already proved for the description is in the
target library, the "property-proven" object is also copied

- for objects of classes Entity and Package, a son-relationship
to the target library is established

Constraints:
- user must belong to the user group of the target library, but not

of the source library
- copy is not possible if object already exists in the target

library
- name of the copied object must be unique in its context in the

.target library
if father objects are not yet in the target library, copy is not
possible; this rule does not apply to "equivalence", "implication",
"property-proven", anJ "library" father-objects

Figure 9: Method Copy_to-Project.Library, for VHDL sources

15

4 IMPLEMENTATION ASPECTS 16

4 IMPLEMENTATION ASPECTS

4.1 TIDL realization

TIDL [6, 7] is an object-oriented language offered by the Cadlab framework to define
design environments. Besides the schema description (object classes and their attributes,
methods applied to the object classes, relationships), TIDL also offers facilities for asso­
ciating graphical representations to the oh jects, for defining access management policies,
for initializing the data base contents, and for "black-box" integrating design tools. The
language supports inheritance of methods and attributes between classes and sub-classes,
redefinition of methods by ~ uh-classes, and polymorphism. All these features have been
used in the implementation of PREVAIL-DM.

There is almost a one-to-one mapping between the PREVAIL-DM objeot classes pre­
sented in the previous section and TIDL classes. Exceptions are due to three mod­
elling problems. Firstly, TIDL-methods are applicable to object classes in a context­
independent way. In PREVAIL-DM, however, most design methods may be applied only
to the object "copies" that are stored in project libraries. It was therefore necessary to
build, for almost all PREVAIL-DM object classes, two particular TIDL-classes, corre­
sponding to the object copies in the project and system libraries, so that most design
methods are defined only for the first ones. Secondly, TIDL-relationships may not be
attributed. Equivalence, implication, and copy relationships, that must hold attributes,
had to be mapped to TIDL-object classes. Thirdly, TIDL does not allow two different
relationships between the same objects. This would be needed for relating implemen­
tation architectures to properties through an "attachment-relationship" and a "proof­
relationship". This latter relationship is thus mapped in to an additional TIDL-object
class Properties-Proven .

. Mainly because of the "black-box" tool integration approach and the coarse-grain
schema, all classes corresponding to objects that are visible to theuser are mapped into
database complex objects [f]. Most of the object classes are mapped into unstructured
complex objects, or uco 's, that have a file as their contents, while some classes are mapped
into equivalence complex ob.iects, or eco 's, that have no files as contents. This is the case
of libraries, for instance, that serve only to structure the database objects, but are not
"objects" in a real sense themselves. Only the object class BM-environment has been
mapped into a structured complex object, or sco, whose contents is a graph of primitive
objects, or po 's. These primitive oh jects, not visible from the user interface, allow the
system to find the contents of the shells, functions, axioms, and theorems contained
within the BM-environments. As an example, an object of the class po_shell instantiates

. a complex object of the class shell.

4.2 Realization of the methods

The Cadlab framework offcrs a particular black-box tool integration service which is
directly available through TlDL constructs. A black-box integrated tool can be associated
to a TIDL-method by specifying: database objects to be exported as input files to the

4 IMPLEMENTATION ASPECTS 17

tool; the command for the tool activation, including the exact syntax of optional and
mandatory parameters and their data types; and the output files generated by the tool to
be imported as database objects. When the corresponding method is selected by the user,
the framework automatically calls the tool, handling input and output files as defined in
the TIDL script. This service allows a very rapid "encapsulation" of the design tools.

Although its design tools are "black-box" integrated in a general sense (i.e., their
input and output files are exported from / imported to the data base, and their codes
have not been modified), PREVAIL-DM does not use in fact the specific black-box inte­
gration services of the Cadlab framework. This occurs because the environment aims at
guaranteeing the schema-related integrity constraints. Therefore, there are always some
pre-conditions for executing design tools, such as the existence of given relationships, that
must be automatically verified by the methods, as well as integrity-preserving activities
that must be automatically executed by the methods after the design tool is executed,
such as establishing relationships to other objects.

Therefore, a method does not consist in a single design tool execution. It includes
other activities before and after the tool execution. These activities correspond to the
most important environment feature, i.e. the automatic verification and maintainance of
the integrity constraints. The methods are thus "white-box" integrated, in the Cadlab
framework sense (10]. They are C processes that are activated from the framework
desktop, receiving as input parameters the identifications of the design object to which
the method has been applied and of the current user.

If a method would' correspond to a direct execution of a design tool, two alternatives
would be possible for the verification of the integrity constraints:

• The user himself/herself would have to manually verify the pre-conditions for the
tool execution and establish, after the tool execution, the relationships that preserve
the data integrity, through activation of adequate methods. The environment would
offer a very weak support for data management, in this case.

• The tools would have o be modified, so that they would contain, in their codes, ali
necessary verification :)f pre-conditions and execution of integrity-preserving post­
activities. This appr· •ach is difficult to implement, because of the need of tool
re-writing.

The Cadlab framework also offers an event-handling mechanism which is useful for
implementing routines that execute integrity-preserving actions. This mechanism allows
the application to define functions that are automatically triggered when certain IDM in­
terface operations are executed or when certain objects or object classes are manipulated
(a combination of both kinds of conditions is also possible). Unfortunately, this mech­
anism cannot be used in the implementation of the integrity-preserving actions of the
PREVAIL-DM methods, because the event-functions are triggered on primitive database
access operations, not on the activation of TIDL-methods, as would be necessary.

4 IMPLEMENTATION ASPECTS 18

4.3 Access management

The Cadlab framework o:ffers two kinds of services for implementing access management
policies. Policies where di:fferent users have specific acess rights to di:fferent object classes
and methods can be implemented by an Access Manager (11]. Client roles, associated
to the cross product object class x method, may be defined in the TIDL script of the
application. Clients have to be dynamically assigned to client roles when new objects are
created, in order to gain access to these objects.

As another basic service, the Cadlab framework o:ffers a simple set of user admin­
istration functions (5] for defining users, handling user membership in user groups, and
handling user passwords. These functions have no relation to clients and client roles.
They may help the application to implement the management of users and user groups.

In PREVAIL-DM, to each project library a group of users is associated. These users
may execute any methods on any objects stored in this library. However, users may
execute only "read" methods on objects in system libraries and in project libraries other
than theirs. Therefore, the PREVAIL-DM access management policy does not define
access rights that depend on the object classes or methods, but on the context where the
ob jects are located.

In the TIDL script of PREVAIL-DM, two roles Designer and Reader are thus defined.
The role Reader is associated to "read" methods (Read, Print, Copy_toYrojecLLibrary,
and Display.;.Attributes). The role Designeris associated to all other methods that can be
executed by users on objects stored in project libraries. All users attached by the system
administrator to a given project library play the same role Designerfor all objects within
this library. When a user calls one of the methods to which the role Designer is associated,
the first function executed by the method is to verify if the user really belongs to the
user group of the current project library. Ali users of PREVAIL-DM play the role Reader
for ali objects in ali system and project libraries. For the methods to which this role is
associated, there is no need of an additional verification of access rights by the methods
themselves.

Each time a new object is created within a project library, all users belonging to
the user group of the librarv must be assigned to the role Designer with respect to this
object, in order to gain access to the methods defi.ned for the corresponding object class.
Furthermore, all users of F REVAIL-DM must be assigned to the role Reader for this
object. This dynamic role assignment is implemented by one of the functions o:ffered by
the Access Manager.

As another consequence of the framework features, each time a new user is attached
to a project library, he/she must be assigned to the role Designer for each of the objects
already existing in the library. Inversely, when a user is detached from a project library,
the user must loose the role Designer for each of the objects already existing in the
library.

As already stated in Section 4.1, in the Cadlab framework the executability of methods
defined for a certain object class does not depend on the context where objects of this
class are situated. This resulted in the definition of special classes for objects located in
the system libraries, so that for these classes only "read" methods are available for the

4 IMPLEMENTATION ASPECTS 19

users.
Methods that can be executed only by the PREVAIL-DM administrator have no client

role associated in the TIDL script. As a consequence, only the framework administrator
(pre-defined role dba) can execute them. The dba thus directly implements the PREVAIL­
DM administrator.

4.4 U ser interaction

The PREVAIL-DM user interface is implemented by two di:fferent mechanisms. The main
user interface of the application is automatically available through the framework desktop
[8], which displays the database contents and allows the user to browse through the
objects and relationships. For each object there is pop-up menu containing all methods
available for the object class. This desktop is based on Motif and offers many other
control facilities, described in [8]. Access to objects and methods is possible according to
the client roles the current user plays. As a result, the PREVAIL-DM users can navigate
through all libraries and select any "read" methods. The execution of "write" methods
on objects located on libraries to which the user has no "write" access will be refused by
the method execution itself, and not by the framework mechanisms.

Furthermore, each design method builds its own user interface. Many methods have
to interact with the user, for displaying menus with lists of objects, receiving menu selec­
tions, displaying messages, receiving textual input, and so on. These method interfaces
are also based on Motif, so that the PREVAIL-DM user has a comfortable and homoge­
neous interaction with the whole environment.

5 ANALYSIS OF THE ENVIRONMENT 20

5 ANALYSIS OF THE ENVIRONMENT

5.1 Support for VHDL and schema granularity

PREVAIL-DM implements a coarse-grain VHDL-based schema, where the main objects
are entities, architectures, configurations, and packages. As a restriction, the schema
considers that a configuration is related to a single architecture, and not to an entity.
This restriction eases the data management.

All design tools are black-box integrated. This integration approach considerably
eases the development of the environment prototype, since the code of tools is not
touched.

The schema does not represent any design data that are internai to VHDL objects,
such as interface signals, attributes, processes, functions, data types, etc. In particular,
components within architectures are not modelled. Therefore, the environment does not
have knowledge about the structural decomposition of the architectures and the binding
of these components to other entities f architectures. All internai data of VHDL objects,
including the information about this structural decomposition, is handled by the VHDL
software and by the design tools (analyzer, translators, provers).

Because of the schema granularity and tool integration approach, the environment
is not responsible for verifying any integrity constraints related to design data that are
internai to the VHDL objects. These constraints are verified by the design tools.

The compiled representations created by the VHDL analyzer are not stored as database
objects. The environment only maintains a record of which VHDL sources have been
successfully compiled, by attaching to them objects of the class Compiled_Description,
that contain only meta-data for management purposes.

5.2 Support for equivalence, implication, and properties proof

The schema includes all auxiliary objects that are needed in the proof process, when
using the TACHE, LOVERT, and Boyer-Moore provers: translated descriptions obtained
from the VHDL sources and used as input for the provers; listings documenting the proof
results; theorems, shells, fuHctions, and axioms; and working environments for the Boyer­
Moore prover.

The coarse-grain approach is used also for these objects. Their internai data are
handled only by the design tools. The environment is responsible for maintaining the
relationships between these objects and from them to the VHDL objects.

The model includes objects of a class Properties, for storing properties of entities and
architectures that are to be proved.

The model distinguishes a particular architecture as the entity specification. Only
one such architecture may exist for each entity. For this architecture there are no con­
figurations, since it is supposed that it contains no components. Other architectures are
considered as implementatjon architectures.

The model includes rela.tionships specially suited for supporting the equivalence, im­
plication, and properties proof:

5 ANALYSIS OF THE ENVIRONMENT 21

• implication from an implementation / configuration to the specification;

• implication from an implementation I configuration to other implementation I
configuration;

• equivalence between two implementations I configurations;

• properties proved for an implementation I architecture.

5.3 Design data integrity

Two main requirements in the PREVAIL-DM development were the "black-box tool
integration approach", adopted because changing the tool codes would be a too great
effort, and the automatic verification of integrity constraints, so that the environment
really offers more than the already available PREVAIL system.

In a design environment, we can identify three leveis of integrity constraints that must
be verified during a design process:

• low-level, fine-grain data constraints, such as the compatibility of signal data types;

• high-level, coarse-grain data constraints, such as equivalence relationships between
VHDL architectures;

• high-level methodology constraints, such as the achievement of design qualities like
cell area or maximum delay.

Design constraints at the first levei are normally verified by using tools like HDL
compilers, simulators, and verifiers. In the PREVAIL cont~xt, the VHDL analyzer verifies
syntactical conditions, the translators verify if the proper VHDL subset is being used,
and the provers verify if the design data that are "internai" to the VHDL · descriptions
have the desired qualities.

It would be meaningless to build a framework- based environment that verify these
constraints at the database levei (either by the schema or by the methods), since they
can be much more efficiently verified by the already existing tools. This is in fact the
main reason for adopting a coarse-grain conceptual schema.

The design data integrity constraints that are automatically verified and maintained
by PREVAIL-DM are at the second levei and regard the relationships between the coarse­
grained objects of the schema. As examples, it can be remembered that:

• methods for creating oh jects enforce or guide the user to establish the cortect
relationships to other)bjects;

• objects can be removedor modified only if they do not participate in relationships
that must be maintained, such as equivalences;

• copy methods guarantee that an object is copied into another library in such a way
that data integrity is maintained (for instance, other objects and relationships are
copied together).

5 ANALYSIS OF THE ENVIRONMENT 22

Design constraints at the third levei are methodology-specific and their verification
should not be integrated nor into the design tools neither into the conceptual schema.
Their formalization is tipically used for controlling the design fl.ow. This is the objective
of a further development in the PREVAIL context, discussed in Section 6.1.

5.4 Environment extensibility

PREVAIL-DM offers the extensibility capabilities that are intrinsic of the Cadlab frame­
work.

The schema is defined by means of a TIDL script, which specifies object classes,
relationships, and methods. This script may be extended by new definitions of classes,
relationsips, and methods. The TIDL compiler automatically verifies the consistency
of the extensions with regard to the already implemented script. The already existing
database contents is preserved.

It is not possible however to remove definitions of existing classes, relationships, and
methods.

The TIDL script in fact does not contain the methods themselves, only references to
functions that implements them. As already explained in Section 4.2, the Cadlab black­
box integration services cannot be used for integrating new tools into the environment.
A "white-box" method that encapsulates the new design tool must be written, if we want
to preserve the integrity constraints.

5.5 Support for experienced users

PREVAIL-DM supports the use of formal provers by experienced designers. In the case
of Boyer-Moore, for instance, the systems supports the definition of shells, functions, and
theorems and their integration in to a working environment for the prover, as well as the
proof of isolated theorems.

These features would be of no use for designers with little experience on formal proof.
These designers need in fact a proof process as automated as possible, following a system­
guided interactive dialogue for giving the information which is needed for the proof, as
in the currently available P REVAIL environment.

Such a kind of process automation can be also obtained in this environment, when
design methodology management is added. In this case, task sequences that correspond
to sequences of the available methods can be defined and automatically executed.

5.6 Features not found in the environment

Other useful features expected from integrated environments and f or supported by
design frameworks are are not implemented in PREVAIL-DM:

• version management;

• configuration management;

5 ANALYSIS OF THE ENVIRONMENT 23

• design methodology management;

• common internai formats;

• intertool communication;

• uniform user interface for all design tools.

The last two features from the list above have not been implemented because of the
black-box tool integration approach. Configuration management would be only useful if
a fine-grain schema had been implemented, so that the environment would be responsible
for handling components inside structural descriptions and their bindings to other entities
f architectures. In PREVAIL-DM, configuration management is realized by the VHDL
software and is not integrated into the environment.

Version and design methodology management are goals to be pursued in next envi­
ronment releases, as discussed in the Section 6. A common internai format for ali design
tools is still a research theme in the :field of formal hardware veri:fication.

5. 7 Features of the Cadlab framework not used in the envi­
ronment

The following features are supported by the Cadlab framework but have not been used
in the implementation of PREVAIL-DM:

• version management;

• black-box tool integration mechanisms;

• event handling;

• support for modelling complex structured objects;

• intertool communication services.

As already stated, version management is a goal of a future environment release. Al­
though design tools integrated in PREVAIL-DM are "black-box" integrated in a general
sense, the reasons for not using the specific Cadlab black-box tool integration mecha­
nisms have been discussed in Section 4.2. The same section explain why the event han­
dling mechanisms have not been used. Intertool communication services have not been
used because of this black-box tool integration approach adopted in the environment.
Complex structured object.s have been used in a very limited extent for implementing
BM-environments. This fea.ture would be used more extensively if a fine-grain schema
had been adopted.

5 ANALYSIS OF THE ENVIRONMENT 24

5.8 Environment features that cannot be used by the current
PREVAIL tools

Some of the features implemented in PREVAIL-DM cannot be used by the proof tools
currently available in the PREVAIL environment. Nevertheless, these features have been
implemented in the conceptual schema because an evolution of the proof capabilities in
their direction is expected or desired in the near future. There are two basic reasons that
explain why some features cannot be used.

Firstly, the proof tools, in fact, handle currently only very simple VHDL descriptions.
The provers only accept fully configured architectures (architectures already containing
the binding from their corr.ponents to other entities / architectures), so that all proof
relationships envolving VHDL configurations cannot be used. Furthermore, the tools
search ali necessary VHDL data types and functions in a single package, so that the
definition of multiple packages and their attachment to VHDL descriptions will not be
used for the moment.

Secondly, in the case of the implication proof there is currently no experience or
established proof capabilities that correspond to this environment feature.

6 FUTURE WORK 25

6 FUTURE WORK

6.1 Design methodology management

Design methodology management [1] is an additional service supported by design frame­
works. It has multiple possible goals:

• automatically execute user-defined task sequences, eventually speci:fied in a hierar­
chical way;

• associa te multiple tools to a task and choose (either automatically or guided by the
user) the most pro~ising one in a given situation;

• verify if tasks have achieved desired goals (for instance object qualities), and if not

displty possible alternatives to the user, o r

autorhatically execute another task sequence alternative;
I

• evaluate design alternatives, either using some evaluation tools or executing the
alternatives and comparing the results;

• in conjunction with data management capabilities, automatically guarantee design
data consistency as the tasks are executed;

• store task sequences defined on-the-fly and allow their re-execution, eventually mod­
ifying tool or object selections.

When performing a complete proof process in the PREVAIL environment, some task
sequences may be easily identi:fied. As an example, for an equivalence proof using Boyer­
Moore the following sequenc·e is necessary:

1. select an entity and verify if it has been successfully compiled; if not, compile it;

2. select two architectures / con:figurations and verify if they have been successfully
compiled; if not, compile them;

3. identify the circuit types of the chosen descriptions, in order to choose the most
appropriate prover;

4. translate the descriptions into the input format for the chosen prover - a pre­
processar generates the theorem to be proven;

5. relationships between the theorem and the two descriptions must be established;

6. if the proof succeeds, the theorem is marked as proved, and an equivalence rela-
tionship between the 1iescriptions is established. .

6 FUTURE WORK 26

Since it is expected that this sequence will be repeated very often, the application to
its execution of some of the above features listed for a design methodology management
mechanism would be valuable.

As already mentioned in Section 5.5, these features are very useful for non-experienced
users that follow methodologies defined by a "methodology manager". They are however
also useful for experienced users, that may define their own methodologies and try many
alternative proof strategies.

It is also clear that the execution of a task sequence must conform to a data schema,
and specially to data integrity constraints, as implemented for instance in the PREVAIL­
DM environment.

Methodology management adds another levei of integrity control to a design environ­
ment, which is related to the task sequence integrity, as presented in Section 5.3.

A prototype of a design methodology manager, also based on the Cadlab framework,
is now under design. It will implement some of the features listed above. In particular, it
will bring together design methodology management mechanisms speci:fied for the STAR
framework [12], under development at the University of Rio Grande do Sul, at Porto
Alegre, Brazil, with the data management capabilities of PREVAIL-DM.

6.2 White-box tool integration

In a general sense, white-box tool integration means that the tool code "knows" the data
base schema and directly manipulates data base objects and relationships.

This tool integration approach has two consequences. Firstly, as already mentioned
in Section 4.2, the tool can automatically verify and preserve the design data integrity,
without the need of writing' complex methods that encapsulate the tool. Secondly, this
approach is also consistent with a fine-grain schema, which models design data that are
internai to VHDL and other proof-related objects.

If a tool already exists, which makes such fine-grain integrity verification (such the
VHDL analyzer, which verifies the integrity between entities, architectures, configura­
tions, and packages), the automation of this verification in the data management system
does not add too much value to the environment, making the schema unnecessarily more
complex.

There are cases, however, when only a white-box integrated tool, with knowledge
of the schema, can add a valuable feature to the environment. This is the case of the
method HierarchicaLProof proposed in PREVAIL-DM for VHDL architectures. This
method verifies, for each component C of an architecture A, if the architecture X (of
another entity E) bound to C (either by means of a configuration declaration inside A
or o f an externai configurat.ion body attached to A) has been already proved against
the specification architecture S of E. If X has been proved against S, then the method
replaces X by S in a new configuration it creates for A. This strategy replaces an
eventually very deep hierarchy inside A by a configuration which is only one-level deep
and which binds a behavioral specification to each component of A. This replacement
may ease the proof o f another oh ject containing an instance o f A.

This method accesses internai design data information of VHDL architectures and

6 FUTURE WORK 27

configurations as well as schema information about implication proofs already performed.
It remains as a further goal of PREVAIL-DM the development of such specialized "white­
box" integrated design methods.

6.3 Version management

PREVAIL-DM offers the version management facilities that are intrinsic of the VHDL
language. Each entity may have several architectures. Architectures of a same entity may
correspond to different design alternatives, to representations (views) at different design
abstraction leveis, and to successive re:finements (revisions) of a given alternative at a
given abstraction levei. ThEre is no means of distinguishing among these three situations
in VHDL, as opposed to more powerful version management models [12, 13].

Although the support for the identification of design alternatives and views is out of
the scope of PREVAIL-DM because of VHDL, it is possible to implement a revision con­
trol for each architecture, and even for each configuration. This would have an immediate
benefit in avoiding an explosion in the number of architectures for each entity, since in
the current environment each design change must be stored in a different architecture.

PREVAIL-DM has no intrinsic versioning capabilities for other object classes, like
packages, theorems, shells, and so on. Revision control may be also implemented for
these classes, having a similar impact on the explosion of design objects.

The Cadlab framework already supports a versioning mechanism for database objects
[5). This support can be used to build a revision control for all PREVAIL-DM object
classes. This control impacts the design methods in different ways.

Always when a method fP-t.ches a design object, an object version must be selected. It
is possible to implement a default mechanism, so that the most recent version is always
selected, except when the user explicitly wants to select an old version.

Always when a method creates an object, it must be decided whéther this object
corresponds to a new version of an already existing object, to the replacement of the
most recent version of the object (if the version model allows this possibility), or to the
first version of a new object. There are two possible solutions for implementing this
choice:

• new methods are introduced for creating versions for already existing objects- in
this case, the default mechanism can correspond to the creation of a new version,
and the user must explicitly indicate when the new representation should replace
the most recent version;

• in the already available methods, if the user indicates the name of an already exist­
ing object, a new veHion is created for it (or the most recent version is replaced);
if the user indicates a new name, a new ob ject is created.

These considerations does not apply to certain objects that are not created under
explicit user control, but as an "indirect" consequence of the method execution, such as
compiled descriptions and listings, "equivalence" and "implication" objects, and son on.
In these cases, the method must be implemented with an already "embedded" solution.

6 FUTURE WORK 28

In the case of a compilatior: listing, for instance, where only an object of the class may
be attached to a VHDL description, the creation of a new object is not possible.

It must not be overseen that the version control has a great impact also on the rela­
tionships between objects. If two objects have many versions each, a relationship between
them must be established between selected versions. This feature is also supported by
the Cadlab framework. Integrity constraints must be therefore changed according to
this fact. In the above mentioned situation, for instance, only one object of the class
Compiled..List may be attached to each version of a VHDL description.

From the above discussion, it is clear that the implementation of even a very simple
revision control mechanism represents a big re-design and re-programming effort.

REFERENCES 29

References

[1] D.S. Harrison, A. Richard Newton, R.L. Spickelmier, and T.J. Barnes. Electronic
CAD frameworks. Proceedings of the IEEE, February 1990.

[2) D. Borrione, L. Pierre, and A. Salem. Formal verification of VHDL descriptions in
the prevail environment. IEEE Design & Test of Computers, June 1992.

[3) IEEE, New York. IEEE Standard VHDL Language Reference Manual, 1988.

[4) K. Gottheil et ai. The CADLAB workstation CWS - an open, generic system for
tool integration. In F.J. Rammig, editor, IFIP Workshop on Tool Integration and
Design Environments. North-Holland, 1988.

[5) CADLAB. CADLAB object management system release 2.3: IDM - user's guide.
Technical report, CADLAB, Paderborn, 1991.

[6] K. Groening et ai. From tool encapsulation to tool integration. In F.J. Rammig
and R. Waxman, editors, 2nd IFIP International Workshop on Electronic Design
A utomation Frameworks. North-Holland, 1991.

[7) CADLAB. CADLAB tool integration description language release 3.0: TIDL user's
guide. Technical report., CADLAB, Paderborn, 1990.

[8) CADLAB. CADLAB desktop release 1.0: User's guide. Technical report, CADLAB,
Paderborn, 1990. ·

[9) F.R. Wagner. PREVAIL-DM: Fun'ctional specification of the methods. Technical
report, IMAG / ARTE\1IS, Grenoble, 1992. (Internai project report, unpublished).

[10) CADLAB. CADLAB tool integration description language release 3.2.6: TIDL user's
guide. Technical report, CADLAB, Paderborn, 1990. (Preliminary).

[11) CADLAB. CADLAB access manager release 1.0: AM - user's guide. Tech:nical
report, CADLAB, Paderborn, 1990.

[12] F.R. Wagner, L.G. Golendziner, J. Lacombe, and A.H. Viegas de Lima. Design
version management in the STAR framework. In 3rd International Workshop on
Electronic Design Automation Frameworks, Bad Lippspringe, Germany, 1992. IFIP.

[13] F.R. Wagner and A.H. Viegas de Lima. Design version management in the GARDEN
framework. In 28th D-:.;;ign Automation Conference. ACM/IEEE, 1991.

