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1SELEÇÃO GENÔMICA EM BOVINOS DE CORTE 
 
Autor: Mario Luiz Piccoli 
Orientador: José Braccini 
Co-orientadores: Luís Telo da Gama (Portugal), Fernando Flores Cardoso 
(Brasil); Flávio Schramm Schenkel (Canadá). 
 
RESUMO 
Objetivou-se com este trabalho: (1) avaliar parâmetros de diversidade genética 
e de estrutura populacional com base nas raças Angus, Devon, Hereford e 
Shorthorn. Taxa de endogamia (∆F), tamanho efetivo (Ne), grau de parentesco, 
entre outros parâmetros, foram estimados para fornecer subsídios aos 
programas de melhoramento. Os parâmetros indicaram adequada diversidade 
genética, com Ne variando entre 128 no Devon e 303 no Shorthorn e ∆F 
variando entre 1,50 no Angus e 3,92 no Devon; (2) avaliar estratégias de 
imputação de genótipos utilizando dados de Braford e Hereford através de 
painéis de baixa densidade (3K, 6K, 8K, 15K e 20K) para os painéis de 50K e 
777K. Para o painel de 777K, também foram utilizados na imputação os painéis 
de 50K, 90iK e 90tK. Os resultados indicaram que, com exceção do painel de 
3K, todos os demais painéis de baixa densidade poderiam ser utilizados como 
base visando à imputação para o painel de 50K e também que os painéis de 
média densidade (50K, 90iK e 90tK), poderiam ser utilizados como base na 
imputação para o painel de 777K. Esses painéis mostraram-se eficientes e 
possuem, em geral, custos compatíveis com a atividade pecuária; (3) avaliar a 
acurácia de predição dos valores genômicos utilizando alguns painéis de baixa 
densidade (8K e 15K) imputados para o painel de 50K, relacionando os 
resultados com o uso do painel original de 50K. A acurácia do valor genômico 
direto (DGV) e do valor genético genômico (GEBV) com o valor genético (EBV) 
utilizando painéis imputados ou não, indicaram que não houveram diferenças 
em acurácia e as perdas em acurácia por utilizar os painéis imputados ficaram 
entre -0,0002 e -0,0021 dependendo do painel, do cenário e da característica 
analisada; (4) usar marcadores moleculares na seleção genômica testando 
dois métodos BLUP (procedimento de passo único ou de multi passo) com 
dados simulados de bovinos de corte. Os resultados demonstraram, com base 
nos parâmetros estudados, igualdade de resultados entre os dois 
procedimentos; (5) avaliar a viabilidade do uso da seleção genômica usando 
dados de campo de animais Braford e Hereford, testando os dois métodos 
BLUP (passo único e multi passo). Os resultados com base nos parâmetros 
estudados, mostraram que as acurácias de predição do DGV e do GEBV foram 
iguais nos dois procedimentos, porém no método multi passo as predições 
genômicas foram menos viesadas. 
 
Palavras-chave: diversidade genética, consanguinidade, imputação, SNP, 
seleção genômica, acurácia, single-step, two-steps, Braford, Hereford 

                                                           
1  Tese de doutorado em Zootecnia- Produção Animal, Faculdade de 
Agronomia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil. 
(166p.). Março, 2015. 
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2 GENOMIC SELECTION IN BEEF CATTLE 
 
Author: Mario Luiz Piccoli  
Supervisor: José Braccini  
Co-supervisors: Luís Telo da Gama (Portugal); Fernando Flores Cardoso 
(Brazil); Flávio Schramm Schenkel (Canada). 
 
ABSTRACT 
The aim of this work were: (1) to evaluate parameters of genetic diversity and 
population structure based on Angus, Devon, Hereford and Shorthorn breeds. 
Inbreeding rate (∆F), effective size (Ne), relatedness, among other parameters, 
were estimated to provide subsidies for breeding programs. The parameters 
indicated a good genetic diversity, with Ne ranging from 128 in Devon to 303 in 
Shorthorn and ∆F ranging from 1.50 in Angus to 3.92 in Devon; (2) to evaluate 
strategies of genotype imputation with Braford and Hereford beef data using low 
density panels (3K, 6K, 8K, 15K and 20K) for 50K and 777K panels. For 
imputation to the 777K panel were also used the 50K, 90iK and 90tK panels. 
The results indicated that, except for the 3K panel, all other low density panels 
could be used of imputation the 50K panel and also the medium density panels 
(50K, 90iK and 90tK), could be used of imputation the 777K panel. These 
panels have been efficient and have, in general, compatible costs of the beef 
cattle operation; (3) to evaluate the accuracy of genomic prediction using some 
low density panels (8K and 15K) imputed to the 50K panel, relating the results 
with 50K original panel. The accuracy of direct genomic value (DGV) and 
genomic estimated breeding value (GEBV) with estimated breeding value (EBV) 
using imputed or not panels, indicated that there were no differences in 
accuracy and the losses in accuracy by using the imputed panels ranged from   
-0.0002 to -0.0021 depending on the panel, the scenario and the trait; (4) to use 
molecular markers in genomic selection testing two BLUP methods (single and 
two steps) with simulated beef cattle data. The results showed, based on the 
parameters studied, equality of results between the two methods; (5) to 
evaluate the viability of using the genomic selection using Braford and Hereford 
beef cattle and testing the two BLUP methods (single and two steps). The 
results, based on the parameters studied, showed that DGV and GEBV 
accuracies were similar in both methods, but the genomic predictions were less 
biased with then two-step method. 
 
Keywords: genetic diversity, inbreeding, imputation, SNP, genomic seletion, 
accuracy, single-step, two-steps, Braford, Hereford 

                                                           
2 Doctoral thesis in Animal Science, Faculdade de Agronomia, Universidade 
Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil. (166p.). March, 2015. 
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INTRODUÇÃO 
 

Os marcadores moleculares SNP (Single Nucleotide Polymorphism) 
vem sendo utilizados no que hoje se denomina de seleção genômica. O 
princípio desta tecnologia baseia-se no fato de que estes marcadores SNP 
podem capturar o efeito de todos os genes responsáveis por características de 
importância econômica. Para isto, estes marcadores devem estar espalhados e 
igualmente espaçados por todo o genoma do animal, próximos aos QTL 
(Quantitative Trait Loci) gerando uma associação entre o marcador e o QTL. 
Esta associação entre marcador e QTL é medida através do que se denomina 
de desequilíbrio de ligação, e vai depender do número de marcadores SNP 
utilizados, do tamanho efetivo da população (Ne) e da herdabilidade da 
característica.  

O sequenciamento completo do bovino (The Bovine Genome 
Sequencing and Analysis Consortium, 2009) possibilitou a descoberta de um 
grande número de SNP (~3 milhões) e com isso o desenvolvimento de novas 
tecnologias de genotipagem com alto grau de repetibilidade, análises de alta 
performance e de baixo custo por marcador. Painéis de baixa até alta 
densidade já foram desenvolvidos e estão sendo utilizados visando à aplicação 
da seleção genômica em bovinos. Recentemente as empresas responsáveis 
pelo desenvolvimento destas tecnologias de genotipagem tem possibilitado o 
desenvolvimento de plataformas customizadas, ou seja, o desenvolvimento de 
painéis específicos de genotipagem para serem aplicados à determinada raça 
ou programa de melhoramento genético. 

Se por um lado o avanço da tecnologia de genotipagem tem 
propiciado diversos estudos visando à aplicação da seleção genômica em 
bovinos de leite e de corte, por outro lado estas novas tecnologias para o 
produtor têm esbarrado no alto custo. Uma alternativa ao alto custo dos painéis 
de média a alta densidade, que tem mostrado os melhores resultados na 
aplicação da seleção genômica, é a utilização de painéis de baixa densidade e 
por consequência de mais baixo custo e a utilização da técnica de imputação. 
Esta técnica é utilizada para aumentar o número de marcadores uma vez que a 
densidade destes marcadores afeta a acurácia da seleção genômica. 

A metodologia de modelos mistos baseada principalmente no 
modelo animal é utilizada no mundo todo para obter-se a melhor predição não 
viesada (BLUP) dos valores genéticos dos animais nos diferentes caracteres 
de produção utilizados na seleção. Os primeiros resultados de pesquisa 
apresentados em seleção genômica tem utilizado um procedimento 
desenvolvido em mais de uma etapa para a obtenção dos valores genéticos 
dos animais. Neste processo, os valores genéticos (EBV) são obtidas através 
de análises convencionais utilizando modelos mistos (com base no fenótipo e 
no pedigree) enquanto que os valores genômicos diretos (DGV) são obtidos 
com base em equações de predição geradas a partir da informação dos 
marcadores em análise de associação com os fenótipos, e após, ambas são 
combinadas por meio de diferentes índices gerando os valores genéticos 
genômicos (GEBV). Mais recentemente os pesquisadores tem estudado o 
procedimento em um único passo onde as informações dos SNP são 
combinadas com o fenótipo e o pedigree para a estimação simultânea dos 
valores genéticos. Vantagens e desvantagens têm sido apontadas para ambos 
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os procedimentos. 
Em bovinos de leite os estudos em seleção genômica tem mostrado 

um ganho em confiabilidade (acurácia elevada ao quadrado) ao redor de 100% 
para os animais jovens quando a DGV foi estimada com base em 
aproximadamente 50.000 marcadores, e uma resposta a seleção duas vezes 
maior, principalmente pela diminuição do intervalo entre gerações (Schaeffer, 
2006). Com isso os custos para identificar touros superiores podem ser 
reduzidos em até 92%. Com base nestes resultados vários países já adotam a 
seleção genômica em seus programas de melhoramento de bovinos de leite. 

Pesquisas conduzidas com bovinos de corte têm mostrado 
resultados inferiores aos dos bovinos de leite. A estrutura genética em bovinos 
de corte envolve um número maior de raças que resulta em diferenças 
importantes em parâmetros como tamanho efetivo da população e extensão do 
desequilíbrio de ligação, além do custo da genotipagem para o produtor. 

Este trabalho tem por objetivos: a) estimar parâmetros de 
diversidade genética e estrutura populacional das raças Angus, Devon, 
Hereford e Shorthorn; b) a acurácia de imputação de genótipos e também a 
utilização dos genótipos imputados na seleção genômica com dados de 
animais Braford, Hereford e Nelore; c) comparar as metodologias de passo 
único e multi passo na avaliação genômica em populações simuladas e de 
bovinos Braford e Hereford. 
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REVISÃO BIBLIOGRÁFICA 

 
Diversidade genética  
Diversidade genética é definida como sendo a variabilidade genética 

existente entre indivíduos de uma raça ou entre populações de uma espécie 
(Brown, 1983), influenciada por fatores tais como a mutação, a recombinação, 
a seleção e a deriva genética (Falconer & MacKay, 1996). 

Análise com base na informação de pedigree pode ser usada para 
monitorar a evolução da diversidade de uma determinada raça e de como se 
comporta a estrutura genética desta população no decorrer do tempo (Falconer 
& MacKay, 1996). MacCluer et al. (1986), Lacy (1989) e Boichard et al. (1997) 
tem proposto diferentes métodos para análise de variabilidade genética em 
raças bovinas. Entre os métodos mais utilizados está o de estimação de 
medidas de distância genética (Nei, 1973) e a estatística F de Wright (1931). 

Estudos de diversidade genética com bovinos, em processo de 
seleção, (Cleveland et al., 2005; Mc Parland et al., 2007; Márquez et al., 2010, 
Santana et al., 2012 e Piccoli et al., 2014a) são extremamente importantes e 
tem por objetivo obter parâmetros para o direcionamento ou redirecionamento 
da seleção dos caracteres de interesse econômico e também para o controle 
da perda de diversidade genética.  

A metodologia de modelos mistos baseada principalmente no 
modelo animal é utilizada no mundo todo para predição dos valores genéticos 
dos animais dos diferentes caracteres de produção utilizados na seleção. Esta 
metodologia apresenta propriedades estatísticas BLUP (Henderson, 1975) 
gerando resultados satisfatórios de ganhos genéticos a curto e médio prazo. 
Entretanto, conduz a um aumento da taxa de endogamia e a perdas de 
variabilidade genética, por utilizar todas as relações de parentesco existentes 
na população e com isso os animais mais aparentados têm maior probabilidade 
de serem selecionados. 

A endogamia, que significa o acasalamento de indivíduos que são 
relacionados por ascendência (Falconer & MacKay, 1996), se não controlada, 
faz com que os programas de melhoramento genético possam não apresentar 
ganho genético ou mesmo ganho pouco expressivo. Portanto, a endogamia é 
um importante parâmetro que deve ser constantemente monitorado e 
controlado em programa de melhoramento genético (Sørensen et al., 2005). 

O coeficiente de endogamia (F), que é a probabilidade de dois genes 
em qualquer loco serem idênticos por ascendência, é a ferramenta utilizada 
para monitorar a endogamia. O coeficiente de endogamia foi apresentado por 
(Wright, 1922) e o cálculo é baseado no número de gerações até o 
antepassado comum. Valores de no máximo 1% por geração tem sido a 
recomendação da FAO (1998) para não haver perdas de diversidade genética. 

Em populações com pedigree incompleto o cálculo do coeficiente de 
endogamia pelo método de Wright (1922) é subestimado e o cálculo do 
tamanho efetivo da população (Falconer & MacKay, 1996) é superestimado 
(Boichard et al., 1997). Com o objetivo de ajustar estes cálculos, VanRaden, 
(1992) apresentou um algoritmo onde a endogamia dos animais cujos pais são 
desconhecidos é igual à média de seus contemporâneos que têm os pais 
conhecidos. Estudo recente em bovinos de corte (Brito et al. 2013) 
compararam os dois métodos de cálculo do coeficiente de endogamia 
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utilizando informação de pedigree com mais de 50% dos acasalamentos sendo 
realizados com reprodutores múltiplos (neste caso específico o pai não é 
conhecido) e mostraram que a endogamia calculada da forma regular 
apresentou o valor F=0,25 sendo fortemente subestimada em relação ao 
método proposto por VanRaden, (1992) cujo valor foi de F=1,73. Em outra 
situação, Piccoli et al. (2014a) utilizando o pedigree de raças de origem 
Britânica, com 5% a 10% dos registros com falta de informação de um ou 
ambos pais, mostraram que o cálculo regular do coeficiente de endogamia foi 
pouco afetado (menos de 2%). 

O tamanho efetivo de uma população pode ser entendido como o 
número de indivíduos que se reproduzem e conseguem deixar descendentes, 
transmitindo assim seus genes nas gerações recentes mantendo a diversidade 
genética. Este conceito foi introduzido por Wright (1931, 1938) como sendo o 
tamanho de uma população idealizada (infinitamente grande, sem ação da 
mutação, migração e seleção) que daria origem à mudança na frequência 
gênica ou na taxa de endogamia observada na população real. 

Populações com tamanho efetivo pequeno perdem diversidade 
genética em consequência da deriva genética, onde os alelos presentes numa 
geração podem, aleatoriamente, se tornar mais ou menos frequentes, ou até 
mesmo extinguir-se em gerações subsequentes, sendo esta a causa principal 
de perda de variação genética à longo prazo, ameaçando assim a 
adaptabilidade das populações (Falconer & MacKay, 1996). 

Um tamanho efetivo da população mínimo de 50 animais tem sido 
recomendado como um limite adequado para manter a diversidade genética 
em programas de conservação (Meuwissen & Woolliams, 1994; FAO, 2013) e 
em programas de seleção (Goddard e Smith, 1990), porém limites mais 
elevados têm sido recomendados, em alguns casos em raças bovinas, onde a 
inseminação artificial é comum (Leroy et al., 2013).  

 
Desequilíbrio e consistência de fase de ligação 
Desequilibrio de ligação ocorre quando dois genes estão 

suficientemente próximos no genoma que a recombinação durante a meiose 
entre eles é rara, e os segmentos do cromossomo são conservados de uma 
geração para a outra. O desequilíbrio de ligação descreve uma associação não 
aleatória de dois loci no mesmo cromossomo (Ardlie et al., 2002) e também é 
uma medida estatística da associação entre alelos de diferentes locos. 

O desequilíbrio de ligação resulta do processo de seleção, migração, 
mutação e deriva genética, ou ainda, pode ser gerado por meio de 
cruzamentos entre linhagens ou raças diferentes (Lander & Schork, 1994; Zhao 
et al., 2005). Tanto a mutação quanto a seleção têm pequeno efeito no 
desequilíbrio de ligação. A mutação por ser um evento de frequência muito 
baixa e geralmente ter ocorrido muitas gerações atrás e a seleção por tem o 
seu efeito localizado ao redor de genes específicos e, portanto, tendo um efeito 
relativamente pequeno sobre a quantidade de desequilíbrio de ligação médio 
ao longo do genoma. Entretanto, a taxa de recombinação que ocorre entre os 
alelos de uma geração para outra é o principal fator de diminuição dos valores 
de desequilíbrio de ligação.  

A extensão do desequilíbrio de ligação é uma função do tamanho 
efetivo da população. Em animais domésticos onde o tamanho efetivo pode ser 
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inferior a 100 animais (Riquet et al., 1999), níveis consideráveis de desequilibio 
de ligação podem se estender até mais do 5-10 cM (Hayes et al., 2003; 
Sargolzaei et al., 2008; De Roos et al., 2008). Desequilíbrio de ligação em gado 
de leite é, em geral, mais alto do que em gado de corte devido, principalmente, 
ao menor tamanho efetivo de população nas raças leiteiras (Goddard et al., 
2006).  

As principais formas de quantificar o desequilíbrio de ligação são 
através do cálculo do D e do r2 (Hill & Robertson, 1968). O cálculo do D é 
definido como sendo: D=f(A1B1)*f(A2B2)-f(A1B2)*f(A2B1), onde f(A1B1) é a 
frequência dos haplótipos A1B1 na população, assim como os demais 
haplótipos. Esta medida de desequilíbrio de ligação é muito dependente da 
frequência dos alelos individuais. O cálculo do r2 é definido como sendo 
r2=D2/f(A1)*f(A2)*f(B1)*f(B2), onde f(A1) é a frequência do alelo A1 na população, 
assim como os demais alelos. Esta medida representa a correlação entre dois 
loci e foi demonstrado ser mais adequada por ser menos sensível à frequência 
alélica e ao tamanho da amostra. (Zhao et al., 2007; Bohmanova et al., 2010).  

A fase do desequilíbrio de ligação ou fase gamética é avaliada entre 
dois cromossomos homólogos. Se há consistência de fase entre os alelos, a 
fase é de acoplamento (sinal +) e se não há consistência de fase entre os 
alelos, a fase é de repulsão (sinal -). Sendo a fase do desequilíbrio de ligação 
consistente ao longo do genoma entre duas ou mais raças ou entre duas ou 
mais sub-populações da mesma raça, significa que existe a probabilidade de 
um marcador (ou QTL) ser comum em ambas populações estudadas e a 
seleção genômica poderia ser aplicada utilizando-se as informações conjuntas 
dos marcadores de ambas as raças (Lu et al., 2012). Calcula-se a fase do 

desequilíbrio de ligação como sendo 2r D sinal  e usa-se a correlação de 
Pearson para confrontar a fase entre os marcadores presentes em ambas 
populações. Esta correlação vai representar o parentesco genético entre as 
populações (De Roos et al., 2008). 
 

Imputação de genótipos 
A imputação de genótipos consiste na predição de marcadores SNP 

não genotipados a partir de uma população onde todos os marcadores SNP 
foram genotipados. Com o uso desta técnica é possível genotipar animais com 
painéis de baixa densidade e predizer os genótipos do painel de alta densidade 
(Druet et al., 2010; Zhang & Druet, 2010). 

A imputação pode ser realizada com base na informação da 
população (Browning & Browning, 2007, 2009), com base na informação do 
pedigree (Hickey et al., 2011; Sargolzaei et al., 2014) ou mesmo uma 
combinação de ambas ( VanRaden et al., 2011; Sargolzaei et al., 2014). A 
imputação com base no pedigree utiliza as regras de ligação e segregação 
mendeliana para predizer os genótipos, sendo mais acurada para os indivíduos 
que possuem parentes genotipados, enquanto que a imputação com base na 
população utiliza o desequilíbrio de ligação entre os marcadores SNP 
observados na população utilizada como referência.  

O método de imputação baseado na população assume que os 
indivíduos não apresentam relacionamento apesar de ser possível identificar 
relação de parentesco por haplótipos compartilhados (Browning & Browning, 
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2009). Neste método, pequenos segmentos do cromossomo carregam alelos 
ou haplótipos idênticos por descendência e, portanto, estas regiões estão 
conservadas, significando que dois indivíduos aparentados irão compartilhar os 
mesmos alelos. Quanto mais próximo o parentesco, os indivíduos irão 
compartilhar segmentos cromossômicos mais longos pois não haverá quebra 
por recombinação dos haplótipos idênticos por descendência (IBD). Por outro 
lado, quanto mais distante o parentesco, os haplótipos dos indivíduos serão 
mais curtos pois ao longo das gerações os segmentos IBD são perdidos, 
principalmente por recombinação. O método que combina a informação da 
população com a informação do pedigree é o método que vem sendo mais 
utilizado em animais domésticos, justamente por se ter disponível a informação 
do pedigree. Neste método, (Kong et al., 2008; Hickey et al., 2011; Sargolzaei 
et al., 2014) os segmentos IBD longos são identificados considerando o grau 
de parentesco entre os animais. A informação do pedigree representa 
importante fator para identificação da fase dos haplótipos e imputação (Kong et 
al., 2008). Os genótipos não observados de um indivíduo podem ser inferidos 
comparando haplótipos IBD herdados com haplótipos presentes em outro 
indivíduo proveniente da mesma família (Li et al. 2009).  

Vários softwares, tais como, BEAGLE, FastPHASE, MACH, 
IMPUTE2, FImpute, AlphaImpute e findhap têm sido desenvolvidos para 
imputar com maior eficiência e precisão.  

A imputação é dependente do tamanho e da distância genética da 
população de referência, da densidade dos marcadores e da frequência alélica 
(Zhang & Druet, 2010; Druet et al., 2010). A imputação, também, vai depender 
de qual método for utilizado (Zhang & Druet, 2010; Sargolzaei et al., 2014). 

A eficiência da técnica é medida pela taxa de concordância e pelo 
quadrado da correlação alélica (R2 alélico). A taxa de concordância 
corresponde a proporção de genótipos imputados corretamente enquanto o R2 
alélico é determinado pela quadrado da correlação entre a contagem de alelos 
(alelo de efeito menor) imputados e a contagem de alelos do genótipo original 
(Browning & Browning, 2009) e é uma medida que não depende da frequência 
alélica do marcador. 

O objetivo em utilizar está técnica remete ao fato de que a 
densidade de marcadores no painel afeta a precisão da seleção genômica 
(Hayes et al., 2009; Brito et al., 2011). Em grandes populações a genotipagem 
tem um impacto muito forte no custo, principalmente com painéis de alta 
densidade. A alternativa é genotipar com painéis de mais baixa densidade e 
por consequência de menor custo, porém utilizando a imputação para inferir os 
genótipos para um painel mais denso, usufruindo assim de todo o potencial da 
seleção genômica e este menor custo da genotipagem podendo ser suportada 
pelos criadores (Sargolzaei et al., 2010; Dassonneville et al., 2012; Piccoli et 
al., 2014b).  

A evolução da tecnologia de genotipagem resultou em muitos 
animais de diferentes raças sendo genotipados com uma variedade de painéis 
com diferentes densidades de marcadores SNP. Para a eficácia da seleção 
genômica todos os animais devem ter genótipos de densidade equivalente, 
portanto, a imputação também elimina a necessidade de refazer a genotipagem 
de animais importantes no processo da seleção genômica quando estes 
tenham sido genotipados com painéis diferentes da maioria dos demais 
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animais.  
Os softwares que usam em seu processo de imputação a 

informação do pedigree têm possibilitado inferir genótipos de animais não 
genotipados com alta acurácia quando estes animais possuem ascendentes ou 
descendentes genotipados. Este procedimento tem sido utilizado 
principalmente para se obter os genótipos de animais que não se dispõem de 
material biológico, tais como alguns importantes touros, e também para se 
obter os genótipos de vacas até então não genotipadas com intuito de agregar 
informação porém não gerando custo. 

 
Seleção genômica 
Com o desenvolvimento dos marcadores moleculares criou-se uma 

expectativa de que as informações destes marcadores em associação com 
características de interesse econômico pudessem ser utilizadas na seleção de 
animais com a perspectiva de um aumento nos ganhos por seleção. Com isso 
vários estudos foram realizados (Casas et al., 2000; Schenkel et al., 2006) 
buscando a associação dos marcadores com os QTL. Muitos QTL foram 
detectados e mapeados, porém não foram aplicados de forma prática em 
programas de melhoramento genético (Bernardo, 2008), principalmente porque 
a resposta aos efeitos destes marcadores somente se verificava dentro de 
cada família avaliada e ao fato de serem feitas apenas a detecção de um 
pequeno número de QTL de grande efeito, os quais, devido à natureza 
poligênica das características de interesse econômico, não explicavam 
suficientemente toda a variação genética (Dekkers, 2004).  

As bases da seleção genômica apresentada por Meuwissen et al. 
(2001) teve como princípio, o uso de painéis densos de marcadores 
distribuídos ao longo de todo o genoma para estimar o valor genético dos 
animais baseado no desequilíbrio de ligação entre marcadores e genes. Na 
seleção genômica não se necessita conhecer quais marcadores estão 
próximos a QTL pois todos os marcadores e QTL são considerados nas 
análises. Também não são necessários testes para genes específicos pois o 
objetivo é o melhoramento genético para características quantitativas, ou seja, 
características controladas por muitos pares de genes. 

Na seleção genômica os efeitos dos marcadores são estimados em 
uma população de animais (população de treinamento) que possuem 
informação de genotipagem e que também tenham fenótipos coletados. Os 
efeitos estimados dos marcadores serão utilizados na predição genômica de 
outros animais (população de predição) que pertençam à mesma população tal 
que o desequilíbrio de ligação entre marcadores e QTL persista da 
subpopulação de treinamento para a subpopulação de predição. A soma dos 
efeitos estimados de todos os marcadores vai compor o que se denomina de 
valor genômico direto (DGV).  

O uso da informação dos marcadores moleculares poderá levar a 
maiores ganhos genéticos em períodos mais curtos de tempo. Alguns 
resultados de uso da seleção genômica demonstraram maiores ganhos 
genéticos em programas de melhoramento através da incorporação das 
predições genômicas ao mérito genético do animal em comparação com as 
avaliações genéticas tradicionais (Schenkel et al., 2009; Hayes et al., 2009). 
Estes ganhos estariam associados com menor intervalo entre gerações, com o 
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aumento na intensidade e acurácia da seleção (Meuwissen et al., 2001; Aguilar 
et al., 2010). Economicamente, o uso dos marcadores moleculares, resultando 
em predições genética mais acuradas e mais cedo na vida dos animais 
permitiriam uma economia substancial na condução de testes de progênie 
(Schaeffer, 2006; Hayes et al., 2009). 

A acurácia da predição do DGV estaria ligada: 1) ao nível de 
desequilíbrio de ligação entre os marcadores e os QTL; 2) ao número de 
animais na população de treinamento com fenótipo e genótipo que serão 
utilizados para estimação dos efeitos dos marcadores; 3) a herdabilidade da 
característica ou a acurácia da DEP, se esta for utilizado como resposta na 
equação de predição dos efeitos dos marcadores e 4) a distribuição dos efeitos 
dos QTL (Hayes et al., 2009).  

Na seleção genômica se tem o interesse na utilização dos 
marcadores estimados em uma determinada população serem utilizados na 
predição genômica de animais não relacionados a esta população, seja por 
questões econômicas ou por questões técnicas. Neste caso, é esperado que a 
acurácia das predições genômicas podem ser menores, tanto quanto forem 
geneticamente mais distantes as populações ou por apresentarem diferente 
fase de ligação. Neste aspecto, a tendência é de que as populações utilizadas 
para estimação dos efeitos dos SNP sejam formadas de animais de diferentes 
populações e raças. Alguns estudos foram realizados com animais de 
diferentes raças em gado de leite (Hayes et al., 2009a; Erbe et al., 2012), em 
gado de corte (Weber et al., 2012; Kachman et al., 2013) e em ovinos e 
caprinos leiteiros (Moghaddar et al., 2014; Carillier et al., 2013). Os valores das 
acurácias encontradas pelos diversos autores quando na análise estavam 
envolvidas mais de uma população ou raça, em geral, foram inferiores na 
comparação dentro da mesma população ou raça.  

Em casos em que a população de predição não têm parentesco com 
os animais da população de estimação dos efeitos dos marcadores, mesmo 
sendo da mesma raça, as predições dos valores genéticos genômicos 
requerem uma maior densidade de marcadores e maior tamanho da população 
treinamento (Meuwissen, 2009). A densidade dos marcadores, igualmente 
distribuídos pelo genoma, irá aumentar a probabilidade de que cada QTL esteja 
em alto desequilíbrio de ligação com pelo menos um marcador (Calus et al., 
2008; Goddard, 2009). O tamanho da população de treinamento está 
diretamente relacionado com a herdabilidade da característica. Herdabilidades 
menores requerem maior tamanho da população para estimação dos efeitos 
dos marcadores e vice-versa. Hayes et al. (2009b) citam que para se obter uma 
acurácia de 0.50 e 0.70 para uma característica de herdabilidade de 0.20 é 
necessário aproximadamente 5.000 e 18.000 animais com genótipos e 
fenótipos na população de treinamento, respectivamente, e para uma 
herdabilidade de 0.50 os números seriam de 2.000 e 5.000 animais, 
respectivamente. 
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HIPÓTESES E OBJETIVOS 
 

Hipóteses 
a) a seleção aplicada em programas de melhoramento genético 

animal afeta os parâmetros de diversidade genética e de estrutura 
populacional das populações de bovinos de corte; 

b) a imputação de genótipos para os painéis de 50K e 777K a partir 
de painéis de baixa e média densidade permite a predição de SNP não 
genotipados de forma acurada, possibilitando seu uso na seleção genômica;  

c) o uso de genótipos imputados na seleção genômica produzem 
acurácias semelhantes na compração com o uso de genótipos não imputados;  

d) as metodologias de passo único e multi passo produzem 
acurácias semelhantes nas predições genômicas. 

  
Objetivos 
a) estimar parâmetros de diversidade genética e estrutura 

populacional dos rebanhos Angus, Devon, Hereford e Shorthorn registrados na 
Associação Nacional de Criadores – Head Book Collares; 

b) estimar a acurácia da imputação de genótipos utilizando dados 
de animais Braford e Hereford da Conexão Delta G, através de painéis de 
baixa densidade, (3K, 6K, 8K, 15K e 20K) para o painel de 50K e dos painéis 
de baixa e média densidade (3K, 6K, 8K, 15K, 20K, 50K, 90iK e 90tK) para o 
painel de 777K; 

c) estimar a acurácia da seleção genômica com base nos painéis 
imputados para 50K e 777K comparando os resultados com os painéis 
originais de 50K e 777K; 

d) comparar as metodologias de um passo único e multi passos na 
avaliação genômica em populações simuladas e de bovinos Braford e 
Hereford. 
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Abstract 

Pedigree information available for Angus (ANG), Devon (DEV), Hereford (HER) and 

Shorthorn (SHO) cattle in Brazil was analyzed to appraise the genetic diversity and 

population structure of these breeds. Pedigree records collected from the beginning of 

the 20th century until 2010 were used in the analyses. Over time, the number of 

herdbook registrations declined in HER after a peak in the 1970’s, remained low in 

DEV and SHO and increased steadily in ANG since the 1990s, such that it the latter is 

now the leading British cattle breed in Brazil. The average number of offspring 

registered per sire ranged from about 12 (SHO) to 20 (DEV) and the mean generation 

interval ranged from about 6.0 (HER and SHO) to 6.4 (ANG) years. In the reference 

population (calves born in 2009 and 2010, plus those born in 2008 for SHO) the mean 

equivalent number of generations known ranged from about 7 (SHO) to 9 (HER). In the 

four breeds studied, nearly all animals born over the last few years are inbred, even 

though the mean level of inbreeding in the reference population is below 4% in all 

breeds. The rate of inbreeding per generation, computed from the individual increase in 

inbreeding, ranged from about 0.2% (ANG) to 0.5% (DEV), with a corresponding 

effective population size of 245 and 92, respectively, which is above the recommended 

minimum critical threshold. The number of founders/ancestors contributing with 50% of 

the reference population gene pool was 211/26 for ANG, 41/14 for DEV, 164/25 for 

HER and 79/10 for SHO, with effective number of founders/ancestors/founder genomes 

of 470/68/36, 89/33/16, 289/59/30 and 200/28/18 for ANG, DEV, HER and SHO, 

respectively. The genetic contribution of different countries to the gene pool of each 

breed indicated that, throughout the period studied, DEV genes originated 

predominantly from the UK, while for the other breeds there was a changing pattern 

over time. Until the 1970’s Argentina was the major supplier of ANG, while HER and 

SHO genes were mostly from Uruguay, but since then the USA took the leading role as 

supplier of ANG, HER and SHO genes to Brazil. Our results reveal a mild increase in 

inbreeding in all breeds studied, with effective population size estimates indicating that 

reasonable levels of genetic diversity have been maintained in all 4 breeds. Continuous 

monitoring of inbreeding trends and of parameters derived from probability of gene 

origin should be ensured, to warrant the long term maintenance of genetic diversity. 

 

Keywords: Cattle, Genetic diversity, Inbreeding, Pedigree analysis, Population 

structure. 

 

Introduction 

Brazil is one the leading beef producing countries in the world (Anualpec, 2011), and it 

is estimated that currently over 80% of its cattle are of the Zebu type (Mariante et al., 

2003). Nevertheless, British breeds of cattle have been used in crossbreeding programs 

in Brazil since the beginning of the 20th century. Their popularity has changed over the 

years, with an early interest in Shorthorn, followed by an increased importance of 

Hereford, and in recent years the Angus has become more prominent. Given the 

extreme diversity of environmental constraints in different regions in Brazil (Hermuche 

et al., 2013), purebred British cattle are only able to cope with the milder climate found 

in Southern Brazil, but British bulls, in particular Angus and Hereford, are extensively 

used in crossbreeding programs throughout the country, either by artificial insemination 

or in natural matings with Zebu-type females. 

Purebred cattle of the Angus, Devon, Hereford and Shorthorn breeds registered in Brazil 

trace their origins back to imported animals, and pedigree records have been kept for 
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these breeds in Brazil since the late 19th century. Over the years, Brazil continued to 

import animals from these breeds, in an attempt to prevent the undesirable 

consequences of inbreeding and to capture some of the genetic progress made abroad. 

The analyses of pedigree information for a breed can be used to monitor the evolution 

of its genetic diversity and population structure over time (Falconer and MacKay, 

1996), and parameters based on the probability of genetic origin from different founders 

(James, 1972; Lacy, 1989), and ancestors (Boichard et al., 1997) provide additional 

information, which can be used to examine population changes over a short period of 

time. 

In our study, we analyzed all pedigree information available for the Angus, Devon, 

Hereford and Shorthorn breeds in Brazil, to assess how genetic diversity has evolved in 

each breed and identify the major factors contributing to its change over time. 

 

2. Materials and Methods 

 

Animal Welfare 

Animal welfare and use committee approval was not necessary for this study because 

data were obtained from preexisting databases. 

 

Data 

Pedigree information was obtained for purebred animals of the Angus (ANG), Devon 

(DEV), Hereford (HER) and Shorthorn (SHO) breeds with records tracing back to 

founder animals imported to Brazil, which were considered to be of “Pure Origin” (PO). 

Data were provided by the National Breeder’s Association (Associação Nacional de 

Criadores - Herd Book Collares) which is responsible for keeping pedigree records for 

PO animals of European descent in Brazil. 

For imported animals, the information on sire and dam plus any known ancestors up to 

the third generation were entered in the data base, and pedigrees registered from then 

on, making the information for Brazilian-born calves progressively more complete. The 

first years of recorded information were 1901, 1909, 1905 and 1897 for the ANG, DEV, 

HER and SHO, respectively, and records collected up to 2010 were considered in all 

breeds. For each animal the information available included the sire, dam, sex, date of 

birth, herd and country of origin. Records were edited and validated regarding the 

consistency of information on pedigree, sex, date of birth and repeated records.  

 

Pedigree analysis 

The degree of pedigree completeness was assessed by calculating an equivalent number 

of complete generations known per animal (ni), as in Carolino and Gama (2008). 

Briefly, ni was obtained as 1
 2




 ds
i

nn
n , where ns and nd correspond to the number of 

generations known for the sire and dam, and assume a value of -1 if the corresponding 

parent is unknown. For founder animals, a value of 0 was attributed to ni. 

Generation intervals were calculated for the 4 selection paths, i.e., sires of sires, sires of 

dams, dams of sires, and dams of dams, and these were then averaged in a pooled 

generation interval. 

The mean additive genetic relationship between pairs of animals and the individual 

coefficient of inbreeding (Fi) were obtained from the numerator relationship matrix 

(Van Vleck, 1993). An inbreeding level of zero was assigned to individuals with one or 

both parents unknown. Based on the individual Fi, the rate of inbreeding per year was 
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estimated by the regression coefficient of Fi on year of birth, obtained with the GLM 

procedure of SAS v.9.3. (SAS Inst. Inc., Cary, NC). 

An estimate of the rate of inbreeding per generation was obtained in the reference 

population from the change in average inbreeding in the period between 2002 and 2009, 

as this corresponds to approximately 1 generation interval. In this case, the approximate 

rate of inbreeding per generation (Fg) was calculated as: 

2002

20022009

1 F

FF
Fg




  

where 2009F  and 2002F  are the mean coefficients of inbreeding for animals born in 2009 

and 2002, respectively. 

Another estimate of the rate of inbreeding per generation was obtained from the 

individual rate of inbreeding (δFi), which was computed as in Gutiérrez et al. (2009): 
111   in

ii FF   

where Fi is the coefficient of inbreeding of an individual and ni is its equivalent number 

of complete generations known. The Fi for animals in the reference population were 

averaged by breed to obtain a mean rate of inbreeding per generation (Fi).  

The two estimates of the rate of inbreeding per generation were used to estimate the 

effective population size (Ne), which was computed as in Falconer and Mackay (1996): 

 
F

Ne



 2

1
 

where F corresponds to either Fg or Fi. 

For the calculation of genetic contributions from founders, ancestors and countries, a 

reference population intended to represent the current gene pool of a breed is often 

assumed. This reference population usually covers a short period of time, to avoid the 

possibility of including both parents and their offspring, as this could bias the results 

(Boichard, 1997). In our analyses, the reference population corresponded to the group of 

calves born in the years 2009 and 2010 for the ANG, DEV and HER breeds. For the 

SHO breed, given the small number of animals registered in the last few years (162 

calves born in 2009 and 2010), the reference population was expanded to also include 

calves born in 2008, but still no parent-offspring pairs were represented. The genetic 

contributions to the reference population of founder animals and ancestors were 

computed, as described by James (1972) and Boichard et al. (1997). From these 

contributions, the effective number of founders (fe) and ancestors (fa) was calculated 

(Boichard et al., 1997), and the effective number of founder genomes (fg) was obtained 

as described by MacCluer et al. (1986) and Lacy (1989). For the purpose of these 

calculations, founders were considered both the individuals in the pedigree with no 

parents known, and the unknown parents of an animal with only one parent known 

(“phantom founders”; Gutiérrez and Goyache, 2005). In these analyses, fe and fa 

corresponded to the number of founders and ancestors that would be expected to 

generate the same level of genetic diversity in the reference population, if they all had 

the same contribution (Boichard et al., 1997). The fg, on the other hand, accounts for the 

effects of unequal founder contributions, bottlenecks and genetic drift, and thus 

corresponds to the number of equally contributing founders that would result in the 

same genetic diversity in the reference population, taking into account the random loss 

of founder alleles (Lacy, 1989). The ratios fe/fa and fe/fg were calculated for each breed, 

a higher value indicating a stronger bottleneck in the pedigrees. 
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In addition to the computation of probabilities of gene origin in the reference population 

as defined above, the effective numbers of founders and ancestors were calculated in a 

series of reference populations defined as groups of calves born in subsequent 10 years 

intervals, to assess how genetic diversity has evolved in British cattle breeds after they 

were introduced in Brazil at the beginning of the 20th century. 

In demographic analyses, the genetic contributions of founder herds are often computed 

(Gutiérrez and Goyache, 2005; Carolino and Gama, 2008). In our case, more than the 

specific contributions of individual herds, the interest was to assess the genetic 

contribution that individuals from different countries have provided to the genetic pool 

of the breeds analyzed. Therefore, the country of origin of imported animals was 

considered in a manner similar to that usually used for founder herds. In these analyses, 

each founder was associated with its corresponding country of origin, and the genetic 

contribution of a given “founder country” was obtained by summing the genetic 

contributions to the reference population of the founders originating from that country. 

To assess how genetic contributions of different countries to the genetic pool of each 

breed have changed over time, reference populations were defined in intervals of 10 

years, as outlined above for the contributions of founders and ancestors. 

All demographic and statistical analyses were carried out within-breed, using the 

ENDOG V.4.8 software (Gutiérrez and Goyache, 2005). This software computes 

individual inbreeding coefficients based on the algorithm proposed by Meuwissen and 

Luo (1992), assigning a null coefficient of inbreeding to animals that do not have both 

parents known. In our data set the HER herdbook had missing pedigree information in a 

period of 3 years and some imported animals had limited pedigree information 

registered. In these conditions, the assumption of a null inbreeding coefficient for 

animals with unknown parents could underestimate the coefficient of inbreeding, 

especially for animals born in more recent years. Van Raden (1992) proposed an 

alternative algorithm to compute inbreeding that incorporates genetic groups for animals 

with missing parents, assigning them the mean inbreeding coefficient of the 

corresponding generation. To investigate the influence that incomplete pedigrees in our 

data set may have had on the computation of inbreeding, the PEDIG software 

(Boichard, 2002) was used to compute inbreeding with the Van Raden algorithm, 

forming groups according to year of birth of calves with unknown parents. 

 

Results 

Pedigree records used in the analyses included information on 175,179, 61,295, 245,942 

and 37,751 calves registered for ANG, DEV, HER and SHO, respectively (Table 1). 

Even though the largest number of registered calves in the whole period studied was 

found in HER breed, the evolution of the various herdbook registrations differed 

considerably over time for the 4 breeds analyzed (Figure 1). In the last few years, a 

noteworthy increment of registered calves has been observed in ANG, followed by 

DEV and HER with similar numbers, while SHO has progressively reduced its census 

to an extremely small number of registered new-born calves.  

The HER was the predominant British breed in Brazil up until the 1980s, but a steady 

decline was observed in herdbook registrations after the mid-1960s, when registrations 

reached a peak of about 6,500 calves per year (Figure 1), while in 2009 the breed 

accounted for about 2,000 calves recorded. A sharp drop in HER registrations was 

observed in years 1971-1974, corresponding to a partial loss of herdbook records. When 

the herdbook returned to its normal activity, a steady decline in registrations was 

observed, confirming the continuous drop in the census of HER in Brazil. The ANG 
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breed showed an opposite trend, with a sharp increase in registrations in the 1990s, 

reaching more than 7,000 calves registered in 2008. As a consequence, ANG is 

currently the largest British cattle breed in Brazil. Concerning the SHO, the number of 

annually registered calves never exceeded 1,000, but the census increased up to 1960, 

and declined thereafter reaching about 100 calves registered in 2009. The DEV has 

shown a steady but moderate increase in number of registrations since the early 1960s, 

with about 1,500 calves registered per year after 2000.  

Overall, the number of sires registered in Brazil in the period studied averaged about 

11,000 in ANG and HER, and nearly 3,000 in DEV and SHO (Table 1). The average 

number of offspring per sire ranged from 12 to 20, depending on the breed considered, 

with the lowest values in SHO and the highest in DEV (Table 1). The variability in 

number of offspring/sire was great, especially in ANG. In all breeds, the majority of the 

bulls sire less than 50 calves, especially in SHO. On the other hand, nearly 25% of the 

ANG bulls had more than 300 offspring registered, while the percentage of bulls in this 

category was about 7.5% for DEV and 9.5% for HER, but only 1.5% for the SHO 

(results not shown). The average number of offspring per dam ranged from about 2.3 

calves in SHO to 3.1 in DEV (Table 1).  

Pedigree completeness for the breeds analyzed was assessed by evaluating the 

proportion of ancestors known in different generations (results not shown). In the whole 

population, the DEV had the most complete pedigree information (84% of the calves 

had great-grandparents known), followed by ANG (73%) but pedigree information was 

less complete for HER (40%) and SHO (32%). More complete pedigrees were seen 

when only the reference population was considered, such that nearly all calves had 

parents known in all four breeds, and at least 97% of the calves had registered 

grandparents (results not shown). 

When the percentage of known ancestors per generation is considered for animals in the 

reference population the lowest values of pedigree depth were observed in SHO, which 

looking back 10 generations reported only 11% of known ancestors in the reference 

population (results not shown). At the same number of generations back, the other 

breeds reported nearly 40% of the ancestors known. The mean number of complete 

generation equivalents known per breed was lowest for SHO and HER, with a mean of 

about 2.7 and 3.3, respectively, but was similar for the other two breeds, where animals 

had, on average, more than 5.7 complete generations known (Table 1). Over time, the 

number of generation equivalents increased steadily, with a distinct pattern depending 

on the breed (Figure 2). As previously mentioned, pedigree records for HER were lost 

for calves born in years 1971-1974, which resulted in a nearly null number of 

generations known for animals born in this period. The situation improved after this 

loss, such that the HER had the highest mean number of generation equivalents known 

for animals born in 2010. For the ANG and DEV there was a gradual increase in 

pedigree information with year of birth, with a mean of nearly 8.5 generations known 

for animals born in 2010. The SHO had a more moderate increase in pedigree 

information over the years, showing about 1.5 generations less than the other breeds for 

calves born in 2010. 

Overall, the mean generation interval (Table 1) was nearly 6.4 years in ANG, and was 

shorter by about 0.4 years in HER and SHO, and by 0.14 years in DEV. For the 

different selection paths, generally the dam-daughter path was the longest, except in 

DEV, where the dam-son path was longest. In most cases, differences among the 

various selection paths were not large, except for the SHO where son paths had 

generation intervals shorter than daughter paths by about 0.7 years (results not shown). 
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Matings among full- and half-sibs were rare in all breeds, while the percentage of 

registered calves resulting from parent-offspring matings ranged from 0.9% in ANG to 

2.4% in SHO (Table 1). 

The percentage of inbred animals in the whole population was about 20% in HER and 

SHO, 60% in ANG and 74% in DEV, with an average inbreeding in inbred animals of 

about 4.9, 8.7, 2.3 and 3.8%, respectively (Table 1). Although the percentage of inbred 

animals has increased over time in all breeds, this increase occurred mostly over the last 

30 years and nearly all animals born over the last few years are inbred in all the breeds 

studied (results not shown).  

For the whole population, the mean inbreeding coefficient ranged from 1.16% in HER 

to 2.82% in DEV (Table 1), while the average relatedness was about 2.4% in DEV but 

below 1% in all other breeds. The average inbreeding of registered calves has shown a 

very mild increase over time (Figure 3), with an annual rate of inbreeding which ranged 

from about 0.003%/year in ANG to about 0.054%/year in DEV (Table 1). These 

moderate trends led to an average inbreeding for calves born in 2010 of about 1.5, 1.8, 

3.1 and 4.0% for the ANG, SHO, HER and DEV breeds, respectively. 

To investigate the impact of missing pedigree information, an alternative estimate of the 

individual coefficient of inbreeding was obtained with the Van Raden algorithm as 

implemented by the PEDIG software (Boichard, 2002), grouping calves with unknown 

parents by year of birth. The breed means for inbreeding obtained with this procedure 

(results not shown) were higher by a margin not exceeding 2% of the inbreeding means 

obtained when a null coefficient of inbreeding is assumed for animals with unknown 

parents. Given the negligibility of the differences, the original procedure to estimate 

inbreeding was followed in further analyses. 

The number of founders and ancestors represented in each population differed 

considerably among the 4 breeds studied (Table 1), in part reflecting the differences in 

number of existing animals in each pedigree data set. However, the DEV had the lowest 

number of founders and ancestors even though the SHO had the lowest number of 

registered animals. 

The number of ancestors supplying 50% of the gene pool to the whole population was 

34 for DEV, 76 for ANG, 142 for SHO and 443 for HER (Table 1). For each breed, the 

number of founders contributing with 50% of the gene pool was about 2 to 4 times that 

computed for the number of ancestors, but the ranking of breeds followed a similar 

pattern. These results indicate that HER has the broadest representation of founders and 

ancestors and that, in spite of its very small census, the SHO has been able to maintain a 

certain level of genetic diversity. Conversely, genetic erosion is probably taking place in 

both ANG and DEV breeds. The reference population was represented by about 12,700 

animals in ANG, 2,400 in DEV, 3,800 in HER and less than 300 in SHO (Table 2). In 

this reference population, the average inbreeding per breed ranged from 1.50% in ANG 

to 3.92% in DEV, while the percentage of inbred animals was nearly 85% in SHO and 

above 92% for the other breeds. The average relatedness by breed was below 1% in 

HER and SHO, about 1.3% in ANG and 3.4% in DEV. When the distribution of 

animals by different levels of inbreeding was considered (results not shown), the 

majority of the calves in the general population in all breeds showed a level of 

inbreeding below 6.25%, such that nearly 6% of the ANG and HER calves, 9% of the 

SHO and 15% of the DEV had a coefficient of inbreeding above this level. 

The Fi in the reference population ranged from about 0.20% in ANG to 0.54% in 

DEV, and was close to 0.40% in the HER and SHO (Table 2). Comparatively, The ∆Fg 

was very similar for the ANG, but somewhat smaller for the other 3 breeds. The Ne 
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estimated from Fi ranged from 92 in DEV to 245 in ANG, with intermediate values in 

HER (Ne=129) and SHO (Ne=118). In comparison, when Ne computed from ∆Fg, the 

estimate was very close to the above value in ANG, but it was about 30% larger in DEV 

and HER, and about one-half in SHO (Table 2). 

Of the total number of founders that contributed to the gene pool of British cattle breeds 

in Brazil (Table 1), about 47% are still represented in the reference populations for 

ANG and DEV breeds, but only 16% for HER and SHO (Table 2). The 

representativeness of ancestors is much smaller, with about 22% of all ancestors still 

represented in the ANG reference population, 31% in DEV, and about 5% in HER and 

SHO. The cumulative contribution of founders to the gene pool of each breed (Figure 

4a) shows a distinct pattern among breeds: HER and ANG have a mild increase in 

founder contributions, indicating that there is not a predominant group of animals with a 

major influence on the breed; DEV has an opposite pattern, with the first 10 founders 

accounting for about 30% of the gene pool; SHO shows an intermediate trend. As a 

consequence of the different pattern of genetic contributions, the number of founders 

contributing with 50% of the gene pool was 41 for DEV, 79 for SHO, 164 for HER and 

211 for ANG (Table 2).  

When compared to founders, fewer ancestors contributed to most of the genetic 

variation, e.g., the 3 major ancestors contributed nearly 30% of the gene pool in DEV 

and SHO, and 18% in HER and ANG, while the number of ancestors contributing with 

50% of the gene pool was 10 for SHO, 14 for DEV, 25 for HER and 26 for ANG (Table 

2, Figure 4b). 

The fa reflects the uneven contribution of ancestors to the genetic pool, and in this case 

the estimates were about 30 for DEV and SHO, and 60 for ANG and HER (Table 2). 

The ratio fe/fa was highest in ANG and SHO, indicating a stronger bottleneck in the 

pedigree, and lowest in DEV. Average values for fg were about 17 in DEV and SHO, 

and 32 in HER and ANG indicating a lower retention of genetic diversity in the first 

two breeds. Over the years, the effective number of ancestors has shown a mild decline 

in DEV, SHO and ANG, while the effective number of founders was relatively stable in 

DEV and SHO and showed some increase in ANG over the last 20 years (Figure 5). A 

different pattern was observed in HER, where both the effective number of founders and 

ancestors has declined steadily since the late 1970s. 

The analyses of contributions of different countries of origin of founder animals (Figure 

6) showed that, throughout the period studied, there is a clear predominance of DEV 

genes originating from the UK, with very minor contributions from other countries. For 

the other breeds the situation has been quite different, with important changes over time 

in the ranking of country contributions. In ANG, Argentina was the major supplier until 

the 1970s, while HER and SHO genes to Brazil were mostly from Uruguay. In these 

three breeds, genes from the USA became predominant from the 1970s up to the 

present.  

 

Discussion 

The first cattle arrived in Brazil in the 16th century, brought by Portuguese and Spanish 

settlers, and gave origin to what are currently known as Creole, local or naturalized 

breeds (Primo, 2004). In the late 18th century, British cattle started spreading 

throughout the Americas (Martinez et al., 2012), but their expansion in Brazil was only 

meaningful in the late 19th century, and was mostly limited to the Southern part of the 

country, where local pasture conditions and subtropical climate favored their adaptation 

(Cardellino, 2000; Elias, 2006). The development of British cattle in Brazil was largely 
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based on the Angus, Devon, Hereford and Shorthorn breeds, which have characteristics 

desired by producers, such as medium-frame body size and early maturing, both in 

terms of reproduction, growth and finishing (Smith et al., 1976).  

The relative importance of British breeds in Brazil has evolved over the years, and their 

census numbers reflected those changes. In 2012, the number of herds registering 

animals in each herdbook in Brazil was 512 for Angus, 57 for Devon, 83 for Hereford 

and 7 for Shorthorn with, respectively, 9,029, 1,867, 1,726 and 93 purebred breeding 

animals enrolled in each herdbook in that year (ANC, 2012). Nowadays, herdbook 

information includes records of both imported animals, with their respective country, 

and of those born in Brazil. The analysis of population structure based on pedigree 

information has been applied to the genetic characterization of different cattle breeds in 

Brazil (Faria et al., 2010; Reis Filho et al., 2010; Oliveira et al., 2012; Santana et al., 

2012) as well as in several other countries (see review by Carolino and Gama, (2008), 

and is now a common tool in managing genetic diversity in livestock species (FAO, 

2013).  

Concerning the breeds of the present study, pedigree structure has been analyzed in 

other countries for some of them, e.g., the Hereford and Red Angus were studied in the 

United States by Cleveland et al. (2005) and Márquez et al. (2010), respectively, while 

McParland et al. (2007) studied the Hereford and Aberdeen Angus in Ireland. 

Nevertheless, to our knowledge, demographic information is very limited for the DEV 

and SHO breeds, but they show reduced numbers worldwide, even though they were 

among the most important cattle breeds at the beginning of the 20th century (Brassley, 

2000).  

In our work, we analyzed pedigree information for the Angus, Devon, Hereford and 

Shorthorn breeds in Brazil, as they show a very distinct history in this country, 

reflecting the evolution of market trends over the years and the consequent decisions 

taken by farmers. The SHO had some popularity in the 1950’s but in general it has been 

a breed of minor expression in Brazil, while the DEV was able to occupy a niche 

market, with a slow increase in the number of registered animals since the 1960’s. The 

situation has been quite different for the HER and ANG, which have played a major role 

in crossbreeding programs in Brazil and have thus expanded their census in the country, 

even though their relative importance was not the same throughout the period analyzed. 

The HER was by far the most popular British breed up until the mid-1980s, but from 

then on its census dropped steadily, while the ANG gained popularity, becoming the 

major British breed in Brazil over the last decade.  

As a result of the accurate recording of genealogical information from the first imports, 

animals in the reference population had almost 9 complete generation equivalents 

known, with the exception of the SHO which only had 7, possibly because the 

widespread use of crossbreeding caused a reduction in pedigree recording. In any case, 

the pedigree is deep enough to provide a comprehensive picture of the evolution of 

genetic diversity in the major British cattle breeds raised in Brazil. 

For the breeds considered here, herdbooks are open to the access of registered animals 

imported to Brazil, in contrast to other reports considering herdbooks which were 

essentially closed (Gutiérrez et al., 2003; Cleveland et al., 2005; McParland et al., 2007; 

Carolino and Gama, 2008). Hence, the integration of foreign animals in the herdbook 

over the years in our study is expected to increase genetic variability and diversify the 

origins represented. This was the case with most breeds, with the exception of DEV, 

which originated almost exclusively from the UK. For the other breeds, until the mid-

1970s the ANG was essentially of Argentinian origin while the HER and SHO were 
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mostly from Uruguay. In the late 1970s, the source of imported animals changed, with 

the USA becoming the major supplier of ANG, HER and SHO genetics. This switch 

probably reflects the change from the import of live animals to be used in natural 

matings in the early years, which would be mostly from nearby countries, to the 

widespread use of artificial insemination in the mid-1970s and, to a lesser extent, 

embryo transfer that facilitated the direct import of semen and embryos from the USA.  

The genetic contributions of the major founders and ancestors to the reference 

population showed two distinct patterns, i.e., the DEV and SHO with a more 

pronounced contribution of a few major ancestors when compared with ANG and HER. 

As a consequence of the unbalanced representation of ancestors, the estimated fa was 

nearly 30 for the DEV and SHO breeds, which is in line with estimates reported for 

endangered beef breeds such as the Grauvieh (Sölkner et al., 1998) and Sayaguesa 

(Gutiérrez et al., 2003), and even for some dairy breeds where high selection intensity is 

applied (Boichard et al., 1997; Sørensen et al., 2005). For the ANG and HER breeds in 

our study, the fa was about 60, which is almost twice the estimates published for the 

same breeds in Ireland (McParland et al., 2007) but is lower than the estimated fa for 

Limousine and Charolais cattle in different European countries (Bouquet et al., 2011). 

Still, the estimated fa was fairly high in all the breeds included in our study. 

Statistics such as the ratios between founders, ancestors and founder genomes revealed 

the occurrence of pedigree bottlenecks in all breeds, which are confirmed by a ratio fe/fa 

>1 (Sørensen et al., 2005). This occurred in spite of the fact that herdbooks remained 

open to the access of imported animals, and is a consequence of the small population 

size of DEV and SHO, as well as of the extensive use of some popular sires in ANG and 

HER. Nearly all animals in the reference population had some degree of inbreeding in 

all four breeds, probably as a consequence of the strong pedigree depth, implying that at 

some point in the pedigree the ancestors might be related. Nevertheless, the overall level 

of inbreeding was moderate in all breeds, with means in the reference population below 

4% in all breeds. These moderate levels of inbreeding are confirmed by the small 

number of animals in the reference population with levels of inbreeding exceeding 

6.25%, and by the reduced incidence of matings among close relatives in all breeds. The 

means for inbreeding in ANG and HER in our study are slightly higher than those 

reported for the same breeds in Ireland (McParland et al., 2007), and for the Red Angus 

in the United States (Marquez et al., 2010), but much lower than the estimate of about 

10% in American Hereford (Cleveland et al., 2005). For the DEV, our estimate was 

close to the mean inbreeding of nearly 4.4% reported for the American Milking Devon 

by Splan and Sponenberg (2003), while for SHO our results were lower than the 

estimate of 5.5% reported for the American dairy Shorthorn (AIPL, 2013). In Brazil, the 

low levels of inbreeding found in ANG and, to a lesser extent, in HER, can be justified 

by some continuous influx of imported animals of diverse origins. The DEV was the 

breed with the highest level of inbreeding and mean relatedness in the reference 

population, and it had the highest rate of inbreeding and the lowest fe among the breeds 

studied. This could be a result of the narrow recruitment of DEV overseas, mostly from 

the United Kingdom, where it is considered to be an endangered breed (DEFRA, 2013). 

It is, therefore, reasonable to consider the DEV as the British breed undergoing the 

highest level of genetic erosion in Brazil, even though it is not the breed with the 

smallest census. One unexpected result in our study is the low mean inbreeding in SHO, 

as this is a breed with very small census, both in Brazil and in countries supplying SHO 

germplasm. However, Shorthorn Associations in North America have allowed the 

registration of animals resulting from crossbreeding with, e.g., Red Holstein or Swedish 
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Red (ASA, 2013; CMSS, 2013), which should maintain inbreeding at low levels in 

Brazil when semen from these animals is imported. As Brazilian SHO has been kept 

mostly free from the influence of other breeds, it could be an interesting source 

population for other countries where SHO is now experiencing genetic erosion. 

The negative consequences of inbreeding in cattle are well known (Burrow, 1993) and 

minimizing the rate of inbreeding is often the major objective in conservation of within-

breed genetic diversity (Hill, 2000; Caballero and Toro, 2002). In this perspective, a 

maximum rate of inbreeding of 1% per generation, corresponding to a minimum 

effective population size of 50, has been recommended as an adequate target to maintain 

genetic diversity in conservation (Meuwissen and Woolliams, 1994; FAO, 2013) and 

selection programs (Goddard and Smith, 1990), but higher thresholds have been in 

some cases recommended, as in cattle breeds where artificial insemination is common 

(Leroy et al., 2013). Nevertheless, in all breeds included in our study the rate of 

inbreeding was below the critical threshold of 1% (FAO, 1998), and consequently Ne 

was always above 50, indicating that a possible loss of genetic diversity is not presently 

a matter of concern in the breeds studied. Still, regardless of the method used for 

computation, the rate of inbreeding was higher in DEV, with estimates ranging from 

about 0.39 to 0.54% per generation. The Ne, computed from the rate of inbreeding 

estimated according to different methods, ranged between 92 and 128 for the DEV, and 

the estimates were always above 100 for the remaining breeds, tending to be higher in 

ANG. Recently, Leroy et al. (2013) used different approaches to estimate Ne in various 

dog, sheep, cattle and horse breeds, and concluded that the consistency of estimates 

depended on the species considered and the specific genetic structure of the population 

analyzed, especially when methods based on the evolution of coancestry or inbreeding 

were compared. In our case, Ne was estimated from the rate of inbreeding per 

generation, either Fg or Fi, and the comparison is not straightforward, because the 

former only takes into account the mean level of inbreeding in two points in time, while 

the latter considers the evolution of inbreeding throughout the period analyzed, and 

should thus be more reliable.  

In conclusion, our estimates point to a mild increase in inbreeding in the 4 British 

breeds studied, with estimates of effective population size indicating that genetic 

diversity is being maintained at a reasonable level in all breeds, above the recommended 

minimal critical threshold (FAO, 1998). Nevertheless, the genetic structure of the 

breeds analyzed is somewhat different. The ANG had a major increase in its census in 

the 1990s and is now the leading British breed in Brazil, with a continuous infusion of 

imported germplasm. This has led to low levels of inbreeding, in spite of some 

bottlenecks in pedigrees due to the heavy use of a few selected sires. The HER was the 

major British breed in Brazil until the 1980s, when ANG gained the leadership. 

Notwithstanding its lower census, the HER still has a high effective population size and 

a good representation of founders and ancestors, thus showing indications of good 

management of the population gene pool. The DEV has, for many years, maintained a 

small census, which has shown a very mild increase since the 1960s. Among the British 

breeds studied, DEV is the one with the highest rate of inbreeding, and the low effective 

number of founders and ancestors suggests that imported germplasm, which is 

exclusively of British origin, should be diversified, to avoid bottlenecks in the 

population. The SHO is a breed with a rather small population size in Brazil, but 

inbreeding has been kept under control, possibly due to the common practice of 

importing crossbred animals. Overall, results of this study indicate that, so far, the 

continuous flow of imported genes has contributed to the maintenance of genetic 

http://click.thesaurus.com/click/nn1ov4?clksite=thesc&clkpage=the&clkld=0&clkorgn=0&clkord=0&clkmod=1clk&clkitem=notwithstanding&clkdest=http%3A%2F%2Fthesaurus.com%2Fbrowse%2Fnotwithstanding
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variability in all breeds studied, but continuous monitoring of inbreeding trends and of 

parameters derived from probability of gene origin are of primary importance to ensure 

breed conservation and a long term maintenance of genetic diversity.  
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Table 1. Summary statistics from pedigree analyses of the whole population for the Angus, Devon, Hereford and Shorthorn breeds.  

Parameter Angus Devon Hereford Shorthorn 

Total number of animals 175,179 61,295 245,942 37,751 

Number of calves 106,144 39,190 144,770 20,996 

Number of sires 10,876 2,972 12,247 2,708 

Number of dams 58,159 19,133 88,925 14,047 

Average number of offspring per bull 15.19±62.20 19.97±42.26 17.81±48.22 12.12±26.86 

Average number of offspring per dam 2.84±2.75 3.10±2.22 2.45±1.75 2.33±1.71 

Mean equivalent number of complete generations 5.70 5.83 3.27 2.67 

Mean generation interval 6.42±3.34 6.28±3.27 6.04±2.70 6.03±7.14 

Matings between sibs (%) 0.03 0.08 0.01 0.09 

Parent-offspring matings (%) 0.92 1.61 1.59 2.39 

Average inbreeding coefficient (%)  1.38±3.46 2.82±4.81 1.16±3.93 1.60±5.16 

Inbred animals (%)  60.68 73.58 23.90 18.55 

Average inbreeding coefficient for inbred animals (%)  2.27±4.20 3.83±5.25 4.86±6.82 8.65±9.10 

Maximum inbreeding coefficient (%)  39.93 42.94 43.75 47.66 

Animals with inbreeding coefficient above 6.25%(%) 6.13 14.63 6.01 9.14 

Average relatedness (%)  0.89±0.59 2.42±1.57 0.25±0.34 0.27±0.23 

Rate of inbreeding/year (%) 0.0033±0.0005 0.0538±0.0013 0.0254±0.0005 0.0165±0.0015 

Number of founders 10,194 1,977 27,867 4,980 

Number of ancestors 8,616 1,751 25,434 4,268 

Number of founders explaining 50% of the gene pool  330 74 1,089 319 

Number of ancestors explaining 50% of the gene pool 76 34 443 142 
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Table 2. Summary statistics from pedigree analyses of the reference populationsa for the Angus, Devon, Hereford and  

Shorthorn breeds.  

Parameter Angus Devon Hereford Shorthorn 

Number of animals in the reference populationa 12,703 2,375 3,833 287 

Mean equivalent number of complete generations 8.43 8.49 8.98 7.00 

Average inbreeding coefficient %  1.50±2.52 3.92±4.69 2.99±4.01 2.37±3.64 

Average inbreeding coefficient for inbred animals (%) 1.57±2.56 4.22±4.74 3.06±4.03 2.81±3.81 

Maximum inbreeding coefficient (%) 37.58 42.94 30.98 25.02 

Inbred animals (%) 96.52 92.84 98.02 84.67 

Average relatedness (%) 1.29±0.39 3.38±0.99 0.68±0.18 0.41±0.13 

Rate of inbreeding/generation (Fg)
b (%) 0.214 0.390 0.270 0.165 

Rate of inbreeding/generation (Fi)
c (%) 0.204 0.542 0.388 0.424 

Effective population size from Fg 234 128 185 303 

Effective population size from Fi 245 92 129 118 

Number of founders  4,903 913 4,372 780 

Number of ancestors 1,888 546 1,374 156 

Number of founders explaining 50% of the gene pool  211 41 164 79 

Number of ancestors explaining 50% of the gene pool 26 14 25 10 

Effective number of founders (fe) 470 89 289 200 

Effective number of ancestors (fa) 68 33 59 28 

fe/fa ratio 6.91 2.70 4.90 7.14 

Founder genome equivalents (fg) 36 16 30 18 

fe/fg ratio 13.06 5.56 9.63 11.11 
a Reference population defined as the group of calves born in 2009 and 2010 for the Angus, Devon and Hereford breeds, and calves 

born in 2008, 2009 and 2010 for the Shorthorn breed. 
b Obtained from the evolution of inbreeding in the period between 2002 and 2009. 
c Obtained from the individual increase in inbreeding, as in Gutiérrez et al. (2009). 
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Figure 1. Number of calves of the Angus, Devon, Hereford and Shorthorn breeds 

registered in the herdbook, by year of birth. 
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Figure 2. Level of pedigree completeness for Angus, Devon, Hereford and Shorthorn 

calves, by year of birth. 

 

 

 

Figure 3. Average inbreeding by year of birth for the Angus, Devon, Hereford and 

Shorthorn breeds. 
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Figure 4. Cumulative genetic contribution to the reference population of the 150 most 

influential a) founders and b) ancestors, for the Angus, Devon, Hereford and Shorthorn 

breeds. 
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Figure 5. Effective number of founders (a) and ancestors (b) by year of birth for the 

Angus, Devon, Hereford and Shorthorn breeds, shown in 10 year-intervals.  
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Figure 6. Genetic contribution of different countries of origin (ARG: Argentina; AUS: 

Australia; CAN: Canada; NZL: New Zealand; UK: United Kingdom; URU: Uruguay; 

USA: United States of America) to the genetic pool of the Angus, Devon, Hereford and 

Shorthorn breeds, by year of birth. 
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Abstract 

 

Background: Strategies for imputing genotypes from the Illumina-Bovine3K, Illumina-

BovineLD (6K), BeefLD-GGP (8K), a non-commercial-15K and IndicusLD-GGP 

(20K) to either Illumina-BovineSNP50 (50K) or to Illumina-BovineHD (777K) SNP 

panel, as well as for imputing from 50K, GGP-IndicusHD (90iK) and GGP-BeefHD 

(90tK) to 777K were investigated. Imputation of low density (<50K) genotypes to 777K 

was carried out in either one or two steps. Imputation of ungenotyped parents (n=37 

sires) with four or more offspring to the 50K panel was also assessed. There were 2,946 

Braford, 664 Hereford and 88 Nellore animals, from which 71, 59 and 88 were 

genotyped with the 777K panel, while all others had 50K genotypes. The reference 

population was comprised of 2,735 animals and 175 bulls for 50K and 777K, 

respectively. The low density panels were simulated by masking genotypes in the 50K 

or 777K panel for animals born in 2011. Analyses were performed using both Beagle 

and FImpute software. Genotype imputation accuracy was measured by concordance 

rate and allelic R2 between true and imputed genotypes. 

Results: The average concordance rate using FImpute was 0.943 and 0.921 averaged 

across all simulated low density panels to 50K or to 777K, respectively, in comparison 

with 0.927 and 0.895 using Beagle. The allelic R2 was 0.912 and 0.866 for imputation 

to 50K or to 777K using FImpute, respectively, and 0.890 and 0.826 using Beagle. One 

and two steps imputation to 777K produced averaged concordance rates of 0.806 and 

0.892 and allelic R2 of 0.674 and 0.819, respectively. Imputation of low density panels 

to 50K, with the exception of 3K, had overall concordance rates greater than 0.940 and 

allelic R2 greater than 0.919. Ungenotyped animals were imputed to 50K panel with an 

average concordance rate of 0.950 by FImpute. 

Conclusion: FImpute accuracy outperformed Beagle on both imputation to 50K and to 

777K. Two-step outperformed one-step imputation for imputing to 777K. Ungenotyped 

animals that have four or more offspring can have their 50K genotypes accurately 

inferred using FImpute. All low density panels, except the 3K, can be used to impute to 

the 50K using FImpute or Beagle with high concordance rate and allelic R2.  

 

Keywords: Braford, Imputation accuracy, Low density panel, Hereford, High density 

panel. 

 

Background 

Traditional animal breeding methods utilized phenotypic data and relationships 

among individuals to make informed mating decision to improve traits of economic 

significance. Recent advances in DNA technology, led to the full sequencing of several 

species, including cattle [1] and to the development of new genomic technologies. SNP 

genotyping is now possible at a cost reasonable for producers. This includes the 

Illumina BovineHD (Illumina Inc., San Diego, USA), that makes it possible to genotype 

777,962 SNPs in a single chip. The first panel of medium density for bovine was the 

Parallel 10K SNP released in 2006 by the Parallel Company. In 2007, the Illumina Inc., 

San Diego, USA developed the Illumina BovineSNP50 panel with 54,609 SNPs and in 

2011 it released the Illumina BovineHD panel with 777,962 SNPs. These new 

genotyping technologies have stimulated the development of new research areas, 

including techniques to infer SNPs on high density genotype panels for animals that 

have been genotyped at a lower density.  
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Procedures for imputation of genotypes, a technique that refers to prediction of 

ungenotyped SNP genotypes, have been the subject of recent studies in some species, 

such as, dairy cattle [2], [3], beef cattle [4], [5], horse [6] and pig [7]. Software 

programs have been developed to more efficiently and accurately impute high density 

genotypes [8], [9], [10], [11], [12]. Density of markers genotyped affects genomic 

selection accuracy [13], [14], [15], and to reduce the cost of genotyping large 

populations, less dense, less expensive panels can be used and imputation can infer a 

more dense genotype, enabling broader uptake of genotyping technology by cattle 

producers [16], [17]. The evolution of genotyping technology has resulted in many 

animals of different breeds being genotyped with a variety of SNP panels. For effective 

genomic selection, all animals should have genotypes of equivalent density. It has been 

shown that there is a need to evaluate different panels for imputation to higher density 

panels. Imputation also eliminates the need for re-genotyping of key animals, reducing 

costs of genomic selection and association analysis. 

The Brazilian cattle industry plays a significant role in the national economy. 

Brazil has a herd of more than 211 million cattle of which 80% is zebu cattle [18]. 

Hereford and Braford breeds, together with Angus and Brangus account for 50% of the 

approximate 8 million doses of beef cattle semen commercialized in Brazil in 2013 

[19]. Much of this semen, as well as most live bulls sold are mated to Zebu females 

with the primary objective of improving carcass quality [20]. 

The main objective of this research was to assess accuracy of imputation from 

lower density SNP panels to genotypes from the Illumina BovineSNP50 and the 

Illumina BovineHD panels (Illumina Inc., San Diego, USA) in Brazilian Braford and 

Hereford cattle.  

 

Methods 

 

Animal welfare 

Animal welfare and use committee approval was not necessary for this study 

because data were obtained from existing databases. 

 

Data 

Data was from the Conexão Delta G’s genetic improvement program - Hereford 

and Braford (Zebu x Hereford) cattle (Conexão Delta G, Dom Pedrito/RS, Brazil), 

containing approximately 520,000 animals from 97 farms located in the South, 

Southeast, Midwest and Northeast regions of Brazil. A total of 683 Hereford and 2,997 

Braford animals from these farms were genotyped. Of the genotyped animals, there 

were 624 Hereford and 2,926 Braford animals genotyped with the Illumina 

BovineSNP50 panel, and 59 Hereford and 71 Braford animals genotyped with the 

Illumina BovineHD panel from 17 farms located in the South of Brazil. Data also 

included 88 Nellore bulls from the Paint Program (Lagoa da Serra, Sertãozinho/SP, 

Brazil) genotyped with the Illumina BovineHD panel. 

 

Data editing 

For imputation to the 50K SNP panel, animals genotyped with 777K SNP 

genotypes had SNPs not contained on the 50K SNP panel removed. This resulted in a 

population of 3,768 animals genotyped for 49,345 SNPs. Sites were filtered for GenCall 

score (>=0.15) [21], [22], Call Rate (>=0.90) [21], [22] and Hardy-Weinberg 

Equilibrium (P>=10-6) [23], [24]. Only autosomes were considered [3], [4]. The 
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individual sample quality control considered GenCall Score (>=0.15) [21], [22], Call 

Rate (>=0.90) [21], [22], heterozygosity deviation [21] (limit of ± 3 SD), repeated 

sampling and paternity errors [22]. After quality control, 3,698 animals and 43,248 SNP 

were used for further analysis. 

For imputation to the 777K SNP panel, only the animals genotyped with the 

777K SNP panel could be used as reference. The SNP quality control was the same as 

for the imputation to the 50K SNP panel (SNP in the 50K panel that were not in 

common with the 777K were also removed from 50K). After the quality control, 218 

bulls (Hereford=59, Braford=71, Nellore=88) and 587,620 SNPs remained. 

Table 1 shows the numbers of genotyped animals after data editing as well as 

the pedigree structure of the genotyped animals. 

 

Reference and imputation populations 

For imputation to the 50K SNP panel, the dataset was split into two populations. 

The imputation population was comprised of all animals born in 2011. The remainder of 

the population was assigned to the reference population for imputation. This division 

resulted in 2,735 animals in the reference population when Nellore animals were 

included and 2,647 when Nellore animals were not included. A total of 963 animals 

were sorted into the imputation population.  

Hereford and Braford animals in the reference population included 129 sires 

born before 2008 and 2,518 animals born between 2008 and 2010. From these 2,518 

animals, 3.8% had at least one genotyped offspring.  

For animals in the imputation population, the 3K, 6K, 8K, 15K and 20K low 

density SNP panels were created by masking the non-overlapping SNP between the 

50K SNP panel and each of these SNP panels. The imputation population included 33 

animals with two parents genotyped and 308 animals with one parent genotyped. 

Moreover, 52% of the imputation animals were offspring of multiple sire matings. 

The data set for imputation to the 777K SNP panel contained 71, 59 and 88 

Braford, Hereford and Nellore animals, respectively. The strategy used to test the 

imputation was to create three different data sets randomly alternating animals in the 

reference population and in the imputation population, always keeping the Nellore 

animals in reference population as the objective was to test the imputation accuracy of 

Braford and Hereford cattle. Each reference population was composed by 175 animals 

(88 Nellore plus 87 Hereford and Braford animals) and each imputation population had 

43 Hereford and Braford animals. For animals in the imputation population the 3K, 6K, 

8K, 15K, 20K, 50K, 90iK and 90tK SNP panels were created by masking non-

overlapping SNP from 777K SNP panel. 

All panels, but one, were commercial panels: Illumina Bovine3K (3K), Illumina 

BovineLD (6K), Illumina BovineSNP50 (50K) and Illumina BovineHD (777K) panels 

(Illumina Inc., San Diego, USA), Beef LD GGP (8K), Indicus LD GGP (20K), GGP 

Taurus HD (90tK) and GGP Indicus HD (90iK) panels (Gene Seek Inc., Lincoln, USA) 

(Table 2). 

All the SNPs from 8K SNP panel were part of the customized 15K SNP panel. 

The remaining SNPs (7K) were selected from the 50K SNP panel using high minor 

allele frequency, low linkage disequilibrium, and location (approximately evenly spaced 

between two SNPs in the 8K SNP panel) as selection criteria. The best possible 

threshold values to meet the three criteria were a minor allele frequency greater than 

0.23 and a linkage disequilibrium, as measured by r2, less than 0.088.  
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Imputation scenarios 

For imputation to the 50K SNP panel, four different scenarios were explored as 

follows: including Nellore genotypes in the reference population and either including 

pedigree information (NE-P) or not including pedigree information (NE-NP); not 

including Nellore genotypes in the reference population and either including pedigree 

information (NNE-P) or not including pedigree information (NNE-NP).  

For imputation to the 777K SNP panel, a third set of Hereford and Braford bulls 

were imputed in four different scenarios: including Nellore genotypes and pedigree 

information in the reference population (NE-P) or including Nellore genotypes and not 

including pedigree information in the reference population (NE-NP). Each of these two 

scenarios was carried out in one or two steps. Two-step imputation was carried out only 

for panels with density less than 50K SNP. Two-step imputation involved: 1) in the first 

step, the animals genotyped with 3K, 6K, 8K, 15K and 20K SNP panels were imputed 

to the 50K SNP panel using in the reference population all the animals genotyped with 

the 50K SNP panel; 2) in the second step, all the animals imputed to the 50K SNP panel 

were then imputed to the 777K SNP panel using as reference two-thirds of the Hereford 

and Braford and all Nellore bulls genotyped with the 777K SNP panel. One-step 

imputation was performed by imputing from the simulated low density panels directly 

to the 777K SNP panel. 

Imputation accuracy of above scenarios was assessed by concordance rate (CR), 

which corresponds to the proportion of genotypes correctly imputed, and by allelic R2, 

which corresponds to the square of the correlation between the number of minor alleles 

in the imputed genotype and the number of minor alleles in the original genotype [25].  

There were twenty imputation scenarios from low density panels to the 50K 

SNP panel. Thirty-four scenarios were examined for imputation from low and medium 

density panels to 777K SNP panel and thirty scenarios were used to assess differences 

in imputation accuracy in one or two steps (Table 3). 

 

Imputation methods 

Imputation was carried out by FImpute v.2.2 [11] and Beagle v.3.3 [8]. Beagle 

was used in scenarios that did not include pedigree information and ungenotyped 

animals. FImpute was used in all scenarios. 

Imputation methods can be based on linkage disequilibrium information 

between markers in the population, but also can use the inheritance information within 

family. Beagle software is based on linkage disequilibrium between markers in the 

population and uses a Hidden Markov model [26] for inferring haplotype phase and 

filling in genotypes. Beagle also exploits family information indirectly by searching for 

long haplotypes. Contrary to Beagle, FImpute software uses a deterministic algorithm 

and makes use of both family and population information directly. Family information 

is taken into account only when pedigree information is available. The population 

imputation in FImpute is based on an overlapping sliding window method [11] in which 

information from close relatives (long haplotype match) is first utilized and information 

from more distant relatives is subsequently used by shortening the window size. The 

algorithm assumes that all animals are related to each other to some degree ranging 

from very close to very distant relationships.  

 

Comparison between scenarios 

Analysis of variance was carried out using the GLM procedure in SAS version 

9.2 (SAS Inst. Inc., Cary, NC) to compare the average CR and allelic R2 of each 
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scenario. An arcsine square root [27] transformation was applied to CR and allelic R2 to 

normalize the residuals. 

 

Results 

Of the 3,698 animals genotyped with the 50K SNP panel, ~24% had sire and/or 

dam genotyped and ~65% had at least one parent unknown in the pedigree. With respect 

to the animals genotyped with the 777K SNP panel, ~15% had sire and/or dam 

genotyped and ~35% had at least one parent unknown. Table 1 shows pedigree structure 

for each breed. 

Table 4 provides the computing run time for each imputation scenario. Using 

FImpute, the run-time ranged between 2 and 48 minutes for different scenarios, while 

Beagle took between 25 and 2,280 minutes for the same scenarios. Table 5 provides the 

means and standard deviations of CR and allelic R2 for imputation to 50K and 777K 

SNP panels.  

 

Imputation of the low density panels to the 50K SNP panel  

There were significant differences (P<0.05) in CR and allelic R2 between the 

two algorithms and between pairs of simulated low density panels, as well as a 

significant algorithm by panel interaction (P<0.05). However, there were no significant 

differences (P>0.05) in CR and allelic R2 between scenarios (Table 6).  

The non-commercial 15K SNP panel resulted in the highest imputation accuracy 

of the low density panels with an overall CR of 0.973 and allelic R2 of 0.962, 0.109 and 

0.175 points higher than the 3K SNP panel, respectively (Table 5). The use of Nellore 

genotypes or use of pedigrees in FImpute did not improve CR or allelic R2 when 

imputing to the 50K SNP panel (Table 6). The average CR and allelic R2 for the four 

scenarios were 0.940 and 0.905, respectively. Using FImpute resulted in an overall 

average CR of 0.943 and allelic R2 of 0.912 while for Beagle the same average features 

were 0.927 and 0.890, respectively (Table 5). The algorithm by panel interaction, 

showed larger differences in CR and allelic R2 between FImpute and Beagle for sparser 

panels (0.021 in CR and 0.031 in allelic R2 for the 3K SNP panel) when compared to 

denser panels (0.012 in CR and 0.016 in allelic R2 for the 15K SNP panel), with 

FImpute being consistently more accurate. Imputation accuracy for 8K and 20K SNP 

panels were not significantly different using Beagle (P>0.05) with respect to CR and 

allelic R2 (Table 6). The highest CR (>0.977) and allelic R2 (>0.967) were obtained 

using the 15K SNP panel and FImpute. 

An important measurement of imputation success is the number of animals 

imputed with modest accuracy (assumed <0.950 CR here).Using the 15K SNP panel 

resulted in 93% and 83% of the animals being imputed with a CR above 0.950 (average 

of all scenarios) for FImpute and Beagle, respectively, while using the 3K SNP panel as 

the low density panel resulted in only 6.3% and 0.8% of animals above this accuracy 

threshold using FImpute and Beagle, respectively. The results for the other panels 

ranged between 62% and 70% using FImpute and between 40% and 48% using Beagle 

(Figure 1).  

The CR (average of all scenarios) for the 3K SNP panel, from either FImpute or 

Beagle, were lower than all other panels with CR values over all BTAs at or below 

0.900. All other panels produced CR above 0.930 for all chromosomes. Imputation 

accuracy was found to be relative to chromosome length with the highest CRs obtained 

for BTA1 while the lowest CRs were obtained for BTA28 in all scenarios and both 

algorithms, however little difference was seen across the genome (Figure 2). 
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The average CR for imputation from the alternative low density panels (3K, 6K, 

8K, 15K and 20K) to the 50K SNP panel was calculated for three different classes of 

minor allele frequency (MAF) (<0.01, 0.01-0.05, and >0.05). For the MAF class <0.01 

the average CR was close to 1.00 for all panel densities. For SNPs with MAF 0.01-0.05 

and >0.05 the average CRs ranged similarly from 0.84 to 0.97, depending on the panel 

density (Figure 3). 

 

Imputation of the ungenotyped animals to the 50K SNP panel 

FImpute allows for accurate imputation of 50K genotypes for ungenotyped 

animals that have four or more offspring [11]. Thirty-seven animals that had four or 

more offspring were imputed and showed an average CR of 0.950 and with 99.86% of 

the SNPs imputed. When average CR were examined based on the number of offspring, 

accuracies of 0.924, 0.941, 0.972, 0.961 and 0.990 were found for bulls with 4-9, 10-19, 

20-29, 30-39 and over 40 offspring, respectively. There were 11, 11, 9, 3 and 3 bulls in 

each of those progeny size classes, respectively. The lowest CR (0.900) corresponded to 

two Hereford animals with five offspring each, while the highest CR (above 0.980) was 

for six Braford animals with more than twenty offspring each. 

 

Imputation of the low density panels to the 777K SNP panel  

There were significant differences (P<0.05) in CR and allelic R2 between 

algorithms, panels and scenarios when imputing to 777K SNP panel. The algorithm by 

panel interaction was also significant (P<0.05) (Table 7).  

Using FImpute resulted in an overall average CR of 0.921 and allelic R2 of 

0.866, while Beagle yielded an average CR of 0.895 and allelic R2 of 0.826 (Table 5). 

The 6K, 8K and 20K SNP panels did not significantly differ (P>0.05) in their average 

CR and allelic R2 (Table 7). The highest CR and allelic R2 were obtained with the 90tK 

SNP panel (CR=0.955; allelic R2=0.925) and the lowest CR and allelic R2 with the 3K 

SNP panel (CR=0.838; allelic R2=0.728). For the other panels, CR was between 0.898 

and 0.952 and allelic R2 was between 0.829 and 0.919 (Table 4). The use of the 

pedigree information (NE-P) slightly decreased the CR and allelic R2 for imputation to 

the 777K SNP panel (P<0.05) (Table 6). The interaction algorithm by panel, showed 

larger differences in CR and allelic R2 between FImpute and Beagle for sparse panels 

(0.028 in CR and 0.044 in allelic R2 for the 3K SNP panel) when compared to denser 

panels (0.016 in CR and 0.024 in allelic R2 for the 90tK SNP panel), with FImpute 

resulting in consistently higher accuracy of imputation. 

The distributions of animals in high classes of CR varied between FImpute and 

Beagle. For FImpute, the proportion of animals imputed above a CR of 0.95 ranged 

from 12.8% for the 3K SNP panel to 73.6% for the 90iK SNP panel. For the other 

panels, the proportion of animals was between 20% and 48% (Figure 4a). For Beagle, 

with the exception of the 90iK SNP panel (39.5%) and the 90tK SNP panel (53.5%), the 

proportion of animals imputed above a CR of 0.95 was around 3% (Figure 4b). 

Imputation accuracy per chromosome using Beagle was only greater than 0.900 

when 50K or more dense panels were used (Figure 5b), while the same was observed 

using FImpute for all panels denser than 6K (Figure 5a). Per chromosome accuracies 

followed the results from 50K, where the highest accuracy was observed on BTA1, and 

the lowest on BTA28. 

Imputation to the 777K SNP panel performed in two steps was statistically 

superior (P<0.05) to imputation in a one-step both when measured by CR and allelic R2, 

and this difference was observed for all scenarios (Table 8). The interaction between 
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number of steps and algorithm showed larger difference between CR and allelic R2 

from one and two steps imputation when Beagle was used (0.107 in CR and 0.181 in 

allelic R2). The interaction between number of steps and low density panel showed that 

the difference between CR and allelic R2 from one to two steps imputation was larger 

for sparse panels (0.178 in CR and 0.298 in allelic R2 for the 3K SNP panel) when 

compared to denser panels (0.020 in CR and 0.034 in allelic R2 for the 20K SNP panel. 

The relative increase in CR for the two-step imputation with respect to the one-

step imputation was 27%, 12%, 11%, 5% and 2% for 3K, 6K, 8K, 15K and 20K SNP 

panels, respectively, and the relative increase in allelic R2 was 69%, 21% 22% 9% and 

4% for 3K, 6K, 8K, 15K and 20K SNP panels, respectively. 

The average CR for imputation from the alternative low density panels (3K, 6K, 

8K, 15K, 20K, 50K, 90iK and 90tK) to the 777K SNP panel was calculated for three 

different classes of MAF (<0.01, 0.01-0.05, and >0.05). For the MAF class <0.01 the 

average CR was close to 0.99 for all panel densities, for MAF class 0.01-0.05 and >0.05 

the average CRs ranged from 0.84 to 0.97 and from 0.65 to 0.96, respectively, 

depending on the panel density (Figure 6). 

 

Discussion 

 

Imputation of the low density panels to the 50K SNP panel 

There was no significant difference when imputation was performed using 

Nellore genotypes in the reference population and when the imputation was based on 

either family and population imputation or population imputation only. This means 

including pedigree information did not improve the CR and allelic R2 and is not 

required for accurate imputation. When Nellore genotypes were included in the 

reference population, it was expected that it would increase CR and allelic R2 because 

imputation population was mostly formed by Braford animals that have in their breed 

composition from 15% to 75% of zebu breeds, including the Nellore breed. This implies 

that the haplotypes present in the Braford animals available in the reference population 

are able to account for almost all of the haplotypes in the population. Ventura et al. [5] 

also did not find differences in imputation accuracies when the reference population 

included Angus plus multiple breeds or Charolais plus multiple breeds to impute 

crossbreds in Canada. Berry et al. [28], studying seven dairy and beef breeds in Ireland, 

concluded that reference populations formed by multiple breeds did not significantly 

increase the accuracy of the imputation of purebreds.  

Including pedigree information did not increase CR or allelic R2. This could be 

expected due to the weak structure of the pedigree within the set of genotyped animals 

and in the whole pedigree file. Similar results were found by Carvalheiro et al. [21] 

when working with Nellore in Brazil with similar pedigree structure. However, Ma et 

al. [29] found increases in CR between 1% and 2% using Beagle and FImpute in Nordic 

Red cattle in Sweden when including genotypes of the bull-sires of the imputation 

population into the reference population. It would not, however, require pedigree 

information to detect these relationships in either algorithm.  

The interaction between algorithm and panel was significant and yielded greater 

differences in CR and allelic R2 between FImpute and Beagle for low density panels, 

showing a greater advantage to using FImpute when a sparser low density panel is used. 

Carvalheiro et al. [21], working with Nellore in Brazil, also reported that FImpute 

outperformed Beagle for different low density panels and that there was a trend of 

greater differences between algorithms as low density panel density decreased. 
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The CR and allelic R2 values from FImpute in all analyses were consistently 

higher than those from Beagle, showing that the overlapping windows approach used by 

FImpute better infer missing genotypes than Hidden Markov models used by Beagle. 

Similar results were obtained by Carvalheiro et al. [21] in Nellore in Brazil and Larmer 

et al. [30], who worked on imputation from 6K and 50K SNP panels to 777K SNP panel 

in dairy cattle in Canada.  

The 20K SNP panel was mainly developed for imputation to the 777K SNP 

panel and it has only 7,320 common SNPs with the 50K SNP panel. No difference 

between the 8K and 20K SNP panel was found using Beagle algorithm as they had 

similar number and average distance between the SNPs present on the 50K SNP panel. 

A few studies have tested the accuracy of imputation using different densities of 

markers and denser low density panels have consistently led to higher imputation 

accuracy in several beef cattle breeds, observed in Wang et al. [31] in Angus, 

Dassonneville et al. [17] in Blonde d’Aquitaine , Huang et al. [32] in Hereford and 

Chud [33] in Canchim cattle. The customized 15K SNP panel created in this study 

showed higher CR and allelic R2 when compared to the other low density panels, 

including the 20K SNP panel. The reason for that may because of a higher density of 

markers in low linkage disequilibrium with adjacent SNPs and medium to high minor 

allele frequency in the population, allowing a better haplotype reconstruction. The 

superiority of the customized 15K SNP panel in relation to the commercial panels, 

however, might be expected because it was created based on criteria specific for this 

population. Carvalheiro et al. [21], working with Nellore cattle in Brazil, also developed 

a 15K SNP panel for imputation to the 777K SNP panel. They found slightly better 

results when compared to imputation from the 50K SNP panel. One possible 

disadvantage of customized panels is the cost will likely be higher in comparison to 

already available commercial panels of similar density. 

The highest accuracies were obtained for all low density panels when examining 

BTA1, whereas the worst results were obtained for BTA28. Sun et al. [34], working 

with Angus genotypes in the United States, reported that genotype imputation was more 

difficult in the initial and end regions of the chromosomes. Therefore, the shorter are the 

chromosomes, which is the case of BTA28 (46 Mb), the lower the overall chromosome 

accuracy, as the poorly imputed distal regions comprise a greater proportion of the 

overall chromosome. Similar results were found by Berry & Kearney [35] in Irish 

Holstein cattle, when imputing from the 3K to the 50K SNP panel. Moreover, Pausch et 

al. [24], working with Fleckvieh in Germany and imputing from 50K to 777K SNP 

panel, and Wang et al. [31], working with Angus in the United States and imputing to 

the 50K SNP panel from various low density panels, found higher and lower accuracies 

for BTA1 and BTA28, respectively, when compared to the average accuracy of 

imputation for all chromosomes. 

 

Imputation of low density panels to the 777K SNP panel 

On average, the imputation population had seven animals with one of the 

parents genotyped and the reference population had twenty-four animals with one of the 

parents also genotyped. The inclusion of pedigree information did not result in an 

increase in CR and allelic R2. Carvalheiro et al. [21] studying, among other factors, the 

effect of using or not the pedigree information in Nellore, also did not observe 

significant difference in CR when imputing from 15K and 50K to the 777K SNP panel 

using FImpute. 
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The two-step imputation procedure consistently out-performed imputation in 

one-step. This result confirmed that more SNPs contained on the low density panel, 

results in greater accuracy of imputation [31], [17], [7], [33]. Similar results were found 

by Larmer et al. [30] in Canadian Holstein cattle, when imputing in two steps from 6K 

to the 50K and from 50K to the 777K SNP panel. The interaction between algorithm 

and one or two steps was significant and showed greater difference in CR and allelic R2 

between one and two steps methods when using Beagle. The percentage of animals with 

CR above 0.95, in general, was higher for higher density panels, as expected. However, 

the 15K SNP panel showed higher percentage than the 20K SNP panel, most likely due 

to the criteria that were used for developing the 15K SNP panel. Moreover, it may be 

also due to the fact that the 20K SNP panel was developed mainly for genotype 

imputation in Bos Taurus Indicus cattle.  

The results by chromosome followed the same pattern found for imputation to 

the 50K SNP panel, with longer chromosomes having greater imputation accuracies 

[34], [33]. 

 

Imputation of the ungenotyped animals to the 50K SNP panel 

Genotype imputation for ungenotyped animals is now a lower cost alternative 

that can be used to increase the training population towards the implementation of 

genomic selection. Important ungenotyped ancestors that may have no available 

biological material to perform genotyping can also be accurately imputed using 

genotyped progeny information. Also, groups of cows that were ungenotyped due to the 

costs can have their genotypes inferred [36], [37], [38]. Different software, such as 

AlphaImpute [39], FindHap [12], PedImpute [23] and FImpute [11] are able to infer 

genotypes ungenotyped animals with high CR using different approaches, such as 

imputation based on: genotyped parents; sire and maternal grandsire, dam and paternal 

grand dam, sire only, dam only, and offspring. However, the accuracy of each approach 

is different [37], [36], [38].  

Ungenotyped animals in this study were imputed using FImpute, using 

offspring. FImpute requires at least 4 offspring be available for imputation of 

ungenotyped individuals (default parameter). Preliminary results obtained by Sargolzaei 

et al. [11] and Berry et al. [38] using FImpute clearly showed an inability to impute the 

genotype of sires when a paternal halfsib family size of three or less was used. 

However, the results indicated that the greater the number of genotyped offspring, the 

higher were the CR values.  

These results were similar to the ones reported by Berry et al. [38] studying 

seven dairy and beef breeds in Ireland with five offspring per ungenotyped individual 

and Bouwman et al. [36] studying dairy cattle in Netherlands with four offspring per 

ungenotyped animal. The average value found in this study was compatible to what is 

considered an accurate imputation from low density, i.e. average CR above 0.950 and 

having a very low missing rate.  

 

Conclusions 

All low density panels, except the 3K SNP panel, can be used to impute to the 

50K SNP panel with average concordance rates higher than 0.940. The customized 15K 

SNP panel yielded the highest percentage of animals with concordance rate above 0.950 

of all the low density panels studied. 

The 50K, 90iK and 90tK SNP panels can be used to impute to the 777K SNP 

panel with average concordance rates higher than 0.940. A two-step imputation is 
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recommended for lower density panels, making use of all available intermediate density 

panel genotypes. 

FImpute outperformed Beagle in all scenarios for imputation to both the 50K 

and to the 777K SNP panels both in terms of accuracy and computing time required. 

Ungenotyped animals that have four or more offspring and do not have available 

biological material to carry out genotyping may have their 50K SNP panel genotype 

inferred with an average concordance rate of 0.950 in the Hereford/Braford population 

analyzed. 
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Table 1 Summary statistics of genotyped animals and pedigree structure of the 

50K and the 777K SNP panels.  

Parameter Braford Hereford Nellore 

 Imputation to the 50K SNP panel 

Total of genotyped animals 2,946 664 88 

Sires 39 29 6 

Dams 76 21 0 

Offspring 2,831 614 82 

Offspring with sire and/or dam genotyped (%)  22.81 32.68 12.50 

Average number of offspring per sire 15.28±17.38 6.76±6.46 1.83±0.90 

Smallest and largest number of offspring per sire 1-76 1-26 1-3 

Average number of offspring per dam 1.00±0.00 1.00±0.00 1.00±0.00 

Offspring with sire and/or dam unknown (%)  69.86 48.04 18.18 

 Imputation to the 777K SNP panel 

Total of genotyped animals 71 59 88 

Sires 8 3 5 

Dams 0 0 0 

Offspring 63 56 83 

Offspring with sire and/or dam genotyped (%) 25.35 8.47 10.23 

Average number of offspring per sire 2.25±1.09 1.67±0.94 1.80±0.98 

Smallest and largest number of offspring per sire 1-4 1-3 1-3 

Average number of offspring per dam 0.00±0.00 0.00±0.00 0.00±0.00 

Offspring with sire and/or dam unknown (%) 53.52 38.98 18.18 
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Table 2 Number of SNPs on each simulated panel before and after quality control 

for imputation to 50K or 777K SNP panels1. 

Commercial name Label 

Number 

of 

 SNPs 

Number of 

SNPs in the 

imputation 

to 50K 

Number of 

SNPs in the 

imputation 

to 777K 

Illumina Bovine3K 3K 2,900 2,321 2,359 

Illumina BovineLD 6K 6,909 6,205 6,216 

Beef LD GeneSeek Genomic Profiler 8K 8,762 7,033 7,478 

15K panel2 15K 14,195 12,304 12,345 

Indicus LD GeneSeek Genomic Profiler 20K 19,721 7,320 16,047 

Illumina BovineSNP50 50K 54,609 43,247 43,247 

GeneSeek Genomic Profiler Indicus HD 90iK 74,085 - 55,819 

GeneSeek Genomic Profiler Beef HD 90tK 76,992 - 61,445 

Illumina BovineHD 777K 787,799 - 587,620 
1 The SNP quality control included GenCall score (>=0.15), Call Rate (>=0.90), Hardy-

Weinberg Equilibrium (P>=10-6), removal of non-autosomal chromosomes and SNPs 

not in common with reference panel; 
2 Non commercial panel. The 15K panel was created based on the Beef LD GeneSeek 

Genomic Profiler (8K) panel by expanding it with SNPs selected based on minor allele 

frequency greater than 0.23, linkage disequilibrium less than 0.088 and preferably 

located evenly spaced between two SNPs in the 8K SNP panel. 
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Table 3 Imputation scenarios used in the study.  

Imputation 
Software Pedigree information Nellore genotypes Method 

From To 

3K, 6K, 8K, 15K, 20K 50K 

Fimpute 

Yes 
Yes 

One-step 

No 

No 
Yes 

No 

Beagle No 
Yes 

No 

3K, 6K, 8K, 15K, 20K 777K 

Fimpute 

Yes 

Yes 

One-step 

No 

Two-step 
Beagle No 

50K, 90iK, 90tK 777K 

Fimpute 

Yes 

Yes One-step No 

Beagle No 
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Table 4 Overall computing run time in minutes for the different imputation 

scenarios1,2. 

Panel 
FImpute 

 
Beagle 

NE-P NNE-P NE-NP NNE-NP 
 

NE-NP NNE-NP 

  

 
Imputation to the 50K SNP panel3 

3K 2 6 41 39 
 

2280 2131 

6K 3 7 46 45 
 

828 772 

8K 3 7 45 45 
 

808 656 

15K 3 9 48 48 
 

328 317 

20K 3 7 37 42 
 

708 622 

  

 
Imputation to the 777K SNP panel4,5 

3K 16 (17,24) - 4 (5,8) - 
 

64 (224,41) - 

6K 17 (23,24) - 4 (19,21) - 
 

49 (238,33) - 

8K 17 (23,24) - 3 (20,23) - 
 

45 (177,34) - 

15K 15 (24,23) - 8 (20,23) - 
 

40 (127,42) - 

20K 17 (23,23) - 9 (20,23) - 
 

44 (161,42) - 

50K 3 - 11 - 
 

29 - 

90iK 17 - 11 - 
 

25 - 

90tK 17 - 10 - 
 

33 - 
1 Run time based on 10 parallel jobs with computer with 4*6-core processors (Intel 

Xeon X5690 @ 3.47GHz) and 128 Gigabytes of memory in OS x86-64 GNU/Linux; 
2 Scenarios for imputation. (NE-P) - using Nellore genotypes in the reference population 

and considering pedigree information; (NNE-P) - not using Nellore genotypes in the 

reference population and considering pedigree information; (NE-NP) - using Nellore 

genotypes in the reference population and not using pedigree information; (NNE-NP) - 

not using Nellore genotypes in the reference population and not using pedigree 

information; 
3 2,735 or 2,647 (not using Nellore genotypes) animals in the reference population and 

963 animals in the imputation population; 
4 Values outside the brackets refer to the one-step imputation. The reference and 

imputation population were formed by 175 and 43 animals, respectively; 
5 Values inside the brackets refer to the two-step imputation. The reference population 

were formed by 3,567 in the imputation from low density panel to the 50K SNP panel 

and 175 animals in the imputation from the 50K SNP panel to the 777K SNP panel. The 

imputation population was formed by 43 animals. 
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Table 5 Mean and standard deviation (SD) of concordance rate and allelic R2 

calculated for different algorithms, panel densities and scenarios for both 

imputation to 50K and 777K SNP panels.  

    CR Allelic R2 

 

No. Mean SD Mean SD 

   

  

Imputation to the 50K SNP panel 

Algorithm 

  Beagle 10 0.927 0.042 0.890 0.067 

Fimpute 20 0.943 0.038 0.912 0.061 

Panel 

  3K 6 0.864 0.011 0.787 0.016 

6K 6 0.946 0.008 0.919 0.011 

8K 6 0.952 0.008 0.927 0.011 

15K 6 0.973 0.006 0.962 0.008 

20K 6 0.953 0.008 0.929 0.011 

Scenario 

  NE-P 5 0.943 0.041 0.913 0.065 

NE-NP 10 0.935 0.041 0.901 0.066 

NNE-P 5 0.943 0.042 0.912 0.067 

NNE-NP 10 0.935 0.042 0.901 0.066 

      

  

Imputation to the 777K SNP panel 1 

Algorithm 

  Beagle 8 0.895 0.040 0.826 0.066 

Fimpute 16 0.921 0.035 0.866 0.059 

Panel 

  3K 3 0.838 0.017 0.728 0.025 

6K 3 0.898 0.016 0.829 0.025 

8K 3 0.902 0.017 0.836 0.026 

15K 3 0.918 0.017 0.863 0.027 

20K 3 0.903 0.017 0.837 0.026 

50K 3 0.930 0.016 0.882 0.025 

90iK 3 0.952 0.010 0.919 0.016 

90tK 3 0.955 0.009 0.925 0.014 

Scenario 

  NE-P 8 0.9199 0.037 0.865 0.062 

NE-NP 16 0.9082 0.039 0.846 0.065 

Step 

  One-step 15 0.8064 0.884 0.674 0.147 

Two-step 15 0.8920 0.032 0.819 0.053 
1 Means and standard deviation for the two-step analysis. 
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Table 6 Analysis of variance performed on the average concordance rate and 

allelic R2 of the animals in the imputation population from each scenario for 

imputation from low density panels to the 50K SNP panel1,2. 

Concordance rate Allelic R2 

Source Mean Scheffé test3 Source Mean Scheffé test3 

Algorithm4 (P-value < 0.0001) Algorithm4 (P-value < 0.0001) 

FImpute 1.340 a FImpute 1.283 a 

Beagle 1.306   b Beagle 1.244   b 

Panel5 (P-value < 0.0001) Panel5 (P-value < 0.0001) 

15K 1.402 a 15K 1.368 a 

20K 1.347   b 20K 1.295   b 

8K 1.345     c 8K 1.292     c 

6K 1.332       d 6K 1.276       d 

3K 1.189         e 3K 1.085         e 

Scenario6 (P-value 0.0147) Scenario6 (P-value  0.0277) 

NE-P 1.323 a NE-P 1.264 a 

NNE-P 1.323 a NE-NP 1.263 a 

NE-NP 1.323 a NNE-P 1.264 a 

NNE-NP 1.322 a NNE-NP 1.262 a 

Algorithm*Panel (P-value < 0.0001) Algorithm*Panel (P-value  0.0265) 

FImpute - 15K 1.420 a FImpute -15K 1.388 a 

Beagle - 15K 1.384   b Beagle - 15K 1.347   b 

FImpute - 20K 1.365     c FImpute - 20K 1.316     c 

FImpute - 8K 1.362       d FImpute - 8K 1.312       d 

FImpute - 6K 1.349         e FImpute - 6K 1.295         e 

Beagle - 20K 1.330           f Beagle - 20K 1.275           f 

Beagle - 8K 1.328           f Beagle - 8K 1.272           f 

Beagle - 6K 1.316             g Beagle - 6K 1.257             g 

FImpute - 3K 1.204               h FImpute - 3K 1.104               h 

Beagle - 3K 1.174                 i Beagle - 3K 1.067                 i 
1 Concordance rate and allelic R2 were arcsine square root transformed for the analyses; 

2 Interactions between Algorithm*Scenario and Panel*Scenario were not statistically 

significant (P>0.05); 
3 Different letters within a group means that there is a statistical difference between two 

means (P<0.05); 
 3 Algorithm used was either FImpute v.2.2 [11] or Beagle v.3.3 [8]; 
5 3K, 6K, 8K, 15K and 20K are low-density panels; 
6 Scenarios for imputation to the 50K SNP panel. (NE-P) - using Nellore genotypes in 

the reference population and considering pedigree information; (NNE-P) - not using 

Nellore genotypes in the reference population and considering pedigree information; 

(NE-NP) - using Nellore genotypes in the reference population and not using pedigree 

information; (NNE-NP) - not using Nellore genotypes in the reference population and 

not using pedigree information.  
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Table 7 Analysis of variance performed on the average concordance rate and 

allelic R2 of the animals in the imputation population from each scenario for 

imputation from low density panels to the 777K SNP panel1,2,3. 

Concordance rate Allelic R2 

Source Mean Scheffé test4 Source Mean Scheffé test4 

Algorithm5 (P-value < 0.0001) Algorithm5 (P-value < 0.0001) 

FImpute 1.291 a FImpute 1.203 a 

Beagle 1.244   b Beagle 1.145   b 

Panel6 (P-value < 0.0001) Panel6 (P-value < 0.0001) 

90tK 1.351 a 90tK 1.286 a 

90iK 1.343   b 90iK 1.275   b 

50K 1.295     c 50K 1.210     c 

15K 1.273       d 15K 1.181       d 

20K 1.247         e 20K 1.146         e 

8K 1.245         e  8K 1.144         e 

6K 1.239         e  6K 1.135         e 

3K 1.150           f 3K 1.013           f 

Scenario7 (P-value  0.0258) Scenario (P-value  0.0346) 

NE-NP 1.269 a NE-NP 1.175 a 

NE-P 1.267   b NE-P 1.172   b 

Algorithm*panel (P-value =0.0052) Algorithm*panel (P-value =0.0107) 

FImpute - 90tK 1.370 a FImpute - 90tK 1.309 a 

FImpute - 90iK 1.364 a FImpute - 90iK 1.301 a 

Beagle - 90tK 1.331   b Beagle - 90tK 1.262   b 

FImpute - 50K 1.322   b Beagle - 90iK 1.249   b 

Beagle - 90iK 1.322   b FImpute - 50K 1.244   b 

FImpute - 15K 1.300     c FImpute - 15K 1.215     c 

FImpute - 20K 1.271       d Beagle - 50K 1.176       d 

FImpute - 8K 1.269       d FImpute - 20K 1.176       d 

Beagle - 50K 1.269       d FImpute - 8K 1.174       d 

FImpute - 6K 1.262       d FImpute - 6K 1.165       d 

Beagle - 15K 1.245         e Beagle - 15K 1.146         e 

Beagle - 20K 1.222           f Beagle - 20K 1.115           f 

Beagle - 8K 1.221           f Beagle - 8K 1.114           f 

Beagle - 6K 1.215           f Beagle - 6K 1.106           f 

FImpute - 3K 1.169             g FImpute - 3K 1.039             g 

Beagle - 3K 1.130               h Beagle - 3K 0.988               h 
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1 Concordance rate and allelic R2 were arcsine square root transformed for the analyses; 

2 Interaction effects between Algorithm*Scenario and Panel*Scenario were not 

statistically significant (P>0.05); 
3 3K, 6K, 8K, 15K and 20K are low-density panels were imputed in two steps (firstly 

they were imputed to the 50K and then to the 777K SNP panel); 
4 Different letters within a group means that there is a statistical difference between two 

means (P<0.05); 
5 Algorithm used was either FImpute v.2.2 [11] or Beagle v.3.3 [8]; 
6 3K, 6K, 8K, 15K, 20K, 50K, 90iK and 90tK are low-density panels; 
7 Scenarios for imputation to the 777K SNP panel. (NE-P) - using Nellore genotypes in 

the reference population and considering pedigree information; (NE-NP) - using Nellore 

genotypes in the reference population and not using pedigree information.  
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Table 8 Analysis of variance performed on the average concordance rate and 

allelic R2 of the animals in the imputation population from each scenario for 

imputation to the 777K SNP panel by one or two steps12. 

Concordance rate Allelic R2 

Source Mean Scheffé test3 Source Mean 
Scheffé 

test3 

Step4 (P-value < 0.0001) Step4 (P-value < 0.0001) 

Two-step 1.231 a Two-step 1.125 a 

One-step 1.110   b One-step 0.997   b 

Algorithm5 (P-valeu < 0.0001) Algorithm4 (P-valeu  0.0001) 

FImpute 1.202 a FImpute 1.080 a 

Beagle 1.140   b Beagle 0.997   b 

Panel6 (P-value < 0.0001) Panel6 (P-value < 0.0001) 

15K 1.236 a 15K 1.130 a 

20K 1.229   b 20K 1.120 a 

8K 1.180     c 8K 1.052   b 

6K 1.167       d 6K 1.034     c 

3K 1.042         e 3K 0.855       d 

Scenario7 (P-value 0.7638) Scenario7 (P-value 0.9983) 

NE-NP 1.171 a NE-NP 1.038 a 

NE-P 1.170 a NE-P 1.038 a 

Step*Algorithm (P-value < 0.0001) Step*Algorithm (P-value < 0.0001) 

Two-step - FImpute 1.254 a 
Two-step - 

FImpute 
1.154 a 

Two-step - Beagle 1.208   b Two-step - Beagle 1.095   b 

One-step - FImpute 1.149     c One-step - FImpute 1.006     c 

One-step - Beagle 1.072       d One-step - Beagle 0.898       d 

Step*Panel (P-value < 0.0001) Step*Panel (P-value < 0.0001) 

Two-step - 15K 1.274 a Two-step - 15K 1.183 a 

Two-step - 20K 1.247   b Two-step - 20K 1.147   b 

Two-step - 8K 1.246   b Two-step - 8K 1.145   b 

Two-step - 6K 1.239   b Two-step - 6K 1.136   b 

One-step - 20K 1.210     c One-step - 20K 1.094     c 

One-step - 15K 1.198     c One-step - 15K 1.078     c 

Two-step - 3K 1.149       d Two-step - 3K 1.013       d 

One-step - 8K 1.114         e One-step - 8K 0.960         e 

One-step - 6K 1.094           f One-step - 6K 0.932         e 

One-step - 3K 0.936             g One-step - 3K 0.696           f 
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1 Concordance rate and allelic R2 were arcsine square root transformed for the analyses; 

2 Interaction effects between step*scenario, algorithm*panel, algorithm*scenario and 

panel*scenario were not statistically significant (P>0.05); 
3 Different letters within a group means that there is a statistical difference between two 

means (P<0.05); 
4 One-step is the imputation from the low-density panels to the 777K SNP panel and 

two-step is the imputation from low-density panels to 50K SNP panel and after the 

imputation from 50K SNP panel to 777K SNP panel; 
5 Algorithm used was either FImpute v.2.2 [11] or Beagle v.3.3 [8]; 
6 3K, 6K, 8K, 15K, and 20K are low-density panels; 
7 Scenarios for imputation to the 777K SNP panel. (NE-P) - using Nellore genotypes in 

the reference population and considering pedigree information; (NE-NP) - using Nellore 

genotypes in the reference population and not using pedigree information.  
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Figure 1 Concordance rate of imputation to the 50K panel in different 

concordance rate bins. 

Average over scenarios of imputation from alternative low density panels (3K, 6K, 8K, 

15K and 20K) to the 50K SNP panel. a) using FImpute; b) using Beagle. 

 

a) 

b) 
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Figure 2 Concordance rate of imputation to the 50K panel for all BTAs and 

scenarios.  

a) using FImpute; b) using Beagle. 

 

a) 

b) 
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Figure 3 Concordance rate of imputation by MAF classes.  

Average over scenarios of imputation from alternative low density panels (3K, 6K, 8K,  

15K and 20K) to the 50K SNP panel. Within a group of colums, two different letters 

means a statistical difference (P<0.05). 
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Figure 4 Concordance rate of imputation to the 777K panel in different 

concordance rate bins. 

Average over scenarios of imputation from alternative low density panels (3K, 6K, 8K, 

15K, 20K, 50K, 90iK and 90tK) to the 777K SNP panel. a) using FImpute; b) using 

Beagle. 

 

a) 

b) 
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Figure 5 Concordance rate of imputation to the 777K panel for all BTAs and 

scenarios. 

 a) using FImpute; b) using Beagle. 

 

b) 

a) 
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Figure 6 Concordance rate of imputation by MAF classes. 

a) Average over scenarios of imputation from alternative low density panels (3K, 6K, 

8K, 15K and 20K, 50K, 90iK and 90tK) to the 777K SNP panel; b) Average over 

scenarios of imputation from alternative low density panels (3K, 6K, 8K, 15K, 20K) to 

the 777K SNP panel in two-step imputation. Within a group of colums, two different 

letters means a statistical difference (P<0.05). 

a) 

b) 
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Abstract 

 

Background: Alternate scenarios composed by different percentages of animals with 

imputed genotypes and different sizes of the training population were used to 

investigate the effect of the use of imputed genotypes in the accuracy of genomic 

selection in twenty economic important traits in Brazilian Braford and Hereford beef 

cattle breeds. The training population was formed by animals born before 2011 and the 

validation population by animals born in 2011. Deregressed EBVs were used as pseudo 

phenotypes in a GBLUP model using two different mimicked panels derived from the 

50K panel, the 8K panel and the 15K panel, which were subsequently imputed to the 

50K panel. In addition, a 777K was also used in the analyses, which was imputed from 

the 50K panel. 

Results: DGV validated accuracy (Pearson’s correlation) in the prediction population 

for the twenty traits ranged from 0.38 to 0.40 in the different scenarios. The average 

losses in GEBV expected accuracy (accuracy obtained from the inverse of the mixed 

model equations) relative to the real 50K genotypes ranged from -0.0007 to -0.0012 and 

from -0.0002 to -0.0005 when using the 50K panel imputed from the 8K and 15K panel, 

respectively. When using the imputed 777K panel the average losses in GEBV expected 

accuracy was -0.0021. The average gain in EBV expected accuracy by including 

molecular markers when compared to simple BLUP was between 0.02 and 0.03 across 

scenarios and traits. 

Conclusion: The percentage of animals with genotypes imputed in the training 

population did not influence the DGV validated accuracy, but the size of the training 

population, in general, influenced DGV validated accuracy. The losses in GEBV 

expected accuracy were lower when using the 50K panel imputed from the 15K panel 

than form the 8K panel. The increase in GEBV expected accuracy  in the prediction 

population by adding information from molecular markers was small compared to 

simple BLUP. 

 

Keywords: Direct genomic value, Genomic selection, Imputation, Beef cattle, 

Accuracy. 

 

Background 

Animal breeding for important economic traits has been practiced over the years 

based on phenotypes and relationships among individuals. Recent advances in DNA 

(Deoxyribonucleic Acid) analysis led to the complete sequencing of several species 

including cattle [1]. From these advances, new technologies emerged and currently 

dense panels for genotyping SNPs (Single Nucleotide Polymorphisms) are available, 

such as Illumina BeadChip BovineHD (Illumina Inc., San Diego, USA) that enables 

genotyping 777K SNPs from a sample in a single panel. This new genotyping 

technology has triggered the worldwide development of new research, with substantial 

allocation of human and financial resources, in order to use the information generated 

from SNP genotypes in animal breeding. 

Incorporation of genomic information in livestock breeding programs is 

expected to result in substantially higher genetic gain in shorter period of time [2], [3], 

[4]. These gains would be associated with decreased generation intervals, increased 

accuracy of selection and incorporation of new traits of economic importance [2], [5], 

[6], [7].  
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Particularly, in dairy cattle, this new technology has provided substantial 

financial savings in progeny tests [8], [9]. Accuracy of direct genomic value (DGV), 

calculated from the estimated effects of molecular markers, depends on many factor 

such as the level of linkage disequilibrium between markers and quantitative trait loci 

(QTL), the number of animals in the training population, the heritability and the 

distribution of QTL effects [9]. The genomic selection has changed considerably the 

dairy cattle breeding, especially young bull testing, where some countries today have 

partially or completely eliminated the traditional progeny test. The success of genomic 

selection in dairy cattle, mainly in the Holstein breed, is associated with a large number 

of genotyped animals, a small effective population size, key sires are used in all 

countries with important milk production and there is cooperation between countries 

with respect to the use of genotypes [9]. The picture for beef cattle is different, because 

the effective population size is larger, there are several important breeds with few key 

sires used across countries and also the cooperation between countries is minimal [6]. 

Genotyping cost in large commercial herds is the major financial constrain for 

implementing genomic selection. Farmers would likely use in their commercial 

breeding programs lower density panels, which are more affordable. These low density 

panels would be imputed to a medium or high density panel [10], [11] and would be 

used to predict the genomic values for the animals [12], [13]. 

The aim of this study was to investigate the accuracy of genomic predictions 

using real 50K SNP genotypes, as well as using different percentages of imputed SNP 

genotypes and different sizes of training population in Braford and Hereford cattle. 

 

Methods 

 

Animal welfare 

Animal welfare and use committee approval was not necessary for this study 

because data were obtained from preexisting databases. 

 

Genotype and phenotype data 

Data was obtained from the Conexão Delta G’s genetic improvement program - 

Hereford and Braford (Zebu x Hereford) cattle (Conexão Delta G, Dom Pedrito/RS, 

Brazil). The dataset contained approximately 520,000 animals from 97 farms located in 

the South, Southeast, Midwest and Northeast regions of Brazil. Out of these animals 

there were 683 Hereford and 2,997 Braford animals genotyped born from 2008 to 2011 

plus 130 sires. There were 624 Hereford and 2,926 Braford animals genotyped with the 

Illumina BovineSNP50 panel and 59 Hereford and 71 Braford siresgenotyped with the 

Illumina BovineHD panel from 17 farms located in the South of Brazil. Data also 

included 88 Nellore bulls from the Paint Program (Lagoa da Serra, Sertãozinho/SP, 

Brazil) genotyped with the Illumina BovineHD panel. 

 

Genotype data editing 

For imputation to the 50K SNP panel, animals genotyped with 777K SNP 

genotypes had SNPs not contained on the 50K SNP panel removed. The missing 

genotypes (= 0.46%) in the 50K SNP panel were previously imputed. Sites were filtered 

for GenCall score (>=0.15), Call Rate (>=0.90) and Hardy-Weinberg Equilibrium 

(P>=10-6). Only autosomes were considered. The individual sample quality control 

considered GenCall Score (>=0.15), Call Rate (>=0.90), heterozygosity deviation (limit 

of ± 3 SD), repeated sampling and paternity errors. The SNP and sample quality control, 
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for imputation to the 777K SNP panel, were the same as for the imputation to the 50K 

SNP panel. The 8K and 15K SNP panels were used for imputation to the 50K SNP 

panel and the 50K SNP panel was used for imputation to the 777K SNP panel [11] 

using FImpute v.2.2 [14].  

For estimation the markers effect were used the same quality controls used in 

the imputation plus Minor Allele Frequency (>=0.05). 

 

Training and prediction populations 

The dataset was split into two groups for the analysis. The training group 

included all animals born before 2011 and the prediction group included all the animals 

born in 2011 and some bulls born before 2011 that did not have phenotypic information 

and had no offspring until 2010. Training and prediction groups varied in size for each 

trait (Table 1). 

 

Scenarios 

Three groups of scenarios per trait were defined. The first two groups of 

scenarios were created from 8K and 15K SNP panels imputed to the 50K SNP panel. 

The third group/scenario was created from the 50K SNP panel imputed to the 777K 

SNP panel. The first group of scenarios (SCE1) was created with different percentages 

of animals with imputed genotypes and unequal training population sizes. The second 

group of scenarios (SCE2) was also created with different percentages of animals with 

imputed genotypes, but with equal training population size. The third group/scenario 

(SCE3) was created with only one percentage of animals with imputed genotypes and 

only one training population size. The definitions of the scenarios are presented in the 

Table 2. 

 

Traditional genetic evaluation 

The package used to obtain the trait estimated breeding values (EBV) was 

written in Fortran language, developed by GenSys (GenSys Consultores Associados, 

Porto Alegre, Brazil) and considers the degree of connectedness among 

contemporaneous groups in multi trait animal models with robust estimation procedures 

in relation to the heterogeneity of variance of contemporary groups and the residual size 

for each observation [15]. Two EBVs sets were generated. The first set was estimated 

using all available information to date while the second set was estimated when 

information for all animals born after 2010 was discarded. These two sets of EBVs were 

then used for validation and training, respectively. 

 

Deregressed EBV 

The second EBV set of the training population was deregressed and used as 

pseudo phenotypes to estimate markers effects. The approach of VanRaden & Wiggans 

[16] was used to calculate deregressed EBVs using EBVs and reliabilities of genotyped 

animals and their sires and dams. Deregressed EBVs were calculated for animals of the 

training population with EBV reliability greater than the average (r2=0.09) and that 

satisfied the condition: 

dpEBV
dpEBV

dEBVEBV
abs 10

)(








 
,  

where, EBV is the estimated breeding value, dEBV is a deregressed EBV and dpEBV is 

the standard deviation of the EBVs. 
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Prediction of DGV and GEBV 

Direct genomic values (DGV) were estimated using GBLUP method [5] for all 

the twenty traits (Table 2), using either 50K or 777K SNP panels and deregressed EBVs 

in the GEBV package [17]. The following linear model was assumed: 

eZg1y n   , 

where y is the vector of deregressed EBV for the trait, μ is the overall mean, 1n is a 

vector of ones, Z is the design matrix that relates deregressed EBVs to animals, g is the 

vector of DGV to be predicted, and e is the vector of residual effects. It was assumed 

that g ~ N (0,G*σ2g) where σ2g is the additive genetics variance and G* is a combined 

relationship matrix (80% genomic relationship and 20% pedigree-based relationship) , 

and e ~ N (0,Rσ2e) where σ2e is the residual variance and R is a diagonal matrix whose 

elements account for the differences in reliabilities of the deregressed EBVs. 

The genomic estimated breeding values (GEBV) were estimated using the 

blending procedure outlined by Hayes et al. [9] and described below:  

2
EBV

2
DGV

2
EBV

2
DGV

rr

EBV*rDGV*r
GEBV




  where, 

2
DGVr and 2

EBVr are the reliability of DGV and EBV, respectively. 

 

Comparison criteria between scenarios 

The accuracies of genomic predictions were calculated in two different ways and 

were used to express the results of this study. 

(1) Pearson’s correlation between DGVs and EBVs in the prediction population 

was used as measure of accuracy in each scenario in this study and was termed as 

validated accuracy.  

(2) Accuracy obtained from the mixed model equation in the prediction 

population was used to quantify the losses in GEBV accuracy by the use of imputed 

panel compared to the original panel and also was used to quantify the gain in EBV 

accuracy by the use of molecular marker information in the EBV estimation, was 

termed as expected accuracy. 

Validated accuracy and losses in GEBV expected accuracy were used in the 

analysis of variance carried out by ANOVA procedure of SAS version 9.2 (SAS Inst. 

Inc., Cary, NC).  

The results are presented based on the traits that make up the selection index 

used by Conexão Delta G’s genetic improvement program and another group of traits 

that are not included in the selection index, but are used for independent culling 

selection. The selection index puts the following weights on the traits: 25% for weight 

gain from birth to weaning (WGBW), 25% for weight gain from weaning to yearling 

(WGWY), 4% for conformation score at weaning (CW), 4% for conformation score at 

yearling (CY), 8% for precocity score at weaning (PW), 8% for precocity score at 

yearling (PY), 8% for muscularity score at weaning (MW), 8% for muscularity score at 

yearling (MY), 5% for scrotal circumference adjusted for age at yearling (SCa), 5% for 

scrotal circumference adjusted for age and weight at yearling (SCaw). 
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Results 

 

Traits in the selection index 

Validated accuracy for the ten traits in the selection index were between 0.29 to 

0.31 across all the scenarios in SCE1, SCE2 and SCE3 (Table 3 and 4).  

In the SCE1scenarios, where the size of the training population was increased by 

an increased percentage of imputed animals, the size of training population had 

significant impact on the validated accuracy, generally in favor of the scenario with the 

highest number of training animals. The comparison of the 8K and 15K SNP panels 

imputed to the 50K SNP panel to the true 50K SNP panel showed significant 

differences (P<0.05) in 45% and 40% of the cases, respectively (Table 5). These 

differences were generally in favor of the true 50K SNP panel. The differences between 

the 8K and 15K SNP panels were not significant (P>0.05) in 55% of the cases (Table 

5).  

In the SCE2 scenarios, where the training population size was held constant but 

the percentage of imputed animals varied, there were no significant difference among 

the alternate percentage of imputed animals (P>0.05) for all traits. The comparison of 

the 8K and 15K SNP panels to the true 50K SNP panel showed significant differences 

(P<0.05) in 45% and 60% of the cases, respectively (Table 6). These differences were 

generally in favor of the true 50K SNP panel. The differences between the 8K and 15K 

SNP panels were not significant (P>0.05) in 55% of the cases (Table 6). 

Average EBV expected accuracy in the training and prediction population, for 

the ten traits in the selection index, were 0.64 and 0.63, respectively. Average GEBV 

expected accuracy was 0.66 for the scenario with all animals and with 60% imputed 

genotypes (SCE1-60% and SCE2-60%) and 0.65 for the SCE3 scenario. The increase in 

average GEBV expected accuracy in the prediction population by adding the 

information of the markers was 0.03. The average DGV expected accuracy across traits 

was 0.40 (Table 7). 

Losses in GEBV expected accuracy were measured within each level of the 

scenario in relation to the same level of the scenario using only the real genotypes. All 

losses were statistically different from real 50K SNP panel (P<0.05) and were higher 

when using the 8K SNP panel in relation to the 15K SNP panel. For the 8K and 15K 

SNP panel the average losses in GEBV expected accuracy were between -0.004 and -

0.0011 and -0.0002 and -0.0011 across scenarios in SCE1 and SCE2, respectively 

(Tables 8 and 9). In the SCE3 scenario using the 777K SNP panel imputed from the 

50K SNP panel the average loss in GEBV expected accuracy was -0.0021 (Table 9). 

 

Traits not in the selection index 

Validated accuracy for the ten traits not included in the selection index ranged 

between 0.47 and 0.50 across scenarios in SCE1, SCE2 and SCE3. However, for the 

traits related to fitness (NW, NY, HW, HY, TR and OP), the average validated accuracy 

varied from 0.63 to 0.65 (Tables 3 and 4).  

As observed for the traits included in the selection index, the validated accuracy 

showed no significant difference (P>0.05) in SCE2, regardless of which panel the 

genotypes were imputed from. Regarding to the panels, there were no significant 

differences in 60% of the cases (P>0.05) between the 8K and 15K SNP panels and the 

true 50K SNP panel (Table 6). 

When evaluating the size and percentage of animals with imputed genotypes in 

the training population in SCE1 scenarios, the validated accuracy showed that 86% of 
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the comparisons were statistically different (P<0.05). In general, the comparisons were 

in favor of scenarios with larger training population. Regarding the panel used, 60% of 

the comparisons of the 8K and 15K SNP panel to the true 50K panel were statistically 

significant (P<0.05) and in favor of the true 50K SNP panel (Table 5). 

Average EBV expected accuracy in the training and prediction population, of 

these ten traits, were 0.64 and 0.63, respectively. These results were equal to those 

attained for traits in the selection index. Average GEBV expected accuracy was 0.65 for 

the scenarios with all animals and with 60% imputed genotypes and for the SCE3 

scenario. The increase in GEBV expected accuracy by adding marker information was 

about 0.02 in all scenarios. The average DGV expected accuracy, was 0.40, which was 

also equal to that for traits in the selection index (Table 7). 

Losses in GEBV expected accuracy were statistically different from real 50K 

SNP panel (P<0.05) for this group of traits which have higher values than the traits in 

the selection index. Using the 8K and 15K SNP panels imputed to the 50K SNP panel 

the average losses in GEBV expected accuracy were between -0.0004 and -0.0013 and -

0.0003 to -0.0013, respectively, across SCE1 and SCE2 scenarios (Table 8 and 9). In 

the SCE3 scenario that used the 777K SNP panel imputed from the 50K SNP panel, the 

loss in average GEBV expected accuracy was -0.0021. The same value was attained for 

the selection index traits (Table 9). 

 

Discussion 

 

Traits in the selection index 

Conexão Delta G’s genetic improvement program - Hereford and Braford 

(Nellore x Hereford) started in the 1970s. During the first years, animals were selected 

using a selection index that included weight gain, scrotal circumference and 

conformation score traits [18]. In 1975, precocity, muscling and body size scores [19] 

were incorporated into the selection index. In the 90s, body size score was excluded 

from the selection index. The selection index showed some variations over the years in 

the weighting of the traits, but in general the selection index put 50% for weight gain, 

40% for conformation, precocity and muscling score and 10% for scrotal circumference. 

The correlation between DGV and EBV (validated accuracy) has been used to 

represent the accuracy of DGV [4], [20], [21]. The validated accuracy for traits in the 

selection index showed lower values than those reported by Saatchi et al. [20] working 

with Limousin and Simmental breeds in the United States and Saatchi et al. [22] and 

Boddhireddy et al. [21] both working with Angus in the United States. While Neves et 

al. [23], working with Nellore in Brazil and with the same set of traits in the selection 

index, also found larger validated accuracy than those found in this study, except for 

WGBW and CW. These lower values of validated accuracy in this study are also related 

to the lowest values of EBV expected accuracy in the training population (r=0.64). In 

dairy cattle, the validated accuracy are much higher in comparison with beef cattle [24], 

[13], [25]. Those higher values are associated with more reliable EBV values for 

training group, higher genomic relationship between training and prediction groups, and 

higher extent of linkage disequilibrium [26]. Validated accuracy were greater at higher 

trait heritability values (e.g., post weaning traits). These results were similar to those 

found by Brito et al. [4], working with simulated data in beef cattle, by Akanno et al. 

[27], working with simulated data in pigs, and by Khatkar et al. [28], working with 

dairy cattle in Australia. 
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Scrotal circumference has the highest heritability in the group in the selection 

index, but showed the lowest validated accuracy. This was probably related to the 

smaller number of animals in the training population (n=708).  

In the SCE2 scenarios, where the size of the training population was constant, 

the validated accuracy were no statistical differences and in the SCE1 scenarios, where 

the size and the percentage of animals with imputed genotypes in the training 

population varied together, the validated accuracy were statistical differences, showed 

that the size of the training population was more important than the percentage of 

animals with imputed genotypes. Berry and Kearney [12], Khatkar et al. [28], 

Dassonneville et al. [29], Segelke et al. [30] and Mulder et al. [13], studying the effect 

of the presence of imputed genotypes in the training population in dairy cattle, showed 

that small losses in reliability were observed using imputed genotypes to predict the 

effect of the markers. The highest GEBV expected accuracy were observed with the 

traits with higher heritabilities (post weaning traits, exception WGWY) but with slightly 

higher gains in GEBV expected accuracy for the pre weaning traits (lower heritability) 

in accordance with the results showed by Brito et al. [4].  

The DGV expected accuracy for the different traits and SNP panels were about 

0.40 being slightly higher for the pre weaning traits in comparison to the post weaning 

traits. DGV expected accuracy were close to the parent average expected accuracy for 

the traits in the selection index (average of ten traits was 0.55), showing that the 

selection based on the DGV when the parent average is not known, can be used with 

some loss in accuracy. The lower expected accuracies obtained for GEBV and DGV in 

SCE3 scenario are probably related to the fact that only 212 animals in the training 

population had true genotypes. Brito et al. [4], working with beef cattle simulated data, 

found an increase of 0.09 in the DGV accuracy by using a 777K SNP panel instead of a 

50K SNP panel when the training population was formed by 480 sires of highly 

accurate EBVs. 

Despite of all the losses in GEBV expected accuracy using 8K and 15K SNP 

panels being statistically significant when compared to the real 50K panel, they were 

lower with the 15K SNP panel. These results are associated with the highest 

concordance rate in the 50K SNP panel imputed from the 15K SNP panel [11]. This 

same behavior was found by Segelke et al. [30] when they analyzed the losses in 

reliability from imputed panels of two different densities of SNPs in dairy cattle in 

Germany, while Sargolzaei et al. [31], working with dairy cattle in Canada with one 

density of SNP panel in the imputed panel, also showed losses in reliability with values 

around -0.02. When the percentage of animals with imputed genotypes in the training 

population in the SCE2 scenarios increased the losses also increased. The same 

behavior was observed in the SCE1 scenarios. In the SCE3 scenario, losses were much 

higher and related to higher percentage imputation error, since, in this scenario, only 

212 animals had true genotypes [11].  

 

Traits not in the selection index 

The independent culling level was carried out systematically since the beginning 

of the Conexão Delta G’s genetic improvement program for BW, BA and OP traits, 

particularly in Hereford, and NW, NY, HW and HY in Braford. The SW and SY traits 

were part of the selection index between the 1970s and 1990s while the selection of TR 

has been performed with greater emphasis on young bulls in the last decade. 

The traits related to fitness (NW, NY, HW, HY, TR and OP) had values of 

validated accuracy higher in relation to the other traits, including those from the 
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selection index. These higher values are probably associated with greater genetic 

variability due to a milder selection. The results found by Akanno et al. [27], working 

with simulated data in swine strengthens this theory because they found much higher 

accuracy for the indigenous population (smaller selection pressure) in comparison with 

the exotic population (high selection pressure). However, Neves et al. [23] studying 

Nellore in Brazil found validated accuracy lower than those attained for the NW and 

NY traits. This may be due to a strong selection performed in Nellore breed. 

The validated accuracy for the BW and the BA in this study were lower than 

other traits studied. This was probably related to the strong selection which is carried 

out in Hereford breed. Saatchi et al. [22], [20] and [32] working with Angus, Limousin, 

Simmental and Hereford breeds, found higher validated accuracy for these two traits 

compared to those reported in this study. Validated accuracy for BW in the SCE2 

scenario were not influenced by either the panel or the percentage of imputed animals in 

the training population. Different results were found in the SCE1 scenario, where both 

the panel and the number of animals in the training population influenced the validated 

accuracy of this trait. Hayes et al. [9] showed that the values of accuracy varied 

according to the size of the training population and Brito et al. [4] working with 

simulated data from beef cattle, showed that the size of the training population has a 

major effect on the accuracies. These results were also observed for the fitness traits 

(NW, NY, HW, HY, TR and OP). 

For the SW and the SY in the SCE2 scenario, the percentage of animals with 

imputed genotypes was not significant and in the SCE1 scenario it was significant when 

varying the size and the percentage of animals with imputed genotypes in the training 

population. This showed that the effect could due to the population size. The behavior 

of these two traits was similar to these traits’ scores in the selection index, most likely 

because these traits were used together in the selection index for many years. 

The GEBV and DGV expected accuracy in this group of traits were similar to 

the expected accuracy of the traits in the selection index. Despite the fact that the DGV 

of TR and OP traits have presented a high correlation with EBV, the DGV expected 

accuracy for all scenarios was much lower than the accuracy of the parents average to 

the same level of heritability. In general, the DGV expected accuracy for all traits across 

levels of each scenario were lower than the accuracy of the parents average reported by 

Brito et al. [4] which was 0.44 to 0.58 for traits with heritability between 0.10 to 0.40. 

The losses in GEBV expected accuracy of each scenario were always analyzed 

relative to the scenario where only real genotypes were used. For this group of traits in 

the different scenarios, the losses in GEBV expected accuracy were, on average, higher 

compared to the group of traits in the selection index. However, the losses in GEBV 

expected accuracy were higher when using to the 50K SNP imputed panel from the 8K 

SNP panel, which were similar to the traits in the selection index and all differences 

were statistically different from real 50K SNP panel. The higher the percentage of 

animals with imputed genotypes, the higher the losses in GEBV expected accuracy, 

regardless of the scenario. The same behavior was observed in the SCE3 scenario, in 

other words, losses in GEBV expected accuracy were higher due to the higher error rate 

in the imputation [11]. 

 

 Conclusion 

 The percentage of animals with imputed genotypes in the training population did 

not significantly influence the validated accuracy (Pearson’s correlation), but the size of 

the training population influenced these validated accuracy in the prediction population. 
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A small gain in EBV expected accuracy (accuracy obtained from the inverse of the 

mixed model equations) was found when including molecular marker information in the 

EBV estimation. The losses in GEBV expected accuracy due to imputation of 

genotypes were lower when using the 50K SNP panel imputed from the 15K SNP panel 

instead of imputation from the 8K SNP panel. 
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Table 1 Number of phenotypes, EBVs and genotypes for each economic trait in the training and prediction population after 

 data editing 

Economic traits Abbr. h2 Phenotypes Genotypes 
Training population Prediction population 

Animal Sire Dam Total Animal Sire Dam Total 

Traits in the selection index 

Weight gain from birth to weaning (kg) WGBW 0.25 354,255 3,305 2,231 91 3 2,325 944 9 27 980 

Weight gain from weaning to yearling (kg) WGWY 0.31 164,140 2,539 1,520 91 3 1,614 907 6 12 925 

Conformation score at weaning (scores 1-5) CW 0.25 348,020 2,970 1,896 91 3 1,990 944 9 27 980 

Conformation score at yearling (scores 1-5) CY 0.32 171,406 2,768 1,717 91 3 1,811 939 6 12 957 

Precocity score at weaning (scores 1-5) PW 0.25 330,312 2,961 1,887 91 3 1,981 944 9 27 980 

Precocity score at yearling (scores 1-5) PY 0.32 160,261 2,768 1,717 91 3 1,811 939 6 12 957 

Muscularity score at weaning (scores 1-5) MW 0.25 330,059 2,968 1,894 91 3 1,988 944 9 27 980 

Muscularity score at yearling (scores 1-5) MY 0.32 159,706 2,768 1,717 91 3 1,811 939 6 12 957 

Scrotal circumference a (cm) SCa1 0.43 46,823 1,581 623 85 0 708 865 5 3 873 

Scrotal circumference aw (cm) SCaw1 0.43 46,823 1,581 623 85 0 708 865 5 3 873 

Traits not in the selection index 

Birth weight (kg) BW 0.33 221,038 3,434 2,401 88 3 2,492 905 10 27 942 

Birth assistance score (scores 1-5) BA 0.10 26,058 1,581 1,123 44 0 1,167 395 3 16 414 

Size score at weaning (scores 1-5) SW 0.25 140,681 2,911 1,848 81 3 1,932 944 8 27 979 

Size score at yearling (scores 1-5) SY 0.41 84,261 2,737 1,694 84 3 1,781 939 5 12 956 

Prepuce (navel) score at weaning (scores 1-5) NW 0.46 265,802 3,343 2,291 89 2 2,382 927 7 27 961 

Prepuce (navel) score at yearling (scores 1-5) NY 0.41 122,409 2,825 1,793 89 2 1,884 924 5 12 941 

Hair length score at weaning (scores 1-3) HW 0.23 110,163 1,579 612 86 2 700 846 6 27 879 

Hair length score at yearling (scores 1-3) HY 0.31 73,621 2,480 1,561 88 2 1,651 813 4 12 829 

Ticks resistance (ticks unit) TR 0.19 56,978 1,640 594 60 0 654 948 3 3 954 

Ocular pigmentation score (scores 1-3) OP 0.20 139,082 1,635 587 90 1 678 921 9 27 957 
1 SCa is the scrotal circumference adjusted for age at yearling and SCaw is the scrotal circumference adjusted for age and weight at yearling; 
2 The heritability estimates were obtained prior to this study using the DMU package [33]. 
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Table 2 Number of animals with true and imputed genotypes in each scenario for the weight gain from birth to weaning 

 (WGBW) trait1 

Scenarios SCE1 – 50K SNP panel Scenarios SCE2 – 50K SNP panel Scenario SCE3 – 777K SNP panel 

 
Genotypes 

 
Genotypes 

 
Genotypes 

Level2 True Imputed Total Level2 True Imputed Total Level2 True Imputed Total 

0 2,325 0 2.325 0 2.325 0 2.325 90 212 2,113 2,325 

10 930 103 1,033 10 2,092 233 2,325     

20 930 233 1,163 20 1,860 465 2,325 
    

30 930 399 1,329 30 1,627 698 2,325 
    

40 930 620 1,550 40 1,395 930 2,325 
    

50 930 930 1,860 50 1,162 1,163 2,325 
    

60 930 1,395 2,325 60 930 1,395 2,325 
    

1 The same criteria were used to define the scenarios of other traits, but the number of genotypes varies for each trait; 
2 Percentage of animals with imputed genotypes. 
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Table 3 DGV validated accuracy in the prediction population for the SCE1 scenarios12 

Traits3 
8K4 15K4 50K4 

10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60 

Traits in the selection index 

WGBW 0.32 0.33 0.34 0.34 0.34 0.32 0.32 0.33 0.34 0.33 0.33 0.32 0.31 0.33 0.34 0.33 0.34 0.32 

WGWY 0.33 0.33 0.33 0.34 0.36 0.35 0.33 0.33 0.33 0.33 0.36 0.35 0.33 0.33 0.33 0.33 0.36 0.35 

CW 0.24 0.27 0.29 0.30 0.31 0.29 0.25 0.28 0.29 0.30 0.31 0.28 0.25 0.28 0.29 0.30 0.31 0.29 

CY 0.29 0.29 0.29 0.28 0.29 0.26 0.29 0.29 0.29 0.29 0.29 0.26 0.29 0.29 0.29 0.29 0.29 0.26 

PW 0.28 0.29 0.30 0.31 0.33 0.31 0.27 0.29 0.29 0.31 0.33 0.31 0.27 0.29 0.30 0.31 0.33 0.31 

PY 0.32 0.32 0.31 0.32 0.35 0.33 0.32 0.32 0.31 0.32 0.35 0.34 0.32 0.32 0.31 0.33 0.35 0.34 

MW 0.32 0.33 0.34 0.34 0.37 0.35 0.32 0.33 0.34 0.34 0.37 0.35 0.31 0.33 0.34 0.34 0.37 0.35 

MY 0.35 0.35 0.33 0.34 0.37 0.34 0.35 0.35 0.33 0.35 0.38 0.35 0.35 0.35 0.33 0.34 0.38 0.35 

SCa 0.21 0.21 0.20 0.20 0.17 0.18 0.22 0.23 0.21 0.21 0.17 0.18 0.22 0.22 0.21 0.20 0.18 0.18 

SCaw 0.24 0.23 0.22 0.21 0.17 0.20 0.25 0.24 0.22 0.22 0.18 0.19 0.25 0.25 0.23 0.22 0.18 0.20 

Average 0.29 0.30 0.30 0.30 0.31 0.29 0.29 0.30 0.30 0.30 0.31 0.29 0.29 0.30 0.30 0.30 0.31 0.30 
Traits not in the selection index 

BW 0.21 0.21 0.22 0.21 0.21 0.22 0.21 0.21 0.23 0.21 0.21 0.21 0.20 0.21 0.22 0.20 0.20 0.21 

BA 0.12 0.14 0.12 0.13 0.14 0.14 0.14 0.15 0.14 0.14 0.15 0.15 0.13 0.14 0.13 0.13 0.14 0.14 

SW 0.28 0.30 0.31 0.32 0.31 0.33 0.28 0.30 0.31 0.31 0.31 0.33 0.27 0.30 0.31 0.31 0.31 0.33 

SY 0.29 0.30 0.30 0.30 0.33 0.36 0.30 0.31 0.31 0.30 0.33 0.35 0.30 0.31 0.31 0.30 0.33 0.36 

NW 0.47 0.49 0.49 0.50 0.51 0.53 0.47 0.48 0.49 0.50 0.51 0.53 0.47 0.49 0.49 0.50 0.52 0.54 

NY 0.46 0.48 0.50 0.50 0.52 0.54 0.46 0.48 0.50 0.50 0.51 0.54 0.46 0.48 0.50 0.50 0.52 0.54 

HW 0.73 0.72 0.72 0.71 0.71 0.71 0.73 0.73 0.72 0.71 0.71 0.71 0.73 0.73 0.72 0.71 0.72 0.71 

HY 0.79 0.79 0.78 0.78 0.81 0.81 0.79 0.79 0.78 0.79 0.81 0.81 0.80 0.79 0.79 0.79 0.81 0.81 

TR 0.65 0.64 0.63 0.62 0.62 0.62 0.65 0.64 0.63 0.62 0.62 0.62 0.65 0.64 0.63 0.62 0.62 0.62 

OP 0.70 0.69 0.69 0.67 0.67 0.66 0.70 0.69 0.68 0.67 0.66 0.66 0.70 0.69 0.69 0.68 0.67 0.66 

Average 0.47 0.48 0.48 0.47 0.48 0.49 0.47 0.48 0.48 0.48 0.48 0.49 0.47 0.48 0.48 0.47 0.48 0.49 

Overall mean 0.38 0.39 0.39 0.39 0.39 0.39 0.38 0.39 0.39 0.39 0.39 0.39 0.38 0.39 0.39 0.39 0.40 0.39 

 9
6

 

  



97 

 

1 DGV validated accuracy means Pearson’s correlation between DGVs and 

EBVs in the prediction population; 

2 SCE1 scenario that the number of animals and the percentage of animals with 

imputed genotypes in the training population varied; 

3 WGBW: Weight gain from birth to weaning (kg); WGWY: Weight gain from 

weaning to yearling (kg); CW: Conformation score at weaning (scores 1-5); CY: 

Conformation score at yearling (scores 1-5); PW: Precocity score at weaning 

(scores 1-5); PY: Precocity score at yearling (scores 1-5); MW: Muscularity 

score at weaning (scores 1-5); MY: Muscularity score at yearling (scores 1-5); 

SCa: Scrotal circumference adjusted for age at yearling (cm); SCaw: Scrotal 

circumference adjusted for age and weight at yearling (cm); BW: Birth weight 

(kg); BA: Birth assistance score (scores 1-5); SW: Size score at weaning (scores 

1-5); SY: Size score at yearling (scores 1-5); NW: Prepuce (navel) score at 

weaning (scores 1-5); NY: Prepuce (navel) score at yearling (scores 1-5); HW: 

Hair length score at weaning (scores 1-3); HY: Hair length score at yearling 

(scores 1-3); TR: Ticks resistance (ticks unit); OP: Ocular pigmentation score 

(scores 1-3); 
4 8K: means that the base panel is the 8K SNP panel imputed to the 50K SNP 

panel; 15K: means that the base panel is the 15K SNP panel imputed to the 50K 

SNP panel; 50K: means the true 50K SNP panel. 
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Table 4 DGV validated accuracy in the prediction population for the SCE2 and SCE3 scenarios12 

Traits3 
8K4 15K4 

50K4 777K45 
10 20 30 40 50 60 10 20 30 40 50 60 

Traits in the selection index 

WGBW 0.33 0.33 0.32 0.33 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.34 

WGWY 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.36 

CW 0.29 0.29 0.29 0.29 0.29 0.29 0.28 0.28 0.28 0.28 0.29 0.29 0.29 0.32 

CY 0.27 0.26 0.26 0.26 0.25 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.29 

PW 0.31 0.31 0.31 0.31 0.31 0.32 0.31 0.30 0.30 0.31 0.31 0.31 0.31 0.32 

PY 0.34 0.34 0.34 0.33 0.33 0.34 0.34 0.34 0.34 0.34 0.33 0.34 0.34 0.34 

MW 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.37 

MY 0.35 0.35 0.35 0.34 0.34 0.35 0.35 0.35 0.34 0.34 0.34 0.35 0.35 0.36 

SCa 0.18 0.19 0.18 0.19 0.19 0.18 0.18 0.19 0.19 0.19 0.19 0.19 0.18 0.17 

SCaw 0.20 0.20 0.20 0.20 0.20 0.19 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 

Average 0.30 0.30 0.30 0.30 0.29 0.30 0.29 0.29 0.29 0.29 0.29 0.30 0.30 0.31 

Traits not in the selection index 

BW 0.22 0.21 0.21 0.22 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 

BA 0.13 0.14 0.14 0.14 0.14 0.15 0.15 0.15 0.15 0.15 0.15 0.16 0.14 0.11 

SW 0.33 0.34 0.34 0.34 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.36 

SY 0.36 0.36 0.36 0.35 0.35 0.35 0.36 0.36 0.36 0.35 0.36 0.36 0.36 0.37 

NW 0.54 0.54 0.53 0.53 0.53 0.53 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.56 

NY 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.55 0.55 0.54 0.54 0.57 

HW 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 

HY 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.80 0.81 0.81 0.81 0.80 

TR 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 

OP 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.64 

Average 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.50 

Overall mean 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.40 
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1 DGV validated accuracy means Pearson’s correlation between DGVs and EBVs in the 

prediction population; 

2 SCE2 scenario that the percentage of animals with imputed genotypes in the training 

population varied and SCE3 scenario was created with only one percentage of animals 

with imputed genotypes and only one training population size; 

3 WGBW: Weight gain from birth to weaning (kg); WGWY: Weight gain from weaning 

to yearling (kg); CW: Conformation score at weaning (scores 1-5); CY: Conformation 

score at yearling (scores 1-5); PW: Precocity score at weaning (scores 1-5); PY: 

Precocity score at yearling (scores 1-5); MW: Muscularity score at weaning (scores 1-

5); MY: Muscularity score at yearling (scores 1-5); SCa: Scrotal circumference adjusted 

for age at yearling (cm); SCaw: Scrotal circumference adjusted for age and weight at 

yearling (cm); BW: Birth weight (kg); BA: Birth assistance score (scores 1-5); SW: 

Size score at weaning (scores 1-5); SY: Size score at yearling (scores 1-5); NW: 

Prepuce (navel) score at weaning (scores 1-5); NY: Prepuce (navel) score at yearling 

(scores 1-5); HW: Hair length score at weaning (scores 1-3); HY: Hair length score at 

yearling (scores 1-3); TR: Ticks resistance (ticks unit); OP: Ocular pigmentation score 

(scores 1-3); 
4 8K: means that the base panel is the 8K SNP panel imputed to the 50K SNP panel; 

15K: means that the base panel is the 15K SNP panel imputed to the 50K SNP panel; 

50K: means the true 50K SNP panel; 777K: means that the base panel is the 50K SNP 

panel imputed to the 777K SNP panel; 
5 When the 777K SNP panel was used, all animals had their genotypes imputed from 

the 50K SNP panel to the 777K SNP panel, except for 212 animals in the training 

population (SCE3). 
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Table 5 Results of analysis of variance of the DGV validated accuracy for the SCE1 scenarios123 

Economic traits Abbr. 
Panel4 Scenario5 

8-15 8-50 15-50 10-60 20-60 30-60 40-60 50-60 

Traits in the selection index 

Weight gain from birth to weaning (kg) WGBW * (8) ns ns * (60) * (20) * (30) * (40) * (50) 

Weight gain from weaning to yearling (kg) WGWY ns ns ns * (60) * (60) * (60) * (60) ns 

Conformation score at weaning (scores 1-5) CW ns * (50) ns * (60) * (60) Ns * (40) * (50) 

Conformation score at yearling (scores 1-5) CY * (15) * (50) ns * (10) * (20) * (30) * (40) * (50) 

Precocity score at weaning (scores 1-5) PW ns ns ns * (60) * (60) * (60) ns * (50) 

Precocity score at yearling (scores 1-5) PY ns ns ns * (60) * (60) * (60) * (60) * (50) 

Muscularity score at weaning (scores 1-5) MW ns ns * (15) * (60) * (60) * (60) * (60) * (50) 

Muscularity score at yearling (scores 1-5) MY ns ns ns ns ns * (60) ns * (50) 

Scrotal circumference a (cm) SCa6 * (15) ns ns * (10) * (20) * (30) * (40) ns 

Scrotal circumference aw (cm) SCaw6 * (15) * (50) * (50) * (10) * (20) * (30) * (40) * (60) 

Traits not in the selection index 

Birth weight (kg) BW ns * (8) * (15) * (60) ns * (30) * (60) * (60) 

Birth assistance score (scores 1-5) BA * (15) ns * (15) * (60) ns * (60) * (60) Ns 

Size score at weaning (scores 1-5) SW * (8) * (8) ns * (60) * (60) * (60) * (60) * (60) 

Size score at yearling (scores 1-5) SY ns ns ns * (60) * (60) * (60) * (60) * (60) 

Prepuce (navel) score at weaning (scores 1-5) NW ns ns ns * (60) * (60) * (60) * (60) * (60) 

Prepuce (navel) score at yearling (scores 1-5) NY ns ns ns * (60) * (60) * (60) * (60) * (60) 

Hair length score at weaning (scores 1-3) HW * (15) * (50) * (50) * (10) * (20) * (30) ns Ns 

Hair length score at yearling (scores 1-3) HY * (15) * (50) * (50) * (60) * (60) * (60) * (60) Ns 

Ticks resistance (ticks unit) TR ns * (50) * (50) * (10) * (20) * (30) ns * (60) 

Ocular pigmentation score (scores 1-3) OP * (15) * (50) * (50) * (10) * (20) * (30) * (40) * (50) 
 

 1
0

0
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1 DGV validated accuracy means Pearson’s correlation between DGVs and EBVs in the 

prediction population; 

2 SCE1 scenario that the number of animals and the percentage of animals with imputed 

genotypes in the training population varied; 

3 “*” means that there was a significant difference (P <0.05). The value between 

brackets indicates which panel/scenario had higher estimated accuracy. “ns” means that 

there was no significant difference (P> 0.05); 
4 8,15 and 50 means the 8K, 15K and 50K SNP panel. 8-15, 8-50 and 15-50 are the 

contrast between the two panels; 
5 10,20,30,40,50 and 60 means the percentage of imputed genotypes. 10-60, 20-60, 30-

60, 40-60, 50-60 are the contrasts between the two percentages of the imputed 

genotypes; 
6 SCa is the scrotal circumference adjusted for age at yearling and SCaw is the scrotal 

circumference adjusted for age and weight at yearling. 
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Table 6 Results of analysis of variance of the DGV validated accuracy for the SCE2 scenarios123 

Economic traits Abbr. 
Panel4 Scenario5 

8-15 8-50 15-50 10-60 20-60 30-60 40-60 50-60 

Traits in the selection index 

Weight gain from birth to weaning (kg) WGBW ns ns ns ns ns Ns ns ns 

Weight gain from weaning to yearling (kg) WGWY ns * (50) * (50) ns ns Ns ns ns 

Conformation score at weaning (scores 1-5) CW * (8) ns * (50) ns ns Ns ns ns 

Conformation score at yearling (scores 1-5) CY ns ns * (50) ns ns Ns ns ns 

Precocity score at weaning (scores 1-5) PW ns * (50) * (50) ns ns Ns ns ns 

Precocity score at yearling (scores 1-5) PY ns * (50) * (50) ns ns Ns ns ns 

Muscularity score at weaning (scores 1-5) MW ns ns * (50) ns ns Ns ns ns 

Muscularity score at yearling (scores 1-5) MY * (8) ns * (50) ns ns Ns ns ns 

Scrotal circumference a (cm) SCa6 ns * (8) * (15) ns ns Ns ns ns 

Scrotal circumference aw (cm) SCaw6 * (15) * (50) Ns ns ns Ns ns ns 

Traits not in the selection index 

Birth weight (kg) BW ns ns Ns ns ns ns ns ns 

Birth assistance score (scores 1-5) BA * (15) ns * (15) ns ns ns ns ns 

Size score at weaning (scores 1-5) SW * (8) * (8) Ns ns ns ns ns ns 

Size score at yearling (scores 1-5) SY ns ns Ns ns ns ns ns ns 

Prepuce (navel) score at weaning (scores 1-5) NW * (15) ns ns ns ns ns ns ns 

Prepuce (navel) score at yearling (scores 1-5) NY * (15) * (50) ns ns ns ns ns ns 

Hair length score at weaning (scores 1-3) HW * (15) * (50) * (50) ns ns ns ns ns 

Hair length score at yearling (scores 1-3) HY ns ns ns ns ns ns ns ns 

Ticks resistance (ticks unit) TR * (8) * (8) * (50) ns ns ns ns ns 

Ocular pigmentation score (scores 1-3) OP ns ns * (50) ns ns ns ns ns 
 

  

 1
0

2
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1 DGV validated accuracy means Pearson’s correlation between DGVs and EBVs in the 

prediction population; 

2 SCE2 scenario that the percentage of animals with imputed genotypes in the training 

population varied; 
3 “*” means that there was a significant difference (P <0.05). The value between 

brackets indicates which panel/scenario had higher estimated accuracy. “ns” means that 

there was no significant difference (P> 0.05); 
4 8,15 and 50 means the 8K, 15K and 50K SNP panel. 8-15, 8-50 and 15-50 are the 

contrasts between the two panels; 
5 10,20,30,40,50 and 60 means the percentage of imputed genotypes. 10-60, 20-60, 30-

60, 40-60, 50-60 is the contrast between the two percentages of the imputed genotypes; 
6 SCa is the scrotal circumference adjusted for age at yearling and SCaw is the scrotal 

circumference adjusted for age and weight at yearling. 
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Table 7 EBV expected accuracy in the training and prediction population and GEBV and DGV expected accuracy in the 

 prediction population in the scenario with the largest training population1 

Economic trait Abbr. 
EBV 

training 

EBV 

prediction 

8K2 15K2 50K2 777K2 

GEBV DGV GEBV DGV GEBV DGV GEBV DGV 

Traits in the selection index 

Weight gain from birth to weaning (kg) WGBW 0.64 0.64 0.67 0.42 0.67 0.42 0.67 0.43 0.66 0.42 

Weight gain from weaning to yearling (kg) WGWY 0.62 0.60 0.63 0.39 0.63 0.40 0.63 0.40 0.63 0.39 

Conformation score at weaning (scores 1-5) CW 0.60 0.61 0.64 0.40 0.64 0.40 0.64 0.40 0.63 0.39 

Conformation score at yearling (scores 1-5) CY 0.62 0.61 0.64 0.40 0.64 0.40 0.65 0.41 0.64 0.40 

Precocity score at weaning (scores 1-5) PW 0.60 0.61 0.64 0.40 0.64 0.40 0.64 0.40 0.63 0.39 

Precocity score at yearling (scores 1-5) PY 0.62 0.61 0.64 0.40 0.64 0.40 0.65 0.41 0.64 0.40 

Muscularity score at weaning (scores 1-5) MW 0.60 0.61 0.64 0.40 0.64 0.40 0.64 0.40 0.63 0.39 

Muscularity score at yearling (scores 1-5) MY 0.62 0.61 0.64 0.40 0.64 0.40 0.65 0.41 0.64 0.40 

Scrotal circumference a (cm) SCa3 0.74 0.70 0.72 0.39 0.72 0.39 0.72 0.39 0.72 0.39 

Scrotal circumference aw (cm) SCaw3 0.73 0.70 0.71 0.38 0.71 0.39 0.71 0.39 0.71 0.38 

Average  0.64 0.63 0.66 0.40 0.66 0.40 0.66 0.40 0.65 0.40 

Traits not in the selection index 

Birth weight (kg) BW 0.66 0.65 0.68 0.44 0.68 0.44 0.68 0.44 0.68 0.43 

Birth assistance score (scores 1-5) BA 0.73 0.73 0.75 0.43 0.75 0.43 0.75 0.43 0.74 0.42 

Size score at weaning (scores 1-5) SW 0.60 0.61 0.63 0.40 0.64 0.40 0.64 0.40 0.63 0.39 

Size score at yearling (scores 1-5) SY 0.69 0.68 0.71 0.43 0.71 0.44 0.71 0.44 0.71 0.43 

Prepuce (navel) score at weaning (scores 1-5) NW 0.72 0.71 0.74 0.47 0.74 0.47 0.74 0.47 0.74 0.46 

Prepuce (navel) score at yearling (scores 1-5) NY 0.68 0.68 0.70 0.43 0.70 0.44 0.70 0.44 0.70 0.43 

Hair length score at weaning (scores 1-3) HW 0.58 0.55 0.58 0.35 0.58 0.35 0.58 0.35 0.58 0.35 

Hair length score at yearling (scores 1-3) HY 0.61 0.60 0.63 0.40 0.63 0.40 0.63 0.40 0.63 0.39 

Ticks resistance (ticks unit) TR 0.52 0.51 0.53 0.31 0.53 0.31 0.53 0.31 0.53 0.31 

Ocular pigmentation score (scores 1-3) OP 0.57 0.54 0.57 0.35 0.57 0.35 0.57 0.35 0.57 0.35 

Average  0.64 0.63 0.65 0.40 0.65 0.40 0.65 0.40 0.65 0.40 

Overall mean  0.64 0.63 0.65 0.40 0.65 0.40 0.66 0.40 0.65 0.39 

 1
0

4
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1 EBV, DGV and GEBV expected accuracy means that accuracy were obtained from 

the mixed model equation; 

2 8K: means that the base panel is the 8K SNP panel imputed to the 50K SNP panel; 

15K: means that the base panel is the 15K SNP panel imputed to the 50K SNP panel; 

50K: means that the true 50K SNP panel; 777K: means that the base panel is the 50K 

SNP panel imputed to the 777K SNP panel; 
3 SCa is the scrotal circumference adjusted for age at yearling and SCaw is the scrotal 

circumference adjusted for age and weight at yearling. 
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Table 8 Losses in GEBV expected accuracy using the 8K and 15K SNP panel imputed to the 50K SNP panel compared 

 to the real 50K SNP panel in the SCE1 scenarios12 

Traits3 
8K4 15K4 

10 20 30 40 50 60 10 20 30 40 50 60 

 
Traits in the selection index 

WGBW -0.0008 -0.0009 -0.0005 -0.0009 -0.0009 -0.0010 -0.0003 -0.0003 0.0001 -0.0003 -0.0004 -0.0004 

WGWY -0.0010 -0.0011 -0.0011 -0.0011 -0.0012 -0.0008 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 0.0000 

CW -0.0010 -0.0011 -0.0012 -0.0011 -0.0011 -0.0012 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 

CY -0.0009 -0.0010 -0.0010 -0.0011 -0.0011 -0.0012 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 

PW -0.0010 -0.0011 -0.0012 -0.0011 -0.0011 -0.0012 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 

PY -0.0009 -0.0010 -0.0010 -0.0011 -0.0011 -0.0012 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 

MW -0.0010 -0.0011 -0.0012 -0.0011 -0.0011 -0.0012 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 

MY -0.0009 -0.0010 -0.0010 -0.0011 -0.0011 -0.0012 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 

SCa -0.0008 -0.0009 -0.0010 -0.0010 -0.0011 -0.0012 -0.0003 -0.0004 -0.0004 -0.0004 -0.0005 -0.0005 

SCaw -0.0008 -0.0009 -0.0010 -0.0011 -0.0011 -0.0012 -0.0003 -0.0004 -0.0004 -0.0005 -0.0005 -0.0005 

Average -0.0009 -0.0010 -0.0010 -0.0011 -0.0011 -0.0011 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 

 
Traits not in the selection index 

BW -0.0007 -0.0008 -0.0008 -0.0008 -0.0009 -0.0009 -0.0003 -0.0003 -0.0003 -0.0003 -0.0003 -0.0003 

BA -0.0004 -0.0004 -0.0005 -0.0006 -0.0006 -0.0007 -0.0002 -0.0002 -0.0002 -0.0002 -0.0003 -0.0003 

SW -0.0011 -0.0011 -0.0012 -0.0011 -0.0011 -0.0012 -0.0004 -0.0004 -0.0005 -0.0004 -0.0004 -0.0004 

SY -0.0007 -0.0008 -0.0009 -0.0009 -0.0010 -0.0010 -0.0003 -0.0003 -0.0003 -0.0004 -0.0004 -0.0004 

NW -0.0005 -0.0006 -0.0006 -0.0007 -0.0007 -0.0008 -0.0002 -0.0002 -0.0002 -0.0003 -0.0003 -0.0003 

NY -0.0007 -0.0007 -0.0008 -0.0008 -0.0009 -0.0010 -0.0003 -0.0003 -0.0003 -0.0003 -0.0004 -0.0004 

HW -0.0014 -0.0015 -0.0016 -0.0017 -0.0018 -0.0018 -0.0006 -0.0006 -0.0007 -0.0007 -0.0007 -0.0008 

HY -0.0009 -0.0010 -0.0011 -0.0011 -0.0012 -0.0013 -0.0004 -0.0004 -0.0004 -0.0004 -0.0005 -0.0005 

TR -0.0016 -0.0017 -0.0018 -0.0019 -0.0020 -0.0020 -0.0007 -0.0007 -0.0007 -0.0008 -0.0008 -0.0008 

OP -0.0015 -0.0016 -0.0017 -0.0018 -0.0019 -0.0019 -0.0006 -0.0007 -0.0007 -0.0008 -0.0008 -0.0008 

Average -0.0010 -0.0010 -0.0011 -0.0012 -0.0012 -0.0013 -0.0004 -0.0004 -0.0004 -0.0005 -0.0005 -0.0005 

Overall average -0.0009 -0.0010 -0.0011 -0.0011 -0.0012 -0.0012 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 

 1
0

6
 

  



107 

 

1 GEBV expected accuracy means that accuracy were obtained from the mixed model 

equation in the prediction population; 

2 SCE1 scenario that the number of animals and the percentage of animals with imputed 

genotypes in the training population varied; 

3 WGBW: Weight gain from birth to weaning (kg); WGWY: Weight gain from weaning 

to yearling (kg); CW: Conformation score at weaning (scores 1-5); CY: Conformation 

score at yearling (scores 1-5); PW: Precocity score at weaning (scores 1-5); PY: 

Precocity score at yearling (scores 1-5); MW: Muscularity score at weaning (scores 1-

5); MY: Muscularity score at yearling (scores 1-5); SCa: Scrotal circumference adjusted 

for age at yearling (cm); SCaw: Scrotal circumference adjusted for age and weight at 

yearling (cm); BW: Birth weight (kg); BA: Birth assistance score (scores 1-5); SW: 

Size score at weaning (scores 1-5); SY: Size score at yearling (scores 1-5); NW: 

Prepuce (navel) score at weaning (scores 1-5); NY: Prepuce (navel) score at yearling 

(scores 1-5); HW: Hair length score at weaning (scores 1-3); HY: Hair length score at 

yearling (scores 1-3); TR: Ticks resistance (ticks unit); OP: Ocular pigmentation score 

(scores 1-3); 
4 8K: means that the base panel is the 8K SNP panel imputed to the 50K SNP panel; 

15K: means that the base panel is the 15K SNP panel imputed to the 50K SNP panel 

and 10, 20, 30, 40, 50 and 60 means the percentage of animals with imputed genotypes. 
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Table 9 Losses in GEBV expected accuracy using the 8K and 15K SNP panel imputed to the 50K SNP panel in the SCE2 

scenarios and the 777K SNP panel imputed from the 50K SNP panel in the SCE3 scenario compared to the real 50K SNP panel12 

Traits3 
8K4 15K4 

777K4 
10 20 30 40 50 60 10 20 30 40 50 60 

WGBW -0.0001 -0.0003 -0.0004 -0.0004 -0.0006 -0.0006 0.0002 0.0001 0.0001 0.0001 0.0000 0.0000 -0.0020 

WGWY -0.0002 -0.0004 -0.0005 -0.0006 -0.0008 -0.0009 0.0002 0.0001 0.0001 0.0001 0.0000 -0.0001 -0.0020 

CW -0.0008 -0.0009 -0.0010 -0.0010 -0.0011 -0.0012 -0.0003 -0.0004 -0.0004 -0.0004 -0.0004 -0.0005 -0.0022 

CY -0.0007 -0.0009 -0.0009 -0.0010 -0.0012 -0.0012 -0.0002 -0.0003 -0.0004 -0.0004 -0.0005 -0.0005 -0.0026 

PW -0.0008 -0.0009 -0.0010 -0.0010 -0.0011 -0.0012 -0.0003 -0.0004 -0.0004 -0.0004 -0.0004 -0.0005 -0.0023 

PY -0.0007 -0.0009 -0.0009 -0.0010 -0.0012 -0.0012 -0.0002 -0.0003 -0.0004 -0.0004 -0.0005 -0.0005 -0.0026 

MW -0.0008 -0.0009 -0.0010 -0.0010 -0.0011 -0.0012 -0.0003 -0.0004 -0.0004 -0.0004 -0.0004 -0.0005 -0.0023 

MY -0.0007 -0.0009 -0.0009 -0.0010 -0.0012 -0.0012 -0.0002 -0.0003 -0.0004 -0.0004 -0.0005 -0.0005 -0.0026 

SCa -0.0005 -0.0006 -0.0007 -0.0008 -0.0009 -0.0011 -0.0002 -0.0002 -0.0003 -0.0003 -0.0004 -0.0005 -0.0013 

SCaw -0.0006 -0.0006 -0.0007 -0.0008 -0.0009 -0.0011 -0.0002 -0.0002 -0.0003 -0.0003 -0.0004 -0.0005 -0.0013 

Average -0.0006 -0.0007 -0.0008 -0.0009 -0.0010 -0.0011 -0.0002 -0.0002 -0.0003 -0.0003 -0.0003 -0.0004 -0.0021 

BW -0.0005 -0.0007 -0.0007 -0.0008 -0.0009 -0.0010 -0.0002 -0.0003 -0.0003 -0.0003 -0.0004 -0.0004 -0.0021 

BA -0.0004 -0.0003 -0.0004 -0.0004 -0.0005 -0.0006 -0.0002 -0.0001 -0.0002 -0.0002 -0.0002 -0.0003 -0.0020 

SW -0.0008 -0.0010 -0.0010 -0.0010 -0.0012 -0.0012 -0.0003 -0.0004 -0.0004 -0.0004 -0.0004 -0.0005 -0.0022 

SY -0.0005 -0.0006 -0.0007 -0.0008 -0.0009 -0.0011 -0.0002 -0.0002 -0.0003 -0.0003 -0.0004 -0.0005 -0.0024 

NW -0.0004 -0.0006 -0.0006 -0.0007 -0.0008 -0.0008 -0.0002 -0.0002 -0.0002 -0.0003 -0.0003 -0.0003 -0.0024 

NY -0.0005 -0.0007 -0.0007 -0.0008 -0.0010 -0.0010 -0.0002 -0.0003 -0.0003 -0.0003 -0.0004 -0.0004 -0.0025 

HW -0.0015 -0.0015 -0.0016 -0.0016 -0.0018 -0.0020 -0.0006 -0.0006 -0.0007 -0.0007 -0.0008 -0.0009 -0.0014 

HY -0.0007 -0.0009 -0.0010 -0.0010 -0.0012 -0.0013 -0.0003 -0.0004 -0.0004 -0.0004 -0.0005 -0.0005 -0.0027 

TR -0.0016 -0.0016 -0.0017 -0.0017 -0.0018 -0.0020 -0.0006 -0.0007 -0.0007 -0.0007 -0.0008 -0.0009 -0.0016 

OP -0.0017 -0.0017 -0.0019 -0.0019 -0.0020 -0.0022 -0.0007 -0.0007 -0.0008 -0.0008 -0.0008 -0.0010 -0.0011 

Average -0.0009 -0.0010 -0.0010 -0.0011 -0.0012 -0.0013 -0.0003 -0.0004 -0.0004 -0.0004 -0.0005 -0.0006 -0.0021 

Overall average -0.0007 -0.0009 -0.0009 -0.0010 -0.0011 -0.0012 -0.0002 -0.0003 -0.0003 -0.0004 -0.0004 -0.0005 -0.0021 
 

 1
0
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1 GEBV expected accuracy means that accuracy were obtained from the mixed model 

equation in the prediction population; 

2 SCE2 scenario that the percentage of animals with imputed genotypes in the training 

population varied and SCE3 scenario was created with only one percentage of animals 

with imputed genotypes and only one training population size; 

3 WGBW: Weight gain from birth to weaning (kg); WGWY: Weight gain from weaning 

to yearling (kg); CW: Conformation score at weaning (scores 1-5); CY: Conformation 

score at yearling (scores 1-5); PW: Precocity score at weaning (scores 1-5); PY: 

Precocity score at yearling (scores 1-5); MW: Muscularity score at weaning (scores 1-

5); MY: Muscularity score at yearling (scores 1-5); SCa: Scrotal circumference adjusted 

for age at yearling (cm); SCaw: Scrotal circumference adjusted for age and weight at 

yearling (cm); BW: Birth weight (kg); BA: Birth assistance score (scores 1-5); SW: 

Size score at weaning (scores 1-5); SY: Size score at yearling (scores 1-5); NW: 

Prepuce (navel) score at weaning (scores 1-5); NY: Prepuce (navel) score at yearling 

(scores 1-5); HW: Hair length score at weaning (scores 1-3); HY: Hair length score at 

yearling (scores 1-3); TR: Ticks resistance (ticks unit); OP: Ocular pigmentation score 

(scores 1-3); 
4 8K: means that the base panel is the 8K SNP panel imputed to the 50K SNP panel; 

15K: means that the base panel is the 15K SNP panel imputed to the 50K SNP panel; 

777K: means that the base panel is the 50K SNP panel imputed to the 777K SNP panel 

and 10, 20, 30, 40, 50 and 60 means the percentage of animals with imputed genotypes. 
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Abstract 

 

Background: Some studies have demonstrated greater genetic gains in breeding 

programs through incorporation of genomic predictions of genetic merit compared to 

traditional genetic evaluations. Single and two steps procedures were developed to 

analyze pedigree and phenotype jointly with molecular markers. A single trait with 

heritability of 0.25 and with 40K SNPs (single nucleotide polymorphism) and 750 

QTLs (quantitative trait loci) across the 29 Bos taurus autosomes was simulated based 

on forward-in-time process, using QMSim. The training population was composed by 

1,920 sires under selection from generation three to eight with more than 50 offspring 

each one. The prediction population was composed by 3,060 individuals randomly 

selected from the 10th generation. Direct genomic value (DGV) and genomic estimated 

breeding value (GEBV) were estimated in the training population based on GEBV 

package (two-steps) and BLUPF90 package (single-step). The aim of this study was to 

compare the single and two steps procedures using beef cattle simulated data. 

Results: There were no statistical differences (P>0.05) in DGVs accuracies between 

single and two steps procedures. There were no statistical differences (P>0.05) in 

GEBVs accuracies between single and two steps procedures. GEBV accuracy by Hayes 

method in two-steps procedure was lower (P<0.05) when used PP2 prediction 

population (including phenotypes of genotyped animals). DGVs regression coefficients 

ranged from 0.837 to 0.954 and from 0.957 to 1.106 using single and two steps 

procedure, respectively, and GEBVs regression coefficients ranged from 0.937 to 1.032 

and from 0.998 to 1.348 using single and two steps procedures, respectively. The 

maximums gains in GEBVs accuracy, using default polygenic effect in the genomic 

relationship matrix, were 0.364 and 0.341 by single and two steps, respectively, 

compared to the EBVs parent’s average (EBVpa). In general, when used different levels 

of polygenic effect in the genomic relationship matrix, there were no statistical 

differences (P>0.05) in DGVs and GEBVs accuracies by single and two steps 

procedures. Using DGV or GEBV to select 10% of males and 50% of females, there 

were between 36% and 49% and between 68% and 75% of coincidence regarding the 

use of TBV in males and females, respectively. 

Conclusion: DGVs and GEBVs predicted by single and two steps produced the same 

level of accuracies, except for the GEBVs by Hayes blend method in the two-steps 

procedure. DGVs regression coefficients were equal to 1.00 (P>0.05) when using two-

steps procedure with dEBV as pseudo phenotype and were different to 1.00 (P<0.05) in 

single-step e two-steps with EBV as pseudo phenotype. GEBVs regression coefficients 

were equal to 1.00 (P>0.05) using PP1 prediction population (single-step) and were 

equal to 1.00 (P>0.05) using PP2 prediction population (single-step and two-steps with 

VanRaden blend method). The polygenic effect in the genomic relationship matrix did 

not affect the DGV and GEBV accuracies in single and two steps procedures. Genetic 

evaluation using pedigree, phenotypes and genotypes information resulted in gains of 

accuracy greater than 100% compared to the EBVpa. There were no difference between 

the selected animals (10% males and 50% females) using single and two steps. 

 

Keywords: Genomic accuracy, single-step, two-steps, DGV, GEBV, Polygenic effect 

 

Background 

The incorporation of single nucleotide polymorphism (SNP) markers in genetic 

evaluations in order to obtain more accurate predictions and in earlier stages of the 
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animal production have been more usual in breeding programs, mainly in dairy cattle 

[1], [2], [3], [4]. SNP panels from low to high density have been used in genomic 

predictions in various species and specifically for cattle it is possible to genotype 

animals from 3K to 777K SNP panels. The use of molecular markers information will 

lead to greater genetic gains in shorter periods of time. Some results in genomic 

selection based on the estimated effects of SNP markers in general, have demonstrated 

greater genetic gains in breeding programs through incorporation of genomic 

predictions of genetic merit compared to traditional genetic evaluations. These gains 

would be associated with shorter generation intervals, increasing in selection intensity 

and accuracy of selection [5], [6]. Economically, the use of molecular markers 

information resulting in genetics predictions more accurate and earlier in the life of 

animals would allow substantial savings in conducting breeds progeny testing [7], [1]. 

Single and two steps procedures have been developed to analyze the pedigree 

and the phenotype together with the information of SNP markers [8], [9]. The two-steps 

means that estimated breeding values (EBVs) are obtained by conventional analyzes 

(based on pedigree and phenotype) and direct genomic value (DGV) are obtained based 

on prediction equations (through phenotypes and genotypes information) and after both 

are combined by different indexes generating the genomic estimated breeding values 

(GEBVs). The single-step means that the information of the SNPs are combined with 

the phenotype and pedigree for the simultaneous estimation of breeding values. 

The first tests to combine the use of genomics data with the EBVs were based on 

two-steps procedure, where DGVs and EBVs were combined by different indexes 

weighted by the accuracy and heritability. The use of the two sources of information, 

DGVs and EBVs, is important because if the effect of the quantitative trait loci (QTL) is 

not captured by a SNP, this may be captured by the polygenic breeding value [10], [2], 

[1]. The disadvantages of this method according to Legarra et al. [11] and Misztal et al. 

[9] have been associated with the estimation process in more than one step and the need 

for pre-estimated parameters. However, it indicated the advantage that there was no 

change in the statistical model in routine evaluations. 

The advantages of single-step in relation to the two-steps according to Vitezica 

et al. [12] and Christensen and Lund [13] were: a) simplicity, in other words, no need 

for the multiple steps and therefore, less errors can be occured during the estimation 

process; b) slightly higher computational time compared to the traditional estimation of 

the EBVs but lower when compared to the two-steps procedure and, c) generalization to 

other models and species. While Aguilar et al. [6] mentioned that the single-step 

procedure provided a unified structure, eliminating various assumptions and allowed to 

calculate more accurately genomic evaluations. However, the single-step procedure that 

uses the traditional relationship matrix enlarged with the relationship markers 

information have computational difficulty in obtaining this matrix and its inverse [6], 

[13].  

Previous results presented by Vitezica et al. [12], Aguilar et al. [6], Garrick [14] 

and Chen et al. [15] showed advantages and disadvantages when using both procedures. 

More recently, Legarra et al. [16] have related that in dairy sheep [17], dairy goats [18], 

pigs and chickens [19], in general, the results have shown an advantage when using the 

single-step compared to the two-steps procedure. In dairy cattle, the genomic 

evaluations have been conducted through the two-steps procedure [1], [2], [3], [4] and 

recently Koivula et al. [20], Harris et al. [21], Pribyl et al. [22] have been evaluating the 

single-step procedure with equal or better results in comparison to the two-steps 

procedure.  
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In beef cattle there were not found studies relating the application of single-step 

procedure in genomic evaluation [16]. Furthermore, beef data sets are more complex 

due to more missing information in the pedigree, smaller sib ships, and the presence of 

maternal effects [16].  

The aim of this study was to compare the single and two steps BLUP procedures 

using simulated data of beef cattle. 

 

Methods 

 

Simulation 

Studies with simulated data can be efficient when there is a need to compare 

different methodologies due to the possibility to simulate the true breeding values 

(TBVs). In the simulations it was used parameters based on the study populations in 

order to mimic real data. The simulated data used in this study mimicked the extent of 

linkage disequilibrium in beef cattle and was part of the simulated data used by Brito et 

al. [23]. More detailed information about the dataset can be found in the original paper 

of the mentioned authors. 

 

Population structure 

The populations were simulated based on forward-in-time process, using the 

QMSim software [24] with 40K SNPs markers and, 750 QTLs across the 29 Bos taurus 

autosomes (BTA). Firstly, 1,000 generations with a constant size of 1,000 animals were 

simulated, followed by 1,020 generations with a gradual decrease in population size 

from 1,000 to 200 in order to create initial linkage disequilibrium and to establish 

mutation-drift equilibrium in historical generations. The number of males and females 

remained constant and the mating system was based on random union of gametes, 

randomly sampled. In the second step, an expansion of the population was created by 

initially randomly selecting 100 founder males and 100 founder females from the last 

generation of the historical population. In the third step, in order to enlarge the 

population, eight generations were simulated with five offspring per dam. The mating 

was based on the random union of gametes and no selection. In the fourth step, the two 

recent generation sets were simulated from the last generation by selecting 640 males 

and 32,000 females, one male to 50 females. The parameters used in the recent 

generations mimicked more closely to a real production system with one progeny per 

dam per year, 50% of male progeny, selection for high values of EBV and culling for 

low values of EBV with a replacement rate of 60% for sires and 20% for dams. Sires 

and dams were randomly mated.  

The whole process was used to generate ten different populations in order to 

obtain ten replications. 

 

Genome 

The simulated genome consisted of 29 pairs of autosomes with length identical 

to the real bovine genome based on Btau_3.1 assembling [25] totaling 2,333 cM. The 

SNP markers were evenly distributed such that it would generate one density of 

segregating bi-allelic loci with minor allele frequency (MAF)>0.1. The markers were 

neutral in their effect on the trait. A number of QTL was simulated to generate 750 

segregating loci with two, three or four alleles and MAF>0.1, whose positions were 

randomly distributed. Additive allelic effects were randomly sampled from gamma 

distribution with shape parameter equal to 0.4. The rate of missing marker genotypes 
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was 0.01 and the rate of marker genotyping error was 0.005. A recurrent mutation rate 

of 10-5 for both markers and QTLs was considered to establish mutation-drift 

equilibrium in historical generations. The same mutation rate was also applied in all 

subsequent generations after the historical ones.  

 

Simulated trait and genetic values 

A single trait with heritability of 0.25 and phenotypic variance of 1.0 was 

simulated. The EBVs were predicted by BLUPF90 package [26] for an individual 

animal model, considering the true additive genetic variance. The rate of missing sire 

and dam information was 5%. The TBV of an individual was equal to the sum of the 

QTL additive effects. The phenotypes were generated by adding random residuals to the 

TBV.  

 

Training and prediction population for using in the two-steps procedure 

The training population was composed of 1,920 sires under selection from 

generation three to eight and each on had 50 or more offspring. The prediction 

population was composed by 3,060 individuals randomly chosen to the 10th generation 

with parents born until the 8th generation. 

Three EBVs sets were generated using the BLUPF90 package [26]. The first 

two sets were formed by the prediction population with all animals born in the 10th 

generation not including the phenotypes of genotyped animals (PP1) and including the 

phenotypes of genotyped animals (PP2), while the third set was formed by the training 

population with all animals born until 8th generation (TP).  

The EBVs and deregressed EBVs (dEBV) of the training population were used 

as pseudo phenotypes to estimate markers effects. The approach of VanRaden and 

Wiggans [27] was used to calculate dEBVs free of parent average effects from the 

EBVs and reliabilities of genotyped animals and their sires and dams. 

The DGVs were estimated in the training population based on the GEBV 

package [8] in GBLUP model considering 5%, 10%, 15% and 20% (default) for the 

polygenic effect in the genomic relationship matrix [10]. It can be described as: 

eZy gn  1 , 

where y is the vector of EBVs or dEBVs for the trait, μ is the overall mean, 1n is a 

vector of ones, Z is the design matrix that relates records to breeding values, g is the 

vector of DGV to be predicted, and e is the vector of residual effects. It was assumed 

that g ~ N (0, G*σ2g) where σ2g is the additive genetic variance and G* is a combined 

relationship matrix, and e ~ N (0, Rσ2e) where σ2e is the residual variance and R is a 

diagonal matrix whose elements account for the differences in reliabilities of the EBVs 

or dEBVs. 

In the two-steps procedure were used two ways to combine DGVs with EBVs into 

genomic estimated breeding values (GEBVs).  

The first way used the approach of Hayes et al. [1] where: 

22

22 **

EBVDGV

EBVDGV

rr

EBVrDGVr
GEBV




  , where,  

2
DGVr and 2

EBVr are the reliabilities of DGV and EBV, respectively. 

The second way used the approach of VanRaden et al. [2] where: 

EBV*bEBV*bDGV*bGEBV 3121  , where, 
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EBV1 was predicted for the subset of genotyped animals using traditional relationships 

and their dEBV, excluding data from ungenotyped animals, and b1, b2 and b3 are 

weights based on reliabilities of DGV, EBV1 and EBV. 

 

Population for using in the single-step procedure 

The pedigree information was used until the 10th generation. The phenotype 

information was used until the 8th generation in one analysis (PP1) and in another was 

added phenotypes of genotyped animals of the prediction population (PP2). The 

genotypes included in the analysis contained 1,920 sires with more than 50 offspring 

(training population) plus 3,060 genotyped animals of the prediction population.  

The DGVs and GEBVs were estimated based on the BLUPF90 package [26] in 

GBLUP model considering the inclusion of different weights to create ]AG[
1

22
1    

( 1
22A
  is the polygenic effect in the genomic relationship matrix with 5% (default), 10%, 

15% and 20%). It can be described as: 

eZy gn  1 , 

where y is the vector of phenotypes for the trait, μ is the overall mean, 1n is a vector of 

ones, Z is the design matrix that relates records to breeding values, g is the vector of 

animals to be predicted, and e is the vector of residual effects. It was assumed that g ~ N 

(0, Hσ2g) where σ2g is the additive genetic variance and H is a combined relationship 

matrix, and e ~ N (0, Rσ2e) where σ2e is the residual variance and R is a diagonal 

matrix whose elements account for the differences in reliabilities of the observations in 

y. 

In the single-step procedure GEBVs were obtained by directly combining 

phenotypic, genomic and pedigree information [9], [6] where the traditional relationship 

matrix (A) was replaced by a matrix that includes the genomic information (H). 

 

Comparison between single and two steps procedures 

The average accuracy of ten repetitions, measured by Pearson's correlation between 

DGV and GEBV with TBV in the prediction population, were used as response in the 

analysis of variance carried out with the ANOVA procedure of SAS version 9.2 (SAS 

Inst. Inc., Cary, NC).  

 

Results 

There were no significant differences (P>0.05) in DGVs accuracies by single-

step and two-steps (using EBVs or dEBVs) procedures within the same level of 

polygenic effect in the genomic relationship matrix considered. The levels of polygenic 

effect in the genomic relationship matrix were not significant (P>0.05) to the DGV 

accuracy, except to the DGV by single-step procedure in the levels 15% and 20%. 

When single and two steps procedures considering default polygenic effect in the 

genomic relationship matrix were used, the DGVs accuracies were 0.584 and 0.564, 

respectively (Table 1). 

There were no significant differences (P>0.05) in GEBVs accuracies by single 

and two steps procedures within the same level of polygenic effect in the genomic 

relationship matrix using PP1 and PP2 prediction population. However, there were 

significant differences (P<0.05) in GEBVs accuracies between VanRaden and Hayes 

blending methods in two-steps procedure using PP1 and PP2 prediction population. The 

levels of polygenic effect in the genomic relationship matrix were not significant 

(P>0.05) to the GEBVs accuracy, except to the GEBVs by Hayes blend method in two-
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steps procedure in the levels 15% and 20% using PP1 prediction population (Tables 2 

and 3). When single and two steps procedures considering default polygenic effect in 

the genomic relationship matrix were used, the GEBVs accuracies with PP1 prediction 

population were 0.589 and from 0.542 to 0.604, respectively (Table 2) and with PP2 

prediction population were 0.699 and from 0.639 to 0.676, respectively (Table 3).  

The EBV parent’s average accuracy (EBVpa) was 0.335 and the EBV accuracy 

(EBVphe) was 0.534 showing an increase of 0.199 (59.4%) in accuracy by phenotypes 

addition. When were added genotypes in the single-step procedure, the ssGEBVpa and 

ssGEBVphe accuracies (using default polygenic effect in the genomic relationship 

matrix) were 0.589 and 0.699, respectively. It showed an increase of 0.254 (75.8%) and 

0.055 (10.3%), and 0.364 (108.7%) and 0.165 (30.9%) compared to the EBVpa and the 

EBVphe accuracies, respectively (Table 4). Adding genotypes in two-steps procedure 

with VanRaden blending method and default polygenic effect in the genomic 

relationship matrix, the tsGEBVv_pa and tsGEBVv_phe accuracies were 0.604 and 

0.676, respectively, showing an increase of 0.269 (80.3%) and 0.07 (13.1%), and 0.341 

(101.8%) and 0.142 (26.6%) in comparison to the EBVpa and the EBVphe, 

respectively. Using the Hayes blending method there were decreases of 0.06 and 0.04 

with VanRaden blending method, (Table 5). 

Slope coefficient for the regression was expected to be close to 1.00, which 

would indicate that DGV or GEBV predictions were not inflated or deflated (Tables 6, 

7 and 8). Analysis with two-steps procedure using dEBV as pseudo phenotypes in the 

SNPs estimation presented the slope of the regression on DGV close to 1.00 (P>0.05), 

however using the single-step procedure the slope of the regression on DGVs were 

different to 1.00 (P>0.05), showed that DGVs prediction were inflated. Slope 

coefficient for the regression of GEBV using two-steps procedure, the results not 

showed deflation or inflation with PP2 predicted population and VanRaden blend 

method. However with Hayes blend method, the results showed deflation with PP1 and 

PP2 prediction population. Using single-step, the results not showed deflation or 

inflation with PP1 and PP2 predicted population.  

Assuming selection of 10% in males and 50% in females the exchange of animal 

percentage were analysed when changed the selection criteria of TBV to DGV and 

GEBV estimated by single and two steps. Tables 9, 10 and 11 showed the percentage of 

coincidence between DGV or GEBV (PP1 and PP2 prediction population) with TBV 

were statistically equal (P>0.05) when used single and two steps procedure. Using 

DGV, the percentage of coincidence was ~40% in males and ~70% in females, while 

that using GEBV with PP1 prediction population was ~42% in males and ~70% in 

females and with PP2 prediction population was ~48% in males and ~73% in females. 

 

Discussion 

 

Using EBV or dEBV in two-steps procedure 

Different pseudo phenotypes of the animal, such as DYD, dEBV and EBV have 

been used for estimating the effect of molecular markers. Some studies have used the 

daughter yield deviations (DYD) [17], [28], [29] and other studies have used dEBV or 

EBV [23], [30], [31]. These different pseudo phenotypes have been used since TBV of 

animals are unknown and the goal is a better approximation of the TBV. The average 

reliability for the data set was 85% (sires in training population had between 50 and 250 

offspring) and with this level of reliability, the results showed that there is no need to 

deregress the EBVs because there were no statistical differences in accuracy between 
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the estimation of the markers effects (DGVs) using dEBV or EBV. Neves et al. [31] 

studied simulated data of beef cattle, did not found differences in accuracies when the 

pseudo phenotypes was the dEBV, the EBV or the DYD and Guo et al. [28] also using 

simulated data did not found differences in accuracies when the pseudo phenotypes was 

the EBVs or DYDs.  

The scenario in which the whole training population showed high reliability 

generally does not occur in production systems of commercial beef cattle. Boddhireddy 

et al. [30] studied Angus cattle in USA showed that the use of the dEBV compared to 

the EBV doubled the accuracy values. Furthermore, Ostersen et al. [29] studying pigs in 

Denmark showed that the use of dEBV in relation to the EBV produced from 18% to 

39% higher reliabilities. 

 

Polygenic effect in the genomic relationship matrix 

Genomic selection using medium to high density marker panels does not cover 

the whole genome yet [32] and therefore part of the markers effects will be explained by 

polygenic effect. In this sense was analyzed the accuracy based on different levels of 

polygenic effect in the genomic relationship matrix, pondered 5%, 10%, 15% and 20%. 

Regarding to the two-steps procedure, the accuracy were always higher when the weight 

was 95% for the markers effect, but the differences were not statistically significant. In 

the single-step procedure the values were also higher when using 95% of the markers 

effect, but the differences were statistically significant when using a lot of polygenic 

effect. Onogi et al. [33] studied carcass traits in black Japanese cattle using single-step 

procedure with different weightings to the ]AG[
1

22
1    (20%<=G-1<=100%) and 

obtained better results in terms of accuracy when the fraction of G-1 was larger. 

However, Neves et al. [31] studied fifteen traits in Nellore in Brazil and showed higher 

accuracies when two-steps procedure considered 20% of polygenic effects in the 

genomic relationship matrix instead of not considering it. The same trend was observed 

in the study of Gao et al. [34] with sixteen traits in Nordic Holstein population. Calus 

and Veerkamp [35] studied simulated data including traits of different heritabilities in 

GBLUP model with the aim of evaluate the effect of including or not the polygenic 

effect analyzed by the accuracy of prediction. The authors concluded that the inclusion 

of polygenic effect in the model increased the accuracy of DGV. Liu et al. [36] studied 

German Holstein cattle and showed that adjusting for the polygenic effect reduced 

GEBV bias and concluded that weighting for polygenic effect seems to differ between 

the traits. 

 

Accuracy 

One of the main reasons to use the information of molecular markers in the 

prediction of breeding values is to be able to carry out the prediction to very young 

ages, even before obtaining phenotypes. The DGVs accuracies presented in this study 

(0.584 for single-step and 0.564 for two-steps) showed that the use of genetic values 

obtained only including the markers produced gains in accuracies of 74% and 68% 

compared to the EBVs parent’s average for single and two steps procedures (polygenic 

effect default), respectively. It means that when selecting animals based only in the 

markers effects the accuracy increased from 0.229 to 0.249 for the trait with heritability 

equal to 0.25 showing that the selection using the molecular markers is better than 

selection by the EBV parent’s average These accuracies were higher than the accuracies 

reported by Neves et al. [37] for traits with similar heritability in Nellore data in Brazil 

and lower than those reported by Boddhireddy et al. [30] using Angus cattle data in 
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USA. DGV accuracy, in this study, by single and two steps procedures were statistically 

equal, agreement with the results by Vitezica et al. [12] studying simulated data in the 

presence of selection. However, Koivula et al. [20] studying Nordic Red breed, and 

Baloche et al. [17] studying Lacaune dairy sheep breed in France, showed reliability 

gains for the single-step compared to the two-steps procedure. Pribyl et al. [22], 

studying Holstein cattle breed from Czech Republic, concluded that single-step 

procedure should not cause a big increase in accuracy in comparison to the traditional 

EBVs.  

The GEBV from single and two steps (VanRaden blending method) procedures 

were statistically equal and showed higher accuracies in relation to the Hayes blending 

method in two-steps. Cardoso et al. [38] studied tick resistance in Hereford and Braford 

cattle in Brazil and found differences in GEBV accuracy between the two blending 

methods in two-steps procedure, however favorable to VanRaden method and the 

GEBV accuracy by single-step was superior in comparison to the two-steps procedure. 

In the same direction, Su et al. [4] studied Nordic Red cattle found a difference in 

GEBV accuracy between single and two steps (VanRaden blending method) in GBLUP 

model. 

 In beef cattle raised on pasture, which is common in tropical countries, the first 

culling of animals is done at weaning. Until this time the calves still suckling and 

therefore there is no need to culling animals. Thus it is possible to obtain various 

phenotypes for using in the EBV prediction such as weight gain between birth and 

weaning. Therefore, in this situation it will be possible to use information from parents 

and phenotypes to predict the animals EBVs. If an animal was genotyped, this 

information would also be used to predict the EBVs. In this study this situation was 

analysed. Firstly, there were gains in accuracy of 59% using only the phenotypes jointly 

with the pedigree information. The accuracy increased from 0.335 to 0.534. Based on 

the results of this study it was evident that the use the DGVs for selection of animals 

have produced equal or superior accuracy in comparison to the EBVs based on pedigree 

and phenotype information.  

When carrying out the genotyping of animals, it is recommended to collect all 

possible phenotypes in order to re-estimate the markers effects and to expand the 

database of genotyped animals. In this case, when the information used for animal 

selection was the pedigree, phenotype and genotype, the increase in accuracy compared 

to the EBVs parent’s average was up to 100%. These results were in agreement with the 

results obtained by VanRaden et al. [2] and Schenkel et al. [39] when studying North 

American Holstein using two-steps procedure, where it was observed gains greater than 

100% in reliability in the category of young animals. 

 

Scale of DGV and GEBV 

The scale of genomic predictions should be a matter of concern, especially to 

determine whether DGV and GEBV can be compared to traditional EBV from routine 

evaluations in breeding programs. If the regression coefficient was smaller than 1.0 it 

would be indicating that there was overestimation of genomic predictions and if the 

regression coefficient was larger than 1.0 it would indicates that there was 

underestimation of genomic predictions. Vitezica et al. [41] have discussed that 

criterion under the aspect of selection. If the parents of the next generation come from 

only genotyped selection candidates, they share a common mean for belonging to the 

same generation, then the bias would not be a concern. However, if for different 

candidates there are different amounts of information such as progeny test males and 
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newborn animals and in presence of bias (genetic gains over or under estimated), thus, 

newborns could be considered better than they really are. Regarding to the DGV, the 

regression coefficients of this study showed that the two-step procedure generated 

estimates not biased when using dEBV as pseudo phenotypes in the SNPs estimation 

and regarding to the GEBV, in general, the regression coefficients showed that using 

single and two steps procedure generated estimates not biased, except when using 

Hayes blend method in two-steps procedure. The regression coefficients obtained in this 

study were similar to the regression coefficients obtained by Su et al. [25], studying 

Nordic Red breed with single and two steps procedure and by Gao et al. [40], studying 

Nordic Holstein breed with single and two steps. 

 

Selection of 10% in males and 50% in females 

Breeding programs use genetic predictions to select animals will remain in herds 

in order to produce the next crop of calves. Therefore, it was simulated a breeding 

programs with 10% selection of males (exchange 100% of sires for each year) and 50% 

selection of females (empty cows discarded). The results showed that the percentage of 

coincidences in selected males (~40%) and females (~70%) were equal using DGV or 

GEBV estimated by single and two steps procedure. These results reinforces the results 

obtained in terms of accuracy, showing that use of genomic predictions from single and 

two steps procedures generated almost the same list of selected males and females. 

 

Conclusions 

DGVs and GEBVs predicted by single and two steps produced the same level of 

accuracies, except for the GEBVs by Hayes blend method in the two-steps procedure. 

DGVs regression coefficients were equal to 1.00 (P>0.05) when using two-steps 

procedure with dEBV as pseudo phenotype and were different to 1.00 (P<0.05) in 

single-step e two-steps with EBV as pseudo phenotype. GEBVs regression coefficients 

were equal to 1.00 (P>0.05) using PP1 prediction population (single-step) and were 

equal to 1.00 (P>0.05) using PP2 prediction population (single-step and two-steps with 

VanRaden blend method). The polygenic effect in the genomic relationship matrix did 

not affect the DGV and GEBV accuracies in single and two steps procedures. Genetic 

evaluation using pedigree, phenotypes and genotypes information resulted in gains of 

accuracy greater than 100% compared to the EBVpa. There were no difference between 

the selected animals (10% males and 50% females) using single and two steps. 
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Table 1 DGVs accuracies (Acc) and standard deviations (SD)123  

DGV 
G95-A5 G90-A10 G85-A15 G80-A20 

Acc SD 
 

Acc SD 
 

Acc SD 
 

Acc SD 
 

ssDGV 0.584 0.018 a,a 0.571 0.018 a,a 0.554 0.018 b,a 0.535 0.020 b,a 

tsDGVdebv 0.577 0.018 a,a 0.573 0.018 a,a 0.569 0.019 a,a 0.564 0.019 a,a 

tsDGVebv 0.576 0.019 a,a 0.573 0.019 a,a 0.569 0.019 a,a 0.563 0.019 a,a 
1 ssDGV predicted by single-step procedure and tsDGVdebv and tsDGVebv predict by 

two-steps procedure using dEBV or EBV; 
2 

G95-A5 means to 5% polygenic effect, G90-A10 means to 10% polygenic effect,      

G85-A15 means to 15% polygenic effect and G80-A20 means to 20% polygenic effect;  
3 Different letters indicate significant differences (P < 0.05) by Scheffes’s test. The first 

letter indicates differences within rows, while the second letter indicates differences 

within columns. 
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Table 2 GEBVs accuracies (Acc) and standard deviations (SD) using PP1 

prediction population1234 

GEBV 
G95-A5 G90-A10 G85-A15 G80-A20 

Acc SD 
 

Acc SD 
 

Acc SD 
 

Acc SD 
 

ssGEBV 0.589 0.019 a,ab 0.583 0.019 a,ab 0.577 0.019 a,ab 0.569 0.019 a,bc 

tsGEBVv_debv 0.612 0.016 a,a 0.610 0.017 a,a 0.608 0.017 a,a 0.604 0.017 a,a 

tsGEBVv_ebv 0.611 0.017 a,a 0.609 0.017 a,a 0.605 0.017 a,a 0.601 0.017 a,ab 

tsGEBVh_debv 0.570 0.020 ba,b 0.562 0.020 ba,b 0.554 0.021 ba,b 0.545 0.021 b,c 

tsGEBVh_ebv 0.566 0.021 ba,b 0.559 0.021 ba,b 0.551 0.021 ba,b 0.542 0.021 b,c 
1 PP1 prediction population formed with all animals born in the 10th generation and not 

including the phenotypes of genotyped animals; 
2 ssGEBV predicted by single-step procedure and tsGEBVv_debv, tsGEBVh_debv, 

tsGEBVv_ebv and tsGEBVh_ebv predicted by two-steps procedure using dEBV or 

EBV as pseudo phenotype, and VanRaden “v” or Hayes “h” blending method; 
3 

G95-A5 means to 5% polygenic effect, G90-A10 means to 10% polygenic effect,      

G85-A15 means to 15% polygenic effect and G80-A20 means to 20% polygenic effect;  
4 Different letters indicate significant differences (P < 0.05) by Scheffes’s test. The first 

letter indicates differences within rows, while the second letter indicates differences 

within columns. 
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Table 3 GEBVs accuracies (Acc) and standard deviations (SD) using PP2 

prediction population1234 

GEBV 
G95-A5 G90-A10 G85-A15 G80-A20 

Acc SD 
 

Acc SD 
 

Acc SD 
 

Acc SD 
 

ssGEBV 0.699 0.016 a,a 0.696 0.016 a,a 0.692 0.016 a,a 0.687 0.016 a,a 

tsGEBVv_debv 0.685 0.016 a,a 0.683 0.016 a,a 0.680 0.016 a,a 0.676 0.016 a,a 

tsGEBVv_ebv 0.684 0.016 a,a 0.681 0.016 a,a 0.678 0.016 a,a 0.674 0.016 a,a 

tsGEBVh_debv 0.655 0.016 a,b 0.650 0.016 a,b 0.645 0.016 a,b 0.640 0.016 a,b 

tsGEBVh_ebv 0.653 0.016 a,b 0.649 0.016 a,b 0.644 0.016 a,b 0.639 0.016 a,b 
1 PP2 prediction population formed with all animals born in the 10th generation and 

including the phenotypes of genotyped animals; 
2 ssGEBV predicted by single-step procedure and tsGEBVv_debv, tsGEBVh_debv, 

tsGEBVv_ebv and tsGEBVh_ebv predicted by two-steps procedure using dEBV or 

EBV as pseudo phenotype, and VanRaden “v” or Hayes “h” blending methods; 
3 

G95-A5 means to 5% polygenic effect, G90-A10 means to 10% polygenic effect,      

G85-A15 means to 15% polygenic effect and G80-A20 means to 20% polygenic effect;  
4 Different letters indicate significant differences (P < 0.05) by Scheffes’s test. The first 

letter indicates differences within rows, while the second letter indicates differences 

within columns. 
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Table 4 Accuracies (Acc) and standard deviations (SD) using single-step 

procedure123 

Genetic merit 
G95-A5 G90-A10 G85-A15 G80-A20 

Acc Sd 
 

Acc Sd 
 

Acc Sd 
 

Acc Sd 
 

EBVpa 0.335 0.019 d 0.335 0.019 d 0.335 0.019 d 0.335 0.019 d 

EBVphe 0.534 0.017 c 0.534 0.017 c 0.534 0.017 c 0.534 0.017 c 

ssDGVpa 0.584 0.018 b 0.571 0.018 b 0.554 0.018 bc 0.535 0.020 c 

ssGEBVpa 0.589 0.019 b 0.583 0.019 b 0.577 0.019 b 0.569 0.019 b 

ssDGVphe 0.695 0.016 a 0.686 0.015 a 0.674 0.014 a 0.661 0.014 a 

ssGEBVphe 0.699 0.016 a 0.696 0.016 a 0.692 0.016 a 0.687 0.016 a 
1 EBVpa are EBVs parent’s average, EBVphe are traditional EBVs, ssDGVpa and 

ssDGVphe are direct genomic value, ssGEBVpa and ssGEBVphe are genomic 

estimated breeding value. The “pa” means that the analyses were performed with 

prediction population formed with all animals born in the 10th generation and not 

including the phenotypes of genotyped animals (PP1) and “phe” including the 

phenotypes of genotyped animals (PP2); 
2 

G95-A5 means to 5% polygenic effect, G90-A10 means to 10% polygenic effect,      

G85-A15 means to 15% polygenic effect and G80-A20 means to 20% polygenic effect;  
3 Different letters indicate significant differences (P < 0.05) by Scheffes’s test. The 

letters indicate differences within columns. 
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Table 5 Accuracies (Acc) and standard deviations (SD) using two-steps 

procedure123 

Genetic 

 merit 
G95-A5 G90-A10 G85-A15 G80-A20 

Acc Sd 
 

Acc Sd 
 

Acc Sd 
 

Acc Sd 
 

EBVpa 0.335 0.019 f 0.335 0.019 f 0.335 0.019 f 0.335 0.019 e 

EBVphe 0.534 0.017 e 0.534 0.017 e 0.534 0.017 e 0.534 0.017 d 

tsDGV 0.577 0.020 d 0.573 0.018 d 0.569 0.019 d 0.564 0.019 d 

tsGEBVh_pa 0.570 0.018 d 0.562 0.020 de 0.554 0.021 de 0.545 0.021 d 

tsGEBVv_pa 0.612 0.016 c 0.610 0.017 c 0.608 0.017 c 0.604 0.017 c 

tsGEBVh_phe 0.655 0.016 b 0.650 0.016 b 0.645 0.016 b 0.640 0.016 b 

tsGEBVv_phe 0.685 0.016 a 0.683 0.016 a 0.680 0.016 a 0.676 0.016 a 
1 EBVpa are EBVs parent’s average, EBVphe are traditional EBVs, tsDGV are direct 

genomic value, tsGEBVh_pa, tsGEBVv_pa, tsGEBVh_phe, tsGEBVv_phe are genomic 

estimated breeding value. The “pa” means that the analyses were performed with 

prediction population formed with all animals born in the 10th generation and not 

including the phenotypes of genotyped animals (PP1) and “phe” including the 

phenotypes of genotyped animals (PP2). The “h” means that the Hayes blend method 

and the “v” means that the VanRaden blend method; 
2 

G95-A5 means to 5% polygenic effect, G90-A10 means to 10% polygenic effect,      

G85-A15 means to 15% polygenic effect and G80-A20 means to 20% polygenic effect;  
3 Different letters indicate significant differences (P < 0.05) by Scheffes’s test. The 

letters indicate differences within columns. 
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Table 6 Regression coefficients (b1) and standard deviations (SD)123  

DGV 
G95-A5 G90-A10 G85-A15 G80-A20 

b1 SD   b1 SD   b1 SD   b1 SD   

ssDGV 0,944 0,033 * 0,919 0,036 * 0,882 0,040 * 0,837 0,045 * 

tsDGVdebv 0,982 0,032 ns 1,005 0,034 ns 1,026 0,036 ns 1,045 0,038 ns 

tsDGVebv 1,038 0,036 ns 1,063 0,038 * 1,085 0,041 * 1,106 0,043 * 
1 ssDGV predicted by single-step procedure and tsDGVdebv and tsDGVebv predict by 

two-steps procedure using dEBV or EBV; 
2 

G95-A5 means to 5% polygenic effect, G90-A10 means to 10% polygenic effect,      

G85-A15 means to 15% polygenic effect and G80-A20 means to 20% polygenic effect;  
3 Within a group means b1(DGV,TBV), “ns” refers to statistically no different 1.00 

(P>0.05) and “*” refers to statistically different 1.00 (P<0.05). 

 



130 

 

 

Table 7 Regression coefficients (b1) and standard deviations (SD) using PP1 

prediction population1234 

GEBV 
G95-A5 G90-A10 G85-A15 G80-A20 

b1 SD   b1 SD   b1 SD   b1 SD   

ssGEBV 0,967 0,032 ns 0,993 0,034 ns 1,014 0,036 ns 1,032 0,037 ns 

tsGEBVv_debv 1,035 0,026 ns 1,058 0,027 * 1,079 0,028 * 1,098 0,029 * 

tsGEBVv_ebv 1,076 0,027 * 1,099 0,028 * 1,119 0,029 * 1,136 0,030 * 

tsGEBVh_debv 1,256 0,053 * 1,271 0,056 * 1,281 0,060 * 1,288 0,063 * 

tsGEBVh_ebv 1,298 0,057 * 1,312 0,061 * 1,322 0,064 * 1,327 0,068 * 
1 PP1 prediction population formed with all animals born in the 10th generation and not 

including the phenotypes of genotyped animals; 
2 ssGEBV predicted by single-step procedure and tsGEBVv_debv, tsGEBVh_debv, 

tsGEBVv_ebv and tsGEBVh_ebv predicted by two-steps procedure using dEBV or 

EBV as pseudo phenotype, and VanRaden “v” or Hayes “h” blending method; 
3 

G95-A5 means to 5% polygenic effect, G90-A10 means to 10% polygenic effect,      

G85-A15 means to 15% polygenic effect and G80-A20 means to 20% polygenic effect;  
4 Within a group means b1(GEBV,TBV), “ns” refers to statistically no different 1.00 

(P>0.05) and “*” refers to statistically different 1.00 (P<0.05). 
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Table 8 Regression coefficients (b1) and standard deviations (SD) using PP2 

prediction population1234 

GEBV 
G95-A5 G90-A10 G85-A15 G80-A20 

b1 SD   b1 SD   b1 SD   b1 SD   

ssGEBV 0,984 0,039 ns 0,995 0,040 ns 1,002 0,042 ns 1,007 0,043 ns 

tsGEBVv_debv 1,006 0,025 ns 1,011 0,027 ns 1,013 0,029 ns 1,015 0,031 ns 

tsGEBVv_ebv 1,039 0,027 ns 1,041 0,029 ns 1,041 0,031 ns 1,039 0,033 ns 

tsGEBVh_debv 1,286 0,034 * 1,293 0,035 * 1,296 0,036 * 1,297 0,037 * 

tsGEBVh_ebv 1,341 0,040 * 1,346 0,041 * 1,348 0,042 * 1,348 0,043 * 
1 PP1 prediction population formed with all animals born in the 10th generation and not 

including the phenotypes of genotyped animals; 
2 ssGEBV predicted by single-step procedure and tsGEBVv_debv, tsGEBVh_debv, 

tsGEBVv_ebv and tsGEBVh_ebv predicted by two-steps procedure using dEBV or 

EBV as pseudo phenotype, and VanRaden “v” or Hayes “h” blending method; 
3 

G95-A5 means to 5% polygenic effect, G90-A10 means to 10% polygenic effect,      

G85-A15 means to 15% polygenic effect and G80-A20 means to 20% polygenic effect;  
4 Within a group means b1(GEBV,TBV), “ns” refers to statistically no different 1.00 

(P>0.05) and “*” refers to statistically different 1.00 (P<0.05). 
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Table 9 Percentage of coincidences in the selection of 10% males and 50% 

females123 

DGV G95-A5 G90-A10 G85-A15 G80-A20 

males 

ssDGV 41 a,a 39 a,a 37 a,a 36 a,a 

tsDGVdebv 40 a,a 40 a,a 39 a,a 39 a,a 

tsDGVebv 40 a,a 40 a,a 39 a,a 39 a,a 

females 

ssDGV 70 a,a 70 a,a 69 a,a 69 a,a 

tsDGVdebv 70 a,a 70 a,a 70 a,a 69 a,a 

tsDGVebv 70 a,a 70 a,a 70 a,a 69 a,a 
1 ssDGV predicted by single-step procedure and tsDGVdebv and tsDGVebv predict by 

two-steps procedure using dEBV or EBV; 
2 

G95-A5 means to 5% polygenic effect, G90-A10 means to 10% polygenic effect,      

G85-A15 means to 15% polygenic effect and G80-A20 means to 20% polygenic effect;  
3 Different letters indicate significant differences (P < 0.05) by Scheffes’s test. The first 

letter indicates differences within rows, while the second letter indicates differences 

within columns. 
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Table 10 Percentage of coincidences in the selection of 10% males and 50% 

females using PP1 prediction population1234 

GEBV G95-A5 G90-A10 G85-A15 G80-A20 

Males 

ssGEBV 41 a,a 41 a,a 40 a,a 40 a,a 

tsGEBVv_debv 42 a,a 42 a,a 42 a,a 42 a,a 

tsGEBVv_ebv 42 a,a 42 a,a 42 a,a 42 a,a 

tsGEBVh_debv 40 a,a 39 a,a 38 a,a 37 a,a 

tsGEBVh_ebv 39 a,a 38 a,a 37 a,a 37 a,a 

Females 

ssGEBV 70 a,a 70 a,a 70 a,a 69 a,a 

tsGEBVv_debv 71 a,a 71 a,a 70 a,a 70 a,a 

tsGEBVv_ebv 70 a,a 70 a,a 70 a,a 70 a,a 

tsGEBVh_debv 69 a,a 68 a,a 68 a,a 68 a,a 

tsGEBVh_ebv 69 a,a 68 a,a 68 a,a 68 a,a 
1 PP1 prediction population formed with all animals born in the 10th generation and not 

including the phenotypes of genotyped animals; 
2 ssGEBV predicted by single-step procedure and tsGEBVv_debv, tsGEBVh_debv, 

tsGEBVv_ebv and tsGEBVh_ebv predicted by two-steps procedure using dEBV or 

EBV as pseudo phenotype, and VanRaden “v” or Hayes “h” blending method; 
3 

G95-A5 means to 5% polygenic effect, G90-A10 means to 10% polygenic effect,      

G85-A15 means to 15% polygenic effect and G80-A20 means to 20% polygenic effect;  
4 Different letters indicate significant differences (P < 0.05) by Scheffes’s test. The first 

letter indicates differences within rows, while the second letter indicates differences 

within columns. 
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Table 11 Percentage of coincidences in the selection of 10% males and 50% 

females using PP2 prediction population1234 

Genetic merit G95-A5 G90-A10 G85-A15 G80-A20 

males 

ssGEBV 47 a,a 48 a,a 48 a,a 48 a,a 

tsGEBVv_debv 49 a,a 49 a,a 49 a,a 48 a,a 

tsGEBVv_ebv 48 a,a 48 a,a 48 a,a 47 a,a 

tsGEBVh_debv 46 a,a 45 a,a 45 a,a 44 a,a 

tsGEBVh_ebv 46 a,a 45 a,a 45 a,a 44 a,a 

females 

ssGEBV 75 a,a 75 a,a 74 a,a 74 a,a 

tsGEBVv_debv 73 a,a 73 a,a 73 a,a 73 a,a 

tsGEBVv_ebv 73 a,a 73 a,a 73 a,a 73 a,a 

tsGEBVh_debv 72 a,a 72 a,a 72 a,a 72 a,a 

tsGEBVh_ebv 72 a,a 72 a,a 71 a,a 71 a,a 
1 PP2 prediction population formed with all animals born in the 10th generation and not 

including the phenotypes of genotyped animals; 
2 ssGEBV predicted by single-step procedure and tsGEBVv_debv, tsGEBVh_debv, 

tsGEBVv_ebv and tsGEBVh_ebv predicted by two-steps procedure using dEBV or 

EBV as pseudo phenotype, and VanRaden “v” or Hayes “h” blending method; 
3 

G95-A5 means to 5% polygenic effect, G90-A10 means to 10% polygenic effect,      

G85-A15 means to 15% polygenic effect and G80-A20 means to 20% polygenic effect;  
4 Different letters indicate significant differences (P < 0.05) by Scheffes’s test. The first 

letter indicates differences within rows, while the second letter indicates differences 

within columns. 
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Abstract 

Background: Different strategies to the use of molecular markers data in genomic 

predictions have been proposed and greater genetic gains have been achieved in 

breeding programs. Best Linear Unbiased Prediction (BLUP) methods based on single 

and two steps procedures have been developed to analyze pedigree and phenotype data 

jointly with single nucleotide polymorphism (SNP) information. Data from Braford and 

Hereford breed animals born from 1975 to 2011, were used in order to assess genomic 

predictive ability for pre and post weaning weight gain, birth weight, scrotal 

circumference and conformation, precocity, muscularity, body size, prepuce (navel), 

hair length and ocular pigmentation score. Training populations were composed by 

animals born from 2008 to 2010 plus 130 sires and the prediction populations were 

composed by animals born in 2011. In total were genotyped 3,680 animals (2,997 

Braford and 683 Hereford). Forward prediction schemes were adopted to predict the 

direct genomic value (DGV) and genomic estimated breeding value (GEBV) based on 

GEBV package (two-steps) and BLUPF90 package (single-step). The aim of this study 

was to compare the single and two steps procedures using Braford and Hereford beef 

cattle data. 

Results: In general there were no statistical differences (P>0.05) in DGVs accuracies 

between single and two steps procedures. The empirical accuracies ranged from 0.08 to 

0.42 when validating with deregressed estimated breeding value (dEBV) and from 0.16 

to 0.66 when validating with estimated breeding value (EBV). There were no statistical 

differences (P>0.05) in GEBVs accuracies between single and two steps procedures. 

The empirical accuracies for single and two steps ranged from 0.10 to 0.41 and from 

0.08 to 0.41 validating with dEBV and from 0.26 to 0.66 and from 0.27 to 0.70 

validating with EBV, respectively. The regression coefficients for DGVs and GEBVs 

were closer to 1.00 when using two-steps procedure. 

Conclusion: Both DGV and GEBV predicted by single and two steps procedures 

produce the same level of empirical accuracies, but with two-step procedure the 

genomic predictions were less biased.  

  

Keywords: Genomic accuracy, Single-step, Two-step, Braford, Hereford. 

 

Background 

Traditional animal breeding methods use phenotypic data and relationships 

among individuals to predict breeding value for using in mating decision to improve 

economically important traits. Recently, molecular markers information has been used 

jointly with phenotypic data and relationships among animals in order to obtain more 

accurate predictions in earlier stages of the animal breeding. Currently, single 

nucleotide polymorphism (SNPs) genotyping is viable at a reasonable cost for 

producers and has allowed to evaluate the contribution of its use in dairy cattle [1], [2], 

beef cattle [3], [4], pigs [5], [6], sheep [7], [8], goat [9], [10], poultry [11], [12] and 

horse [13] breeding programs. 

Single and two steps procedures have been developed to analyze the pedigree 

and the phenotype jointly with the information of SNP markers [14], [15]. The two-step 

procedure means that estimated breeding value (EBV) were obtained by conventional 

analyzes (based on pedigree and phenotype data) and direct genomic value (DGV) were 

obtained based on prediction equations (through phenotypes and genotypes 

information) and after both were combined by different indexes generating the genomic 
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estimated breeding value (GEBV). The single-step means that the information of the 

SNPs was combined with the phenotype and pedigree for the simultaneous estimation 

of breeding values. 

The first tests to combine the use of genomic data with the EBVs were based on 

two-step procedure. The use of the two sources of information, DGVs and EBVs, is 

important because if the effect of the quantitative trait loci (QTL) is not captured by a 

SNP, this may be captured by the polygenic breeding value [1], [16]. The disadvantage 

of this procedure according to Legarra et al. [17] and Misztal et al. [15] has been 

associated with the fact that the estimation process in more than one step and the need 

for pre-estimated parameters. However, advantage is that there was no change in the 

statistical model in routine genetic evaluations. 

The single-step procedure does not need the multiple steps and therefore there is 

lower probability of errors during the estimation process and is easer to generalization 

to the other models and species [18], [19]. Aguilar et al. [20] mentioned that the single-

step procedure provided a unified structure, eliminating various assumptions and 

allowed to calculate more accurately genomic evaluations. However, the single-step 

procedure that uses the traditional relationship matrix enlarged with the markers 

relationship information has computational difficulty in obtaining this matrix and its 

inverse [19], [20].  

Previous results presented by Vitezica et al. [18], Aguilar et al. [20], Garrick 

[21] and Chen et al. [22] showed advantages and disadvantages when using both 

procedures. More recently, Legarra et al. [23] have related that in dairy sheep and goats, 

pigs and chickens, in general, the results have shown an advantage when using the 

single-step. In dairy cattle, genomic evaluations have been conducted using the two-step 

procedure [1], [2], [24], [25] and recently Koivula et al. [26], Harris et al. [27], Pribyl et 

al. [28] have been evaluating the single-step procedure with equal or better results in 

comparison to the two-step method.  

In beef cattle it was not found studies comparing the application of single and 

two steps procedures in genomic evaluation. Furthermore, in general the beef cattle 

datasets are more complex because there are missing information in the pedigree file, 

smaller sib ships, and the presence of maternal effects [23]. Considering that, the aim of 

this study was to compare the single and two steps procedures using Braford and 

Hereford beef cattle data. 

 

Methods 

 

Animal welfare 

Animal welfare and use committee approval was not necessary for this study 

because the data was obtained from existing databases. 

 

Data 

Data was from the Conexão Delta G’s genetic improvement program - Hereford 

and Braford (Zebu x Hereford) cattle (Conexão Delta G, Dom Pedrito/RS, Brazil), 

containing approximately 540,769 animals born between 1975 and 2011, from 97 farms 

located in the South, Southeast, Midwest and Northeast regions of Brazil. Of the 

540,769 animals, 71% are Braford animals and 29% are Hereford animals, and 40% are 

males and 60% females. There were ~46% of animals with sire unknown (multiple sire 

mating), ~22% of animals with both parents unknown and ~33% of animals with both 

parents known (Table 1). A total of 624 Hereford and 2,926 Braford animals born from 
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2008 to 2011 plus 59 Hereford and 71 Braford sires were genotyped. Of the genotyped 

animals, there were 624 Hereford and 2,926 Braford animals genotyped with the 

Illumina BovineSNP50 panel, and 59 Hereford and 71 Braford animals genotyped with 

the Illumina BovineHD panel from 17 farms located in the South of Brazil. 

Eighteen traits were analysed in this study including weight gain from birth to 

weaning in kilograms (WGBW), weight gain from weaning to yearling in kilograms 

(WGWY), conformation score at weaning (CW), conformation score at yearling (CY), 

precocity score at weaning (PW), precocity score at yearling (PY), muscularity score at 

weaning (MW), muscularity score at yearling (MY), scrotal circumference adjusted for 

age at yearling (SCa), scrotal circumference adjusted for age and weight at yearling 

(SCaw), birth weight (BW), size score at weaning (SW), size score at yearling (SY), 

prepuce (navel) score at weaning (NW), prepuce (navel) score at yearling (NY), hair 

length score at weaning (HW), hair length score at yearling (HY) and ocular 

pigmentation score (OP). 

 

Genotype data editing 

The SNP quality control included GenCall score (>=0.15), Call Rate (>=0.90), 

Hardy-Weinberg Equilibrium (P>=10-6), Minor Allele Frequency (>=0.05) and only 

autosomal chromosome were considered, [1], [29]. The individual sample quality 

control considered GenCall Score (>=0.15), Call Rate (>=0.90), heterozygosity 

deviation (limit of ± 3 SD), repeated sampling and paternity errors [29]. After quality 

control remained 43,247 SNPs. 

 

Training and prediction population for use in the two-step procedure 

Two EBVs sets were generated using the BLUPF90 package [30] using animal 

model with maternal effect. The first one was formed by the prediction population with 

all genotyped animals while the second set was formed by the training population with 

all genotyped animals born until 2010 (Table 1).  

The deregressed EBV (dEBV) and EBV of the training population were used as 

pseudo phenotypes to estimate markers effects. The approach of VanRaden and 

Wiggans [31] was used to calculate dEBVs using EBVs and reliabilities of genotyped 

animals and their sires and dams. 

Direct genomic values (DGV) were estimated using GBLUP method [16] for all 

the eighteen traits (Table 2), using 43,247 SNPs and dEBVs or EBVs in the GEBV 

package [14]. The following linear model was assumed: 

The DGVs were predicted in the training population based on the GEBV 

package [14] in GBLUP model [16]. It can be described as: 

eZ1y gn  , 

where y is the vector of dEBV or EBV for the trait, μ is the overall mean, 1n is a vector 

of ones, Z is the design matrix that relates dEBVs or EBVs to animals, g is the vector of 

DGV to be predicted, and e is the vector of residual effects. It was assumed that g ~ N 

(0, G*σ2g) where σ2g is the additive genetics variance and G* is a combined 

relationship matrix, and e ~ N (0, Rσ2e) where σ2e is the residual variance and R is a 

diagonal matrix whose elements account for the differences in reliabilities of the dEBVs 

or EBVs. 

The genomic estimated breeding values (GEBV) were estimated using the 

blending procedure outlined by Hayes et al. [9] and by VanRaden et al. [2] and 

described below: 

The blending by Hayes et al. [1] where: 
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The blending by VanRaden et al. [2] where: 

EBV*bEBV*bDGV*bGEBV 3121  , where, 

EBV1 was predicted for the subset of genotyped animals using traditional relationships 

and their dEBV or EBV, excluding data from ungenotyped animals, and b1, b2 and b3 

are weights based on reliabilities of DGV, EBV1 and EBV. 

 

Population for use in single-step procedure 

Two sets were generated using the BLUPF90 package [30] using animal model 

with maternal effect. The first one was formed by all animals born until 2010 and their 

respectively genotypes to estimate the DGVs. The second set included all animals, all 

genotypes and phenotypes of animals born until 2010 to estimate the DGVs and GEBVs 

(Table 1). 

The DGVs and GEBVs were estimated based on the BLUPF90 package [30] 

using GBLUP model [16]. It can be described as: 

eZ1y gn  , 

where y is the vector of dEBV or EBV for the trait, μ is the overall mean, 1n is a vector 

of ones, Z is the design matrix that relates dEBVs or EBVs to animals, g is the vector of 

DGV to be predicted, and e is the vector of residual effects. It was assumed that g ~ N 

(0, Hσ2g) where σ2g is the additive genetic variance and H is a combined relationship 

matrix, and e ~ N (0, Rσ2e) where σ2e is the residual variance and R is a diagonal 

matrix whose elements account for the differences in reliabilities of the dEBVs or 

EBVs. 

The GEBVs were obtained by directly combining phenotypic, genomic and 

pedigree information [15], [20] where the traditional relationship matrix (A) was 

replaced by a matrix that includes the genomic information (H). 

 

Comparison between single and two steps procedures 

The average accuracy, measured by Pearson's correlation, between DGV and 

GEBV with dEBV and EBV in the prediction population were used as response in the 

analysis of variance carried out in this study with the ANOVA procedure of SAS 

version 9.2 (SAS Inst. Inc., Cary, NC).  

 

Results 

 

Database structure 

From 540,769 animals, only 2,734 animals showed inbreeding [32] (F=0.079) 

because in the pedigree structure had 68% of animals with unknown sire e/or dam 

parents with no known not allowing correctly calculate the number of inbred animals 

and the inbreeding of each animal and the average inbreeding. After the quality control, 

a total of 3,305 genotyped animals remained for the analysis. On average, there were 

1,680 and 939 animals for the training and prediction population for the eighteen traits, 

respectively. On average, 68% and 59% of genotyped animals of training and prediction 

population had sire unknown (multiple sire mating), respectively. Phenotypes and 

genotypes used in training and prediction population for each of the eighteen traits are 

presented in Table 2. 
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Empirical accuracy of DGV and GEBV 

The empirical accuracies of DGV are presented in the Table 3 and the empirical 

accuracies of GEBV are presented in the Table 4. There were no significant differences 

(P>0.05) between the means of DGVs accuracies when using two-step procedure with 

dEBV or EBV in SNPs training. When validations were made with dEBV the 

accuracies ranged from 0.08 to 0.40 and when validations were made with EBV the 

accuracies ranged from 0.16 to 0.51. There were no significant differences (P>0.05) 

between the mean of DGVs accuracies when using two different single-step approaches 

(1. SNPs effect were estimated with genotyped animals in the training population and 

the estimates were used in the prediction population (ssT); 2. SNPs effect were 

estimated with genotyped animals in the training e prediction population (ssTP)) and 

validations were made with dEBV and there were significant differences (P<0.05) 

between the mean of DGVs accuracies when validations were made with EBV. The 

accuracies ranged from 0.08 to 0.42 when validating with dEBV and ranged from 0.13 

to 0.66 when validating with EBV. There were no significant differences (P>0.05) 

between single and two steps procedures while validating with dEBV or EBV. 

Although there were no statistical differences between the average of the single and two 

step, in general, the accuracy were always higher in single-step, with the exception of 

PW for validating with dEBV or EBV and BW for validating with dEBV (Table 3). 

There were no significant differences (P>0.05) between the means of GEBVs 

accuracies when using VanRaden or Hayes blending methods in two-step procedure 

with dEBV or EBV in SNPs training. When validations were made with dEBV the 

accuracies ranged from 0.08 to 0.41 and when validations were made with EBV the 

accuracies ranged from 0.27 to 0.70 (Table 4). There were no significant differences 

(P>0.05) between single and two steps procedure when validating with dEBV or EBV. 

The accuracies of single-step ranged from 0.10 to 0.41 validating with dEBV and 

ranged from 0.26 to 0.66 validating with EBV. Although there were no statistical 

differences between the average of the single and two step, in general, the accuracy 

were higher in two-step, with the exception for eight traits (WGBW, WGWY, PY, MW, 

SW, SY, NY, OP) when validating it was made with dEBV (Table 4). 

 

Scale of DGV and GEBV 

Slope coefficient for the regression of dEBV or EBV on DGV or GEBV was 

expected to be close to 1.00, which would indicate that DGV or GEBV predictions were 

not inflated or deflated (Tables 3 and 4).  

Analysis using two-step procedure, in general, presented the slope of the 

regression on DGV close to 1.00 (P>0.05) regardless if were used the dEBV or EBV in 

the SNPs estimation and validation with dEBV or EBV, excep when using dEBV in the 

SNPs estimation and EBV in the validation (b1=0.61). CW, PW and MW had the most 

inflated results. In the analysis using single-step procedure the average slope of the 

regression were statistically different from 1.00 (P<0.05), however CY, PY, MY, had 

the regression coefficient closer to 1.00 (Table 3). 

Slope coefficient for the regression of dEBV or EBV on GEBV using two-step 

procedure, in general, the results not showed deflation or inflation. In other words, the 

average coefficient were statistically close to 1.00 (P>0.05), exception for tsDv 

(b1=0.71) and tsEh (b1=1.16) when using EBV in the SNPs validation (Table 4). In the 

single-step procedure the regression coefficient of the eighteen traits were statistically 

no different from 1.00 (P>0.05) when were used dEBV in the prediction population and 

statistically different form 1.00 (P<0.05) when were used dEBV in the prediction 
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population. In the regression on DGV traits, CY, PY, and MY had the regression 

coefficients closer to 1.00 (Table 4). 

  

Percentage of changes between the top 20% animals 

Assuming selection pressure of 20% in males the exchange of animal percentage 

were analysed when changed the selection criteria of EBV or EBVPA (parents average 

estimated breeding value) to DGV, GEBV2 (blend with EBVPA) or GEBV3 (blend with 

EBV). Table 5 shows the percentage of mismatches when changing the classification 

criteria. In average for the eighteen analysed traits, 938 animals formed the prediction 

population with 175 animals classified as top 20%. The mismatch between models 

when the criteria changed in comparison to EBV were, in average for the eighteen traits, 

52% to EBVPA, greater than 50% to DGV and GEBV2 and lower than 30% to GEBV3. 

The mismatch, in comparison to the EBVPA was 48% to EBV, around 50% to DGV and 

GEBV3 and lower than 40% to GEBV2. These results indicated an important reordering 

of the animals.  

 

Discussion 

EBV and dEBV have been used for estimating and for predicting the effect of 

molecular markers, [33], [34], since true breeding values (TBV) of animals are 

unknown and the goal is a better approximation of the TBV. In simulation studies, the 

correlation between DGV and TBV has been used to represent the accuracy of DGV. In 

this sense, Piccoli et al. [35] and Neves et al. [34], working with simulated data of beef 

cattle, showed that there were no differences between the use of dEBV or EBV. These 

results were probably due to the fact that the training populations were formed by 

animals with high accuracy. The results of this study were similar to the results 

presented by Piccoli et al. [35] and Neves et al. [34]. There is no need to deregress the 

EBVs for training population because the results were very similar with original EBVs 

and there were no statistical differences in accuracy (average of eighteen traits) between 

the estimation of DGVs and GEBVs using the dEBV or EBV. However, the results of 

the DGV and GEBV estimated in the training population and when validated in the 

prediction population with dEBV or EBV, presented expressive accuracy gains (average 

for eighteen traits) in favor of EBV. It was observed probably due to double-counting 

since the EBV also has ancestral information and also to double shrinkage especially 

when the accuracies of EBVs are low. These latest results showed the same behavior to 

the results reported by Boddhireddy et al. [33] when studying Angus cattle in USA. On 

the other hand, Boddhireddy et al. [33] showed superiority of the estimates with EBV 

compared to dEBV in the training population. Ostersen et al. [5] studied pigs in 

Denmark and reported that the use of dEBV compared to EBV produced 18% to 39% 

higher reliabilities. 

One of the main reasons to use information of molecular markers in the 

prediction of breeding values is to be able to carry out the prediction at very young ages, 

even before obtaining phenotypes. Studies with simulated data where the TBV is 

known, the correlation of DGV and GEBV with TBV have indicated the accuracy 

values. In studies using field data the TBV is not known and researchers have used for 

this purpose the correlation of DGV and GEBV with variable response that can be 

phenotype records, EBV, DYD or dEBV. Neves et al. [29] studied several traits in 

Nellore in Brazil using dEBV and divided the correlation between DGV with dEBV by 

the average accuracy of dEBV. Saatchi et al. [36] studied several traits in Angus in 

USA using dEBV and the accuracy was obtained by standardizing the estimated 
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covariance between DGV and dEBV using the genetic variance. Saatchi et al. [4] 

studied ten traits in Hereford from USA, Canada, Argentina and Uruguay using dEBV 

and the accuracy was obtained by simple correlation between DGV and dEBV and 

Boddhireddy et al. [33] studied seventeen traits in Angus in USA, also using dEBV and 

the accuracy was obtained by simple correlation. In this study were used the simple 

correlations of the DGV and GEBV with dEBV and EBV. In general the results of this 

study showed that empirical accuracies were lower than results reported in other studies 

with similar heritabilities. It is most probably due to the fact that the training 

populations were made up of animals with lower accuracies of EBVs (0.62 on average 

for eighteen traits and it ranged between 0.55 (HW) and 0.72 (NW)). 

Bayesian methods such as bayesB, bayesC, bayesLasso and BLUP methods 

based on single and two steps procedures are often used to estimate the DGVs and 

GEBVs being one of the causes of variation in accuracy values [37], [38], [39], [29]. In 

this study were compared the BLUP method based on single and two steps procedure. 

Results of empirical accuracies of DGV in this study showed that ssTP outperformed 

the other methods when were used dEBVs or EBVs in prediction populations. However, 

in the average of eighteen analyzed traits ssTP did not differ statistically (P>0.05) from 

the other methods when using dEBV in the prediction population and also did not differ 

statistically (P>0.05) from the tsE (two-step with SNP estimation based on EBV) 

method when using EBV in the prediction population. The average empirical accuracy 

of ssTP was 0.23 using dEBV in the prediction population and it ranged from 0.10 

(PW) to 0.42 (NW) and when using EBV in predicting population the average empirical 

accuracy was 0.44 and it ranged from 0.25 (SCa and SCaw) to 0.66 (HY). The results of 

empirical accuracies of GEBV in this study showed similar performance between blend 

method by VanRaden [16] and by Hayes [1]. The average of empirical accuracies of 

eighteen analyzed traits using dEBV in the prediction population ranged from 0.21 to 

0.22 and using EBV in the prediction population ranged from 0.49 to 0.52, and from the 

single-step procedure were 0,23 and 0.46 using dEBV and EBV in the prediction 

population, respectively. The results obtained by Piccoli et al. [35] working with 

simulated data of beef cattle showed equality accuracies between the single and two 

steps procedures for DGV and GEBV, similar to this study, however with accuracies 

higher for the same level of heritability. Su et al. [25] studying fifteen traits of Nordic 

Red breed in Finland found an average empirical accuracy of 0.309, 0.322 and 0.318 for 

DGV and GEBV by single and two steps, respectively, higher than the average 

empirical accuracies obtained this study. In the study of by Su et al. [25] the average 

difference between GEBV for single and two steps was 0.04 in favor of single-step 

procedure, while in this study was in average 0.01 or 0.02 for single-step procedure 

when using dEBV and 0.03 or 0.06 in favor of two-step procedure when using EBV, but 

both were not statistically different. Gao et al. [40] studied sixteen traits in Nordic 

Holstein in Denmark and also found a superiority accuracy (0.02) in favor of GEBV by 

single-step procedure. 

The scale of genomic predictions should be a matter of concern, especially to 

determine whether DGV and GEBV can be compared to traditional EBV from routine 

evaluations in breeding programs. If the regression coefficient was smaller than 1.0 it 

would be indicating that there was overestimation of genomic predictions and if the 

regression coefficient was larger than 1.0 it would indicates that there was 

underestimation of genomic predictions. Vitezica et al. [41] have discussed that 

criterion under the aspect of selection. If the parents of the next generation come from 

only genotyped selection candidates, they share a common mean for belonging to the 
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same generation, then the bias would not be a concern. However, if for different 

candidates there are different amounts of information such as progeny test males and 

newborn animals and in presence of bias (genetic gains over or under estimated), thus, 

newborns could be considered better than they really are.  

Regarding to the DGV, the regression coefficients of this study showed that the 

two-step procedure generated estimates less biased and that the average for eighteen 

traits the results did not differ statistically from 1.0 (P>0.05) while that using the single-

step procedure estimates were overestimated. Regarding the GEBV, the regression 

coefficients showed that the two-step procedure, generally, generated estimates 

underestimated while those estimates using the single-step procedure were 

overestimated. The results obtained by Koivula et al. [26] that studied Nordic Red breed 

in Finland overestimated genomic predictions in both single and two steps procedures 

with regression coefficients varying between 0.56 and 0.90. However, Su et al. [25] also 

studying Nordic Red breed showed regression coefficients average of the traits of 0.946 

and 0.941 for single and two steps, respectively, and Gao et al. [40] studying Nordic 

Holstein breed obtained regression coefficients average of the traits of 0.958 and 0.960 

for single and two steps, respectively, showing good genomic predictions. 

Breeding programs conducted in Brazil and approved by the Ministry of 

Agriculture, Livestock and Food Supply (MAPA) to issue the Special Certification of 

Identification and Production (CEIP) can certify 20% of the best animals born each year 

based on breeding values, which is the case of Conexão Delta G’s genetic improvement 

program - Hereford and Braford (Zebu x Hereford) cattle, whose provided the data for 

this study. The results in Table 5 show the percentage of animals that would no longer 

be certified with CEIP if the selection criterion based on EBVPA (selection at birth) or 

EBV (selection after collecting phenotype) would changed to DGV, GEBV2 or GEBV3 

genomic predictions. The results show that the extent to which was added other sources 

of information to predict breeding values the classification by breeding values was 

being changed, which in fact is expected. The accuracy gains (average of eighteen 

traits) of GEBV2 (average=0.47), EBV (average=0.62) and GEBV3 (average=0.64) 

compared to EBVPA (average=0.37) were 0.10, 0.25 and 0.74, respectively. These 

results reinforce the importance of using molecular markers in the prediction of 

breeding values for young animals.  

 

Conclusions 

Both DGV and GEBV predicted by single and two steps procedures produce the 

same level of empirical accuracies, but with two-step procedure the genomic preditions 

were less biased.  
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Table 1 Summary statistics of pedigree structure.  

Pedigree structure Number Percentage 

Individuals in total             540,769 100.00 

   Sires in total                   2,528 0.47 

   -Progeny                      177,509 32.83 

Dams in total                    178,342 32.98 

   -Progeny                      424,050 78.42 

   Individuals with progeny         180,870 33.45 

Individuals with no progeny      359,899 66.55 

   individuals with both known parents 177,470 32.82 

individuals with both unknown parents 116,680 21.58 

individuals with sire unknown 246,580 45.60 

   Individuals Braford 383,513 70.92 

Individuals Hereford 157,256 29.08 

   Individuals males 214,469 39.66 

Individuals females 326,300 60.34 
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Table 2 Number of phenotype records, genotyped animals and heritability for each economic trait. 

Trait1 h2 

Training population 
 

Prediction population 

Phenotype 

Genotype 
 

Phenotype 

Genotype 

Total Animal Sire Dam 
Unknown3 

 Total Animal Sire Dam 
Unknown3 

Sire Dam 
 

Sire Dam 

WGBW 0.25 325,648 2,325 2,231 91 3 1,786 108 
 

354,253 980 944 9 27 588 36 

WGWY 0.31 153,993 1,614 1,520 91 3 1,257 108 
 

164,140 925 907 6 12 541 17 

CW 0.25 319,518 1,990 1,896 91 3 1,677 108 
 

348,018 980 944 9 27 588 36 

CY 0.32 161,033 1,811 1,717 91 3 1,416 108 
 

171,403 957 939 6 12 569 17 

PW 0.25 301,810 1,981 1,887 91 3 1,668 108 
 

330,310 980 944 9 27 588 36 

PY 0.32 149,890 1,811 1,717 91 3 1,416 108 
 

160,260 957 939 6 12 569 17 

MW 0.25 301,558 1,988 1,894 91 3 1,675 108 
 

330,057 980 944 9 27 588 36 

MY 0.32 149,336 1,811 1,717 91 3 1,416 108 
 

159,706 957 939 6 12 569 17 

SCa 0.43 44,086 708 623 85 0 430 96 
 

46,823 873 865 5 3 498 7 

SCaw 0.43 44,086 708 623 85 0 430 96 
 

46,823 873 865 5 3 498 7 

BW 0.33 197,472 2,492 2,401 88 3 1,839 102 
 

221,038 942 905 10 27 559 37 

SW 0.25 122,980 1,932 1,848 81 3 1,624 90 
 

140,681 979 944 8 27 587 35 

SY 0.41 78,036 1,781 1,694 84 3 1,297 94 
 

84,259 956 939 5 12 568 16 

NW 0.46 238,607 2,382 2,291 89 2 1,758 104 
 

265,800 961 927 7 27 581 34 

NY 0.41 112,597 1,884 1,793 89 2 1,398 104 
 

122,409 941 924 5 12 563 17 

HW 0.23 91,328 700 612 86 2 655 102 
 

110,162 879 846 6 27 518 33 

HY 0.31 65,085 1,651 1,561 88 2 1,320 102 
 

73,621 829 813 4 12 477 16 

OP 0.20 117,460 678 587 90 1 639 106 
 

139,082 957 921 9 27 571 36 

Average 0.32 165,251 1,680 1,590 89 2 1,317 103 

 

181,603 939 914 7 19 557 25 
 

 1
0

8
 

 1
50
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1 WGBW: weight gain from birth to weaning (Kg); WGWY: weight gain from weaning 

to yearling (Kg); CW: conformation score at weaning (scores 1-5); CY: conformation 

score at yearling (scores 1-5); PW: precocity score at weaning (scores 1-5); PY: 

precocity score at yearling (scores 1-5); MW: muscularity score at weaning (scores 1-

5); MY: muscularity score at yearling (scores 1-5); SCa: scrotal circumference adjusted 

for age at yearling (cm); SCaw: scrotal circumference adjusted for age and weight at 

yearling (cm); BW: birth weight (Kg); SW: size score at weaning (scores 1-5); SY: size 

score at yearling (scores 1-5); NW: prepuce (navel) score at weaning (scores 1-5); NY: 

prepuce (navel) score at yearling (scores 1-5); HW: hair length score at weaning (scores 

1-3); HY: hair length score at yearling (scores 1-3); OP: ocular pigmentation score 

(scores 1-3); 
2 The heritability estimates were obtained prior to this study by DMU package [42]; 
3 Number of genotyped animals with unknown sire (generally multiple sire matings) 

and/or dam. 
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Table 3 Accuracies of DGV and regression coefficients on DGV in the prediction population. 

Trait1 
 

Regarding dEBV of prediction population 
 

Regarding EBV of prediction population 

 
r(EBV/dEBV,DGV)2 

 
b1(EBV/dEBV,DGV)3 

 
r(EBV/dEBV,DGV)2 

 
b1(EBV/dEBV,DGV)3 

 
tsD4 tsE4 ssT4 ssTP4 

 
tsD4 tsE4 ssT4 ssTP4 

 
tsD4 tsE4 ssT4 ssTP4 

 
tsD4 tsE4 ssT4 ssTP4 

WGBW 
 

0.12 0.13 0.13 0.18 
 

0.68 0.98 0.53 0.67 
 

0.25 0.32 0.23 0.40 
 

0.44 0.80 0.30 0.46 

WGWY 
 

0.08 0.09 0.09 0.13 
 

0.61 0.85 0.46 0.57 
 

0.27 0.30 0.25 0.38 
 

0.58 0.80 0.39 0.51 

CW 
 

0.09 0.08 0.08 0.11 
 

0.40 0.44 0.27 0.34 
 

0.34 0.40 0.28 0.43 
 

0.55 0.82 0.35 0.50 

CY 
 

0.18 0.22 0.19 0.26 
 

0.81 1.36 0.69 0.81 
 

0.33 0.42 0.32 0.49 
 

0.67 1.16 0.50 0.67 

PW 
 

0.10 0.08 0.08 0.10 
 

0.46 0.50 0.28 0.32 
 

0.30 0.38 0.24 0.36 
 

0.50 0.81 0.29 0.40 

PY 
 

0.25 0.26 0.25 0.28 
 

1.07 1.54 0.84 0.86 
 

0.39 0.46 0.36 0.50 
 

0.73 1.17 0.53 0.66 

MW 
 

0.14 0.11 0.14 0.17 
 

0.61 0.61 0.45 0.51 
 

0.37 0.44 0.31 0.44 
 

0.55 0.84 0.37 0.48 

MY 
 

0.24 0.27 0.25 0.29 
 

0.94 1.37 0.77 0.86 
 

0.40 0.47 0.38 0.53 
 

0.71 1.11 0.54 0.70 

SCa 
 

0.10 0.11 0.09 0.15 
 

0.52 0.81 0.35 0.52 
 

0.17 0.20 0.14 0.26 
 

0.44 0.73 0.27 0.47 

SCaw 
 

0.11 0.10 0.10 0.15 
 

0.63 0.87 0.42 0.57 
 

0.16 0.17 0.13 0.25 
 

0.45 0.70 0.28 0.47 

BW 
 

0.15 0.15 0.14 0.14 
 

0.82 1.23 0.57 0.54 
 

0.21 0.24 0.19 0.25 
 

0.46 0.81 0.30 0.40 

SW 
 

0.19 0.17 0.20 0.24 
 

1.04 1.27 0.84 0.78 
 

0.33 0.39 0.33 0.50 
 

0.67 1.10 0.51 0.59 

SY 
 

0.25 0.29 0.27 0.33 
 

1.03 1.74 0.82 0.85 
 

0.34 0.42 0.35 0.51 
 

0.70 1.27 0.54 0.66 

NW 
 

0.40 0.40 0.40 0.42 
 

1.17 1.50 0.87 0.85 
 

0.50 0.51 0.49 0.55 
 

0.78 1.04 0.57 0.60 

NY 
 

0.37 0.33 0.37 0.40 
 

1.45 1.74 1.14 1.18 
 

0.46 0.45 0.45 0.51 
 

0.88 1.15 0.67 0.74 

HW 
 

0.21 0.18 0.22 0.24 
 

1.23 1.58 1.04 0.82 
 

0.33 0.33 0.31 0.48 
 

0.61 0.90 0.48 0.54 

HY 
 

0.17 0.17 0.18 0.20 
 

0.69 1.07 0.50 0.54 
 

0.28 0.33 0.27 0.42 
 

0.45 0.78 0.29 0.42 

OP 
 

0.28 0.28 0.28 0.35 
 

1.09 1.27 0.93 0.82 
 

0.53 0.55 0.52 0.66 
 

0.85 1.02 0.70 0.63 

Average 
 

0.19 0.19 0.19 0.23 
 

0.85 1.15 0.65 0.69 
 

0.33 0.38 0.31 0.44 
 

0.61 0.95 0.44 0.55 

Anova5 
 

a a a a 
 

ns ns * * 
 

b ab b a 
 

* ns * * 
 

 1
5

2
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1 WGBW: weight gain from birth to weaning (kg); WGWY: weight gain from weaning 

to yearling (kg); CW: conformation score at weaning (scores 1-5); CY: conformation 

score at yearling (scores 1-5); PW: precocity score at weaning (scores 1-5); PY: 

precocity score at yearling (scores 1-5); MW: muscularity score at weaning (scores 1-

5); MY: muscularity score at yearling (scores 1-5); SCa: scrotal circumference adjusted 

for age (cm); SCaw: scrotal circumference adjusted for age and weight yearling (cm); 

BW: birth weight (kg); SW: size score at weaning (scores 1-5); SY: size score at 

yearling (scores 1-5); NW: prepuce (navel) score at weaning (scores 1-5); NY: prepuce 

(navel) score at yearling (scores 1-5); HW: hair length score at weaning (scores 1-3); 

HY: hair length score at yearling (scores 1-3); OP: ocular pigmentation score (scores 1-

3); 
2 Accuracies measured as the Pearson’s correlation r(dEBV,DGV) and r(EBV,DGV) of 

the animals in the prediction population; 
3 Inflation of genomic predictions measured by the slope of the regression b1(dEBV, 

DGV) and b1(EBV, DGV) in the prediction population; 
4 DGVs predictions wherein: (ts): DGVs predicted by two-step procedure; (ss): DGVs 

predicted by single-step procedure; (D): DGVs predicted by dEBV in the training 

population; (E): DGVs predicted by EBV in the training population;  

5 Different letters within a group means r(dEBV,DGV), r(EBV,DGV) that there is a 

statistical difference between two means (P<0.05). Within a group means 

b1(dEBV,DGV), b1(EBV,DGV), “ns” refers to statistically no different 1.00 (P>0.05) 

and “*” refers to statistically different 1.00 (P<0.05). 
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Table 4 Accuracies of GEBV and regression coefficients on GEBV in the prediction population. 

Trait1 
 

Regarding dEBV of prediction population 
 

Regarding EBV of prediction population 

 
r(EBV/dEBV,GEBV)2 

 
b1(EBV/dEBV,GEBV)3 

 
r(EBV/dEBV,DGV)2 

 
b1(EBV/dEBV,GEBV)3 

 
tsDv4 tsDh4 tsEv4 tsEh4 ss4 

 
tsDv4 tsDh4 tsEv4 tsEh4 ss4 

 
tsDv4 tsDh4 tsEv4 tsEh4 ss4 

 
tsDv4 tsDh4 tsEv4 tsEh4 ss4 

WGBW 
 

0.27 0.23 0.28 0.23 0.18 
 

1.19 1.42 1.42 1.57 0.67 
 

0.61 0.56 0.67 0.61 0.41 
 

0.83 1.07 1.06 1.33 0.48 

WGWY 
 

0.35 0.27 0.37 0.29 0.13 
 

1.86 1.95 2.16 2.25 0.58 
 

0.65 0.58 0.69 0.61 0.38 
 

1.03 1.25 1.20 1.43 0.53 

CW 
 

0.23 0.20 0.23 0.19 0.11 
 

0.74 0.82 0.79 0.83 0.35 
 

0.71 0.69 0.76 0.72 0.47 
 

0.84 1.08 0.98 1.20 0.54 

CY 
 

0.44 0.38 0.47 0.40 0.27 
 

1.38 1.59 1.61 1.81 0.83 
 

0.73 0.68 0.79 0.73 0.51 
 

1.01 1.28 1.19 1.47 0.70 

PW 
 

0.23 0.19 0.22 0.18 0.10 
 

0.82 0.93 0.88 0.89 0.33 
 

0.66 0.64 0.72 0.68 0.39 
 

0.83 1.08 1.00 1.21 0.43 

PY 
 

0.46 0.39 0.47 0.40 0.29 
 

1.46 1.67 1.67 1.86 0.88 
 

0.74 0.69 0.79 0.73 0.52 
 

1.01 1.26 1.20 1.47 0.69 

MW 
 

0.26 0.22 0.24 0.19 0.16 
 

0.88 0.95 0.89 0.87 0.51 
 

0.69 0.67 0.74 0.70 0.46 
 

0.83 1.03 0.98 1.15 0.51 

MY 
 

0.46 0.40 0.49 0.42 0.30 
 

1.33 1.54 1.55 1.74 0.88 
 

0.74 0.71 0.80 0.75 0.55 
 

0.97 1.22 1.16 1.42 0.73 

SCa 
 

0.53 0.42 0.57 0.45 0.15 
 

1.86 2.14 2.18 2.54 0.55 
 

0.69 0.60 0.75 0.64 0.28 
 

1.20 1.51 1.42 1.80 0.50 

SCaw 
 

0.57 0.44 0.61 0.46 0.15 
 

2.17 2.51 2.58 3.01 0.60 
 

0.70 0.59 0.76 0.63 0.26 
 

1.31 1.65 1.57 2.00 0.50 

BW 
 

0.38 0.31 0.40 0.33 0.14 
 

1.63 1.89 2.07 2.37 0.55 
 

0.57 0.52 0.64 0.57 0.26 
 

1.00 1.25 1.32 1.64 0.42 

SW 
 

0.37 0.33 0.36 0.31 0.24 
 

1.25 1.58 1.34 1.60 0.78 
 

0.76 0.73 0.80 0.76 0.52 
 

0.96 1.28 1.10 1.43 0.62 

SY 
 

0.48 0.44 0.50 0.45 0.33 
 

1.33 1.74 1.58 2.01 0.87 
 

0.70 0.66 0.75 0.70 0.52 
 

0.97 1.33 1.18 1.59 0.68 

NW 
 

0.53 0.50 0.54 0.49 0.41 
 

1.27 1.66 1.47 1.87 0.87 
 

0.69 0.66 0.72 0.67 0.55 
 

0.89 1.19 1.06 1.39 0.62 

NY 
 

0.57 0.49 0.57 0.48 0.40 
 

1.79 2.14 2.10 2.38 1.20 
 

0.71 0.65 0.73 0.65 0.52 
 

1.07 1.36 1.31 1.58 0.76 

HW 
 

0.38 0.32 0.41 0.34 0.21 
 

1.71 2.07 1.92 2.35 0.84 
 

0.67 0.62 0.74 0.67 0.43 
 

0.96 1.25 1.14 1.50 0.55 

HY 
 

0.45 0.29 0.49 0.39 0.08 
 

1.25 1.49 1.58 1.83 0.56 
 

0.73 0.52 0.81 0.72 0.17 
 

0.82 1.07 1.09 1.39 0.44 

OP 
 

0.47 0.42 0.48 0.43 0.35 
 

1.24 1.55 1.34 1.65 0.83 
 

0.81 0.79 0.83 0.80 0.66 
 

0.87 1.18 0.95 1.27 0.64 

Average 
 

0.41 0.35 0.43 0.36 0.22 
 

1.40 1.65 1.62 1.86 0.70 
 

0.70 0.64 0.75 0.69 0.44 
 

0.97 1.24 1.16 1.46 0.57 

Anova5 
 

a a a a b 
 

ns * * * ns 
 

ab b a ab c 
 

ns * ns * * 
 

  

 1
54
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1 WGBW: weight gain from birth to weaning (kg); WGWY: weight gain from weaning 

to yearling (kg); CW: conformation score at weaning (scores 1-5); CY: conformation 

score at yearling (scores 1-5); PW: precocity score at weaning (scores 1-5); PY: 

precocity score at yearling (scores 1-5); MW: muscularity score at weaning (scores 1-

5); MY: muscularity score at yearling (scores 1-5); SCa: scrotal circumference adjusted 

for age (cm); SCaw: scrotal circumference adjusted for age and weight yearling (cm); 

BW: birth weight (kg); SW: size score at weaning (scores 1-5); SY: size score at 

yearling (scores 1-5); NW: prepuce (navel) score at weaning (scores 1-5); NY: prepuce 

(navel) score at yearling (scores 1-5); HW: hair length score at weaning (scores 1-3); 

HY: hair length score at yearling (scores 1-3); OP: ocular pigmentation score (scores 1-

3); 
2 Accuracies measured as the Pearson’s correlation r(dEBV,GEBV) and r(EBV,GEBV) 

of the animals in the prediction population; 
3 Inflation of genomic predictions measured by the slope of the regression b1(dEBV, 

GEBV) and b1(EBV, GEBV) in the prediction population; 
4 GEBVs predictions wherein: (ts): GEBVs predicted by two-step procedure; (ss): 

GEBVs predicted by single-step procedure; (D): GEBVs predicted by dEBV in the 

training population; (E): GEBVs predicted by EBV in the training population; (v): 

GEBVs predicted by VanRaden blending method [16] in two-step procedure; (h): 

GEBVs predicted by Hayes blending method [1] in two-step procedure; 
5 Different letters within a group means r(dEBV,GEBV), r(EBV, GEBV) that there is a 

statistical difference between two means (P<0.05). Within a group means 

b1(dEBV,GEBV), b1(EBV,GEBV), “ns” refers to statistically no different 1.00 

(P>0.05) and “*” refers to statistically different 1.00 (P<0.05). 
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Table 5 Percentage of mismatch between 20% best animals in the prediction 

population. 

Trait
1 

 
Regarding EBV 

 
Regarding EBVPA 

 EB

VPA 

 
DGV 

 
GEBV2 

 
GEBV3 

 EB

V 

 
DGV 

 
GEBV2 

 
GEBV3 

  

ts

D4 

ssT

P4  

tsD

v5 

ssT

P5  

tsD

v5 

ss

P5   

ts

D4 

ssT

P4  

tsD

v5 

ssT

P5  

tsD

v5 

ss

P5 

WG

BW  45 

 

66 61 

 

51 60 

 

19 29 

 

38 

 

62 52 

 

33 50 

 

41 51 

WG

WY  42 

 

72 60 

 

44 58 

 

18 23 

 

39 

 

54 35 

 

18 31 

 

41 41 

CW 
 

29 

 

63 54 

 

34 50 

 

21 29 

 

28 

 

59 48 

 

17 41 

 

33 43 

CY 
 

35 

 

60 46 

 

31 43 

 

11 24 

 

31 

 

55 40 

 

17 33 

 

34 43 

PW 
 

33 

 

67 60 

 

44 59 

 

18 33 

 

35 

 

59 55 

 

31 51 

 

42 53 

PY 
 

39 

 

60 48 

 

40 46 

 

17 26 

 

28 

 

53 38 

 

22 36 

 

37 40 

MW 
 

35 

 

62 57 

 

43 55 

 

21 40 

 

35 

 

52 50 

 

27 48 

 

41 56 

MY 
 

28 

 

62 49 

 

34 48 

 

17 28 

 

26 

 

53 43 

 

24 40 

 

32 43 

SCa 
 

43 

 

75 62 

 

43 62 

 

14 25 

 

31 

 

64 52 

 

20 49 

 

33 41 

SCa

w  46 

 

72 66 

 

42 65 

 

13 28 

 

41 

 

69 62 

 

28 59 

 

41 46 

BW 
 

53 

 

73 70 

 

59 70 

 

17 30 

 

44 

 

71 58 

 

39 57 

 

47 52 

SW 
 

31 

 

57 48 

 

34 48 

 

13 23 

 

29 

 

54 48 

 

23 46 

 

33 40 

SY 
 

38 

 

61 49 

 

41 49 

 

14 22 

 

32 

 

57 37 

 

28 36 

 

39 44 

NW 
 

40 

 

61 60 

 

50 59 

 

26 36 

 

27 

 

56 52 

 

39 50 

 

38 45 

NY 
 

39 

 

59 57 

 

44 57 

 

14 25 

 

23 

 

57 50 

 

37 49 

 

25 33 

HW 
 

35 

 

65 53 

 

34 52 

 

17 30 

 

25 

 

56 38 

 

21 36 

 

27 38 

HY 
 

34 

 

66 63 

 

42 60 

 

24 39 

 

36 

 

59 50 

 

25 46 

 

36 41 

OP 
 

13 

 

55 40 

 

28 38 

 

33 39 

 

25 

 

49 40 

 

25 38 

 

39 44 

Aver

age  37 

 

64 56 

 

41 54 

 

18 29 

 

32 

 

58 47 

 

26 44 

 

37 44 
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1 WGBW: weight gain from birth to weaning (kg); WGWY: weight gain from weaning 

to yearling (kg); CW: conformation score at weaning (scores 1-5); CY: conformation 

score at yearling (scores 1-5); PW: precocity score at weaning (scores 1-5); PY: 

precocity score at yearling (scores 1-5); MW: muscularity score at weaning (scores 1-

5); MY: muscularity score at yearling (scores 1-5); SCa: scrotal circumference adjusted 

for age (cm); SCaw: scrotal circumference adjusted for age and weight yearling (cm); 

BW: birth weight (kg); SW: size score at weaning (scores 1-5); SY: size score at 

yearling (scores 1-5); NW: prepuce (navel) score at weaning (scores 1-5); NY: prepuce 

(navel) score at yearling (scores 1-5); HW: hair length score at weaning (scores 1-3); 

HY: hair length score at yearling (scores 1-3); OP: ocular pigmentation score (scores 1-

3); 
2 GEBV2 blend made with EBVPA; 
3 GEBV3 blend made with EBV; 
4 DGVs predictions wherein: (ts): DGVs predicted by two-step procedure; (ss): DGVs 

predicted by single-step procedure; (D): DGVs predicted by dEBV in the training 

population; (TP): DGVs predicted by all genotypes and phenotypes by training 

population;  

5 GEBVs predictions wherein: (ts): GEBVs predicted by two-step procedure; (ss): 

GEBVs predicted by single-step procedure; (D): GEBVs predicted by dEBV in the 

training population; (v): GEBVs predicted by VanRaden blending method [16] in two-

step procedure; (TP): GEBVs predicted by single-step with EBVPA; (P) GEBVs 

predicted by single-step with EBV. 

 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CAPÍTULO VII 
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CONSIDERAÇÕES FINAIS 
 

Existe um grande potencial para o uso dos marcadores moleculares 
em programas de melhoramento genético animal em todo o mundo, 
principalmente impulsionado pela possibilidade de seleção dos animais a 
idades jovens (biópsia de embriões antes de serem implantados) acumulando 
maiores ganhos genéticos e diminuindo os custos dos testes de progênie (mais 
comum em bovinos de leite) e possibilitando a seleção de caracteres de 
importância econômica de difícil mensuração, tais como, consumo residual 
alimentar, resistência a doenças e a parasitas e características que necessitam 
o abate dos animais. Com base nestes aspectos foram estimados diversos 
parâmetros que darão suporte a estudos de viabilidade da aplicação da 
seleção genômica em rebanhos de bovinos de corte.  

A análise de pedigree e estrutura populacional realizada nas raças 
Angus, Devon, Hereford e Shorthorn apontam para um ligeiro aumento da 
endogamia nas quatro raças britânicas estudadas, com estimativas de 
tamanho efetivo da população, indicando que a diversidade genética está 
sendo mantida em níveis razoáveis em todas as raças, acima do limiar crítico 
mínimo recomendado (FAO,1998), muito provavelmente devido ao fluxo 
continuo de importação de material genético (sêmen) de outros países.  

Os parâmetros estudados com relação a imputação de genótipos de 
painéis de baixa densidade (3K, 6K, 8K, 15K e 20K) para o painel de 50K e dos 
painéis de baixa e média densidade (3K, 6K, 8K, 15K, 20K, 50K, 90iK e 90tK) 
para o painel de 777K indicaram que, com exceção do painel de 3K, todos os 
demais painéis poderiam ser utilizados como base visando a imputação para o 
painel de 50K e também que os painéis de 50K, 90iK e 90tK, poderiam ser 
utilizados como base na imputação para o painel de 777K, viabilizando o uso 
dos diferentes painéis na seleção genômica. O uso dos painéis imputados na 
seleção genômica (testes realizados com os painéis de 8K e 15K) em relação 
ao painel original de 50K, mostraram que não houveram diferenças em 
acurácia. 

As análises mostraram que o uso dos marcadores moleculares na 
seleção genômica produziram ganhos em acurácia em relação à seleção sem 
o uso dos marcadores moleculares e que o procedimento de passo único ou de 
multi passo se equivalem na predição dos valores genéticos genômicos. 

Um fato importante a ser considerado na implementação da seleção 
genômica é a genotipagem de animais (touros e vacas) largamente utilizados 
nos programas de melhoramento genético animal possibilitando criar uma 
população de treinamento que apresente acurácias elevadas, critério 
importante para obter melhores predições dos marcadores moleculares. Para 
este aspecto, é primordial que se crie um banco de material biológico, 
principalmente, com os animais mais importantes dos programas de 
melhoramento. Os custos da genotipagem, mesmo com painéis de baixa 
densidade, ainda podem ser elevados para muitos produtores. No entanto, 
espera-se uma diminuição destes custos com o passar do tempo, fato que se 
observa com outras tecnologias. O desenvolvimento de painéis com 
marcadores moleculares específicos para determinada raça ou programa de 
melhoramento genético, tem mostrado melhores resultados, tanto na 
imputação, visando a reconstrução de painéis mais densos, como nos 
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resultados da aplicação da seleção genômica medidos pelo valor das 
acurácias. No mundo globalizado de hoje, é imprescindível que se formem 
parcerias entre universidades, institutos de pesquisa, programas de 
melhoramento e entre países, com o intuito de partilhar os genótipos já 
coletados e direcionar as novas genotipagens, certamente promovendo maior 
benefício e qualidade nas pesquisas, que resultarão em maiores ganhos no 
agronegócio, que é o objetivo final. 

O uso da seleção genômica em programas de melhoramento 
genético animal no Brasil, semelhantes ao programa da Conexão DeltaG, será 
importante principalmente: a) quando a seleção for praticada para caracteres 
de difícil mensuração e/ou de custo elevado, como por exemplo, resistência a 
ectoparasitas e consumo alimentar residual, b) para maximizar futuras 
produções pela utilização de touros e vacas de elevado valor genético e 
acurácia; c) para melhorar as informações de genealogia e por consequência 
as predições dos valores genéticos, visto que em média 50% dos animais são 
filhos de reprodutores múltiplos. A imputação de genótipos também terá um 
papel decisivo na seleção genômica dos bovinos de corte no Brasil. Esta 
técnica possibilitará: a) que os animais jovens sejam genotipados com painéis 
menos densos e, portanto, mais econômicos dentro do sistema de produção e 
após a reconstrução para painéis mais densos e mais apropriados para a 
seleção genômica; b) a reconstrução dos genótipos de animais que já possuem 
filhos genotipados, como por exemplo, animais importantes que não se 
dispunha de material biológico, bem como das vacas com várias crias.  

Considerando os resultados desta pesquisa, seria importante a 
realização de estudos adicionais quanto ao desenvolvimento e uso de painéis 
específicos para raças e/ou programas de melhoramento genético; quanto a 
formação da população de treinamento, esta devendo ser constituida por mais 
animais e, principalmente, de maior acurácia e composta por diferentes raças; 
e quanto a imputação de genótipos de animais não genotipados e o uso destes 
na seleção genômica.  
 

 

 



161 

 

REFERÊNCIAS BIBLIOGRÁFICAS 
 

AGUILAR, I. et al. Hot topic: a unified approach to utilize phenotypic, full 
pedigree, and genomic information for genetic evaluation of Holstein final score. 
Journal of Dairy Science, Champaign, v. 93, n. 2, p. 743–752, 2010.  

ARDLIE, K. G.; KRUGLYAK, L.; SEIELSTAD, M. Patterns of linkage 
disequilibrium in the human genome. Nature Reviews. Genetics, London, v. 3, 
n. 4, p. 299–309, 2002.  

BERNARDO, R. Molecular markers and selection for complex traits in plants: 
Learning from the last 20 years. Crop Science, Madison, v. 48, p. 1649–1664, 
2008.  

BOHMANOVA, J.; SARGOLZAEI, M.; SCHENKEL, F. S. Characteristics of 
linkage disequilibrium in North American Holsteins. BMC Genomics, London, v. 
11, p. 421, 2010.  

BOICHARD, D.; MAIGNEL, L.; VERRIER, E. The value of using probabilities of 
gene origin to measure genetic variability in a population. Genetics Selection 
Evolution, Paris, v. 29, n. 1, p. 5–23, 1997.  

BRITO, F. V et al. Accuracy of genomic selection in simulated populations 
mimicking the extent of linkage disequilibrium in beef cattle. BMC Genetics, 
London, v. 12, n. 1, p. 80, 2011.  

BRITO, F. V. et al. In-depth pedigree analysis in a large Brazilian Nellore herd. 
Genetics and Molecular Research, Ribeirão Preto, v. 12, n. 4, p. 5758–5765, 
2013.  

BROWN W L. Genetic Diversity and Genetic Vulnerability-An Appraisal. 
Economic Botany, New York, v. 37, n. 1, p. 4–12, 1983.  

BROWNING, B. L.; BROWNING, S. R. A unified approach to genotype 
imputation and haplotype-phase inference for large data sets of trios and 
unrelated individuals. American Journal of Human Genetics, Amsterdam, v. 
84, n. 2, p. 210–223, fev. 2009.  

BROWNING, S. R.; BROWNING, B. L. Rapid and accurate haplotype phasing 
and missing-data inference for whole-genome association studies by use of 
localized haplotype clustering. American Journal of Human Genetics, 
Amsterdam, v. 81, n. 5, p. 1084–1097, nov. 2007.  

CALUS, M. P. L. et al. Accuracy of genomic selection using different methods to 
define haplotypes. Genetics, Pittsburg, v. 178, n. 1, p. 553–561, 2008.  

CARILLIER, C. et al. A first step toward genomic selection in the multi-breed 
French dairy goat population. Journal of Dairy Science, Champaign, v. 96, n. 
11, p. 7294–7305, 2013. 

CASAS, E. et al. Quantitative trait loci affecting growth and carcass composition 
of cattle segregating alternate forms of myostatin. Journal of Animal Science, 
Champaign, v. 78, n. 3, p. 560–569, 2000. 



162 

 

 

CLEVELAND, M. A. et al. Changes in inbreeding of U . S . Herefords during the 
twentieth century. Journal of Animal Science, Champaign, v. 83, n. 5, p. 992–
1001, 2005.  

DASSONNEVILLE, R. et al. Short communication: Imputation performances of 
3 low-density marker panels in beef and dairy cattle. Journal of Dairy Science, 
Champaign, v. 95, n. 7, p. 4136–4140, 2012.  

DE ROOS, A. P. W. et al. Linkage disequilibrium and persistence of phase in 
Holstein-Friesian, Jersey and Angus cattle. Genetics, Pittsburg, v. 179, n. 3, p. 
1503–1512, 2008.  

DEKKERS, J. C. Commercial application of marker- and gene-assisted 
selection in livestock: strategies and lessons. Journal of Animal Science, 
Champaign, v. 82 E-Suppl, 2004.  

DRUET, T.; SCHROOTEN, C.; DE ROOS, A. P. W. Imputation of genotypes 
from different single nucleotide polymorphism panels in dairy cattle. Journal of 
Dairy Science, Champaign, v. 93, n. 11, p. 5443–5454, 2010.  

ERBE, M. et al. Improving accuracy of genomic predictions within and between 
dairy cattle breeds with imputed high-density single nucleotide polymorphism 
panels. Journal of Dairy Science, Champaign, v. 95, n. 7, p. 4114–4129, 
2012.  

FALCONER, D. S.; MACKAY, T. F. C. Introduction to quantitative genetics. 
4th ed. Harlow: Pearson, 1996.  

FAO. Secondary guidelines for development of national farm animal 
genetic resources management plans: management of small populations at 
risk. Rome: FAO, 1998.  

FAO. In vivo conservation of animal genetic resources. Rome: FAO, 2013. 
(FAO Animal Production and Health Guidelines. N. 14)  

GODDARD, M. Genomic selection: prediction of accuracy and maximization of 
long term response. Genetica, Gif-sur-Yvette, v. 136, n. 2, p. 1–2, 2009.  

GODDARD, M. E.; HAYES, B. J.; MCPARTLAN, H. Can the same genetic 
markers be used in multiple breeds? In: WORLD CONGRESS ON GENETICS 
APPLIED TO LIVESTOCK PRODUCTION. 8., 2006, Belo Horizonte. 
Proceedings... Belo Horizonte: Instituto Prociência, 2006. 1 CD-ROM. 

HAYES, B. J. et al. Novel Multilocus Measure of Linkage Disequilibrium to 
Estimate Past Effective Population Size Novel Multilocus Measure of Linkage 
Disequilibrium to Estimate Past Effective Population Size. Genome Research, 
Cold Spring Harbor, v.13, n. 4, p. 635–643, 2003.  

HAYES, B. J. et al. Accuracy of genomic breeding values in multi-breed dairy 
cattle populations. Genetics Selection Evolution, Paris, v. 41, p. 51, 2009a.  

HAYES, B. J. et al. Invited review: Genomic selection in dairy cattle: progress 
and challenges. Journal of Dairy Science, Champaign, v. 92, n. 2, p. 433–
443, 2009b.  

HENDERSON, C. R. Best linear unbiased estimation and prediction under a 
selection model. Biometrics, Washington, v. 31, n. 2, p. 423–447, 1975.  



163 

 

HICKEY, J. M. et al. A combined long-range phasing and long haplotype 
imputation method to impute phase for SNP genotypes. Genetics Selection 
Evolution, Paris, v. 43, n. 1, p. 12, 2011.  

HILL, W. C.; ROBERTSON, A. Linkage disequilibrium in finite populations. 
Theoretical and Applied Genetics, Stuttgart, v. 38, n. 6, p. 226–231, 1968.  

KACHMAN, S. D. et al. Comparison of molecular breeding values based on 
within- and across-breed training in beef cattle. Genetics Selection Evolution, 
Paris, v. 45, n. 1, p. 30, 2013.  

KONG et al. Detection of sharing by descent , long range phasing and 
haplotype PubMed Commons. Nature Genetics, London, v. 40, n. 9, p. 1068–
1075, 2008.  

LACY, R. C. Analysis of founder representations in pedigrees: Founder 
equivalents and founder genome equivalents. Zoo Biology, Malden, v. 8, n. 2, 
p. 111–123, 1989.  

LANDER, E. E. S.; SCHORK, N. J. N. Genetic dissection of complex traits. 
Science, Washington, v. 265, n. 5181, p. 2037–2048, 1994.  

LEROY, G. et al. Methods to estimate effective population size using pedigree 
data: Examples in dog, sheep, cattle and horse. Genetics Selection 
Evolution, Paris, v. 45, n. 1, p. 1, 2013.  

LU, D. et al. Linkage disequilibrium in Angus, Charolais, and Crossbred beef 
cattle. Frontiers in Genetics, Lausanne, v. 3, n. 152, p. 1–10, 2012.  

MACCLUER, J. W. et al. Pedigree analysis by computer simulation. Zoo 
Biology, Malden, v. 5, n. 2, p. 147–160, 1986.  

MÁRQUEZ, G. C. et al. Genetic diversity and population structure of American 
Red Angus cattle. Journal of Animal Science, Champaign, v. 88, n. 1, p. 59–
68, 2010.  

MC PARLAND, S. et al. Inbreeding trends and pedigree analysis of Irish dairy 
and beef cattle populations. Journal of Animal Science, Champaign, v. 85, n. 
2, p. 322–331, 2007.  

MEUWISSEN, T. H. E. Accuracy of breeding values of “unrelated” individuals 
predicted by dense SNP genotyping. Genetics Selection Evolution, Paris, v. 
41, n. 45, p. 35, 2009.  

MEUWISSEN, T. H. E.; WOOLLIAMS, J. A. Effective sizes of livestock 
populations to prevent a decline in fitness. Theoretical and Applied Genetics, 
Stuttgart, v. 89, p. 1019–1026, 1994.  

MEUWISSEN, T. H.; HAYES, B. J.; GODDARD, M. E. Prediction of total 
genetic value using genome-wide dense marker maps. Genetics, Pittsburg, v. 
157, n. 4, p. 1819–1829, 2001.  

MOGHADDAR, N.; SWAN, A. A.; VAN DER WERF, J. H. J. Genomic prediction 
of weight and wool traits in a multi-breed sheep population. Animal Production 
Science, Clayton South, v. 54, n. 5, p. 544, 2014.  



164 

 

 

NEI, M. Analysis of gene diversity in subdivided populations. Proceedings of 
the National Academy of Sciences of the United States of America, 
Washington, v. 70, n. 12, p. 3321–3323, 1973.  

PICCOLI, M. L. et al. Origins and genetic diversity of British cattle breeds in 
Brazil assessed by pedigree analyses. Journal of Animal Science, 
Champaign, v. 92, n. 5, p. 1920–1930, 2014a.  

PICCOLI, M. L. et al. Accuracy of genome-wide imputation in Braford and 
Hereford beef cattle. BMC genetics, London, v. 15 n. 157, p. 1-15, 2014b.  

RIQUET, J. et al. Fine-mapping of quantitative trait loci by identity by descent in 
outbred populations: application to milk production in dairy cattle. Proceedings 
of the National Academy of Sciences of the United States of America, 
Washington, v. 96, n. 16, p. 9252–9257, 1999.  

SANTANA, M. L. et al. Pedigree analysis and inbreeding depression on growth 
traits in Brazilian Marchigiana and Bonsmara breeds. Journal of Animal 
Science, Champaign, v. 90, n. 1, p. 99–108, 2012.  

SARGOLZAEI, M. et al. Extent of linkage disequilibrium in Holstein cattle in 
North America. Journal of Dairy Science, Champaign, v. 91, n. 5, p. 2106–
2117, 2008.  

SARGOLZAEI, M.; CHESNAIS, J. P.; SCHENKEL, F. S. A new approach for 
efficient genotype imputation using information from relatives. BMC genomics, 
London, v. 15, n. 1, p. 478, 2014.  

SARGOLZAEI, M.; SCHENKEL, F. S.; CHESNAIS, J. Impact of amount of dam 
genotypic information on family-based imputation accuracy. In: DAIRY CATTLE 
BREEDING AND GENETICS COMMITTEE MEETING, 2010, Guelph. 
Proceedings...Guelph, Canada, 2010. 

SCHAEFFER, L. R. Strategy for applying genome-wide selection in dairy cattle. 
Journal of Animal Breeding and Genetics, Malden, v. 123, n. 4, p. 218–223, 
2006.  

SCHENKEL, F. S. et al. Association of a single nucleotide polymorphism in the 
calpastatin gene with carcass and meat quality traits of beef cattle. Journal of 
Animal Science, Champaign, v. 84, p. 291–299, 2006.  

SCHENKEL, F. S. et al. Reliability of Genomic Evaluation of Holstein Cattle in 
Canada. In: INTERBULL INTERNATIONAL WORKSHOP, GENOMIC 
INFORMATION IN GENETIC EVALUATIONS, 2009, Uppsala, Proceedings... 
Uppsala, Sweden, 2009. 

SØRENSEN, A. C.; SØRENSEN, M. K.; BERG, P. Inbreeding in Danish dairy 
cattle breeds. Journal of Dairy Science, Champaign, v. 88, n. 5, p. 1865–
1872, 2005.  

THE BOVINE GENOME SEQUENCING AND ANALYSIS CONSORTIUM. The 

genome sequence of taurine cattle: a window to ruminant biology and evolution 

Science, Washington, v.324, n. 5926, p.522-528, 2009. 



165 

 

VANRADEN, P. M. Accounting for Inbreeding and Crossbreeding in Genetic 
Evaluation of Large Populations. Journal of Dairy Science, Champaign, v. 75, 
n. 11, p. 3136–3144, 1992.  

VANRADEN, P. M. et al. Genomic evaluations with many more genotypes. 
Genetics Selection Evolution, Paris, v. 43, n. 1, p. 10, 2011.  

WEBER, K.; THALLMAN, R. Accuracy of genomic breeding values in multi-
breed beef cattle populations derived from deregressed breeding values and 
phenotypes. Journal of Animal Science, Champaign, v. 90, n. 12, p. 4177–
4190, 2012.  

WRIGHT, S. Coefficients of inbreeding and relationship. The American 
Naturalist, Chicago, v. 56, n. 645, p. 330–338, 1922.  

WRIGHT, S. Evolution i n mendelian populations. Genetics, Pittsburg, v. 16, n. 
2, p. 97–159, 1931.  

LI, Y. et al. Genotype Imputation. Annual Review of of Genomics and Human 
Genetics, Palo Alto, v. 10, p. 387–406, 2009.  

ZHANG, Z.; DRUET, T. Marker imputation with low-density marker panels in 
Dutch Holstein cattle. Journal of Dairy Science, Champaign, v. 93, n. 11, p. 
5487–94, 2010.  

ZHAO, H. et al. Evaluation of linkage disequilibrium measures between multi-
allelic markers as predictors of linkage disequilibrium between markers and 
QTL. Genetical Research, MacKay, v. 86, n. 1, p. 77–87, 2005.  

ZHAO, H.; NETTLETON, D.; DEKKERS, J. C. M. Evaluation of linkage 
disequilibrium measures between multi-allelic markers as predictors of linkage 
disequilibrium between single nucleotide polymorphisms. Genetical Research, 
MacKay, v. 89, n. 1, p. 1–6, 2007.  

 

 



166 

 

 

VITA 
 

Mario Luiz Piccoli, filho de Lilia Ribeiro Piccoli e José Piccoli, nasceu 
aos 05 dias do mês de maio de 1964 na cidade de São Marcos-RS.  

Freqüentou da 1ª à 4ª série do ensino fundamental no Grupo Escolar 
Maranhão e da 5ª a 8ª série do ensino fundamental no Ginásio Estadual de 
São Marcos, ambos em São Marcos-RS. No ensino médio frequentou o 
Colégio Nossa Senhora do Carmo em Caxias do Sul-RS e realizou curso 
profissionalizante de Técnico em Contabilidade.  

Ingressou no curso de Médicina Veterinária da Universidade Federal 
de Pelotas no ano de 1984. Cumpriu estágio curricular no Centro Rural 
Universitário de Treinamento e Ação Social - CRUTAC da Universidade 
Federal de Pelotas-RS e na Cooperativa Agropecuária Caxiense no setor de 
bovinos de leite em Caxias do Sul-RS. Realizou outros estágios durante o 
período acadêmico junto ao Serviço de Plantão do Hospital de Clínicas 
Veterinário da Universidade Federal de Pelotas-RS, na Suinocultura Eurotec 
Ltda em Caxias do Sul-RS, na Frangosul S/A nas sedes de Salvador do Sul-RS 
e de Caxias do Sul-RS, formou-se Médico Veterinário em julho de 1988. 

Ingressou no curso de mestrado em Zootecnia da Faculdade de 
Agronomia da Universidade Federal do Rio Grande do Sul, em Porto Alegre-
RS, área de produção animal, em março de 1989, sob a orientação do 
professor Luiz Alberto Fries, e obteve o grau de Mestre em Zootecnia em 
março de 1992. 

Fundou a empresa GenSys Consultores Associados S/S em 1991, 
onde exerce atividades de consultoria e assessoria na área de melhoramento 
genético animal, estando temporariamente afastado em razão do curso de 
doutorado em Zootecnia. 

Em março de 2011 ingressou no curso de Doutorado em Zootecnia 
na Universidade Federal do Rio Grande do Sul, em Porto Alegre-RS, sob a 
orientação do professor José Braccini, onde passou a desenvolver pesquisas 
envolvendo seleção genômica em bovinos de corte. 

Entre setembro/2011 a janeiro/2012 realizou período de investigação 
científica junto a Faculdade de Medicina Veterinária da Universidade Técnica 
de Lisboa, Portugal, sob a orientação do professor Luís Telo da Gama onde 
trabalhou o tema de diversidade genética com as raças de origem britânicas 
criadas no Rio Grande do Sul. 

Entre setembro e outubro de 2012 realizou missão científica de curta 
duração junto ao Department Animal and Poltry Science da University of 
Guelph-ON, Canadá, sob a supervisão do professor Flávio Scharamm 
Schenkel, e trabalhou no tema seleção genômica. Posteriormente, no período 
de setembro/2013 a agosto/2014, nesta mesma instituição, desenvolveu o 
Programa de Doutorado Sanduíche no Exterior - PDSE. 

Em agosto de 2014 retornou ao Brasil para finalizar os trabalhos do 
programa de doutorado e submeter-se à avaliação de defesa da Tese no 
Programa de Pós-Graduação em Zootecnia, área de concentração Produção 
Animal da Universidade Federal do Rio Grande do Sul em Porto Alegre-RS. 


