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We derive general bounds for the large time size of supnorm values ‖𝑢(⋅, 𝑡)‖
𝐿
∞
(R) of solutions to one-dimensional advection-

diffusion equations 𝑢
𝑡
+ (𝑏(𝑥, 𝑡)𝑢)

𝑥
= 𝑢
𝑥𝑥
, 𝑥 ∈ R, 𝑡 > 0 with initial data 𝑢(⋅, 0) ∈ 𝐿

𝑝
0 (R) ∩ 𝐿∞(R) for some 1 ≤ 𝑝

0
< ∞ and

arbitrary bounded advection speeds 𝑏(𝑥, 𝑡), introducing new techniques based on suitable energy arguments. Some open problems
and related results are also given.

1. Introduction

In this work, we obtain very general large time estimates for
supnorm values of solutions 𝑢(⋅, 𝑡) to parabolic initial value
problems of the form

𝑢
𝑡
+ (𝑏 (𝑥, 𝑡) 𝑢)𝑥 = 𝑢𝑥𝑥, 𝑥 ∈ R, 𝑡 > 0, (1a)

𝑢 (⋅, 0) = 𝑢0 ∈ 𝐿
𝑝
0 (R) ∩ 𝐿

∞
(R) , 1 ≤ 𝑝

0
< ∞, (1b)

for arbitrary continuously differentiable advection fields 𝑏 ∈
𝐿
∞
(R × [0,∞[). Here, by solution to (1a) and (1b) in some

time interval [0, 𝑇
∗
[, 0 < 𝑇

∗
≤ ∞, wemean a function𝑢 : R×

[0, 𝑇
∗
[→ R which is bounded in each strip 𝑆

𝑇
= R × [0, 𝑇],

0 < 𝑇 < 𝑇
∗
, solves (1a) in the classical sense for 0 < 𝑡 < 𝑇

∗
,

and satisfies 𝑢(⋅, 𝑡) → 𝑢
0
in 𝐿1loc(R) as 𝑡 → 0. It follows from

the a priori estimates given in Section 2 that all solutions of
problem (1a), (1b) are actually globally defined (𝑇

∗
= ∞),

with 𝑢(⋅, 𝑡) ∈ 𝐶0([0,∞[, 𝐿
𝑝
(R)) for each 𝑝 ≥ 𝑝

0
finite. Given

𝑏 ∈ 𝐿
∞
(R × [0,∞[), what then can be said about the size of

supnorm values ‖𝑢(⋅, 𝑡)‖
𝐿
∞
(R) for 𝑡 ≫ 1?

When 𝜕𝑏/𝜕𝑥 ≥ 0 for all 𝑥 ∈ R, 𝑡 ≥ 0, it is well known
that, for each 𝑝

0
≤ 𝑝 ≤ ∞, ‖𝑢(⋅, 𝑡)‖

𝐿
𝑝
(R) is monotonically

decreasing in 𝑡, with

‖𝑢 (⋅, 𝑡)‖𝐿∞(R) ≤ 𝐾 (𝑝0)
𝑢0

𝐿𝑝0 (R)𝑡
−1/2𝑝

0 ∀𝑡 > 0 (𝑏
𝑥
≥ 0)

(2)

for some constant 0 < 𝐾(𝑝
0
) < 2

−1/𝑝
0 that depends only

on 𝑝
0
; see, for example, [1–5]. For general 𝑏(𝑥, 𝑡), however,

estimating ‖𝑢(⋅, 𝑡)‖
𝐿
∞
(R) is much harder. To see why, let us

illustrate with the important case 𝑝
0
= 1, where one has

‖𝑢 (⋅, 𝑡)‖𝐿1(R) ≤
𝑢0

𝐿1(R) ∀𝑡 > 0, (3)

as recalled inTheorem 1. Writing (1a) as

𝑢
𝑡
+ 𝑏 (𝑥, 𝑡) 𝑢𝑥 = 𝑢𝑥𝑥 − 𝑏𝑥 (𝑥, 𝑡) 𝑢, (4)

we observe on the right hand side of (4) that |𝑢(𝑥, 𝑡)| is
pushed to grow at points (𝑥, 𝑡) where 𝑏

𝑥
(𝑥, 𝑡) < 0. If this

condition persists long enough, large values of |𝑢(𝑥, 𝑡)|might
be generated, particularly at sites where −𝑏

𝑥
(𝑥, 𝑡) ≫ 1. Now,

because of constraint (3), any persistent growth in solution
size will eventually create long thin structures as shown in
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Figure 1: Solution profiles showing typical growth in regions with
𝑏
𝑥
< 0, where 𝑏 = 5 cos𝑥. After reaching maximum height,

solution starts decaying very slowly due to its spreading and mass
conservation (decay rate is not presently known).

Figure 1, which, in turn, tend to be effectively dissipated by
viscosity. The final overall behavior that ultimately results
from such competition is not immediately clear, either on
physical or on mathematical grounds.

As shown in (4), it is not the magnitude of 𝑏(𝑥, 𝑡) itself
but instead its oscillation that is relevant in determining
‖𝑢(⋅, 𝑡)‖

𝐿
∞
(R). Accordingly, we introduce the quantity 𝐵(𝑡)

defined by

𝐵 (𝑡) =
1

2
(sup
𝑥∈R

𝑏 (𝑥, 𝑡) − inf
𝑥∈R

𝑏 (𝑥, 𝑡)) , 𝑡 ≥ 0, (5)

which plays a fundamental role in the analysis. Our main
result is now easily stated.

MainTheorem. For each 𝑝 ≥ 𝑝
0
, one has1

lim sup
𝑡→∞

‖𝑢 (⋅, 𝑡)‖𝐿∞(R)

≤ (
3√ 3

2𝜋
𝑝)

1/𝑝

⋅B
1/𝑝

⋅ lim sup
𝑡→∞

‖𝑢 (⋅, 𝑡)‖𝐿𝑝(R),

(6)

whereB = lim sup
𝑡→∞

𝐵(𝑡).
In particular, in the important case 𝑝

0
= 1 considered

above, we obtain, using (3),

lim sup
𝑡→∞

‖𝑢(⋅, 𝑡)‖𝐿∞(R) ≤ (
3√ 3

2𝜋
) ⋅B ⋅

𝑢0
𝐿1(R), (7)

so that 𝑢(⋅, 𝑡) stays uniformly bounded for all time in this
case.2 Estimates similar to (6) can also be shown to hold for
the 𝑛-dimensional problem

𝑢
𝑡
+ div (b (𝑥, 𝑡) 𝑢) = Δ𝑢, 𝑢 (⋅, 0) ∈ 𝐿

𝑝
(R
𝑛
) ∩ 𝐿
∞
(R
𝑛
) ,

(8)

but to simplify our discussion we consider here the case
𝑛 = 1 only. Our derivation of (6), which improves some
unpublished results by the third author, uses the 1D inequality

‖v‖𝐿∞(R) ≤ 𝐶∞‖v‖
1/3

𝐿
1
(R)

v𝑥

2/3

𝐿
2
(R)
, v ∈ 𝐿

1
(R) ∩ 𝐻

1
(R) ,

(9)

where 𝐶
∞
= (3/4)

2/3, and can be readily extended to other
problems of interest like 1D systems of viscous conservation
laws [6, Ch. 9] or the more general equation

𝑢
𝑡
+ (𝑏 (𝑥, 𝑡, 𝑢) 𝑢)𝑥 = (𝑎 (𝑥, 𝑡, 𝑢) 𝑢𝑥)𝑥,

𝑎 (𝑥, 𝑡, 𝑢) ≥ 𝜇 (𝑡) > 0,
(10)

with bounded values 𝑏(𝑥, 𝑡, 𝑢); provided that we assume
∫
∞

𝜇(𝑡)𝑑𝑡 = ∞: using a similar argument, we get the
estimate3 [7, Ch. 2]
lim sup
𝑡→∞

‖𝑢 (⋅, 𝑡)‖𝐿∞(R)

≤ (
3√ 3

2𝜋
𝑝)

1/𝑝

⋅B
1/𝑝

𝜇
⋅ lim sup
𝑡→∞

‖𝑢(⋅, 𝑡)‖𝐿𝑝(R),

(11)

for each 𝑝 ≥ 𝑝
0
, where

B
𝜇
= lim sup
𝑡→∞

𝐵 (𝑡)

𝜇 (𝑡)
, (12a)

𝐵 (𝑡) =
1

2
(sup
𝑥∈R

𝑏 (𝑥, 𝑡, 𝑢 (𝑥, 𝑡)) − inf
𝑥∈R

𝑏 (𝑥, 𝑡, 𝑢 (𝑥, 𝑡))) .

(12b)

More involving applications, such as problems with superlin-
ear advection or degenerate diffusion, which require consid-
erable extra work, will be studied in the future.

2. A Priori Estimates

This section contains some preliminary results on the solu-
tions of problem (1a) and (1b) needed later for our derivation
of estimate (6), which is completed in Section 3. (Recall that
a solution on some given time interval [0, 𝑇

∗
[, 0 < 𝑇

∗
≤

∞, is a function 𝑢(⋅, 𝑡) ∈ 𝐿
∞

loc([0, 𝑇∗[, 𝐿
∞
(R)) which is

smooth (𝐶2 in 𝑥, 𝐶1 in 𝑡) inR × ]0, 𝑇
∗
[ and solves (1a) there,

verifying the initial condition in the sense of 𝐿1loc(R), i.e.,
‖𝑢(⋅, 𝑡) − 𝑢

0
‖
𝐿
1
(K) → 0 as 𝑡 → 0 for each compact K ⊂ R.

Local existence theory can be found in, e.g., [8, Ch. 6].) We
start with a simple Gronwall-type estimate for ‖𝑢(⋅, 𝑡)‖

𝐿
𝑞
(R),

𝑝
0
≤ 𝑞 < ∞. The corresponding result for the supnorm

(𝑞 = ∞) is more difficult to obtain and will be given at the
end of Section 2; see Theorem 4.

Theorem 1. If 𝑢(⋅, 𝑡) ∈ 𝐿
∞

loc([0, 𝑇∗[, 𝐿
∞
(R)) solves problem

(1a), (1b), then 𝑢(⋅, 𝑡) ∈ 𝐶0([0, 𝑇
∗
[, 𝐿
𝑞
(R)) for each 𝑝

0
≤ 𝑞 <

∞, and
‖𝑢 (⋅, 𝑡)‖𝐿𝑞(R)

≤ ‖𝑢 (⋅, 0)‖𝐿𝑞(R) ⋅ exp{
1

2
(𝑞 − 1)∫

𝑡

0

𝐵(𝜏)
2
𝑑𝜏}

(13)

for all 0 < 𝑡 < 𝑇
∗
.
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Proof. The proof is standard, so we will only sketch the
basic steps. Taking 𝑆 ∈ 𝐶

1
(R) such that 𝑆(v) ≥ 0 for

all v, 𝑆(0) = 0, 𝑆(v) = sgn(v) for |v| ≥ 1, let (given 𝛿 >

0) 𝐿
𝛿
(u) = ∫

u

0
𝑆(v/𝛿)𝑑v, so that 𝐿

𝛿
(u) → |u| as 𝛿 → 0,

uniformly in u. Let Φ
𝛿
(u) = 𝐿

𝛿
(u)𝑞. Given 𝑅 > 0, 0 < 𝜖 ≤ 1,

let 𝜁
𝑅
(⋅) be the cut-off function 𝜁

𝑅
(𝑥) = 0 for |𝑥| ≥ 𝑅, 𝜁

𝑅
(𝑥) =

exp{−𝜖√1 + 𝑥2} − exp{−𝜖√1 + 𝑅2} for |𝑥| < 𝑅. Multiplying
(1a) byΦ

𝛿
(𝑢(𝑥, 𝑡)) ⋅𝜁

𝑅
(𝑥) if 𝑞 ̸= 2, or 𝑢(𝑥, 𝑡) ⋅𝜁

𝑅
(𝑥) if 𝑞 = 2, and

integrating the result on R × [0, 𝑡], we obtain, letting 𝛿 → 0

and then 𝑅 → ∞, since 𝑢 ∈ 𝐿∞(R × [0, 𝑡]),

U
𝜖 (𝑡) + 𝑉𝜖 (𝑡) ≤ U

𝜖 (0) + ∫
𝑡

0

𝐺
𝜖 (𝜏) U𝜖 (𝜏) 𝑑𝜏,

U
𝜖 (𝑡) = ∫

R
|𝑢 (𝑥, 𝑡)|

𝑞
𝑤
𝜖 (𝑥) 𝑑𝑥,

(14a)

where 𝑤
𝜖
(𝑥) = exp{−𝜖√1 + 𝑥2}, 𝐺

𝜖
(𝑡) = (1/2)𝑞(𝑞 − 1)𝐵(𝑡)

2
+

𝜖2𝑞 ⋅ sup
0≤𝜏≤𝑡

‖𝑢(⋅, 𝜏)‖
𝐿
∞
(R) + 𝜖, and

𝑉
𝜖 (𝑡)

=

{{{{{{

{{{{{{

{

1

2
𝑞 (𝑞 − 1)

×∫
𝑡

0

∫
𝑢 ̸= 0

|𝑢 (𝑥, 𝜏)|
𝑞−2𝑢𝑥 (𝑥, 𝜏)


2
𝑤
𝜖 (𝑥) 𝑑𝑥 𝑑𝜏, if 𝑞 ̸=2,

∫
𝑡

0

∫
R

𝑢𝑥 (𝑥, 𝜏)

2
𝑤
𝜖 (𝑥) 𝑑𝑥 𝑑𝜏, if 𝑞 =2.

(14b)

By Gronwall’s lemma, (14a) and (14b) give U
𝜖
(𝑡) ≤

U
𝜖
(0) ⋅ exp{∫𝑡

0
𝐺
𝜖
(𝜏)𝑑𝜏}, from which we obtain (13)

by simply letting 𝜖 → 0. This shows, in particular,
that 𝑢(⋅, 𝑡) ∈ 𝐿∞loc([0, 𝑇∗[, 𝐿

𝑞
(R)) if 𝑝

0
≤ 𝑞 < ∞. Now, to get

𝑢(⋅, 𝑡) ∈ 𝐶
0
([0, 𝑇
∗
[, 𝐿
𝑞
(R)), it is sufficient to show that, given

𝜀 > 0 and 0 < 𝑇 < 𝑇
∗
arbitrary, we can find 𝑅 = 𝑅(𝜀, 𝑇) ≫ 1

large enough so that we have ‖𝑢(⋅, 𝑡)‖
𝐿
𝑞
(|𝑥|>𝑅)

< 𝜀 for any
0 ≤ 𝑡 ≤ 𝑇. Taking 𝜓 ∈ 𝐶

2
(R) with 0 ≤ 𝜓 ≤ 1 and 𝜓(𝑥) = 0

for all 𝑥 ≤ 0, 𝜓(𝑥) = 1 for all 𝑥 ≥ 1, let Ψ
𝑅,𝑀

∈ 𝐶
2
(R) be

the cut-off function given by Ψ
𝑅,𝑀

(𝑥) = 0 if |𝑥| ≤ 𝑅 − 1,
Ψ
𝑅,𝑀

(𝑥) = 𝜓(|𝑥| − 𝑅 + 1) if 𝑅 − 1 < |𝑥| < 𝑅, and Ψ
𝑅,𝑀

(𝑥) = 1

if 𝑅 ≤ |𝑥| ≤ 𝑅 + 𝑀, Ψ
𝑅,𝑀

(𝑥) = 𝜓(𝑅 + 𝑀 + 1 − |𝑥|) if
𝑅 + 𝑀 < |𝑥| < 𝑅 + 𝑀 + 1, Ψ

𝑅,𝑀
(𝑥) = 0 if |𝑥| ≥ 𝑅 + 𝑀 + 1,

where 𝑅 > 1, 𝑀 > 0 are given. Multiplying (1a) by
Φ


𝛿
(𝑢(𝑥, 𝑡)) ⋅ Ψ

𝑅,𝑀
(𝑥) if 𝑞 ̸= 2, or 𝑢(𝑥, 𝑡) ⋅ Ψ

𝑅,𝑀
(𝑥) if 𝑞 = 2,

and integrating the result on R × [0, 𝑡], 0 < 𝑡 ≤ 𝑇, we obtain,
as in (14a) and (14b), by letting 𝛿 → 0, 𝑀 → ∞, that
‖𝑢(⋅, 𝑡)‖

𝐿
𝑞
(|𝑥|>𝑅)

< 𝜀/2 + ‖𝑢(⋅, 0)‖
𝐿
𝑞
(|𝑥|>𝑅−1)

for all 0 ≤ 𝑡 ≤ 𝑇,
provided that we take 𝑅 > 1 sufficiently large. This gives the
continuity result, and the proof is complete.

An important by-product of the proof above is that we
have (letting 𝜖 → 0 in (14a) and (14b), and using (13)), for
each 0 < 𝑇 < 𝑇

∗
and 𝑞 ≥ max{𝑝

0
, 2},

∫
𝑇

0

∫
R
|𝑢 (𝑥, 𝜏)|

𝑞−2𝑢𝑥 (𝑥, 𝜏)

2
𝑑𝑥 𝑑𝜏 < ∞. (15)

Therefore, if we repeat the steps above leading to (14a) and
(14b), we obtain (letting 𝛿 → 0, 𝑅 → ∞, 𝜖 → 0, in this
order, taking (13) and (15) into account) the identity

‖𝑢 (⋅, 𝑡)‖
𝑞

𝐿
𝑞
(R)

+ 𝑞 (𝑞 − 1)∫
𝑡

0

∫
R
|𝑢 (𝑥, 𝜏)|

𝑞−2𝑢𝑥 (𝑥, 𝜏)

2
𝑑𝑥 𝑑𝜏

= ‖𝑢 (⋅, 0)‖
𝑞

𝐿
𝑞
(R)

+ 𝑞 (𝑞 − 1) ∫
𝑡

0

∫
R

(𝑏 (𝑥, 𝜏) − 𝛽 (𝜏)) |𝑢 (𝑥, 𝜏)|
𝑞−2

× 𝑢 (𝑥, 𝜏) 𝑢𝑥 (𝑥, 𝜏) 𝑑𝑥 𝑑𝜏

(16)

for every 0 < 𝑡 < 𝑇
∗
and max {𝑝

0
, 2} ≤ 𝑞 < ∞, where

𝛽 (𝑡) =
1

2
(sup
𝑥∈R

𝑏 (𝑥, 𝑡) + inf
𝑥∈R

𝑏 (𝑥, 𝑡)) , 𝑡 ≥ 0. (17)

The core of the difficulty in the analysis of (1a) and (1b) is
apparent here: under the sole assumption that 𝑏 is bounded,
it is not much clear how one should go about the last term
in (16) in order to get more than (13) above. Actually, it will
be convenient to consider (16) in the (equivalent) differential
form, that is,

𝑑

𝑑𝑡
‖𝑢 (⋅, 𝑡)‖

𝑞

𝐿
𝑞
(R)

+ 𝑞 (𝑞 − 1)∫
R
|𝑢 (𝑥, 𝑡)|

𝑞−2𝑢𝑥 (𝑥, 𝑡)

2
𝑑𝑥

= 𝑞 (𝑞 − 1)∫
R

(𝑏 (𝑥, 𝑡) − 𝛽 (𝑡)) |𝑢 (𝑥, 𝑡)|
𝑞−2

× 𝑢 (𝑥, 𝑡) 𝑢𝑥 (𝑥, 𝑡) 𝑑𝑥

(18)

for all 𝑡 ∈ [0, 𝑇
∗
[\𝐸
𝑞
, where 𝐸

𝑞
⊂ [0, 𝑇

∗
[ has zero measure.

We then readily obtain, using (9) and the one-dimensional
Nash inequality [9]

‖v‖𝐿2(R) ≤ 𝐶2‖v‖
2/3

𝐿
1
(R)

v𝑥

1/3

𝐿
2
(R)
, 𝐶
2
= (

3√ 3

4𝜋
)

1/3

,

(19)

where the value given above for 𝐶
2
is optimal [10], the

following result.

Theorem 2. Let 𝑞 ≥ 2𝑝
0
. If �̂� ∈ [0, 𝑇

∗
[\𝐸
𝑞
is such that

(𝑑/𝑑𝑡)‖𝑢(⋅, 𝑡)‖
𝑞

𝐿
𝑞
(R)|
𝑡=�̂�

≥ 0, then

𝑢 (⋅, �̂�)
𝐿𝑞(R) ≤ (

𝑞

2
𝐶
3

2
)
1/𝑞

𝐵(�̂�)
1/𝑞𝑢 (⋅, �̂�)

𝐿𝑞/2(R),
(20a)

𝑢 (⋅, �̂�)
𝐿∞(R) ≤ (

𝑞

2
𝐶
2
𝐶
∞
)
2/𝑞

𝐵(�̂�)
2/𝑞𝑢 (⋅, �̂�)

𝐿𝑞/2(R).
(20b)

Proof. Consider (20a) first. From (5), (17), and (18), we have

∫
R

𝑢 (𝑥, �̂�)

𝑞−2𝑢𝑥 (𝑥, �̂�)


2

𝑑𝑥

≤ 𝐵 (�̂�) ∫
R

𝑢 (𝑥, �̂�)

𝑞−1 𝑢𝑥 (𝑥, �̂�)

 𝑑𝑥.

(21)
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This gives

∫
R

𝑢 (𝑥, �̂�)

𝑞−2𝑢𝑥 (𝑥, �̂�)


2

𝑑𝑥 ≤ 𝐵(�̂�)
2𝑢 (⋅, �̂�)


𝑞

𝐿
𝑞
(R)
, (22)

or, in terms of V̂ ∈ 𝐿
1
(R) ∩ 𝐿

∞
(R) defined by V̂(𝑥) =

|𝑢(𝑥, �̂�)|
𝑞/2 if 𝑞 > 2, V̂(𝑥) = 𝑢(𝑥, �̂�) if 𝑞 = 2,

V̂𝑥
𝐿2(R) ≤

𝑞

2
𝐵 (�̂�) ‖V̂‖𝐿2(R). (23)

Using (19), we then get ‖V̂‖2
𝐿
2
(R) ≤ (𝑞 /2)𝐶

3

2
𝐵(�̂�)‖V̂‖2

𝐿
1
(R), which

is equivalent to (20a). Similarly, (20b) can be obtained, using
(9).

Thus, we can use (20a) and (20b) when ‖𝑢(⋅, 𝑡)‖
𝐿
𝑞
(R)

is not decreasing. If it is decreasing, (18) becomes useless
but at least we know in such case that ‖𝑢(⋅, 𝑡)‖

𝐿
𝑞
(R) is not

increasing, which should be useful too. Different values of 𝑞
have different scenarios, which we will have to piece together
in some way.The next result shows us just how. To this end, it
is convenient to introduce the quantitiesB(𝑡

0
; 𝑡) andU

𝑝
(𝑡
0
; 𝑡)

defined by

B (𝑡
0
; 𝑡) = sup {𝐵 (𝜏) : 𝑡0 ≤ 𝜏 ≤ 𝑡} , (24)

U
𝑝
(𝑡
0
; 𝑡) = sup {‖𝑢 (⋅, 𝜏)‖𝐿𝑝(R) : 𝑡0 ≤ 𝜏 ≤ 𝑡} , (25)

given 𝑝 ≥ 𝑝
0
, 0 ≤ 𝑡

0
≤ 𝑡 < 𝑇

∗
arbitrary.

Theorem 3. Let 𝑞 ≥ 2𝑝
0
. For each 0 ≤ 𝑡

0
< 𝑇
∗
, we have

U
𝑞
(𝑡
0
; 𝑡)

≤ max{𝑢 (⋅, 𝑡0)
𝐿𝑞(R); (

𝑞

2
𝐶
3

2
)
1/𝑞

B(𝑡
0
; 𝑡)
1/𝑞

U
𝑞/2
(𝑡
0
; 𝑡)}

(26)

for all 𝑡
0
≤ 𝑡 < 𝑇

∗
.

Proof. Set 𝜆
𝑞
(𝑡) = ((𝑞 /2)𝐶

3

2
)
1/𝑞

B(𝑡
0
; 𝑡)
1/𝑞

U
𝑞/2
(𝑡
0
; 𝑡). There

are three cases to consider.

Case I. ‖𝑢(⋅, 𝜏)‖
𝐿
𝑞
(R) > 𝜆

𝑞
(𝑡) for all 𝑡

0
≤ 𝜏 ≤ 𝑡. By (20a),

Theorem 2, we must then have (𝑑/𝑑𝜏)‖𝑢(⋅, 𝜏)‖𝑞
𝐿
𝑞
(R)

< 0 for
all 𝜏 ∈ [𝑡

0
, 𝑡] \ 𝐸

𝑞
, so that ‖𝑢(⋅, 𝜏)‖

𝐿
𝑞
(R) is monotonically

decreasing in [𝑡
0
, 𝑡]. In particular, U

𝑞
(𝑡
0
; 𝑡) = ‖𝑢(⋅, 𝑡

0
)‖
𝐿
𝑞
(R)

in this case, and (26) holds.

Case II. ‖𝑢(⋅, 𝑡
0
)‖
𝐿
𝑞
(R) > 𝜆

𝑞
(𝑡) and ‖𝑢(⋅, 𝑡

1
)‖
𝐿
𝑞
(R) ≤ 𝜆

𝑞
(𝑡) for

some 𝑡
1
∈ ]𝑡
0
, 𝑡]. In this case, let 𝑡

2
∈ ]𝑡
0
, 𝑡] be such that

we have ‖𝑢(⋅, 𝜏)‖
𝐿
𝑞
(R) > 𝜆

𝑞
(𝑡) for all 𝑡

0
≤ 𝜏 < 𝑡

2
, while

‖𝑢(⋅, 𝑡
2
)‖
𝐿
𝑞
(R) = 𝜆𝑞(𝑡). We claim that ‖𝑢(⋅, 𝜏)‖

𝐿
𝑞
(R) ≤ 𝜆𝑞(𝑡) for

every 𝑡
2
≤ 𝜏 ≤ 𝑡: in fact, if this were not true, we could then

find 𝑡
3
, 𝑡
4
with 𝑡

2
≤ 𝑡
3
< 𝑡
4
≤ 𝑡 such that ‖𝑢(⋅, 𝜏)‖

𝐿
𝑞
(R) > 𝜆𝑞(𝑡)

for all 𝑡
3
< 𝜏 ≤ 𝑡

4
, ‖𝑢(⋅, 𝑡

3
)‖
𝐿
𝑞
(R) = 𝜆𝑞(𝑡). By (20a),Theorem 2,

this would require (𝑑/𝑑𝜏)‖𝑢(⋅, 𝜏)‖ 𝑞
𝐿
𝑞
(R)

< 0 for all 𝜏 ∈

]𝑡
3
, 𝑡
4
] \ 𝐸
𝑞
, so that ‖𝑢(⋅, 𝜏)‖

𝐿
𝑞
(R) could not increase anywhere

on [𝑡
3
, 𝑡
4
].This contradicts ‖𝑢(⋅, 𝑡

3
)‖
𝐿
𝑞
(R) < ‖𝑢(⋅, 𝑡4)‖𝐿𝑞(R), and

so we have ‖𝑢(⋅, 𝜏)‖
𝐿
𝑞
(R) ≤ 𝜆

𝑞
(𝑡) for every 𝑡

2
≤ 𝜏 ≤ 𝑡,

as claimed. On the other hand, by (20a), ‖𝑢(⋅, 𝜏)‖
𝐿
𝑞
(R) has

to be monotonically decreasing on [𝑡
0
, 𝑡
2
], just as in Case I.

Therefore, we haveU
𝑞
(𝑡
0
; 𝑡) = ‖𝑢(⋅, 𝑡

0
)‖
𝐿
𝑞
(R) in this case again,

which shows (26).

Case III. Consider ‖𝑢(⋅, 𝑡
0
)‖
𝐿
𝑞
(R) ≤ 𝜆

𝑞
(𝑡). This gives

‖𝑢(⋅, 𝜏)‖
𝐿
𝑞
(R) ≤ 𝜆

𝑞
(𝑡) for every 𝑡

0
≤ 𝜏 ≤ 𝑡, by repeating the

argument used on the interval [𝑡
2
, 𝑡] in Case II. It follows that

we must have U
𝑞
(𝑡
0
; 𝑡) ≤ 𝜆

𝑞
(𝑡) in this case, and the proof of

Theorem 3 is complete.

An important application of Theorem 3 is the following
result.

Theorem 4. Let 𝑝
0
≤ 𝑝 < ∞, 0 ≤ 𝑡

0
< 𝑇
∗
. Then

‖𝑢 (⋅, 𝑡)‖𝐿∞(R)

≤ (2𝑝)
1/𝑝

⋅max {𝑢 (⋅, 𝑡0)
𝐿∞(R);B(𝑡0; 𝑡)

1/𝑝
U
𝑝
(𝑡
0
; 𝑡)}

(27)

for any 𝑡
0
≤ 𝑡 < 𝑇

∗
, where B(𝑡

0
; 𝑡) and U

𝑝
(𝑡
0
; 𝑡) are given in

(24) and (25) above.

Proof. Let 𝑘 ∈ Z, 𝑘 ≥ 2. Applying (26) successively with 𝑞 =
2𝑝, 4𝑝, . . . , 2

𝑘
𝑝, we obtain

‖𝑢 (⋅, 𝑡)‖
𝐿
2
𝑘
𝑝
(R)

≤ max {u (⋅, 𝑡0)
𝐿2𝑘𝑝(R)

; 𝐾(𝑘, ℓ)
1/𝑝

⋅ B(𝑡
0
; 𝑡)
(1/𝑝)(2

−ℓ

− 2
−𝑘

)

⋅
𝑢 (⋅, 𝑡0)

𝐿2ℓ𝑝(R), 1 ≤ ℓ ≤ 𝑘 − 1;

𝐾(𝑘, 0)
1/𝑝

⋅ B(𝑡
0
; 𝑡)
(1/𝑝)(1 − 2

−𝑘

)
⋅ U
𝑝
(𝑡
0
; 𝑡)} ,

(28a)

where

𝐾 (𝑘, ℓ) =

𝑘

∏
𝑗=ℓ+1

(2
𝑗−1
𝑝𝐶
3

2
)
2
−𝑗

, 0 ≤ ℓ ≤ 𝑘 − 1. (28b)

Now, for 1 ≤ ℓ ≤ 𝑘 − 1,

B(𝑡
0
; 𝑡)
(1/𝑝)(2

−ℓ

−2
−𝑘

)
⋅
𝑢 (⋅, 𝑡0)

𝐿2ℓ𝑝(R)

≤ B(𝑡
0
; 𝑡)
(1/𝑝)(2

−ℓ

−2
−𝑘

)
⋅
𝑢(⋅, 𝑡0)


(2
−ℓ

−2
−𝑘

)/(1−2
−𝑘

)

𝐿
𝑝
(R)

⋅
𝑢 (⋅, 𝑡0)


(1−2
−ℓ

)/(1−2
−𝑘

)

𝐿
2
𝑘
𝑝
(R)

≤ max{𝑢 (⋅, 𝑡0)
𝐿2𝑘𝑝(R)

;

B(𝑡
0
; 𝑡)
(1/𝑝)(1−2

−𝑘

)
⋅
𝑢 (⋅, 𝑡0)

𝐿𝑝(R)}

(29)
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by Young’s inequality (see, e.g., [11, page 622]); in particular,
we get, from (28a) and (28b),

‖𝑢 (⋅, 𝑡)‖
𝐿
2
𝑘
𝑝
(R)

≤ (2𝑝)
1/𝑝

⋅max {𝑢 (⋅, 𝑡0)
𝐿2𝑘𝑝(R)

;B(𝑡
0
; 𝑡)
(1/𝑝)(1 − 2

−𝑘

)
⋅ U
𝑝
(𝑡
0
; 𝑡)} ,

(30)

since𝐾(𝑘, ℓ) ≤ 2𝑝 for all 0 ≤ ℓ ≤ 𝑘 − 1. Letting 𝑘 → ∞, (27)
is obtained.

It follows from Theorems 1 and 4 that 𝑢(⋅, 𝑡) is globally
defined (𝑇

∗
= ∞). Now, from (27), we immediately obtain,

letting 𝑡 → ∞,

lim sup
𝑡→∞

‖𝑢 (⋅, 𝑡)‖𝐿∞(R)

≤ (2𝑝)
1/𝑝

⋅max {𝑢 (⋅, 𝑡0)
𝐿∞(R);B(𝑡0)

1/𝑝
U
𝑝
(𝑡
0
)}

(31)

for any 𝑡
0
≥ 0, where B(𝑡

0
) and U

𝑝
(𝑡
0
) are given by

B (𝑡
0
) = sup {𝐵 (𝑡) : 𝑡 ≥ 𝑡0} , (32)

U
𝑝
(𝑡
0
) = sup {‖𝑢 (⋅, 𝑡)‖𝐿𝑝(R) : 𝑡 ≥ 𝑡0} . (33)

Taking (𝑡(𝑛)
0
)
𝑛
such that 𝑡(𝑛)

0
→ ∞ and ‖𝑢(⋅, 𝑡(𝑛)

0
)‖
𝐿
∞
(R)

→

lim inf
𝑡→∞

‖𝑢(⋅, 𝑡)‖
𝐿
∞
(R), and applying (31) with 𝑡

0
= 𝑡
(𝑛)

0
for

each 𝑛, we then obtain, letting 𝑛 → ∞,

lim sup
𝑡→∞

‖𝑢 (⋅, 𝑡)‖𝐿∞(R)

≤ (2𝑝)
1/𝑝

⋅max {lim inf
𝑡→∞

‖𝑢 (⋅, 𝑡)‖𝐿∞(R);B
1/𝑝

⋅U
𝑝
} ,

(34)

whereB andU
𝑝
are given by

B = lim sup
𝑡→∞

𝐵 (𝑡) , U
𝑝
= lim sup
𝑡→∞

‖𝑢 (⋅, 𝑡)‖𝐿𝑝(R). (35)

3. Large Time Estimates

In this section, we use the results obtained above to derive
two basic large time estimates (given in Theorems 5 and 6)
for solutions 𝑢(⋅, 𝑡) of problem (1a), (1b), which represent
important intermediate steps that will ultimately lead to the
main result stated inTheorem 7.

Theorem 5. Let 𝑞 ≥ 2𝑝
0
, and B ≥ 0 be as defined in (35).

Then

lim sup
𝑡→∞

‖𝑢 (⋅, 𝑡)‖𝐿𝑞(R),

≤ (
𝑞

2
𝐶
3

2
)
1/𝑞

⋅B
1/𝑞
⋅ lim sup
𝑡→∞

‖𝑢 (⋅, 𝑡)‖
𝐿
𝑞/2
(R),

(36)

where 𝐶
2

= (3√3/(4𝜋))
1/3 is the constant in the Nash

inequality (19).

Proof. We set 𝑝 = 𝑞/2 and assume thatU
𝑝
is finite. As in the

proof of Theorem 2, we take V ∈ 𝐿
∞
(R × [0,∞[) given by

V(𝑥, 𝑡) = |𝑢(𝑥, 𝑡)|𝑝 if 𝑝 > 1, V(𝑥, 𝑡) = 𝑢(𝑥, 𝑡) if 𝑝 = 1. It follows
that

‖V (⋅, 𝑡)‖2
𝐿
2
(R) = ‖𝑢 (⋅, 𝑡)‖

2𝑝

𝐿
2𝑝
(R)
,

V𝑥 (⋅, 𝑡)

2

𝐿
2
(R)

= 𝑝
2
∫
R
|𝑢 (𝑥, 𝑡)|

2𝑝−2𝑢𝑥 (𝑥, 𝑡)

2
𝑑𝑥.

(37)

Therefore, from (18), we have, for some null set 𝐸
2𝑝
⊂ [0,∞[,

𝑑

𝑑𝑡
‖V (⋅, 𝑡)‖2

𝐿
2
(R) + 4(1 −

1

2𝑝
)
V𝑥 (⋅, 𝑡)


2

𝐿
2
(R)

≤ 4𝑝(1 −
1

2𝑝
)𝐵 (𝑡) ‖V (⋅, 𝑡)‖𝐿2(R)

V𝑥 (⋅, 𝑡)
𝐿2(R)

(38)

for all 𝑡 ∈ [0,∞[\𝐸
2𝑝
, and so, by (19),

𝑑

𝑑𝑡
‖V (⋅, 𝑡)‖2

𝐿
2
(R) + 4(1 −

1

2𝑝
)
V𝑥 (⋅, 𝑡)


2

𝐿
2
(R)

≤ 4𝑝𝐶
2
(1 −

1

2𝑝
)𝐵 (𝑡) ‖V (⋅, 𝑡)‖2/3

𝐿
1
(R)

V𝑥 (⋅, 𝑡)

4/3

𝐿
2
(R)
.

(39)

This gives, by Young’s inequality ([11, page 622]), for all 𝑡 ∈
[0,∞[\𝐸

2𝑝
,

𝑑

𝑑𝑡
‖V (⋅, 𝑡)‖2

𝐿
2
(R) +

4

3
(1 −

1

2𝑝
)
V𝑥 (⋅, 𝑡)


2

𝐿
2
(R)

≤
4

3
(1 −

1

2𝑝
) (𝑝𝐶

2
)
3
𝐵(𝑡)
3
‖V (⋅, 𝑡)‖2

𝐿
1
(R).

(40)

Setting

𝜆
𝑝
= lim sup
𝑡→∞

𝑔 (𝑡) ,

𝑔 (𝑡) = (𝑝𝐶
3

2
)
1/2

𝐵(𝑡)
1/2
‖V (⋅, 𝑡)‖𝐿1(R),

(41)

we claim that

lim sup
𝑡→∞

‖V (⋅, 𝑡)‖𝐿2(R) ≤ 𝜆𝑝. (42)

In fact, let us argue by contradiction. If (42) is false, we can
pick 0 < 𝜂 ≪ 1 and a sequence (𝑡

𝑗
)
𝑗≥0

, 𝑡
𝑗
→ ∞, such that

‖V(⋅, 𝑡
𝑗
)‖
𝐿
2
(R)

> 𝜆
𝑝
+ 𝜂 (for all 𝑗 ≥ 0) and 𝑔(𝑡) ≤ 𝜆

𝑝
+ 𝜂/2 for

all 𝑡 ≥ 𝑡
0
. From (20a), Theorem 2, it will then follow that

‖V (⋅, 𝑡)‖𝐿2(R) > 𝜆𝑝 + 𝜂, ∀𝑡 ≥ 𝑡
0
. (43)

In fact, suppose that (43) were false, so that we had
‖V(⋅, �̃�)‖

𝐿
2
(R) ≤ 𝜆𝑝+𝜂 for some �̃� > 𝑡

0
. Taking 𝑗 ≫ 1with 𝑡

𝑗
> �̃�,

we could then find �̂� ∈ [�̃�, 𝑡
𝑗
[ such that ‖V(⋅, 𝑡)‖

𝐿
2
(R) > 𝜆𝑝 + 𝜂

for all 𝑡 ∈ ]�̂�, 𝑡
𝑗
], while ‖V(⋅, �̂�)‖

𝐿
2
(R) = 𝜆

𝑝
+ 𝜂, and so there

would exist 𝑡
∗
∈ [�̂�, 𝑡
𝑗
] \ 𝐸
2𝑝

with (𝑑/𝑑𝜏)‖V(⋅, 𝑡)‖2
𝐿
2
(R) positive

at 𝑡 = 𝑡
∗
. By (20a), we would have ‖V(⋅, 𝑡

∗
)‖
𝐿
2
(R) ≤ 𝜆

𝑝
, but

this would contradict the fact that ‖V(⋅, 𝑡)‖
𝐿
2
(R) ≥ 𝜆

𝑝
+ 𝜂
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everywhere on [�̂�, 𝑡
𝑗
]. Thus, we conclude that (43) cannot be

false, as claimed. We then obtain, from (19), (40), and (43),

‖V (⋅, 𝑡)‖6
𝐿
2
(R)

≤ 𝐶
6

2
‖V (⋅, 𝑡)‖4

𝐿
1
(R)

V𝑥(⋅, 𝑡)

2

𝐿
2
(R)

≤ 𝑔(𝑡)
6
+

2𝑝

2𝑝 − 1
‖V (⋅, 𝑡)‖4

𝐿
1
(R) (−

𝑑

𝑑𝑡
‖V (⋅, 𝑡)‖2

𝐿
2
(R))

(44)

for all 𝑡 ∈ [𝑡
0
,∞[\𝐸

2𝑝
. Recalling that ‖V(⋅, 𝑡)‖

𝐿
2
(R) > 𝜆𝑝 + 𝜂,

𝑔(𝑡) ≤ 𝜆
𝑝
+ 𝜂/2, for all 𝑡 ≥ 𝑡

0
, this gives

−
𝑑

𝑑𝑡
‖V (⋅, 𝑡)‖ 2

𝐿
2
(R) ≥ 𝐾 (𝜂) , ∀𝑡 ∈ [𝑡

0
,∞[ \ 𝐸

2𝑝
(45)

for some constant 𝐾(𝜂) > 0 independent of 𝑡, which cannot
be, since this implies

V (⋅, 𝑡0)

2

𝐿
2
(R)

≥ 𝐾 (𝜂) ⋅ (𝑡 − 𝑡
0
) ∀𝑡 > 𝑡

0
. (46)

This contradiction shows (42), which is equivalent to (36),
and the proof is complete.

Applying (36) successively with 𝑞 = 2𝑝, 4𝑝, . . . , 2
𝑘
𝑝, we

get

lim sup
𝑡→∞

‖𝑢 (⋅, 𝑡)‖
𝐿
2
𝑘
𝑝
(R)

≤ [

[

𝑘

∏
𝑗 = 1

(2
𝑗−1
𝑝𝐶
3

2
)
2
−𝑗

]

]

1/𝑝

⋅B
(1/𝑝)(1−2

−𝑘

)
⋅U
𝑝

(47)

for 𝑘 ≥ 1 arbitrary, where U
𝑝
= lim sup

𝑡→∞
‖𝑢(⋅, 𝑡)‖

𝐿
𝑝
(R).

Letting 𝑘 → ∞, this suggests

lim sup
𝑡→∞

‖𝑢 (⋅, 𝑡)‖𝐿∞(R) ≤ 𝐾 (𝑝) ⋅B
1/𝑝

⋅ lim sup
𝑡→∞

‖𝑢 (⋅, 𝑡)‖𝐿𝑝(R),

(48a)

where

𝐾(𝑝) = [

[

∞

∏
𝑗 = 1

(2
𝑗−1
𝑝𝐶
3

2
)
2
−𝑗

]

]

1/𝑝

= (
3√ 3

2𝜋
𝑝)

1/𝑝

(48b)

(cf. (6) above), as long as the limit processes 𝑘 → ∞,
𝑡 → ∞ can be interchanged. That this is indeed the case
is a consequence of (34) and the following result.

Theorem 6. Let 𝑝 ≥ 𝑝
0
. Then

lim inf
𝑡→∞

‖𝑢 (⋅, 𝑡)‖𝐿∞(R)

≤ (𝑝𝐶
2
𝐶
∞
)
1/𝑝

⋅B
1/𝑝

⋅ lim sup
𝑡→∞

‖𝑢 (⋅, 𝑡)‖𝐿𝑝(R),
(49)

where 𝐶
2
, 𝐶
∞

are the constants given in (19) and (9).

Proof. Again, assumingU
𝑝
finite (otherwise, (49) is obvious;

cf. endnote4), we introduce, as in the previous proof, V ∈

𝐿
∞
(R × [0,∞[) given by V(𝑥, 𝑡) = |𝑢(𝑥, 𝑡)|

𝑝 if 𝑝 > 1, and
V(𝑥, 𝑡) = 𝑢(𝑥, 𝑡) if 𝑝 = 1. Thus, (40) is valid, and setting
𝜆
𝑝
∈ R, 𝑔 ∈ 𝐿∞([0,∞[) by

𝜆
𝑝
= lim sup
𝑡→∞

𝑔 (𝑡) , 𝑔 (𝑡) = 𝑝𝐶2𝐵 (𝑡) ‖k (⋅, 𝑡)‖𝐿1(R),

(50)

we have that (49) is obtained if we show that

lim inf
𝑡→∞

‖V (⋅, 𝑡)‖𝐿∞(R) ≤ 𝐶∞ ⋅ 𝜆𝑝. (51)

We argue by contradiction and assume that (51) is false.
Taking then 0 < 𝜂 ≪ 1, 𝑡

0
≫ 1 so that ‖V(⋅, 𝑡)‖

𝐿
∞
(R) ≥

𝐶
∞
⋅ (𝜆
𝑝
+ 𝜂) and 𝑔(𝑡) ≤ 𝜆

𝑝
+ 𝜂/2 hold for all 𝑡 ≥ 𝑡

0
, we

get, by (9) and (40),

‖V (⋅, 𝑡)‖3
𝐿
∞
(R) ≤ 𝐶

3

∞
‖V (⋅, 𝑡)‖𝐿1(R)

V𝑥 (⋅, 𝑡)

2

𝐿
2
(R)

≤ 𝐶
3

∞
𝑔(𝑡)
3
+ 𝐶
3

∞

2𝑝

2𝑝 − 1
‖V (⋅, 𝑡)‖𝐿1(R)

× (−
𝑑

𝑑𝑡
‖V (⋅, 𝑡)‖2

𝐿
2
(R))

(52)

for all 𝑡 ∈ [𝑡
0
,∞[\𝐸

2𝑝
. Since ‖V(⋅, 𝑡)‖

𝐿
∞
(R) ≥ 𝐶∞ ⋅ (𝜆𝑝 + 𝜂),

𝑔(𝑡) ≤ 𝜆
𝑝
+ 𝜂/2, this gives

−
𝑑

𝑑𝑡
‖V (⋅, 𝑡)‖2

𝐿
2
(R) ≥ 𝐾 (𝜂) , ∀𝑡 ∈ [𝑡

0
,∞[ \ 𝐸

2𝑝
(53)

for some constant 𝐾(𝜂) > 0 independent of 𝑡. As before,
this implies that ‖V(⋅, 𝑡

0
)‖
2

𝐿
2
(R) ≥ 𝐾(𝜂) ⋅ (𝑡 − 𝑡

0
) for all 𝑡 ≥

𝑡
0
, which is impossible because ‖V(⋅, 𝑡

0
)‖
𝐿
2
(R) is finite. This

contradiction establishes (51) above, completing the proof of
Theorem 6.

We are finally in good position to derive (6), (48a), and
(48b). Combining (34) and (49) above, we obtain

lim sup
𝑡→∞

‖𝑢(⋅, 𝑡)‖𝐿∞(R) ≤ (2𝑝
2
)
1/𝑝

⋅B
1/𝑝

⋅U
𝑝 (54)

for each 𝑝 ≥ 𝑝
0
, so that we have, in particular,

lim sup
𝑡→∞

‖𝑢 (⋅, 𝑡)‖𝐿∞(R) ≤ (2
2𝑘+1

𝑝
2
)
1/2
𝑘

𝑝

⋅ B
1/2
𝑘

𝑝
⋅U
2
𝑘
𝑝

(55)

for each 𝑘 ≥ 0. By (47), we then get

lim sup
𝑡→∞

‖𝑢(⋅, 𝑡)‖𝐿∞(R)

≤
{

{

{

(2
2𝑘+1

𝑝
2
)
2
−𝑘

⋅

𝑘

∏
𝑗=1

(2
𝑗−1
𝑝𝐶
3

2
)
2
−𝑗}

}

}

1/𝑝

⋅B
1/𝑝

⋅U
𝑝

(56)

for all 𝑘. Letting 𝑘 → ∞, Theorem 7 is obtained, and our
argument is complete.
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Theorem 7. Let 𝑝 ≥ 𝑝
0
. Assuming 𝑏 ∈ 𝐿∞(R × [0,∞[), then

(6), (48a), and (48b) hold.

It is worth noticing that the corresponding estimate for
the 𝑛-dimensional problem (8), namely,

lim sup
𝑡→∞

‖𝑢 (⋅, 𝑡)‖𝐿∞(R𝑛)

≤ 𝐾 (𝑛, 𝑝) ⋅B
𝑛/𝑝

⋅ lim sup
𝑡→∞

‖𝑢 (⋅, 𝑡)‖𝐿𝑝(R𝑛),
(57)

where B ≥ 0 is similarly defined, can be also derived in
arbitrary dimension 𝑛 > 1.

4. Concluding Remarks

We close our discussion of the problem (1a), (1b), given 𝑏 ∈
𝐿
∞
(R × [0,∞[), 1 ≤ 𝑝

0
< ∞, indicating a few questions

which were not answered by our analysis:
(a) characterize all 𝑏 ∈ 𝐿

∞
(R × [0,∞[) for which it is

true that ‖𝑢(⋅, 𝑡)‖
𝐿
∞
(R) → 0 (as 𝑡 → ∞) for every

solution 𝑢(⋅, 𝑡) of problem (1a) and (1b);
(b) same question as (a) above, but requiring only that

lim sup ‖𝑢(⋅, 𝑡)‖
𝐿
∞
(R) < ∞ (as 𝑡 → ∞) for every

solution 𝑢(⋅, 𝑡) of problem (1a) and (1b), in case 𝑝
0
>

1;5

(c) given 𝑝
0
> 1, characterize all 𝑏 ∈ 𝐿

∞
(R × [0,∞[)

such that ‖𝑢(⋅, 𝑡)‖
𝐿
𝑝
0 (R) → 0 (as 𝑡 → ∞) for every

solution 𝑢(⋅, 𝑡) of problem (1a) and (1b);
(d) same question as (c) above, but requiring only that

lim sup ‖𝑢(⋅, 𝑡)‖
𝐿
𝑝
0 (R) < ∞ (as 𝑡 → ∞) for every

solution 𝑢(⋅, 𝑡) of problem (1a) and (1b);
(e) for 𝑝

0
= 1, characterize all 𝑏 ∈ 𝐿

∞
(R × [0,∞[)

such that ‖𝑢(⋅, 𝑡)‖
𝐿
1
(R) → |𝑚| (as 𝑡 → ∞) for every

solution 𝑢(⋅, 𝑡), where𝑚 = ∫
R
𝑢
0
(𝑥)𝑑𝑥 is the solution

mass;
(f) for 𝑝

0
= 1, and 𝑏 ∈ 𝐿

∞
(R × [0,∞[) not

satisfying property (e), what are the values of
lim
𝑡→∞

‖𝑢(⋅, 𝑡)‖
𝐿
1
(R) in case of initial states that

change sign?
These questions can be similarly posed for solutions 𝑢(⋅, 𝑡)

of autonomous problems

𝑢
𝑡
+ (𝑏 (𝑥) 𝑢)𝑥 = 𝑢𝑥𝑥, 𝑢 (⋅, 0) ∈ 𝐿

𝑝
0 (R) ∩ 𝐿

∞
(R) ,

(58)

where 𝑏 ∈ 𝐿∞(R) does not depend on the time variable. For
(58), question (e) has been answered in [12] (see also [13]).
Another interesting question is the following:

(g) when (58) admits no stationary solutions other
than the trivial solution 𝑢 = 0, is it true that
lim
𝑡→∞

‖𝑢(⋅, 𝑡)‖
𝐿
∞
(R) = 0 for every solution 𝑢(⋅, 𝑡)?

Moreover, for solutions 𝑢(⋅, 𝑡) of (1a) and (1b) or (58) with
‖𝑢(⋅, 𝑡)‖

𝐿
∞
(R) → 0 as 𝑡 → ∞, there is the question of

determining the proper decay rate.6 As suggested by Figure 1,
solution decay may sometimes happen at remarkably slow
rates.
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Endnotes

1. In (6), (11), and other similar expressions in the text, it is
assumed that 0 ⋅ ∞ = ∞.

2. The constants (3√3𝑝/(2𝜋))1/𝑝 in (6) and (7) are not
optimal; minimal values are not known.

3. In (6), (11), and other similar expressions in the text, it is
assumed that 0 ⋅ ∞ = ∞.

4. In (6), (11), and other similar expressions in the text, it is
assumed that 0 ⋅ ∞ = ∞.

5. For 𝑝
0
= 1, any 𝑏 ∈ 𝐿∞(R × [0,∞[) satisfies property

(b); compare (7) in Section 1.
6. In case we have 𝑏

𝑥
≥ 0 for all 𝑥, 𝑡, the answer is given in

(2) above.

References

[1] C. J. Amick, J. L. Bona, andM. E. Schonbek, “Decay of solutions
of some nonlinear wave equations,” Journal of Differential
Equations, vol. 81, no. 1, pp. 1–49, 1989.
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