
0

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

INFORMATICS INSTITUTE

BACHELOR OF COMPUTER SCIENCE

KARINA GABIN MINUZZO

Prototype for Analysis of Different Coverage Criteria of Object Oriented Code

Bachelor Thesis

Prof. Dr. Érika Fernandes Cota
Advisor

Porto Alegre

 2015

11

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

Reitor: Prof. Carlos Alexandre Netto

Vice-Reitor: Prof. Rui Vicente Opermann

Pró-Reitora : Valquíria Linck Bassani

Diretor do Instituto deInformática: Prof. Luís da Cunha Lamb

Coordenador do curso de Ciência da Computação: Carlos Arthur Lang Lisboa

Bibliotecária-Chefe do Instituto de Informática: Beatriz Regina Bastos Haro

12

ACKNOWLEDGMENTS

 I would like to thank, in first place, to my parents who always supported me and

inspired me to search for knowledge and be dedicated to continuous learning. I also

would like to thank them for all the good moments we spent together and all dedication

they had with me.

 I would like to thank to the friends and family that make life easier and softer

enjoying together and celebrating, not forgetting the difficulties when I could count on

them to be on my side. A special thanks for the friends I met during the course and who

I believe will be always important on my life.

 Also, I want to thank all the professors I had at UFRGS that were always

dedicated and concerned with maintaining excellence. And last I would like to thank to

all that made my internship to Germany possible and pleasant.

13

CONTENTS

CONTENTS ... 3
RESUMO..5
ABSTRACT...…………………………………………………………………………….......6
LIST OF FIGURES…………………………………………………………………………...7
LIST OF TABLES…………………………………………………………………………….9
LIST OF ACRONYMNS AND ABBREVIATIONS...…………………………………… 10
1 INTRODUCTION………………………………………………………………………….11
1.1 Motivation……………………………………………………………………………....11
1.2 Structure……………………………………………………………………………......12
2 BACKGROUND……………………………………………………………………..........13
2.2 Graph Coverage for Source Code…………………………………………………..14
2.2.1 Structural Coverage Criteria………………………………………………………....16
2.2.2 Data Flow Coverage Criteria………………………………………………………...17
2.3 LLVM……………………………………………………………………………………..20
2.3.1 LLVM Intermediate Representation………………………………………………...21
3 IMPLEMENTATION……...……………………………………………………………….23
3.1 The Prototype Tool…………………………………………………….……………...23
3.1.1 Input Parsing…………………………………………………………………………..23
3.2 Structure of the Proposed Approach………………………………………………28
3.3 Implementation of the Coverage Criteria………………………………………….30
3.3.1 Find Simple Path……………………………………………………………………...30
3.3.2 Prime Path……………………………………………………………………………..31
3.3.3 Is Valid Path……………………………………………………………………………32
3.3.4 Complete Round Trip………………………………………………………………....33
3.3.5 All DuPair……………………………………………………………………………….33
3.3.6 DuPath…………………………………………………………………………….…….34
3.3.7 All DefPath……………………………………………………………………………...35
3.3.8 All UsePath……………………………………………………………………………..36
3.3.9 DefClear…………...……………………………………………………………………38
3.4 Algorithms Analysis……………………………………………………………………38
4 EXPERIAMENTAL RESULTS……………………………………………………………39
4.1 Running Example……………………………………………………………………….39
4.1.1 Input Program…………………………………………………………………………..40
4.2 File Processing………………………………………………………………………….41
4.3 Test Execution..…………………………………………………………………………42
4.3.1 Prime Path………………………………………………………………………………42
4.3.1.1 Prime Path Criteria Test Run……………………………………………………….43
4.3.2 Du-Path………………………………………………………………………………….44
4.3.2.1 All Def-Path Test Run………………………………………………………………..45
4.3.2.2 All Use-Path Test Run……………………………………………………………….46
4.4 Validation…………………………………………………………………………………47
4.4.1 Program Execution………………………………………………………………….....47
4.4.1.1 First Example…………………………………………………………………….......47

14

4.4.1.2 Second Example……………………………………………………………………..54
4.4.1.3 Third Example…………………………………………………………………..........61
4.4.1.4 Fourth Example………………………………………………………………..........69
5 FINAL REMARKS…………………….……………………………………………..........77
REFERENCES………………………………………………………………..………..........78

11

RESUMO

Softwares desempenham um papel importante facilitando, automatizando e controlando

atividades essenciais ou interessantes aos usuários. Alguns deles muitas vezes são

sistemas críticos, envolvendo riscos ao apresentar uma falha. A área de teste de

software se apresenta como uma solução para a redução dos riscos de um sistema se

comportar diferentemente do esperado.

Diante da crescente aplicação de métodos de teste em sistemas computacionais e visto

sua essencialidade para a geração de softwares de qualidade, existe a necessidade de

ferramentas capazes de auxiliar e automatizar este processo. Este trabalho consiste no

desenvolvimento do cerne de uma ferramenta capaz de analisar diferentes critérios de

cobertura de código orientado a objeto.O protótipo apresentado contém um conjunto de

funções básicas e essenciais para a aplicação automática dos critérios de cobertura

basedos em grafos a partir de uma linguagem intermediária que pode ser gerada a

partir de diferentes linguagens de programação.

Palavras-chave: teste de software, automação de teste, cobertura de código

12

Application for Analysis of Different Coverage Criteria of Object Oriented Code

ABSTRACT

Software performs an important role facilitating, automating and controlling essential or

just interesting activities to their users. Some of them are critical systems, involving risks

in case of failure. The testing field works as a solution to reduce risks of software non-

expected behaviors.

Given the increasing use of test methods in computer systems and considering its

essentiality for the generation of high quality software, there is a need for tools that can

assist and automate this process. This work presents the prototype of a tool that helps

the developer and the tester to analyze different graph-based coverage criteria that

cannot be easily found in available tools. Such a prototype is the seed for the

implementation of a more complete tool targeting the test of object-oriented code.

Keywords: software testing, testing automation, code coverage

11

FIGURES LIST

Figure 2.1 - Path Examples...14
Figure 2.2 - CFG fragment for the “if” structure without an else…………………………15
Figure 2.3 - CFG fragment for the “while” loop structure...15
Figure 2.4 - CFG fragment for the “for” loop structure...16
Figure 2.5 - fnc_move_data32 for data flow example…………………………………….18
Figure 2.6 - fnc_move_data32 CFG…...19
Figure 2.7 - Intermediate code of fnc_move_data32...22
Figure 3.1 - File Lifecycle Flowchart..24
Figure 3.2 - Parsing Intermediate File Flowchart...24
Figure 3.3 - Graph Creation Flowchart...………….......25
Figure 3.4 - Set graph variables flowchart...26
Figure 3.5 - Set variables definitions flowchart..27
Figure 3.6 - Set variables uses flowchart...27
Figure 3.7 - Application Class Diagram...29
Figure 3.8 - Find Simple Path method...31
Figure 3.9 - Prime Path method...…32
Figure 3.10 - Is Valid Path method..33
Figure 3.11 - Complete Round Trip method..33
Figure 3.12 - All Du-Pair method...34
Figure 3.13 - All Du-Path method..35
Figure 3.14 - Def-Path method..36
Figure 3.15 - Use-Path method...37
Figure 3.16 - Is Def-Clear method...38
Figure 3.17 - “findSimplePath” average execution time..39

Figure 4.1 - CFG of input program with defs and uses..41
Figure 4.2 - Program execution for Prime Path criteria. ...43
Figure 4.3 - Prime path TR for “entry” to “for.end”……………………………………......44
Figure 4.4 - Program call for def-path method..45
Figure 4.5 - Program call for use-path method...46
Figure 4.6 - “isNewMonth” Source Code..….48
Figure 4.7 - “isNewMonth” Intermediate Code..49
Figure 4.8 - “isNewMonth” correspondent CFG..50
Figure 4.9 - Execution of Simple Path method for “isNewMonth“ graph and considering
the nodes “entry” and “if.end” ..50
Figure 4.10 - Execution of Prime Path method for “isNewMonth“ graph, considering the
nodes “entry” and “if.end” ..51
Figure 4.11 - Execution of Complete Round Trip method for “isNewMonth“ graph,
considering the node “if.end” ...51
Figure 4.12 - Execution of Du-Pair method for “isNewMonth“ graph, considering the
variable “daysOfTheMonth” ...52
Figure 4.13 - Execution of Du-Path method for “isNewMonth“ graph, considering the
variable “daysOfTheMonth” …………………………………………………………............52

12

Figure 4.14 - Execution of All Du-Path method for “isNewMonth“ graph, considering the
variable “daysOfTheMonth” ...53
Figure 4.15 - Execution of All Def-Path method for “isNewMonth“ graph, considering the
variable “daysOfTheMonth”..53
Figure 4.16 - Execution of All Use-Path method for “isNewMonth“ graph, considering the
variable “daysOfTheMonth”..54
Figure 4.17 - “isNewMonth” Source Code..55
Figure 4.18 - “update” Intermediate Code…………………………………………............56
Figure 4.19 - “update” correspondent CFG………………………………………..............56
Figure 4.20 - Execution of Simple Path method for ”update” graph considering nodes
“entry” and “if.end” ...57
Figure 4.21 - Execution of Prime Path method for “update“ graph, considering the nodes
“entry” and “if.end”…………………………………………………………………………….58
Figure 4.22 - Execution of Complete Round Trip method for “update“ graph, considering
the node “if.else”………………………………………………………………………………58
Figure 4.23 - Execution of Du-Pair method for “update“ graph, considering the variable
“subject”………………………………………………………………………………………...59
Figure 4.24 - Execution of Du-Path method for “update“ graph, considering the variable
“subject”………………………………………………………………………….……………..59
Figure 4.25 - Execution of All Du-Path method for “update“ graph, considering the
variable “subject”………………………………………………………………………………60
Figure 4.26 - Execution of All Def-Path method for “update“ graph, considering the
variable “subject”………………………………………………………………………………60
Figure 4.27 - Execution of All Use-Path method for “update“ graph, considering the
variable “subject”………………………………………………………………………………61
Figure 4.28 - “eraseMemory” Source Code………………………………………………...62
Figure 4.29 - “eraseMemory” Intermediate Code…………………………………………..63
Figure 4.30 - “_eraseMemory” correspondent CFG……………………………………….64
Figure 4.31 - Execution of Simple Path method for “_eraseMemory“ graph, considering
the nodes “entry” and “for.end”……………………………………………………………….64
Figure 4.32 - Execution of Prime Path method for “_eraseMemory“ graph, considering
the nodes “for.body” and “for.end"…………………………………………………………...65
Figure 4.33 - Execution of Complete Round Trip method for “_eraseMemory“ graph,
considering the node “for.cond”………………………………………………………………65
Figure 4.34 - Execution of Du-Pair method for “_eraseMemory“ graph, considering the
variable “i”………………………………………………………………………………………66
Figure 4.35 - Execution of Du-Pair method for “update“ graph, considering the variable
“memorySize”………………………………………………………………………………….66
Figure 4.36 - Execution of Du-Path method for “_eraseMemory“ graph, considering the
variable “i”………………………………………………………………………………………67
Figure 4.37 - Execution of All Du-Path method for “_eraseMemory“ graph, considering
the variable “i”………………………………………………………………………………….67
Figure 4.38 - Execution of All Def-Path method for “_eraseMemory“ graph, considering
the variable “i”………………………………………………………………………………….68
Figure 4.39 - Execution of All Use-Path method for “_eraseMemory“ graph, considering
the variable “memorySize”……………………………………………………………………68

13

Figure 4.40 - “getByte” Source Code……………………………………………………….69
Figure 4.41 - “getByte” Intermediate Code…………………………………………………70
Figure 4.42 - “getByte” correspondent CFG………………………………………………..71
Figure 4.43 - Execution of Simple Path method for “getByte “ graph, considering the
nodes “entry” and “for.inc”……………………………………………………………………72
Figure 4.44 - Execution of Prime Path method for “getByte “ graph, considering the
nodes “entry” and “for.inc”……………………………………………………………………72
Figure 4.45 - Execution of Complete Round Trip method for “getByte “ graph,
considering the node “for.cond”……………………………………………………………..73
Figure 4.46 - Execution of Complete Round Trip method for “getByte “ graph,
considering the node “for.body”……………………………………………………………..73
Figure 4.47 - Execution of Du-Pair method for “getByte “ graph, considering the variable
“byte”……………………………………………………………………………………………74
Figure 4.48 - Execution of Du-Pair method for “getByte “ graph, considering the variable
“byte”……………………………………………………………………………………………74
Figure 4.49 - Execution of Du-Pair method for “getByte “ graph, considering the variable
“byte”……………………………………………………………………………………………75
Figure 4.50 - Execution of All Du-Path method for “getByte “ graph, considering the
variable “byte”………………………………………………………………………………….75
Figure 4.51 - Execution of All Def-Path method for “getByte “ graph, considering the
variable “byte”………………………………………………………………………………….76
Figure 4.52 - Execution of All Def-Path method for “getByte “ graph, considering the
variable “byte”………………………………………………………………………………….76

11

TABLE LIST

Table 2.1 - Defs and uses at each node in the CFG for fnc_move_data32...................26
Table 2.2 - Coverage Criteria Example………………………………...............................27

11

LISTA DE ABREVIATURAS E SIGLAS

CFG Control Flow Graph
TR Test Requirement

13

INTRODUCTION

Software can be found everywhere in devices or systems that are part of society

life. They define the behavior of network routers, smartphones, the Web and all

infrastructure of modern life. Users do not want the software to present failures and

quality engineering works in order to avoid such a situation.

Test methods in computational systems are essential for the generation of quality

software, reducing the risk of failures and ensuring compliance and reliability of the

developed system. To optimize this process, tools able to automatically assess the level

of correctness of an application are used, what we call test automation [Offutt, 2008, p.

10]. This work consists in the development of a tool capable of automating the analysis

of different graph-based coverage criteria thus helping the developer to ensure that the

software works as expected relative to the requirements covered.

Test coverage criteria exists in order to optimize test methodology, they act

focusing on the critical points of the program to be analyzed gaining time and resources,

since exhaustive tests would cost much more to stress software and taking much longer.

1.1 Motivation

The goal of this study is to create a solution without the same limitations of the

tools existent today. Current coverage tools are tied to parsers of specific programming

languages such as Java or C++ or supported by specific Integrated Development

Environments (IDEs) also tied to a single programming language. Thus, the

dissemination of the testing coverage criteria depends on the re-implementation of the

same algorithms for each programming language of interest in a given organization.

Alternatively, a testing tool can receive a graph already extracted from the source code.

In this case, the developer needs to either generate the graph by hand or to use

different tools to achieve a single goal. Furthermore, coverage criteria currently

14

supported by available tools are usually the weakest ones, only executing simple

methods of coverage, such as node coverage or edge coverage.

The proposed alternative is to implement the algorithms for graph-based

coverage criteria using a common format that can be shared by many programming

languages, that is, based on a structure that is not coupled to its source code. An

existing environment that makes this approach possible is the LLVM libraries (The Clang

Team, 200-?]), which provides a source and target-independent optimizer, along

with code generation support for many popular CPUs. Although currently supporting C

and C++ front-ends, the optimizer receives a generic and simpler structure that can be

more easily implemented to other languages. Some initiatives in this direction already

exist, such as the support to C# code (LLVM Project Blog, 2015).

Thus, the goal of the proposed tool is to be generic and able to apply more

sophisticated methods of code coverage criteria directly to different programming

languages.

1.2 Structure

 This document is organized in order to first present a background and basic

concepts of coverage criteria and the requirements needed to execute the application

developed. Then the implementation will be covered, discussing each algorithm

proposed for the criteria considered on this work. Afterwards will be presented the

results obtained by the application itself being used over a real program being tested.

Finally the final remarks and future work will be discussed in order to conclude this study.

13

2 BACKGROUND

In the testing role there are some terms for testing methods such as "exhaustive

testing", "complete test" or "full coverage" that consider all the possibilities to be tested

which would stress a software until its limit. The potential inputs for this kind of strategy

is so large that tends to infinity.

Thinking about ways to improve testing within a limited schedule, we have the

formal coverage criteria. Since generating this huge amount of data required by

exhaustive testing would not be possible we need another way to guarantee the high

quality and reliability of the software. The coverage criteria is supposed to satisfy this

need, considering the test requirements, that are elements or software artifacts that a

test case must satisfy or cover. Coverage criteria is defined by selecting the

appropriated set of test cases following the rules necessary to meet the test

requirements.

2.1 Graph Coverage Criteria

Oriented graphs are usually used as foundation for coverage criteria. They are

obtained from given artifacts of the program which are under test. The control flow graph

is an example that can be generated as an abstraction from source codes.

The graph coverage criteria analyzes a test set for an artifact based on how many

paths correspondent to test cases can cover the graph.

A basic definition of graph is as the following [Offutt, 2008, p. 27]:

 set N of nodes

 set N0 of initial nodes, where N0 ⊆ N

 set Nf of final nodes where Nf ⊆ N

 set E of edges, where E is a subset of N x N

14

Figure 2.1 presents an example of how control flow graphs are used in testing

based on the paths reachability. The "Path Examples" listed are valid inputs because it

is possible to follow the path from an initial node until a final node without interruption.

"Invalid Paths Examples", on the other hand, are the ones that are not completely

connected and have one or more nodes that cannot be accessed through the path.

Figure 2.1 - Path Examples

Source: [Offutt, 2008](p. 29)

A graph structure can be extracted from different software artifacts, such as class

diagrams, use case diagrams or even a textual description. In all cases, once the graph

is defined, the application of the criteria does not change. In the next sections the

reachability coverage criteria will be discussed in the context of graphs extracted from

source-code.

2.2 Graph Coverage for Source Code

When the focus of the test is the source code the most common approach used is

based on the Control Flow Graph (CFG), according to Ammann and Offutt (2008). A

15

CFG consists of nodes and oriented edges, where the edges are associated with each

possible branch in the program and the nodes represent sequence of statements, called

basic blocks. A basic block is the biggest sequence executed from one point to another

without interruption, that is, if the first line of a basic block is executed all the following

lines of it will be called and executed too.

Figures 2.2 to 2.4 present CFG fragments that represent simple basic blocks of

code.

Figure 2.2 - CFG fragment for the “if” structure without an else.

Source: [Offutt, 2008](p. 53)

Figure 2.3 - CFG fragment for the “while” loop structure.

Source: [Offutt, 2008] (p. 53)

16

Figure 2.4 - CFG fragment for the “for” loop structure.

Source: [Offutt, 2008] (p. 54)

2.2.1 Structural Coverage Criteria

The structural coverage criteria are defined on a graph just in terms of nodes and

edges. We define a coverage criteria by specifying the set of Testing Requirements (TR)

which are, for this kind of coverage, to visit every node and every edge in a graph. The

first criterion, based on the nodes, has the concept we have to execute every statement

in a program and is called node coverage. “Node Coverage (NC): TR contains each

reachable node in G.” [Offutt, 2008, p. 33]. For example, for Figure 2.4, that is a CFG

representation of a “for” structure, the TR for node coverage criterion would be {n0, n1, n2,

n3, n4} while a valid test path which covers the test requirements could be: [n0, n1, n2, n3,

n1, n4].

The second criterion, based on the edges is usually implemented as branch

coverage and is called edge coverage. “Edge Coverage (EC): TR contains each

reachable path of length up to 1, inclusive, in G.” [Offutt, 2008, p. 34]. Using the same

example of Figure 2.4, the TR for edge coverage criteria would be {(n0, n1), (n1, n2), (n1,

17

n4), (n2, n3), (n3, n1), (n1, n4)} while a valid test path which covers the requirements could

be: [n0, n1, n2, n3, n1, n4].

Another coverage criterion based on touring the edges is the edge-pair coverage

criterion, which requires that each path of length (up to) two be toured by some test path.

This idea can be extended for any path length. This criterion can be defined as follows:

“Edge-Pair Coverage (EPC): TR contains each reachable path of length up to 2,

inclusive, in G.” [Offutt, 2008, p. 35]. For Figure 2.4, the TR of edge-pair coverage

criteria would be: {[n0, n1, n2], [n1, n2, n3], [n0, n1, n4], [n2, n3, n1], [n3, n1, n4]} while a valid

test path which covers this set of test requirements could be the same path used before:

[n0, n1, n2, n3, n1, n4].

 To define the next criterion we need to first define the simple path concept. A

simple path in a given CFG is a path from ni to nj where no node appears more than

once, with the exception of first and last node that can be identical. Considering this, a

prime path is a maximal length simple path, that is a path from ni to nj that is a simple

path and does not appear as a proper subpath of any other simple path. This criterion is

defined as follows: “Prime Path Coverage (PPC): TR contains each prime path in G”

[Offutt, 2008, p. 35]. Considering the Figure 2.4 the TR for prime path coverage criteria

would be: {[n0, n1, n2, n3], [n0, n1, n4]} and valid test paths which cover these requirements

could be: [n0, n1, n2, n3, n1, n4] and [n0, n1, n4].

Another useful testing criterion, called Complete Round Trip, starts a test in some

node and ends on the same node. It is used to focus on the loops of the code. This

criterion is defined as follows: “Complete Round Trip Coverage (CRTC): TR contains all

round trip paths for each reachable node in G.” [Offutt, 2008, p. 36]. The TR for this

criteria, considering the Figure 2.4 would be: {n1, n2, n3, n1} and a valid test path that

covers these test requirements is: [n0, n1, n2, n3, n1, n4].

18

2.2.2 Data Flow Coverage Criteria

After we have the definitions for a CFG already explained we can discuss the

data flow criteria of graph coverage for source code. The premise to apply these criteria

is to know the concepts of definition (def) and usage (use) of variables. A def is location

where the program defines a value for a certain variable while the use is a location

where this variable value is accessed by the program.

Finally knowing the concepts of def and use we will now discourse about du-path.

A du-pair with respect to a variable x is a tuple with one def and one use of the same

variable x, in which the use is reachable by the def following the graph flow. The path

between the two nodes of the du-pair is said def-clear if no other def of x is found in the

path. Consequently a du-path with respect to variable x is a def-clear path to reach the

use of a du-pair starting at its def and contains all the nodes from this path, including the

def and the use nodes.

Figure 2.5 - fnc_move_data32 for data flow example.

Source: Electronic Energy Meter Program

The control flow graph extracted from the source code of Figure 1.5 can be seen

in Figure 2.6 and will be used as running example for the next sections and chapters.

19

Figure 2.6 fnc_move_data32 CFG

Source: The Author

Table 2.1 assumes that we create a CFG from the source code above and list all

uses and defs for each node consisting of a basic block.

Table 2.1 - Defs and uses at each node in the CFG for fnc_move_data32.

Source: Introduction to Software Testing (2008, p. 56)

20

Considering the criteria defined until now on sections 2.2.1 and 2.2.2 and the

CFG of Figure 2.6, Table 2.2 displays a complete example of test requirements and test

paths that satisfy each criterion accordingly. The first column lists the criterion, the

second column lists the correspondent test requirements and on third column we have

the test paths that satisfy the criterion, that is, cover all requirements defined.

 Table 2.2 - Coverage criteria example.

Source: The Author

2.3 LLVM

LLVM or Low Level Virtual Machine “[…] is a collection of modular and reusable

compiler and toolchain technologies.” [LLVM.org, [200-?]]

 The feature offered by LLVM that is needed for the approach proposed in this

study is the compiler infrastructure developed to optimize programs in compilation time.

Such feature is able to get the intermediate representation generated by the compiler

and improve it, returning another optimized intermediate file. This intermediate file LLVM

21

creates is a CFG representation of the source code compiled and will be used to apply

the coverage criteria techniques anteriorly introduced.

2.3.1 LLVM Intermediate Representation

The intermediate representation generated by LLVM is a low-level programming

language similar to assembly. It is composed of modules that consist of functions, global

variables, and symbol table entries of the input program.

On this representation each method starts with a “define” keyword and contains a

list of basic blocks that consists in a CFG of the source code. A label is assigned to each

one of the basic blocks and it will represent the identification of each node of the CFG.

On the first line of the basic block we can also find its predecessors, with the exception

of the first basic block, which is a special case. The first basic block, or first node, is the

entrance point of the method and does not have any predecessor.

Figure 2.1 is a representation of the intermediate code generated by LLVM from

the method fnc_move_data32 presented on Figure 1.5. This code is a CFG composed

by a single node identified as “entry”. The “define” reserved word represents a new

method or the equivalent to a new graph and the variables are the names preceded by a

“%” symbol in the intermediate code.

22

Figure 2.7 - LLVM Intermediate code of fnc_move_data32.

Source: The Author

The intermediate code (as presented in Figure 2.7) is the input to the tool

proposed in this work. From this code, a CFG is built and different test requirements

sets can be generated according to different graph-based coverage criteria.

23

3 IMPLEMENTATION

In this chapter we will discuss the approach used to create a tool capable of

applying the coverage criteria presented before.

 As discussed on the previous chapter, CFGs are the most common artifact used

to represent source codes and it will be the base of the test coverage criteria tool

developed for this work.

3.1 The Prototype Tool

The algorithms developed to apply graph-based coverage criteria presented on

Chapter 1 is based on LLVM output. Figure 3.1 gives an overview of the usage flow.

First the original program should be compiled with LLVM, generating the intermediate

file that represents the CFG of the source code. Once we have the representation of a

CFG of each method, the tool builds a java representation of these CFGs. Having these

artifacts of the source code we can now use the testing techniques proposed. These

techniques will generate the TR equivalent to each criterion selected, according to a

given graph and its attributes as nodes, edges and variables.

3.1.1 Input Parsing

The code coverage application receives as input a file with all methods of a class,

each one of these methods will be interpreted as a distinct graph. This graph will be

composed by nodes, each node has an identification and has the information of

predecessor nodes, the code of the basic block and variables defined and used inside of

it.

24

Figure 3.1 -File Lifecycle Flowchart

Source: The Author

Figure 3.2 shows how the application handles the input file and its information

converting the intermediate file (.ll) created by LLVM in graph structures. The graphs are

first identified, getting their names, then the nodes are created and their corresponding

codes are stored. After all the nodes are read from the input file, they are matched with

their respective graphs and saved as its attributes. The subprocess of creating a new

graph is presented next.

Figure 3.2 - Parsing Intermediate File Flowchart

Source: The author

25

In the subprocess of creating a new graph we set all the relevant information of

the graph and its nodes. The graph receives a name which is the same of the method,

its nodes are set, all the valid variables of the graph are stored and the sets of uses and

definitions are created for each node in the graph. This basic flow is represented in the

Figure 3.3, we can notice it is composed by other subprocessess.

Figure 3.3 - Graph Creation Flowchart

 Source: The author

The first subprocess we find on the flow of Figure 3.3 is for setting all the graph

variables. This information is stored with the graph because LLVM intermediate file

includes temporary variables that are not in the original source code. This subprocess

defines therefore which variables are really important for the CFG. The process that sets

these data works by reading the intermediate and the original file and matching the

variables. Variables that are in both files are considered valid variables and are stored in

the graph. We can analyze how the tool executes this feature by seeing the Figure 3.4.

26

Figure 3.4 - Set graph variables flowchart

 Source: The author

The next subprocess, described on Figure 3.5, is also related to the variables and

is responsible for storing all its definitions points. The variable definition is not a graph

information anymore, but a node attribute and will be set for each node in the graph. As

we can see in the workflow, the process starts by getting each one of the nodes, and

reading from its code which are the variables defined for each line of code inside of this

basic block. After checking it is a valid variable (it belongs to the list of variables in the

graph) the variable can be added to the list of defs of the node.

The first step to locate a def of a variable is to find the reserved words “alloca” or

“store”. Once we have a line containing one of these words, we get the variable being

defined by finding the symbol “%” in the beginning of the string which identifies a

variable. After checking it is a valid variable, that is, it is stored by the graph as a

variable, it is added to a list of defs which will be later assigned to the node.

27

Figure 3.5 - Set variables definitions flowchart

Source: The author

The subprocess of setting the uses works similarly to the “set defs” just presented.

As we can see on Figure 3.6, for each node of the graph, all their lines of code are

checked to find a use of a variable. Whenever a use is found it is added to a list that will

be assigned to the node in the end of the process of validation of the whole basic block.

A use can be identified in the intermediate file by finding a variable (string starts

with “%”). If there is no “load”, “alloca” or “store” in the line it is automatically added to

the list of uses, as long as it is a valid variable, and not a temporary one. In case of

finding the reserved words that identify a def, the use will still be searched on the other

part of the line, since the def of a variable could mean a use of another one.

Figure 3.6 - Set variables uses flowchart

Source: The author

28

3.2 Structure of the Proposed Approach

Now we know how the application interprets the intermediate file generated by

LLVM to get the CFGs necessary for source code analysis, let us analyze how the

proposed tool is structured. In Figure 3.7 we can see the class diagram representation

of the code coverage tool.

The program is separated in four classes, besides the main and the UI. The

“FilesGraph” is responsible for taking the information of the file and building the graph

from the data found. The “Graph” class represents the CFG itself and stores its name, a

list of its nodes and a list with all the valid variables contained in the graph. The “Node”

class includes the name (that is the identification of the basic block), a list with all names

of the predecessor nodes, the code of the basic block and defs and uses of variables.

Finally we have the “GaphCoverage” class that consists in all methods responsible for

returning the test requirements and applying the code coverage criteria that are

supposed to be implemented on future releases.

29

Figure 3.7 - Application Class Diagram

Source: The author

30

3.3 Implementation of the Coverage Criteria

On this section we will discuss about the coverage criteria selected to be

implemented and the methods needed to cover the CGF the application receives as

input.

 Graph-based coverage criteria analysis starts by specifying a set of Test

Requirements, TR. The developed tool is able generate all the TRs for the input graphs

considering 9 different coverage criteria: Prime Path coverage, Complete Round Trip

coverage, All Du-pair coverage, All Du-path coverage, Du-path coverage, Def-path

coverage, Use-path coverage, All Def-path coverage and finally All Use-path coverage.

Each method implemented toward this end is explained next. Other criteria as Node

coverage and Edge coverage were omitted from this work for being trivially extended

from developed methods.

3.3.1 Find Simple Path

The recursive method “findSimplePath” shown in Figure 3.8, receives as input a

graph, two nodes and a path that is a list of nodes. The path starts empty and it is

incremented with visited nodes on each step of the recursion executed. Each node

reached in the recursion is added to the path. When a final node is found without

reaching the target it is removed from the path and a new path is searched from the last

node in the list of nodes. When the target is reached it adds the path to a global variable

which stores the valid paths found. Then the last node is removed (the target) and the

search for valid paths continues from the last node in the path variable.

Essentially this method is used to validate whether there is a valid simple path

between two nodes. This functionality is used by other methods to validate links

between two given nodes.

31

Figure 3.8 - Find Simple Path method

Source: The author

3.3.2 Prime Path

Before defining the prime path we need to have another definition explained, the

simple path. A path from node ni to node nj where no node is visited more than once,

with the exception of the first node that could be the same as the last one, is called a

simple path. That is, simple paths do not contain loops, but it can be a loop.

A prime path is a simple path that does not appear as a proper subpath of other

simple paths.

To find out all prime paths in a graph between two nodes, this method uses the

“findSimplePath” method to find the paths between a pair of nodes in the graph. After

generating all simple paths, it selects the ones that are not contained in the others.

To have the prime path criteria completed covered it would be necessary to run

this method for each pair of nodes existent in the graph.

32

Figure 3.9 - Prime Path method

 Source: The author

3.3.3 Is Valid Path

The “isValidPath” method (Figure 3.10) receives a path as input and test if all the

nodes of this path are reachable. As the nodes store their predecessors it takes the last

node of the path and validate if the predecessor node in the path is also a predecessor

in the graph. If the first node, that is the final target, is reached visiting all the nodes in

the path the method returns a confirmation of the validity of the path tested.

This method will be useful to validate input test paths when coverage features are

developed.

33

Figure 3.10 - Is Valid Path method

 Source: The author

3.3.4 Complete Round Trip

A round trip path is a prime path of length greater than 0, that starts and ends at

the same node. As we can notice the round trip is a variation of a prime path, the

difference is it tests the loops for a given node. Taking advantage of this concept this

method uses the prime path method implemented but uses as input the same node as

initial and end point of the path.

Figure 3.11 - Complete Round Trip method

Source: The author

3.3.5 All DuPairs

 A du-pair exercises the data flow criteria since it focuses on testing the correct

use of variables in the program. This method returns all pairs of definition and uses

found on a graph for a certain variable.

34

 First the “allDuPair” method looks for uses of a variable v. When a use is found it

looks for definitions of v and uses the “findSimplePath” for each pair of def and use

found to test whether they are connected. Finally if there is a path between both def and

use nodes of v, this method tests if this is a def-clear path. If this is the case, the nodes

are stored in a list of valid du-pairs found on the graph considering the variable entered

as parameter.

Figure 3.12 - All Du-Pair method

 Source: The author

3.3.6 DuPath

 The du-path method works exactly as the du-pair one but now focusing on the

whole path while the du-pair considers just the nodes. It stores the entire path between

the def and use of a variable v.

35

Figure 3.13 - All Du-Path method

 Source: The author

3.3.7 All DefPath

 The allDefPath method is also based on data flow criteria, and is based on the

same concepts just discussed (du-pair and du-path), but it focuses on the variables

definition.

36

 The defPath method receives a node as parameter and checks whether this node
has a definition for a variable v, also entered as input. In case the node has a definition
of v, the method searches for a use of v. For the uses found, the method tests (using the
“findSimplePath” method) if they are connected and if the path is def-clear. On the other
hand the method to find all the defPath uses the method just described and applies for
each node on the graph, as we can verify on Figure 3.14.

Figure 3.14 - Def-Path methods

 Source: The author

37

3.3.8 All UsePaths

The allUsePath method is also based on data flow criteria, but it focuses on the

variables usages an return all the use paths considering all uses of a variable v.

The usePath method receives a node as parameter and validates this node has a

use of a variable v, also entered as input. In case the node has a use of v it searches for

a def of v. For the uses found, the method tests using the “isValidPath” method if they

are connected and it the path is def-clear. The use-path returns the paths containing all

definition nodes corresponding to a given use of v.

38

Figure 3.15 - Use-Path methods

Source: The author

3.3.9 DefClear

 The def-clear concept was much explored until now in the methods based on

data flow criteria. The condition to say a du-path is def-clear is that no other definition of

a variable v appears between the entry point of the path, which is a definition of variable

v, and the final node of the path, which is a use of v.

39

 To get this condition satisfied this method receives as input the graph, the path to

be tested and the variable in question. For each node in the given path a definition of v

is searched. , if it reaches the final node without finding other definition for v it returns

the value true, asserting the given path is in fact def-clear.

Figure 3.16 - Is Def-Clear method

 Source: The author

3.4 Performance Analysis

 The algorithms developed to generate the Test Requirements (TR) for all criteria

considered by this prototype were built based on the definitions presented by Offutt

(2008) and considering the input which would be received by LLVM.

The average complexity of the algorithms implemented are directly proportional to

the cyclomatic configuration of the graphs. As the propose was to work with object

oriented code, the optimization of the algorithms were not considered to be a concern as

this type of programming structure splits the logic into small methods which will result on

graphs with reduced number of nodes.

Figure 3.17 represents the average time spent to run the method “findSimplePath”

considering increasing number of nodes. The data was generated from the average of

several executions of the method considering the same graph and changing the pair of

40

nodes used as parameters and also calculating the time for other graphs with same

number of nodes but different number of edges.

Figure 3.17 - “findSimplePath” average execution time

Source: The Author

 From the graph of Figure 3.17 we can verify the time average for the execution of

“findSimplePath” method not increased considerably for any of the of the graphs from

the real program tested, which means scalability did not show to be a concern

considering the context of object oriented code.

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60

Execution Time in μs

Number of nodes

Time

41

4 EXPERIMENTAL RESULTS

This chapter focuses on showing the application of the proposed tool to an

intermediate code created by LLVM for the example of Figure 2.5. We will discuss how

the input file was processed and tested using the methods described on Chapter 3.

4.1 Running Example

To be able to use the program that will run the coverage methods over the code,

it is necessary to first have processed the code using LLVM. For the purpose of this

work that is intended to cover Object Oriented codes and respecting LLVM current

capabilities, we used a source code implemented in C++ .

Both files containing the code, original and intermediate (.ll extension), should be

placed in the root project folder in order to get required information for the tool and make

it possible to perform the desired analysis.

4.1.1 Input Program

A control flow graph is an oriented graph built based on the flow of a program

execution. The nodes of this graph represent basic blocks of code while the edges

represent possible transfer of control flow from one basic block to another. The CFG can

be extracted from the intermediate file required. For this specific running example the

intermediate code created by LLVM has the following Control Flow Graph:

42

Figure 4.1 - CFG of input program with defs and uses

Source: The author

4.2 File Processing

The data structure needed by the coverage methods is achieved by a series of

operations in the beginning of the process. Each method of the read file is transformed

in a different graph which stores the nodes, its predecessors, its code and all the

variables definition and uses of the basic blocks.

43

4.3 Test Execution

Coverage criteria is used to define a set of tests and inputs that should be used to

cover a program. The choice of this specific set makes possible to decrease the cost of

testing and still ensure the quality of the program, since it will be focusing on the critical

points of the code.

For the running example used here the methods for generating the Test

Requirements for coverage criteria chosen were the primePath(), which returns the test

requirements of the prime path coverage criterion defined on chapter 2, and duPath(),

which returns test requirements for the AllDefs coverage criterion for a given variable.

Both methods will be better explained in the following sections. The input data, such as

the path or the variable to be tested, on the other hand were chosen arbitrarily.

4.3.1 Prime Path

 Prime path criterion is much explored for being simple and keep the number of

test requirements down. It is a simple path of maximal length between two nodes, that is,

the prime path does not appear as proper subpath of any other simple path.

 The “primePath” method developed receives as parameter a graph and two

nodes of this graph. All simple paths between the given nodes will be found by calling

the method “findSimplePath”. Once we have all possible simple paths for the pair of

nodes the method removes those that are subpaths of another. The Test Requirements

(TR) returned will be the paths that satisfy the condition of not being a subpath of any

other simple path found.

44

4.3.1.1 Prime Path Criteria Test Run

Figure 3.2 is an example of the tool execution for the CFG generated by LLVM

and used as input for this experience. On this case the method Prime Path is being

applied over the graph used as example (Figure 4.1) that corresponds to the source

code displayed on Figure 2.5. To run the Prime Path option over the complete CFG the

user sets the initial node to “entry” and the final node to “for.end”.

Figure 4.2 - Program execution for Prime Path criteria.

 Source: The author

The result obtained can be verified in Figure 4.2. For this case one prime path is

found starting on node “entry” and ending on node “for.end” and is represented by the

following Test Requirement: {entry, for.cond, for.end}. The confirmation that the path is

really contained in the graph and is a prime path can be seen in Figure 4.3.

45

Figure 4.3 - Prime path TR for “entry” to “for.end”.

Source: The author

4.3.2 Du-Path

 The criterion discussed here is focused on validating the correct definition and

use of variables. A definition of a variable is a location where it is created or has an

assignment and a use of a variable happens when its value is accessed.

A du-path is a simple path with respect to a variable v that is def-clear and

starts at a node where v is being defined and ends at a node where v is being used. Du-

paths can be categorized in different groups, we will present here two of them: def-path

and use-path.

46

4.3.2.1 All Def-Path Test Run

The def-path is the set of all du-paths with respect to a given definition. This

means that given a node n where n contains a definition of a variable v, this method

returns all du-paths starting at n.

Figure 4.4 is an example of the execution over the CFG provided as input for this

experience and displayed on Figure 4.1. The method def-path is being applied over this

graph, considering the variable i.

Figure 4.4 - Program call for def-path method

Source: The author

4.3.2.2 All Use-Path Test Run

47

The use-path is the set of all du-paths with respect to a given use. This means

that, given a node n where n contains a use of a variable v, this method returns all du-

paths ending at n and starting on a definition of v that can reach n.

 In Figure 4.5 we can see the execution of the method All Use-Path considering

the variable I and being applied over CFG of Figure 4.1.

Figure 4.5 - Program call for use-path method

Source: The author

On Figures 4.4 and 4.5 we can visualize the Test Requirements related to both

criteria Def-Path and Use-Path. We can notice values returned are the same, since they

are representing all def-clear paths for defs and uses of the same variable i. On Figure

3.6 we can validate the result found by the tool.

4.4 Validation in a Real System

48

 For the validation of the proposed and developed prototype a set of 40 C++ files,

part of a research of the Federal University of Rio Grande do Sul, were used as input to

run the referenced tool.

 The application tested consists on the software developed as part of an electronic

energy meter.This software was developed as part of a research project and has only

basic unit tests implemented.

4.4.1 Program Execution

 On this section the results obtained running the prototype tool developed over the

classes from the embedded software previously described will be presented.

Considering the huge amount of data generated on this validation not all the classes will

be displayed on next sections. The simpler examples were selected in order to be more

explanatory and conclusive.

4.4.1.1 First Example

The first example is an execution of the prototype tool using as input file the

intermediate code generated for class Calendar of the embedded software. The method

chosen to be validated on the next steps was the “isNewMonth” for being easily

representable.

49

Figure 4.6 - “isNewMonth” Source Code

Source: Electronic Energy Meter Program

The correspondent intermediate code generated by LLVM from “isNewMonth”

method can be visualized on Figure 4.7.

50

Figure 4.7 - “isNewMonth” Intermediate Code

 Source: Electronic Energy Meter Program

Considering the intermediate code of Figure 4.7 where we can see the nodes

identified by their labels and their predecessors we obtained the CFG presented in

Figure 4.8.

51

Figure 4.8 - “isNewMonth” correspondent CFG

Source: The Author

 Using the data described on this section Figures 4.9 to 4.16 present the results

obtained by the prototype for all the criteria available in the tool.

Figure 4.9 - Execution of Simple Path method for “isNewMonth“ graph and considering the

nodes “entry” and “if.end”

Source: The Author

52

Figure 4.10 - Execution of Prime Path method for “isNewMonth“ graph, considering the nodes

“entry” and “if.end”

Source: The Author

Figure 4.11 - Execution of Complete Round Trip method for “isNewMonth“ graph, considering

the node “if.end”

Source: The Author

53

Figure 4.12 - Execution of Du-Pair method for “isNewMonth“ graph, considering the variable

“daysOfTheMonth”

Source: The Author

Figure 4.13 - Execution of Du-Path method for “isNewMonth“ graph, considering the variable

“daysOfTheMonth”

Source: The Author

54

Figure 4.14 - Execution of All Du-Path method for “isNewMonth“ graph, considering the variable

“daysOfTheMonth”

Source: The Author

Figure 4.15 - Execution of All Def-Path method for “isNewMonth“ graph, considering the variable

“daysOfTheMonth”

Source: The Author

55

Figure 4.16 - Execution of All Use-Path method for “isNewMonth“ graph, considering the

variable “daysOfTheMonth”

Source: The Author

4.4.1.2 Second Example

The second example is an execution of the prototype tool using as input file the

intermediate code generated for class BillCommand of the embedded software. The

method chosen to be validated on the next steps was the “update” for being easily

representable.

56

Figure 4.17 - “isNewMonth” Source Code

 Source: Electronic Energy Meter Program

The corresponding intermediate code generated by LLVM from “update” method

can be visualized on Figure 4.18 (part of the code was omitted since it was not essential

for this purpose).

57

Figure 4.18 - “update” Intermediate Code

Source: Electronic Energy Meter Program:

Considering the intermediate code of Figure 4.18 where we can see the nodes

identified by their labels and their predecessors we obtained the CFG presented in

Figure 4.19.

Figure 4.19 - “update” correspondent CFG

Source: The Author

58

 Using the data described on this section, Figures 4.20 to 4.27 are the results

obtained by the prototype for all the criteria available on the tool.

Figure 4.20 - Execution of Simple Path method for ”update” graph considering nodes “entry” and
“if.end”

Source: The Author

59

Figure 4.21 - Execution of Prime Path method for “update“ graph, considering the nodes “entry”

and “if.end”

Source: The Author

Figure 4.22 - Execution of Complete Round Trip method for “update“ graph, considering the

node “if.else”

Source: The Author

60

Figure 4.23 - Execution of Du-Pair method for “update“ graph, considering the variable “subject”

Source: The Author

Figure 4.24 - Execution of Du-Path method for “update“ graph, considering the variable “subject”

Source: The Author

61

Figure 4.25 - Execution of All Du-Path method for “update“ graph, considering the variable

“subject”

Source: The Author

Figure 4.26 - Execution of All Def-Path method for “update“ graph, considering the variable
“subject”

Source: The Author

62

Figure 4.27 - Execution of All Use-Path method for “update“ graph, considering the variable

“subject”

Source: The Author

4.4.1.3 Third Example

The third example is an execution of the prototype tool using as input file the

intermediate code generated for class AT25DF321A of the embedded software. The

method chosen to be validated on the next steps was the “_eraseMemory” for being

easily representable.

63

Figure 4.28 - “eraseMemory” Source Code

Source: Electronic Energy Meter Program

The correspondent intermediate code generated by LLVM from “_eraseMemory”

method can be visualized on Figure 4.29 (part of the code was omitted since it was not

essential for this purpose).

64

Figure 4.29 - “eraseMemory” Intermediate Code

Source: Electronic Energy Meter Program

Considering the intermediate code of Figure 4.28 where we can see the nodes

identified by theirs labels and their predecessors we obtained the Control Flow Graph

(CFG) of Figure 4.29 for the method “_eraseMemory” of C++ class AT25DF321A.

65

Figure 4.30 - “_eraseMemory” correspondent CFG

Source: The Author

 Using the data described on this section the Figures 4.30 to 4.38 are the results

obtained by the prototype for all the criteria available on the tool.

Figure 4.31 - Execution of Simple Path method for “_eraseMemory“ graph, considering the

nodes “entry” and “for.end”

Source: The Author

66

Figure 4.32 - Execution of Prime Path method for “_eraseMemory“ graph, considering the nodes

“for.body” and “for.end”

Source: The Author

Figure 4.33 - Execution of Complete Round Trip method for “_eraseMemory“ graph, considering

the node “for.cond”

Source: The Author

67

Figure 4.34 - Execution of Du-Pair method for “_eraseMemory“ graph, considering the variable “i”

Source: The Author

Figure 4.35 - Execution of Du-Pair method for “update“ graph, considering the variable

“memorySize”

Source: The Author

68

Figure 4.36 - Execution of Du-Path method for “_eraseMemory“ graph, considering the variable

“i”

Source: The Author

Figure 4.37 - Execution of All Du-Path method for “_eraseMemory“ graph, considering the

variable “i”

Source: The Author

69

Figure 4.38 - Execution of All Def-Path method for “_eraseMemory“ graph, considering the

variable “i”

Source: The Author

Figure 4.39 - Execution of All Use-Path method for “_eraseMemory“ graph, considering the

variable “memorySize”

Source: The Author

70

4.4.1.4 Fourth Example

The forth example is an execution of the prototype tool using as input file the

intermediate code generated for class SPI of the embedded software. The method

chosen to be validated on the next steps was the “getByte” for being easily

representable.

Figure 4.40 - “getByte” Source Code

Source: Electronic Energy Meter Program

The correspondent intermediate code generated by LLVM from “getByte” method

can be visualized on Figure 4.40 (part of the code was omitted since it was not essential

for this purpose).

71

Figure 4.41 - “getByte” Intermediate Code

Source: Electronic Energy Meter Program

72

Considering the intermediate code of Figure 4.40 where we can see the nodes

identified by theirs labels and their predecessors we obtained the Control Flow Graph

(CFG) of Figure 4.41 for the method “getByte” of C++ class SPI.

Figure 4.42 - “getByte” correspondent CFG

Source: The Author

 Using the data described on this section the Figures 4.42 to xxx are the results

obtained by the prototype for all the criteria available on the tool.

73

Figure 4.43 - Execution of Simple Path method for “getByte “ graph, considering the nodes

“entry” and “for.inc”

Source: The Author

Figure 4.44 - Execution of Prime Path method for “getByte “ graph, considering the nodes “entry”

and “for.inc”

Source: The Author

74

Figure 4.45 - Execution of Complete Round Trip method for “getByte “ graph, considering the
node “for.cond”

Source: The Author

Figure 4.46 - Execution of Complete Round Trip method for “getByte “ graph, considering the
node “for.body”

Source: The Author

75

Figure 4.47 - Execution of Du-Pair method for “getByte “ graph, considering the variable “byte”

Source: The Author

Figure 4.48 - Execution of Du-Pair method for “getByte “ graph, considering the variable “byte”

Source: The Author

76

Figure 4.49 - Execution of Du-Pair method for “getByte “ graph, considering the variable “byte”

Source: The Author

Figure 4.50 - Execution of All Du-Path method for “getByte “ graph, considering the variable
“byte”

Source: The Author

77

Figure 4.51 - Execution of All Def-Path method for “getByte “ graph, considering the variable
“byte”

Source: The Author

Figure 4.52 - Execution of All Def-Path method for “getByte “ graph, considering the variable
“byte”

Source: The Author

77

5 FINAL REMARKS

This work was developed in order to exercise the importance of testing criteria.

Considering the huge need of testing software, since they are present everywhere in

modern life, methods to increase the performance of testing are extremely necessary to

make testing feasible.

 The proposal was to create an application able to apply some of the existent

code coverage criteria over a generic object oriented program previously compiled by

LLVM and return Test Requirements found for each criteria. Basically we should have a

program which could read the intermediate file generated by LLVM (which read C++

programs) and allow the user to run Intramethod tests over the CFG of each method

found in the input file.

 Considering the huge efforts needed to build an application able to read LLVM

intermediate file and extract a Control Flow Graph from this intermediate code, the

prototype has limited features. The current program is able to identify and return, for

each method of C++ input files, the Test Requirements for a certain set of criteria

selected. Applying coverage criteria over the Control Flow Graphs and considering the

Test Requirements found is still an opportunity of improvement for this tool.

5.1 Proposed Features

 The tool developed on this work is able to generate the Test Requirements

needed for coverage criteria and can be complemented with the development of Test

Requirements for additional criteria, such as Node Coverage or Edge Coverage Criteria.

It is also an important improvement to develop the methods that perform coverage

analysis for each criterion, that is, evaluate the coverage of the set of test requirements

by a given set of tests, and provide the user a visual understanding of the generated

CFGs, adding this information to the user interface.

78

Furthermore, using this set of basic methods, actual object-oriented coverage

analysis can also be implemented, providing the tester/developer more information

about the quality of its test set.

11

REFERENCES

AMMAN, Paul; OFFUT, Jeff. Introduction to Software Testing. New York: Cambridge

University Press, 2008.

Clang Compiler User's Manual. Available at: <clang.llvm.org/docs/UsersManual.html>.

Accessed in 26 jun. 2015.

The LLVM Compiler Infrastructure. Available at <llvm.org>, Accessed in 21 jun. 2015.

GOMES, Humberto V..Metodologia de Projeto de Software Embarcado Voltada ao

Teste. Thesis presented as partial pre requirement for Masters degree – Federal

University of Rio Grande do Sul, Informatics Institute, Porto Alegre, may. 2010. p. 47

