
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

CURSO DE CIÊNCIA DA COMPUTAÇÃO

ANDERSON DIDONÉ FOSCARINI

Development of a Context Broker and High
Availability resource proposal

Work presented in partial fulfillment
of the requirements for the degree of
Bachelor in Computer Science

Advisor: Prof. Dr. Taisy Silva Weber
Coadvisor: M.Sc. Marcos Rates Crippa

Porto Alegre
July 2015

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos Alexandre Netto
Vice-Reitor: Prof. Rui Vicente Oppermann
Pró-Reitor de Graduação: Prof. Sérgio Roberto Kieling Franco
Diretor do Instituto de Informática: Prof. Luis da Cunha Lamb
Coordenador do Curso de Ciência de Computação: Prof. Carlos Arthur Lang Lisbôa
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

“The true sign of intelligence is not knowledge,

but imagination.”

— ALBERT EINSTEIN

ACKNOWLEDGEMENTS

I would like to express my very great appreciation to both my advisors, for the patience

and kindness on the journey of getting this work done.

Special thanks to my parents, for all the support they gave me throughout the years,

always providing the best conditions for my living. I surely know how lucky I am, and I value

it every day. I wouldn’t be here if it wasn’t for you.

I am particularly grateful for the good moments and the assistance given by my brother

during the years, both computer and life related, specially in the final days of this work.

I must save a little space to thank all my friends, the old and the new ones, who made

the last 7 years of my life very pleasant. A special thanks to those who picked up on me so I

would focus and finish this work.

I would like to thank TU Kaiserslautern for the opportunity given and specially the In-

formatics Institute from UFRGS, for the excellence on learning and research, being the best

computer science course in the country for many years, and having international recognition.

This is where I met great professors from whom I learned not only the theory and application

of computer science, but also lessons in life. It was surely a great honor to grow both academi-

cally and personally inside this great atmosphere, and if I decide to continue my studies, I will

strongly consider choosing this institution.

And finally thank you, for reading this. I hope you have a good time.

ABSTRACT

Context is everywhere. From a mobile phone in a person’s pocket to a temperature sensor in the

middle of a forest. Context data can be used to help determine the importance of information

and services on an environment, and decide whether to make them available to users or not,

and how to process them. Applications that use context are called context-aware. With today’s

large offer of sensing technologies, and the presence of various kinds of sensors in every mobile

phone, it has become easier and more useful to sense context in several situations. The use of

context data has become a very powerful tool of personalizing interaction with users and the

behavior of systems. By improving the computer’s access to context, the richness of communi-

cation in human-computer interaction and the presence of more useful computational services

can be increased. Context-aware computing is a new and broad area of research. Although

its wide range of applicability, not many efforts are made towards specific solutions, including

ones related to dependability and fault tolerance. This work’s main objective is to develop a

Context Broker following a previous definition, on a different platform, and to propose a way to

add a resource that gives the Broker high availability characteristics, taking a first step towards

the development of a Dependable Context Broker.

Keywords: High Availability. Context broker. Context computing. Fault tolerance.

Desenvolvimento de Broker de Contexto e proposta de recurso de Alta Disponibilidade

RESUMO

Contexto está em todo lugar. De um telefone celular no bolso de uma pessoa à um sensor

de temperatura no meio de uma floresta. Dados de contexto podem ser usados para auxiliar

na definição da importância de informações e serviços em um ambiente, e decidir se as torna

disponíveis ao usuário ou não, e como pode processá-las. Aplicações que usam contexto são

chamadas sensíveis ao contexto. Com a atual grande oferta de tecnologias sensoriais, e a pre-

sença de vários tipos de sensores em cada telefone celular, têm se tornado mais fácil e prático

captar contexto em diversas situações. O uso de informações de contexto se tornou uma ferra-

menta poderosa para personalizar a interação com usuários e o comportamento de sistemas. Ao

melhorar-se o acesso de um computador ao contexto, aumenta-se a riqueza das comunicações

em interações humano-computador e a presença de serviços computacionais mais úteis.

Computação sensível a contexto é uma nova e ampla área de pesquisa. Não são muitos os

esforços em soluções específicas, inclusive as relacionadas à área de tolerância a falhas e con-

fiabilidade. Este trabalho tem como objetivo desenvolver um Broker de Contexto e propor a

adição e recursos que o dêem características de alta disponibilidade, dando um primeiro passo

em direção ao desenvolvimento de um Broker de Contexto Confiável (Dependable).

Palavras-chave: Alta disponibilidade. Broker de contexto. Computação de contexto. Tolerân-

cia a falhas.

LIST OF FIGURES

Figure 2.1 Broker application pattern .. 15
Figure 2.2 Entity and Scope relationship ... 17
Figure 2.3 Provider Advertisement example message ... 18
Figure 2.4 Providers Lookup example message .. 18
Figure 2.5 ACK and NACK example messages... 19
Figure 2.6 Context Element example messages (update) .. 20
Figure 2.7 Context Data representation ... 20

Figure 3.1 Architecture diagram .. 25
Figure 3.2 Collections diagram.. 26
Figure 3.3 Overview of the Use Cases... 34
Figure 3.4 Register Provider Use Case detail .. 34
Figure 3.5 Provider Lookup Use Case detail ... 35
Figure 3.6 Subscribe Use Case detail... 35
Figure 3.7 Context data interactions Use Case detail .. 35
Figure 3.8 Sequence diagram... 36
Figure 3.9 Broker System for High Availability .. 38
Figure 3.10 State Diagram for proposed protocol.. 40

Figure 4.1 Broker Interface .. 41
Figure 4.2 Provider Interface ... 41
Figure 4.3 Consumer Interface... 42
Figure 4.4 Broker Log.. 42
Figure 4.5 Providers Table ... 43
Figure 4.6 Subscriptions Table... 43
Figure 4.7 Registry Table - Context Information... 43

LIST OF ABBREVIATIONS AND ACRONYMS

CxB Context Broker

CxC Context Consumer

CxP Context Provider

HTTP Hypertext Transfer Protocol

REST Representational State Transfer

SOA Service-Oriented Architecture

TU-KL Technische Universität Kaiserslautern

UFRGS Universidade Federal do Rio Grande do Sul

CONTENTS

1 INTRODUCTION.. 11
2 DEFINITIONS ... 13
2.1 Context .. 13
2.1.1 Context-Aware System.. 13
2.1.2 Broker ... 14
2.1.3 How to represent Context ... 15
2.1.4 ContextML.. 15
2.1.4.1 Context Provider .. 16
2.1.4.2 Context Consumer ... 16
2.1.4.3 Context Broker... 16
2.1.4.4 Entity and Scope .. 16
2.1.4.5 ContextML Messages .. 17
2.1.5 Overview of Context Data representantion... 20
2.2 Dependability ... 20
2.2.1 Fault Tolerance.. 21
2.2.2 High Availability... 21
2.2.3 High Availability on Clusters.. 22
2.2.3.1 Cluster goals... 22
2.2.3.2 Nonblocking protocols... 23
3 DESIGN AND IMPLEMENTATION .. 24
3.1 Design and Implementation of the Context Broker.. 24
3.1.1 Platform Choice .. 24
3.1.1.1 Python, PyCharm and GitHub ... 24
3.1.1.2 Flask... 25
3.1.1.3 MongoDB .. 25
3.1.2 System Architecture.. 25
3.1.3 Data Collections.. 25
3.1.4 Broker Interfaces... 26
3.1.4.1 Advertisement (/advertisement)... 26
3.1.4.2 Update (/update)... 26
3.1.4.3 Get Providers (/getProviders)... 27
3.1.4.4 Get Context (/getContext).. 27
3.1.4.5 Subscribe (/subscribe).. 27
3.2 UML representation .. 28
3.2.1 Use Case Requirements .. 28
3.2.2 Use Cases .. 29
3.2.2.1 Registration of Providers ... 29
3.2.2.2 Provider Lookup service .. 29
3.2.2.3 Subscribe Consumer to data... 30
3.2.2.4 Context data interactions.. 31
3.2.3 Use Cases Diagrams ... 34
3.2.4 Sequence Diagram .. 36
3.3 Proposition of High Availability Technique... 37
3.3.1 Requirements .. 37
3.3.2 Design ... 37
3.3.3 Proposed Protocol ... 38
4 PROTOTYPE EVALUATION .. 41

5 CONCLUSION .. 45
5.1 Future Work ... 45
REFERENCES.. 47

11

1 INTRODUCTION

Humans can interact easily, and naturally gather information about the context they’re

in. This is due to various factors as language, common understanding of the world’s behavior

and everyday situations, and the ability to understand implicit symbolization and effects, based

on common knowledge. Unfortunately, a computer does not have this capability: it needs to be

guided, to be told what to look for, what to sense, and how to interpret it; it needs explicitness

(DEY, 2000).

Gathering context information is a way of computers to interact with its surroundings,

collecting information about the user and the environment he’s inserted. With today’s wireless

communications technologies, mobile and ubiquitous computing, sensors, etc., the information

can be collected silently, i.e., without the need of a user to explicitly input it, and is more

dynamic, as it rapidly changes not only through user interaction, but also when the context

changes itself. An example is given below.

A context-aware system could be used in an intelligent store. Let’s assume we have

information from a client’s location, using its mobile phone position, and information of a store

location and products, registered in the context-aware system as the store’s context.

This information can be combined to show in the client’s mobile phone offers and prod-

ucts from the store, either when the client passes by or enters it. If the client register its personal

data to the context-aware system, it can even suggest products that would interest the client, re-

sulting in a context-directed advertisement. Going further in this idea, the client could also see

what products of his size are available at the store, if these context information about the client

are registered in the context-aware system. This was a mere example, there are many other

ways of using context data in real-world applications, as tourist context-aware recommendation

content, ebooks interactions, content share services, etc. (MOLTCHANOV et al., 2011).

A context-aware system usually consists of Providers and Consumers of context infor-

mation, forming a Service-Oriented Architecture (SOA). When this system grows, the use of

a Broker is recommended, centering the message exchanging in the Broker, letting Providers

and Consumers be simple systems and avoiding overload among them. Among many exten-

sions that can be made to a Broker application, high availability comes out as a very interesting

one. Given today’s highly competitive perception of market, the availability of a solution can

be decisive in the satisfaction rating of its services.

Motivation: in the year 2014 I was given the opportunity to be part of an exchange program

between Universidade Federal do Rio Grande do Sul (UFRGS) and Technische Univer-

12

sität Kaiserslautern (TU-KL) in the city of Kaiserslautern, Germany. I was selected to

work on the Wicon Research Group (TUKL, 2015), under the supervision of Msc. Mar-

cos Rates Crippa, the co-advisor of this work. Initially I was given tasks of documenting

and learning about Context and the Context Broker solution he had developed previously

within TU-KL. As I was approaching the end of my computer science course at UFRGS

and needed a final project subject, Marcos presented to me some options, among them the

study of a method to add high availability technique to the Broker architecture. Then, I

decided to develop my own Context Broker solution, following the same definitions, but

in a different programming language, so it would arise as a challenge for me, and later

study for a protocol to seek high availability in the Broker system.

This work follows a previous work done at UFRGS in cooperation with TU-KL (CRIPPA,

2010). In that work, a Context Broker was defined and created using Java. The goals of this

work are to create a regular Context Broker following previously defined architecture, in a dif-

ferent programming language, but that has the same behavior from the client point of view,

showing that two different solutions can work side by side, without the need of modifying the

client. This work also aims at demonstrating the feasibility of the construction of a highly

available Context Broker, as an extension of the regular one.

The Context Broker structure presented in (CRIPPA, 2010) and in this work is still a new

approach to context-aware systems. As far as I’ve searched, I’ve found no production regarding

high availability or any other dependability approach to a Context Broker in the literature. What

exist are broker-based tools that help a system become highly available (MAFFEIS; SCHMIDT,

1997) (NATARAJAN et al., 2000).

The text is organized as follows: Chapter 2 is divided on definitions of Context and Fault

Tolerance terms, with Section 2.1 focusing on the former and Section 2.2 on the latter. Chapter

3 presents the design and implementation of the regular Broker, and the strategies to incorporate

High Availability to it. Chapter 4 shows the tests made in this work, and finally Chapter 5 brings

the conclusions and future work.

13

2 DEFINITIONS

This work proposes the application of a high availability technique to a context broker

system. For a better understanding of the system and its development, definitions of Context,

Context-Aware System, Context Representation, Fault Tolerance and High Availability related

terms are presented.

2.1 Context

Context has had many definitions throughout the years. The first definition of Con-

text regarding human-computer interaction related to location, identities of nearby people and

objects, and the changes happening to those (SCHILIT; THEIMER, 1994). Similarly, a later

definition sees context as location, people around the user, time of day, season, temperature, etc.

(BROWN; BOVEY; CHEN, 1997). Many authors have also defined context using synonyms,

the idea of “environment” for example, what the computer knows about the user’s environment

(BROWN, 1995), or context as user’s situation (FRANKLIN; FLASCHBART, 1998). Thus, a

lot of definitions existed, but they all ended up being too specific. Context is about the whole

situation of an application and its users, and we can’t really define it as being too specific to

something like a location, or the environment a user is in.

Therefore, looking for a broader definition of context, this work uses the following:

“Context is any information that can be used to characterize the situation of an entity. An entity

is a person, place, or object that is considered relevant to the interaction between a user and an

application, including the user and application themselves.” (DEY, 2000).

2.1.1 Context-Aware System

Just as context, context-awareness has had several definitions over the years. The first

definition restricted it to applications informed about context and applications that adapt them-

selves to context (SCHILIT; THEIMER, 1994). Later on, synonyms have been used to de-

fine a context-aware system: reactive (COOPERSTOCK et al., 1995), responsive (ELROD et

al., 1993), situated (HULL; NEAVES; BEDFORD-ROBERTS, 1997), context-sensitive (REKI-

MOTO; AYATSUKA; HAYASHI, 1998) and environment-directed (FICKAS; KORTUEM; SEGALL,

1997). All these definitions refer to either using or adapting to context, however, a more global

14

definition is needed, covering every interaction with context made by the system.

The definition used in this work aims to be more embracing: “A system is context-aware

if it uses context to provide relevant information and/or services to the user, where relevancy

depends on the user’s task.” (DEY, 2000).

A context-aware communication system usually comprises several context management

functionalities, where context acquisition and provision are the most important ones. We can

divide the system in two main component types: context providers and context consumers; a

combination of both is also possible. Given this structure, a small scale system could work

with direct communication between context providers and consumers, but when a large scale

system is built, network boundaries, mobility and other scaling factors give rise to the necessity

of having assisting communication mechanisms, e.g. a broker between the consumers and

providers (KIAN et al., 2010).

2.1.2 Broker

A context-aware system falls under the definition of a Service-Oriented Architecture

(SOA), where one can find Consumers and Providers of context information, and they all pro-

vide services for each other. They can interact directly, but as systems get bigger and more

complex, a brokering component is required.

A Broker is the mediator for the data exchanged by Providers and Consumers. An

advantage of using a Broker instead of direct communication between the two other parts is that,

one part can send only one message to the Broker, and then the Broker sends this information

to many other parts, instead of the first part sending it to each other part. It allows the parts to

be very simple systems, that won’t need to support multiple connections, e.g. sensors that don’t

have a complex communication system, and can’t handle many connections, they are connected

only to a Broker and the Broker is responsible of handling many connections to other parts of

the system. A Broker application pattern, as seen on Figure 2.1, is based on a 1-to-N topology

that separates distribution rules from the applications. It allows a single interaction from the

source application to be distributed to multiple target applications concurrently, reducing the

proliferation of point-to-point connections (ARSANJANI, 2004).

In such a way, a Context Broker is essential to the well-behavior of a large context-aware

system.

15

Figure 2.1 – Broker application pattern

2.1.3 How to represent Context

Context-aware applications deal with the who’s, where’s, when’s and what’s (the activ-

ities that are occurring) of entities, and interpret this information to define why a situation is

occurring. Then, the designer of the application must decide what to do with the information.

Once we have the information available, either through automated sensors or through user’s

interference, we need to represent it in a way a machine can process and store it (DEY, 2000).

Context can be modeled in many ways, the most relevant options being: key-value,

markup scheme, graphical, object oriented, logic based and ontology based models (BAL-

DAUF; DUSTDAR; ROSENBERG, 2007). As this work is developed following the same core

as (CRIPPA, 2010), it uses the same context representation model: a markup scheme varia-

tion, ContextML (KNAPPMEYER et al., 2010). The network nature of the messages (HTTP

messages, in this case) facilitates textual, non graphic model.

2.1.4 ContextML

ContextML is an XML-based representation schema for context information, where it

is categorized into scopes and related to different types of entities. It is designed to be used

with REST-based communication between the framework components (KNAPPMEYER et al.,

2010). It was created within a project called C-CAST (Context Casting) (ICTGROUP, 2015), a

collaborative work of many companies, research centers and universities, and its main objective

is to evolve mobile multimedia multicasting to exploit the increasing integration of mobile

devices with our everyday physical world and environment (CRIPPA, 2010). The architecture

of the system presented in this work is based on the architecture of the C-CAST Project.

The system consists on three core components: Context Provider, Context Consumer

and Context Broker. They use an idea of entity and scope to represent context information, and

communicate through particular types of ContextML messages. Basic definitions of all these

16

components are given below (KNAPPMEYER et al., 2010).

2.1.4.1 Context Provider

A Context Provider (CxP) provides context information of a certain type, e.g. weather,

location, activity, etc. It gathers data from sensors, network, user interactions, or other sources.

A CxP is specialized in a specific domain of context information (location, weather etc).

2.1.4.2 Context Consumer

A Context Consumer (CxC) queries for and uses context data, therefore is a context-

aware application. A CxC can retrieve context information asynchronously through a subscrip-

tion method, or by a synchronous method where it requests the Broker for a specific information

or for a particular Provider interface, to query the Provider directly.

2.1.4.3 Context Broker

A Context Broker (CxB) is the central component of the architecture, and is the focus

of this work. It handles and aggregates context information, and is an interface between the

other architecture components. The CxB allows CxCs to subscribe to context information, and

CxPs to provide this information. It also provides a lookup service, where the CxCs can query

the CxB for CxPs that have a particular capability, depending on the CxC’s interest.

2.1.4.4 Entity and Scope

An entity is the subject of interest which context data refers to, and it is composed of two

parts: a type and an identifier. The type refers to the category of the entity: username for human

users, imei for mobile devices, room for a room with sensors, etc. The identifier specifies a

particular item within a set of entities of the same type.

A scope is a set of closely related context parameters. Every context parameter has a

name and belongs to only one scope. The parameters of a scope can only be requested, updated,

provided and stored at the same time (an atomic operation), making the data always consistent.

For example, a scope position has latitude, longitude and accuracy attributes; any operation on

this scope is performed on all these attributes: if the latitude is updated, so is the longitude and

accuracy, what is correct, because otherwise it would not make sense. Entity-scope association

is illustrated in Figure 2.2.

17

A Context Provider (CxP) is a component whose task is to
provide context information of a certain type, e.g. weather,
location, activity, etc. Therefore, a CxP gathers data from a
collection of sensors, network, services (e.g. web services) or
other relevant sources. The CxP can use various filtering,
aggregation and reasoning mechanisms to infer context from
raw sensors, databases or other source data depending on the
type of context it provides. A CxP provides context data only
further to a specific invocation/subscription and is specialized
on a particular context domain (e.g. location, weather etc). A
Context Source (CxS) is a special CxP, only offering an
asynchronous mode of communication. That is, a CxS directly
pushes context to the broker without being queried.

Context Broker (CxB) is the main component of the
architecture. It works as a handler and aggregator of context
related communication and as an interface between architecture
components. Primarily the CxB has to control context flow
among all attached components which it achieves by allowing
CxCs to subscribe to context information and CxPs to deliver
notifications. For facilitating synchronous (on-demand) CxC
context queries, CxB also provides a CxP lookup service and
proxy query service by maintaining entries of context providers
registered with the broker, their communication endpoints, and
their capabilities.

III. CONTEXTML MODEL
ContextML is used in our context provisioning system to

model context information, context subscription/notification
and some control messages as well. The following paragraphs
describe the core elements of ContextML. A XML schema of
the language is also available [10].

A. Fundamentals
1) Entity

In the C-CAST system, every exchange of context data is
associated to a specific entity, which can be a complex group of
more than one entity. An entity is the subject of interest (e.g.
user or group of users), which context data refers to, and it is
composed of two parts: a type and an identifier.

The type refers to the category of entities; exemplar entity
types are username (for human users), imei (for mobile
devices), SIP URI (for SIP accounts), room (for a sensed room)
and group (for groups of other entities e.g. usernames or IMEI
numbers). The entity identifier specifies a particular item in a
set of entities belonging to the same type. Every human user of
C-CAST system could be related to many entities in addition to
the obvious type username, therefore a component that
provides identity resolution is necessary. In the C-CAST
architecture it is performed by the CxB in collaboration with a
User Profile CxP.

2) Scope
Specific context information in ContextML is defined as

scope and is a set of closely related context parameters. Every
context parameter has a name and belongs to only one scope.
Using scope as context exchange unit is very useful because
parameters in that scope are always requested, updated,
provided and stored at the same time; it means that data
creation and update within a scope are always atomic and that
context data in a scope are always consistent. Scopes

themselves can be atomic or aggregated in a union of different
atomic context scopes. In a way, the scope design can be
compared to object oriented modelling where the scope refers
to an object class.

For example, consider scope ‘position’ which refers to the
geographic location of an entity. This scope could be composed
of the attributes latitude, longitude and accuracy and these are
always changed at the same time. Updating the latitude value
without updating longitude, if is changed, is obviously not
correct. Entity-scope association is illustrated in Fig. 1.

V
al

id
ity

: T
2

Entity
- Type
- Identifier

Scope A
Parameter a1
Parameter a2
Parameter a3

Scope B
Parameter b1
Parameter b2

V
al

id
ity

: T
1

Figure 1. Entity scope relationship – an entity can have many context scopes

associated with it, each with its own validity period

B. Context Management Messages
1) Advertisement

A Context Provider registers its capabilities to the broker
by sending an advertisement message which is encoded in
ContextML (cp. Fig. 2). The CxP informs a broker about how
to access it (urlRoot) and what scopes it supports (scopes).
Hence, in a single message several scopes can be registered
simultaneously.

Figure 2. ContextML CxP Advertisement Schema Element

Fig. 3 shows the schema for a single scope. It consists of
the scope name, the url where the scoped context can be
requested from, the types of entities it supports, input context
that is required to query context and dependency on other
scopes (depUrl). The CxB keeps the entries in a lookup table.
It is important to mention that these lookup entries are linked to
an expiry timer. Therefore, a CxP needs to refresh the lookup
entries by periodically invoking keep-alive advertisements.
This mechanism serves also for basic mobility, in case a
component is deployed on a mobile device. If the IP address of
a mobile provider changes, the consecutive advertisement will
automatically fix the connectivity loss. Moreover, the
advertisement procedure enables plug and play behaviour of
the framework. The evolution of context-aware applications
can easily be supported by adding new scopes during runtime -
without having to redesign or restart the system from scratch.

368

Figure 2.2 – Entity and Scope relationship
(KNAPPMEYER et al., 2010)

2.1.4.5 ContextML Messages

Within the architecture of the system, context is registered, updated and queried follow-

ing a set of pre-defined ContextML messages (KNAPPMEYER et al., 2010). The ContextML

message types used in this work and their usage are shown below, as well as a simple example

of each one.

Advertisement Message

An Advertisement Message is used by the Context Provider to register its capabilities to

the broker. It informs the CxP’s access url (urlRoot), what scopes it supports (scopes),

its identifier (id), and optional information about the CxP’s location. An example of a

Advertisement Message can be seen in Figure 2.3.

CxP Lookup Message

When a CxC wants to know where it can find a specific scope, it can query the CxB about

which of the registered Providers has the desired information. The Broker replies with a

ContextML message, describing the Providers that match with the data required by the

CxC. An example can be seen in Figure 2.4.

18

Figure 2.3 – Provider Advertisement example message

Figure 2.4 – Providers Lookup example message

19

ACK Message

Acknowledgement is a control message that confirms the execution of various manage-

ment actions (e.g. advertisement, context update). Each ACK message contains the status

of the operation, the HTTP response code, and the identification of the method it corre-

sponds. It also has optional fields to inform scope and entity information. An example is

shown in Figure 2.5.

Figure 2.5 – ACK and NACK example messages

Context Representation Message

This is the form of representing context data in the architecture. When a Consumer re-

quests or subscribes to a context scope, it receives a ContextML message with the ele-

ment ctxEl, when the information queried is available. ctxEl contains information of the

provider that has the context queried (contextProvider), the entity and scope it is related

to, and the context data in the dataPart element. par, parS and parA are constructors to

store name-value pairs and attribute collections (structs and arrays) respectively. Every

context information that is exchanged is tagged with a timestamp (time of its generation)

and an expiration time expires (validity of the context information), after which the infor-

mation is considered invalid. An example of a Context Representation Message is shown

in Figure 2.6.

20

Figure 2.6 – Context Element example messages (update)

2.1.5 Overview of Context Data representantion

In Figure 2.7 an overview of how context data is represented in the system is shown.

Each element is tied by entity ID, entity type and scope. Each one belongs to only one provider,

and has timestamp, expiration date and location information. It can store as many pairs of name

and value as it needs, e.g. a location data has pairs of latitude, longitude and accuracy values.

Figure 2.7 – Context Data representation

2.2 Dependability

The dependability of a system is the ability to avoid service failures that are more fre-

quent and more severe than is acceptable (AVIŽIENIS et al., 2004), i.e., failures will eventually

happen, and the system will try to avoid them compromising the correctness of the service.

Dependability is an integrating concept that encompasses the following attributes (AVIŽIENIS

et al., 2004):

21

• Availability: readiness for correct service

• Reliability: continuity of correct service

• Safety: absence of catastrophic consequences on the user(s) and the environment

• Integrity: absence of improper system alterations

• Maintainability: ability to undergo modifications and repairs

2.2.1 Fault Tolerance

Many means can be developed to attain the various attributes of dependability and secu-

rity. Those means can be grouped into four major categories (AVIŽIENIS et al., 2004):

• Fault Prevention: means to prevent the occurrence or introduction of faults

• Fault Tolerance: means to avoid service failures in the presence of faults

• Fault Removal: means to reduce the number and severity of faults

• Fault Forecasting: means to estimate the present number, the future incidence, and the

likely consequences of faults

Fault prevention and fault tolerance aim to provide the ability to deliver a service that

can be trusted. This work focuses on fault tolerance, which is aimed at failure avoidance, and

is carried out via error detection and system recovery.

2.2.2 High Availability

Looking at the dependability attributes described on the previous section, availability is

the one this work proposes as an addition to a Context Broker system.

Any loss of service, whether planned or unplanned, is known as an outage. Downtime

is the duration of an outage measured in units of time (e.g. minutes or hours) (WEYGANT,

2001).

A system is expected to be highly available when life, health and well-being, including

the economic well-being of a company, depend on it. But even the most highly available ser-

vices often face outages. In these cases, the expected action is that the service gets completely

restored as quickly as possible, with all its capabilities ready to operate.

Availability is measured from the user’s point of view. A system is available if the user

can use the application he needs (PIEDAD; HAWKINS, 2008).

22

Availability is important for systems that require that its services are available for clients

for most part of its lifetime, e.g. a web commerce system should not have an extended down-

time, as money is lost on possible transactions; or a financial institution, that needs to be able

to transfer funds at any time of the day, seven days a week. Some systems may also require a

different approach to high availability: a window of service, for example a system that needs to

be up for the entire daylight-hours, and can go under maintenance at night, reserving this time

to some recovery for example, in case of an outage.

One example of use of a highly available Broker is one that receives temperature values

from sensors distributed on a building, concerning fire prevention. It is important that the Broker

system is always available, as the information it stores is crucial. Another example is a Broker

that stores position information from sensors on a mountain that presents mudslide danger, and

handles this data with the purpose of preventing this catastrophe.

High availability solutions are based on system component redundancy. If a component

fails, the system is able to continue to operate using a redundant component (ENGELMANN;

SCOTT, 2005). When looking for a highly available system, many solutions exist, involving

replication and redundancy (ORACLE, 2015b), clustering (ORACLE, 2015a), etc.

However, when designing a highly available system, some problems may arise. Single

point of failure (ENGELMANN; SCOTT, 2005), membership problem (CRISTIAN, 1991),

split-brain (BARRERA et al., 1998), agreement on distributed transactions (GUERRAOUI,

2002), among others, are well-known and documented problems. Whoever is responsible for

the design of the system must take action on avoiding these, to reach an optimal solution.

2.2.3 High Availability on Clusters

This work uses ideas from highly available Cluster systems to structure the highly avail-

able Broker system. For that, basic definitions needed to provide the complete understanding of

the system are presented.

2.2.3.1 Cluster goals

A cluster is a collection of computer nodes that work together to provide a much more

powerful system. To be effective, the cluster must be as easy to program and manage as a single

large computer. Clusters have the advantage that they can grow much larger than the largest

single node, they can tolerate node failures and continue to offer service, and they can be built

23

from inexpensive components (BARRERA et al., 1998).

Some general goals of a Cluster (BARRERA et al., 1998):

Commodity: a cluster runs on a collection of off-the-shelf computer nodes interconnected by a

generic network

Scaling capability: adding applications, nodes, peripherals, and network interconnects is pos-

sible without interrupting the availability of the services at the cluster

Transparency: a cluster presents itself as a single system to clients outside the cluster. Client

applications interact with the cluster as if it were a single high-performance, highly reli-

able server. The clients as such, are not affected by interaction with the cluster and do not

need modification

Failure control: ability to detect failures of the hardware and software resources it manages

We can use abstractions of nodes and resources in clusters, as nodes communicate via

messages over network interconnects, and use communication timeouts to detect node failures;

and a resource represents certain functionality offered at a node (BARRERA et al., 1998).

In short, a Highly Available Cluster consists of multiple machines interconnected by a

common bus (AZAGURY et al., 1994).

2.2.3.2 Nonblocking protocols

Protocols that allow operational sites to continue transaction processing even though site

failures have occurred are called nonblocking (SKEEN, 1981).

Crash recovery algorithms are based on the notion that certain basic operations on the

data are logically indivisible. These operations can be seen as atomic actions.

The processing of a single atomic action is viewed as follows. At some time during its

execution, a commit point is reached-where the site decides to commit or to abort the atomic

action. A commit is an unconditional guarantee to execute the atomic action to completion,

even in the event of multiple failures. Similarly, an abort is an unconditional guarantee to ”back

out” the atomic action so that none of its results persist. If a failure occurs before the commit

point is reached, then immediately the site will abort the atomic action (SKEEN, 1981).

One can find a wide variety of nonblocking protocols, e.g. two-phase (prepare and

commit), three-phase (prepare, pre-commit, commit) protocols (SKEEN, 1981). This work

uses as inspiration a three-phase commit protocol variation shown in (GUERRAOUI, 2002).

24

3 DESIGN AND IMPLEMENTATION

In this chapter the developed regular Broker solution is presented. The tools used in

the development phase, the interfaces by which the system interacts with the clients, and an

UML representation of the Use Cases, for a better understanding of the system workflow, are

presented.

3.1 Design and Implementation of the Context Broker

This work first implements a regular Context Broker, with no fault tolerance resources.

Then, it proposes a strategy to give the Broker high availability function.

3.1.1 Platform Choice

The programming language chosen for the development of this work was Python.

The system was implemented over a stateless HTTP REST (Representational State

Transfer) Interface. (JAKL, 2005). For the RESTful implementation, Python Flask framework

was used (FLASK, 2015). For the created web interfaces, Bootstrap was used (TWITTER,

2015) .

For data persistence, MongoDB was used.

3.1.1.1 Python, PyCharm and GitHub

Python is a powerful and easy to learn modern programming language (PYTHON,

2015). It was chosen because it represents a challenge, and to show that the system is inde-

pendent of the programmed language, i.e., different applications can interact with each other in

the architecture, regardless the programming language they were developed on; what matters

is the content of the messages exchanged. The PyCharm Python IDE was used as the devel-

opment environment (JETBRAINS, 2015), along with GitHub for version control (GITHUB,

2015).

25

3.1.1.2 Flask

Flask is a web application framework for Python. It is very light and easy to use. It

provides RESTful request dispatching, as it is used in this work (FLASK, 2015).

3.1.1.3 MongoDB

MongoDB is a document-oriented database, classified as NoSQL. It uses a key-document

data storage model, where a document can be a complex data structure. Documents can contain

many different key-value pairs, or even nested documents. MongoDB is a free and open-source

software (MONGODB, 2015).

3.1.2 System Architecture

In Figure 3.1 an overall diagram of the system is illustrated. Each node is a component

of the system, and the arrows represent the interactions between them.

Figure 3.1 – Architecture diagram

3.1.3 Data Collections

As this work uses MongoDB to store data, the representation of Collections is used.

Each Collection stores data in pair-value structure. As seen on Figure 3.2, the associations are

made storing an entire object from a Collection inside another; this is made so it is easier to

collect details about an associated element from another one.

26

Figure 3.2 – Collections diagram

3.1.4 Broker Interfaces

The Context Broker implements several interfaces for communication with the other

system components. This section presents each interface and the way they were implemented:

what they expect as input (HTTP request from Consumer or Provider), the action they perform,

and what they provide as output (response to the Consumer or Provider).

3.1.4.1 Advertisement (/advertisement)

Input: an Advertisement ContextML message, with Provider information, sent from the Provider

Action: registers the Provider within the Broker

Output: responds the Provider with a ACK or NACK ContextML message, informing success

or error, with the corresponding error message

3.1.4.2 Update (/update)

Input: a ctxEl ContextML Message, with context information to be registered in the Broker,

sent from the Provider

Action: registers in the Registry Table the context information, with its contextProvider, scope

and entity information, timestamp and expiration date (expires) of the information. It also

checks if a Subscription exists for the updated information, sending it to the Consumer

callbackUrl, when applied

Output: responds the Provider with a ACK or NACK ContextML message, informing success

or error, with the corresponding error message

27

3.1.4.3 Get Providers (/getProviders)

Input: scope (mandatory) and entity type (optional) arguments in the URL, sent from the Con-

sumer

Action: looks for registered Providers that provide information matching the arguments given

Output: responds the Consumer with Providers Lookup ContextML message, containing a list

of the providers that match the requested arguments

3.1.4.4 Get Context (/getContext)

Input: arguments scope and entity in the URL, sent from the Consumer

Action: looks for the most up-to-date Context information in the registry that matches the entity

and scope received

Output: responds the Consumer with a ctxEls ContextML message, containing the , or with a

NACK ContextML message, informing the error

* As seen in Figure 3.1, there can also exist a direct GetContext request from the Consumer

to the Provider, thus not involving the Broker. This can be done by the Consumer asking the

Broker for a providers list regarding a certain scope, and then asking a Provider directly for the

desired context information.

3.1.4.5 Subscribe (/subscribe)

Input: arguments as follows callbackUrl, with the URL to where the Broker sends the content

it is subscribed to; scope and entity, with corresponding information the consumer wants

to subscribe to; and minutes, with the amount of time, in minutes, that the subscription is

valid, sent from the Consumer

Action: registers the subscription

Output: responds the Provider with a ACK or NACK ContextML message, informing success

or error, with the corresponding error message

* It is the Broker’s responsibility to control the lifetime of a Subscription, based on the minutes

argument received.

28

3.2 UML representation

The interactions between the clients (Consumers and Providers) and the server (Broker)

will be presented using the Unified Modeling Language, UML (OMG, 2015).

3.2.1 Use Case Requirements

To present the Use Cases, a list of requirements is provided below. These requirements

are adapted from a previous work (CRIPPA, 2010), to the functions of this work.

1. Register of Context Providers

(a) Receive Advertisement message

(b) Register CxP on Providers Table

2. Context Providers Lookup

(a) Receive Providers Lookup request (GetProviders)

(b) Answer with requested Providers data

3. Subscribe Context Consumer to data

(a) Receive Subscription request

(b) Register Subscription on Subscriptions table

4. Context data interactions

(a) Receive Context data from a Context Provider (Update)

(b) Send Context data to subscribed Consumers

(c) Receive Context data request from a Context Consumer (GetContext) and respond

Both Lookup and Register of Context Providers services make the Broker aware of

the existence of Context Providers in the network.

The rest of the requirements deal with context data provision and querying, by Providers

and Consumers. The Providers see the Broker as the component where they send their context

information, so Consumers can find and interpret it. The Consumers see the Broker as the

centralized point from where they can get up-to-date context data.

29

3.2.2 Use Cases

When a request from outside the system is received, the behavior is described in a Use

Case (BITTNER, 2002). In this work, the actors are the Context Broker, the Context Provider

and the Context Consumer. The following list presents the use cases in the system. For the sake

of brevity, the word Context will be omitted when referring to the actors.

3.2.2.1 Registration of Providers

Name: Register Provider

Actor(s): Provider, Broker

Objective: Register Provider from an Advertisement ContextML message received from it

Description: Validates the ContextML message against the ContextML schema, then registers

the Provider and its capabilities (e.g. scopes and entity types it covers) in the Broker

Type: Primary and Essential

References: Requirements 1.a, 1.b

Sequence of Events:

1. Provider sends a POST HTTP message containing an Advertisement ContextML

message to the /advertisement interface of the Broker

2. The Broker receives and validates the message

• If not valid, the Broker sends a NACK ContextML message to the Provider

• If valid, the Broker registers the Provider if new, or updates its information if

already existent. If there is an error during the process, a NACK ContextML

message is sent to the Provider.

3. The Broker sends an ACK ContextML message to the Provider, the registration was

successful

3.2.2.2 Provider Lookup service

Name: Receive Provider Lookup request

Actor(s): Consumer, Broker

Objective: Receive, validate and find Providers that match the arguments received from the

Consumer, then respond to the Consumer a list of Context Providers that match the infor-

30

mation requested (scopeand entity type)

Description: The Broker is the only component of the system that has information about all

the Providers, thus if a Consumer wants to know where to find a specific information

(matching a particular scope or entity), it must ask the Broker for a list of Providers that

provide this information. The Broker creates a Providers Lookup ContextML message

with the information of the Providers that match the search criteria, and sends it to the

Consumer

Type: Primary and Essential

References: Requirement 2.a

Sequence of Events:

1. Consumer sends a GET HTTP message to the Broker’s /getProviders interface, with

scope and entity type arguments in the URL.

2. The Broker validates the arguments: the scope argument is mandatory, while the

entity is optional

• If the scope argument is blank, the Brokers responds to the Consumer with a

NACK ContextML message, informing the Bad Parameter error, in the error

message

• If the scope is valid, the Broker searches at its internal information for the

Providers that match the requested scope and entity type

3. The Broker creates the Providers Lookup ContextML message with the desired

Providers. If no Providers match the search criteria, a NACK ContextML message

is created, informing No results found in the error message

4. The resulting message is sent to the Consumer

3.2.2.3 Subscribe Consumer to data

Name: Register Subscription from Consumer

Actor(s): Consumer, Broker

Objective: Register a Subscription made by a Consumer, to a certain entity id, entity type and

scope combination

Description: The Subscription system provided by the Broker is a way of a Consumer to receive

any new context information as soon as it is received by the Broker, within a given entity

and scope combination. The Subscription is valid for a certain amount of time, defined

31

by the Consumer. The Consumer also informs the Broker a callback URL, to where the

Broker sends the new context information the Consumer is subscribed to.

Type: Primary and Essential

References: Requirements 3.a, 3.b

Sequence of Events:

1. The Consumer sends a POST HTTP message to the /subscribe interface of the Bro-

ker, with entity, scopeList, callbackUrl and minutes arguments in the URL

2. The arguments are validated,

• If any is blank or the minutes value is less than one (1), a NACK ContextML

message is sent to the Consumer

• If all arguments are valid, the Broker checks if the information given in the

arguments exists within the Broker. If not, a NACK ContextML message is

sent to the Consumer

3. The Subscription is registered in the Subscriptions table in the Broker

4. A timer is started for the subscription

5. An ACK ContextML message is sent to the Consumer, the Subscription was suc-

cessful

Name: Check if Subscription expired

Actor(s): Broker

Objective: Check if timer to a Subscription runs out

Description: When the Subscription is registered, it has a minutes argument that states for how

long this Subscription is valid. When this time runs out, the Subscription is removed.

Type: Primary and Essential

References: Requirement 3.b

Sequence of Events:

1. The timer related to a Subscription runs out

2. The Broker initiates the removal of the Subscription

3. The Subscription is removed from the Subscriptions table

3.2.2.4 Context data interactions

Name: Receive Update message from Provider

32

Actor(s): Provider, Broker

Objective: Receive and store context data sent from a Provider

Description: New context data is sent from the Provider to the Broker. The Broker must store

it, and check if there’s any Subscription related to the data stored, sending the data if a

Subscription exists.

Type: Primary and Essential

References: Requirement 4.a

Sequence of Events:

1. Provider sends a POST HTTP message to the /update interface of the Broker, con-

taining a Context Element ContextML message with the context data information

2. The Broker validates the message agains the ContextML schema

• If the message fails the validation, a NACK ContextML message is sent to the

Provider

• If it validates, the Broker checks if the Provider is registered and if the scope

receiving data is valid.

• If the Provider is not registered or the scope is invalid, the Broker sends a

NACK ContextML message to the Provider

• If the information is valid, the Broker sees if the entity id and entity type

already exist; if not, they are created

3. The data is registered in the Broker, with its timestamp and expiration time. If there

had already information about this entity and scope, that is considered deprecated

and this is the newest data

4. The Send context data to subscribed Consumer use case is initiated

Name: Send context data to subscribed Consumer

Actor(s): Broker, Consumer

Objective: Check if any Subscription is related to the just updated context data, and send this

data to a Consumer that is subscribed

Description: After registering the new context data, the Broker looks at the Subscriptions table

for a Subscription related to the entity id, entity type and scope of the new data. If it

exists, the Broker sends the same Context Element ContextML message to the Consumer

in the Subscription.

33

Type: Primary and Essential

References: Requirement 4.b

Sequence of Events:

1. The Broker checks the Subscriptions table, trying to match the entity id, entity type

and scope of the context data just registered

2. If no Subscription is found, the Broker sends an ACK ContextML message to the

Provider after the update

3. If a Subscription is found, the Broker sends the same Context Element ContextML

message it received from the Provider to the subscribed Consumer

4. Then the Broker sends an ACK ContextML message to the Provider after the update

Name: Receive context request from Consumer

Actor(s): Consumer, Broker

Objective: Receive a request for context data

Description: A Consumer can ask specific context data to the Broker, defining a list of scopes

and an entity it wants the last information about

Type: Primary and Essential

References: Requirement 4.c

Sequence of Events:

1. The Consumer sends a GET HTTP message to the /getContext interface of the Bro-

ker, with scopeList and entity arguments in the URL

2. The Broker validates the arguments, checking if the entity and scopes requested

exist in the registered data

3. If the arguments are valid, the Broker sends an ACK ContextML message to the

Consumer

4. If not, the Broker makes an extra effort, as the Request Provider for context data not

found in the Broker use case begins

Name: Request Provider for context data not found in the Broker

Actor(s): Provider, Broker

Objective: Having not found requested data in the Broker, it asks the Provider for this data

Description: The Broker finds the Provider responsible for the information requested, based on

the scopeList and entity arguments, and sends it a request for the information

34

Figure 3.3 – Overview of the Use Cases

Figure 3.4 – Register Provider Use Case detail

Type: Primary and Essential

References: Requirement 4.c

Sequence of Events:

1. The Broker sends to the Provider the same context data request it received from the

Consumer

2. If the Provider responds with context data, the Broker sends it to the Consumer

3. If the Provider responds with no data found, the Broker sends a NACK ContextML

message to the Consumer, informing that no data was found

3.2.3 Use Cases Diagrams

A Use Case Diagram presents a good view of the actors and actions of the system. For

the sake of clarity, in Figure 3.3 an overview of the use cases is presented. More detailed

diagrams of the modules can be seen on Figure 3.4, Figure 3.5, Figure 3.6 and Figure 3.7

35

Figure 3.5 – Provider Lookup Use Case detail

Figure 3.6 – Subscribe Use Case detail

Figure 3.7 – Context data interactions Use Case detail

36

3.2.4 Sequence Diagram

In Figure 3.8, a diagram illustrating an example of the system workflow is presented. In

this execution, a Provider first registers itself on the Broker, then a Consumer subscribes for the

Provider’s context data, and when the Provider sends new data to the Broker (via an update), the

Broker forwards this data to the subscribed Consumer. The Consumer also queries information

to the Broker that it doesn’t have, so the Broker asks the Provider for the information and then

answers the Consumer with the data the Provider sent to it.

Figure 3.8 – Sequence diagram

37

3.3 Proposition of High Availability Technique

The objective here is to design a system of Brokers that present high availability be-

havior. The idea proposed here is inspired by concepts explained on Section 2.2, aiming at a

cluster-like behavior from the Broker system. For the sake of brevity, both Provider and Con-

sumer will be referred to as client.

3.3.1 Requirements

As availability is measured from the user’s point of view, some basic requirements for a

highly available Context Broker are described below:

• Clients should always be able to query data from the Broker

• Clients should always be able to insert data to the Broker

• Context data should always be consistent, i.e., different interfaces should provide the

exact same information

• Every request made by a client should be answered, either by the same Broker it sent the

request or by another one in the case of a failure of the first

3.3.2 Design

Following the requirements on the previous section, the idea is to use a Symetric Ac-

tive/Active redundancy technique, having multiple redundant active components, with the data

collection state actively replicated among them, using commit protocols. Data collection state is

shared in form of a global state. This provides continuous availability without any interruption

and without wasting resources (ENGELMANN; SCOTT, 2005).

The Broker System, illustrated at Figure 3.9, is composed of a predefined number of

Brokers, each one with its own IP address, running independently from the others, connected

on a local network. They can be accessed at the same time from different clients. The clients

should have a list of the IPs from the Broker system. Each Broker may have an interface to

which a client can query the addresses of the other Brokers in the same system, but the clients

must know at least one of the Brokers, there is no discovery method. If a Broker fails during a

request, a client won’t be able to reach it, and then will try the next Broker address.

38

Figure 3.9 – Broker System for High Availability

All the Brokers present the same data collection, with strong consistency (VOGELS,

2009).

3.3.3 Proposed Protocol

There are two types of operations a request from a client can inflict in the data collection

of the Broker system: select and insert.

When the operation is a select, there’s no need to worry about the consistency of the

data collection, as no changes are made to it. However, on an insert, the Broker system must

guarantee the consistency of the global data collection state. This is done through a three-phase

commit protocol inspired by (GUERRAOUI, 2002).

In the first phase (prepare), the Broker that received the requests sends a broadcast

message with the request, and waits until everyone has sent an ACK message to another. The

second phase (pre-commit) is where all the Brokers communicate to each other that they are

ready to commit, i.e., ready to insert the new value in the data collection. All the Brokers wait

for the ACK messages from every one. The third phase (commit) is where all the Brokers

make the insertion in the data collection, and finally after the Broker that received the request

responds its client, it broadcasts a message informing everyone that the request was completed.

If a single ACK message is not received in any part of the cycle, it means one of the Brokers

is down. If it is the Broker that received the request, one of the remaining ones should respond

the client. The decision of which Broker responds the client falls under an election problem, a

simple solution would be giving a order of priority for replacement scenarios, but the study of

a more complex solution is suggested as future work. This ensures that the client is answered

39

even if the Broker to whom the request was made goes down. The operation is not aborted,

unless all the Brokers are down.

For the select operations, a similar idea is used, differing only in the case that there

are only two phases: prepare and select. The prepare phase is the same as with the insert

operations, all the Brokers communicate that they all have received a copy of the request; when

they all confirm that received it using ACK messages, the second phase (select) begins. All

the Brokers make the select operation on its own data collection. The Broker that received the

request then responds the client and broadcasts to all the others a message informing that the

request was a success, while these others don’t respond the client, but wait for the confirmation

that the first one did it. If any of these confirmation messages fail, the remaining Brokers will

notice which Broker failed and, if it was the one that received the original request, one of the

remaining Brokers responds the client, using the data it had already selected from the data

collection.

In Figure 3.10 the behavior of a Broker given a particular request is illustrated using a

state diagram. The following notation is used: roi stands for the request-original’s initial state,

i.e. the Broker that received the request, and bi represents the initial state of the remaining

Brokers. They may have different initial states, but they act the same way from the second

state on. p, pc and c stand for the prepare, pre-commit and commit phases, respectively. The

commit action can be interpreted as either insert or select atomic operation on each Broker’s

data collection.

The time-out value of the messages between the Brokers is an important decision: a large

value is better for avoiding false-suspicions, while a small one is better for a quicker response

to failures; one can use even a dynamic time-out value, that grows until it reaches a decision

(GUERRAOUI, 2002). It is up to the system designer to define an optimal time-out value.

This proposed protocols is to be used for single-failure scenarios. A solution for a bigger

amount of failures depends on solving the election problem when one Broker fails. Also, given

the failure of a Broker, it must pass through a recovering state when restarted. A recovering

mechanism for the highly available Broker system is suggested as future work.

A common problem in this kind of approach is the insertion order when two clients try to

insert values regarding the same data at the same time, not leaving enough time for the message

exchanges to complete. However, it is not possible in this system due to the way Context is

structured. The order of insertion is defined by the client. It is not possible that two clients

try to insert values regarding the same Context data at the same time, as each Context Provider

40

Figure 3.10 – State Diagram for proposed protocol

provides its own data, which does not interfere with other Providers data. The same applies to

Consumers.

41

4 PROTOTYPE EVALUATION

In this work, the Context Broker was implemented. A Broker management interface

was created, it is shown in Figure 4.1. For testing this implementation, both a Provider and a

Consumer interfaces were created, respectively illustrated on Figure 4.2 and Figure 4.3.

Figure 4.1 – Broker Interface

Figure 4.2 – Provider Interface

42

Figure 4.3 – Consumer Interface

The Broker management interface allows a system manager to see the Providers regis-

tered in the Broker, shown in Figure 4.5, as well as the context information they have updated

to it (Figure 4.7). The manager also has access to the Subscriptions made by Consumers and

the log of the Broker system, shown on Figure 4.6 and Figure 4.4 respectively.

Figure 4.4 – Broker Log

43

The results of single operations on each interface of the Broker, performed using the

shown Provider and Consumer interfaces, are also illustrated. This was done for demonstration

of the correct functioning of the Broker: a Provider was registered, made an update and a Con-

sumer makes a subscription and queried the Broker for information the Provider had inserted.

These operations created table entries on the Broker, which can be seen on Figures 4.5, 4.6 and

4.7.

Figure 4.5 – Providers Table

Figure 4.6 – Subscriptions Table

Figure 4.7 – Registry Table - Context Information

The evaluation performed was simple, regarding only the correct functionality of the

Context Broker. The tests should confirm that the Broker operates correctly, without major

response delays, and for a considerate amount of time without errors. The correct operation of

a Broker consists on it storing and providing Context Data as it is demanded, given well-formed

messages from Consumers and Providers.

For the tests, two Context Providers were created, periodically providing location con-

text data, and two Consumers were created, querying the Broker and subscribing for data as

well.

44

The tests results were successful. They were performed on a computer with a Intel(R)

Core(TM) i7-3517U CPU @ 1.90GHz processor, 4GB of memory and Fedora release 20 Linux

operating system. The Broker was able to manage the requests and the data without major

delays, with an average response time of 80ms.

45

5 CONCLUSION

This work introduces context and context-awareness concepts, for a better understanding

of context-aware computing and how it is used. Concepts of Dependability and High Availabil-

ity were also presented, to demonstrate how these are important in research and applicability.

Cluster-like systems behavior was part of the inspiration to find a design for the highly available

Context Broker. The implementation of the Broker was presented, as its interfaces and UML

use cases description, for a better understanding of the functionality of the system. Simple tests

were made, only to certify the well operating of the Context Broker. In addition of that, a proto-

col for integrating high availability to the Context Broker was proposed. This protocol is based

on existing nonblocking commit protocols, and given the description of it, is not very difficult

to prototype.

The goals of this work were successfully achieved. A Context Broker was developed

following a previous definition, but with a different programming language (Python) and data

storage mechanism (MongoDB). A different approach from (CRIPPA, 2010), but resulting in

the same system from the client’s (Providers and Consumers) point of view. The proposed

protocol was derived from existing solutions, giving it some basis on its viability. A prototype

for high availability is the natural next step.

5.1 Future Work

This work initiates a study on the development of a Dependable Broker, and naturally

some future work is proposed.

Prototype for the proposed solution: development of a prototype that implements the idea

presented in this work and confirms its viability, as well as looking for an optimal time-

out value for the messages between Brokers

Election of Broker: study of solutions to the election of a Broker to respond the request for

another Broker that has failed, using or adapting existing protocols, for a better fit in the

Broker system

Recovery algorithms: study of recovery algorithms, and how to implement them on the cur-

rent Broker system

Security concerns: use of HTTPS protocols, authentication method between Provider and

Consumer through the Broker, types of data: public and private, requiring some kind

46

of authentication for a Consumer to access this information

Scaling capability: make possible the addition and removal of Brokers to the Broker system,

without the need to stop or restart it, dealing with membership and consensus problems

Selective High Availability: define classes of context data, regarding the need of high avail-

ability of those, making some type of data, e.g. location information with small time

separation, not always highly available, what can spare some message exchanging, mak-

ing the system faster

Dependability: try to attend other Dependability characteristics, e.g. safety and correctness of

service

47

REFERENCES

ARSANJANI, A. Service-oriented modeling and architecture. IBM developer works, p. 1–15,
2004.

AVIŽIENIS, A. et al. Basic concepts and taxonomy of dependable and secure computing.
Dependable and Secure Computing, IEEE Transactions on, IEEE, v. 1, n. 1, p. 11–33,
2004.

AZAGURY, A. et al. Highly available cluster: A case study. In: IEEE. Fault-Tolerant
Computing, 1994. FTCS-24. Digest of Papers., Twenty-Fourth International Symposium
on. [S.l.], 1994. p. 404–413.

BALDAUF, M.; DUSTDAR, S.; ROSENBERG, F. A survey on context-aware systems.
International Journal of Ad Hoc and Ubiquitous Computing, Inderscience Publishers, v. 2,
n. 4, p. 263–277, 2007.

BARRERA, J. et al. The design and architecture of the microsoft cluster service. In: IEEE.
[S.l.], 1998. p. 422–431.

BITTNER, K. Use case modeling. [S.l.]: Addison-Wesley Longman Publishing Co., Inc.,
2002.

BROWN, P. J. The stick-e document: a framework for creating context-aware applications.
ELECTRONIC PUBLISHING-CHICHESTER-, Citeseer, v. 8, p. 259–272, 1995.

BROWN, P. J.; BOVEY, J. D.; CHEN, X. Context-aware applications: from the laboratory to
the marketplace. Personal Communications, IEEE, IEEE, v. 4, n. 5, p. 58–64, 1997.

COOPERSTOCK, J. R. et al. Evolution of a reactive environment. In: ACM
PRESS/ADDISON-WESLEY PUBLISHING CO. Proceedings of the SIGCHI con-
ference on Human factors in computing systems. [S.l.], 1995. p. 170–177.

CRIPPA, M. R. Design and implementation of a broker for a service-oriented context
management and distribution architecture. 2010.

CRISTIAN, F. Reaching agreement on processor-group membrship in synchronous distributed
systems. Distributed Computing, Springer, v. 4, n. 4, p. 175–187, 1991.

DEY, A. K. Providing architectural support for building context-aware applications. Tese
(Doutorado) — Georgia Institute of Technology, 2000.

ELROD, S. et al. Responsive office environments. Communications of the ACM, ACM,
v. 36, n. 7, p. 84–85, 1993.

ENGELMANN, C.; SCOTT, S. L. Concepts for high availability in scientific high-end
computing. In: Proceedings of High Availability and Performance Workshop (HAPCW).
[S.l.: s.n.], 2005.

FICKAS, S.; KORTUEM, G.; SEGALL, Z. Software organization for dynamic and adaptable
wearable systems. In: IEEE. Wearable Computers, 1997. Digest of Papers., First
International Symposium on. [S.l.], 1997. p. 56–63.

48

FLASK. Flask (A Python Microframework). 2015. Available at: <http://flask.pocoo.org>.
Visited on July 2015.

FRANKLIN, D.; FLASCHBART, J. All gadget and no representation makes jack a dull
environment. In: Proceedings of the AAAI 1998 Spring Symposium on Intelligent
Environments. [S.l.: s.n.], 1998. p. 155–160.

GITHUB. GitHub. 2015. Available at: <https://github.com>. Visited on July 2015.

GUERRAOUI, R. Non-blocking atomic commit in asynchronous distributed systems with
failure detectors. Distributed Computing, Springer, v. 15, n. 1, p. 17–25, 2002.

HULL, R.; NEAVES, P.; BEDFORD-ROBERTS, J. Towards situated computing. In: IEEE.
Wearable Computers, 1997. Digest of Papers., First International Symposium on. [S.l.],
1997. p. 146–153.

ICTGROUP. Project Context Casting. 2015. Available at: <http://www.ict-ccast.eu/>.
Visited on July 2015.

JAKL, M. Representational State Transfer. [S.l.]: Citeseer, 2005.

JETBRAINS. PyCharm - A Python IDE. 2015. Available at:
<https://www.jetbrains.com/pycharm>. Visited on July 2015.

KIAN, S. L. et al. A federated broker architecture for large scale context dissemination. In:
IEEE. Computer and Information Technology (CIT), 2010 IEEE 10th International
Conference on. [S.l.], 2010. p. 2964–2969.

KNAPPMEYER, M. et al. Contextml: a light-weight context representation and context
management schema. In: IEEE. Wireless Pervasive Computing (ISWPC), 2010 5th IEEE
International Symposium on. [S.l.], 2010. p. 367–372.

MAFFEIS, S.; SCHMIDT, D. C. Constructing reliable distributed communication systems
with corba. Communications Magazine, IEEE, IEEE, v. 35, n. 2, p. 56–60, 1997.

MOLTCHANOV, B. et al. Context management framework and context representation for
mno. In: Workshops at the Twenty-Fifth AAAI Conference on Artificial Intelligence. [S.l.:
s.n.], 2011.

MONGODB. MongoDB. 2015. Available at: <https://www.mongodb.org>. Visited on
July 2015.

NATARAJAN, B. et al. Doors: Towards high-performance fault tolerant corba. In: IEEE.
Distributed Objects and Applications, 2000. Proceedings. DOA’00. International
Symposium on. [S.l.], 2000. p. 39–48.

OMG. UML. 2015. Available at: <http://www.uml.org>. Visited on July 2015.

ORACLE. Using Clustering for High Availability. 2015. Available at:
<http://docs.oracle.com/cd/E19693-01/819-0992/fpcvr/index.html>. Visited on July 2015.

ORACLE. Using Replication and Redundancy for High Availability. 2015. Available at:
<http://docs.oracle.com/cd/E19693-01/819-0992/gaxtb/index.html>. Visited on July 2015.

49

PIEDAD, F.; HAWKINS, M. W. High Availability: Design, Techniques and Processes
(Harris Kern’s Enterprise Computing Institute Series). [S.l.]: Prentice Hall PTR, 2008.

PYTHON. Python Programming Language. 2015. Available at: <http://www.python.org>.
Visited on July 2015.

REKIMOTO, J.; AYATSUKA, Y.; HAYASHI, K. Augment-able reality: Situated
communication through physical and digital spaces. In: IEEE. Wearable Computers, 1998.
Digest of Papers. Second International Symposium on. [S.l.], 1998. p. 68–75.

SCHILIT, B. N.; THEIMER, M. M. Disseminating active map information to mobile hosts.
Network, IEEE, IEEE, v. 8, n. 5, p. 22–32, 1994.

SKEEN, D. Nonblocking commit protocols. In: ACM. Proceedings of the 1981 ACM
SIGMOD international conference on Management of data. [S.l.], 1981. p. 133–142.

TUKL. Institue for Wireless Communication and Navigation. 2015. Available at:
<http://www.eit.uni-kl.de/wicon/home/>. Visited on July 2015.

TWITTER. Bootstrap. 2015. Available at: <http://getbootstrap.com/>. Visited on July 2015.

VOGELS, W. Eventually consistent. Communications of the ACM, ACM, v. 52, n. 1, p.
40–44, 2009.

WEYGANT, P. S. Clusters for High Availability: A Primer of HP Solutions. [S.l.]: Prentice
Hall Professional, 2001.

	Acknowledgements
	Abstract
	Resumo
	List of Figures
	List of Abbreviations and Acronyms
	Contents
	1 Introduction
	2 Definitions
	2.1 Context
	2.1.1 Context-Aware System
	2.1.2 Broker
	2.1.3 How to represent Context
	2.1.4 ContextML
	2.1.4.1 Context Provider
	2.1.4.2 Context Consumer
	2.1.4.3 Context Broker
	2.1.4.4 Entity and Scope
	2.1.4.5 ContextML Messages

	2.1.5 Overview of Context Data representantion

	2.2 Dependability
	2.2.1 Fault Tolerance
	2.2.2 High Availability
	2.2.3 High Availability on Clusters
	2.2.3.1 Cluster goals
	2.2.3.2 Nonblocking protocols

	3 Design and Implementation
	3.1 Design and Implementation of the Context Broker
	3.1.1 Platform Choice
	3.1.1.1 Python, PyCharm and GitHub
	3.1.1.2 Flask
	3.1.1.3 MongoDB

	3.1.2 System Architecture
	3.1.3 Data Collections
	3.1.4 Broker Interfaces
	3.1.4.1 Advertisement (/advertisement)
	3.1.4.2 Update (/update)
	3.1.4.3 Get Providers (/getProviders)
	3.1.4.4 Get Context (/getContext)
	3.1.4.5 Subscribe (/subscribe)

	3.2 UML representation
	3.2.1 Use Case Requirements
	3.2.2 Use Cases
	3.2.2.1 Registration of Providers
	3.2.2.2 Provider Lookup service
	3.2.2.3 Subscribe Consumer to data
	3.2.2.4 Context data interactions

	3.2.3 Use Cases Diagrams
	3.2.4 Sequence Diagram

	3.3 Proposition of High Availability Technique
	3.3.1 Requirements
	3.3.2 Design
	3.3.3 Proposed Protocol

	4 Prototype Evaluation
	5 Conclusion
	5.1 Future Work

	References

