Arthrocentesis techniques applied to arthrogenic temporomandibular joint disorders*

Técnicas de artrocentese aplicadas às disfunções artrogênicas da articulação temporomandibular

Eduardo Grossmann

*Received from the Pain and Orofacial Deformity Center (CENDDOR). Porto Alegre, RS.

SUMMARY

BACKGROUND AND OBJECTIVES: This is a review of different arthrocentesis techniques used for arthrogenic temporomandibular joint (TMJ) disorders, as well as their indications, their possible action mechanisms and complications.

CONTENTS: Studies have been carried out in recent years in the attempt to standardize different arthrocentesis protocols used for temporomandibular joint disorders (TMD), to define when and how to use them. These are minimally invasive and low cost techniques which may be performed under local anesthesia, with or without sedation, in addition to being replicable and having low morbidity. They are indicated to relieve or control pain and arthrogenic disorders.

CONCLUSION: Several arthrocentesis techniques, combined or not with anti-inflammatory, opioids or viscoelastic substances, produce adequate results for arthrogenic TMD, however the therapeutic success depends on disease chronicity, on its clinical and imaging characteristics, on the accurate diagnosis, on patients’ cooperation, on professionals’ experience and on the technique used.

Keywords: Arthrocentesis, Temporomandibular disorders, Temporomandibular joint.

INTRODUCTION

Temporomandibular joint (TMJ) arthrocentesis was introduced approximately 21 years ago1. It is considered by many health professionals as the first line of surgical treatment for patients with temporomandibular disorders (TMD) who do not respond to conservative therapy such as interocclusal devices, physical therapy, drugs, light diet, behavioral and lifestyle changes2-4. This is a minimally invasive procedure5,6, preferably
performed under local2,6,7 or general8 anesthesia, where a fluid, such as saline or lactated Ringer’s solution, and/or anti-inflammatory, opioid, steroid drugs and viscoelastic solution is circulated, with low complication rates. It consists in the lavage of the upper TMJ compartment with one needle, or catheter8-10, two needles1,11-17, or more needles transcutaneously inserted. There may be just one entry needle or one entry and one exit needle18.

This study aimed at reviewing the literature on the application of different arthrocentesis techniques applied to arthrogenic TMJ disorders. Aiming at finding adequate and relevant articles, the following keywords were combined: “arthrocentesis”, “TMJD”, “disc displacement without reduction”, “closed lock”, “limited mouth opening” and “temporomandibular joint arthrocentesis”. The following databases were queried: Pubmed/Medline in the period between 1991 and 2012, supplemented by manual search in Brazilian journals. This research was carried out with humans and was limited to Portuguese and English languages.

INDICATIONS

Arthrocentesis is used for internal TMJ disorders not responding to conservative clinical treatment. It is indicated for patients with anterior disc displacement with and without reduction; for disc adhesions, for early adhesiveness next to the fossa and/or the upper aspect of the articular tubercle, with mouth opening limitation; for cases of synovitis/capsulitis; as palliation for acute degenerative rheumatoid arthritis; patients with painful joint noises occurring during mouth opening and/or closing and for hemorrhosis due to recent trauma, where there is joint aspiration and lavage, which may provide more comfort to patients1,11-16,19-24.

ARTHROCENTESIS TECHNIQUE

With the patient awake, the whole face is cleaned with 2% chlorhexidine solution, aqueous iodophor or similar substance, emphasizing pre-auricular region and ear. Then, the temporal region is isolated with sterile micro-pore at the side where the procedure will be performed. Next, sterile drapes are placed allowing the visualization of the ear, part of the lateral corner of the orbit and of the jaw. We start by blocking the auriculotemporal nerve (ATN) with 2% lidocaine with 1:200000 norepinephrine with a tubet (1.8 mL) followed by posterior deep temporal and masseter nerves anesthesia with one or two tubets, as described by Grossman2. With this, discomfort and/or pressure pain which may occur at the beginning of the joint lavage procedure are prevented. This provides optimal region analgesia, preventing the need for sedation.

A straight line with patent blue and toothpick is drawn close to the skin that goes from the medial portion of the ear tragus to the lateral corner of the eye. In this line, two needle insertion points are marked. The first, more posterior point will be at a distance of 10 mm from the tragus and 2 mm below the cantotragal line. The second point will be 20 mm in front of tragus and 10 mm below this same line1,24,25.

A sterile mouth opener is placed on dental arcades contralateral to the arthrocentesis side to allow jaw head displacement downward and to the front, helping the approach to the posterior recess of upper TMJ compartment. A 30/0.7 or 40/1.2 needle is inserted in the most posterior point, connected to a 5 mL syringe where 1 to 4 mL of 0.9% saline solution (SS) is administered aiming at distending the joint space. Another needle is introduced in the distended compartment, in front of the first needle, connected to a 60 cm solution extensor coupled to a flexible and transparent aspiration rubber, allowing the visualization of the solution, its fluidity as well as orienting the flow of the joint lavage solution. Then, a serum extensor coupled to a 50 mL syringe is connected to the needle.

Extensors have three objectives: help solution injection by the syringe, prevent needles to move from puncture sites and their displacement toward the skin, in addition to speeding the procedure. The amount of SS to remove algogenic substances from the joint space varies from 50 to 500 mL6.

In case of adhesions or few adhesivenesses, it is recommended to obstruct one of the needles, increasing the pressure on syringe plunger while patient performs opening and laterality movements. If they are still limited, the assistant surgeon may perform the same movements aiming at breaking possible adhesions, trying to reestablish mouth opening pattern equal to or above 35 mm; of laterality and protrusive of at least 4 mm25.

SINGLE-NEEDLE TECHNIQUE

A possible suggestion to improve TMJ arthrocentesis tolerability might be the introduction of a modified approach which assures the performance of the single-needle technique (SNT). SNT9 uses the same substances as arthrocentesis (SS or lactated Ringer’s solution) and approaches the posterior recess, that is 10 mm anterior and 2 mm inferior to the tragus line lateral orbit
portion, to inject and aspirate fluids. There are advantages as compared to traditional two-needle arthrocentesis. The first would be faster execution time. The positioning of a single needle may allow safer and more stable access to the joint space, while the positioning of a second needle may interfere with the stability of the first needle. Risks for nervous injuries, such as facial nerve paresis, may be decreased due to lesser intervention trauma, as well as less postoperative pain due to less joint manipulation. SNT uses fluid injection under pressure with the patient with the mouth open to expand the mandibular fossa. After injection, patient is asked to close the mouth and the fluid is removed with this same needle. All this fluid injection and removal process is performed with 10 repetitions (with a total volume of approximately 40 mL). Fluid injection under pressure is useful to break adhesions which are in general responsible for jaw head translation movement limitation, which especially explains phenomena of disc fixation to the mandibular fossa and/or articular tube. This provides immediate mouth opening improvement, so this technique is indicated for hypomobile joints, with strong adhesions, or for joints with degenerative changes which make difficult the insertion of the second needle. Other SNT advantage as compared to conventional arthrocentesis (two needles) is the lower risk of hyaluronic acid (HA) injection leaking to outside the upper compartment, since there is no second needle. So, SNT allows HA to remain totally close to the upper compartment. SNT has shown promising clinical results and future studies should be carried out to compare the findings of this protocol with those of the traditional two-needle technique.

DOUBLE-NEEDLE CANNULA

The double-needle cannula (DNCA) is a technique similar to the others which uses a stainless steel device with two tubes: one irrigation tube and one aspiration tube. The length of the cannula is 80 mm and tube diameters are 1 and 0.5 mm. Trocar diameter is 0.8 mm. The cannula with the trocar is introduced in the upper compartment, using as guide the tragus-external orbital cavity corner line. Then, the trocar is removed from the irrigation tube and a syringe with SS is injected to promote joint lavage. This technique provides lavage with and without pressure, respectively with syringe or SS bag fixed one meter above patient’s face. It is very safe and does not need another puncture to place the additional needle, such as with classic arthrocentesis. It is performed with local anesthesia with volumes of 50 to 500 mL, which allows the lysis of adhesions and joint lavage. Major limitation of this technique is when there are major degenerative changes with decreased joint space and presence of osteophytes.

SHEPARD’S SINGLE-CANNULA

Shepard’s single-cannula (SSCA) also uses a metal device with two cast needles with independent lumens. Both extremities serve for irrigation and aspiration of the joint lavage fluid associated to algogenic substances present in the upper TMJ compartment. It has followed up of more than ten years in more than 100 procedures with no complications.

CONCENTRIC NEEDLES UNIT (CNU)

One needle is inserted in the other close to upper TMJ compartment. The first needle is thinner and approximately 50 mm long and remains inside the other, which is thicker and measures less than 38 mm. The first needle does not obstruct the lumen of the thicker needle allowing the substance to be perfused in the upper joint space to wash the site and leave by the space between needles, reflowing to the skin surface. CNU irrigation allows single TMJ puncture. It is simple, of low cost, virtually atraumatic, with very low risk of nervous injury of facial branches and hemorrhage. It is replicable, uses less local anesthetics and produces mild trans and postoperative discomfort.

After cleaning the TMJ region and placing a gauze tamponade in the external acoustic meatus to make difficult the entrance of irrigation solution in external ear, the auriculotemporal nerve is anesthetized with lidocaine with vasoconstrictor, followed by deep anesthetic puncture of the region where CNU will be inserted. A horizontal line is drawn with patent blue from the tragus to the lateral portion of the orbital cavity, being marked a point 10 mm to the front of the tragus and 0.5 mm below this local line, where CNU will be inserted. To allow its insertion, patient shall open the mouth a little. When CNU is inside this compartment, lavage is performed with LR, taking care not to displace the needles from the puncture site while irrigating, because fluid may leak to adjacent soft tissues producing pain and local edema, forcing the interruption of the procedure or the replacement of needles in the previously marked site. Irrigation is controlled by the volume of fluid entering and leaving. Lavage is performed with the help
of a 50 mL syringe. If a higher volume is needed, LR bag may be used.

ARTHROCENTESIS COMBINED WITH OTHER THERAPEUTIC MODALITIES

ARTHROCENTESIS WITH OR WITHOUT NON-STEROID ANTI-INFLAMMATORY DRUGS

A study\(^2\) has compared clinical and radiological effects of simple arthrocentesis or combined with tenoxicam in patients with disc displacement without reduction (DDWR). Twenty-four TMJ of 21 DDWR patients were studied and randomly distributed in Group A, where only arthrocentesis was performed (14 TMJ in 14 patients) and Group AT, who received injection of 2 mL tenoxicam, in addition to intra-articular arthrocentesis (10 TMJ in 7 patients). Patients were evaluated before the procedure, in the 7\(^{th}\) postoperative day, in the 2\(^{nd}\), 3\(^{rd}\) and 4\(^{th}\) weeks and in the 2\(^{nd}\), 3\(^{rd}\), 4\(^{th}\), 5\(^{th}\) and 6\(^{th}\) postoperative months. Joint pain intensity was evaluated by the visual analog scale (VAS).

Maximum mouth opening was recorded in each follow up, as well as MRI before and six months after treatment in both groups, to analyze disc position and format with mouth open and closed, presence of joint effusion, changes in TMJ cortical and bone marrow. Both treatments provide increase in maximum mouth opening and decreased joint pain. There has been no statistically significant difference between groups.

ARTHROCENTESIS AND OPIOIDS

Arthrocentesis with intra-articular morphine injection is performed when conservative treatment fails. The technique is similar to the conventional technique\(^1\). Joint is washed with 50 mL of 0.9% SS and at the end of the procedure 1 mL of morphine (10 mg) is introduced followed by delicate manipulation. A study\(^3\) has performed 405 arthrocentesis in 298 patients during a 10-year period and has subjectively evaluated pain using VAS before arthrocentesis and one month, six months and one year after the procedure. The combination of TMJ arthrocentesis with intra-articular morphine injection has decreased pain in approximately 90% of patients.

ARTHROCENTESIS WITH VISCOELASTIC SUBSTANCE AND STEROID ANTI-INFLAMMATORY DRUG

A study\(^4\) has evaluated 22 patients with internal TMJ disorders with pain and mouth opening limitations, clinically and radiologically diagnosed as Wikes stage III or IV. Sample was divided in 2 groups. Ten patients had arthrocentesis close to the upper joint compartment followed by 10 mg hyaluronic acid in five applications once a week. The other 12 patients received arthrocentesis and dexamethasone in a single session. Maximum mouth opening, pain intensity and level of satisfaction during chewing were evaluated with VAS before and six months after arthrocentesis.

Mean maximum mouth opening before and six months after arthrocentesis in the hyaluronic acid group was 24.9 and 39.0 mm, respectively, while in the dexamethasone group it was 25.7 and 41.3, respectively. Mean pain score for the arthrocentesis/hyaluronic acid group before and six months after was 6.7 and 1.8, respectively and for the arthrocentesis/dexamethasone group before and six months after it was 7.0 and 1.8, respectively. Mean score of satisfaction during chewing by VAS in the arthrocentesis/hyaluronic acid group before and six months after was 2.8 and 7.7, respectively, and for the arthrocentesis/dexamethasone group it was 3.1 and 7.8, respectively. There has been statistically significant difference in all measurements before and six months after arthrocentesis (p < 0.001), but there has been no difference in all measurements for the hyaluronic acid and the dexamethasone groups.

ARTHROCENTESIS WITH AND WITHOUT HYALURONIC ACID

A study\(^6\) has evaluated TMJ arthrocentesis with and without hyaluronic acid injection to treat disc displacements with reduction and with closed lock. The sample was made up of 31 individuals with clinical presentation of mouth opening limitation, TMJ pain and sensitivity and joint noises during function. Patients were randomly divided in 2 groups. The first group received arthrocentesis and the second arthrocentesis associated to 1 mL hyaluronic acid injection in upper TMJ compartment. Patients were evaluated before, soon after the procedure and from the 1\(^{st}\) to the 24\(^{th}\) month of evolution. Mandibular function and TMJ noises were evaluated. Pain intensity was measured by VAS. Maximum mouth opening and lateral jaw movements were also measured every control visit. Both techniques have provided mouth opening gains, lateral jaw movement improvement and have decreased pain and joint noises.

The authors have concluded that the combination of arthrocentesis and hyaluronic acid injection was superior as compared to arthrocentesis alone.
ARTHROCENTESIS WITH HYALURONIC ACID OF DIFFERENT MOLECULAR WEIGHTS

Two treatment protocols were performed using single-needle TMJ arthrocentesis followed by hyaluronic acid injections with two different molecular weights, in five weekly sessions. The objective was to observe the efficacy in patients with degenerative TMJ inflammatory process. Evaluation tool was RDC/TMD (research diagnostic criteria for TMD). Sample was made up of 40 individuals randomly distributed in two groups. The first received arthrocentesis and low molecular weight hyaluronic acid and the other received middle-weight hyaluronic acid.

Maximum pain when chewing was the first considered variable. Maximum pain at rest, masticatory efficiency, functional limitation, tolerability to treatment and perceived efficacy, mandibular function amplitude and amplitude of movements measured in millimeters where the secondary outcomes. All variables were evaluated and compared between groups at the end of the treatment and 3 months later. At the end of the follow up period, all parameters had improved for both groups. Comparison between groups along time has shown no significant difference for any variable, that is pain at chewing and at rest, masticatory efficiency, functional limitation and mouth opening. In addition, there have been no differences between groups as to efficacy and perceived tolerability with regard to treatment. Authors have concluded that there has been similar therapeutic response for both treatment protocols, regardless of hyaluronic acid molecular weight.

ACTION MECHANISM

Arthrocentesis changes synovial fluid viscosity, thus contributing for the translation of the disc and mandibular head complex. In addition, when performed under pressure and combined with shearing forces generated by jaw manipulation it could break down early adhesions, thus improving mouth opening. Pain decrease or elimination is possibly due to joint lavage, which eliminates chemical pro-inflammatory mediators, associated to the direct action of instilled drugs on intracapsular pain receptors.

COMPLICATIONS

There may be zygomatic branch or facial nerve temporal branch paresis caused by local anesthetic block or the edema itself; zygomatic or buccal branch paralysis due to needle trauma; postoperative edema caused by intra-articular solution leakage; periauricular hematoma; perioperative bleeding by vascular injury; bradycardia and extradural hematoma.

DISCUSSION

Classic arthrocentesis is a minimally invasive, short and low cost procedure, performed in the medical office under local anesthesia with or without sedation. It does not leave scars and allows patients to go home soon after its completion. It allows joint space lavage and breakage of adhesions by hydraulic distension of the upper TMJ disc compartment. The traditional technique uses two needles inserted in this compartment. One needle for injecting and the other for aspirating the solution.

The procedure may pose difficulties since puncture is made blindly, although some points have been established to help the access to TMJ upper compartment. There are cases where numerous capsular ligament punctures are performed during a single procedure to reach the upper joint compartment, however this is contraindicated. The cause may be dentist’s little experience, failure of professional qualification and/or lack of adequate anatomic knowledge of the region. It may cause transient motor injury, facial zygomatic branch paresis, and may cause irreversible injury by paralysis of this same cranial nerve and/or neuropathic trigeminal pain.

Another complication is the formation of extra and intra-articular microhemorrhages, which may evolve to adhesiveness, TMJ fibrotic ankylosis and even difficult to handle pain such as complex regional pain syndrome type II. In addition, there is the possibility of solution leakage, be it LR or SS, toward more superficial planes, decreasing intra-articular pressure necessary for adhesions lysis, causing also less removal of algogenic substances present inside the joint capsule, which may make joint lavage ineffective. SNT is a simple, low cost and less invasive technique, does not need sophisticated instruments, materials or equipment, poses negligible risk of infection, morbidity or nervous injury. However, it has some limitations: it is hardly able to eliminate algogenic substances present in the synovial fluid of the upper TMJ compartment, responsible for pain and bone and fibrocartilagenous changes, since total circulating volume is very low. Even if the dentist exerts some pressure on the syringe plunger on the fluid, only part will return through the needle, regardless of patients closing their mouth. Part of the fluid may leak from the upper compartment.
ward the face, producing local edema which may generate intra and postoperative pain. Adhesions lysis will not be total and since the number of repetitions is approximately ten, procedure time may be equal or longer as compared to arthrocentesis. Both DNCA and SSCA seem to be effective to treat internal TMJ disorders. They use just one entry point and, as a consequence, are easier to perform. There is one inconvenient as compared to classic arthrocentesis: cannulas are not widely available in the market. A disadvantage of this technique is that it may be difficult to inject joint lavage substance under pressure. On the other hand, cannulas may be sterilized in autoclaves and be reused several times. New controlled studies should be carried out to evaluate arthrocentesis combined with non-steroid anti-inflammatory drugs and arthrocentesis alone in patients with DDWR, as well as the use of arthrocentesis with viscoelastic substance and with steroid anti-inflammatory drugs. A larger sample shall be used, with longer follow up time and preferably with pre and post procedure MRI to explain which change(s) was(were) produced with regard to disc, its positioning, morphology, adjacent structures and the presence or not of a hypersignal (effusion) close to upper, lower or both compartments after these therapies.

This study may be a guide for health professionals to determine whether to use or not such anti-inflammatory substances together with arthrocentesis.

When conventional arthrocentesis with SS and opioid is used and the result is poor, the cause might be low solution volume below 50 mL, malposition of needles in the upper compartment and local arthrogenic condition, that is algogenic substances, their concentration and location in the upper, lower or both compartments. In this latter situation, it is mandatory an imaging exam, such as MRI, which may confirm the presence of effusion and its location, being necessary arthrocentesis of the lower compartment.

A disadvantage of CNT is when the aim is to wash TMJ joint compartment under high pressure with high volumes. It is better to use classic arthrocentesis or double-needle cannula instead of CNT. Classic arthrocentesis technique and arthrocentesis with SNT associated to hyaluronic acid seem to be effective for TMD. The former may trigger more pain, possibility of second needle displacement leading to interruption of the procedure with unsatisfactory results; temporary nervous block involving trigeminal nerve branches due to the anesthetic technique itself, the volume used or the leakage of this substance to more superficial and/or deeper planes. It may also induce nervous injury in one or more motor branches involving the facial nerve as from the introduction of one or both needles during surgery. SNT seems to induce less pain, less risk of nervous injury, being clinically easier to be performed. SNT, based on previous clinical trials, uses five sessions both with LR or hyaluronic acid. In this protocol, in addition to performing this number of TMJ punctures, they used hyaluronic acid in all procedures, which generates higher costs in addition to producing more local jaw trauma as a function of the number of repeated punctures. It would be interesting to decrease the number of serial injections, increasing hyaluronic acid effect. Maybe, this protocol should be re-thought as a function of current clinical results and the small dimension of TMJ itself. For such, new clinical trials with more significant samples and longer follow up times are needed.

Different arthrocentesis techniques using LR or SS combined or not with anti-inflammatory drugs, opioids or viscoelastic substances produce excellent results for arthrogenic TMD. The therapeutic success is based on the chronicity of the case and on its clinical and imaging characteristics, on a thorough diagnosis, on patients’ cooperation, on professional experience and on the technique(s) used. If the result of conservative technique is poor, one may initially use less invasive and less complex procedures such as arthrocentesis. New studies better designed in terms of methodology are needed before it is possible to precisely determine which is the best arthrocentesis technique – isolated or combined with other therapeutic modalities – to be used for arthrogenic TMJ disorders and their respective sub-groups.

CONCLUSION

Different arthrocentesis techniques, combined or not with anti-inflammatory drugs, opioids or viscoelastic substances, are less invasive, inexpensive, may be performed under local anesthesia, do not generate scars, do not need suture and produce excellent results for arthrogenic TMD. The therapeutic success, however, depends on numerous factors involving chronicity of the disease and its characteristics, on adequate diagnosis, on patients’ cooperation, on the technique used and on professional experience.

REFERENCES

1. Nitzan DW, Dolwick MF, Martinez GA. Temporo-

Arthrocentesis techniques applied to arthrogenic temporomandibular joint disorders

381

Submitted in September 06, 2012.
Accepted for publication in November 21, 2012.