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ABSTRACT 
 
 
 
The demand for ultra-high resolution video (beyond 1920x1080 pixels) led to the need 

of developing new and more efficient video coding standards to provide high 

compression  efficiency.  The  High  Efficiency  Video  Coding  (HEVC)  standard, 

published in 2013, reaches double compression efficiency (or 50% reduction in size of 

coded video) compared to the most efficient video coding standard at that time, and 

most used in the market, the H.264/AVC (Advanced Video Coding) standard. HEVC 

reaches this result at the cost of high computational effort of the tools included in the 

encoder and decoder. The increased computational effort of HEVC standard and the 

power  limitations  of  current  silicon  fabrication  technologies  makes  it  essential  to 

develop hardware accelerators for compute-intensive computational kernels of HEVC 

application. Hardware accelerators provide higher performance and energy efficiency 

than  general  purpose  processors  for  specific  applications.  An  HEVC  application 

analysis  conducted  in  this  work  identified  the  most  compute-intensive kernels  of 

HEVC, namely the Fractional-pixel Interpolation Filter, the Deblocking Filter and the 

Sum of Absolute Differences calculation. A run-time analysis on Interpolation Filter 

indicates a great potential of power/energy saving by adapting the hardware accelerator 

to the varying workload. This thesis introduces new contributions in the field of 

dedicated and reconfigurable hardware accelerators for HEVC standard. Dedicated 

hardware accelerators for the Fractional Pixel Interpolation Filter, the Deblocking Filter 

and the Sum of Absolute Differences calculation are herein proposed, designed and 

evaluated. The interpolation filter hardware architecture achieves throughput similar to 

the  state  of  the  art,  while  reducing hardware  area  by 50%.  Our  deblocking filter 

hardware architecture also achieves similar throughput compared to state of the art with 

a 5X to 6X reduction in gate count and 3X reduction in power dissipation. The thesis 

also does a new comparative analysis of Sum of Absolute Differences processing 

elements, in which various architecture design alternatives with different area, 

performance and power results were introduced. A novel reconfigurable interpolation 

filter hardware architecture for HEVC standard was developed, and it provides 57% 

design-time area reduction and run-time power/energy adaptation in a picture-by-picture 

basis, compared to the state-of-the-art. Additionally a run-time accelerator binding 

scheme is proposed for tile-based mixed-grained reconfigurable architectures, which 



 

reduces  the  communication  overhead,  compared  to  first-fit  strategy  with  datapath 

reusing scheme, by up to 44% (23% on average) for different number of tiles and 

internal tile organizations. This run-time accelerator binding scheme is aware of the 

underlying architecture to bind datapaths in an efficient way, to avoid and minimize 

inter-tile communications. The new dedicated and reconfigurable hardware accelerators 

and techniques proposed in this thesis enable next-generation video coding standard 

implementations  beyond   HEVC   with   improved   area,   performance,  and   power 

efficiency. 
 

 
 
 
 
Keywords: HEVC, Hardware Accelerator, Video Coding Architecture, Reconfigurable 
Architectures. 



 

Aceleradores Dedicados e Reconfiguráveis para o Padrão High Efficiency Video 
Coding (HEVC) 

 
 

RESUMO 
 
 
 
A demanda por vídeos de resolução ultra-alta (além de 1920x1080 pontos) levou à 

necessidade de desenvolvimento de padrões de codificação de vídeo novos e mais 

eficientes para prover alta eficiência de compressão. O novo padrão High Efficiency 

Video Coding (HEVC), publicado em 2013, atinge o dobro da eficiência de compressão 

(ou 50% de redução no tamanho do vídeo codificado) comparado com o padrão mais 

eficiente até então, e mais utilizado no mercado, o padrão H.264/AVC (Advanced Video 

Coding). O HEVC atinge este resultado ao custo de uma elevação da complexidade 

computacional das ferramentas inseridas no codificador e decodificador. O aumento do 

esforço computacional do padrão HEVC e as limitações de potência das tecnologias de 

fabricação em silício atuais tornam essencial o desenvolvimento de aceleradores de 

hardware  para partes importantes da aplicação do HEVC. Aceleradores de hardware 

fornecem maior desempenho e eficiência energética para aplicações específicas que os 

processadores de propósito geral. Uma análise da aplicação do HEVC realizada neste 

trabalho identificou as partes mais importantes do HEVC do ponto de vista do esforço 

computacional, a saber, o Filtro de Interpolação de Ponto Fracionário, o Filtro de 

Deblocagem e o cálculo da Soma das Diferenças Absolutas. Uma análise de tempo de 

execução do Filtro de Interpolação indica um grande potencial de economia de 

potência/energia pela adaptação do acelerador de hardware à carga de trabalho variável. 

Esta tese introduz novas contribuições no tema de aceleradores dedicados e 

reconfiguráveis para o padrão HEVC. Aceleradores de hardware dedicados para o Filtro 

de Interpolação de Pixel Fracionário, para o Filtro de Deblocagem, e para o cálculo da 

Soma das Diferenças Absolutas, são propostos, projetados e avaliados nesta tese. A 

arquitetura de hardware proposta para o filtro de interpolação atinge taxa de 

processamento similar ao estado da arte, enquanto reduz a área do hardware para este 

bloco em 50%. A arquitetura de hardware proposta para o filtro de deblocagem também 

atinge taxa de processamento similar ao estado da arte com uma redução de 5X a 6X na 

contagem de gates e uma redução de 3X na dissipação de potência. A nova análise 

comparativa proposta para os elementos de processamento do cálculo da Soma das 

Diferenças  Absolutas  introduz  diversas  alternativas  de  projeto  de  arquitetura  com 



 

diferentes resultados de área, desempenho e potência. A nova arquitetura reconfigurável 

para o filtro de interpolação do padrão HEVC fornece 57% de redução de área em 

tempo de projeto e adaptação da potência/energia em tempo-real a cada imagem 

processada, o que ainda não é suportado pelas arquiteturas do estado da arte para o filtro 

de interpolação. Adicionalmente, a tese propõe um novo esquema de alocação de 

aceleradores em tempo-real para arquiteturas reconfiguráveis baseadas em tiles de 

processamento e de grão-misto, o que reduz em 44% (23% em média) o “overhead” de 

comunicação comparado com uma estratégia first-fit com reuso de datapaths, para 

números diferentes de tiles e organizações internas de tile. Este esquema de alocação 

leva em conta a arquitetura interna para alocar aceleradores de uma maneira mais 

eficiente, evitando e minimizando a comunicação entre tiles. Os aceleradores e técnicas 

dedicadas e reconfiguráveis propostos nesta tese proporcionam implementações de 

codificadores de vídeo de nova geração, além do HEVC, com melhor área, desempenho 

e eficiência em potência. 
 
 
 
 
 
 
 
 
 
 
Palavras-Chave: HEVC, Acelerador de Hardware, Arquitetura para Codificação de 
Vídeo, Arquiteturas Reconfiguráveis. 



LIST OF FIGURES 

 

 

 
 
Figure 2.1 – Abstract system diagram of video encoder ................................................ 37 
Figure 2.2 – System diagram of video encoder .............................................................. 38 
Figure 2.3 – System diagram of video decoder .............................................................. 39 
Figure 2.4 – Motion estimation process ......................................................................... 40 
Figure 2.5 – Temporal picture coding structure using Random Access configuration .. 41 
Figure 2.6 – Luma fractional pixel positions for a 8x8 luma integer pixel block .......... 44 
Figure 2.7 – Boundary of a 4x4 block (blocks P and Q) ................................................ 45 
Figure 2.8 – HEVC Deblocking filter flow and filtering decision equations................. 46 
Figure 3.1 – Contribution of different HEVC coding tools (in percentage) to the total 
execution time. Video sequence: “People on Street” (2560x1600 pixels), 150 pictures 54 
Figure 3.2 – Contribution of Interpolation Filter (in percentage) to the total execution 
time of HEVC encoder and decoder for eight video sequences and four QP values ..... 55 
Figure 3.3 – Contribution of Deblocking Filter (in percentage) to the total execution 
time of HEVC decoder for nine video sequences and four QP values ........................... 56 
Figure 3.4 – Contribution of Sum of Absolute Differences (in percentage) to the total 
execution time for various nine video sequences and four QP values ........................... 57 
Figure 3.5 – Number of calls per picture to the interpolation filter basic method ......... 58 
Figure 4.1 – Methodology to design optimized hardware accelerators.......................... 59 
Figure 4.2 – System diagram of the proposed hardware architecture for HEVC 
interpolation filtering ...................................................................................................... 60 
Figure 4.3 – Configurable datapath for luma interpolation filter ................................... 62 
Figure 4.4 – Configurable datapath for chroma interpolation filter ............................... 63 
Figure 4.5 – Interpolation filter scheduling .................................................................... 64 
Figure 4.6 – Internal structure of 4-2 adder compressor ................................................ 66 
Figure 4.7 – Hierarchical 8-2 adder compressor using internal structures based on ...... 67 
(a) 4-2; (b) 3-2 and 4-2; (c) 5-2, 4-2 and 3-2; (d) 7-2 and 3-2........................................ 67 
Figure 4.8 – 7-2 adder compressor structure. ................................................................. 67 
Figure 4.9 – Modified luma filter datapath using (a) 7-2 adder compressor; (b) 8-2 adder 
compressor...................................................................................................................... 68 
Figure 4.10 – Modified chroma filter datapath using 8-2 adder compressor. ................ 69 
Figure 4.11 – System diagram of the proposed hardware architecture for HEVC 
deblocking filter.............................................................................................................. 71 
Figure 4.12 – Merged datapath for conditions 1, 2, 3, 8 and 9....................................... 72 
Figure 4.13 – Datapaths for conditions 4, 5, 6, 7 and 10................................................ 73 
Figure 4.14 – Datapaths for normal filtering operations ................................................ 74 
Figure 4.15 – Datapaths for strong filtering operations.................................................. 75 
Figure 4.16 – Datapath for chroma filtering operation................................................... 75 
Figure 4.17 – State diagram of the Finite State Machine ............................................... 76 
Figure 4.18 – Processing schedule of normal filter (worst case).................................... 77 
Figure 4.19 – A Motion Estimation (ME) architecture diagram and the Sum of Absolute 
Differences (SAD) architecture ...................................................................................... 79 
Figure 4.20 – SAD Processing Element (PE) alternatives with 4-input samples........... 81 
Figure 4.21 – SAD Processing Element (PE) alternatives with 8-input samples........... 81 
Figure 4.22 – SAD Processing Element (PE) alternatives with 16-input samples......... 82 
Figure 5.1 – Proposed reconfigurable hardware architecture for Interpolation Filter of 
HEVC ............................................................................................................................. 86 



 

 

Figure 5.2 – Correlation of the number of interpolation filter calls considering GOP 
sizes equal to (a) 8, (b) 16, and (c) 4 .............................................................................. 87 
Figure 5.3 – Architectural template of the reconfigurable engines. Luma and chroma 
datapaths are shown in section 4.2. Luma datapath is shown here as an example......... 89 
Figure 5.4 – Pseudo-code of the adaptive scheduling scheme (for luma engine) .......... 92 
Figure 5.5 – Pseudo-code of the schedule function........................................................ 92 
Figure 5.6 – Example of scheduling for S(p,g) = 6 and PU_width = 8.......................... 93 
Figure 5.7 – Reconfiguration energy overhead (%) ....................................................... 97 
Figure 5.8 – Number of total filter interpolations of our architecture for the set of test 
video sequences (averaged over QPs) .......................................................................... 100 
Figure 5.9 – Number of total filter interpolations of our architecture for each video 
sequence (for each QP)................................................................................................. 100 
Figure 5.10 – (a) Monitored and predicted number of filter calls; (b) Prediction error for 
832x480 and 416x240 video sequences ....................................................................... 101 
Figure 5.11 – Prediction error for 2560x1600 and 1920x1080 videos, considering four 
QP values ...................................................................................................................... 102 
Figure 5.12 – Implementation version selection results: (a) Number of DPs of 
implementation versions selected; (b) Comparison of Estimated Performance (EP) of 
implementation version selected and the monitored number of filter calls for each 
picture (FME case, luma interpolation filter) ............................................................... 103 
Figure 6.1 – Abstract System Overview: Our proposed run-time accelerator binding 
module integrated within the tile-based mixed-grained reconfigurable architecture ... 106 
Figure 6.2 – Example of binding three custom instructions using first-fit strategy with 
datapath reusing scheme ............................................................................................... 107 
Figure 6.3 – Pseudo-code of our run-time accelerator binding sheme. ........................ 109 
Figure 6.4 – Example of binding three custom instructions using our run-time 
accelerator binding scheme .......................................................................................... 111 
Figure 6.4 – Number of datapaths with inter-tile communication for 2 tiles ............... 112 
Figure 6.5 – Communication overhead for different tile internal organizations .......... 113 



LIST OF TABLES 

 

 

 
 
Table 2.1 – Comparison of H.264/AVC and HEVC coding tools. ................................ 43 
Table 2.2 – 7-tap and 8-tap luma and 4-tap chroma filter coefficients. ......................... 44 
Table 2.3 – Derivation of threshold variables β and tc for each QP. .............................. 46 
Table 3.1 – Video sequences used for analysis and evaluation...................................... 53 
Table 4.1 – Luma coefficient multiplications replaced by add/shift operations ............ 61 
Table 4.2 – Synthesis results and comparisons to the state of the art hardware 
implementation of the interpolation filter....................................................................... 65 
Table 4.3 – Synthesis results for the Interpolation Datapaths. ....................................... 70 
Table 4.4 – Synthesis results of the deblocking filter architecture for FPGA and ASIC 77 
Table 4.5 – Comparisons to the state of the art hardware implementations of the 
deblocking filter.............................................................................................................. 78 
Table 4.6 – Architectural parameters of the different SAD PE alternatives .................. 82 
Table 4.7 – Synthesis results and comparison of the different SAD PE alternatives..... 83 
Table 5.1 – Synthesis results of the proposed hardware architecture for the worst-case 
throughput constraint (i.e., 2560x1600 @ 30 fps). Consider max(nDPs)=17. ................. 94 
Table 5.2 – Synthesis results of six implementation versions for luma and chroma 
hardware acceleration engines........................................................................................ 95 
Table 5.3 – Comparisons with state of the art hardware architectures for fractional-pixel 
interpolation filter ........................................................................................................... 97 
Table 5.4 – Worst-case dynamic power (mW)1 comparison with state of the art for the 
same throughput ............................................................................................................. 99 
Table 5.5 – Comparison with non-reconfigurable design ............................................ 104 



 

 



LIST OF ABREVIATIONS  AND ACRONYMS 

 

 

 
 
AGU Address Generation Unit 

 

ALU Arithmetic Logic Unit 
 

ASIC Application Specific Integrated Circuit 
 

AVC Advanced Video Coding 
 

B Bi-predictive 
 

BD-PSNR Bjontegaard Delta Peak Signal-to-Noise Ratio 
 

BD-Rate Bjontegaard Delta Rate 
 

BRAM Block Random Access Memory 
 

CABAC Context-Adaptive Binary Arithmetic Coding 

CAVLC Context-Adaptive Variable Length Coding 
Cb Chrominance Blue 

CCD Charge Coupled Devices 
 

CG Coarse-grained 
 

CLB Configurable Logic Block 
 

CMOS Complementary metal-oxide-semiconductor 
 

CODEC COder/DECoder 

Cr Chrominance Red 

CTU Coding Tree Unit 
CU Coding Unit 

DCT Discrete Cosine Transform 
 

DF Deblocking Filter 
 

DC Direct Current 
 

MOS Metal Oxide Semiconductor 
 

DP Datapath 
 

DST Discrete Sine Transform 
 

DVD Digital Versatile Disk 

EP Estimated Performance 
EXOR Exclusive OR 

FG Fine-grained 
 

FME Fractional Motion Estimation 

FPGA Field-Programmable Gate Array 

FSM Finite State Machine 



 

 

GB Gigabytes 
 

GOP Group of Pictures 

GPB Generalized P and B 

HD High Definition 

HEVC High Efficiency Video Coding 
 

HM HEVC Test Model 
 

ID Interpolation Datapath 

IME Integer Motion Estimation 

IP Intra-Period 

IQ Inverse Quantization 
 

ISO International Organization for Standardization 
 

IT Inverse Transforms 
 

ITU International Telecommunication Union 

JCT-VC Joint Collaborative Team on Video Coding 

JVT Joint Video Team 

LD Low Delay 
 

LUT Look-Up Table 
 

MC Motion Compensation 
MD Manhattan Distance 

ME Motion Estimation 

MNFC Monitored Number of Filter Calls 
 

MOS Mean Opinion Score 
 

MPEG Motion Picture Experts Group 
 

MSE Mean-Squared Error 
 

MV Motion Vector 
 

NRE Non-Recurring Engineering 
 

P Predictive 
 

PDP Power Delay Product 
 

PE Processing Element 
 

PNFC Predicted Number of Filter Calls 
 

POC Picture Order Count 
 

PRR Partial Run-Time Reconfiguration 
 

PSNR Peak Signal-to-Noise Ratio 
 

PU Prediction Unit 
 

Q Quantization 



 

 

QFHD Quad Full High Definition 
 

QP Quantization Parameter 
 

QVGA Quarter Video Graphics Array 
 

RA Random Access 
 

RAM Random Access Memory 

RCA Ripple-Carry Adders 
RGB Red, Green, and Blue 

RTL Register Transfer Level 

SAD Sum of Absolute Differences 
 

SAO Sample Adaptive Offset 
 

SATD Sum of Absolute Transformed Differences 
 

SD Standard Definition 
 

SoC Systems-on-Chip 
 

T Transforms 
 

TU Transform Unit 
 

VCEG Video Coding Experts Group 
 

VGA Video Graphics Array 
 

VHDL VHSIC Hardware Description Language 
VHSIC Very High Speed Integrated Circuits 

WPP Wavefront Parallel Processing 

WQVGA Wide Quarter Video Graphics Array 
 

WVGA Wide Video Graphics Array 
 

Y Luminance 
 

YCbCr Luminance, Chrominance Blue, Chrominance Red 



 

 



 

 

TABLE OF CONTENTS 
 
 
 

ABSTRACT............................................................................................................. 15 
RESUMO ................................................................................................................. 17 
LIST OF FIGURES ................................................................................................ 19 
LIST OF TABLES .................................................................................................. 21 
LIST OF ABREVIATIONS  AND ACRONYMS................................................. 23 
1 INTRODUCTION ............................................................................................ 31 
1.1 Motivation  and Problem Definition ............................................................ 32 
1.2 Thesis Contribution ...................................................................................... 33 
1.3 Thesis Outline ............................................................................................... 34 
2 BACKGROUND AND RELATED  WORK................................................... 35 
2.1 Digital Video Capture, Representation, and Video Quality ..................... 35 

2.1.1 Digital Video Capture............................................................................. 35 
2.1.2 Color Spaces and Color Sub-sampling ................................................... 35 
2.1.3 Video Quality Metrics ............................................................................ 36 

2.2 Video Coding Background........................................................................... 36 
2.2.1 Brief History of Video Coding Standardization ..................................... 36 
2.2.2 Video CODEC ........................................................................................ 37 

2.2.2.1 Motion Estimation (ME)....................................................................... 39 
2.2.2.2 Deblocking Filter (DF) ......................................................................... 41 

2.2.3 Temporal picture structure...................................................................... 41 
2.3 Overview of the High Efficiency Video Coding (HEVC) Standard ......... 42 

2.3.1 Fractional-pixel Interpolation Filter ....................................................... 43 
2.3.2 Deblocking Filter (DF) ........................................................................... 45 
2.3.3 HEVC reference software and common test conditions......................... 47 

2.4 Reconfigurable Computing Background ................................................... 47 
2.5 Power Dissipation in CMOS ........................................................................ 49 
2.6 Related Work ................................................................................................ 50 

2.6.1 Chips and Hardware Accelerators for Video Encoding and Decoding .. 50 
2.6.2 Hardware Architectures for Interpolation Filter ..................................... 51 
2.6.3 Hardware Architectures for Deblocking Filter ....................................... 51 
2.6.4 Hardware Architectures for Sum of Absolute Differences .................... 52 
2.6.5 Accelerator Binding on Reconfigurable Architectures .......................... 52 

3 HIGH EFFICIENCY VIDEO CODING APPLICATION ANALYSIS...... 53 
3.1 HEVC Application  Profiling ....................................................................... 53 

3.1.1 Experimental Test Conditions ................................................................ 53 
3.1.2 Analysis of HEVC application with an ultra-high resolution video 

sequence 54 
3.1.3 Analysis of the Interpolation Filter......................................................... 55 
3.1.4 Analysis of the Deblocking Filter........................................................... 55 
3.1.5 Analysis of the Sum of Absolute Differences (SAD) Calculation ......... 56 
3.1.6 Summary of HEVC application analysis................................................ 56 

3.2 Run-time  Analysis of HEVC Application................................................... 57 
4 DEDICATED HARDWARE ACCELERATORS......................................... 59 
4.1 Methodology to Design Hardware Accelerators ........................................ 59 
4.2 Hardware Architecture for Fractional Pixel Interpolation Filter of 

HEVC  60 



 

 

4.2.1 Luma Interpolation Filter Datapath ........................................................ 61 
4.2.2 Chroma Interpolation Filter Datapath..................................................... 62 
4.2.3 Scheduling .............................................................................................. 63 
4.2.4 Results and Evaluation ........................................................................... 65 

4.3 Hardware Architecture for Fractional Pixel Interpolation Filter using 
Adder Compressors ...................................................................................................... 65 

4.3.1 Adder Compressors Background............................................................ 66 
4.3.2 Enhancing our Fractional Pixel Interpolation Filter Hardware 

Architecture with Efficient Adder Compressors ........................................................ 68 
4.3.3 Results and Discussion ........................................................................... 69 

4.4 Hardware Architecture for Deblocking Filter of HEVC .......................... 70 
4.4.1 Filtering Decisions Datapaths................................................................. 71 
4.4.2 Filtering Operations Datapaths ............................................................... 73 
4.4.3 Control Unit ............................................................................................ 76 
4.4.4 Results and Evaluation ........................................................................... 77 

4.5 Hardware Architecture for Sum of Absolute Differences (SAD)............. 79 
4.5.1 Exploiting Different Versions of Parallel SAD Processing Elements.... 80 
4.5.2 Results and Evaluation ........................................................................... 83 

5 RECONFIGURABLE HARDWARE ARCHITECTURE FOR 
FRACTIONAL-PIXEL INTERPOLATION OF HEVC.......................................... 85 

5.1 Adaptive Prediction of Interpolation Filter Calls...................................... 86 
5.1.1 Analytical Observations ......................................................................... 86 
5.1.2 Prediction Design ................................................................................... 88 

5.2 Reconfigurable Hardware Engines for Interpolation Filter .................... 89 
5.3 Implementation Version Selection .............................................................. 90 
5.4 Adaptive Scheduling..................................................................................... 91 
5.5 Results and Evaluation................................................................................. 93 

5.5.1 Fairness of comparison ........................................................................... 93 
5.5.2 Synthesis Results .................................................................................... 93 
5.5.3 Discussion on Reconfiguration Latency................................................. 95 
5.5.4 Discussion on Reconfiguration Energy .................................................. 96 
5.5.5 Comparison with State of the Art ........................................................... 97 
5.5.6 Performance Results for Different Video Sequences ............................. 99 
5.5.7 Evaluation of Prediction Results .......................................................... 101 
5.5.8 Evaluation of Run-time Implementation Version Selection ................ 103 
5.5.9 Comparison with a Non-Reconfigurable Implementation ................... 104 

6  RUN-TIME  ACCELERATOR BINDING INTO RECONFIGURABLE 
ARCHITECTURES ................................................................................................... 105 

6.1 Overview of Tile-based Reconfigurable Architecture............................. 105 
6.2 Motivational  Analysis................................................................................. 106 
6.3 Run-time  Accelerator Binding Scheme .................................................... 108 

6.3.1 Problem Formulation ............................................................................ 108 
6.3.2 Run-time Accelerator Binding Scheme ................................................ 108 
6.3.3 Choosing the Best Tile to Bind a Custom Instruction .......................... 109 
6.3.4 Binding into Tiles with Low Communication Cost ............................. 110 
6.3.5 Binding Datapaths inside a Tile............................................................ 110 
6.3.6 An Example of Our Binding Scheme ................................................... 110 

6.4 Results and Evaluation............................................................................... 111 
6.4.1 Experimental Setup .............................................................................. 111 



 

 

6.4.2 Evaluation of inter-tile communications .............................................. 112 
6.4.3 Evaluation of communication overhead for many tiles........................ 112 

7 CONCLUSIONS  AND FUTURE WORK.................................................... 115 
7.1 Future Work ............................................................................................... 116 
7.2 Published  Papers by the Author ............................................................... 117 

7.2.1 Journal Paper ........................................................................................ 117 
7.2.2 Conference and Symposia Papers......................................................... 117 

REFERENCES...................................................................................................... 119 
APPENDIX A <EXTENDED ABSTRACT IN PORTUGUESE> ................... 129 



 

 



31  
 
 
 
 
 
 
 
1   INTRODUCTION 

 
 
 

Nowadays, there are many devices in the market capable of digital video recording 
and  displaying,  such  as  digital  (smart)  televisions,  desktop  and  laptop  computers, 
tablets, smartphones, videogame consoles, camcorders, security cameras, etc. These 
devices  enable  a  variety  of  digital  video  applications,  such  as  video  streaming, 
broadcast digital television, videoconferencing, digital cinema, video surveillance, etc. 
Two on-demand digital video streaming services over the Internet, namely YouTube 
and Netflix, became increasingly popular in the last years. YouTube is the largest video 
repository and video broadcast service in the Internet, with 80 hours of video uploaded 
per minute by the users and millions of views per day (KOKARAM, 2013). Netflix is 
subscription-based streaming video service that delivers movies and TV series. Netflix 
achieved the mark of 50 million subscribers in the second quarter of 2014 (FORBES, 
2014). It is predicted that video traffic over the Internet will be 79%  of all consumer 
Internet traffic in 2018 (CISCO, 2014). 

 

To deal with video storing and transmitting over the Internet (and other 
communication networks), video compression is essential. Here is an example of why 
video compression is important: a raw (uncompressed) video lasting 10 minute with 
720x480 pixel resolution (Standard Definition - SD) represented with 24 bits per pixel 
(8 bit for each color channel, using three color channels) and with 30 frames per second 
(fps) require 19 Gigabytes (GB) to be stored or transmitted over the Internet. The same 
10-minute raw video with 1920x1080 pixels resolution (Full-HD resolution) requires 
112 GB. The same video in the new Sony 4K video resolution format (4096x2160 
pixels), used in the 2014 FIFA World Cup, requires 477 GB. It is not viable to deal with 
such   amount   of   data   of   raw   video   sequences   using   the   recent   storing   and 
communication technologies. 

 

Video coding is the process of compressing and decompressing digital video. In 
other words, video coding is the process of converting digital video into a format 
suitable for transmission or storage. The number of bits to represent encoded video is 
reduced compared to raw video. Video coding is based in a complementary pair of 
systems,  an  encoder  (compressor)  and  a  decoder  (decompressor).  Video  encoder 
converts raw video into a compressed form, prior to storing or transmission. This 
process is also known as video encoding. Video decoder converts the compressed video 
back to the original (or very similar to the original) video representation. This process is 
also  known  as  video  decoding.  The  encoder/decoder pair  is  often  described  as  a 
CODEC  (enCOder/DECoder).  Video  compression  is  achieved  by  removing 
redundancy, i.e. information that is not necessary for video representation. Video 
compression may also introduce subjective redundancy, i.e. information that can be 
removed without significantly affecting viewer’s perception of video quality. If the 
decoded video is identical than original raw video, the encoding process is lossless. In 
lossy compression, subjective redundancy is also employed, resulting in difference 
between raw video and decoded video. Lossy compression is applied to achieve higher 
compression.  The  higher  compression  comes  with  a  decrease  in  video  quality  of 
decoded video compared with raw video (RICHARDSON, 2010). 
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Video coding standards are developed to encode (compress) video. Most video 
coding standards employ lossy compression to attain high video compression efficiency. 
When developing a video coding standard, the goal is to compress video with minimal 
video quality loss under a certain compressed video size (or to achieve minimum 
compressed video size under a given target video quality). Video coding standards 
evolved in the last two decades, primarily driven by new video applications and the 
increase in video resolution. The advances of recent video coding standards in order to 
provide increasingly video compression result in a huge computational effort. Electronic 
devices capable of video processing are demanded to provide increased performance at 
each video coding standard generation, to encode and decode high resolution videos in 
real time. In this context, section 1.1 presents motivation and problem definition which 
are driving this thesis. 

 
1.1 Motivation  and Problem Definition 

 

The recent demand for  ultra-high resolution videos (beyond 1920x1080 pixels) 
drives the development of new and more efficient video coding standards to provide 
high compression efficiency. The most efficient new coding standard that arises is the 
High Efficiency Video Coding (HEVC) standard, developed by the Joint Collaborative 
Team on Video Coding (JCT-VC), formed by experts of Video Coding Experts Group 
(VCEG) of International Telecommunication Union (ITU), and Motion Picture Experts 
Group (MPEG) from the International Standardization Union (ISO). HEVC was 
published in April 2013 as ITU-T H.265 recommendation (ITU-T, 2013). 

 

HEVC reaches the double compression efficiency (or 50% bit rate reduction) 
compared to the most efficient video coding standard at that time, and most used in the 
market, the H.264/AVC (Advanced Video Coding) standard (ITU-T, 2011). The double 
compression efficiency of HEVC over H.264/AVC is achieved for a similar video 
quality, since both standards provide lossy compression. HEVC achieves such 
compression efficiency by employing larger block sizes (to deal with increased 
resolutions), sophisticated block partitioning, and new advanced coding tools 
(SULLIVAN, 2012). 

 

The higher compression efficiency of HEVC comes with a significant increase in the 
computational effort of the HEVC encoder that ranges from 1.2x to 3.2x of the 
H.264/AVC encoding complexity (VANNE, 2012). It requires further performance 
improvement of video-capable devices to deal with the increased encoding complexity 
still being able to encode high video resolutions in real time. A substantial research 
effort, especially in HEVC encoder, is forecasted to reach this goal (BOSSEN, 2012). 

 

Performance improvement was achieved in the past with the advances of silicon 
fabrication technology, which enable higher operation frequencies through smaller and 
faster transistors. Recently, advances in silicon fabrication still enable smaller and faster 
transistors at every new Complementary metal-oxide-semiconductor (CMOS) 
technology node. Chips continue to integrate more transistors into the same area, 
following the Moore’s law for density (MOORE, 1965). Recent CMOS technologies are 
able to integrated more and more processing cores in the same chip, the so-called multi- 
core and many-core processors. 

 

However, in new decananometer technologies, performance increase is limited by 
thermal design power, since transistor power density is now increasing at each CMOS 
technology node (ESMAEILZADEH, 2011). To ensure that chips remain below the 
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thermal design power, not all transistors of the chip can switch at full speed all the time, 
resulting in the so-called utilization wall (VENKATESH, 2010). The portion of the chip 
that is most of the time underclocked or powered-off is referred in general as “dark 
silicon” (ESMAEILZADEH, 2011) (TAYLOR, 2013). Recent work (TAYLOR, 2013) 
foresees that the percentage of dark silicon will increase at each technology node and 
will be around 94% in the early 2020’s. Dark silicon will limit core and frequency 
scaling for performance improvement. 

 

To cope with the increased performance required by the new HEVC standard and to 
keep chips below the thermal design power, future processors will integrate many on- 
chip hardware accelerators for specific computational kernels, i.e. the so-called 
accelerator-rich  architectures (IYER, 2012) (CONG, 2014). Specialized hardware 
accelerators are 500X more energy efficient than general purpose processors doing the 
same job (HAMMED, 2011). As the computational kernels are not executed 
simultaneously all the time, the accelerators can be powered off when not in use. Hence, 
specialized hardware accelerators for important computational kernels are an efficient 
way to “fill” the dark region of chips. 

 

While dedicated hardware accelerators provide high performance and energy 
efficiency for real-time video encoding and decoding, they have some drawbacks. They 
are fixed in design time and cannot change the hardware in the field, after silicon 
fabrication. They also incur in high costs for design and silicon fabrication. 
Reconfigurable hardware provides a platform solution with low design costs, faster 
time-to-market, and flexibility of quick upgrades through dynamic reconfigurations 
(TUAN, 2006). Designs based on Field-programmable Gate Array (FPGA) combine the 
performance efficiency of dedicated accelerators due to their capability to exploit high 
degree   of   parallelism   along   with   a   high   degree   of   flexibility   due   to   their 
programmability  and  hardware  reconfigurability  (SHAFIQUE,  2009)(COMPTON, 
2002). The drawback of FPGA designs is the higher power compared with dedicated 
accelerators. 

 

The thesis author foresees that both dedicated and reconfigurable accelerators will 
be used in future accelerator-rich processor architectures. This thesis provides different 
contributions for both dedicated and reconfigurable acceleration, as discussed in section 
1.2., which can be applied to the current HEVC and also to future generation video 
encoders, as long as they are based on CUs comprised of blocks of video pixels. 

 
1.2   Thesis Contribution 

 

The goal of this thesis is the research on novel dedicated and reconfigurable 
hardware accelerators for important computational kernels of the new HEVC standard. 
Analysis  of  the  HEVC  application  presented  in  Chapter  3  verifies  that  the  most 
important coding tools in terms of computational effort are the Fractional-pixel 
Interpolation Filter, the Deblocking Filter (DF) and the Sum of Absolute Differences 
(SAD). 

 

In  the  domain  of  dedicated  accelerators  dealt  with  in  Chapter  4,  this  thesis 
introduces the following novel contributions: 

 

• A  high-throughput   hardware   architecture   for   HEVC  Fractional-pixel 
Interpolation Filter (Section 4.2) employing 12-pixel parallel filter 
acceleration engines for luminance and chrominance with multiplierless 
configurable interpolation datapaths and a scheduling scheme to manage the 
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operation of  these  interpolation datapaths depending upon  the  execution 
scenario. 

• A hardware  architecture  for  HEVC Fractional-pixel  Interpolation  Filter 
using Adder Compressors (Section 4.3) to improve area, performance, and 
power dissipation. 

• A  high-throughput  hardware   architecture  for  HEVC Deblocking  Filter 
(Section 4.4) employing hardware reuse to accelerate filtering decision units 
at low area cost. 

• A comparative  analysis  and  comparison  of  architectural  alternatives  for 
SAD hardware  architecture  processing element (Section 4.5) in terms of 
hardware area, throughput, and power dissipation. 

 

Regarding reconfigurable video coding accelerators, this thesis additionally 
introduces the following novel contributions: 

 

• A   reconfigurable    hardware    architecture    for   HEVC   Fractional-pixel 
Interpolation Filter, developed in Chapter 5. The architecture incorporates a 
prediction scheme to estimate the number of interpolation filter calls on a 
picture-by-picture basis, using the knowledge of the coding structure. A set 
of different implementation versions for interpolation filter hardware 
accelerator  engines  is  developed  to  allow  an  area  versus  performance 
tradeoff. An implementation version selection scheme is proposed. It selects 
an implementation version of interpolation filter accelerator for each picture, 
depending upon the predicted number of interpolation filter calls provided by 
the prediction scheme. A scheduling scheme is introduced to determine the 
order of processing and configure filter types. It facilitates the reuse of input 
samples and prevents redundant fetching. 

• A  run-time  accelerator   binding  scheme  for   tile-based   mixed-grained 
reconfigurable architectures is proposed and analyzed in Chapter 6. The 
scheme employs datapath reuse and inter-tile communication cost estimation 
to perform a communication-minimizing binding for datapaths of custom 
instructions at run-time. 

 
1.3 Thesis Outline 

 

This text is organized as follows. Chapter 2 provides a background of video coding 
(focusing on the new HEVC video coding standard), reconfigurable computing, power 
dissipation and it  discusses related work on these topics.   Chapter 3  presents an 
analysis of HEVC application based on software profiling and observation of function 
calls at run time. Chapter 4 presents our novel dedicated hardware accelerators for 
HEVC. Chapter 5 presents a new reconfigurable hardware architecture for HEVC 
Fractional-pixel  Interpolation  Filter.   Chapter  6   introduces   the   novel   run-time 
accelerator binding scheme for tile-based mixed-grained reconfigurable processors. 
Chapter 7 presents the conclusions of this thesis and describes future work. 
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2 BACKGROUND AND RELATED  WORK 

 
 
 

This chapter gives a background on the concepts required to understand the novel 
contributions  of   this   work.   It   revises   the   concepts   of   digital   video   capture, 
representation, quality and coding (sections 2.1 and 2.2) with an overview of the new 
HEVC standard (section 2.3). Concepts of reconfigurable computing and power 
dissipation in CMOS are also revised in sections 2.4 and 2.5. Related work about 
hardware design and architectures for HEVC and accelerator binding schemes are 
presented in section 2.6. 

 
2.1 Digital Video Capture, Representation, and Video Quality 

 

2.1.1 Digital Video Capture 
 

Digital video is a discrete approximation (in time and space) of a natural scene. It is 
represented by a sequence of pictures (a rectangular matrix of pixels) captured at regular 
time interval. Each picture is 2D projection of a natural scene captured by an analog 
semiconductor sensor, formed by an array of Charge Coupled Devices (CCD) 
(RICHARDSON, 2010). Each CCD captures one pixel. For color images, there are 
three matrixes of CCDs, one to capture each color. Each color component of a pixel is 
called sample. Each sample is represented by a number of bits, e.g. 8 bits, that define 
the intensity level of the specific color. 

 

The  size  of  CCD  array  (in  horizontal  and  vertical  pixels)  defines  the  spatial 
sampling  of  video,  which  is  called  resolution.  There  are  some  defined  resolution 
formats, e.g. Standard Definition (SD) with 720x480 pixels, Full-HD (High Definition) 
with 1920x1080 pixels, 4Kx2k with 4096x2160 pixels, etc. 

 

The time interval each picture is captured define the temporal sampling of video. It 
is called picture rate or frame rate, commonly defined as frames per second (fps). With 
a sufficient high capture rate, it is possible to give the observer the feeling of motion. 
Common picture rates are 24 fps, 30 fps, 50 fps and 60 fps, etc. The higher is the picture 
rate, more smooth is the feeling of motion to the observer (RICHARDSON, 2010). 

 

2.1.2 Color Spaces and Color Sub-sampling 
 

The pixel in a color picture is represented by three color components, following a 
color space. A common color space is Red, Green, and Blue (RGB), which uses these 
three primary colors captured by the human visual system to form the pixel. Video 
coding standards uses Luminance, Chrominance Red and Chrominance Blue (YCbCr) 
color space, instead. The main advantage of YCbCr color space is because the human 
visual system has different photoreceptor cells, namely the rods, to sense intensities of 
light (luminance, or luma), and the cones, to sense colors (chrominance, or chroma). As 
the human visual system is less sensitive to color than to luminance, it is possible to 
sub-sample the color pixels. 

 

Common color sub-sampling rates are 4:2:0, in which for each four luma samples, 
there are only one Cb sample and one Cr sample. It actually represents 4:1:1 ratio, but 
the literature defined as 4:2:0. Other chroma sub-sampling ratios are 4:2:2 and 4:4:4, the 
later with no sub-sampling (RICHARDSON, 2010). Color sub-sampling may be 
considered a first tool for video compression. 
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2.1.3 Video Quality Metrics 

 

Since video coding standards provides usually lossy compression, to achieve large 
compression  rates,  it  is  important  to  measure  the  final  video  quality  after  video 
encoding. Video quality is a complex parameter to define, because it is based on 
subjective criteria of video observers. Subjective metrics, such as Mean Opinion Score 
(MOS) exist and are used to evaluate the video quality to compare different video 
coding standards. However, MOS cannot be used in all contexts, because in some cases 
it is needed to compare and evaluate videos faster and objectively. 

 

Peak Signal-to-Noise Ratio (PSNR) is a well-known objective video quality metric 
used in the literature (GHANBARI, 2003). PSNR is defined in Equation 2.1, in which 
MAX is the maximum value of representation of one sample (2n – 1, for 8 bits, MAX is 
equal to 255) and Mean Squared Error (MSE) is calculated as shown in Equation 2.2. In 
Equations 2.1 and 2.2, m and n are the horizontal and vertical dimensions of the picture. 
In Equation 2.2, O and R are the original and reconstructed pictures, respectively. 
Reconstruced picture is the picture after the coding losses. 

 

PSNR(dB) = 20 ⋅ log   MAX  
 

 
(2.1) 

  MSE  
 

 
MSE = 

 
m−1 n−1 

∑∑ Ri , j
 

 

− Oi, j ) 
 
 
(2.2) 

mn i =0  j =0 
 

Often it is useful to compare video quality between two different coded videos (e.g. 
using different codecs) of a same input raw video. Two different coded videos of a same 
input raw video may incur in different PSNR, but also different bit rate (the rate of a 
coded video bits, in bits/s). In this case, a simple PSNR comparison is not useful, 
because videos have also different bit rate values. In this situation, the Bjontegaard 
Delta PSNR (BD-PSNR) metric (BJONTEGAARD, 2001) must be used. This metrics is 
based on curve fitting of two different Rate Distortion (RD) curves (of the two different 
coded videos) formed by four bit rate/PSNR points. BD-PSNR represents an average 
difference of PSNR values (in dB) over the range of four bit rates. BD-Rate metric also 
exists and represents an average bit rate difference (in %) over the range of four PSNR 
values (BJONTEGAARD, 2001). More details about BD-PSNR and BD-Rate 
calculation can be found in (BJONTEGAARD, 2001). 

 
2.2 Video Coding Background 

 

2.2.1 Brief History of Video Coding Standardization 
 

The history of video coding standardization can be summarized by revising the 
video coding standards developed by ITU and ISO organizations. The first video coding 
standard is H.261 (ITU, 1990). Three years later, ISO produced its first video coding 
standard, MPEG-1 (ISO, 1993). One year later, ITU and ISO groups jointly produced 
the H.262/MPEG-2 video coding standard (ITU and ISO, 1994). In 1995, ITU produced 
the H.263 standard (ITU, 1995). ISO produced MPEG-4 Visual standard in 1999 (ISO, 
1999). After that, ITU and ISO jointly produced the H.264/MPEG-4 Advanced Video 
Coding (AVC) standard (also known as H.264/AVC) (ITU and ISO, 2003). 

 

H.264/AVC is the current video coding standard in use in the market, targeting 
many video applications and ranging different video resolutions. It was developed by 
the Joint Video Team (JVT) formed by experts of both ITU and ISO. H.264/AVC 
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doubles the video compression when compared to MPEG-2 standard for similar video 
quality (WIEGAND, 2003). 

 

The new High Efficiency Video Coding (HEVC) standard was recently developed 
by JCT-VC, formed by experts of ITU and ISO, and published in April 2013 (ITU and 
ISO, 2013). Its primary goal was to double compression efficiency of the most efficient 
video coding standard until now, namely the H.264/AVC, especially focusing on ultra- 
high resolution video encoding (beyond 1920x1080 pixels). In recent video coding 
standards, i.e. H.264/AVC and HEVC, only the video decoder and the bitstream syntax 
are subject of standardization. The video encoder flow is not standardized. It gives some 
freedom to design video encoder, because the only requirement for video encoder is to 
generate a conformed bitstream (WIEGAND, 2003). 

 

2.2.2 Video CODEC 
 

Digital video pictures are compressed by a video encoder that transforms original 
pictures into a stream of bits of coded video (also called bitstream). To display the 
coded video, a video decoder must be used to transform the coded video into a 
reconstructed picture. Usually, the reconstructed pictures are different from original 
pictures (in lossy compression). When reconstructed and original pictures are equal, it is 
called a lossless compression (RICHARDSON, 2010). The pair encoder/decoder forms 
the so-called COder/DECoder (CODEC). 

 

An abstract diagram of video encoder is depicted in Figure 2.1. It is formed by three 
main functional units: a prediction model, a spatial model and the entropy encoder 
(RICHARDSON, 2010). The prediction model receives original (raw, uncompressed) 
pictures and reduces the spatial and temporal redundancies present in video, by 
exploiting stored coded data, e.g. neighboring pictures or the same picture. The 
difference of prediction result and the original picture is called residue. The residue is 
processed by a spatial model that transforms residue into coefficients, exploiting 
similarities in the residual picture to reduce spatial redundancy. Prediction and Spatial 
model parameters are further processed by entropy encoder, which is a lossless encoder 
that removes statistical redundancy in the data. 

 

 
 

Figure 2.1 – Abstract system diagram of video encoder 
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Source: the author, modified from (RICHARDSON, 2010). 

 

 
 

Advanced video coding standards, e.g. H.264/AVC and HEVC, follows basically 
the same CODEC structure. The video encoder is based on the abstract video encoder 
system diagram shown in Figure 2.1. However, advanced video coding standard are 
block-based, i.e. video pictures are partitioned into smaller blocks that are processed by 
the encoder and the decoder. H.264/AVC splits pictures into blocks of 16x16 pixels 
called macroblocks. The macroblock is the main coding unit that is processed by all the 
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coding tools of video encoder. HEVC supports larger blocks of size up to 64x64 pixels 
(SULLIVAN, 2012). More details of HEVC are given in section 2.3. 

 

Figure 2.2 shows the diagram of a generic video encoder. It includes Inter and Intra 
predictions, Forward Transform (T), Quantization (Q), Inverse Transforms (IT), Inverse 
Quantization (IQ), Entropy Coding and Deblocking Filter (DF). Intra prediction 
generates a prediction of a block based on the information of neighboring blocks in the 
current picture (captured by the camera) that are already processed and reconstructed. 
Inter prediction is formed by Motion Estimation (ME) and Motion Compensation (MC) 
coding tools. The goal of Inter prediction is to generate a prediction based on previous 
pictures, so-called reference pictures. ME searches for the best match, i.e. the block in 
the reference pictures that is the most similar to the block in the current picture. The 
most similar block is chosen by ME as the best block, and a motion vector indicates the 
displacement between current block position and the position of the best block. ME/MC 
process is detailed in section 2.2.2.1. 
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Figure 2.2 – System diagram of video encoder  
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Source: the author, modified from (AGOSTINI, 2007). 

 

 
 

After the prediction, the residual blocks (difference between predicted blocks and 
original blocks from the current picture) are processed by Transforms and Quantization 
modules. In H.264/AVC, transform module includes a 4x4/8x8 Discrete Cosine 
Transforms (DCT) and 2x2/4x4 Hadamard Transform, depending on the residues and 
the block type (WIEGAND, 2003). Quantization is the module that produces coding 
losses in the residual blocks, controlled by a Quantization Parameter (QP). QP value is 
directly proportional to the strength of coding loss. All coding information (residual 
blocks and side information from other modules, e.g. prediction types, motion vectors, 
etc.)  is  further  encoded  by  the  Entropy  coding  module.  Advanced  video  coding 
standards support sophisticated lossless entropy coding algorithms such as Context 
Adaptive Binary Arithmetic Coding (CABAC). In particular, H.264/AVC also includes 
Context Adaptive Variable Length Coding (CAVLC) for entropy coding. The output of 
entropy coding module is the coded video (bitstream). 

 

Prediction, Transforms, Quantization, and Entropy coding form the forward path of 
video  encoder.  The  inverse  path  is  formed  by  Inverse  Transforms  (IT),  Inverse 
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Quantization (IQ) and Deblocking Filter (DF). The inverse path is included in video 
encoder to avoid mismatch between encoder and decoder. Reconstructed pictures in 
video encoder, further used as reference pictures, must match exactly the reconstructed 
pictures in video decoder, because decoder also uses the reference pictures to perform 
Motion Compensation (MC). MC is the inverse process of motion estimation. The result 
of MC or Intra prediction is added to the output of IT to reconstruct the block. Before 
picture reconstruction, a Deblocking Filter (DF) is applied to remove blocking artifacts 
caused by strong quantization. 

 

The general diagram of a video decoder is shown in Figure 2.3. It is similar to the 
inverse path of the video encoder. The coded video (bitstream) inputs to an entropy 
decoding module. The residual blocks are processed by Inverse Transforms and Inverse 
Quantization modules. Decoded side information e.g. prediction types, motion vectors, 
feeds other modules. The result of prediction (either Intra or Inter) is added to the output 
of Inverse Transforms and is processed by deblocking filter (DF in Figure 2.3) to 
reconstruct the picture (which will be displayed in the user device). Reconstructed 
pictures are stored as reference pictures to be used by Motion Compensation. 

 

 
 

Figure 2.3 – System diagram of video decoder 
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Motion Estimation and Deblocking Filter modules are detailed in sections 2.2.2.1 
and 2.2.2.2, since they are the focus of hardware accelerators proposed in this work. 

 

2.2.2.1 Motion Estimation (ME) 
 

Motion  Estimation is  available  only  in  video  encoders,  in  the  Inter  prediction 
module. Figure 2.4 shows the Motion Estimation process. It has the goal to search in the 
references pictures which block is  the  most  similar with  the  current block (to  be 
encoded) in the current picture, the so-called best match. 

 

ME search is usually limited to a search area in the reference picture. When the best 
match is found, a Motion Vector (MV) is generated to indicate the displacement of 
current block position and the selected block position in the reference picture. The MV 
is encoded by an entropy encoder and is sent to the bitstream, along with the residue 
between the best block and the current block, which is transformed and quantized. The 
ME search is conducted and guided by a block-matching algorithm, which is usually 
optimized   according   to   specific   coding   efficiency  goals   set   by   the   designer 
(performance, video quality, power, or area, for instance). 
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Figure 2.4 – Motion estimation process 
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A vast number of ME search algorithms were proposed in the literature, since they 
are a non-standardized coding tool. A survey of ME algorithms is given in (HUANG, 
2006). Independent of the search algorithm, they need to use a video quality metric to 
determine the best match. PSNR metric, based on MSE, is very complex to be used in 
practice. Sum of Squared Differences (SSD) is a video quality metric with good 
correlation with MSE and PSNR. However, calculating square values also requires huge 
computational effort in real systems. Some video quality metrics that require lower 
computational effort are the Sum of Absolute Transformed Differences (SATD) and the 
Sum of Absolute Differences (SAD). SAD is the simpler and requires the lowest 
computational effort. SATD is based on transformed differences and requires usually a 
Hadamard transform (RICHARDSON, 2010). 

 

SAD calculation, used in this work, is shown in Equation 2.3, where m and n are the 
dimensions of the block in samples (horizontal and vertical), O is the current (original) 
block and R is the reference block. 

 
m −1 n −1 

SAD = ∑ ∑ Ri, j  − Oi , j 
i = 0  j =0 

 

 
(2.3) 

 

One SAD is calculated for one current block and for one specific block out of the 
many possible block candidates  in the reference picture, as determined by the ME 
search algorithm. The SAD metric is then often used for low complexity video quality 
measure in the context of block matching for ME. 

 

In advanced video coding standards, ME has many features, e.g. variable block size, 
bi-prediction (B pictures), weighted prediction, fractional-pixel motion vectors, etc. 
Fractional-pixel motion vectors require an Interpolation Filter to calculate the value of 
the fractional position pixels. 
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2.2.2.2 Deblocking Filter (DF) 

 

Deblocking Filter is included in the advanced video coding standards to improve the 
reconstructed picture to  be  used  as  reference  pictures for  ME/MC.  It  reduces the 
blocking artifacts present in a reconstructed video, which are introduced by the inherent 
block partitioning and strong quantization in video encoding. This is done by modifying 
samples along the vertical and horizontal borders of blocks. The Deblocking filter is 
adaptive to identify whether the artifacts are real edges of the picture (and thus must not 
be filtered) or are the edges introduced by the encoding process, which then must be 
filtered. Therefore, many decisions are applied before the sample modifying to decide 
whether the filter must be applied or not. 

 

2.2.3 Temporal picture structure 
 

There are two different picture types in video coding standards: Intra (I) picture, 
which includes only Intra prediction blocks, and Inter picture, that may include Inter 
and Intra blocks. Regarding Inter prediction, there are two types of pictures: Predictive 
(P) pictures (only P blocks) which employ Inter prediction with only one reference 
picture, and Bi-predictive (B) pictures, that may include P and B blocks. Bi-prediction 
is the Inter prediction in which two reference pictures must be used together to predict 
the same block. Intra picture is always the first picture in a video sequence, because 
there are no previous (reference) pictures to perform Inter prediction. It is usual to also 
include Intra pictures in regular intervals between Inter pictures to provide the so-called 
Random Access, i.e. for broadcast and streaming video applications, the decoder must 
find the first Intra picture to start decoding the video stream. The period of pictures 
between two Intra pictures is referred in this work as intra period. 

 

Both P and B pictures may use reference pictures from the past or from the future of 
pictures. To support this feature, the encoding order is different to the display order. The 
display order is often referred as Picture Order Count (POC). The encoding order is 
called  frame  number  or  picture  number.  In  video  coding  standards,  pictures  are 
organized in Group of Pictures (GOP) for encoding. An efficient temporal picture 
coding structure in terms of compression is the hierarchical B-picture coding structure 
shown in Figure 2.5. In this structure, pictures are encoded as I pictures or B pictures (B 
pictures are more generic than P pictures, because they include both P and B blocks). 

 

Figure 2.5 – Temporal picture coding structure using Random Access configuration 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Source: the author, modified from (VANNE, 2012). 
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In the picture structure shown in Figure 2.5, different QP values are assigned for 
each picture depending on their picture index and type (I or B). Figure 2.5 also shows 
the prediction dependencies among pictures, i.e. reference pictures (VANNE, 2012). 

 
2.3 Overview of the High Efficiency Video Coding (HEVC) Standard 

 

HEVC is the new video coding standard (ITU and ISO, 2013). It achieves 
approximately 50% bit rate reduction over H.264/AVC standard (ITU and ISO, 2003). 
HEVC follows the same block-based video encoder structure as reviewed in section 2.2. 
To achieve such compression efficiency, HEVC employs larger block sizes (up to 64x64 
pixels) and a new flexible quadtree structure that splits those blocks hierarchically down 
to 4x4-pixel elementary blocks. A new set of advanced coding tools was also introduced 
in HEVC, as we review in this section. 

 

In HEVC, pictures are first partitioned into Coding Tree Units (CTUs). The size of 
CTUs is defined by video encoder depending on encoder constraints and video content. 
CTUs can be as large as 64x64 pixels but may be smaller. CTUs are recursively 
partitioned into Coding Units (CUs) with a quadtree partitioning structure (each CU in the 
root may be partitioned into four smaller CUs in the leaves). Hence, HEVC defines three 
basic units below CTUs: 

 

• Coding  Unit  (CU): CUs have the size varying from 8x8 pixels to 64x64 
pixels. The decision between Intra or Inter-prediction for the unit (or block) 
PU is taken here. A CTU may contain only one CU or several smaller CUs. 
Each CU can be individually partitioned into Prediction Units (PUs) and 
Transform Units (TUs). 

 

• Prediction Unit (PU): defines the type of a prediction block. The largest size 
of a PU is the CU size in the root. PU sizes range from 4x4 up to 64x64 pixels. 
They may assume symmetrical and asymmetrical sizes, depending on Intra or 
Inter prediction. There are 35 intra prediction modes defined in HEVC (33 
directional modes, a Planar mode and a DC mode). 

 

• Transform Unit (TU): defines the sizes of transform blocks. Transforms also 
from their own transform tree, so-called Residual Quad Tree. Transform sizes 
range from 4x4 pixels to 32x32 pixels. The DCT transform is defined (similar 
to the ones in H.264/AVC) and a new Discrete Sine Transform (DST) is 
introduced in the HEVC standard. 

 

Inside the HEVC in-loop filter, a new Sample Adaptive Offset (SAO) filter was 
introduced, that is applied after the Deblocking Filter. Some tools or schemes originally 
used in the H.264/AVC were removed, such as the CAVLC entropy coding, and the 
Hadamard transform. Other tools from H.264/AVC are kept in HEVC, but with some 
modifications, such as the Fractional-pixel Interpolation Filter, the Deblocking Filter (DF) 
and the CABAC entropy encoder/decoder. 

 

Some tools were also introduced in HEVC to facilitate the parallel processing of the 
video coding software. In H.264/AVC, one way to extract parallelism for video coding is 
by grouping contiguous macroblocks into slices, since slices can be independently 
encoded. However, the partition of video frames into many slices may introduce high 
amount of bits for slice header that increases bit rate (because slices were not created for 
parallel processing, but for robust video transmission). HEVC introduces Tiles, which 
split the video pictures into rectangular regions that can be encoded in parallel. A 
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Wavefront Parallel Processing (WPP) scheme was also introduced, which creates a 
“wave” ordering of macroblocks that can be encoded in parallel, without mutual data 
dependences. 

 

 
 

Table  2.1  summarizes  the  comparison  of  H.264/AVC  and  HEVC  coding  tools, 
according to our previous analysis. 

 

Table 2.1 – Comparison of H.264/AVC and HEVC coding tools. 
 

Coding tool  H.264/AVC  HEVC 
Size of Coding Unit 16×16 (macroblock) 64×64, 32×32, 16×16, 8×8 
Size of Prediction Unit 16×16, 16×8, 8×16, 

8×8, 8×4, 4×8, 4×4 
64×64, 64×32, 32×64, 32×32, 32×16, 16×32, 

16×16, 16× 8, 8×16, 8×8, 8×4, 4×8, 4×4 
Size of Transform Unit 8×8, 4×4, 2×2 32×32, 16×16, 8×8, 4×4 
Transforms   DCT, Hadamard DCT, DST 
Entropy coding CABAC, CAVLC  CABAC 
In-Loop Filter Deblocking Filter Deblocking Filter, SAO 
Fractional-pixel 
Interpolation 

6-tap (luma), 2-tap 
(chroma) 

7-/8-tap (luma), 4-tap (chroma) 

Intra prediction modes  9 modes (4×4) and 4 
modes (16×16, chroma) 

35 modes 

Parallel processing Slices Tiles, WPP 
Source: the author. 

 

 
 

Some coding tools are reviewed in details in this section, such as the Fractional-pixel 
Interpolation Filter (section 2.3.1) and Deblocking Filter (section 2.3.2), that are the main 
focus of this work. For more information on other coding tools, please refer to 
(SULLIVAN, 2012) and (ITU and ISO, 2013). 

 
 
 
2.3.1 Fractional-pixel Interpolation Filter 

 

In HEVC, luma and chroma motion vectors (MV) have quarter- and eighth-pel 
(pixel) precision, respectively. The luma half- and quarter-pels are generated using 8-tap 
and 7-tap filters, respectively. The chroma eighth-pels are generated using a 4-tap filter. 
The HEVC interpolation filter improves the coding efficiency of 6-tap and 2-tap 
(bilinear) interpolation filters of H.264/AVC by 10% (LV, 2012). Along with the 
Hadamard transform for decision in FME, it reduces the bit rate by 0.3%-2.2% and 
increases the video quality by 0.04 dB-0.16 dB (CORRÊA, 2012). 

 

Figure  2.6  shows  the  positions  of  the  luma  fractional-pels (green,  yellow  and 
orange) with  the  luma  integer-pels (blue). The  arrows  in  Figure 2.6  highlight the 
integer-pels used for interpolation of a, b and c. The numbers beside the arrows are the 
filter coefficients. Each luma fractional-pel in green (a, b, or c) is calculated by applying 
a horizontal filter over the luma integer-pels at positions [-3…4]. The remaining 
fractional-pels are generated through vertical filters over the integer-pel (orange) or over 
previously calculated fractional-pels (yellow). There are three different types for luma 
filters as shown in Table 2.2. 
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Figure 2.6 – Luma fractional pixel positions for a 8x8 luma integer pixel block 
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Source: (DINIZ, 2015a). 
 

The luma half-pels (b, h, i, j, and k in Figure 2.6) are generated using an 8-tap filter 
(filter type 2/4 in Table 2.2) and the quarter-pels are generated using a 7-tap filter (filter 
types 1/4 or 3/4, in Table 2.2). There are seven types of 4-tap chroma filters (1/8 to 7/8). 
Table 2.2 shows all the HEVC interpolation filter types and their corresponding 
coefficients (ITU-T, 2013). 

 

The interpolation filter types and coefficients are the same when used for MC or 
FME. However, the set of pixels and the order they are calculated may differ. MC 
interpolates according to the fractional-precision MV received in the bitstream. FME (at 
the encoder side) has a different behavior. Although FME’s process is not standardized, 
the HM HEVC reference software (HM, 2013) employs the same interpolation filters to 
generate 8 half-pel points for motion refinements. 

 

Table 2.2 – 7-tap and 8-tap luma and 4-tap chroma filter coefficients. 
 

 Filter type Filter coefficients 
Luma 1/4 -1 4 -10 58 17 -5 1  

2/4 -1 4 -11 40 40 -11 4 -1 
3/4  1 -5 17 58 -10 4 -1 

Chroma 1/8   -2 58 10 -2   
2/8   -4 54 16 -2   
3/8   -6 46 28 -4   
4/8   -4 36 36 -4   
5/8   -4 28 46 -6   
6/8   -2 16 54 -4   
7/8   -2 10 58 -2   

 Index -3 -2 -1 0 1 2 3 4 
Source: (DINIZ, 2015a). 
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To illustrate the filter calculation, Equation (2.4) shows an example of b0,0  luma 
half-pel calculation (8-bit depth) with Ai,0, i=-3..4 integer-pel as input. 

 
 

b0,0  = −A-3,0  + 4 ∗ A-2,0  − 11 ∗ A-1,0  + 40 ∗ A0,0 + 40 ∗ A1,0 − 11 ∗ A2,0 + 4 
∗ A3,0 − A4,0

 
2.3.2 Deblocking Filter (DF) 

(2.4) 

 

The new DF in HEVC contributes to up to 6% bit-rate reduction (1.3%-3.3% bit-rate 
reduction on average) for the same video quality (NORKIN, 2012). Although the DF is 
an optional feature in video encoder (and thus may not be used in video decoder), it is 
often employed because of the high bit-rate reduction. 

 

The deblocking filter reduces the blocking artifacts (visible discontinuities in the 
video) caused by block-based encoding with strong quantization. It is applied by 
modifying samples along horizontal and vertical boundaries of PUs and TUs of size not 
smaller than 8x8 samples. Filtering is applied separately in 4x4 blocks (so-called P and 
Q blocks), as shown in Figure 2.7. Normal and strong filtering modes modify 2 and 3 
luma samples along each boundary, respectively. The example in Figure 2.7 shows a 
vertical boundary, as the horizontal boundary filtering is analogous. 

 

 
 

Figure 2.7 – Boundary of a 4x4 block (blocks P and Q) 
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Source: (DINIZ, 2015b). 
 

 
 

Before the boundary filtering, many filtering decisions have to be assessed to decide 
whether or not the boundary should be filtered, and also to determine which filtering 
modes, i.e. normal or strong, must be applied on a boundary. Only the samples in the 
first and last rows of P and Q blocks are used for filtering decisions. Figure 2.8 shows 
the complete algorithmic flow of the deblocking filter, along with the filtering decision 
equations. 
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Figure 2.8 – HEVC Deblocking filter flow and filtering decision equations 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 

Source: (DINIZ, 2015b). 
 
 

Filtering decisions avoids the filtering of real video boundaries, filtering only those 
which are artificially generated by the coding process. Filtering decisions depend upon 
various parameters, such as block type, QP, and video content. β and tc value are 
determined by a lookup table with QP as input, as shown in Table 2.3. 

 

 
 

Table 2.3 – Derivation of threshold variables β and tc for each QP. 
 

QP 0 ... 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 
β 0 … 6 7 8 9 10 11 12 13 14 15 16 17 18 20 22 24 26 28 
tc 0 .. 0 0 1 1 1 1 1 1 1 1 1 2 2 2 2 3 3 3 

QP 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 
β 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 - - 
tc 3 4 4 4 5 5 6 6 7 8 9 40 11 13 14 16 18 20 22 24 

 

Source: (ITU and ISO, 2013). 
 

 
 

Block types affect boundary strength (Bs) (ITU and ISO, 2013). Chroma filter is 
only performed when Bs is equal to 2 and no further decisions need to be evaluated. 
Only the samples closer to the block boundary are modified. 

 

After the filtering decision flow, normal or strong filtering may be applied to modify 
samples along the boundary. If the normal filter must be applied for a boundary, and 
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only p0 and q0 samples must be modified (see Figure 2.8), the Equations (2.5) and (2.6) 

 are applied. In Equations (2.5) and (2.6), p0, q0, p’0, and q’0  are the unfiltered and filtered samples of P and Q blocks, respectively. Δ0 is obtained by clipping   0 , which is 
shown in Equation (2.7). If the samples p1 and q1 must also be modified according to the 
decision flow, the equations (2.8) and (2.9) are applied, where p1, q1, p’1, and q’1 are the 
unfiltered and filtered samples of P and Q blocks, respectively. Δp1 and Δq1 are obtained 
by clipping   p1  and    1, shown in Equations (2.10) and (2.11), respectively. 

 

p′0  = p0 + Δ0 (2.5) 

 ′0  =   0 − Δ0 (2.6) 

 0  = (9(  0 − p0 ) − 3(  1 − p1 ) + 8) ≫ 4 (2.7) 

p′1  = p1 + Δp1 (2.8) 

 ′1  =   1 + Δ  1 (2.9) 

 p1  =     (p2 + p0 + 1) ≫ 1   − p1 + Δ0   ≫ 1 (2.10)
 

  1  =     (  2 +   0 + 1) ≫ 1   −   1 − Δ0   ≫ 1 (2.11)
 

Strong filter is similar to the normal filter. Offset values Δ0s, Δ1s and Δ2s are obtained after clipping   0s ,   1s  and   2s , which are shown in Equations (2.12), (2.13) and (2.14). 
Offset values are added to the unfiltered samples p0, p1 and p2 to determine the filtered 
samples p’0, p’1, and p’2. Samples of Q block are obtained with the same equations, by 
exchanging p by q. Chroma deblocking filtering modifies only samples p0 and p1. The 
chroma offset calculation is shown in Equation (2.15). 

 

 0s  = (p2 + 2p1 − 6p0 + 2  0 +   1 + 4) ≫ 3 (2.12) 

 1s  = (p2 − 3p1 + p0 +   0 + 2) ≫ 2 (2.13) 

 2s  = (2p3 − 5p2 + p1 + p0 +   0 + 4) ≫ 3 (2.14) 

 c  =     (p0 −   0 ) ≪ 2   + p1 −   1 + 4   ≫ 3 (2.15)
 

Further details of HEVC deblocking filter are given in (ITU and ISO, 2013) and 
(NORKIN, 2012). 

 
 
 
2.3.3 HEVC reference software and common test conditions 

 

HEVC Model (HM) (HM, 2013) is the reference software that implements the 
conforming HEVC video encoder and decoder. It is free to download. One important 
document is the Common Test Conditions document (BOSSEN, 2013) which defines 
standard video sequences along with their pictures rates, picture count and resolution. It 
also defines some coding configurations, i.e. All Intra, Random Acess, and Low Delay, 
that provide difference temporal picture structures. 

 
 
 
2.4 Reconfigurable Computing Background 

 

Reconfigurable  computing  is  the  field  that  develops  circuits  which  are  first 
fabricated but may be programmed in the field, i.e. after silicon fabrication. They can be 
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classified  as  Fine-grained  (FG)  or  Coarse-Grained  (CG)  reconfigurable  fabrics, 
depending on the granularity of the basic reconfigurable hardware element. 

 

The most popular FG reconfigurable fabric in the market today is the Field- 
Programmable Gate Array (FPGA). Xilinx invented the first commercially viable FPGA 
in 1985. FPGA is an array of basic Look-up Tables (LUTs) connected together as 
Configurable Logic Blocks (CLBs). A LUT can usually implement an arbitrary 4-input 
logic function defined by the user in configurable memory, usually a Random Access 
Memory (RAM). The major commercial FPGA providers are the companies Xilinx and 
Altera. Recent FPGAs implement 5-input, 6-input or even 8-input LUTs, and include 
many more features, like: embedded Block RAM (BRAM) blocks, DSP or multiplier 
hardwired blocks, hardwired custom blocks, processor cores, etc. Advanced FPGAs 
also support Partial Run-Time Reconfiguration (PRR) regions (XILINX, 2010) 
(ALTERA, 2010). PRR is a feature by which the FPGA user can reconfigure regions of 
FPGA while the other regions are in execution. 

 

In the literature one can find a vast number of CG reconfigurable fabrics. They are 
designed by coupling a programmable Arithmetic Logic Unit (ALU) with a context 
memory and a register file to deal with word-level operations (e.g. 16 bits, 32 bits). A 
survey of CG reconfigurable fabrics can be found in (HARTENSTEIN, 2001). 

 

A recent trend in reconfigurable computing is the design of mixed-grained 
reconfigurable processors that integrate several CG and FG reconfigurable elements. 
They are typically organized in a tiled fashion, on a single chip, to ensure scalability to 
many cores. A few examples are: MORPHEUS (THOMA, 2003), 4S (SMIT, 2005), and 
KAHRISMA (KÖNIG, 2010). The FG-reconfigurable elements (such as embedded 
FPGAs) are more suitable to accelerate bit-level and control-flow operations. However, 
it  is  costly in  terms  of  delay,  area  and  power  (primarily due  to  the  interconnect 
elements)  compared  to  a  customized  hardware  (IAN,  2007)  (SHANG,  2002).  In 
contrast, the CG-reconfigurable elements accelerate word-level data-flow operations 
with relatively reduced reconfiguration overhead compared to the FG (due to fewer 
interconnects and ALU blocks). However, CG-reconfigurable elements suffer from 
inefficient area utilization and performance loss to accelerate bit-level and control-flow 
computation. Therefore, these many-core mixed-grained reconfigurable architectures 
overcome the limitations of individually employing FG- and CG-reconfigurable 
elements   and   achieve   better   performance   for   applications   with   heterogeneous 
processing behavior (i.e., with both control- and data-flow) (KÖNIG, 2010). Multiple 
concurrently executing tasks on a many-core processor may also be accelerated by 
sharing a mixed-grained reconfigurable architecture (WATKINS, 2010). 

 

Many-core mixed-grained reconfigurable architectures require a run-time system to 
adapt to the varying application requirements (e.g., performance, resource demand) and 
to accordingly manage the reconfigurations. Such a run-time system performs the 
following four key operations. (1) Application Task Allocation determines which share 
of  the  reconfigurable  fabric  is  given  for  each  core  of  a  many-core  processor  to 
accelerate their tasks (AHMED, 2011)(SHAFIQUE, 2011)(CHEN, 2012). (2) Custom 
Instruction and Accelerator Selection chooses a particular implementation version at 
run time from a set of design-time developed implementation versions for each Custom 
Instruction (called by the concurrently executing tasks). Each custom instruction consist 
of several datapaths that can be reconfigured on FG reconfigurable elements (BAUER, 
2008), CG reconfigurable elements, or the combination of both (AHMED, 2011b). (3) 
Accelerator Binding (also referred as online synthesis, online placement or dynamic 
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placement) determines which datapath of a custom instruction should be placed and 
reconfigured on which specific FG- and/or CG- reconfigurable element of the mixed- 
grained reconfigurable architecture and how the interconnections between different 
datapaths of the same custom instruction will be established. (4) Reconfiguration 
Scheduling determines the reconfiguration sequence of different datapaths, since 
typically only one reconfiguration interface is available (BAUER, 2008b). 

 
2.5   Power Dissipation in CMOS 

 

One of the main reasons to design specialized hardware accelerators for systems-on- 
chip (SoC) is that they are more energy efficient than general purpose processors doing 
the same function (HAMMED, 2011). The total energy consumption Etotal  of a certain 
computational kernel is given in Eq. (2.5), where Ptotal  is the total power dissipated by 
the circuit that implements this computational kernel, and t0-t1 is the interval of time to 
complete the computation. Energy consumption of a computational kernel reduces when 
the time to complete the task reduces (without proportionally increasing power), or 
when the total power reduces (without proportionally increasing the execution time), or 
when both total power and time reduce. 

tl Etotal =        Ptotal (t)dt to 

 

(2.5) 

Total power is the power dissipated by the circuit. In all SoCs, this total power is in 
fact time-dependent, as different tasks and operations mode execute in a very complex 
chip, where literally hundreds of blocks are executing in parallel, and even some of 
them can be switched-off to save energy, to reduce temperature, or simply to adjust to a 
lack of compute power demand. 

 

At the basic electrical level, considering the basic devices present in CMOS SoCs, 
one may classify the power dissipation according to its basic electrical origin at the 
logic gate and transistor level. At this basic abstraction level, there are three main power 
dissipation sources when considering CMOS circuits: leakage power, switching power, 
and short circuit power. 

 

Leakage power is a common engineering name adopted by practitioners to refer to 
the CMOS circuit static power. That is, when no digital signal is switching, and the 
circuit inputs are all static, a residual DC current flows through each and every digital 
static CMOS gate. The dynamic power is analyzed as being composed by two 
components, both present when the digital signals are switching: the capacitance 
switching power and the short circuit power. Eq. (2.6) shows the total power Ptotal as the 
addition of those three power dissipation sources. The leakage power dissipation, shown 
in Eq. (2.7), is a result of the leakage current Ileakage. This DC power also depends on the 
supply voltage VDD. The leakage current is then an unavoidable current that appears 
from drain to source through MOS transistors operating in the sub-threshold, and from 
metal gate electrodes into the channel, drain, and source through the carrier tunneling 
through insulators. Additionally, the DC leakage has contribution from reverse-biased 
pn  junctions  which  are  inherent  to  source  or  drain  junctions  in  bulk  CMOS 
technologies. 

 

The power dissipation contribution from switching capacitors is obviously caused by 
the charging and discharging of capacitors associated to every signal line present in the 
digital CMOS circuit. These events only occur when transistors switch the output nodes 
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of the gate, or even the internal electrical nodes of the logic gates. Eq. (2.8) shows that 
switching power depends on the load capacitance CL, the frequency of operation f, the 
supply voltage VDD, and on the switching activity (α) of any given logic gate output 
loaded by CL. Short circuit power, shown in Eq. (2.9), is caused by the short circuit 
current Ishort that appears when both P-type and N-type transistor networks are on. The 
short circuit power also depends on an activity factor (beta), and it depends linearly on 
the switching frequency f, and on the supply voltage VDD (COSTA, 2000). 

Ptotal = Pleakage + Ps     tch   g + Pshort  (2.6) 
Pleakage =  leakage ∗ VDD  (2.7) 

1 2  (2.8) 
Ps     tch   g = 2 a ∗ f ∗ CL  ∗ VDD

 
Pshort = f3 ∗ f ∗  short ∗ VDD  (2.9)

 It  is  possible  to  reduce  both  dynamic  and  static  power  of  hardware  designs. 
Switching power may be reduced by reducing operation frequency, switching activity, 
area (that reduces the electrical parasitics and the load capacitance CL) and the supply 
voltage VDD. However, reducing operation frequency and supply voltage certainly incur 
in the penalty of increased computation time, and may not reduce energy consumption 
in the end. Usually, a coordinated variation of applied supply voltage, as well as 
frequency of operation, can reduce the power consumption of CMOS by orders of 
magnitude (STANGHERLIN, 2013). However, for most portable applications, the total 
energy spent on the computation is more relevant than the average power over specific 
operation modes of the SoC. The most daunting design challenge is in fact to design 
circuits with techniques that reduce power consumption without compromising the 
application-required computation time. Static power may be reduced by using some 
circuit techniques such as power-gating (when the supply voltage is disconnected, that 
is the CMOS circuit, module, block or the entire SoC is powered-off). Many technology 
advancements,  like  using  higher  dielectric  constant  insulators  for  transistor  gate 
electrode  insulation,  have  been  introduced  in  order  to  reduce  sources  of  static 
dissipation like the tunneling from the gate to the channel or the drain of the transistor. 
One strategy to minimize even further the DC off-state current in MOS transistors is to 
use higher-threshold field-effect transistors – the reason why digital logic gates can be 
made of a variety of transistors of the same type (N or PMOS), with different threshold 
voltages (low, standard or high). 

 
2.6    Related Work 

 

2.6.1   Chips and Hardware Accelerators for Video Encoding and Decoding 
 

Due to the high computational complexity, severe performance requirements and 
energy constrains, many works propose dedicated complete chips for video encoding 
and decoding. The design of sub-modules of video codec is also subject of research. 

 

An H.264/AVC video encoder chip for quad HDTV is presented in (DING, 2009). 
An H.264/AVC decoder chip supporting scalable/multiview extensions is presented in 
(CHUANG, 2010) that provides throughput for single-view 4Kx2K video. A set-top 
box SoC for free-viewpoint applications supporting 4Kx2K resolution for 9 views is 
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presented in (TSUNG, 2011). An 8Kx2K decoder chip for H.264/AVC and MVC was 
introduced in (ZHOU, 2012). 

 

A few works explored FPGA-based designs for sub-modules of HEVC, e.g., intra 
prediction  (KHAN,  2013)(ABRAMOWSKI, 2013),  motion  estimation  (NALLURI, 
2013),  transforms  (DIAS,  2013)(CONCEICAO, 2013),  deblocking  filter  (OZCAN, 
2013) and entropy coding (CABAC) (PENG, 2013). A full HEVC encoder or decoder 
in FPGA was not found in the literature. 

 

2.6.2   Hardware Architectures for Interpolation Filter 
 

In context of the previous generation of video codecs, i.e., H.264/AVC interpolation 
filter, several works explored hardware architectures focusing on FME and MC. An 
FME architecture is presented in (CHEN, 2004) that uses 16 multiplier-less datapaths 
for 6-tap interpolation filter. The work in (WANG, 2007) presents a fast algorithm to 
reduce the complexity of FME at the cost of a quality loss. A generic reconfigurable 
architecture for interpolation of different video coding standards is presented in (LU, 
2009). In (KAO, 2010), an architecture with three engines is introduced that supports 
different block sizes along with a resource-sharing scheme. An FME architecture is 
introduced in (TSUNG, 2009) that replaces the 6-tap filter by a bilinear filter to simplify 
hardware at the cost of quality loss. An adaptive ME algorithm for H.264/AVC with a 
hardware architecture is presented in (PASTUSZAK, 2013) that employs an interpolator 
for FME. The interpolator consumes 6,732 LUTs of Altera Arria II GX FPGA device. 
The work in (WANG, 2005) presents a hardware architecture for MC along with an 
approach to reduce the number of interpolation datapaths to 13. The woks in (WANG, 
2005a) (LI, 2008) focus on different schemes to reduce the memory data transfers on 
MC. Interpolation custom instructions for a reconfigurable processor are presented in 
(SHAFIQUE, 2007) (SHAFIQUE, 2010). The work in (ZATT, 2013) presents an MC 
hardware architecture for H.264/AVC High 4:2:2 Profile with 12 interpolation datapaths 
and a cache scheme to reduce memory bandwidth. The aforementioned approaches aim 
at the previous generation of video codecs, i.e., H.264/AVC and cannot be directly 
employed for the HEVC due to its different processing nature, operational flow, and 
different set of filters. 

 

Recently,  a  few  hardware  architectures  were  introduced  for  the  interpolation 
filtering in HEVC. The work in (GUO, 2012) presents two luma interpolation engines 
with different throughput along with a scheme for hardware reuse. In (AFONSO, 2013) 
a  simplified FME architecture for FPGAs is presented that processes only 8x8-sized 
blocks at the cost of a bit rate increase of 13% but does not support Chroma 
interpolation. Moreover, the above techniques (GUO, 2012) (AFONSO, 2013) are fixed 
at design-time targeting a worst-case design and cannot adapt its throughput to low- 
medium complexity scenarios at run-time to achieve better energy efficiency. The 
complete hardware area (i.e., all accelerators) may not be used all the time in average- 
case operating scenarios or under changing quality constraints. 

 

2.6.3   Hardware Architectures for Deblocking Filter 
 

Some hardware architectures for the deblocking filter of HEVC were already 
proposed. Ozcan et al. (OZCAN, 2013) introduced an architecture with 2 datapaths in 
parallel. Each datapath is configurable to implement all decision and edge filter 
operations. Operating at 108 MHz clock frequency it is able to encode videos with the 
1920x1080 pixels resolution at 30 fps. Shen et al. (SHEN, 2013) proposed a four-stage 
pipeline architecture. They focus on a new filtering order, but do not provide enough 
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details of the internal architecture of datapaths for filtering decisions and operations. 
Operating at 28 MHz clock frequency it is able to encode 4Kx2K video resolution at 30 
fps. Shen et al. (SHEN, 2013a) extended the architecture in (SHEN, 2013) to include 
the sample adaptive offset (SAO) filter in a five-stage pipeline architecture. 

 

2.6.4   Hardware Architectures for Sum of Absolute Differences 
 

Many works are found that include SAD hardware modules, mainly into ME 
hardware architectures. The work in (LIU, 2007) presents a variable block size full- 
search  motion  estimation architecture which  employs a  32-parallel SAD  tree  with 
387.2k gates (79% of the total gate count), targeting real-time processing of HDTV 
1080p video. The work in (CHANG, 2007) presents a methodology to guide the 
architectural design for H.264/AVC encoder under resolution and frame rate 
performance requirements. Integer and fractional motion estimation (IME and FME) 
parallelism is analyzed using fixed processing unit (PU) SAD hardware, with variation 
only on the size of SAD array, not on the SAD processing unit. The work in (CHEN, 
2006) presents a H.264/AVC encoder chip for 720p with fixed SAD array. The work in 
(VANNE, 2006) presents a new SAD processing unit and firstly includes a comparison 
of various SAD processing units in terms on area and delay, but do not address power 
and energy constraints for low power devices. 

 

2.6.5   Accelerator Binding on Reconfigurable Architectures 
 

Many works  propose  solutions  to  the  binding  problem  on  fine-grained 
reconfigurable elements. The works in (WALDER, 2003) (AHMADINIA, 2007) 
(MARCONI, 2010) formulate the problem as a 2D area partitioning model. They 
propose  methods  to  identify  and  maintain  free  rectangular  regions  where  the 
accelerators can be reconfigured. Some of them also consider the communication cost 
and bind datapaths near to each other (AHMADINIA, 2007) (MARCONI, 2010). The 
2D area model works well with architectures that contain only fine-grained elements 
and have homogeneous and rich interconnections between the elements. The work in 
(GRUDNITSKY, 2012) proposes communication-aware binding schemes to solve 
communication hazards introduced by fine-grained reconfigurable elements organized 
in 1D-configuration. The work in (FRIEDMAN, 2009) introduces a tool for compile- 
time scheduling, placement (based on simulated annealing) and routing for coarse- 
grained architectures. Compile-time placement cannot react to run-time scenarios 
unpredictable at compile-time. Such a method is also very complex to be applied at run- 
time. The work in (JAFRI, 2011) proposes a compression method of configuration data 
for coarse-grained elements to enable multiple implementation versions that can be 
selected at run-time. However, no run-time binding scheme is proposed in the work in 
(JAFRI, 2011). Overall, state-of-the-art accelerator binding schemes do not solve the 
problem of accelerator binding when jointly considering the fine- and coarse-grained 
reconfigurable elements in a mixed-grained reconfigurable architecture. Moreover, they 
do not consider the problem of binding for tile-based reconfigurable processors, which 
is crucial to enable scalable manycore reconfigurable processors. 
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3 HIGH EFFICIENCY VIDEO CODING APPLICATION ANALYSIS 

 
 
 

Before moving to the details of our proposed hardware accelerators, we discuss in 
this section the analysis of HEVC encoder and decoder applications. This analysis 
supports further decisions on which accelerators to design and also the architectural 
decisions. HEVC application profiling is discussed in section 3.1. A run-time analysis 
of HEVC application is discussed in section 3.2. 

 
3.1 HEVC Application  Profiling 

 

We have profiled the HM software (HM, 2013), that includes both HEVC encoder 
and decoder implementations, to identify the important computational kernels of the 
HEVC encoder and decoder. Profiling is performed to quantify the contribution of each 
coding tool included in HEVC in the total execution time. A similar analysis for the 
older versions of the HM software can be found in (VANNE, 2012) (CORRÊA, 2012). 
However, the version of HEVC codec profiled in these works, i.e. HM version 6 
(MCCAN, 2012) and HM version 7 (KIM, 2012) no longer correspond to the final 
standard specification (ITU, 2013). The work in (BOSSEN, 2012) profiled the HM 
version 8 (KIM, 2012a) for a limited set of Quantization Parameter (QP). In this work 
we perform an extensive analysis of HM version 10 (KIM 2012b) that conforms to the 
current standard (ITU, 2013). Our analysis considers different QP values. GNU gprof 
was used for our analysis (FENLASON, 2000). 

 

3.1.1 Experimental Test Conditions 
 

The experiments are performed using the HM software (HM, 2013) according to 
the HEVC recommended test conditions document (BOSSEN, 2013). In this work, a 
subset of the video sequences recommended in (BOSSEN, 2013) were chosen for the 
HEVC application analysis and for the evaluation of the hardware accelerators proposed 
in this work. This subset of video sequences is presented in Table 3.1. Video sequences 
range four video resolutions: 2560x1600 pixels, 1920x1080 pixels, 832x480 pixels and 
416x240 pixels. 

 

Table 3.1 – Video sequences used for analysis and evaluation. 
 

Video sequence name Resolution Picture Count (frames) Picture Rate (fps) 
Traffic 2560x1600 150 30 
PeopleOnStreet 2560x1600 150 30 
Nebuta 2560x1600 300 60 
SteamLocomotive 2560x1600 300 60 
Kimono 1920x1080 240 24 
ParkScene 1920x1080 240 24 
Cactus 1920x1080 500 50 
BQTerrace 1920x1080 600 60 
BasketballDrive 1920x1080 500 50 
RaceHorses 832x480 300 30 
BQMall 832x480 600 60 
PartyScene 832x480 500 50 
BasketballDrill 832x480 500 50 
RaceHorses 416x240 300 30 
BQSquare 416x240 600 60 
BlowingBubbles 416x240 500 50 
BasketballPass 416x240 500 50 

Source: the author. 
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In this work we have employed Random Access (RA) configuration with Group of 
Pictures (GOP) size of 8. The Intra-period (IP) values are 64, 48, 32, and 24 for pictures 
rates of 60 fps, 50 fps, 30 fps, and 24 fps, respectively. Each video sequence is encoded 
using the four recommended QP values (22, 27, 32, 37). The ME algorithm used is TZ 
Search and the motion search range is 64, which is a default configuration in HM (HM, 
2013). The Rate-Distortion Optimized Quantization (RDOQ) feature was disabled, 
because it is a non-normative feature that increases a lot the computational effort of 
HEVC encoder and provides less than 4% bit-rate reductions. The increase of 
computational effort of RDOQ is huge and does not justify the compression efficiency it 
provides. Other configurations are kept as default in HM (HM, 2013). All experiments 
were performed on an Intel Core i7-2600 processor with 16 GB memory. 

 

3.1.2   Analysis of HEVC application with an ultra-high resolution video sequence 
 

The first analysis is performed by encoding (and then decoding) the ultra-high 
resolution PeopleOnStreet video sequence (2560x1600 pixels). We have profiled both 
HEVC encoder and HEVC decoder application software included in HM (HM, 2013). 

 

Figure 3.1 shows the execution time distribution (in percentage) for the most 
important HEVC coding tools in terms of computational complexity. In HEVC encoder, 
55%-70% of execution time is spent in the following coding tools: Fractional-pixel 
Interpolation Filter, Sum of Absolute Differences (SAD) and Sum of Absolute 
Transformed Differences (SATD). The contribution of time of each tool depends on the 
QP value (given as input by the user) because it influences the mode decision process. 
As reviewed in Chapter 2, SAD and SATD are distortion metrics used to calculate RD 
cost for Integer-pixel and Fractional-pixel Motion Estimation (IME/FME), respectively. 
SATD are also used to calculate RD cost of Intra prediction modes. Interpolation Filter 
is used to generate the fractional-pixels for FME. Other coding tools, e.g. intra 
prediction,  transforms,  quantization,  entropy  coding,  contribute  together  to   the 
remaining part of execution time in HEVC encoder. 

 

 
 

Figure 3.1 – Contribution of different HEVC coding tools (in percentage) to the total 
execution time. Video sequence: “People on Street” (2560x1600 pixels), 150 pictures 
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Source: the author. 
 

 
 

In the HEVC decoder, 35%-55% of the execution time is spent on Fractional-pixel 
Interpolation  Filter  and  Deblocking  Filter.  Interpolation  Filter  is  also  required  in 
decoder to reconstruct fractional-pixels during the Motion Compensation (MC) process. 
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Deblocking  filter  is  the  second  most  complex  coding  tool  in  HEVC  decoder. 
Deblocking filter is used to reduce blocking artifacts caused by strong quantization. 

 

Another observation is the time HM software takes to encode and decode this ultra- 
high resolution video sequence. Encoding 150 frames of this video takes around 26 
minutes. Decoding the same amount of frames takes 39 seconds (with QP=37) to 67 
seconds (with QP=22). 

 

In the next sections, we present a more detailed analysis of the three most complex 
coding tools: Interpolation Filter, SAD and Deblocking filter. 

 
 
 
3.1.3 Analysis of the Interpolation Filter 

 

In this analysis, we have profiled eight video sequences of resolutions 832x480 
pixels and 416x240 pixels. The total execution time to encode these videos (10 seconds 
of video) is 10-106 minutes. Decoding these video takes 1 to 14 seconds. 

 

Figure 3.2 shows the execution time of Interpolation Filter as a percentage of total 
execution time in the HEVC encoder and decoder. The interpolation filter contributes 
towards 15%-38% of the execution time in HEVC encoder and decoder depending upon 
the video sequence and QP. 

 

 
 

Figure 3.2 – Contribution of Interpolation Filter (in percentage) to the total execution 
time of HEVC encoder and decoder for eight video sequences and four QP values 
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Source: (DINIZ, 2015a). 
 
 
3.1.4 Analysis of the Deblocking Filter 

 

In this analysis we have profiled only HEVC decoder. Four ultra-high resolution 
(with 2560x1600 pixels) and five high resolution (with 1920x1080 pixels) encoded 
video sequences were used as input to the HEVC decoder. Encoded video sequences 
follow the same coding configuration described in section 3.1.1. Figure 3.3 shows the 
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execution time of Deblocking Filter as a percentage of total execution time of HEVC 
decoder. Deblocking filter contributes to 5%-18% to the total decoding time, depending 
on video sequence and QP. This percentage represents up to 11 seconds spent only in 
deblocking filter to decode 3 seconds (150 pictures) of 2560x1600 resolution videos. 
The contribution of deblocking filter in total execution time of HEVC encoder is not 
significant, since other tools dominate the execution time. 

 

 
 

Figure 3.3 – Contribution of Deblocking Filter (in percentage) to the total execution 
time of HEVC decoder for nine video sequences and four QP values 
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Source: (DINIZ, 2015b). 
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3.1.5 Analysis of the Sum of Absolute Differences (SAD) Calculation 

 

SAD is executed only in the HEVC encoder. It is used to decide the best blocks in 
Motion Estimation process (i.e. block matching) and Mode Decision, as reviewed in 
Chapter 2. HEVC decoder does not require SAD, since the block decision is done at 
encoder side. In this analysis we have profiled only HEVC encoder with four ultra-high 
resolution (with 2560x1600 pixels) and five high resolution (with 1920x1080 pixels) 
video sequences. Encoded video sequences follow the same coding configuration 
described in section 3.1.1. 

 

Figure 3.4 shows the execution time of SAD as a percentage of total execution time 
of HEVC encoder. SAD contributes to 9%-25% to the total encoding time, depending 
on video sequence and QP. Therefore, SAD is an important computational kernel in 
HEVC video encoder. 

 

3.1.6 Summary of HEVC application analysis 
 

By observing the results of our HEVC application analysis, we conclude that the 
most important computational kernels in the HEVC encoder and decoder are: 
Interpolation Filter, Deblocking Filter and SAD. It is confirmed by profiling results with 
various video sequences (of different resolutions) and four QP values. Since the results 
vary significantly from one video to another and among different QPs, we have also 
conducted a run-time analysis of HEVC application. 
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Figure 3.4 – Contribution of Sum of Absolute Differences (in percentage) to the total 
execution time for various nine video sequences and four QP values 
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3.2   Run-time  Analysis of HEVC Application 

 

The previous analysis based on software profiling is offline, it does not consider 
run-time variations. We have chosen the most complex coding tool of both HEVC 
encoder and decoder, i.e. interpolation filter, to perform a run-time analysis. 

 

We analyze the run-time behavior of the interpolation filter by recording its number 
of calls per picture (i.e., execution frequency) for each video picture. We monitored the 
‘filter’ method of TComInterpolation class in HM (HM, 2013), which is the basic 
method for all types of interpolation filter operations defined in HEVC. Figure 3.5 
shows the results for the first 180 frames of the BQMall and BasketballDrill sequences 
encoded with QP=22 and QP=37. The number of filter calls per picture varies from zero 
(when picture type is Intra, in which Interpolation filter and FME are not executed) to 6 
million (see Figure 3.5). Video properties impact considerably the number of calls. 

 

At the decoder side, the number of calls varies due to the variations in the number of 
fractional-precision MVs in the bitstream. At the encoder side, the number of filter calls 
varies due to encoder workload variations as a result of the following: 

 

1) The IME/FME is called by a decision process that usually implements an early 
skip decision, i.e., in which the ME/MC is not performed at the encoder and the MC is 
performed at the decoder by inferring a MV from the neighbor blocks, already decoded. 
The  early  skip  decision  is  dependent on  the  input  QP  value  and  the  input  video 
sequence, which cannot be determined at design-time, rather at the run-time. Moreover, 
the HEVC introduces a quadtree block partitioning structure and the decision process is 
sensible to this structure. Some regions of video (e.g. highly textured regions) are 
partitioned into smaller blocks than other regions (e.g. homogeneous regions). In this 
regions, there are more blocks for IME, and also for FME. Hence, there are more blocks 
to be interpolated. 
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2) In the hierarchical B-picture GOP structure, some pictures perform ME using two 
or more reference pictures to achieve better quality results. The higher is the number of 
reference picture, higher is the number of interpolation filter calls. The user that chooses 
encoding parameters can configure the hierarchical B-picture GOP structure. 

 

3) After the best match is chosen by the FME, the encoder must also perform MC to 
reconstruct the block correctly to avoid mismatch between encoder and decoder 
information. In this case, the MC is also performed in the encoder. The number of 
interpolation filter calls in MC is not determined as it highly depends upon the outcome 
of the FME and mode decision process. 

 

4) Finally, after the IME/FME is performed for one block, the decision may even 
decide to encode the block with Intra Prediction. Hence, no interpolation is called in the 
reconstruction of the block (i.e., MC) inside the encoder. 

 

Because of the above-mentioned differences between the number of calls to the 
interpolation filter in encoder and decoder, and by looking at our analysis in Figure 3.5, 
it can be noticed that the number of interpolation filter calls in the encoder is two orders 
of magnitude higher that the number of interpolation filter calls in the decoder. 
Moreover, in both encoder and decoder, it depends on many parameters such as video 
content, prediction type, QP, and video resolution. 

 

 
 

Figure 3.5 – Number of calls per picture to the interpolation filter basic method 
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In summary, our run-time analysis shows that the number of interpolation filter calls 
depends upon the video content that cannot be predicted at design-time. 
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4 DEDICATED HARDWARE ACCELERATORS 

 
 
 

This chapter describes the novel dedicated hardware accelerators for important 
computational kernels of HEVC. First, section 4.1 discusses the methodology to design 
efficient hardware accelerators. In the following, hardware architectures for Fractional- 
Pixel Interpolation Filter (section 4.2), Fractional-Pixel Interpolation Filter using Adder 
Compressors (section 4.3), Deblocking Filter (section 4.4) and Sum of Absolute 
Differences (section 4.5) are presented and discussed. 

 
4.1 Methodology to Design Hardware Accelerators 

 

This work follows a methodology to design optimized hardware accelerators for 
HEVC, as shown in Figure 4.1. 

 

 
 

Figure 4.1 – Methodology to design optimized hardware accelerators 
 
 
 
 
 
 
 
 
 
 
 

Source: (DINIZ, 2015b). 
 

 
 

First, standard equations from HEVC standard (ITU-T, 2013) are subject to 
architecture independent optimizations. Examples of these optimizations are the 
reformulation of equations to facilitate the reuse of many operations using the same 
hardware operators and the replacing of constant multiplications by add/shift operations 
(i.e. multiplierless constant multiplication) which are more area and power efficient. 

 

The result of this analysis step contributes to hardware-specific optimizations in the 
following manner: 

 

1) Determining the sizing of registers and operators: video samples are usually 
represented  in  8  bits  data-width.  Specific  hardware  for  video  does  not  need  to 
implement 32-bit or 64-bit registers and operators (adders, subtractors, multipliers), 
which are common in general purpose processors. 

 

2) Determining the number of datapaths in parallel, scheduling, and balancing of 
operating stages: application throughput requirements must be known to determine the 
number of datapaths in parallel. Meeting throughput requirements is crucial for real- 
time  video  encoding  and  decoding  applications.  In  video  coding  applications, 
throughput is measured in samples (pixels) per second and also in frames (pictures) 
processed per second of a given picture resolution (e.g. 1920x1080 pixels @ 30 fps). 
The application requirement may be, for instance, the number of samples to be 
interpolated  in  each  picture,  and  the  number  of  pictures  per  second  of  a  given 
resolution. Balancing the combinational paths of the accelerators defines the operating 
frequency, which  is  also  important to  meet  throughput requirements. Defining the 



60  
 
 
 
scheduling of the architecture determines the number of cycles, which also affects 
throughput. Hence, those three parameters must be considered jointly when designing 
the architecture of the accelerator. 

 

This methodology may be generalized to design accelerators for other dataflow 
applications that are not in the domain of interest of this work, i.e. video coding. 
However, the hardware designer may follow this methodology only if the application 
allows some degree of parallelism (the use of datapaths in parallel), and whether it is 
possible to apply some of those above-mentioned optimizations. The designer also 
needs to determine if the application has some throughput requirement, how to measure 
it,  and  how  to  use  it  to  apply  the  hardware-specific  optimizations.  Designing 
accelerators for applications not in the domain of video coding standards is beyond the 
scope of this thesis. 

 
4.2   Hardware Architecture for Fractional Pixel Interpolation Filter of HEVC 

 

A dedicated hardware architecture for the Fractional Pixel Interpolation Filter is 
proposed in this work, since this is an important computational kernel in both HEVC 
encoder and decoder. A generic interpolation filter architecture is proposed to be used in 
both HEVC encoder and decoder implementations. 

 

The system diagram of the proposed hardware architecture is shown in Figure 4.2. It is 
composed of luma and chroma filter acceleration engines, integer- and fractional-pel 
buffers, and a scheduling module to feed the filtering engines. Buffers store integer-pel 
and fractional-pel that are used for other fractional-pel calculation. In order to meet with 
the high throughput requirements, each of the acceleration engines for luma and chroma 
filtering include 12 interpolation datapaths in parallel. With this number of datapaths in 
parallel the architecture is able to interpolate one line of fractional-pel for 4x4 PU size (it 
requires 11 integer-pel as input). 

 

 
 

Figure 4.2 – System diagram of the proposed hardware architecture for HEVC 
interpolation filtering 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Source: (DINIZ, 2013). 
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The scheduling module is adaptive to the size of PU used and the execution scenario 
(ME or MC), to delivers appropriate input pixels for filtering. Other modules that 
interface with the proposed architecture in a complete system implementation are not 
the focus of this work. Examples of these modules are reference picture memory to 
store the reference pictures, predicted buffer to store the output fractional-precision PU, 
and an address generation unit to store PUs based on corresponding PU and CU indexes 
and input integer luma/chroma MVs. Sections 4.2.1 and 4.2.2 discuss the internal 
architecture of luma and chroma filter datapaths, respectively. Section 4.2.3 discusses 
the adaptive scheduling module in more detail. 

 

4.2.1 Luma Interpolation Filter Datapath 
 

Three filters for luma interpolation were defined in HEVC (ITU-T, 2013): one 8-tap 
filter for half-pel (2/4 pixel location) and two 7-tap filters for quarter-pel (1/4 and 3/4 
pixel locations). In order to reduce area, we designed a configurable datapath that serves 
for all luma filters. Furthermore, we apply the following design optimizations: 

 

1) 7-tap filters for quarter-pel (1/4 and 3/4) are equal if the input samples are rotated; 
2) 8-tap filter for half-pel (2/4) is symmetric, because the first 4 coefficients are 

equal to the last 4 coefficients, if the last ones are rotated; 
3) The coefficients are constant, so the multiplications can be replaced by add/shift 

operations. 
Considering the above three optimizations, only 9 different coefficients must be 

used to implement 7-tap and 8-tap luma interpolation filtering. Table 4.1 shows a 
representation of how coefficient multiplication is replaced by an add/shift operations. 
The goal here is to find a replacement that results in the minimal number of operands. 

 

Table 4.1 – Luma coefficient multiplications replaced by add/shift operations 
 

 Coefficients 
Input  samples 1 -1 4 -5 -10 -11 17 40 58 

<< 0 + -  -  - +   
<< 1     - -   + 
<< 2   + -      
<< 3     - -  + - 
<< 4       +   
<< 5        +  
<< 6         + 

Source: (DINIZ, 2013). 
 

The following equations (4.1), (4.2) and (4.3) describe the computation needed for 
our optimized luma interpolation filter. Eq. (4.1) is used for half-pel filter (filter type 
2/4). Eq. (4.2) and eq. (4.3) are used for quarter-pel filters (filter types 1/4 and 3/4). 
These equations support all 9 different coefficients multiplication in a multiplier-less 
way. 

ℎ = −1 ∗ s0 + 4 ∗ s1 − 11 ∗ s2 + 40 ∗ s3  = s1  ≪ 2 + s3  ≪ 5 + s3 
≪ 3 − (s0 + s2  ≪ 3 + s2  ≪ 1 + s2 )

 
1  = −1 ∗ s0 + 4 ∗ s1 − 10 ∗ s2 + 58 ∗ s3  = s1  ≪ 2 + s3  ≪ 6 + s3

 ≪ 1 − (s0 + s2  ≪ 1 + s2  ≪ 3 + s3  ≪ 3)

 

 
(4.1) 

(4.2) 
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2  = −1 ∗ s0 + 5 ∗ s1 + 17 ∗ s2  = s0 + s2 + s2  ≪ 4 − (s1 + s1  ≪ 2), s3  = 0  
(4.3) 

Figure 4.3 shows the detailed circuit diagram of the configurable datapath for the 
luma interpolation. Luma filter datapath has four input samples (s0-s3) and is divided in 
a two cycles. The type of filter has to be configured through the configuration vector in 
order to select one of the three equations (4.1), (4.2) or (4.3). Configuration vector is 
determined by a Finite State Machine (FSM) inside the scheduling module. Since there 
are common sub-expressions in those equations, each common sub-expression is 
implemented only once and the others can be eliminated. With those optimizations, the 
final luma datapath uses only 7 adders. It represents a 56% saving in adders compared 
with the work in (GUO, 2012). 

 

Figure 4.3 – Configurable datapath for luma interpolation filter 
 
 
 

 
 
 
 
 

 
 

 
 
 

 
 
 
 
 
 
 
 
 

Source: (DINIZ, 2013). 
 

4.2.2 Chroma Interpolation Filter Datapath 
 

For chroma filter, we applied the same methodology as for the luma filter. Seven 
different chroma interpolation filter types are defined in HEVC (from 1/8 to 7/8 filter 
types).  Our chroma interpolation datapath supports only 4 filters, since the other 3 filters 
are equal when the coefficients are rotated. Equations (4.4), (4.5), (4.6) and (4.7) are the 
computations implemented in our optimized chroma datapath. 

c1  = −2 ∗ s0 + 58 ∗ s1 + 10 ∗ s2 − 2 ∗ s3  = s1  ≪ 6 + s1  ≪ 1 + s2  ≪ 1 + s2 
≪ 3 − (s0  ≪ 1 + s1  ≪ 3 + s3  ≪ 1)

 c2  = −4 ∗ s0  + 54 ∗ s1 + 16 ∗ s2 − 2 ∗ s3  = s1  ≪ 6 + s2  ≪ 4 − (s0  ≪ 2 + s1
 ≪ 3 + s1  ≪ 1 + s3  ≪ 1)

 

 
(4.4) 

(4.5) 
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c3  = −6 ∗ s0 + 46 ∗ s1 + 28 ∗ s2 − 4 ∗ s3  = s1  ≪ 5 + s1  ≪ 4 + s2 
≪ 5 − (s0  ≪ 2 + s0  ≪ 1 + s1  ≪ 1 + s2  ≪ 2 + s3  ≪ 2)

 c4  = −4 ∗ s0 + 36 ∗ s1 + 36 ∗ s2 − 4 ∗ s3  = s1  ≪ 5 + s1  ≪ 2 + s2  ≪ 5 + s2
 ≪ 2 − (s0  ≪ 2 + s3  ≪ 2) 

 
(4.6) 
 
 
(4.7) 

Since there is no similarity between the coefficients among the 4 different chroma 
filters, the optimizations applied in luma datapath for reduced area cannot be applied in 
chroma datapath. The area benefit comes from configurable nature of the datapath. 
Configuration vector is determined by FSM inside the scheduling module. Figure 4.4 
shows our single-cycle configurable datapath supporting four 4-tap chroma filters. The 
chroma datapath was also designed by removing the common sub-expressions. With 
those optimizations, it uses only 7 adders. 

 

 
 

Figure 4.4 – Configurable datapath for chroma interpolation filter 
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4.2.3 Scheduling 

Source: (DINIZ, 2013). 

 

Interpolation filtering computations for motion estimation and compensation are 
same, but the order in which the fractional-pels are computed inside a block could be 
different. FME in HEVC software (HM, 2013) is invoked after IME finds the lowest 
distortion cost motion vector. Then it interpolates only 8 half-pel points around this 
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motion vector and refines the search. Another search step is applied after interpolating 8 
quarter-pel points around the best half-pel block. The motion vector with the lowest cost 
in this last search step is selected as the motion vector of the PU (KIM, 2013). This 
procedure is applied in this way to reduce the number of distortion calculations of FME. 
In the decoder side, quarter-pel motion compensation must interpolate all fractional-pel 
inside the PU pointed by the motion vector received in the bitstream. 

 

A different order of half- and quarter-pel computations influences the processing 
schedule and data fetching from the memory. In case of ME (see Figure 4.5), luma half- 
pels b, h, and j should be calculated first (see specification of pixel notations in section 
2.3.1). We propose a scheduling for our architecture that is parameterized depending on 
PU size and the usage scenario (ME or MC), which pixels in the same row to be 
delivered  in  parallel  to  the  filtering  interpolation  datapaths.  Memory  locality  is 
exploited by calculating fractional-pels of the same row first. For example, in our 
scheduling b pixels are prioritized to be delivered into the 12 luma filter interpolation 
units, because they are used as input for j pixels calculation. 

 

In case of MC, half- and quarter-pels of the same row (for horizontal filters) and of 
the same column (for  vertical filters) are computed in  the sequence such that the 
memory locality could be further exploited. Each fractional-pel computation in our 
architecture involves loading the input samples into the luma and chroma interpolation 
units and configuring their filter types through the configuration vector. 

 

Prediction unit size also influences scheduling regarding memory fetching. For 8-tap 
filtering, the architecture needs to fetch 8 integer-pels. If PU is of 4x4 size, to exploit all 
the parallelism, our architecture needs to compute 12 half-pels (e.g. 3 rows of half-pels) 
and for this 33 integer-pels are fetched. Therefore, our architecture benefits with the 
increase in PU size, because as more half-pels are calculated in the same row, few 
integer-pels rows need to be fetched in advance for each interpolation cycle. 

 

Figure 4.5 – Interpolation filter scheduling 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Source: (DINIZ, 2013). 
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This module is implemented as a FSM that also determines the values of 
configuration vectors for luma and chroma interpolation datapaths. 

 

4.2.4 Results and Evaluation 
 

The proposed interpolation filter architecture was implemented in VHDL and 
synthesized using TSMC 150nm and FreePDK 45 nm (FREEPDK, 2014) CMOS 
standard-cell libraries using Cadence RTL Compiler tool (CADENCE, 2014). For both 
technologies, a  constraint of  312  MHz  clock  frequency was  introduced. Synthesis 
results are shown in Table 4.2. 

 

 
 

Table 4.2 – Synthesis results and comparisons to the state of the art hardware 
implementation of the interpolation filter. 

 

 (GUO, 2012) GUO, 2012) Our architecture 
Technology (nm) 90 90 150 45 

 
G

at
e 

co
un

t Luma datapath – – 1,363 1,298 
Chroma datapath – – 1,132 974 
Scheduling/Control – – 269 264 
Total (luma only) 19,600 32,496 16,625 15,708 
Total – – 30,209 27,396 

Memory (#bits) – – 1224 1224 
Frequency (MHz) 85.5 171 312 312 
Throughput HD1080 

@ 30 fps 
QFHD 

@ 60 fps 
QFHD 

@ 30 fps 
QFHD 

@ 30 fps 
Power (mW) – – – 23.6 

Source: the author. 
 

 
 

Our work is compared with two state-of-the-art HEVC interpolation solutions as 
presented in (GUO, 2012). Our hardware architecture delivers 12-pel at each two cycles 
(or 6-pel/cycle) for luma interpolation and 12-pel/cycle for chroma interpolation. 
Operating at 312 MHz frequency, our architecture achieves throughput to support the 
interpolation processing of Quad Full High Definition (QFHD), i.e. 3840x2160 at 30 fps. 
Note that compared to the dual-engine architecture of (GUO, 2012), our architecture has 
half throughput. However, unlike our architecture, the dual-engine architecture of (GUO, 
2012) does not support excessive processing for chroma interpolation. Moreover, due to 
the use of configurable datapaths, our architecture, implemented in 150 nm technology 
(older technology than related work) requires area reduction of 16% and 49% compared 
with single- and dual-engine in  (GUO,  2012), respectively. The scheduling module 
allows the use of a reduced input buffer so the memory usage of the architecture is only 
≈1Kbit (when PU size is 64x64 pixels). 

 

Regarding the synthesis results for the FreePDK 45 nm CMOS technology, our 
work also provides an estimation of power dissipation of the architecture proposed 
herein. Comparing power results to the related work (GUO, 2012) was not possible, 
since it did not provide any power estimation numbers in the paper. 

 
4.3   Hardware Architecture for Fractional Pixel Interpolation Filter using Adder 

Compressors 
 

Our hardware architecture for fractional pixel interpolation filter (Section 4.2) is 
composed  by  a  reasonable  number  of  additions  in  the  filter  datapaths.  Since  the 
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intermediate addition values are not useful for the application, but only the final 
interpolated result, we have used multiple-operand, more efficient adder compressors to 
reduce area and power of the filter datapaths. 

 

A combination of 7-2 and 8-2 adder compressors, which perform the simultaneous 
addition of 7 and 8 operands respectively are used in the new logic architecture for the 
interpolation filter architecture. We exploit 7-2 adder compressor and different internal 
structures of the hierarchical 8-2 adder compressor. 

 

4.3.1   Adder Compressors Background 
 

The focus of this section is not on designing new adder compressor structures, but 
applying existing adder compressor structures into our proposed fractional pixel 
interpolation filter architecture. This section reviews some of the existing adder 
compressor structures available in the literature. 

 

The internal structure of the 4-2 adder compressor is presented in Figure 4.6. It has a 
reduced critical path since the maximum delay is given by three Exclusive OR (EXOR) 
gates. The 4-2 compressor has five inputs and three outputs, where the four inputs x1, x2, 
x3, x4 and the output Sum have the same weight. On the other hand, the outputs Carry 
and Cout have one bit order higher. One important point to be emphasized in this 
compressor is the independence of the input carry (Cin) in the output carry (Cout). This 
aspect enables implementation of this structure with higher performance. The final sum 
(S) result of the 4-2 adder compressor (S = x1+x2+x3+x4+Cin) is given in Eq. (4.8). 

 

S = Sum + 2(Cout  + Carry) 
 

(4.8) 
 

Figure 4.6 – Internal structure of 4-2 adder compressor 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Source: the author, modified from (WEINBERGER, 1981). 
 

The 8-2 adder compressor can be constructed hierarchically using basic 3-2, 4-2, 5-2 
and 7-2 adder compressors. We have exploited four different versions of internal 
structures for the hierarchical 8-2 adder compressor as shown in Figure 4.7. The 
structures use trees of basic adder compressors. 

 

For the 7-2 adder compressor, we have employed the very efficient structure 
proposed in (ROUHOLAMINI, 2007), shown in Figure 4.8. In this structure, the critical 
path is given by 6 EXOR gates. The 7-2 compressor has seven primary inputs, two carry 
inputs (Cin), two carry outputs (Cout), and Sum and Carry output terms.  All the inputs 
and output Sum have the same weight. On the other hand, while the output Carry and 
Cout1 are weighted one bit order higher, the output Cout2 has two bit order higher than the 
inputs. Besides the EXOR gates and MUX, the 7-2 compressor also  uses a  carry 
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generator module (CGEN). For more details of the 7-2 adder compressor, please refer to 
(ROUHOLAMINI, 2007). 

 

 
 

Figure 4.7 – Hierarchical 8-2 adder compressor using internal structures based on 
(a) 4-2; (b) 3-2 and 4-2; (c) 5-2, 4-2 and 3-2; (d) 7-2 and 3-2. 

 

 

 
 

(a) (b) 
 

 
 

(c) (d) 
 

Source: (ALTERMANN, 2010). 
 

 
 

Figure 4.8 – 7-2 adder compressor structure. 
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Source: (ROUHOLAMINI, 2007). 
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4.3.2   Enhancing our Fractional Pixel Interpolation Filter Hardware Architecture 
with Efficient Adder Compressors 

 

Our Fractional Pixel Interpolation Filter Hardware Architecture for HEVC (Section 
4.2) has two acceleration engines, each one composed by 12 interpolation datapaths in 
parallel. The adder compressors are employed in the interpolation datapaths. The details 
of internal architecture of the original interpolation datapaths is also shown in Section 4.2. 
With the observation that luma and chroma interpolation filter datapaths have adder 
trees, and the intermediate values are not used in the calculation, we can replace the 
adder trees with efficient adder compressors. In this section, we detail the modified luma 
and chroma interpolation datapaths by employing adder compressors. 

 

Regarding luma datapath, we have developed two options. The original datapath has 
7 values that need to be added, namely the output values from multiplexers. The first 
option (Figure 4.9a) employs a 7-2 adder compressor (see Section 4.3.1). The second 
option (Figure 4.9b) includes the accumulator inside the adder compressor, thus 
employing an 8-2 adder compressor. In both options, the subtraction operator is 
implemented inside the adder compressors by complementing the values of the negative 
part of the operation (using the four multiplexers at the bottom of Figure 4.9). 

 

Figure 4.9 – Modified luma filter datapath using (a) 7-2 adder compressor; (b) 8-2 adder 
compressor. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Source: the author. 
 

Regarding the chroma datapath, it has 8 values to be added (output from 
multiplexers). We have developed a modified chroma interpolation filter datapath 
employing an 8-2 adder compressor, as shown in Figure 4.10. In this datapath, we also 
complement the last four inputs due to the subtraction operation. Four different internal 
structures of the hierarchical 8-2 adder compressor were exploited (see Section 4.3.1). 
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Figure 4.10 – Modified chroma filter datapath using 8-2 adder compressor. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.3.3 Results and Discussion 

Source: the author. 

 

The luma and chroma interpolation datapaths were implemented in hardware 
description language and synthesized into the 45 nm CMOS Nangate Open Cell Library 
(NANGATE, 2015) using the Cadence RTL Compiler (CADENCE, 2014). The cycle 
time constraint was set to 2 ns for the automated logic synthesis. 

 

Table 4.3 shows the synthesis results of the datapaths implemented with different 
adder compressor internal structures, herein referred as implementation versions. Luma 
datapath has five implementation versions, while chroma datapath has four 
implementation versions, all shown in Table 4.3. These versions using adder 
compressors were compared to the datapaths of the original interpolation datapaths 
(Section 4.2) implemented with Ripple-Carry Adders (RCA). The comparison is done in 
terms of cell usage, area, delay, power and Power Delay Product (PDP). Power results 
were generated using simulation of 10,000 random test vectors as inputs into the 
architecture. 

 

The most power-efficient version for both luma and chroma datapaths is the one 
using the hierarchical 8-2 adder compressor composed with 3-2 and 4-2 adder 
compressors (see Figure 4.7b). They dissipate 15% less power than the original 
architecture with RCA. In terms of area, the most efficient version for luma and chroma 
datapaths is the one using hierarchical 8-2 compressor composed of 7-2 and 3-2 adder 
compressors (see Figure 4.7d). They achieve 18% and 13% area reduction in luma and 
chroma datapaths, respectively, compared with RCA versions. In terms of PDP, the 
most efficient version for luma and chroma datapaths is the one using hierarchical 8-2 
compressor composed by 4-2 adder compressors. They achieve 30% and 18% PDP 
reduction in luma and chroma datapaths, respectively, compared to RCA versions. The 
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different area, power and PDP results of the adder compressor implementation versions 
leave the option to the designer, depending on what is the priority design goal the 
designer has for the dedicated architecture. 

 

Table 4.3 – Synthesis results for the Interpolation Datapaths. 
 

  
Figures 

 
Cells Area 

(µm2) 
Delay 
(ns) 

Leakage 
Power 
(µW) 

Dynamic 
Power 
(µW) 

Total 
Power 
(µW) 

PDP 
(×10-13) 

PDP 
reduction 

(%) 
Luma datapath  
Original   datapath 
with RCA* 4.3 384 1,692 1.872 26.0 415.9 441.9 8.27 - 

i) 7-2 4.9a 337 1,443 1.570 24.4 370.8 395.2 6.20 25 
ii) 8-2 (w/ 4-2) 4.9b & 

4.7a 392 1,589 1.478 25.6 367.7 393.3 5.81 30 

iii) 8-2 (w/ 3-2 and 
4-2) 

4.9b & 
4.7b 395 2,446 1.604 25.2 353.1 378.3 6.06 27 

iv) 8-2 (w/ 5-2, 4-2 
and 3-2) 

4.9b & 
4.7c 423 1,702 1.628 25.8 388.6 414.4 6.74 18 

v) 8-2 (w/ 7-2 and 
3-2) 

4.9b & 
4.7d 329 1,404 1.549 24.1 365.5 389.6 6.03 27 

Chroma datapath  
Original   datapath 
with RCA* 4.4 435 1,761 1.612 27.2 396.8 424.0 6.83 - 

i) 8-2 (w/ 4-2) 4.10 & 
4.7a 430 1,643 1.466 26.0 355.4 381.5 5.59 18 

ii) 8-2 (w/ 3-2 and 
4-2) 

4.10 & 
4.7b 445 1,660 1.563 25.6 337.6 363.2 5.68 17 

iii) 8-2 (w/ 5-2, 4- 
2 and 3-2) 

4.10 & 
4.7c 449 1,721 1.598 26.1 360.3 386.5 6.18 10 

iv) 8-2 (w/ 7-2 and 
3-2) 

4.10 & 
4.7d 396 1,546 1.499 24.7 354.1 378.9 5.68 17 

*Uses the datapaths of the architecture in Section 4.2, but implements the adders with Ripple-Carry Adder (RCA). 
 

Source: the author. 
 

In the original architecture (Section 4.2), luma and chroma acceleration engines 
employ 12 datapaths each one. Considering that, we estimate the impact of power in the 
entire architecture. Employing the most power-efficient implementations versions of 
luma and chroma datapaths (iii and ii), the architecture dissipates approximately 8.9 
mW and spends 49,272 µm2 of chip area. Related works on HEVC interpolation 
architectures, (GUO, 2012) and (AFONSO, 2013), do not provide area and power 
results, so the direct area and power comparisons against their designs are not possible. 

 
4.4 Hardware Architecture for Deblocking Filter of HEVC 

 

This section describes the proposed hardware architecture for Deblocking Filter of 
HEVC. The system diagram of the architecture is depicted in Figure 4.11. Our 
architecture receives as input the samples of the 2 neighboring 4x4 blocks (P and Q, 
please refer to deblocking filter overview in Section 2.3.2). P and Q blocks belong to 
different adjacent 8x8 blocks in PU or TU boundary to be filtered, which is determined 
by PU and TU flags. Our architecture decides whether filtering is required or not and 
the strength of the filtering to be applied if this is the case. It depends on input samples 
and also on Bs, β and tc calculated over sample values, P and Q block types, and QP, 
which are also given as input to our architecture. Our architecture also has some simple 
control signals to establish a handshake between a master device (e.g. a CPU that runs 
the whole HEVC encoder/decoder application) and our architecture (which plays the 
slave role). 
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Figure 4.11 – System diagram of the proposed hardware architecture for HEVC 
deblocking filter 
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Source: (DINIZ, 2015b). 

 

Samples from P and Q blocks to be filtered are first stored into a reference picture 
memory. As each input sample has 8 bits, our architecture supports a 256-bit wide input 
memory channel. Therefore, 32 samples (both 4x4 blocks, P and Q) are transmitted in 
one clock cycle. Filtered samples are stored back into reference picture memory after 
the filtering operations. 

 

Our architecture has three main units: (1) filtering decisions; (2) filtering operations; 
and (3) control unit. The filtering decisions unit calculates the conditions to decide 
whether the  boundary must  be  filtered  or  not  and  the  strength of  the  filter.  It  is 
composed by some datapaths in parallel, whose internal architecture is detailed in 
section 4.4.1. If filtering is required, the filtering operations unit calculates the filtered 
samples. Datapaths of filtering operations are detailed in section 4.4.2. The control unit 
implements the control flow shown in section 2.3.2 and it establishes the handshake 
with a master device. The control unit is discussed in section 4.4.3. 

 

4.4.1   Filtering Decisions Datapaths 
 

This unit determines the need of filtering two given 4x4 blocks. For input samples 
convention and deblocking filter equations, please refer to section 2.3.2. By examining 
the standard deblocking filtering equations, it can be noted that conditions 1, 2, 3, 8 and 
9 share similar sub-expressions with the same input samples. Partial results from 
conditions 2 and 3 and used for conditions 1, 8 and 9. Hence, we employ hardware 
reuse to design a merged datapath  for those conditions. The diagram of the merged 
datapath is depicted in Figure 4.12. Conditions 1, 2, 3, 8 and 9 were shortened as c1, c2, 
c3, c8 and c9, respectively. 
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Figure 4.12 – Merged datapath for conditions 1, 2, 3, 8 and 9 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Source: (DINIZ, 2015b). 
 

 
 

The condition equations require some multiplication by constants. We have replaced 
the multiplications by adders and shift operations to use less hardware resources. The 
proposed merged datapath generates the five conditions in only one clock cycle. 

 

Datapaths for the remaining conditions (4, 5, 6, 7, and 10) are depicted in Figure 
4.13. Datapaths for conditions 4 and 5 are equal, only differing by the input samples 
(condition 4 is applied in the first row and condition 5 is applied in the last row of 4x4 
blocks). We have included two instances of this datapath to compute both conditions 
(c4 and c5) in the same clock cycle. The same was made for conditions 6 and 7. 
Condition 10 is an additional filtering decision applied to δ0  for the four rows of 4x4 
blocks after normal filtering operation (see more details of filtering operations in section 
4.4.2). Our architecture includes two instances of this datapath in the design to compute 
c10 for the four rows in two clock cycles. Each instance computes two rows of samples. 
Additional datapaths for β and tc multiplications, needed to compute all the conditions, 
are also shown in Figure 4.13. β and tc values are generated by a lookup table with QP 
value as input index. 
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Figure 4.13 – Datapaths for conditions 4, 5, 6, 7 and 10 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Source: (DINIZ, 2015b). 
 
 
 
4.4.2 Filtering Operations Datapaths 

 

After computing the filtering decisions, this unit computes the filtering operations 
for normal and strong filters (for luma) and chroma filter. 

 

The clipping operation, included in all the datapaths, is present in Deblocking filter 
(DF) to prevent excessive blurriness. It keeps the final result inside a range that depends 
on the QP value, block type and filtering strength. The value c is calculated in the first 
cycle with the decision process and it is stored in register to be used by the filtering 
operation datapaths. 

 

Datapaths for normal filtering operations are depicted in Figure 4.14. Normal filter 
modifies 1 or 2 samples along the block boundary. It computes the delta values (i.e. Δ0, 
Δp1, Δp2) which are offsets that must be added to the original samples (p0, p1, q0 and q1) 
in order to generate the final filtered sample (p0’, p1’, q0’ and q1’). They are applied to 
the four rows of samples of 4x4 blocks P and Q. Delta 0 operation is always computed 
when the normal filter is selected in filtering decision process and modifies the p0 and q0 
samples that are close to the boundary. Delta p1 and delta q1 operations modify also p1 
and q1 samples. Please refer to deblocking filter flow in section 2.3.2 for details. In our 
architecture, delta p1 and delta q1 values are computed anyway in the same cycle to 
achieve  high   throughput  and   to   simplify  control.  However,  the   final   sample 
modification depends upon the result of conditions 8 and 9. This is done by the control 
unit. 

 

In the design of this unit we have also replaced the multiplications by constant by a 
sequence of adders and shift operations. Our architectural design includes two instances 
of each datapath shown in Figure 4.14 (please refer to the architecture diagram in Figure 
4.6). This way, we can compute the normal filtering operations in two cycles. Each 
datapath instance computes two rows of samples. 
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Figure 4.14 – Datapaths for normal filtering operations 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Source: (DINIZ, 2015b). 
 
 
 

Strong filtering datapaths are depicted in Figure 4.15. Strong filter always modify 3 
samples along the block boundary.   It computes the delta values (i.e. Δ0s, Δ1s, Δ2s) 
which are offsets that must be added to the original samples (p0, p1, p2, q0, q1 and q2) in 
order to generate the final filtered sample (p0’,  p1’, p2’, q0’, q1’ and q2’), as shown in 
Figure 4.15. They are also applied to the four rows of samples of 4x4 blocks P and Q. 
Similar to normal filter datapaths, we have also replaced the multiplications by adders 
and shift operations and we have included two instances of each datapath in the 
architecture. Each datapath instance computes two rows of samples. 
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Figure 4.15 – Datapaths for strong filtering operations 
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Source: (DINIZ, 2015b). 

 

Our architecture also includes two instances of the datapath for the chroma filtering. 
The diagram of chroma filter datapath is shown in Figure 4.16. Chroma filter is only 
applied when Bs is equal to 2 and does not require further decisions. It modifies only p0 
and q0 samples. 

 

Figure 4.16 – Datapath for chroma filtering operation 
 
 
 
 
 
 
 
 
 
 
 
 

 
Source: (DINIZ, 2015b). 
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After generating the  delta values, they are  added with  the  original samples to 
produce the final filtered samples, depending on the results of conditions calculated in 
the filtering decisions unit. One multiplexer is included for each output. 

 

4.4.3 Control Unit 
 

Due to the distinct dataflow nature of the deblocking filter, the control unit of the 
architecture is relatively simple. A Finite State Machine (FSM) handles the handshake 
protocol between master and slave and selects the correct filtered output samples based 
on the filtering conditions unit. The FSM has 4 states, as shown in Figure 4.17. The 
output values are also described in Figure 4.17. 

 

The master starts a transmission by signalizing with ‘data_in_valid’ signal. Then, 
the deblocking filter architecture reads the input data port from memory. At the next 
clock cycle, if filtering of the given input is required, the filtered samples are available 
at the output data port and ‘data_out_valid’ signal changes to ‘1’. The deblocking filter 
architecture expects to receive the next 2 rows of samples to be filtered. At the next 
clock cycle, the filtered samples are available at the output data port. This process can 
be repeated, resulting in new blocks at every 2 clock cycles or no filtered block (when 
filtering is not necessary) at every clock cycle. The master can stop transmitting data at 
the end of the second clock cycle, by signalizing ‘data_in_valid’ with ‘0’. 

 

Figure 4.17 – State diagram of the Finite State Machine 
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Source: (DINIZ, 2015b). 
 

An example of the processing scheduling of the deblocking filter architecture is 
shown in Figure 4.18. We show in this example the normal filter operation which needs 
to modify two samples along the boundary. This is the worst case condition for our 
architecture, because it needs more clock cycles to complete. Other situations, e.g. no 
filtering, strong filtering, or even normal filtering modifying only one sample along the 
boundary require less clock cycles to complete the calculation (please refer to the 
deblocking filter flow in section 2.3.2 and the control state machine in Figure 4.17). 
Figure 4.18 shows the scheduling of processing block boundaries of 4 samples to be 
filtered (P and Q blocks). The numbers inside the boxes are the boundaries’ numbers. 
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Figure 4.18 – Processing schedule of normal filter (worst case) 
 
 
 
 
 

 
Source: (DINIZ, 2015b). 

 

Our architecture has an initial latency of 5 clock cycles to complete normal filter 
(modifying 2 samples along the boundary) for the first four-sample boundary. After the 
initial latency, it delivers a new normal filtered boundary at each 2 clock cycles, due to 
our pipelined architecture. We have considered a worst-case condition for our 
architecture as follows: when a CTU (64x64-pixel block) of video is all partitioned into 
8x8-pixel blocks and all boundaries between those blocks need to be filtered by the 
normal filtering that modifies 2 samples along the boundary. This is a very worst case 
condition, since not always the CTU is all partitioned into 8x8-pixel blocks and not 
always it need to be filtered by the worst case filtering mode. However, this analysis is 
useful to compare the architecture with state of the art. Hence, considering the worst 
case condition, our architecture requires 1,027 clock cycles to filter one CTU. 

 

4.4.4   Results and Evaluation 
 

The proposed deblocking filter hardware architecture was implemented in VHDL 
and synthesized to ASIC and FPGA. FPGA synthesis and mapping is performed using 
Xilinx ISE design suite (XILINX, 2014) for Xilinx Virtex-6 XC6VLX130T-ff1156-3 
FPGA device (XILINX, 2012). ASIC synthesis is performed using Cadence RTL 
Compiler tool (CADENCE, 2014) for FreePDK 45nm CMOS standard-cell library 
(FREEPDK, 2014) under a constraint of 200 MHz clock frequency. Area results for the 
target clock frequency for both FPGA and ASIC are shown in Table 4.4. Area results 
for FPGA are shown in terms of Slice Look-up Tables (LUTs) and slice registers. ASIC 
area results are shown in terms of gate count (NAND-2 area equivalent) to enable 
comparisons   with   related   works   which   are   implemented   in   different   CMOS 
technologies. It can be noted that our hardware architecture requires very low hardware 
resources due to our architecture-independent and hardware-specific optimizations to 
create very optimized datapaths for HEVC deblocking filter. 

 

 
 

Table 4.4 – Synthesis results of the deblocking filter architecture for FPGA and ASIC 
 

 
Hardware units 

FPGA results ASIC results 
 

Slice LUTs 
 

Slice Registers Gate count 
(NAND2) 

Conditions 383 168 980 
Operations 770 265 1,931 

Control (FSM) 245 8 370 
Total 1,398 441 3,281 

Frequency (MHz) 140 200 
Source: (DINIZ, 2015b). 
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Table 4.5 shows the comparison of our architecture against two state of the art 
references (OZCAN, 2013) (SHEN, 2013) which implement in hardware the deblocking 
filter. The work in (SHEN, 2013a) presents a DF architecture which is very similar to 
the work in (SHEN, 2013). Herein only the work in (SHEN, 2013) is being considered 
for comparison purpose. 

 

Table 4.5 – Comparisons to the state of the art hardware implementations of the 
deblocking filter 

 

 (OZCAN, 2013) (SHEN, 2013) Our architecture 
Architecture parameters    
Cycles/CTU (worst case) 7,680 440 1,027 
Minimum  frequency  (MHz)  to 
process 1920x1080@30fps 

 

108 
 

7 
 

15.6 

Minimum  frequency  (MHz)  to 
process 4096x2048@60fps 

 

– 
 

56 
 

124.8 

ASIC implementation    
CMOS technology (nm) 90 130 45 
Maximum frequency (MHz) 108 200 200 
Gate count (NAND2 equiv.) 16.4k 21k 3.3k 
Maximum throughput (resolution 
@ frame rate) 

1920x1080@ 30 
fps 

4096x2048 @ 
60 fps 

4096x2048 
@ 60 fps 

Power (mW) – – 4.6 
FPGA implementation    
Device Virtex-6 – Virtex-6 
Frequency (MHz) 108 – 140 
Slice LUTs 5,236 – 1,398 
Slice registers 1,547 – 441 
Maximum throughput (resolution 
@ frame rate) 

1920x1080@ 30 
fps 

– 4096x2048 
@ 60 fps 

Power (mW) 31.0 – 9.0 
Source: the author. 

 

 
 

Compared to the work in (OZCAN, 2013), the ASIC implementation of our 
architecture reduces gate count by approximately 5X, while providing 4X maximum 
throughput in terms of real-time video processing for certain video resolution and frame 
rate. The FPGA implementation reduces LUTs and slice registers by approximately 4X, 
while providing high throughput with a maximum frequency of 140 MHz. We have 
synthesized our design for the same FPGA device of (OZCAN, 2013) to enable direct 
comparison in terms of slice LUTs and slice registers being used in the configuration. 
The throughput of our architecture is higher than the related work mainly due to the 
reduced number of cycles/CTU (in the worst case) of our architecture. Our architecture 
reduces the cycles/CTU by more than 7X. Area is reduced in our design through our 
architecture independent and hardware specific optimizations, i.e. reusing of operations, 
replacing multiplications by add/shift operations. 

 

The work in (SHEN, 2013) has a more efficient design than (OZCAN, 2013) at the 
cost  of  a  larger  hardware  area.  It  does  not  include  FPGA  implementation,  so 
comparisons are possible only against our ASIC results. Compared to (SHEN, 2013) the 
ASIC implementation of our architecture reduces gate count by more than 6X, while 
providing a similar throughput. Another comparison is conducted in terms of the 
architecture (and implementation-independent) parameters: cycles/CTU (worst case) 
and minimum frequency to process two video resolutions in real time: 1920x1080 @ 30 
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fps; and 4096x2048 @ 60 fps. Our work requires twice the minimum frequency to 
process videos at a certain frame rate (15.6 MHz vs. 7 MHz, and 124.8 MHz vs. 56 
MHz) than (SHEN, 2013). However, our architecture achieves 6X gate count reduction 
compared to (SHEN, 2013). By increasing operating frequency to only 124.8 MHz, our 
design achieves throughput to process 4096x2048@60 fps. Both FPGA and ASIC 
implementations of our architecture reach this operating frequency, as shown in the 
results in Table 4.4. 

 

We have also provided power estimation of our architecture. Regarding the ASIC 
implementation, it was not possible to compare power estimation results since the 
authors of (SHEN, 2013) and (OZCAN, 2013) do not provide any power estimation 
numbers for ASIC implementations. (OZCAN, 2013) quotes its power estimation for 
FPGA implementation. We estimated power of our architecture and the architecture 
proposed in (OZCAN, 2013), both implemented in FPGA, with the proprietary Xilinx 
power estimator tool (XILINX, 2013). Our architecture dissipates 3X less power 
compared to the architecture proposed by (OZCAN, 2013). 

 
4.5   Hardware Architecture for Sum of Absolute Differences (SAD) 

 

As reviewed in chapter 2, SAD is a low-complexity distortion metric used in mode 
decision and Motion Estimation (ME) stages of advanced video encoders. Considering 
our HEVC application analysis in chapter 3, it consumes a huge amount of total 
encoding execution time. It is definitely an important computational kernel in HEVC 
encoder. Many related works proposed different hardware architectures for SAD 
calculation. Most of them are included in complete ME hardware architectures targeting 
H.264/AVC and HEVC standards. 

 

An abstract system diagram of a ME hardware architecture is shown in Figure 4.19. 
It usually includes three modules: i) on-chip memory to store search area buffer; ii) 
control unit that implements the ME algorithm; and iii) a SAD architecture with many 
SAD processing elements (PEs) in parallel. Search area buffer stores the candidate 
blocks to be compared with the current block to be encoded. This buffer is filled in 
advance by fetching the search area from the picture buffer on external memory. The 
control unit implements the ME algorithm (usually a fast block matching algorithm) and 
delivers the candidate blocks to be compared with the current block by the SAD 
architecture.  The  SAD  architecture  contains  many  PEs  in  parallel  because  the 
candidates can be compared in parallel with the current block since there is no 
dependency among different block comparison. 

 

Figure 4.19 – A Motion Estimation (ME) architecture diagram and the Sum of Absolute 
Differences (SAD) architecture 

 
 
 
 
 
 
 
 
 
 
 
 
 

Source: the author. 
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In this thesis there is a design space exploration for the architecture of the SAD 
processing element design. We have designed nine hardware architecture alternatives 
for SAD processing element, varying the parallelism level (4, 8 and 16 samples in 
parallel) and the number of pipeline stages. Then, we conduct a comparative analysis of 
the architectural alternatives of SAD PE in terms of hardware area, throughput, power, 
and energy consumption. Depending on system requirements, the designer may choose 
a  highly-parallel deep-pipelined SAD version, e.g. to achieve high performance, or a 
less parallel SAD version to dissipate lower power and consume lower energy. Other 
modules of a complete ME architecture, e.g. the ME algorithm, control, and memory 
fetching, are not the focus of this thesis. 

 

4.5.1 Exploiting Different Versions of Parallel SAD Processing Elements 
 

We designed different hardware architecture alternatives for SAD processing 
elements following a fixed structure. The generic structure of a SAD PE is defined as 
follows, with N being the number of 8-bit input samples in parallel: 

 

• N 8-bit subtractors in parallel to subtract N original samples (of current block) 
from N predicted samples (of a candidate block); 

 

• N absolute (abs) operations in parallel; 
 

• A set of adders organized in a binary-tree, with N input values and log2 N deep 
(uses N-1 adders); 

 

• An accumulator (an adder and a register) to add partial SAD values to compose 
the final SAD. 

 

We have designed nine architecture alternatives for SAD PE with a combination of 
two parameters: i) the number of input samples in parallel (4, 8 and 16); ii) the number 
of pipeline stages, depending on each version of parallelism. Figures 4.20, 4.21 and 4.22 
show the SAD PE architecture alternatives with 4-input samples, 8-input samples and 
16-input samples, respectively. 

 

The advantage to explore the parallelism is to increase the architecture throughput to 
perform SAD calculation of more samples per clock cycle. However, doubling the 
number of input samples increase in one adder the depth of adder tree, i.e. one adder is 
included in the critical path for pure combinational version (1-stage). To analyze this 
issue three architecture alternatives were designed for each parallelism version varying 
the number of pipeline stages, as shown in Figures 4.20, 4.21 and 4.22: 

 

a)  1-stage, 3-stage and 5-stage pipeline alternatives for 4-input samples SAD 
processing element; 

b)  1-stage, 3-stage and 6-stage pipeline alternatives for 8-input samples SAD 
processing element; 

c)  1-stage, 4-stage and 7-stage pipeline alternatives for 16-input samples SAD 
processing element. 

 

All versions contain registers at the input (Orig and Pred samples) and the output 
(register to store the final SAD value). The alternatives differ on where the pipeline 
registers are present, represented by dashed lines in distinct colors. At each stage of the 
adder tree, the dynamic range of adders is increased by 1-bit. 
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Figure 4.20 – SAD Processing Element (PE) alternatives with 4-input samples 
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Source: (DINIZ, 2010). 

 

 
 

Figure 4.21 – SAD Processing Element (PE) alternatives with 8-input samples 
 

Legend: All versions 3-stage and 6-stage  6-stage 
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Source: (DINIZ, 2010). 

 

 
 

Table 4.6 shows the architectural parameters of the different SAD PE architectural 
alternatives that are evaluated in this work. Since they have different input samples and 
pipeline stages, they have different number of clock cycles per block. We have 
considered a block of size 64×64 samples since this is the larger block size defined in 
HEVC standard. The number of pipeline stages also defines the initial latency (in clock 
cycles) of each architectural alternative. 
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Figure 4.22 – SAD Processing Element (PE) alternatives with 16-input samples 
 

Legend: All versions 4-stage and 7-stage  7-stage 
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Table 4.6 – Architectural parameters of the different SAD PE alternatives 
 

SAD PE alternative  

Initial latency 
(cycles) 

Cycles/block (one 64x64 
candidate  block, includes 

initial latency) 
Input 

samples 
Pipeline 
stages 

4 1 1 1025 
4 3 3 1027 
4 5 5 1029 
8 1 1 513 
8 3 3 515 
8 6 6 518 
16 1 1 257 
16 4 4 260 
16 7 7 263 

Source: the author. 
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4.5.2 Results and Evaluation 

 

All the SAD PE architectural alternatives were described in VHDL and synthesized 
to FreePDK 45 nm (FREEPDK, 2014) CMOS standard-cells library using Cadence 
RTL Compiler tool (CADENCE, 2014). Table 4.7 shows the results and comparisons of 
the architecture alternatives for SAD PE in terms of area (gate count, 2-input NAND 
equivalent), maximum frequency, performance, and power. 

 

 
 

Table 4.7 – Synthesis results and comparison of the different SAD PE alternatives 
 

SAD PE alternative  

Gate 
count 

Max. 
frequency 

(MHz) 

 

Performance 
(64x64 blocks/s) 

 

Power (µW) 
@ max. freq. Input 

samples 
Pipeline 
stages 

4 1 1,097 384 374,634 994 
4 3 1,420 714 695,228 1,532 
4 5 1,920 769 747,327 2,315 
8 1 1,995 370 721,247 1,820 
8 3 2,631 667 1,295,145 2,896 
8 6 3,726 714 1,378,378 4,617 
16 1 4,120 344 1,338,521 3,475 
16 4 5,171 526 2,023,076 5,777 
16 7 7,300 667 2,536,121 9,230 

Source: the author. 
 

 
 

The performance is obtained in terms of the number of candidate 64x64 blocks (the 
larger block size defined in HEVC standard) processed per second with the SAD 
calculation.  We  show  performance  results  considering  the  maximum  operating 
frequency of each alternative obtained after synthesis process. The alternative with 16- 
input samples and 7-stage pipeline achieves the highest performance, which is 6.7X the 
performance of the lowest performance architectural alternative, i.e. the 4-input samples 
1-stage pipeline alternative, at the cost of 9.28X higher power dissipation. 

 

Hence, for SAD designs in which a power constraint is imposed, alternatives with 
lower performance, but also lower power dissipation, may be preferred. The designer 
may choose lower parallelism/pipeline alternatives when power constraint is imposed. 
Deeper pipeline versions dissipate more power because of the higher dynamic power 
dissipated on the clock circuit of pipeline registers. Increasing the number of input 
samples (i.e. increasing parallelism) also results in higher power dissipation, since there 
is a  higher number of operators and consequently more gates operating and dissipating 
in parallel. 
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5 RECONFIGURABLE HARDWARE ARCHITECTURE FOR 

FRACTIONAL-PIXEL INTERPOLATION OF HEVC 
 
 

Dedicated hardware architectures provide high performance and energy efficiency 
for real-time video encoding and decoding, as discussed in Chapter 4. However, 
dedicated hardware architectures have some drawbacks. First, they are fixed in design 
time and cannot change the hardware in the field, after silicon fabrication. Second, they 
incur in high Non-Recurring Engineering (NRE) cost (the one-time cost to design and 
test a new chip) and high design time. In this scenario, reconfigurable hardware, 
especially FPGAs, provides a platform solution with low NRE cost, faster time-to- 
market, and flexibility of quick upgrades through dynamic reconfigurations (TUAN, 
2006). FPGA-based designs combine the performance and efficiency of dedicated 
accelerators due to their capability to exploit high degree of parallelism along with a 
high degree of flexibility due to their programmability and hardware reconfigurability 
(SHAFIQUE, 2009)(COMPTON, 2002). 

 

This chapter describes a novel reconfigurable hardware architecture for interpolation 
filtering in HEVC. Unlike our dedicated interpolation filter architecture discussed in 
sections 4.2 and 4.3, and different of other state-of-the-art techniques, the architecture 
presented in this chapter adapts depending upon the coding configurations and 
throughput requirements through run-time reconfiguration of adaptive datapaths. It 
thereby provides the performance and power efficiency of dedicated accelerators along 
with the high flexibility due to run-time reconfigurability. The proposed architecture is 
beneficial for low-volume productions, where short time-to-market, low NRE, and 
adaptivity to different coding scenarios are required. Moreover, due to the benefits of 
partial reconfiguration feature, the proposed architecture is especially beneficial for 
small-sized FPGAs. The general applicability of our architecture is FPGA-based video 
encoding systems. 

 

Figure 5.1 shows an overview of our novel reconfigurable hardware architecture for 
the HEVC interpolation filter. It is composed of four main modules: 

 

1)  The Prediction Module (Section 5.1) provides an estimate of the number of 
interpolation filter calls for the upcoming pictures based on the monitored 
GOP-history. 

 

2)  Reconfigurable   Hardware  Accelerator   Engines   for  the   Luma   and 
Chroma interpolation filters (Section 5.2) with a set of different 
implementation versions providing multiple area vs. performance/throughput 
tradeoff options. 

 

3) An Implementation Version Selection Module (Section 5.3) to select an 
appropriate filter implementation for the reconfigurable engine based on the 
predicted number of calls. 

 

4)  An Adaptive  Scheduling  Module  (Section 5.4) to determine the processing 
order and the filter type configuration in an adaptive way. 
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Figure 5.1 – Proposed reconfigurable hardware architecture for Interpolation Filter of 
 

HEVC 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Source: (DINIZ, 2015a). 
 

The proposed hardware architecture is tightly connected to a core processor (e.g., a 
Leon-II or NIOS) that executes the video codec application. During the run time, it 
provides the Picture Order Count (POC), indexes for Coding Unit (CU) and Prediction 
Unit (PU), PU size, and the monitored number of filter calls for each picture. In case of 
the HEVC encoder, additional input parameters are: GOP size, Intra-period and the 
frame-rate. We also assume that the acceleration engines are reconfigured into Partial 
Run-Time  Reconfiguration  (PRR)  regions  as   supported  by  the   current  FPGA 
technology (XILINX, 2010) (ALTERA, 2010). 

 

Our  architecture  employs  internal  buffers  to  store  integer-pels  from  external 
reference picture memory and fractional-pels delivered by the reconfigurable engines. 
The Address Generation Unit (AGU) translates POC, CU and PU indexes into internal 
address representation for the internal buffers. 

 

In the following sections, we discuss the main modules in more details. Section 5.5 
presents results, evaluation, comparison with related work and discussion. 

 
5.1 Adaptive Prediction of Interpolation Filter Calls 

 

5.1.1 Analytical Observations 
 

To design a robust prediction, we need to analyze the pattern of interpolation filter 
calls within a GOP. Figure 5.2 illustrates the number of interpolation filter calls for the 
first eight GOPs of three WVGA (832x480 pixels) video sequences BQMall, 
BasketballDrill, and Race Horses with 60 fps, 50 fps, and 30 fps, respectively. Common 
test conditions are: RA configuration, QP=22 and GOP sizes={4,8,16}. The numbers of 
filter calls among pictures at the same relative position inside GOP were compared. 

 

Figure 5.2 shows that the pictures within a GOP have good correlation (in terms of 
filter calls) with their collocated pictures in the previous GOPs. Therefore, the number 
of filter calls for the to-be-soon-encoded pictures within a GOP can be accurately 
predicted using the monitored filter calls in their collocated pictures in the previous 
GOPs. 
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Figure 5.2 – Correlation of the number of interpolation filter calls considering GOP 
 

sizes equal to (a) 8, (b) 16, and (c) 4 
 

Legend: 
GOP 0 GOP 1 GOP 2 GOP 3 GOP 4 GOP 5 GOP 6 GOP 7 

 
8 

 
 
Previous  GOP correlation 

Previous  GOP correlation 
6 

4 
 

2 
 

0 

BQMall 4 BQMall 
 
2 
 
0 

0 1 2 3 
0 1 2 3 4 5 6 7 

8 
 

6 

4 
 

2 
 

0 
0 1 2 3 4 5 6 7 

Previous  Intra-period correlation 
10 

4 BasketballDrill 

 
2 
 
 

0 1 2 3 
 
6 Race Horses 
4 

Race Horses 
5 

 
0 

0 1 2 3 4 5 6 7 

(a) Picture position  inside GOP (GOP size = 8) 

2 

0 
0 1 2 3 

(b) Picture position  inside 
GOP (GOP size = 4) 

 
Previous  GOP correlation 

6 
 
BQMall 

 
4 

 
2 

 
0 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
 

6 BasketballDrill 
4 

2 

0 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Previous Intra-period correlation     Race Horses   
 

4 

2 

0 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

 
(c) Picture position  inside GOP (GOP size = 16) 

 
Source: (DINIZ, 2015a). 

 

While most of pictures exhibit good correlation with pictures in previous GOP, there 
are some exceptions for the pictures 2 and 4 of the GOP 0 and picture 0 of GOP 1. They 
exhibit fewer number of filter calls than those collocated pictures in the next GOPs 
because they use Intra picture as a reference for prediction. Therefore, in these cases, 
the result of Integer Motion Estimation is improved and requires less effort for the 
Fractional Motion Estimation leading to a reduced number of filter calls. In such cases, 
we observe that these pictures exhibit a better correlation with the collocated pictures in 
the previous Intra-period compared to the collocated pictures in the previous GOP. This 
behavior is due to the hierarchical bi-predictive coding structure used in HEVC (KIM, 
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2013). In this structure, pictures between two successive Intra pictures are encoded as B 
pictures. The Intra picture is encoded using a given QP value. The first B picture of 
each GOP (except GOP 0) is called Generalized P and B (GPB) picture. It uses 4 
pictures as reference and is encoded using QP+1 value. Other pictures are divided in 
three layers and are encoded using QP+2, QP+3 and QP+4 values (VANNE, 2012) 
(KIM, 2013). The number of interpolation calls increases when more pictures are used 
as reference (due to bi-predictive ME) and when QP is low (higher quality require more 
efficient prediction). For that reason, the number of interpolation filter calls is higher in 
GPB picture than others (see picture 0 of Figure 5.2a). For some GPB pictures, the 
lower number of filter calls is because they use Intra picture as reference. 

 

In summary, there are two different types of correlations for the number of filter 
calls: (1) correlation with the collocated in previously encoded GOPs; (2) correlation 
with the collocated in previous Intra periods. 

 

5.1.2 Prediction Design 
 

Based on the above analytical observations, we designed two types of predictions 
for the number of filter calls. The first one calculates a Predicted Number of Filter Calls 
(PNFC) for a current picture with position p[0..GOP_size]  inside GOP of index g, 
based  on  the  Monitored Number  of  Filter  Calls  (MNFC) of  collocated  picture  in 
position p from the previous GOP (see Equation 5.1). The position p of a picture inside 
GOP is calculated from Picture Order Count (POC) and GOP size, i.e., p = POC mod 
GOP_size. In order to improve the prediction quality, the prediction error ε (Equation 
5.2) for the previous GOP (i.e., ε(p,g-1)) is added in a weighted way, such that the 
weighting factor is given as δ1. 

 

PNFC( p , g ) = MNFC( p , g − 1 ) + δ 1 * ε ( p , g − 1 ) 

ε ( p , g ) = MNFC( p , g ) − PNFC( p , g ) 
(5.1) 
(5.2) 

The second type of prediction shown in Equation (5.3) computes a PNFC for the 
current picture p and GOP g based on MNFC of the collocated picture in the previous 
Intra-period gPREV_IP, as shown in Equation (5.4). In order to improve the prediction 
quality, the prediction error ε (Eq. 2) for the previous Intra-period (i.e., ε(p,gPREV_IP)) is 
added in a weighted way, such that the weighting factor is given as δ2. The division in 
Equation (5.4) is an integer division as the Intra-period is always in multiples of the 
GOP size. 

 

P N F C ( p , g ) = M N FC ( p , g PR EV _ IP  ) + δ 2 * ε ( p , g PR EV _ IP  ) 

g PREV _ IP   = g − Intra _ period / GOP _ size 

(5.3) 

(5.4) 
Based on the observations in Figure 5.2a and Figure 5.2c, we apply the second type 

of prediction, as shown in Equation (5.3) for the GPB picture (position 0) and for the 
picture in the center of the GOP (position 4). These pictures have a lower QP and a 
higher number of reference pictures, so they exhibit a high number of interpolation filter 
calls. A different behavior happens with the first picture in position 2 inside an Intra- 
period. It exhibits a considerably less number of filter calls than the average. This is 
because this picture uses Intra picture as reference, so the IME finds a good match 
without FME refinement. Equation (5.3) is also used for picture in position 2 in the first 
GOP. The following pictures in position 2 have a higher number of filter calls than the 
first one, but a higher correlation with each other. Therefore, Equation (5.3) is also used 
for the picture in position 10 inside an Intra-period (i.e. picture position 2 of the second 
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GOP of an Intra-period). For all the other pictures, we apply the first type of prediction, 
i.e. Equation 5.1. Prediction is performed separately for luma and chroma. 

 

To reduce the prediction error along time, we back-propagate a percentage of the 
error to the prediction value. The strength of back-propagation is defined by the design- 
time parameters δ1 and δ2, which are selected from offline simulation of a set of video 
sequences. The set of video sequences are offline simulated with the prediction scheme, 
and the prediction error is calculated for each picture of each video sequence. The Mean 
Squared Error (MSE) of each video sequence is computed. Values of δ1  and δ2  are 
adjusted empirically to reduce the MSE of prediction for this set of video sequences. 

 
5.2 Reconfigurable Hardware Engines for Interpolation Filter 

 

We have developed two reconfigurable hardware accelerator engines for luma and 
chroma  interpolation  filters.  Figure  5.3  illustrates  the  datapath  templates  of  both 
engines. We exploit the concept of providing different implementation versions at 
compile-time for a function to be accelerated (BAUER, 2008). The implementation 
versions exhibit different requirements of silicon area and performance. They are 
selected and reconfigured at run-time, as shown in section 5.3. Our datapath templates 
are scalable and provide the instantiation of 1 to max(nDPs) basic datapaths in parallel. 
nDPs  is the number of datapaths in parallel of a particular implementation version. 
max(nDPs) is the maximum number of datapaths in parallel that can be instantiated by 
any implementation version. It must be determined at design-time by the designer 
considering the worse-case throughput requirements. Each engine also contains local 
buffers to store input data of datapaths. 

Figure 5.3 – Architectural template of the reconfigurable engines. Luma and chroma 

datapaths are shown in section 4.2. Luma datapath is shown here as an example. 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Source: (DINIZ, 2015a). 
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Luma and chroma datapaths are the same datapaths used in our proposed dedicated 
hardware architecture for HEVC interpolation filter, shown in section 4.2. Four input 
pels (s0-s3) are given as input. Luma datapath generates one fractional-pel of 7-/8-tap 
filter at each 2 cycles. Instead, chroma datapath generates one fractional-pel per cycle. 
This way, an implementation version of the luma reconfigurable hardware engine with 
nDPs  datapaths has an equivalent throughput of nDPs/2 fractional-pels per cycle. An 
implementation  version  of  the  chroma  engine  with  nDPs   has  throughput  of  nDPs 
fractional-pels per cycle. Local buffer is designed to store necessary input data to 
process the implementation version with the highest parallelism. 

 
5.3 Implementation Version Selection 

 

This module selects one out of N different implementation versions (section 5.2) for 
interpolation filter acceleration. The selection is based on the predicted number of 
interpolation filter calls, i.e., PNFC (section 5.1). An optimal selection is the one that 
finds the implementation version with the lowest number of datapaths that satisfies the 
required performance. The optimal selection consumes less area and saves (leakage) 
energy.   The   Estimated   Performance   (EP)   in   pixels/picture   of   a   particular 
implementation version i∈{1, ..., N} is given by Equation (5.5). In Equation (5.5), f is the frequency of the reconfigurable engine obtained after synthesis (see Section 5.5). 
nDPs  is the number of datapaths (that process in parallel) of the implementation version 
i. 

 

( f * nDPs ( i )) ( 2 * frame _ rate ) 
EP( i ) =  

 
if Luma 

 
 
(5.5) 

  ( f * nDPs ( i ))  ( frame _ rate ) if Chroma 

Equation (5.6) is used to select an implementation version S1 with nDPs(i) datapaths 
that produces an EP higher than the estimated prediction given by PNFC. Apparently, it 
satisfies both area and performance requirements. However, the prediction may incur an 
error (see Equation 5.2), and the monitored number of filter calls may be higher than the 
predicted. Consequently, this selection method may not guarantee performance. The 
required throughput can be achieved by choosing an implementation version S2 
(Equation 5.7), which has only one additional datapath than S1 (Equation 5.6). 

 

   2 * PNFC( p, g )* frame _ rate  
n ( i ) = 

 
if  Luma

 

  DPs     
S ( p, g ) = i,    f  (5.6) 

 PNFC( p, g )* frame _ rate  
n ( i ) =  

if  Chroma 
  DPs     
    f  

S 2 ( p , g ) = i , nDPs ( i ) = nDPs ( S1 ( p , g )) + 1 
 

(5.7) 
Equation (5.7) always selects an implementation version with slightly higher 

parallelism at the cost of increased area and leakage energy. To address this issue, 
Equation (5.8) considers the maximum prediction error max(ε) that may occur at a 
certain point in time. For each picture p of GOP g, we calculate S1 (Equation 5.6) and 
EP(S1) (Equation 5.5) based on the PNFC(p,g) from the prediction scheme. PNFC(p,g) 
is then subtracted by EP(S1). If the result is lower than the maximum error, the selected 
implementation version with S datapaths is calculated as S1 (Equation 5.6). 

 

S1 ( p , g )  if ( EP( S1 ) − PNFC( p , g ) < max( ε )) S( p , g ) = 
S2 ( p , g )  if ( EP( S1 ) − PNFC( p , g ) >= max( ε )) 

(5.8) 
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/ 2 * frame _ rate if Luma 
f  / frame _ rate if Chroma 
 

 
 
 

For example, in case the PNFC for luma is 40 million, the frame rate is 30 fps, and 
the  operation  frequency  f  is  283  MHz,  an  implementation version  with  10  luma 
datapaths in parallel would be selected as being the best tradeoff. 

 

To evaluate the performance impact of our architecture due to an error of prediction, 
we defined the concept of Tolerable Error (TE). TE is the maximum error that can be 
tolerated by our reconfigurable engine. It is defined by the difference between the EP 
values of two implementation versions i1  and i2  that differ in only one datapath, i.e., 
EP(i1)=nDPs  and EP(i2)= nDPs-1. Equation (5.9) shows the TE calculation after applying 
Equation  (5.5).  We  assume  that  all  implementation  versions  work  at  the  same 
frequency. 

 

 f TE =  
 

 
(5.9) 

This way, max(ε) must be lower than TE, otherwise, even S2 (Equation 5.7) does not 
guarantee required performance. By means of our experimental results (Section 5.5) we 
show this holds true after 2 GOPs, when prediction scheme has sufficient input 
information (i.e., monitored history of the interpolation filter calls) to provide good 
prediction result. 

 
5.4   Adaptive Scheduling 

 

Once the accelerator implementation versions are selected, the processing order of 
fractional-pel  is  determined  by  the  Adaptive  Scheduling  scheme.  This  scheduling 
scheme is a generalization of the one discussed in section 4.2, since now the number of 
datapaths in parallel in the accelerating engines are not fixed, but may vary from one 
picture to another. The pseudo-code of the adaptive scheduling scheme is shown in 
Figure 5.4. It adapts to the different processing behavior of the interpolation filter 
depending upon it usage for FME or MC. In FME, it adapts to half-pel and quarter-pel 
computation. 

 

In MC, it schedules fractional-pels calculation according to the fractional-precision 
MV received as an input. In general, our scheme calls the schedule function for each 
case, prioritizing the computation of fractional-pels of the same row or column in 
parallel, whether filters are applied in horizontal or vertical direction, respectively. In 
this way, our scheme reuses input data. 

 

The pseudo-code of the schedule  function is depicted in Figure 5.5. This function 
abstracts input data fetching and reconfiguration of interpolation filter types, i.e., fetch 
and reconfigure functions. It considers the size of PU and the selected implementation 
version S(p,g) to reconfigure datapaths accordingly. The fetch function is used to read 
the input data from the internal buffers (as shown in Figure 5.1). Input data may either 
be  integer-pels  or  fractional-pels.  Integer-pels  are  fetched  from  external  reference 
picture memory. Fractional-pels a, b and c (see fractional pixel positions in section 
2.3.1) are stored into internal buffers since they are used to calculate other fractional- 
pels. The reconfigure function takes into consideration the nDPs(S(p,g)) that defines the 
number of datapaths in parallel of the selected implementation version S(p,g). The 
configuration of filter types involves choosing the appropriate input data to the 
multiplexers of datapaths. When PU_width and PU_height is lower than the number of 
datapaths in  parallel  S(p,g) the  remaining datapaths can  be  used  to  process other 
samples. Figure 5.6 shows an example of the proposed adaptive scheduling. 
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Figure 5.4 – Pseudo-code of the adaptive scheduling scheme (for luma engine) 
Adaptive Scheduling ( ) 
Inputs:    FME_flag : a flag to indicate if it is FME 

quarter_flag     : a flag to indicate quarter refinement 
PU_width        : the width of PU (in pixels) 
PU_height       : the height of PU (in pixels) 
MV[x,y]           : the motion vector 

Output: order of schedule function calling 
begin 

if (FME_flag = 1) // Interpolation for FME 
if (quarter_flag = ‘0’)  // half-pel refinement for FME 

for row = -3..PU_height+4 
schedule frac.-pels b (type 2) 
for col = -3..PU_width 

schedule frac-pels h (type 2) 
schedule frac-pels j (type 2) 

else   // quarter-pel refinement 
for row = -3..PU_height+4 

schedule frac.-pel calc. of types a, and c 
for col = -3..PU_width+4 
if best match is in b position 

schedule fractional-pel calc. of types p, e, q, f, r, g 
if best match is in h position 

schedule fractional-pel calc. of types g, k, r, d, n, e, i, p 
if best match is in j position 

schedule fractional-pel calc. of types e, i, p, f, q, g, k, r 
else // Interpolation for MC 

xFrac = MV[0] && 3; 
yFrac = MV[1] && 3; 
if (xFracL != ‘0’) // green and yellow samples (see Fig. 1) 

for row = -3..PU_height+4 
schedule frac.-pel calc. of type [xFracL,yFracL] 

if (yFracL != ‘0’) // yellow samples (see Fig. 1) 
for col = -3..PU_width+4 

schedule fractional-pel calc. of type [xFracL,yFracL] 
else // orange samples (see Fig. 1) 

for col = -3..PU_width+4 
schedule fractional-pel calc. of type yFracL 

end 
 
 
 

schedule ( ) 

 
Source: (DINIZ, 2015a). 

Figure 5.5 – Pseudo-code of the schedule function 

Inputs:    int-pel[] : a block of integer-pels (internal buffer) 
frac-pel[] : a block of fractional-pels (internal buffer) 
PU_width : the width of PU (in pixels) 
PU_height : the height of PU (in pixels) 
S(p,g) : the selected implementation version 
types[S(p,g)]    : a vector with the interpolation types 

Output: Reconfiguration of DPs. 
begin 

if ( types[] are a, b or c ) // horizontal filters 
fetch PU_width+7 of row from int-pel[] 
if ( PU_width > S(p,g) ) 

for i = 1…ceil(PU_width / S(p,g) ) 
reconfigure nDPs(S(p,g)) DPs with corresponding types[] 

else 
reconfigure PU_width DPs with corresponding types[] 

else // vertical filters 
fetch PU_height+7 of col from int-pel[] (d,h,n) or frac-pel[] 
if ( PU_height > nDPs(S(p,g)) ) 

for i = 1…ceil(PU_height / S(p,g) ) 
reconfigure nDPs(S(p,g)) DPs with corresponding types[] 

else 
reconfigure PU_height DPs with corresponding types[] 

end  
Source: (DINIZ, 2015a). 
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Figure 5.6 – Example of scheduling for S(p,g) = 6 and PU_width = 8 
 
 
 
 
 
 

 

 
 

 
 
 
 
 
 

Source: (DINIZ, 2015a). 
 
5.5 Results and Evaluation 

 

The reconfigurable hardware engines of our architecture were designed in VHDL 
and  synthesized for  the  Xilinx  XC5VLX110T-2ff1136 FPGA  device that  supports 
partial dynamic reconfiguration. Synthesis was performed with the Xilinx ISE synthesis 
tool. Prediction, Implementation Version Selection and Adaptive Scheduling modules 
were implemented in software and integrated into the HM (HM, 2013). The detailed 
results and discussions are shown in the next sections. 

 

5.5.1 Fairness of comparison 
 

Our work provides fully standard compliant filter implementation, thus producing 
the video quality that matches exactly that of the reference software. Moreover, our 
architecture provides a standard interface which can easily be used by a fast motion 
search algorithm, thus not limiting its applicability. Approaches that employ fast mode 
decision and search algorithm may exhibit quality loss compared with our work. We 
employed the same ME and mode decision schemes as those being used in the reference 
software (HM, 2013). Therefore, our comparison results only demonstrate the effects of 
fast architecture on performance/throughput, power, and area results. 

 

We determined the throughput values of our architecture using full, detailed logic 
system   simulations   (containing   the   function   accurate   model   of   the   hardware 
architecture) for the operating frequency obtained after the synthesis. For instance, for 
the worst case scenario, we executed a set of 2560x1600 videos. The input to the 
implementation selection mechanism is the predicted number of filter calls (PNFC) and 
the output of this analysis is the number of datapaths to be reconfigured for each 
picture. The maximum number of datapaths selected considered all  pictures of all 
videos for the 2560x1600 resolution was 17. 

 

5.5.2 Synthesis Results 
 

Table 5.1 shows the synthesis results of the reconfigurable hardware accelerator 
engines given a worst-case scenario to process videos of resolution = 2560x1600. 

 

It employs 17 DPs, since our scheme selects implementation versions for ultra-high 
resolution videos with nDPs  in which max(nDPs)=17. The luma engine operates at 283 
MHz frequency, and the chroma engine operates at 184 MHz. The luma and chroma 
local buffers store 71 and 35 input samples, respectively. By means of our adaptive 
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scheduling scheme, it is sufficient to store input data to interpolate one row or column at 
a time for a PU of size up to 64x64. 

 

Table 5.1 – Synthesis results of the proposed hardware architecture for the worst-case 
throughput constraint (i.e., 2560x1600 @ 30 fps). Consider max(nDPs)=17. 

 
 

Module  Slice LUTs   Slice 
registers 

 
Occupied 

Slices 

 
 
BRAMs 

 
Dynamic 

Power 
(mW) 

 
Reconfiguration 

Time2  (µs) 

Luma local buffer  -  -  -  1  2  - 
Luma datapaths1 2,602 1,513 1,131  - 47 636.51 
Chroma local buffer  -  -  - 1  2  - 
Chroma datapaths1 2,415 1,037 1,050  38 590.93 
Total 5,017 2,550 2,181 2 89 1,227.44 
1. max(nDPs)=17. 
2. Estimated based on Occupied Slices and considering a reconfiguration bandwidth of 3.2 Gbps (ICAP with 32-bit 
operating at 100 MHz (XILINX, 2012)). 

 

Source: (DINIZ, 2015a). 
 

The pure software implementation of interpolation filter for an 8x8 block on the 
Leon-II requires 6336 cycles. However, our hardware architecture requires only 160 
cycles that correspond to a speedup of 39x. 

 

Our approach supports reconfiguration of different architectural templates with different 
number of datapaths to support diverse coding configurations, i.e., resolutions, and frame 
rate (see Table 5.2). Each of these architectural templates with a given number of datapaths 
supports the maximum requirements for the corresponding coding configuration. Since our 
architecture is scalable, the supported throughput requirements of the architecture can be 
decided at design-time. Table 5.1 shows a design case to support 2560x1600@30 fps. Table 
5.2 shows another design case with max(nDPs)=6 to support 832x480@60 fps. The design 
for  832x480@60 fps  requires  65%  less  Look-up  tables  (LUTs)  than  the  design  for 
2560x1600@30fps. In case the system requirements denote smaller resolutions, a small- 
sized FPGA may be deployed that saves area. However, for a given coding configuration, 
sufficient area should be provided. In addition to that, our architecture saves area by 
applying design optimizations to reduce the number of operations to support the three types 
of filters in the reconfigurable filter datapaths of the luminance engine. 

 

Table 5.2 shows the synthesis results of six different implementation versions (with 
nDPs varying from 1…6) for the same FPGA device. These versions provide the required 
throughput to encode video sequences of resolution 832x480 pixels. At run-time, our 
technique saves dynamic power for changing workload scenarios, while the total area is 
fixed at design-time for the worst case of a given coding configuration. We estimated 
the dynamic power consumption of our architecture for FPGA using the Xilinx Power 
Estimator (XPE) tool (XILINX, 2013). In case our architecture is mapped to a low 
power FPGA that supports power-gating (TUAN, 2006) we can also achieve leakage 
power reduction. 
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Table 5.2 – Synthesis results of six implementation versions for luma and chroma 
hardware acceleration engines 

 

  

nDPs 
Number of Slice Slice Occupied   Reconfiguration Dynamic 

Interpolated Pixels  LUTs   registers  Slices Time1  (µs) Power (mW) 

Lu
m

a 
en

gi
ne

 

1 4,716,667 154 89 60 33.77 4 
2 9,433,333 307 178 131 73.73 8 
3 14,150,000 460 267 167 93.99 12 
4 18,866,667 613 356 266 149.70 16 
5 23,583,333 766 445 333 187.41 20 
6 28,300,000 919 534 370 208.23 23 

C
hr

om
a 

en
gi

ne
 

1 9,433,333 143 61 59 33.20 2 
2 18,866,667 285 122 118 66.41 4 
3 28,300,000 427 183 177 99.61 7 
4 37,733,333 569 244 237 133.38 9 
5 47,166,667 711 305 296 166.59 11 
6 56,600,000 853 366 356 200.35 13 

1. Estimated based on Occupied Slices and considering a reconfiguration bandwidth of 3.2 Gbps (ICAP with 32- 
bit operating at 100 MHz (XILINX, 2012)). 

 

Source: (DINIZ, 2015a). 
 
 
 
5.5.3 Discussion on Reconfiguration Latency 

 

To provide such flexibility to adapt to different throughputs, our architecture incurs 
reconfiguration latency, as shown in Tables 5.1 and 5.2. However, this is only a startup 
time reconfiguration when switching between different coding configurations on a 
picture-by-picture basis. In the following, we show that the reconfiguration time is 
negligible compared to the full frame encoding time. It can even be hidden using partial 
reconfiguration (XILINX, 2010) (ALTERA, 2010) and configuration prefetching (LI, 
2002). 

 

The  reconfiguration  time  for  the  real-time  encoding  scenarios  is  estimated  as 
follows. The total number of configuration bits of our target FPGA device 
(XC5VLX110T) is 31,118,848 bits (XILINX, 2012). Considering that the 
reconfiguration is performed through the Xilinx Internal Configuration Access Port 
(ICAP) operating at 100 MHz with 32-bit interface (XILINX, 2012), the reconfiguration 
bandwidth is 3.2 Gbps. Therefore, the time to reconfigure the entire device (17,280 
Slices) is 9.725 ms. A particular implementation version corresponds to a partial 
bitstream to be loaded using PRR. We estimated the reconfiguration time of the partial 
bitstream by Equation (5.10) where Number_of_occupied_Slices is the number of slices 
occupied by a particular implementation version with nDPS (see Tables 5.1 and 5.2). 

 

Reconfiguration _ time = Number _ of _ occupied _ Slices* 9.725ms 
17280 

 
(5.10) 

 
 

Note, in our work, the reconfiguration of a particular implementation version is 
performed only once per encoded picture. In a real-time encoding scenario, each picture 
needs to be processed within 16.67 ms for a 60 fps scenario. Considering the worst case 
condition, i.e., to reconfigure the implementation version with 17 DPs for both luma and 
chroma engines (the worst case for 2560x1600 resolution) the reconfiguration time 
consumes 1.23 ms (as shown in Table 5.1) that corresponds to only 7.3% of the total 
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time to encode 2560x1600@ 60 fps video. Since our architecture is adaptive, for some 
pictures it may require a lower reconfiguration time, e.g., 

 

• 66 µs, if nDPS=1 for both luma and chroma engines (33 µs for luma and 33 
µs for chroma). It represents only 0.39% of the picture encoding time at 60 
fps. 

• 408 µs, if nDPS=6 for both luma and chroma engines (208 µs for luma and 
200 µs for chroma). It represents only 2.44% of the picture encoding time at 
60 fps. 

 

5.5.4 Discussion on Reconfiguration Energy 
 

Since the available FPGA power estimation tools (XILINX, 2013) do not provide 
reconfiguration power, we use the data provided by the work in (BECKER, 2010) that 
measured the reconfiguration power of a Xilinx Virtex-5 FPGA device using the 
Microblaze processor and ICAP, the same as we used in this work. The work in 
(BECKER, 2010) measured the reconfiguration power of a Virtex-5 FPGA device by 
measuring the reconfiguration current of a modified Xilinx ML505 FPGA board that 
includes a precision current sense resistor between the voltage regulator and the FPGA 
core   supply,   with   the   help   of   a   digital   storage   oscilloscope.  The   measured 
reconfiguration power to reconfigure 12,867 LUTs on a Virtex-5 device, in their 
experiment was 0.44 W (BECKER, 2010). This experimental data from these authors 
was used herein for estimations of reconfiguration power cost. Therefore, the estimated 
power to reconfigure our worst case design (for 2560x1600 resolution, consuming 5,017 
LUTs) is 0.17 W. The worst case reconfiguration energy is given as 0.21 mJ (i.e., 0.17 
W * 1.23 ms; consider the reconfiguration latencies shown in Table 5.1 and Table 5.2). 
For this case, the processing energy is given as 1.48 mJ (89 mW * 16.67 ms) to 
interpolate one frame at a frame rate of 60 fps. This shows that, in the worst case, the 
reconfiguration energy contributes towards 12% of the total energy. However, this is 
done for only once, if the picture requires 17 datapaths in parallel for both luma and 
chroma. If the subsequent pictures also require 17 datapaths, then no (additional) 
reconfiguration is performed. 

 

We now analyze two normal cases, as we showed in the reconfigurable time 
discussion. In case 1, one datapath of luma and one datapath of chroma (297 LUTs) 
need to be reconfigured. It requires a reconfiguration time of 66 µs for each picture. The 
power to reconfigure 297 LUTs is 10.15 mW. The reconfiguration energy in this case is 
0.67 µJ (i.e., 10.15 mW * 66 µs). As the processing energy is 100 µJ (i.e., 6 mW * 
16.67 ms), the reconfiguration energy represents only 0.66% of the total energy. The 
second case is when 6 datapaths of luma and 6 datapaths of chroma (1,772 LUTs) need 
to be reconfigured. It requires a reconfiguration time of 408 µs for each picture. The 
power to reconfigure 1,772 LUTs is 60.59 mW (i.e., 60.59 mW * 408 µs). The 
reconfiguration energy in this case is 24.72 µJ. As the processing energy is 600.12 µJ 
(i.e., 36 mW * 16.67 ms), the reconfiguration energy represents 3.9% of the total 
energy. 

 

Considering the average case variations, the net reconfiguration overhead is always 
below 1.32% only. Figure 5.7 shows the reconfiguration energy overhead per picture (in 
% of the total energy per picture) for People on Street video sequence (2560x1600 
pixels). Further optimizations on reducing the reconfiguration overhead may be 
performed which are orthogonal to the novel contributions of our work.  For instance, 
lowering the reconfiguration power using the methods of (CLAUS, 2008) will further 
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reduce our reconfiguration energy overhead to 14.52 µJ, i.e., only 2.36 % of the total 
energy. 

 

Figure 5.7 – Reconfiguration energy overhead (%) 
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5 
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Picture number 
 

Source: (DINIZ, 2015a). 
 

5.5.5 Comparison with State of the Art 
 

Table 5.3 shows the comparison of our architecture with state of the art. The most 
relevant comparison partners are the works in (PASTUSZAK, 2013) (ZATT, 2013) 
(AFONSO, 2013) as they provide results for FPGA. Since our architecture is scalable, 
we show results of two versions with different throughputs: (1) for ultra-high resolution 
2560x1600 @ 30 fps, which is the higher resolution video provided in (BOSSEN, 
2013); and (2) for medium 832x480 @ 60 fps. 

 

Table 5.3 – Comparisons with state of the art hardware architectures for fractional-pixel 
interpolation filter 

 
(PASTUSZAK, 

2013)1 

 
(ZATT, 
2013)1 

 
(AFONSO, 

2013) This work 
Standard  H.264 H.264 HEVC HEVC HEVC 
Chroma Interpolation  Yes Yes No Yes Yes 
FPGA device & 
technology 
Throughput 

Aria II GX 
40 nm 

Virtex-2P 
90 nm 

Stratix-III 
65 nm 

Virtex-5 
65 nm 

Virtex-5 
65 nm 

(pixels/cycle) 8 6 27 25.5 9 
LUTs  6,732 6,742 4,077 + 16334 5,017 1,772 
Registers - 5,904 3,861 2,550 900 
BRAMs  - 0 12,3 2 2 
Multipliers  - 8 - - - 
Resource efficiency 
(throughput/LUT)*100 0.11 0.08 0.47 0.50 0.50 
Dynamic Power for  5 

worst case (mW)  60 
Dynamic power (mW) 

 

886
 

 

3795
 

 

896
 

 

366
 

scaled to 65 nm7  85 88 379 89 36 

Throughput  1920x1080 
@ 30 fps 

1920x1080 
@ 60 fps 

3840x2160 
@ 60 fps2 

2560x1600 
@ 30 fps 

832x480 
@ 60 fps 

Throughput/power  0.09 0.06 0.07 0.28 0.25 
1Results of the Interpolation Filter only. 2Considers only luma interpolation.  3Includes 16,547 bits of buffers, 

which compares to one 18 Kb BRAM. 4Corresponding to the MUX in (AFONSO, 2013). 5Estimated with Altera 
early power estimator tool (ALTERA, 2013). 6Estimated with Xilinx power estimator tool (XILINX, 2013). 7Scaled 

using the power scaling factors derived in (SHAFIQUE, 2014) using data provided in (KLEIN, 2009). 
Source: (DINIZ, 2015a). 

 

Since different architectures in related works use different settings which are either 
incomplete,  e.g.,  no  chroma  interpolation  in  (AFONSO,  2013),  or  for  a  different 
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technology, e.g. work in (ZATT, 2013) targets 90nm, a direct power/performance 
comparison to our architecture is not straightforward. Therefore, we have performed 
power estimation and power normalization for our work and related works using the 
same methodology. Power estimation uses Xilinx power estimator tool (XILINX, 2013) 
and Altera early power estimator tool (POWERPLAY, 2014). Power normalization is 
based on dynamic power scaling factors between older and new technology FPGAs 
obtained by the work in (SHAFIQUE, 2014) based on information provided in Xilinx 
datasheet (KLEIN, 2009). Power scaling factors for 90 nm, 65 nm and 40 nm 
technologies are 0.4, 0.41, and 0.287, respectively, compared to 150 nm technology. 
Based on these power scaling factors derived in (SHAFIQUE, 2014), we have 
normalized to 65 nm the dynamic power results from related work whose technologies 
differ from our work, i.e. 40 nm (PASTUSZAK, 2013) and 90 nm (ZATT, 2013). 
Additionally, to have a more fair comparison independent of different resolutions and 
area values, we compare different architectures for two new metrics: (1) Throughput in 
terms of pixels processed per cycle (i.e., pixels/cycle); and (2) Resource Efficiency in 
terms of throughput per area. Table 5.3 shows that our architecture is better compared to 
state of the art in terms of area, throughput, resource efficiency, and power consumption 
for different cases. Detailed discussion is shown in the following. 

 

The buffers requirements in (AFONSO, 2013) are 16,547 bits that correspond to one 
18 Kb Block RAM in our design. Our design requires 6,112 bits of buffers, which could 
be mapped to only one BRAM. However, it uses two BRAMs to provide parallel access 
to luma and chroma input samples to achieve high throughput. Work in (AFONSO, 
2013) does not support chroma interpolation (less data need to be stored). If we disable 
BRAMs in our design, it uses additional 764 LUTs to store samples into registers. The 
buffers in (AFONSO, 2013) correspond to 2,069 LUTs. Moreover, the design of 
(AFONSO, 2013) requires 256 4:1 MUX and 1377 2:1 MUX that are mapped to 
additional 1633 LUTs. Therefore, in total, the design in (AFONSO, 2013) requires 
5,710 LUTs. In terms of functionality, our work is still better compared to the work of 
(AFONSO, 2013) because the latter only supports Luma interpolation consuming 5,710 
LUTs while our proposed architecture requires 5,017 LUTs for both Luma and Chroma 
interpolation, which demonstrates high area efficiency of our work compared to the 
related work. We provide area comparison in terms of LUT count because it is a widely 
adopted metric for comparison of different FPGA based designs. Since FPGA devices’ 
Altera LUTs in (PASTUSZAK, 2013) and (AFONSO, 2013) implement all 6-input 
functions, comparing LUT count with our work (Xilinx 6-input LUT) is a fair 
comparison. Since the work in (ZATT, 2013) uses a FPGA with 4-input LUT, we have 
normalized the LUT counts accordingly for a fair comparison. 

 

Regarding throughput comparison, the work in (AFONSO, 2013) have a throughput 
of 27 luma pixels/cycle at 379mW, while our 2560x1600-pixel version have 25.5 
pixels/cycle (i.e., 17 luma pixels are produced at each 2 cycles, which is equivalent to 
8.5 pixels/cycle; and 17 chroma pixels/cycle are produced) at only 89 mW. 

 

The comparison with related work can also by conducted in terms of resource 
efficiency. This metric, as shown in Table 5.3, is computed as (pixels/cycle)*100/LUT. 
Our architecture provides a resource efficiency of 0.50 while the work in (AFONSO, 
2013) leads to a resource efficiency of 0.47. It shows that our architecture brings 6% 
improvement in the resource efficiency while also providing the complete interpolation 
functionality (Luma and Chroma) compared to (AFONSO, 2013) that only supports 
Luma interpolation. Note that the work in (AFONSO, 2013) synthesizes the architecture 
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to an 8-input LUT Altera Stratix-III FPGA, while our work uses a 6-input LUT Xilinx 
Virtex-5 FPGA, which further demonstrates improved design efficiency of our 
architecture. 

 

The work in (AFONSO, 2013) achieves high throughput using (1) deep pipeline (4- 
stage pipeline) that consumes 3,861 registers, i.e., a 39% increase compared to our 
work; and (2) high operating frequency (403 MHz), i.e., a 70% increase compared to 
our work. As a result it incurs a much higher dynamic power (379 mW) compared to 
our work (89 mW), i.e., 4.25x higher compared to the power consumed by our 
architecture in the worst case scenario. 

 

Table 5.4 provides comparisons for the worst-case dynamic power for the same 
throughput (i.e. same video resolution and frame rate) with respective state-of-the-art. 
We achieve 32% power reduction compared to (PASTUSZAK, 2013) and around 1% 
power increase compared to (ZATT, 2013) (both implement the 2x less complex H.264 
interpolation filter). Our design (processing both Luma and Chroma) achieves a worst- 
case dynamic power saving of 7% compared to the design of (AFONSO, 2013) 
(processing only Luma) for the same frame resolution and frame rates. Practically, our 
savings would be more than 7% compared to (AFONSO, 2013) when considering both 
Luma and Chroma. 

 

When processing 2560x1600 video, the work in (AFONSO, 2013) would use 379 
mW of power due to its non-adaptivity, but using 4x less time, i.e. 0.25 second to 
process 30 frames. Hence, its energy consumption is equal to 94.75 mJ for processing 
2560x1600 @ 30fps. However, in the worst-case (i.e., when always using 17 datapaths), 
our architecture consumes 89 mJ to process 2560x1600 @ 30fps. 

Table 5.4 – Worst-case dynamic power (mW)1 comparison with state of the art for the 
same throughput 

 

 Throughput (resolution and frame rate) 
 1920x1080@30fps 1920x1080@60fps 3840x2160@60fps 

(PASTUSZAK, 2013) 85 mW - - 
(ZATT, 2013) - 88 mW - 

(AFONSO, 2013) - - 379 mW 
This work 58 mW 89 mW 356 mW 

1Scaled using the power scaling factors derived in (SHAFIQUE, 2014) using data provided in (KLEIN, 2009). 
 

Source: (DINIZ, 2015a). 
 

Our architecture still keeps all the benefits of adaptivity, i.e., our work is capable to 
adapt to different coding scenarios with resolutions smaller than 2K in a power efficient 
way as demonstrated in the last two columns of Table 5.3. In contrast, the related works 
always consumes a high power, i.e. of (AFONSO, 2013) consumes 379 mW. Our 
architecture  provides  more  energy  savings  under  varying  workload  scenarios  (see 
section 5.5.9). Therefore, the throughput/power efficiency of our design is higher 
compared to that of state-of-the-art techniques. Our flexibility, power-efficiency, and 
completeness w.r.t. providing both Luma and Chroma enables our architecture to be 
preferable in practical scenarios. 

 

5.5.6  Performance Results for Different Video Sequences 
 

In this section we analyze the performance of our reconfigurable architecture for 
different videos and QPs. Figure 5.8 shows the total number of filter interpolations that 
our architecture performs to encode 300 pictures of each video sequence. Each bar 
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shows the average over results extracted with four QPs (22, 27, 32, and 37). Unlike 
state-of-the-art architectures, Figure 5.8 shows that our architecture adapts its 
performance depending upon the processing requirements of different video sequences. 
As motivated in chapter 3, the number of video calls varies depending on video content 
and our architecture adapts its performance to this variation. 

 
 

Figure 5.8 – Number of total filter interpolations of our architecture for the set of test 

video sequences (averaged over QPs) 
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Source: (DINIZ, 2015a). 
 

A more detailed performance analysis is depicted in Figure 5.9. It shows the total 
number of interpolations calculated by our architecture for each video sequence, 
detailing the results for each QP. Figure 5.9 shows that our architecture adapts also to 
the variations on QP even for the same video sequence. WQVGA video sequences 
(Race Horses, BQSquare, Blowing Bubbles and Basketball Pass) do not exhibit 
significant variations over QP changes because the implementation version with 1 DP in 
parallel is often selected by our Implementation Version Selection scheme. This 
implementation version is enough to provide the required performance. However, for 
some WVGA video sequences the adaptation is more evident when comparing different 
QPs in the same video sequence. Not all sequences exhibit significant variations in the 
interpolation filter calls for different Quantization Parameter (QP) values. 

Figure 5.9 – Number of total filter interpolations of our architecture for each video 

sequence (for each QP) 
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Source: (DINIZ, 2015a). 
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As we motivated in chapter 3, the sensitivity of variations and QP values is due to 
many reasons like motion/texture content and the IME algorithm. For low-to-medium 
motion video sequences such as Basketball Drill (the camera remains still while the 
basketball players are moving), IME already finds a good match for many blocks, so the 
total number of interpolation calls is lower. For another case, Race Horses is a complex 
video scene where a group of horse riders move around a grassy background and the 
camera also moves, following their motion. Therefore, in this case, the total filtering 
interpolation is the highest among all video sequences, as the FME is needed more 
frequently. An efficient interpolation filter architecture needs to take care of above- 
discussed  factors.  Therefore,  we  evaluate  our  proposed  architecture  for  all  these 
different types of test videos and demonstrate our benefits for all cases. 

 

5.5.7  Evaluation of Prediction Results 
 

Our Prediction Scheme is  implemented into HM (HM, 2013) and evaluated for 
various video sequences. Figure 5.10a shows monitored and predicted values along with 
the prediction error using δ1=0.2 and δ2=0.05. These weight values reduced MSE for the 
tested video-set that includes 832x480-pixel and 416x240-pixel resolutions (see Figure 
5.10b). The prediction error in Figure 5.10b is an average of the videos and the four 
different QP values. Figure 5.10a shows that our scheme starts the prediction after 
monitoring one GOP. It improves the estimation after concluding one Intra-Period. As 
from the second Intra-Period it could apply both prediction types that we proposed in 
Section 5.1. By applying both prediction types, the average prediction error is well below 
the Tolerable Error (TE) for three different frame-rates. 

 

Figure 5.10 – (a) Monitored and predicted number of filter calls; (b) Prediction error for 
 

832x480 and 416x240 video sequences 
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Source: (DINIZ, 2015a). 
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In order to illustrate the generality of our concept and to validate that our offline 
selected parameters are equally applicable to other video sequences, we present in 
Figure  5.11  the  results  of  prediction  error  using  another  6  video  sequences  of 
2560x1600-pixel resolution “Traffic” and “People on Street” and 1920x1080-pixel 
resolution “Kimono”, “Park Scene”, “Cactus” and “Basketball Drive”. These sequences 
are encoded according to the common test conditions (as recommended by the 
standardization committee) with four different QPs={22,27,32,37}. 

 

Figure 5.11 – Prediction error for 2560x1600 and 1920x1080 videos, considering four 
 

QP values 
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Note that these video sequences are not used to determine the parameters δ1 and δ2, 
rather for only evaluation. These new results demonstrate that the prediction error is 
also well below the TE. 

 

5.5.8  Evaluation of Run-time  Implementation Version Selection 
 

Figure 5.12 shows the detailed results of our run-time implementation version 
selection scheme. It shows how our architecture adapts to different throughputs on a 
picture-by-picture basis based on the adaptive prediction. Different throughputs are 
achieved by the varying number of datapats of the selected implementation versions, as 
shown in Figure 5.12a. In the first GOP, as the prediction may incur in errors, we 
guarantee throughput by selecting the highest throughput implementation version (with 
17 datapaths in this case). For the following GOPs, implementation versions with 6 up 
to 17 datapaths are selected depending upon the frame-rate and frequency (fixed at 
design-time), and the estimated prediction value at run-time. Figure 5.12b compares the 
estimated performance (EP) of the selected implementation versions with the monitored 
number of interpolation filter calls. This figure shows that our architecture guarantees 
the performance for all pictures after the first Intra-Period (when Prediction accuracy is 
enhanced) and adapts at run-time to the number of filter calls for each picture. 

 

 
 

Figure 5.12 – Implementation version selection results: (a) Number of DPs of 

implementation versions selected; (b) Comparison of Estimated Performance (EP) of 

implementation version selected and the monitored number of filter calls for each 

picture (FME case, luma interpolation filter) 
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5.5.9 Comparison with a Non-Reconfigurable Implementation 

 

In this section, we compare two solutions (all using on FPGA-based designs): 
 

• Case 1 – All 17 datapaths are available and always powered-on and no 
reconfiguration is performed: In this case the system will consume more 
dynamic power but saving the reconfiguration energy. 

• Case 2 – All 17 datapaths are available and unused datapaths are power- 
gated. In this case, power-gating will incur the loss of reconfiguration data 
(SHAFIQUE, 2009) (SHAFIQUE, 2010). Therefore, before using the 
additional datapaths again, additional reconfigurations need to be performed. 
In this case, the energy of unused datapaths is saved at the cost of additional 
reconfiguration energy. We in fact do consider such a case for our work. 
Since power-gating is not currently available in the commercial FPGAs, we 
aligned our discussion more towards the reconfiguration and dynamic 
power/energy. 

 

Let us now compare the energy consumption of two cases for a scenario requiring 6 
datapaths of luma and 6 datapaths of chroma (1,772 LUTs); see summary of results in 
Table 5.5. In Case 1, since the system does not support reconfiguration of additional 
datapath, all 17 datapaths are made always available and therefore are always kept 
powered-on. In this case, the total energy consumption is given as 1.48 mJ (i.e., 89 mW 
* 16.67 ms). In Case 2, we consider both the energy to reconfigure the 6 datapaths of 
luma and 6 datapaths of chroma and the processing energy of those datapaths for a 
picture. The reconfiguration energy is given as 24.72 µJ (i.e., 60.59 mW * 408 µs) and 
the processing (dynamic) energy is given as 600.12 µJ (i.e., 36 mW * 16.67 ms). It 
results in total energy of 624.84 µJ that represents an energy saving of 58% for our case 
compared to the non-reconfigurable solution. 

 

 
 

Table 5.5 – Comparison with non-reconfigurable design 
 

 Non-reconfigurable Our 
Reconfiguration energy - 24.72 µJ 
Processing energy 1.48 mJ 600.12 µJ 
Total energy 1.48 mJ 624.84 µJ 

Source: (DINIZ, 2015a). 
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6 RUN-TIME  ACCELERATOR BINDING INTO RECONFIGURABLE 

ARCHITECTURES 

Section 2.4 discussed some benefits of reconfigurable architectures compared to 
dedicated architectures. In addition to providing low NRE cost, reconfigurable 
architectures (especially FPGAs) can enable run-time power/energy saving as discussed 
in Chapter 5. FPGAs introduce flexibility at bit level through fine-grained 
reconfiguration, at the cost of higher power dissipation compared to dedicated circuits. 
On the other hand, coarse-grained reconfiguration provides lower flexibility than FPGA 
but also lower power dissipation. 

 

Section 2.4 contains a review of a recent trend of mixed-grained reconfigurable 
processors that integrate several coarse-grained (CG) and fine-grained (FG) 
reconfigurable elements. Those mixed-grained reconfigurable processors combine the 
benefits CG and FG reconfigurable elements for an efficient accelerator-rich 
architecture. In this work, we envision that, with the rise of on-chip reconfigurable 
fabrics coupled with many core processors, these architectures will be organized in 
processing tiles, on a single chip, to ensure scalability to many cores. Such architectures 
require a run-time system to adapt to the application requirements and to manage 
accordingly the reconfigurations. One important step of the run-time system is the 
accelerator binding. 

 

This chapter presents and discusses our novel run-time accelerator binding scheme 
for tile-based mixed-grained reconfigurable processors. It is generic to account for the 
diverse properties of CG- and FG- reconfigurable elements, their organization inside 
tiles, and the total communication delay. Given an architectural configuration, our 
scheme determines a communication-minimizing binding for datapaths of custom 
instructions at run-time, employing datapath reusing and inter-tile communication cost 
estimation. 

 
6.1 Overview of Tile-based Reconfigurable Architecture 

 

Figure 6.1 shows the system diagram of our tile-based mixed-grained reconfigurable 
architecture  with  our  novel  run-time  accelerator  binding  module.  The  Custom 
Instruction Selection module delivers a set of accelerators that compose custom 
instructions to our binding module at run time. The internal composition of custom 
instructions is detailed in (SHAFIQUE, 2011). They are similar to the proposed 
accelerators for HEVC in this work. This set of accelerators is chosen for each custom 
instruction from a set of implementation versions (available at design time) depending 
upon the available reconfigurable area (AHMED, 2011) (AHMED, 2011a). After 
selection, these datapaths need to be bound/placed and reconfigured onto physical FG- 
and CG-reconfigurable elements to realize the functionality of the custom instructions. 

 

The mixed-grained reconfigurable processor is composed of multiple tiles. Each tile 
consists   of   multiple   CG-   and   FG-   reconfigurable   elements.   The   number   of 
reconfigurable elements inside each tile and in the whole architecture is a design time 
decision. In this paper, we adopt the architecture of CG- and FG- reconfigurable 
elements of KAHRISMA architecture (KÖNIG, 2010), which illustrate the benefits of 
their design over existing mixed-grained reconfigurable processors. The FG fabric is 
partitioned into run-time Partial Reconfigurable Containers (PRC). Each PRC 
reconfigures one datapath with FG granularity (AHMED, 2011a). The CG-fabric is 
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composed  of  configurable ALUs  with  dedicated  register  file  and  context  memory 
(KÖNIG, 2010). 

Figure 6.1 – Abstract System Overview: Our proposed run-time accelerator binding 

module integrated within the tile-based mixed-grained reconfigurable architecture 
 

Task allocation, Custom 
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Source: (DINIZ, 2014). 
 

The reconfigurable elements inside a tile exchange data with dedicated point-to- 
point interconnections. Different tiles exchange data through a fixed word-width Tile 
Interconnection (TI) on-chip network. For this reason, the communication between 
reconfigurable elements of different tiles may spend much more cycles than 
communicating within the same tile. To achieve high performance, a binding scheme 
has to prioritize mapping datapaths of the same custom instruction inside the same tile, 
as motivated in section 6.2. 

 
6.2 Motivational  Analysis 

 

Before proceeding to the details of our novel binding scheme, we present a binding 
scenario and its implications by means of a H.264/AVC video encoder application. 

 

Figure 6.2 shows an example of binding three custom instructions used to accelerate 
compute-intensive kernels of the H.264 encoder: (1) Sum of Absolute Differences 
(SAD), (2) Sum of Absolute Transformed Differences (SATD), and (3) Discrete Cosine 
Transform (DCT). Each custom instruction is composed of a set of datapaths, e.g., the 
SADrow datapath perfoms SAD to a row of a 16x16-pixel block in the input video and 
the Repack datapath performs different byte packing and merging operations. Each 
datapath can be accelerated either by a CG- or a FG- reconfigurable element. For each 
custom instruction, a set of implementation versions, with different number of CG and 
FG datapaths, is available at design-time. An appropriate version is selected at run-time 
for each custom instruction by the Custom Instruction Selection scheme (AHMED, 
2011a). In the example of Figure 6.2, SAD custom instruction implementation version 
selected has 4 datapaths of SADrow (in FG) and 2 datapaths of Repack (in CG). 

 

Figure 6.2 shows the binding of datapaths of three custom instructions using a first- 
fit with datapath reusing scheme (BAUER, 2008). In the example, each tile includes 4 
CG-elements  and  2  FG-elements  each  containing  8  PRCs.  The  elements  of  the 
architecture are labeled with indexes. To bind a datapath, the first-fit scheme scans the 
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indexes of the elements from low to high and binds to the first element that is free. This 
scanning is performed separately for CG and FG, because the datapath must match the 
granularity of the physical element. Hence, this scheme is not aware of the tile 
organization shown in Figure 6.2. We assume that the custom instruction selection 
scheme is aware of the total number of CG and FG elements (AHMED, 2011a). In this 
way, when a custom instruction is available for binding there are enough elements 
available in the architecture. Different custom instructions can also share datapaths that 
share the same function, in a time-multiplexed way. It thereby reduces the 
reconfiguration time that would be needed to bind all the datapaths of a custom 
instruction. 

Figure 6.2 – Example of binding three custom instructions using first-fit strategy with 

datapath reusing scheme 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Source: (DINIZ, 2014). 
 

In the first phase, datapaths from SAD custom instruction are bound to the first four 
FG-PRCs and two CGs. In the second phase, datapaths from SATD custom instruction 
are bound. The selected SATD implementation version in the example employs three 
Repack datapaths. As there are already two CG elements configured with Repack 
datapath, one more CG element is reconfigured and the other two could be reused by 
SATD.  The  other  datapaths  of  SATD  are  bound  to  the  first  FG  element  (FG0). 
However, FG0 does not have enough free PRCs when binding the second Transform 
datapath. Then, the second Transform datapath is bound to the first PRC of the second 
FG element (FG1), i.e., the eighth PRC. 

 

When considering the tile organization, binding the second Transform datapath to a 
different tile results in a high communication cost. It reduces performance when 
processing SATD instruction, compared to a situation where all datapaths are bound 
into the same tile. In the third phase, datapaths of DCT custom instruction are bound. 
All datapaths of DCT custom instruction can be reused by the already bound datapaths 
(in first and second phases), because they share the same function. However, the inter- 
tile communication remains, as the Transform datapath is bound to a different tile. 

 

This first-fit with datapath reusing scheme prioritizes filling the first tile before 
binding to the second tile, reducing fragmentation and maintaining free contiguous 
elements, similar to other FG strategies (WALDER, 2003). However, it may bind 
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datapaths of one custom instruction to two different tiles, incurring in a high 
communication cost because of the interconnection between tiles. Such a high 
communication cost degrades not only the performance of an ill-bound custom 
instruction (e.g., SATD), but all the custom instructions that have some reused elements 
(e.g., DCT). In short an efficient binding scheme needs to account for the inter-tile 
communication costs to maximize the overall performance of the combined set of 
custom instructions. 

 
6.3   Run-time  Accelerator Binding Scheme 

 

6.3.1 Problem Formulation 
 

Custom instructions are employed to accelerate computational kernels of all 
concurrently executing tasks that receive a share of the reconfigurable fabric by the task 
allocation algorithm. The set of custom instructions to be accelerated at a given time is 
defined by I={I1,…, In}. Each custom instruction Ii is composed of a set of datapaths 
D(Ii)={D1,…,  Dm} in which m is the number of datapaths obtained after the custom 
instruction selection algorithm that also determines the granularity of each datapath, i.e. 
g(Dk)=CG or g(Dk)=FG. 

 

Our architecture is composed by a set of tiles T={T1,…, Tl} and a set of 
reconfigurable elements E={E1,…,Er}, such that its granularity is given as g(Eej)=CG or 
g(Eej)=FG. Each element Eej belongs to a certain tile Tj. All tiles have the same number 
of CG and FG elements. The function t(Eej) returns the tile of element Eej. Each tile is 
associated to a coordinate (x, y) that corresponds to the horizontal/vertical position of 
the tile in the floorplan. The total number of tiles |T|,  the number of CG elements 
nCG(Tj) and PRCs FG elements nFG(Tj) inside a tile Tj are fixed at design-time. Two tiles 
directly connected through interconnection structure are able to communicate data from 
one datapath in c cycles. A binding algorithm is defined as a function b : D → E such 
that each datapath of custom instruction is mapped to a unique reconfigurable element. 
For instance, two datapaths (D1 and D2) of a custom instruction are mapped to the first 
two elements: b(D1)=E1, b(D2)=E2. 

 

6.3.2 Run-time  Accelerator Binding Scheme 
 

The pseudo-code of our run-time accelerator binding scheme is shown in Figure 6.3. 
It receives the set of datapaths of a given selected implementation version of a custom 
instruction Ii (of a given task) to be bound. We assume that custom instructions from the 
multiple concurrently executing tasks are delivered sequentially to our scheme. 
Moreover, the architectural characteristics like number and performance properties of 
CG- and FG- reconfigurable elements and the tile structure are available to our scheme. 

 

The first phase of our scheme is to choose the best tile (Section 6.3.3) to bind all or 
most of datapaths of a given custom instruction. As discussed earlier, it is beneficial that 
datapaths of the same custom instruction are mapped to reconfigurable elements in the 
same tile to achieve high performance by avoiding the frequent and high cost of inter- 
tile communication. In some case, it is possible to bind all datapaths of a custom 
instruction inside the best tile, i.e. there are enough free elements in the best tile that fit 
all the datapaths of a custom instruction (min_diff_DPs equal to 0). In this case, our 
scheme  simply  binds  datapaths  inside  the  best  tile  (Section  6.3.5).  When  not  all 
datapaths of a custom instruction fit into the best tile, the remaining datapaths are bound 
into other tiles in a way to minimize the total communication cost with datapaths 
already bound into the best tile (Section 6.3.4). 
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6.3.3 Choosing the Best Tile to Bind a Custom Instruction 

 

We propose a new tile-aware datapath reusing method to determine the so-called 
best tile to bind one custom instruction. We define the best tile as the tile in which all or 
at least most of the datapaths of a custom instruction must be bound. This method is 
shown in lines 2-16 of Figure 6.3. The first goal of our method is to bind all datapaths 
of one custom instruction onto the same tile. If there are no tiles with enough free 
elements available, the second goal is to find a tile where the minimum number of 
datapaths is bound in other tile. Before looking for free elements, we employ datapath 
reusing (line 4 in Figure 6.3) inside each tile, i.e. reusing datapaths from the custom 
instruction to be bound and the datapaths already bound in the current tile. When 
datapaths are reused across custom instructions, only the remaining datapaths (that 
cannot be reused) need to be bound. This results in fewer datapaths to be bound. This is 
beneficial for two reasons: 1) The method increases the probability of binding all 
datapaths of one custom instruction inside the same tile, reducing the inter-tile 
communication cost; 2) When fewer datapaths need to be reconfigured, less 
reconfiguration time is needed. After evaluating the reusing condition, if there are free 
elements available in the current tile, the method stops the search (break in line 15 in 
Figure 6.3) and associates the best tile as the current tile Tj. In this case, the algorithm 
employs first-fit algorithm inside the best tile (line 17 in Figure 6.3, see Section 6.3.5) 
and finishes. 

Figure 6.3 – Pseudo-code of our run-time accelerator binding sheme. 
Binding ( ) : 
Inputs: Ii: custom instruction Ii to be bound 

E : reconfigurable elements of the architecture. 
T: tile organization. 

Output: b : D → E : mapping each datapath of Ii to one element. 
begin 
1. j = 0; min_diff_DPs = MAX_INT; best_tile = 0; 
2. for each tile Tj { 
3. if ( nf(Tj) < n(Tj) ) { // datapaths already bound in Tj 
4. (CGs_reused, PRCs_reused) = datapath_reusing(D(Ii),E); 
5.   } 
6.   else { CGs_reused = 0; PRCs_reused = 0; } 
7.   nCG_to_bind(Ii) = nCG(Ii) – CGs_reused; 
8.   nFG_to_bind(Ii) = nFG(Ii) – PRCs_reused; 
9.   diff_DPs = Clip(nCG_to_bind - nfCG(Tj)) + 
10. Clip(nFG_to_bind - nfFG(Tj)); 
11.  if (diff_DPs > 0 ) { // not all datapaths fit into tile Tj 
12. if (diff_DPs < min_diff_DPs) { 
13. min_diff_DPs = diff_DPs; best_tile = Tj } 
14.   } 
15. else { min_diff_DPs = 0; best_tile = Tj; break; } 
16. } 
17. first_fit_binding(best_tile, nCG_to_bind(Ii), nFG_to_bind(Ii)); 
18. if ( min_diff_DPs > 0 ) { 
19. compute_comm_cost(T,best_tile); // see Eq.1 
20. sort_by_increasing_comm_cost(T); 
21. for each tile Tj { 
22. if (nCG_to_bind(Ii) > 0 or nFG_to_bind(Ii) > 0) { 
23. datapath_reusing(D(Ii),E); 
24. first_fit_binding(Tj, nCG_to_bind(Ii), nFG_to_bind(Ii)); 
25. } 
26. else return; 
27. } 
28. } 
29. else return; 
end 

Source: the author. 
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After the reusing procedure, if still there are no free elements, our method applies a 
greedy approach to determine the best tile (lines 11-14 in Figure 6.3). First, it computes 
the number of datapaths that cannot be bound to this tile (diff_DPs) using the number of 
CG- and FG- datapaths to bind (nCG_to_bind and nFG_to_bind) and the free CG- and 
FG- elements available to bind in tile Tj (nfCG(Tj) and nfFG(Tj)). If the number of 
datapaths that cannot be bound to this tile is lower than the minimum number of 
datapaths that cannot be bound among all tiles evaluated (line 12 in Figure 6.3), it 
updates the minimum number min_diff_DPs and repeats all the procedure. 

 

In the last case, the algorithm may loop over all tiles and may not find a tile with 
enough free elements in one tile to bind all DPs of a custom instruction. Then, our 
method returns the index of the tile with the minimum number of elements that cannot 
be bound on one tile (min_diff_DPs), determined by a greedy approach. 

 

6.3.4 Binding into Tiles with Low Communication Cost 
 

In some cases, the number of datapaths of a custom instruction to be bound cannot 
fit into only the best tile (as shown in Section 6.3.3) because there are no available/free 
reconfigurable elements. Hence, the remaining datapaths must be bound to other tile(s) 
in addition to the initial best selected tile. In order to determine the best tiles to bind 
these remaining datapaths, our scheme estimates the communication cost between the 
selected best tile and the other tiles of the architecture. We assume that the 
communication cost between every two neighboring tiles in the architecture is fixed and 
consumes c cycles to transfer data of one datapath. Because of that, the communication 
cost between the best tile b with coordinates (xb, yb) and other tile i with coordinates 
(xi, yi) can be estimated by calculating the Manhattan Distance (MD) of the tile 
coordinates, as shown in Equation 6.1. 

 

comm_cost = | xb – xi | + | yb – yi | (6.1) 
 
 

After the communication cost is estimated for all tiles that have free elements, the 
tiles are sorted w.r.t. the increasing communication cost (see lines 19-20 in Figure 6.3). 
Finally, the remaining datapaths are bound to the tiles from low to high communication 
cost, until the list of datapaths to be bound is empty. Before binding the remaining 
datapaths in free reconfigurable elements, our scheme also try to employ datapath 
reusing (line 23 of Figure 6.3). If no reusing is found, we finally employ first-fit binding 
to bind datapaths in the remaining tiles (line 24 of Figure 6.3, see also Section 6.3.5). 

 

6.3.5 Binding Datapaths inside a Tile 
 

The binding problem of datapaths inside one tile is simplified to finding free CG- 
and FG- elements inside the selected tile. In this case, a simple first fit algorithm 
(first_fit_binding function, see lines 17 and 24 in Figure 6.3) provides a good binding 
solution inside a tile with reduced fragmentation problem. We assume that, inside a tile 
the communication cost between the reconfigurable elements is negligible due to a fast 
point-to-point interconnection between reconfigurable elements. 

 

6.3.6 An Example of Our Binding Scheme 
 

Figure 6.4 shows an example illustrating the procedure of our binding scheme using 
the same set of custom instructions and architecture as used in the motivational analysis 
(Section 6.2). Note in Figure 6.4 that, when binding the SATD custom instruction, our 
scheme selects tile 1 to bind most of datapaths (the so-called best tile). In this case, all 
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FG datapaths fit into tile 1 and only one Repack (CG) datapath has to be bound in other 
tile (tile 0). This remaining Repack (CG) datapath can be reused in tile 0. The number 
of datapaths communicating inter-tile in SATD custom instruction is 1 datapath using 
our scheme, instead of 2 datapaths when using first-fit strategy with datapath reusing 
scheme (see Section 6.2). When binding the  DCT custom instruction, our scheme 
selects tile 1 as the best tile, because it can reuse all of its datapaths. No datapaths 
communicate inter-tile for DCT custom instruction when using our scheme, instead of 1 
datapath when using first-fit strategy with datapath reusing scheme (see Section 6.2). 

Figure 6.4 – Example of binding three custom instructions using our run-time 

accelerator binding scheme 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Source: (DINIZ, 2014). 
 
6.4 Results and Evaluation 

 

6.4.1 Experimental Setup 
 

We considered a tile-based architecture with a fixed number of CG-elements and 
one FG-element with a fixed number of PRCs per tile. The number of CG and FG-PRC 
elements can be parameterized. Communication between two elements inside the same 
tile requires one cycle. Communication c between two elements in neighboring tiles 
(i.e., when MD = 1) requires 10 cycles. For the evaluation, we employed a H.264/AVC 
video encoder application and their design-time available custom instructions 
(SHAFIQUE, 2011) and the selection algorithm in (AHMED, 2011a). This application 
exhibits various compute-intensive kernels with both control- and data-flow dominant 
processing.  Custom  instruction  selection  is  not  aware  of  the  tile  structure,  but  it 
considers the total number of CG and FG elements in the architecture when selecting an 
appropriate implementation version for each custom instruction. The complete system is 
evaluated with KAHRISMA cycle-accurate instruction-set simulator (AHMED, 2011a). 
The inputs of the simulator (i.e., datapath latency for FG- and CG-fabrics) are obtained 
after place-and-route using Xilinx FPGA tools (i.e., Virtex-4) and ASIC-synthesis-flow 
for TSMC 90 nm (i.e., the same technology of FPGA). We considered a reconfiguration 
bandwidth of the FG-element of 67584 KB/s. 
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6.4.2 Evaluation of inter-tile communications 

 

This section evaluates the efficiency of our scheme (compared to first-fit with 
datapath reusing; see motivational analysis in section 6.2) in determining the best tile 
for binding most of datapaths of a custom instruction. For simplicity, we show the 
results for architectures with only 2 tiles for 6 different combinations on the number of 
CG and FG elements per tile. Figure 6.4 shows the results of the number of datapaths 
communicating inter-tile, accumulated over all the bound custom instructions of the 
application. Our scheme reduces the number of inter-tile communicating datapaths by 
up to 37% (23% on average) compared to first-fit scheme. This result indicates that a 
tile-aware reusing can reduce the number of inter-tile communication compared to first- 
fit with datapath reusing scheme. 

 

 
 

Figure 6.4 – Number of datapaths with inter-tile communication for 2 tiles 
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Source: (DINIZ, 2014). 
 
 
 
6.4.3 Evaluation of communication overhead for many tiles 

 

This section analyzes the communication overhead (in number of cycles) of our 
scheme compared to first-fit with datapath reusing scheme. For that, we have selected 
four different internal tile organizations with: 1) 1 CG and 2 FG-PRC elements; 2) 1 CG 
and 4 FG-PRC elements; 3) 2 CG and 4 FG-PRC elements; 4) 2 CG and 6 FG-PRC 
elements. We keep the tile size small (low number of CG and FG-PRCs) to better 
evaluate the efficiency of our method to bind datapaths into tiles with low 
communication cost. We show results for architectures with 2, 4 (i.e., 2x2), 9 (i.e., 3x3) 
and 16 (i.e., 4x4) tiles. 

 

To compute the communication overhead of each bound custom instruction, we 
consider four parameters: 1) the number of datapaths bound to each tile; 2) the MD 
between the tiles that have datapaths of the custom instruction bound into it and the best 
tile; 3) the number of cycles c to communicate between two neighboring tiles; 4) the 
number of times the custom instruction is executed in the application. The results for all 
internal tile organizations are shown in Figure 6.5. 

 

Our scheme reduces the communication overhead compared to first-fit scheme for 
all the configurations. The communication overhead is larger in the configurations with 
lower number of resources, because it is more probable that the custom instructions 
need more than one tile to be bound. Even for these cases, our scheme still benefits with 
lower communication cost. In summary, our scheme reduces the communication 
overhead by up to 44% (23% on average) compared to first-fit with datapath reusing 
scheme. This is achieved due to the combination of our two novel methods of tile-aware 
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datapath reusing and binding into tiles with low communication cost that integrate our 
run-time accelerator binding scheme. 

 

 
 

Figure 6.5 – Communication overhead for different tile internal organizations 
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7 CONCLUSIONS  AND FUTURE WORK 

 

The presented thesis focused on the contribution of novel dedicated and 
reconfigurable hardware accelerators for the HEVC Standard. 

 

The research work started with an analysis of the HEVC encoding application, 
presented in Chapter 3, which indicates that the most important computations to be 
accelerated in hardware are those of the Interpolation Filter, of the Deblocking Filter, 
and of the calculation of the Sum of Absolute Differences needed for motion estimation. 
Our analysis shows that the results vary significantly depending on the video sequence 
(given as input by the user) and on the quantization parameter which in turn defines the 
level of video encoding loss being incurred. A run-time analysis on the Interpolation 
Filter coding tool indicates that there is a great potential of power/energy saving by 
adapting the hardware accelerator to the varying workload. 

 

The results obtained of our novel dedicated hardware accelerators (Chapter 4) 
indicate significant gains over state-of-the-art hardware accelerators. The proposed 
dedicated hardware architecture for Interpolation Filter achieves sufficient throughput 
to  process  ultra-high  resolution  videos  while  reducing  hardware  area  by  ≈50% 
compared to a state-of-the-art interpolation architecture. It was achieved by designing 
area-efficient configurable multiplier-less datapaths. The throughput was improved 
through   the   use   of   two   12-pixel-parallel   acceleration   engines   containing   the 
configurable datapaths. A scheduling module was also designed to prevent pipeline 
stalls and to improve memory locality, reducing memory usage. The proposed dedicated 
hardware architecture for the Deblocking  Filter achieves throughput similar with the 
state of the art with 5X to 6X reduction in gate count and 3X reduction in power 
dissipation. The datapaths developed in this work are highly optimized for area and 
employed hardware reuse. Our comparative analysis of SAD processing elements 
introduced various architecture design alternatives in order to explore different area, 
performance and power tradeoffs. 

 

The Reconfigurable Interpolation Filter Hardware Architecture for HEVC 
standard, described in Chapter 5, is new and it provides significant design-time area 
reduction and run-time power/energy adaptation in a picture-by-picture basis. This 
feature was not yet supported by state-of-the-art interpolation filter architectures. Run- 
time adaptation is performed through a Prediction Scheme that estimates the number of 
interpolation filter calls and an Implementation Selection Version module that adapts to 
different throughput by selecting from a set of implementation versions. 

 

Our novel Run-Time  Accelerator  Binding  Scheme  for tile-based mixed-grained 
reconfigurable architectures, presented in Chapter 6, reduces the communication 
overhead, compared to first-fit strategy with datapath reusing scheme, by up to 44% 
(23% on average) for different number of tiles and internal tile organizations. Our run- 
time  accelerator  binding  scheme  is  aware  of  the  underlying  architecture  to  bind 
datapaths in an efficient way to avoid inter-tile communications. 

 

The  overall  results  demonstrate  that  the  novel  dedicated  and  reconfigurable 
hardware accelerators and techniques proposed in this thesis are in front of the state of 
the  art  solutions.  Due  to  the  power  and  energy  limitations  of  current  CMOS 
technologies and the high performance requirements of next-generation video coding 
standards, future video coding system implementations will integrate, in the same chip, 
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many-core processors with many dedicated and reconfigurable accelerators in a so- 
called accelerator-rich  architectures. The accelerator-rich architectures are needed for 
high performance ultra-high resolution video encoding/decoding in real time with 
power/energy efficiency. In this context, this thesis introduces novel hardware 
accelerators and techniques which enable next-generation video coding standard 
implementations with improved area, performance, and power/energy efficiency. 

 
7.1   Future Work 

 

Beyond the novel contributions presented in this thesis work, several research 
directions arise for the future, which were not addressed in this work. Some of those 
research directions are suggested in this section as future work. 

 

Hardware accelerators  for other HEVC coding tools: while this thesis focused on 
the most compute-intensive kernels of HEVC standard, there are other coding tools not 
addressed that can be implemented as hardware accelerators to design a complete video 
coding system, such as Sum of Absolute Transform Differences (SATD), Context- 
Adaptive Binary Arithmetic Coding (CABAC), Intra Prediction, Transforms, 
Quantization, and Sample Adaptive Offset (SAO) Filter. The research challenge here is 
to design performance/area/power efficient hardware accelerators for these coding tools 
compared to the ones already presented in the literature. 

 

Exploiting the HEVC parallel  coding tools:  as reviewed in Section 2.2, HEVC 
includes some parallel coding tools to facilitate parallel processing of video coding, 
such as Tiles and Wavefront Parallel Processing (WPP). Regarding tiles, there are many 
research challenges that affect both performance and video quality. The number of tiles 
for each picture and where the tile boundaries are placed is decided at video encoder 
side and it is not standardized. Breaking pictures into more tiles increase scalability for 
many-core processors, but decreases video quality. Hence, there is a tradeoff between 
performance and video quality when using tiles. Regarding WPP (where some CTUs of 
a picture can be processed in parallel in a multi-thread approach), the research challenge 
is to decide in which situations is beneficial to use it. There is also a decision on using 
tiles or WPP for each picture, because HEVC standard does not support both tools 
together yet. 

 

Hardware  accelerators  for image and video processing: some methodologies are 
used in this thesis work to design efficient hardware accelerators for specific kernels of 
HEVC video coding standard. These methodologies may be applied to design hardware 
accelerators for other image and video applications, such as image processing (e.g. 
filtering, interpolation), image coding, video pre-processing, etc. 

 

Accelerator-rich architectures  for the Dark Silicon Era:  the benefits of hardware 
accelerators compared to general purpose processors is pushing the multi-core and 
many-core processor research in the direction of accelerator-rich  architectures, i.e. 
coupling the multi/many-core processors with many dedicated and reconfigurable 
hardware accelerators for specific kernels of applications. In this research topic, many 
research challenges arise. First of all, research challenges at design time need to be 
addressed.  Good  questions  are  what  accelerators  to  design  and  whether  they  are 
designed  as  dedicated  or  reconfigurable  kernels.  Application  profiling  can  help 
designers to choose what accelerators to design. Important kernels used in many 
applications and/or in successive application generations, are good candidates for 
dedicated accelerators. Reconfigurable accelerators can be used to provide flexibility for 
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important emerging kernels (e.g. the new Interpolation Filter of HEVC) and to map 
other accelerators that are used in only some phases of application execution (as 
reconfigurable accelerators are more power hungry). In the higher-level system 
architecture design, other research challenge is how to couple those many hardware 
accelerators to many processing cores, and how to connect them. Design time decisions 
are limited by chip area and thermal design power. Another research challenge appears 
for the run-time control: how to deal with the workload unbalance of threads in the 
accelerator-rich architecture. A run-time system is essential to allocate threads and 
power-on/off accelerators with the main goal to sustain performance under a power 
upper  limit.  The  run-time  system  should  be  fed  by  application  monitoring  and 
prediction to improve the final application performance in power and timing. 

 
 
 
7.2   Published  Papers by the Author 

 

This section presents a list of original research papers developed within the scope of 
this thesis. One journal paper and five conference papers were published during the 
development of the research which led to this thesis. 

 
 
 
7.2.1   Journal Paper 

 

DINIZ, C. M., SHAFIQUE, M., BAMPI, S., HENKEL, J. A Reconfigurable Hardware 
Architecture for Fractional Pixel Interpolation in High Efficiency Video Coding. IEEE 
Transactions on Computer-Aided Design of Integrated Circuits and Systems. v. 34, pp. 
238-251, 2015. 

 
 
 
7.2.2   Conference and Symposia Papers 

 

DINIZ, C. M., FONSECA, M. B., COSTA, E. BAMPI, S. Enhancing a HEVC 
Interpolation Filter Hardware Architecture With Efficient Adder Compressors. In: 13th 
IEEE International NEW Circuits and Systems (NEWCAS) Conference,  2015, Grenoble. 

 

DINIZ, C. M., SHAFIQUE, M., DALCIN, F., BAMPI, S. HENKEL, J. A Deblocking 
Filter  Hardware  Architecture for  the  High  Efficiency Video  Coding  Standard.  In: 
Design,  Automation &  Test in  Europe  Conference  and  Exhibition (DATE), 2015, 
Grenoble. pp. 1509-1514. 

 

DINIZ, C. M., SHAFIQUE, M., BAMPI, S. HENKEL, J. Run-time accelerator binding 
for tile-based mixed-grained reconfigurable architectures. In: 24th International 
Conference on Field Programmable Logic and Applications (FPL), 2014, Munich. 4 p. 
1-4. 

 

DINIZ, C. M., SHAFIQUE, M., BAMPI, S. HENKEL, J. High-throughput interpolation 
hardware architecture with coarse-grained reconfigurable datapaths for HEVC. In: 20th 
IEEE International  Conference  on Image Processing  (ICIP),  2013, Melbourne. pp. 
2091-2095. 

 

DINIZ,  C.  M.,  CORRÊA,  G.,  AGOSTINI,  L.  V.,  SUSIN,  A.  A.,  BAMPI,  S. 
Comparative Analysis of Parallel SAD Calculation Hardware Architectures for 
H.264/AVC Video  Coding. In:  IEEE  Latin  American Symposium on  Circuits  and 
Systems (LASCAS), 2010, Foz do Iguaçu. pp. 132-135. 
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APPENDIX A <EXTENDED ABSTRACT IN PORTUGUESE> 
 
 
 
 
 

A.1. Introdução 
 

Hoje em dia, existem muitos dispositivos no mercado capazes de gravar e exibir 
vídeo digital, como televisores digitais smart, computadores de mesa e portáteis, tablets, 
smartphones, aparelhos de videogame, câmeras gravadoras, câmeras de segurança, etc. 
Estes dispositivos possibilitam uma variedade de aplicações de vídeo digital, como 
streaming de vídeo, transmissão de televisão digital, vídeo-conferência, cinema digital, 
vídeo-vigilância,  etc.  Dois  serviços  de  vídeo  digital  sob  demanda  pela  Internet, 
YouTube e Netflix, tornaram-se incrivelmente populares nos últimos anos. O Youtube é 
o maior repositório de vídeo e serviço de transmissão de vídeo pela Internet, com 80 
horas de vídeo enviadas por minuto pelos usuários e milhões de visualizações por dia 
(KOKARAM, 2013).  O  Netflix  é  um  serviço  pago  de  transmissão de  vídeo  sob- 
demanda que contém vídeos e séries de TV. O Netflix atingiu a marca de 50 milhões de 
assinantes no segundo quadrimestre de 2014 (FORBES, 2014). É previsto que o tráfego 
de vídeo pela Internet será de 79% de todo o tráfego da Internet até 2018 (CISCO, 
2014). 

 

Para lidar com o armazenamento e transmissão de vídeo pela Internet (e por outras 
redes de comunicação), compressão de vídeo é essencial. A seguir, segue um exemplo 
do motivo pelo qual a compressão de vídeo é importante: um vídeo cru (não 
comprimido) de 10 minutos com resolução de 720x480 pixels (Standard Definition - 
SD) representado com 24 bits por pixel (8 bit para cada canal de cor, usando 3 canais de 
cor) e com 30 quadros por segundo (frames per second - fps) necessita de 19 gigabytes 
(GB)  para  ser  armazenado  ou  transmitido  pela  Internet.  O  mesmo  vídeo  não 
comprimido de 10 minutos com resolução de 1920x1080 pixels (Full-HD) necessita de 
112 GB. O mesmo vídeo no novo formato de resolução Sony 4K (4096x2160 pixels), 
usado na Copa do Mundo da FIFA de 2014, necessita de 477 GB. Não é viável lidar 
com este volume de dados de sequências de vídeo não comprimidas usando as 
tecnologias recentes de armazenamento e comunicação. 

 

Codificação de vídeo é o processo de comprimir e decomprimir vídeo digital. Em 
outras palavras, codificação de vídeo é o processo de conversão de vídeo digital em um 
formato adequado para transmissão ou armazenamento. O número de bits para 
representar o vídeo codificado (comprimido) é reduzido comparado ao vídeo não 
codificado (não comprimido). A codificação de vídeo é baseada em um par 
complementar de sistemas: um codificador (compressor) e um decodificador 
(descompressor). O codificador de vídeo converte o vídeo não comprimido em uma 
forma comprimido, antes do armazenamento ou transmissão. Este processo é conhecido 
como codificação de vídeo. O decodificador de vídeo converte o vídeo da forma 
comprimida de volta à representação do vídeo original (ou muito similar ao original). 
Este processo também é conhecido como decodificação de vídeo. O par 
codificador/decodificador é muitas vezes descrito como CODEC (do inglês, 
enCOder/DECoder). A compressão de vídeo é feita pela remoção de redundâncias, ou 
seja, informações não necessárias para representação do vídeo. A compressão de vídeo 
também pode introduzir redundância subjetiva, ou seja, informação que pode ser 
removida sem que afete de forma significativa a percepção do observador da qualidade 
do vídeo. Se o vídeo decodificado é idêntico ao vídeo original não comprimido, o 
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processo de codificação é sem perdas. Na compressão com perdas, a redundância 
subjetiva  também  é  aplicada,  resultando  em  uma  diferença  entre  o  vídeo  não 
comprimido e  o  vídeo decodificado (após ter  sido  comprimido). Compressão com 
perdas é aplicada para atingir maior compressão. A alta compressão resulta porém em 
uma redução da qualidade do vídeo decodificado comparado com o vídeo original não 
comprimido (RICHARDSON, 2010). 

 

Os padrões de codificação de vídeo são desenvolvidos para codificar (comprimir) 
vídeos. A maioria dos padrões de codificação de vídeo aplica compressão com perdas 
para alcançar alta eficiência de compressão de vídeo. Quando os padrões de codificação 
de vídeo estão sendo desenvolvidos, o objetivo é comprimir vídeo com o mínimo de 
perda de qualidade para um certo tamanho do vídeo comprimido (ou para atingir o 
menor tamanho de vídeo comprimido para um certo alvo de qualidade de vídeo). Os 
padrões de codificação de vídeo evoluíram nas últimas duas décadas, principalmente 
impulsionados por novas aplicações de vídeo e o aumento na resolução dos vídeos. Os 
avanços nos padrões de codificação de vídeo recentes para prover aumento da eficiência 
de compressão de vídeo resultam em um imenso esforço computacional. É exigido dos 
dispositivos eletrônicos capazes de processar vídeo que proporcionem maior 
desempenho a cada geração de padrão de codificação de vídeo, para codificar e 
decodificar vídeos de alta resolução em tempo real. Neste contexto, a seção A.1.1 
apresenta a motivação e a definição do problema que norteia esta tese. 

 
A.1.1. Motivação e Definição do Problema 

 

A recente demanda por vídeos de resolução ultra-alta (além de 1920x1080 pixels) 
impulsiona o desenvolvimento de novos padrões de codificação de vídeo mais eficientes 
para prover alta eficiência de compressão O mais novo e mais eficiente padrão de 
codificação de vídeo é o padrão High Efficiency Video Coding (HEVC), desenvolvido 
pelo Joint Collaborative Team on Video Coding (JCT-VC), formado por especialistas 
do Video Coding Experts Group (VCEG) da International  Telecommunication Union 
(ITU) e do Motion Picture  Experts Group (MPEG) da International  Standardization 
Union (ISO). O HEVC foi publicado em Abril de 2013 como uma recomendação 
chamada ITU-T H.265 (ITU-T, 2013). 

 

O HEVC atinge o dobro da eficiência de compressão (ou 50% de redução na taxa de 
bits) comparado com o padrão de codificação de vídeo mais eficiente até o momento, e 
mais utilizado no mercado, o padrão H.264/AVC (Advanced Video Coding) (ITU-T, 
2011). O dobro da eficiência de compressão do HEVC sobre o H.264/AVC é atingido 
para qualidade de  vídeo similar, pois  ambos os  padrões aplicam  compressão com 
perdas. O HEVC atinge tal eficiência de compressão pelo uso de tamanhos de bloco 
maiores (para lidar com as resoluções maiores), particionamento de bloco sofisticado, e 
novos ferramentas de codificação avançadas (SULLIVAN, 2012). 

 

A alta eficiência de compressão do HEVC resulta em um aumento do esforço 
computacional do codificador HEVC que varia de 1,2 a 3,2 vezes o esforço 
computacional do codificador H.264/AVC (VANNE, 2012). Isto requer melhoria de 
desempenho adicional dos dispositivos capazes de processar vídeo, para lidar com o 
aumento  da  complexidade  e  mesmo  assim  ser  capaz  de  codificar  vídeos  de  alta 
resolução em tempo real. Um esforço de pesquisa substancial, especialmente no 
codificador HEVC, é previsto para atingir este objetivo (BOSSEN, 2012). 
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No  passado,  a  melhoria  de  desempenho  era  atingida  devido  aos  avanços  da 
tecnologia de fabricação dos semicondutores, que proporcionam altas frequências de 
operação através de transistores menores e mais rápidos. Recentemente, o avanço na 
fabricação em silício ainda proporciona transistores menores e mais rápidos a cada novo 
nodo tecnológico CMOS. Os chips continuam integrando mais transistores na mesma 
área, seguindo a lei de Moore para densidade (MOORE, 1965). As tecnologias CMOS 
recentes são capazes de integrar mais e mais núcleos (cores) de processamento no 
mesmo chip, chamados de processadores multi-core e many-core. 

 

Entretanto, nas novas tecnologias abaixo de 100 nm, o desempenho é limitado por 
uma potência máxima denominada Potência Térmica de Projeto (Thermal Design 
Power), dado que atualmente a densidade de potência do transistor está aumentando a 
cada novo nodo tecnológico CMOS (ESMAEILZADEH, 2011). Para garantir que os 
chips permaneçam abaixo da potência térmica de projeto, nem todos os transistores do 
chip podem operar na máxima velocidade a todo o tempo, resultando no chamado 
“muro de utilização” (utilization wall) (VENKATESH, 2010). A região do chip que fica 
a maior parte do tempo operando a baixa frequência ou desligada é chamada em geral 
de “dark silicon” (ESMAEILZADEH, 2011) (TAYLOR, 2013). Um trabalho recente 
(TAYLOR, 2013) prevê que a porcentagem de dark silicon irá aumentar a cada nodo 
tecnológico e estará por volta de 94% até o ano 2020. Dark silicon irá limitar o aumento 
da   frequência   de   operação   dos   processadores   para   proporcionar   aumento   de 
desempenho. 

 

Para lidar com o alto desempenho necessário para o novo padrão HEVC e para 
manter os chips abaixo da potência térmica de projeto, os processadores no futuro irão 
integrar muitos aceleradores de hardware no chip para cada função específica da 
computação, chamados de arquiteturas  ricas em aceleradores  (IYER, 2012) (CONG, 
2014). Aceleradores de hardware especializados são 500X mais eficientes em energia 
que processadores de propósito geral realizando a mesma função (HAMMED, 2011). 
Como as funções da computação não são executadas todo tempo simultaneamente, os 
aceleradores podem ser desligados quando não estão em uso. Logo, aceleradores de 
hardware especializados para funções intensivas em computação são uma maneira 
eficiente de “preencher” a área “escura” dos chips. 

 

Apesar dos aceleradores de hardware dedicados proporcionarem alto desempenho e 
eficiência energética para codificação e decodificação de vídeo em tempo real, eles tem 
algumas desvantagens. Eles são fixos em tempo de projeto e não podem alterar o 
hardware em campo, depois da fabricação do chip em silício. Eles também possuem 
altos custos para o projeto e fabricação em silício. Hardware reconfigurável fornece 
uma solução com baixos custos de projeto, rápida chegada ao mercado, e flexibilidade 
para rápidas alterações do circuito através de reconfigurações dinâmicas (TUAN, 2006). 
Projetos baseados em Field-programmable Gate Array (FPGA) combinam o alto 
desempenho de aceleradores dedicados com a capacidade de explorar alto grau de 
paralelismo com alto grau de flexibilidade através de capacidade de programação e 
reconfiguração do hardware (SHAFIQUE, 2009)(COMPTON, 2002). A desvantagem 
dos FPGAs é sua alta potência comparada a aceleradores dedicados. 

 

O autor desta tese prevê que tanto aceleradores dedicados como aceleradores 
reconfiguráveis serão usados nas futuras arquiteturas de processadores ricas em 
aceleradores. Esta tese apresenta diferentes contribuições, tanto em aceleração dedicada 
como reconfigurável, como é discutido na seção A.1.2. Estas contribuições podem ser 
aplicadas aos codificadores HEVC atuais e nos codificadores de vídeo de gerações 
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futuras, se estes codificadores forem baseados em unidades de codificação baseadas em 
blocos de pixels de vídeo. 

 
A.1.2. Contribuições desta Tese 

 

O objetivo desta tese é pesquisar aceleradores de hardware dedicados e 
reconfiguráveis inovadores para ferramentas de codificação mais intensivas em 
computação do novo padrão HEVC. Uma análise da aplicação HEVC, apresentada na 
seção A.2, verifica que as ferramentas mais importantes em termos de esforço 
computacional  são  o  Filtro  de  Interpolação  de  Pixel  Fracionário,  o  Filtro  de 
Deblocagem e a computação da Soma das Diferenças Absolutas. 

 

No  domínio  dos  aceleradores  dedicados,  apresentados  na  seção  A.3,  esta  tese 
introduz as seguintes contribuições inovadoras: 

 

• Uma arquitetura  de hardware de alta taxa de processamento para  o Filtro 
de Interpolação  de Pixel Fracionário  do HEVC, que inclui núcleos de 
aceleração de luminância e crominância com 12 unidades de módulos de 
filtragem cada um. 

• Uma  arquitetura   de  hardware  para  o  Filtro  de  Interpolação  de  Pixel 
Fracionário   do  HEVC utilizando somadores  compressores  para otimizar 
área, desempenho e dissipação de potência. 

• Uma arquitetura  de hardware de alta taxa de processamento para  o Filtro 
de Deblocagem utilizando reuso de dados para acelerar a decisão do filtro 
com baixo custo de área. 

• Uma análise  comparativa  de diferentes alternativas  arquiteturais  para  o 
cálculo da Soma das Diferenças Absolutas em termos de área de hardware, 
taxa de processamento e dissipação de potência. 

 

Com relação a aceleradores de vídeo reconfiguráveis, esta tese introduz 
adicionalmente as seguintes contribuições: 

 

• Uma  arquitetura  reconfigurável  para  o  Filtro  de  Interpolação  de  Pixel 
Fracionário  do HEVC é apresentada na seção A.4. A arquitetura incorpora 
um esquema de predição para estimar o número de chamadas do filtro de 
interpolação a cada imagem, utilizando o conhecimento da estrutura de 
codificação. Um conjunto de diferentes versões de implementação para os 
núcleos de aceleração do filtro de interpolação são desenvolvidos para 
permitir um compromisso de área versus desempenho. Um esquema de 
seleção de versão de implementação é proposto. Ele seleciona uma versão de 
implementação do núcleo de aceleração para cada imagem, dependendo do 
número  predito  de  chamadas  do  filtro  de  interpolação  calculado  pelo 
esquema de predição. Um esquema de escalonamento é introduzido para 
determinar a ordem do processamento e configurar os tipos de filtro. Ele 
facilita o reuso das entradas e previne leitura redundante das amostras de 
entrada. 

• Um esquema de  alocação  de aceleradores  em tempo de  execução para 
arquiteturas  reconfiguráveis de grão misto baseadas em tiles de 
processamento é apresentado na seção A.5. O esquema aplica reuso de 
módulos de hardware e estimativa de custo de comunicação entre tiles para 
calcular em tempo de execução uma alocação de aceleradores que minimize 
a comunicação entre tiles destes módulos. 



133  

Ex
ec

ut
io

n 
 ti

m
e 

[%
]  

 
 
 
A.2. Análise da Aplicação HEVC 

 

A primeira etapa deste trabalho foi a análise da aplicação HEVC (codificador e 
decodificador). Esta análise suporta as decisões de quais aceleradores projetar e também 
algumas decisões arquiteturais. A análise se baseia no perfilhamento (profiling) do 
software do HEVC, o HM (HM, 2013). A contribuição de cada ferramenta de 
codificação foi quantificada, para um conjunto de sequências de vídeo de diferentes 
resoluções para um conjunto de quatro valores de parâmetro de quantização 
(Quantization Parameter  – QP). O experimento foi realizado executando o software 
HM em uma plataforma com processador Intel Core i7-2600 com 16 GB de memória. 

 

Neste resumo é mostrado o resultado do profiling para a sequência de vídeo de 
resolução ultra-alta PeopleOnStreet (com 2560x1600 pixels). A Figura A.1 apresenta a 
distribuição do tempo de execução para as ferramentas de codificação mais importantes 
do HEVC em termos de esforço computacional. No codificador HEVC, 55%-70% do 
tempo total de codificação corresponde a três ferramentas de codificação: Filtro de 
Interpolação de Pixel Fracionário, Soma das Diferenças Absolutas (SAD) e Soma das 
Diferenças Transformadas Absolutas (SATD). A contribuição no tempo depende do 
QP. No decodificador HEVC, 35%-55% do tempo de execução corresponde a duas 
ferramentas: Filtro de Interpolação de Pixel Fracionário e o Filtro de Deblocagem. 

 

Figura A.1 – Contribuição de diferentes ferramentas de codificação do HEVC 
(percentual) do tempo de execução total. Sequência de vídeo: “People on Street” 

(2560x1600 pixels), 150 quadros 
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Fonte: o autor. 
 

Com relação ao Filtro de Interpolação de Pixel Fracionário, foi realizada também 
uma análise de tempo de execução, como mostrado na Figura A.2. Esta análise mostra 
que o número de interpolações por imagem (quadro) varia significantemente mesmo 
para vídeos de mesma resolução e mesmo QP. Desta forma, existe um grande potencial 
de redução de potência em tempo real se for explorada esta variação de carga de 
trabalho (workload). 
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Figura A.2 – Número de chamadas por quadro à função básica do filtro de interpolação 
 

Legend: 
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Fonte: o autor. 
 
A.3. Aceleradores de Hardware Dedicados 

 

Primeiramente, uma  arquitetura dedicada  para  o  Filtro  de  Interpolação de  Pixel 
Fracionário foi proposta nesta tese. Esta arquitetura é mostrada na Figura A.3. 

 

Figura A.3 – Diagrama da Arquitetura Proposta para o Filtro de Interpolação de Pixel 
Fracionário do HEVC 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fonte: (DINIZ, 2013). 
 

A arquitetura é composta de dois núcleos de aceleração, um para luminância e outro 
para crominância. Cada núcleo é composto de 12 datapaths em paralelo para atingir a taxa 
de processamento desejada. Cada datapath é configurável para selecionar o tipo de 
filtragem, e substitui as multiplicações por constantes através de operações de soma e 
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deslocamento. Um módulo para escalonamento dos datapaths também é proposto nesta 
tese. Outros módulos apresentados na Figura A.3 não fazem parte do escopo do trabalho. 
Esta arquitetura reduz a área de hardware comparada com trabalho estado da arte. Mais 
detalhes desta arquitetura podem ser encontrados em (DINIZ, 2013). 

Esta arquitetura também foi objeto do estudo de uma proposta para substituição dos 
somadores, presentes nos datapaths, por somadores compressores, que fornecem uma 
eficiência maior quando a soma de múltiplos operandos é necessária, o que é o caso 
desta arquitetura. A aplicação de somadores compressores 8-2 e 7-2 no datapath de 
luminância do filtro de interpolação de pixel fracionário do HEVC é mostrada na Figura 
A.4. Mais detalhes a arquitetura do filtro de interpolação usando somadores 
compressores pode ser consultada em (DINIZ, 2015c). 

 
Figura A.4 – Arquitetura modificada do datapath do filtro de interpolação de luminância 

usando (a) somador compressor 7-2; (b) somador compressor 8-2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fonte: o autor. 
 
 

Uma arquitetura para o Filtro de Deblocagem do HEVC é proposta nesta tese, sendo 
apresentada na Figura A.5. Ela contém dois módulos principais: o módulo de decisões 
de filtragem (pois trata-se de um filtro adaptativo) e o módulo de operações de filtragem 
(que inclui dois tipos de filtro, o normal e o forte). Cada módulo contém datapaths que 
calculam as decisões e operações conforme as equações de filtro definidas no padrão 
HEVC. Onde haviam multiplicações por constantes, estas foram substituídas por 
operações de soma e deslocamento. No módulo de decisões, foi possível realizar um só 
datapath para calcular as condições 1, 2, 3, 8 e 9, reusando hardware. Esta arquitetura 
reduz a área de hardware comparada com trabalhos estado da arte, mantendo a taxa de 
processamento. Mais detalhes sobre a arquitetura podem ser consultados em (DINIZ, 
2015b). 
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Figura A.5 – Diagrama da arquitetura de hardware proposta para o filtro de deblocagem 
do HEVC 
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Fonte: (DINIZ, 2015b). 

 

Esta seção também apresenta o desenvolvimento de alternativas arquiteturais para o 
elemento de  processamento do  cálculo da  Soma das  Diferenças Absolutas (SAD). 
Foram desenvolvidas nove alternativas arquiteturais, combinando dois parâmetros: i) o 
número de amostras de entrada em paralelo (4, 8 e 16); ii) o número de estágios de 
pipeline, dependendo de cada versão de paralelismo, conforme abaixo: 

 

a)  Alternativas  com  1,  3  e  5  estágios  de  pipeline  para  o  elemento  de 
processamento de SAD com 4 amostras de entrada; 

b)  Alternativas  com  1,  3  e  6  estágios  de  pipeline  para  o  elemento  de 
processamento de SAD com 8 amostras de entrada; 

c)  Alternativas  com  1,  4  e  7  estágios  de  pipeline  para  o  elemento  de 
processamento de SAD com 16 amostras de entrada. 

 

A Figura A.6 ilustra somente o elemento de processamento de SAD com 4 amostras 
de entrada. Mais detalhes sobre este trabalho podem ser consultados em (DINIZ, 2010). 

 

Figura A.6 – Alternativas para arquitetura de SAD com 4 amostras de entrada 
 

Legend: All versions 3-stage and 5-stage  5-stage 
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Fonte: (DINIZ, 2010). 
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A.4. Arquitetura de Hardware Reconfigurável para o Filtro de Interpolação de 

 

Pixel Fracionário do HEVC 
 

Esta tese propõe uma arquitetura reconfigurável para o Filtro de Interpolação de 
Pixel Fracionário, dado a análise da seção A.2 de que é possível economizar 
potência/energia em tempo de execução. A arquitetura é composta por quatro módulos 
principais: 

 

1)  Módulo   de  Predição  que  estima  o  número  de  chamadas  do  filtro  de 
interpolação para próximos quadros a serem codificados, baseado no 
monitoramento de interpolações em GOPs passados. 

 

2)  Núcleos de Aceleração  para Luma  e Chroma. Filtros de interpolação em 
hardware com um conjunto de diferentes versões de implementação 
proporcionando um número de opções com diferentes resultados de área de 
desempenho. 

 

3)  Módulo de Seleção da Versão de Implementação que seleciona a versão de 
implementação adequada, reconfigurando a versão de implementação (número 
de datapaths em paralelo) baseado no número de chamadas de interpolação 
preditas pelo módulo de predição. 

 

4) Módulo  de Escalonamento Adaptativo que determina a ordem de 
processamento e a configuração do tipo de filtro de forma adaptativa. 

 

O diagrama da arquitetura é mostrado na Figura A.7. Esta arquitetura assume que os 
núcleos  de  aceleração  são  reconfigurados em  FPGA  que  suportam  reconfiguração 
parcial  dinâmica  (XILINX,  2010)  (ALTERA,  2010).  Mais  detalhes  sobre  esta 
arquitetura podem ser consultados em (DINIZ, 2015a). 

 

 
 

Figura A.7 – Arquitetura Reconfigurável para o Filtro de Interpolação de Pixel 
 

Fracionário do HEVC 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fonte: (DINIZ, 2015a). 
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A.5. Alocação de Aceleradores em Tempo de Execução para Arquiteturas 

 

Reconfiguráveis 
 

Esta seção apresenta o esquema de alocação em tempo de execução para arquiteturas 
reconfiguráveis de grão misto baseadas em tiles de processamento. Trata-se de um 
problema que não foi encontrada solução reportada na literatura. O problema do uso de 
uma estratégia trivial, não ciente da arquitetura, para alocação de aceleradores neste tipo 
de arquitetura é mostrado na Figura A.8. 

 

Figura A.8 – Exemplo de alocação de aceleradores para 3 instruções usando esquema 
 

first-fit com reuso de datapaths 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fonte: (DINIZ, 2014). 
 

Este trabalho propõe um novo esquema para alocação de aceleradores (Figura A.9) 
que é ciente da arquitetura reconfigurável baseada em tiles. Ele aplica o reuso de 
datapaths, somente nos casos em que é benéfico devido à divisão de tiles. Ele também 
aplica estimação de comunicação quando é necessário alocar aceleradores em tiles 
diferentes. Mais detalhes podem ser consultados em (DINIZ, 2014). 

 

Figura A.9 – Esquema de alocação proposto (usando mesmo exemplo anterior) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fonte: (DINIZ, 2014). 
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A.6. Conclusões e Trabalhos Futuros 

 

A presente tese focou na contribuição de aceleradores dedicados e reconfiguráveis 
inovadores para o padrão HEVC. 

 

O trabalho de pesquisa começou com uma análise da aplicação de codificação 
HEVC,  como  apresentada  na  seção  A.2,  o  que  indicou  que  as  ferramentas  de 
codificação mais importantes a serem aceleradas em hardware são o Filtro de 
Interpolação de Pixel Fracionário, o Filtro de Deblocagem, e o cálculo da Soma das 
Diferenças  Absolutas, necessária para  Estimação  de  Movimento. Os  resultados  da 
análise mostraram que há variações significativas dependendo da sequência de vídeo a 
ser codificada (definida como entrada pelo usuário) e do parâmetro de quantização que 
define o nível de perda de dados na codificação. Uma análise de tempo real do Filtro de 
Interpolação indica que existe um grande potencial de economia de potência/energia 
através da adaptação do acelerador de hardware à carga de trabalho variável. 

 

Os resultados obtidos dos aceleradores de hardware dedicados inovadores (seção 
A.3) indicam ganhos significativos sobre aceleradores de hardware do estado da arte. A 
arquitetura dedicada de hardaware para o Filtro de Interpolação atinge taxa de 
processamento suficiente para processar vídeos de resolução ultra-alta e reduz a área de 
hardware por cerca de 50% comparado com uma arquitetura estado da arte. Tal ganho 
foi obtido pelo projeto de datapaths configuráveis sem multiplicadores e eficientes em 
área. A taxa de processamento foi melhorada através do uso de dois núcleos de 
aceleração com nível de paralelismo de 12 pixels em paralelo, que contém os datapaths 
configuráveis. Um módulo de escalonamento foi projetado para prevenir bolhas no 
pipeline e para aprimorar a localidade de memória, reduzindo o uso de memória. A 
arquitetura proposta para o Filtro de Deblocagem atinge taxa de processamento similar 
com arquiteturas do estado da arte, enquanto reduz o número de portas (gate count) em 
5 a 6 vezes, e reduz a potência em 3 vezes comparado com estas arquiteturas. Os 
datapaths desenvolvidos neste trabalho são altamente otimizados para área em utilizam 
reuso de hardware. Nossa análise comparativa de elementos de processamento para o 
SAD introduziu várias alternativas arquiteturais para explorar diferentes compromissos 
de área, desempenho e potência. 

 

A arquitetura reconfigurável para o filtro de interpolação de pixel fracionário do 
padrão HEVC, descrita na seção A.4, é nova e proporciona significativa redução de área 
em tempo de projeto e adaptação de potência/energia em tempo de execução a cada 
quadro do vídeo. Esta característica não era ainda suportada pelas arquiteturas do filtro 
de interpolação do estado da arte. A adaptação em tempo de execução é realizada 
através de um esquema de predição, que estima o número de chamadas ao filtro de 
interpolação e um módulo de seleção de versão de implementação que adapta a 
diferentes taxas de processamento pela seleção de diferentes versões de implementação. 

 

O esquema de alocação de aceleradores em tempo de execução para arquiteturas 
reconfiguráveis de grão misto baseadas em tiles de processamento, apresentado na 
seção A.5, reduz o overhead de comunicação, comparado com uma estratégia first-fit 
com reuso de datapaths, em até 44% (23% em média) para diferentes números de tiles e 
diferentes organizações internas de tiles. Este esquema de alocação é ciente da 
arquitetura baseada em tiles, para alocar de forma eficiente os aceleradores, evitando 
comunicações de aceleradores entre dois ou mais tiles diferentes. 

 

Os resultados no geral demonstraram que os novos aceleradores dedicados e 
reconfiguráveis propostos nesta tese estão à frente de soluções do estado da arte. Devido 
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às limitações de potência e energia das tecnologias CMOS atuais e aos altos requisitos 
de desempenho dos padrões de codificação de vídeo da nova geração, futuras 
implementações de sistemas de codificação de vídeo irão integrar, no mesmo chip, 
processadores de muitos núcleos (many-core) com muitos aceleradores dedicados e 
reconfiguráveis, nas chamadas arquiteturas ricas em aceleradores. 

 

As arquiteturas ricas em aceleradores são necessárias para codificação de vídeo de 
ultra-alta resolução em tempo real com eficiência em potência/energia. Neste contexto, 
esta tese introduz novos aceleradores e técnicas que possibilitam implementações de 
codificação de vídeo de nova geração com aperfeiçoamento em área, desempenho, e 
eficiência em potência/energia. 

 

Além  das  contribuições  apresentadas  nesta  tese,  várias  direções  de  pesquisa 
emergem para o futuro, as quais não foram tratadas neste trabalho. Algumas destas 
direções de pesquisa são sugeridas abaixo como trabalhos futuros. 

 

Aceleradores de hardware para outras ferramentas de codificação do HEVC: 
enquanto esta tese focou nas ferramentas de codificação mais intensivas em computação 
do HEVC, há outras ferramentas de codificação não tratadas que podem ser 
implementadas  como  aceleradores  de  hardware  para  um  sistema  completo  de 
codificação de vídeo, tais como o cáculo da Soma das Diferenças Transformadas 
Absolutas (SATD), Codificação Binária Aritmética Adaptativa ao Contexto (CABAC), 
Predição Intra, Transformadas, Quantização, e o filtro de Offset de Amostra Adaptativo 
(Sample  Adaptive  Offset  -  SAO).  O  desafio  de  pesquisa  é  projetar  aceleradores 
eficientes em desempenho/área/potência para estas ferramentas de codificação, 
comparadas a outras soluções presentes na literatura. 

 

Exploração  das ferramentas  de codificação  paralelas  do HEVC: o HEVC inclui 
algumas ferramentas de codificação para facilitar o processamento paralelo para 
codificação de vídeo, tais como os Tiles e o Wavefront Parallel  Processing  (WPP). 
Com relação aos tiles, há muitos desafios de pesquisa que afetam tanto o desempenho 
como a qualidade do vídeo. O número de tiles para cada imagem e onde as fronteiras 
dos tiles são colocadas é decidido no lado do codificador do vídeo e não são 
padronizadas. Quebrar imagens em mais tiles aumenta a escalabilidade para 
processadores de muitos núcleos, mas degrada a qualidade do vídeo. Portanto, existe um 
compromisso entre o desempenho e  qualidade do vídeo quando se usa tiles. Com 
relação ao WPP (quando algumas CTUs de uma imagem podem ser processadas em 
paralelo em uma abordagem multi-thread), o desafio de pesquisa é decidir em quais 
situação é benéfico utilizar dela. Existe também a decisão entre usar tiles ou WPP para 
cada imagem, porque o padrão HEVC ainda não suporta a coexistência destas duas 
ferramentas. 

 

Aceleradores de hardware para processamento de imagens e vídeo: algumas 
metodologias  são  usadas  neste  trabalho  para  projetar  aceleradores  de  hardware 
eficientes para ferramentas específicas do padrão HEVC. Estas metodologias podem ser 
aplicadas para projetar aceleradores para outras aplicações de imagens e vídeo, como 
processamento de imagens (filtragem e interpolação, por exemplo), codificação de 
imagens, pré-processamento de vídeo, etc. 

 

Arquiteturas ricas em aceleradores  para  a era do Dark Silicon: os benefícios dos 
aceleradores de hardware comparados a processadores de propósito geral estão levando 
a pesquisa de processadores multi-core e many-core para a direção de arquiteturas ricas 
em  aceleradores,   ou  seja,  acoplar  muitos  núcleos  de  processamento  com  muitos 
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aceleradores de hardware dedicados e reconfiguráveis para funções específicas das 
aplicações. Neste tópico de pesquisa, muitos desafios são encontrados. Primeiramente, 
desafios de pesquisa em tempo de projeto devem ser abordados. Quais aceleradores a 
ser projetados e se eles devem ser projetados como aceleradores dedicados ou 
reconfiguráveis são boas questões de pesquisa. Perfilhamento da aplicação pode ajudar 
os projetistas a escolher quais aceleradores a projetar. Funções importantes usadas em 
muitas aplicações e/ou em sucessivas gerações de aplicações, são boas candidatas para 
os aceleradores dedicados. Aceleradores reconfiguráveis podem ser usados para 
proporcionar flexibilidade a funções importantes e emergentes (como o novo filtro de 
interpolação de pixel fracionário do HEVC, por exemplo) e para mapear outros 
aceleradores que são usados em algumas fases da execução da aplicação (devido ao fato 
de que aceleradores reconfiguráveis dissipam mais potência). No nível mais alto do 
projeto de sistema, outro desafio é como acoplar muitos aceleradores de hardware em 
muitos núcleos de processamento, e como conectá-los. Decisões em tempo de projeto 
são limitadas pela área do chip e potência máxima. Outro desafio de pesquisa emerge no 
contexto do controle em tempo de execução: como lidar com o desbalanceamento de 
carga de trabalho nas threads que executam em uma arquitetura rica em aceleradores. 
Um sistema de tempo de execução é essencial para alocar threads e ligar/desligar os 
aceleradores, com o principal objetivo de sustentar o desempenho dado um limite 
máximo de potência. O sistema de tempo de execução deve ser alimentado pelo 
monitoramento da aplicação e predição para otimizar o desempenho final da aplicação 
em potência e tempo. 


