

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

CLÁUDIO MACHADO DINIZ

Dedicated and Reconfigurable Hardware
Accelerators for High Efficiency Video

Coding Standard

Tese apresentada como requisito parcial para a
obtenção do grau de Doutor em Ciência da
Computação.

Orientador: Prof. Dr. Sergio Bampi

Porto Alegre
2015

CIP – CATALOGAÇÃO NA PUBLICAÇÃO

Diniz, Cláudio Machado
Dedicated and Reconfigurable Hardware Accelerators for High

Efficiency Video Coding Standard / Cláudio Machado Diniz. – 2015.
141 f.

Orientador: Sergio Bampi.

Tese (Doutorado) – Universidade Federal do Rio Grande do Sul,

Instituto de Informática, Programa de Pós-Graduação em Computação.
Porto Alegre, BR – RS, 2015.

1. HEVC. 2. Hardware Accelerator 3. Video Coding Architecture.

4. Reconfigurable Architectures. I. Bampi, Sergio, orient. II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos Alexandre Netto
Vice-Reitor: Prof. Rui Vicente Oppermann
Pró-Reitor de Pós-Graduação: Prof. Vladimir Pinheiro do Nascimento
Diretor do Instituto de Informática: Prof. Luís da Cunha Lamb
Coordenador do PPGC: Prof. Luigi Carro
Bibliotecária-Chefe do Instituto de Informática: Beatriz Regina Bastos Haro

This thesis is dedicated to my wife, Cilene,

and to my mother, Eliane.

Dedico esta tese à minha noiva, Cilene,

e à minha mãe, Eliane.

Ich sage euch: man muss noch Chaos in sich haben,

um einen tanzenden Stern gebären zu können.

Ich sage euch: ihr habt noch Chaos in euch.

Friedrich Nietzsche

AGRADECIMENTOS

O melhor deste longo e intenso período de estudos de doutorado foi conviver

com uma quantidade grande, e sempre crescente, de pessoas incríveis. Gostaria de

agradecer, de coração, a essas pessoas especiais que me ajudaram, das mais diversas

formas, no desenvolvimento deste trabalho, e que, de certa forma, também possam

compartilhar comigo a alegria de ter conquistado mais esta etapa.

Quero agradecer de coração à minha noiva, Cilene, por seu apoio e amor

incondicional. Por sempre me dar força e incentivo em todas minhas ações e decisões,

mesmo que elas significassem a nossa distância física por longos períodos (como foi

durante o estágio na Alemanha). Pela compreensão quando eu estava distante por causa

do trabalho. Pelo seu sorriso e aquela tentativa de me deixar mais feliz em momentos

difíceis. Por sempre compartilhar comigo também dos momentos felizes. Faltam-me até

palavras para tudo que tenho a agradecê-la. Eu te amo, Cilene.

Quero agradecer de coração à minha mãe, Eliane, que me transmitiu todos os

valores e a educação que carrego sempre comigo. Diante de todas as dificuldades que

passamos, ela esteve sempre forte e determinada em seguir em frente e contribuir para

minha formação. Agradeço pelas palavras de apoio, que me ajudaram a recuperar a

autoconfiança. Agradeço a ela por ser uma mãe maravilhosa e uma profissional na qual

eu tento me espelhar, um exemplo de responsabilidade e honestidade.

Agradeço ao meu irmão, Fernando, pela convivência durante os anos em que

moramos juntos e pela amizade de sempre. Quero agradecer também aos meus sogros,

Carmen e Cilon, pela amizade e por toda ajuda ao longo destes anos.

Agradeço ao meu orientador, professor Sergio Bampi, por ter primeiramente

confiado no meu potencial e me aceitado no seu grupo de pesquisa. Agradeço por toda

sua orientação, ensinamentos, e ajuda, sejam elas técnicas ou pessoais. Agradeço pelas

oportunidades que me foram proporcionadas, as quais foram muito enriquecedoras para

minha formação como pesquisador e como pessoa.

Agradeço aos professores Altamiro Susin e Luciano Agostini, por terem escrito,

em duas ocasiões, cartas de recomendação nas minhas duas tentativas em ingressar no

doutorado em Computação da Universidade Federal do Rio Grande do Sul (UFRGS).

Agradeço a todos os colegas e amigos do meu grupo de pesquisa da UFRGS,

conhecido informalmente como “lab 215”, pela amizade e por todas as discussões

técnicas e não técnicas. Agradeço em especial aos colegas Bruno Zatt, Guilherme

Corrêa, Eduarda Monteiro, Daniel Palomino, Felipe Sampaio, Mateus Grellert,

Leonardo Soares, André Rosa, Bruno Vizzotto, Roger Porto, Fábio Ramos, Vagner

Rosa, Débora Matos, Leandro Max, Kleber Stangherlin e Fábio Walter. Agradeço

também a todos os alunos de graduação que passaram no grupo de pesquisa como

bolsistas de iniciação científica ou para desenvolver trabalho de conclusão de curso.

Agradeço em especial ao Felipe Dalcin e Filipe Posteral, cujos trabalhos de conclusão

eu tive a oportunidade de co-orientar, e que contribuíram para o desenvolvimento desta

tese.

Agradeço aos amigos e colegas que conheci (ou reencontrei) no curto período

em que trabalhei na empresa CEITEC S.A em 2012. Agradeço em especial aos colegas

do meu time, Fábio Ramos, Marcos Hervé, Frederico Moller, Daniel Ferrão, Marcelo

Moraes, Janaína Costa, e meu chefe, Murugappan Ramaswami, pelos ensinamentos

sobre projeto de circuitos digitais.

Durante o estágio na Alemanha, em 2013, pude conviver também com pessoas

incríveis. Agradeço ao professor Jörg Henkel, por ter me recebido no Chair for

Embedded Systems do Karlsruhe Institute of Technology (KIT), em Karlsruhe, e por ter

me proporcionado um excelente ambiente de trabalho para meu estágio de doutorado-

sanduíche em 2013. Aprendi muito sobre como pesquisar durante o estágio no

CES/KIT. Agradeço, em especial, ao Dr. Muhammad Shafique, que me orientou e

discutiu comigo os trabalhos de pesquisa que realizei durante o estágio e mesmo os

demais trabalhos iniciados depois do estágio. Não é por acaso que praticamente todos os

artigos que foram produzidos nesta tese tem o prof. Henkel e o Dr. Shafique como co-

autores.

Agradeço a todo esforço realizado pelo colega e amigo Bruno Zatt que,

juntamente com o Dr. Shafique, deu início ao processo de cooperação científica entre

nosso grupo da UFRGS e o grupo do CES/KIT. Este processo de cooperação iniciado

resultou em uma cooperação bilateral formal, financiada pela CAPES, que me apoiou

com uma bolsa de estudos de um ano na Alemanha.

Agradeço aos amigos José Azambuja e Georg Hasenpflug, pela excelente

convivência diária no ano em que morei em Karlsruhe. Especialmente o José me ajudou

muito na mudança para esta nova cidade e país, conseguindo um quarto no apartamento

em que morava, me orientando nos primeiros passos no novo país, entre outras coisas.

Gostaria de agradecer às visitas da minha noiva Cilene, da minha mãe Eliane, da minha

tia Hilda, e de meu amigo Felipe Sampaio. Elas tornaram meus dias mais agradáveis,

diante da saudade que eu sentia dos familiares e amigos do Brasil naquele momento.

Agradeço ainda aos amigos Oliver Longhi, Mateus Grellert, José Amendola, Daniel

Palomino, Arthur Veiga, Luiza Biasoto, Gabriel Marchesan e família, Philip Porter e

Abelardo Gonzalez, pela amizade e companhia em Karlsruhe. Agradeço também aos

meus colegas do CES/KIT, especialmente Muhammad Usman Khan, Farzad Samie

Ghahfarokhi, Fazal Hameed e Daniel Palomino, pela amizade e conversas diárias.

Agradeço aos professores da Universidade Católica de Pelotas (UCPel), Eduardo

Costa, Sergio Almeida, Leandro Zafalon, Wemerson Parreira, Adenauer Yamin e

Monica Matzenauer, que pude conhecer ou reencontrar em 2014, quando comecei a

trabalhar na UCPel. Especialmente o professor Eduardo Costa me deu grande apoio

para que eu pudesse focar na escrita de artigos e no término desta tese. Agradeço

também ao professor Mateus Beck Fonseca, da Universidade Federal de Pelotas

(UFPel), com quem tive a oportunidade de começar um trabalho ainda em 2014 que

resultou em uma contribuição para esta tese, e que me auxiliou na parte experimental do

projeto de circuitos digitais.

Agradeço a todos os professores e funcionário do Programa de Pós-Graduação

em Computação e do Instituto de Informática da UFRGS, que propiciaram um excelente

ambiente para pesquisa.

Agradeço aos órgãos de fomento, CNPq e CAPES, por apoiarem meus estudos

através da concessão de bolsas de estudo no país e no exterior, respectivamente.

Por fim, agradeço a todos familiares e amigos que não foram citados

nominalmente.

A todos, meu muito obrigado!

ACKNOWLEDGEMENTS

The best thing of this long and intense period of Ph.D. studies was to meet a

large (and always growing) set of incredible people. I would like to thank those special

people that helped me, in many different ways, in the development of this work. I hope

they can share with me the joy of achieving this step.

I would like to thank my wife, Cilene, for her support and unconditional love.

For always support and encourage all my actions and decisions, even if they mean our

long distance for long periods (which was the case during the internship in Germany).

For her understanding when I was distant because of work. For her smile and that effort

to make me happier in difficult moments. For always share with me also the moments

of joy. I can’t thank you enough for everything you have done. I love you, Cilene.

I would like to thank my mother, Eliane, who transmitted all the human values

and education that I carry with me. In the face of all the difficulties we went through,

she was always strong and determined to move forward and contribute to my education.

I thank for all the words of support, which helped me to recover my self-assurance. I

thank her for being a wonderful mother and also a professional that I try to look up to,

an example of responsibility and honesty.

I thank my brother, Fernando, for being my roommate during some years in

Porto Alegre and for his friendship. I would like to thank also my mother-in-law and

father-in-law, Carmen e Cilon, for their friendship and all the help during those years.

I thank my advisor, professor Sergio Bampi, for trusting in my potential and

accepting me in his research group. I thank for all the guidance, teaching, and the

technical and personal help. I thank for all the opportunities he provided me. They were

very enriching for me as researcher and person.

I thank to the professors Altamiro Susin and Luciano Agostini, for writing, in

two occasions, recommendation letters in my two attempts to join the Ph.D. program in

Computer Science at the Federal University of Rio Grande do Sul (UFRGS).

I thank all my colleagues and friends of my research group in UFRGS,

informally known as “lab 215”, for the friendship and for all the technical and non-

technical discussions. I thank in particular the colleagues Bruno Zatt, Guilherme Corrêa,

Eduarda Monteiro, Daniel Palomino, Felipe Sampaio, Mateus Grellert, Leonardo

Soares, André Rosa, Bruno Vizzotto, Roger Porto, Fábio Ramos, Vagner Rosa, Débora

Matos, Leandro Max, Kleber Stangherlin and Fábio Walter. I also thank all the

undergraduate students that worked in the research group, in special Felipe Dalcin and

Felipe Posteral, whose final undergraduate works I had the opportunity to co-advise,

and which contributed to the development of this thesis.

I thank all the friends and colleagues that I met in the short period I worked in

CEITEC S.A company in 2012. I thank in particular the colleagues of my team, Fábio

Ramos, Marcos Hervé, Frederico Moller, Daniel Ferrão, Marcelo Moraes, Janaína

Costa, and my boss, Murugappan Ramaswami, for teaching me valuable things about

digital circuit design.

During my internship in Germany, in 2013, I also had the opportunity to meet

incredible people. I thank to the professor Jörg Henkel, for receiving me in the Chair for

Embedded Systems of the Karlsruhe Institute of Technology (KIT), in Karlsruhe, and

for providing me an excellent work office for my internship. I learned a lot how to

research during my internship in CES/KIT. I would like to thank, in particular, Dr.

Muhammad Shafique, who guided me and discussed with the research projects that I

realized during the internship and even the works that began after the internship. It is no

coincidence that prof. Henkel and Dr. Shafique are co-authors in most papers that have

been produced in this thesis.

I thank all the effort realized by my colleague and friend Bruno Zatt that, along

with Dr. Shafique, began the scientific cooperation process between our research group

at UFRGS and the CES/KIT research group. This cooperation process resulted in a

formal bilateral scientific cooperation agreement, funded by CAPES, which supported

me with an one-year research scholarship in Germany.

I thank to my friends José Azambuja and Georg Hasenpflug, for the daily

friendship during the year that we were roommates in Karlsruhe. In particular, José

helped me a lot in my change for this new city and country, getting a room for me in the

apartment he lived that time, helping me in the first steps in Germany, and other things.

I would like to thank the visits of my wife Cilene, my mother Eliane, my aunt Hilda,

and my friend Felipe Sampaio. I missed my family and friends that time, and those

visits make my days more enjoyable. I thank my friends Oliver Longhi, Mateus

Grellert, José Amendola, Daniel Palomino, Arthur Veiga, Luiza Biasoto, Gabriel

Marchesan e família, Philip Porter and Abelardo Gonzalez, for the friendship in

Karlsruhe. I also thank my colleagues from CES/KIT, in particular Muhammad Usman

Khan, Farzad Samie Ghahfarokhi, Fazal Hameed and Daniel Palomino, for the

friendship and daily discussions.

I thank the professors from Catholic University of Pelotas (UCPel), Eduardo

Costa, Sergio Almeida, Leandro Zafalon, Wemerson Parreira, Adenauer Yamin and

Monica Matzenauer, which I met in 2014 when I started working in this university. In

particular, professor Eduardo Costa gave me a lot of support so I could focus in writing

papers and finishing my thesis. I also thank professor Mateus Beck Fonseca, from the

Federal University of Pelotas (UFPel), with whom I had the opportunity to start a work

in 2014 that resulted in a contribution of this thesis. He also helped me in the

experimental part of digital circuit design.

I thank all the professors and staff of Graduate Program in Computer Science

and the Informatics Institute of UFRGS, which provided an excellent environment for

research.

I thank the funding agencies, CNPq and CAPES, for supporting my studies

through research scholarships in Brazil and in Germany, respectively.

Finally, I thank all my relatives and friends that were not nominally mentioned.

To all, thank you very much!

ABSTRACT

The demand for ultra-high resolution video (beyond 1920x1080 pixels) led to the need

of developing new and more efficient video coding standards to provide high

compression efficiency. The High Efficiency Video Coding (HEVC) standard,

published in 2013, reaches double compression efficiency (or 50% reduction in size of

coded video) compared to the most efficient video coding standard at that time, and

most used in the market, the H.264/AVC (Advanced Video Coding) standard. HEVC

reaches this result at the cost of high computational effort of the tools included in the

encoder and decoder. The increased computational effort of HEVC standard and the

power limitations of current silicon fabrication technologies makes it essential to

develop hardware accelerators for compute-intensive computational kernels of HEVC

application. Hardware accelerators provide higher performance and energy efficiency

than general purpose processors for specific applications. An HEVC application

analysis conducted in this work identified the most compute-intensive kernels of

HEVC, namely the Fractional-pixel Interpolation Filter, the Deblocking Filter and the

Sum of Absolute Differences calculation. A run-time analysis on Interpolation Filter

indicates a great potential of power/energy saving by adapting the hardware accelerator

to the varying workload. This thesis introduces new contributions in the field of

dedicated and reconfigurable hardware accelerators for HEVC standard. Dedicated

hardware accelerators for the Fractional Pixel Interpolation Filter, the Deblocking Filter

and the Sum of Absolute Differences calculation are herein proposed, designed and

evaluated. The interpolation filter hardware architecture achieves throughput similar to

the state of the art, while reducing hardware area by 50%. Our deblocking filter

hardware architecture also achieves similar throughput compared to state of the art with

a 5X to 6X reduction in gate count and 3X reduction in power dissipation. The thesis

also does a new comparative analysis of Sum of Absolute Differences processing

elements, in which various architecture design alternatives with different area,

performance and power results were introduced. A novel reconfigurable interpolation

filter hardware architecture for HEVC standard was developed, and it provides 57%

design-time area reduction and run-time power/energy adaptation in a picture-by-picture

basis, compared to the state-of-the-art. Additionally a run-time accelerator binding

scheme is proposed for tile-based mixed-grained reconfigurable architectures, which

reduces the communication overhead, compared to first-fit strategy with datapath

reusing scheme, by up to 44% (23% on average) for different number of tiles and

internal tile organizations. This run-time accelerator binding scheme is aware of the

underlying architecture to bind datapaths in an efficient way, to avoid and minimize

inter-tile communications. The new dedicated and reconfigurable hardware accelerators

and techniques proposed in this thesis enable next-generation video coding standard

implementations beyond HEVC with improved area, performance, and power

efficiency.

Keywords: HEVC, Hardware Accelerator, Video Coding Architecture, Reconfigurable
Architectures.

Aceleradores Dedicados e Reconfiguráveis para o Padrão High Efficiency Video
Coding (HEVC)

RESUMO

A demanda por vídeos de resolução ultra-alta (além de 1920x1080 pontos) levou à

necessidade de desenvolvimento de padrões de codificação de vídeo novos e mais

eficientes para prover alta eficiência de compressão. O novo padrão High Efficiency

Video Coding (HEVC), publicado em 2013, atinge o dobro da eficiência de compressão

(ou 50% de redução no tamanho do vídeo codificado) comparado com o padrão mais

eficiente até então, e mais utilizado no mercado, o padrão H.264/AVC (Advanced Video

Coding). O HEVC atinge este resultado ao custo de uma elevação da complexidade

computacional das ferramentas inseridas no codificador e decodificador. O aumento do

esforço computacional do padrão HEVC e as limitações de potência das tecnologias de

fabricação em silício atuais tornam essencial o desenvolvimento de aceleradores de

hardware para partes importantes da aplicação do HEVC. Aceleradores de hardware

fornecem maior desempenho e eficiência energética para aplicações específicas que os

processadores de propósito geral. Uma análise da aplicação do HEVC realizada neste

trabalho identificou as partes mais importantes do HEVC do ponto de vista do esforço

computacional, a saber, o Filtro de Interpolação de Ponto Fracionário, o Filtro de

Deblocagem e o cálculo da Soma das Diferenças Absolutas. Uma análise de tempo de

execução do Filtro de Interpolação indica um grande potencial de economia de

potência/energia pela adaptação do acelerador de hardware à carga de trabalho variável.

Esta tese introduz novas contribuições no tema de aceleradores dedicados e

reconfiguráveis para o padrão HEVC. Aceleradores de hardware dedicados para o Filtro

de Interpolação de Pixel Fracionário, para o Filtro de Deblocagem, e para o cálculo da

Soma das Diferenças Absolutas, são propostos, projetados e avaliados nesta tese. A

arquitetura de hardware proposta para o filtro de interpolação atinge taxa de

processamento similar ao estado da arte, enquanto reduz a área do hardware para este

bloco em 50%. A arquitetura de hardware proposta para o filtro de deblocagem também

atinge taxa de processamento similar ao estado da arte com uma redução de 5X a 6X na

contagem de gates e uma redução de 3X na dissipação de potência. A nova análise

comparativa proposta para os elementos de processamento do cálculo da Soma das

Diferenças Absolutas introduz diversas alternativas de projeto de arquitetura com

diferentes resultados de área, desempenho e potência. A nova arquitetura reconfigurável

para o filtro de interpolação do padrão HEVC fornece 57% de redução de área em

tempo de projeto e adaptação da potência/energia em tempo-real a cada imagem

processada, o que ainda não é suportado pelas arquiteturas do estado da arte para o filtro

de interpolação. Adicionalmente, a tese propõe um novo esquema de alocação de

aceleradores em tempo-real para arquiteturas reconfiguráveis baseadas em tiles de

processamento e de grão-misto, o que reduz em 44% (23% em média) o “overhead” de

comunicação comparado com uma estratégia first-fit com reuso de datapaths, para

números diferentes de tiles e organizações internas de tile. Este esquema de alocação

leva em conta a arquitetura interna para alocar aceleradores de uma maneira mais

eficiente, evitando e minimizando a comunicação entre tiles. Os aceleradores e técnicas

dedicadas e reconfiguráveis propostos nesta tese proporcionam implementações de

codificadores de vídeo de nova geração, além do HEVC, com melhor área, desempenho

e eficiência em potência.

Palavras-Chave: HEVC, Acelerador de Hardware, Arquitetura para Codificação de
Vídeo, Arquiteturas Reconfiguráveis.

LIST OF FIGURES

Figure 2.1 – Abstract system diagram of video encoder .. 37
Figure 2.2 – System diagram of video encoder .. 38
Figure 2.3 – System diagram of video decoder .. 39
Figure 2.4 – Motion estimation process ... 40
Figure 2.5 – Temporal picture coding structure using Random Access configuration .. 41
Figure 2.6 – Luma fractional pixel positions for a 8x8 luma integer pixel block 44
Figure 2.7 – Boundary of a 4x4 block (blocks P and Q) .. 45
Figure 2.8 – HEVC Deblocking filter flow and filtering decision equations................. 46
Figure 3.1 – Contribution of different HEVC coding tools (in percentage) to the total
execution time. Video sequence: “People on Street” (2560x1600 pixels), 150 pictures 54
Figure 3.2 – Contribution of Interpolation Filter (in percentage) to the total execution
time of HEVC encoder and decoder for eight video sequences and four QP values 55
Figure 3.3 – Contribution of Deblocking Filter (in percentage) to the total execution
time of HEVC decoder for nine video sequences and four QP values 56
Figure 3.4 – Contribution of Sum of Absolute Differences (in percentage) to the total
execution time for various nine video sequences and four QP values 57
Figure 3.5 – Number of calls per picture to the interpolation filter basic method 58
Figure 4.1 – Methodology to design optimized hardware accelerators.......................... 59
Figure 4.2 – System diagram of the proposed hardware architecture for HEVC
interpolation filtering .. 60
Figure 4.3 – Configurable datapath for luma interpolation filter 62
Figure 4.4 – Configurable datapath for chroma interpolation filter 63
Figure 4.5 – Interpolation filter scheduling .. 64
Figure 4.6 – Internal structure of 4-2 adder compressor .. 66
Figure 4.7 – Hierarchical 8-2 adder compressor using internal structures based on 67
(a) 4-2; (b) 3-2 and 4-2; (c) 5-2, 4-2 and 3-2; (d) 7-2 and 3-2.. 67
Figure 4.8 – 7-2 adder compressor structure. ... 67
Figure 4.9 – Modified luma filter datapath using (a) 7-2 adder compressor; (b) 8-2 adder
compressor.. 68
Figure 4.10 – Modified chroma filter datapath using 8-2 adder compressor. 69
Figure 4.11 – System diagram of the proposed hardware architecture for HEVC
deblocking filter.. 71
Figure 4.12 – Merged datapath for conditions 1, 2, 3, 8 and 9....................................... 72
Figure 4.13 – Datapaths for conditions 4, 5, 6, 7 and 10.. 73
Figure 4.14 – Datapaths for normal filtering operations .. 74
Figure 4.15 – Datapaths for strong filtering operations.. 75
Figure 4.16 – Datapath for chroma filtering operation... 75
Figure 4.17 – State diagram of the Finite State Machine ... 76
Figure 4.18 – Processing schedule of normal filter (worst case).................................... 77
Figure 4.19 – A Motion Estimation (ME) architecture diagram and the Sum of Absolute
Differences (SAD) architecture .. 79
Figure 4.20 – SAD Processing Element (PE) alternatives with 4-input samples........... 81
Figure 4.21 – SAD Processing Element (PE) alternatives with 8-input samples........... 81
Figure 4.22 – SAD Processing Element (PE) alternatives with 16-input samples......... 82
Figure 5.1 – Proposed reconfigurable hardware architecture for Interpolation Filter of
HEVC ... 86

Figure 5.2 – Correlation of the number of interpolation filter calls considering GOP
sizes equal to (a) 8, (b) 16, and (c) 4 .. 87
Figure 5.3 – Architectural template of the reconfigurable engines. Luma and chroma
datapaths are shown in section 4.2. Luma datapath is shown here as an example......... 89
Figure 5.4 – Pseudo-code of the adaptive scheduling scheme (for luma engine) 92
Figure 5.5 – Pseudo-code of the schedule function.. 92
Figure 5.6 – Example of scheduling for S(p,g) = 6 and PU_width = 8.......................... 93
Figure 5.7 – Reconfiguration energy overhead (%) ... 97
Figure 5.8 – Number of total filter interpolations of our architecture for the set of test
video sequences (averaged over QPs) .. 100
Figure 5.9 – Number of total filter interpolations of our architecture for each video
sequence (for each QP)... 100
Figure 5.10 – (a) Monitored and predicted number of filter calls; (b) Prediction error for
832x480 and 416x240 video sequences ... 101
Figure 5.11 – Prediction error for 2560x1600 and 1920x1080 videos, considering four
QP values .. 102
Figure 5.12 – Implementation version selection results: (a) Number of DPs of
implementation versions selected; (b) Comparison of Estimated Performance (EP) of
implementation version selected and the monitored number of filter calls for each
picture (FME case, luma interpolation filter) ... 103
Figure 6.1 – Abstract System Overview: Our proposed run-time accelerator binding
module integrated within the tile-based mixed-grained reconfigurable architecture ... 106
Figure 6.2 – Example of binding three custom instructions using first-fit strategy with
datapath reusing scheme ... 107
Figure 6.3 – Pseudo-code of our run-time accelerator binding sheme. 109
Figure 6.4 – Example of binding three custom instructions using our run-time
accelerator binding scheme .. 111
Figure 6.4 – Number of datapaths with inter-tile communication for 2 tiles 112
Figure 6.5 – Communication overhead for different tile internal organizations 113

LIST OF TABLES

Table 2.1 – Comparison of H.264/AVC and HEVC coding tools. 43
Table 2.2 – 7-tap and 8-tap luma and 4-tap chroma filter coefficients. 44
Table 2.3 – Derivation of threshold variables β and tc for each QP. 46
Table 3.1 – Video sequences used for analysis and evaluation...................................... 53
Table 4.1 – Luma coefficient multiplications replaced by add/shift operations 61
Table 4.2 – Synthesis results and comparisons to the state of the art hardware
implementation of the interpolation filter... 65
Table 4.3 – Synthesis results for the Interpolation Datapaths. 70
Table 4.4 – Synthesis results of the deblocking filter architecture for FPGA and ASIC 77
Table 4.5 – Comparisons to the state of the art hardware implementations of the
deblocking filter.. 78
Table 4.6 – Architectural parameters of the different SAD PE alternatives 82
Table 4.7 – Synthesis results and comparison of the different SAD PE alternatives..... 83
Table 5.1 – Synthesis results of the proposed hardware architecture for the worst-case
throughput constraint (i.e., 2560x1600 @ 30 fps). Consider max(nDPs)=17. 94
Table 5.2 – Synthesis results of six implementation versions for luma and chroma
hardware acceleration engines.. 95
Table 5.3 – Comparisons with state of the art hardware architectures for fractional-pixel
interpolation filter ... 97
Table 5.4 – Worst-case dynamic power (mW)1 comparison with state of the art for the
same throughput ... 99
Table 5.5 – Comparison with non-reconfigurable design .. 104

LIST OF ABREVIATIONS AND ACRONYMS

AGU Address Generation Unit

ALU Arithmetic Logic Unit

ASIC Application Specific Integrated Circuit

AVC Advanced Video Coding

B Bi-predictive

BD-PSNR Bjontegaard Delta Peak Signal-to-Noise Ratio

BD-Rate Bjontegaard Delta Rate

BRAM Block Random Access Memory

CABAC Context-Adaptive Binary Arithmetic Coding

CAVLC Context-Adaptive Variable Length Coding
Cb Chrominance Blue

CCD Charge Coupled Devices

CG Coarse-grained

CLB Configurable Logic Block

CMOS Complementary metal-oxide-semiconductor

CODEC COder/DECoder

Cr Chrominance Red

CTU Coding Tree Unit
CU Coding Unit

DCT Discrete Cosine Transform

DF Deblocking Filter

DC Direct Current

MOS Metal Oxide Semiconductor

DP Datapath

DST Discrete Sine Transform

DVD Digital Versatile Disk

EP Estimated Performance
EXOR Exclusive OR

FG Fine-grained

FME Fractional Motion Estimation

FPGA Field-Programmable Gate Array

FSM Finite State Machine

GB Gigabytes

GOP Group of Pictures

GPB Generalized P and B

HD High Definition

HEVC High Efficiency Video Coding

HM HEVC Test Model

ID Interpolation Datapath

IME Integer Motion Estimation

IP Intra-Period

IQ Inverse Quantization

ISO International Organization for Standardization

IT Inverse Transforms

ITU International Telecommunication Union

JCT-VC Joint Collaborative Team on Video Coding

JVT Joint Video Team

LD Low Delay

LUT Look-Up Table

MC Motion Compensation
MD Manhattan Distance

ME Motion Estimation

MNFC Monitored Number of Filter Calls

MOS Mean Opinion Score

MPEG Motion Picture Experts Group

MSE Mean-Squared Error

MV Motion Vector

NRE Non-Recurring Engineering

P Predictive

PDP Power Delay Product

PE Processing Element

PNFC Predicted Number of Filter Calls

POC Picture Order Count

PRR Partial Run-Time Reconfiguration

PSNR Peak Signal-to-Noise Ratio

PU Prediction Unit

Q Quantization

QFHD Quad Full High Definition

QP Quantization Parameter

QVGA Quarter Video Graphics Array

RA Random Access

RAM Random Access Memory

RCA Ripple-Carry Adders
RGB Red, Green, and Blue

RTL Register Transfer Level

SAD Sum of Absolute Differences

SAO Sample Adaptive Offset

SATD Sum of Absolute Transformed Differences

SD Standard Definition

SoC Systems-on-Chip

T Transforms

TU Transform Unit

VCEG Video Coding Experts Group

VGA Video Graphics Array

VHDL VHSIC Hardware Description Language
VHSIC Very High Speed Integrated Circuits

WPP Wavefront Parallel Processing

WQVGA Wide Quarter Video Graphics Array

WVGA Wide Video Graphics Array

Y Luminance

YCbCr Luminance, Chrominance Blue, Chrominance Red

TABLE OF CONTENTS

ABSTRACT... 15
RESUMO ... 17
LIST OF FIGURES .. 19
LIST OF TABLES .. 21
LIST OF ABREVIATIONS AND ACRONYMS... 23
1 INTRODUCTION .. 31
1.1 Motivation and Problem Definition .. 32
1.2 Thesis Contribution .. 33
1.3 Thesis Outline ... 34
2 BACKGROUND AND RELATED WORK... 35
2.1 Digital Video Capture, Representation, and Video Quality 35

2.1.1 Digital Video Capture... 35
2.1.2 Color Spaces and Color Sub-sampling ... 35
2.1.3 Video Quality Metrics .. 36

2.2 Video Coding Background... 36
2.2.1 Brief History of Video Coding Standardization 36
2.2.2 Video CODEC .. 37

2.2.2.1 Motion Estimation (ME)... 39
2.2.2.2 Deblocking Filter (DF) ... 41

2.2.3 Temporal picture structure.. 41
2.3 Overview of the High Efficiency Video Coding (HEVC) Standard 42

2.3.1 Fractional-pixel Interpolation Filter ... 43
2.3.2 Deblocking Filter (DF) ... 45
2.3.3 HEVC reference software and common test conditions......................... 47

2.4 Reconfigurable Computing Background ... 47
2.5 Power Dissipation in CMOS .. 49
2.6 Related Work .. 50

2.6.1 Chips and Hardware Accelerators for Video Encoding and Decoding .. 50
2.6.2 Hardware Architectures for Interpolation Filter 51
2.6.3 Hardware Architectures for Deblocking Filter 51
2.6.4 Hardware Architectures for Sum of Absolute Differences 52
2.6.5 Accelerator Binding on Reconfigurable Architectures 52

3 HIGH EFFICIENCY VIDEO CODING APPLICATION ANALYSIS...... 53
3.1 HEVC Application Profiling ... 53

3.1.1 Experimental Test Conditions .. 53
3.1.2 Analysis of HEVC application with an ultra-high resolution video

sequence 54
3.1.3 Analysis of the Interpolation Filter... 55
3.1.4 Analysis of the Deblocking Filter... 55
3.1.5 Analysis of the Sum of Absolute Differences (SAD) Calculation 56
3.1.6 Summary of HEVC application analysis.. 56

3.2 Run-time Analysis of HEVC Application... 57
4 DEDICATED HARDWARE ACCELERATORS... 59
4.1 Methodology to Design Hardware Accelerators .. 59
4.2 Hardware Architecture for Fractional Pixel Interpolation Filter of

HEVC 60

4.2.1 Luma Interpolation Filter Datapath .. 61
4.2.2 Chroma Interpolation Filter Datapath... 62
4.2.3 Scheduling .. 63
4.2.4 Results and Evaluation ... 65

4.3 Hardware Architecture for Fractional Pixel Interpolation Filter using
Adder Compressors .. 65

4.3.1 Adder Compressors Background.. 66
4.3.2 Enhancing our Fractional Pixel Interpolation Filter Hardware

Architecture with Efficient Adder Compressors .. 68
4.3.3 Results and Discussion ... 69

4.4 Hardware Architecture for Deblocking Filter of HEVC 70
4.4.1 Filtering Decisions Datapaths... 71
4.4.2 Filtering Operations Datapaths ... 73
4.4.3 Control Unit .. 76
4.4.4 Results and Evaluation ... 77

4.5 Hardware Architecture for Sum of Absolute Differences (SAD)............. 79
4.5.1 Exploiting Different Versions of Parallel SAD Processing Elements.... 80
4.5.2 Results and Evaluation ... 83

5 RECONFIGURABLE HARDWARE ARCHITECTURE FOR
FRACTIONAL-PIXEL INTERPOLATION OF HEVC.. 85

5.1 Adaptive Prediction of Interpolation Filter Calls...................................... 86
5.1.1 Analytical Observations ... 86
5.1.2 Prediction Design ... 88

5.2 Reconfigurable Hardware Engines for Interpolation Filter 89
5.3 Implementation Version Selection .. 90
5.4 Adaptive Scheduling... 91
5.5 Results and Evaluation... 93

5.5.1 Fairness of comparison ... 93
5.5.2 Synthesis Results .. 93
5.5.3 Discussion on Reconfiguration Latency... 95
5.5.4 Discussion on Reconfiguration Energy .. 96
5.5.5 Comparison with State of the Art ... 97
5.5.6 Performance Results for Different Video Sequences 99
5.5.7 Evaluation of Prediction Results .. 101
5.5.8 Evaluation of Run-time Implementation Version Selection 103
5.5.9 Comparison with a Non-Reconfigurable Implementation 104

6 RUN-TIME ACCELERATOR BINDING INTO RECONFIGURABLE
ARCHITECTURES ... 105

6.1 Overview of Tile-based Reconfigurable Architecture............................. 105
6.2 Motivational Analysis... 106
6.3 Run-time Accelerator Binding Scheme .. 108

6.3.1 Problem Formulation .. 108
6.3.2 Run-time Accelerator Binding Scheme .. 108
6.3.3 Choosing the Best Tile to Bind a Custom Instruction 109
6.3.4 Binding into Tiles with Low Communication Cost 110
6.3.5 Binding Datapaths inside a Tile.. 110
6.3.6 An Example of Our Binding Scheme ... 110

6.4 Results and Evaluation... 111
6.4.1 Experimental Setup .. 111

6.4.2 Evaluation of inter-tile communications .. 112
6.4.3 Evaluation of communication overhead for many tiles........................ 112

7 CONCLUSIONS AND FUTURE WORK.. 115
7.1 Future Work ... 116
7.2 Published Papers by the Author ... 117

7.2.1 Journal Paper .. 117
7.2.2 Conference and Symposia Papers... 117

REFERENCES.. 119
APPENDIX A <EXTENDED ABSTRACT IN PORTUGUESE> 129

31

1 INTRODUCTION

Nowadays, there are many devices in the market capable of digital video recording
and displaying, such as digital (smart) televisions, desktop and laptop computers,
tablets, smartphones, videogame consoles, camcorders, security cameras, etc. These
devices enable a variety of digital video applications, such as video streaming,
broadcast digital television, videoconferencing, digital cinema, video surveillance, etc.
Two on-demand digital video streaming services over the Internet, namely YouTube
and Netflix, became increasingly popular in the last years. YouTube is the largest video
repository and video broadcast service in the Internet, with 80 hours of video uploaded
per minute by the users and millions of views per day (KOKARAM, 2013). Netflix is
subscription-based streaming video service that delivers movies and TV series. Netflix
achieved the mark of 50 million subscribers in the second quarter of 2014 (FORBES,
2014). It is predicted that video traffic over the Internet will be 79% of all consumer
Internet traffic in 2018 (CISCO, 2014).

To deal with video storing and transmitting over the Internet (and other
communication networks), video compression is essential. Here is an example of why
video compression is important: a raw (uncompressed) video lasting 10 minute with
720x480 pixel resolution (Standard Definition - SD) represented with 24 bits per pixel
(8 bit for each color channel, using three color channels) and with 30 frames per second
(fps) require 19 Gigabytes (GB) to be stored or transmitted over the Internet. The same
10-minute raw video with 1920x1080 pixels resolution (Full-HD resolution) requires
112 GB. The same video in the new Sony 4K video resolution format (4096x2160
pixels), used in the 2014 FIFA World Cup, requires 477 GB. It is not viable to deal with
such amount of data of raw video sequences using the recent storing and
communication technologies.

Video coding is the process of compressing and decompressing digital video. In
other words, video coding is the process of converting digital video into a format
suitable for transmission or storage. The number of bits to represent encoded video is
reduced compared to raw video. Video coding is based in a complementary pair of
systems, an encoder (compressor) and a decoder (decompressor). Video encoder
converts raw video into a compressed form, prior to storing or transmission. This
process is also known as video encoding. Video decoder converts the compressed video
back to the original (or very similar to the original) video representation. This process is
also known as video decoding. The encoder/decoder pair is often described as a
CODEC (enCOder/DECoder). Video compression is achieved by removing
redundancy, i.e. information that is not necessary for video representation. Video
compression may also introduce subjective redundancy, i.e. information that can be
removed without significantly affecting viewer’s perception of video quality. If the
decoded video is identical than original raw video, the encoding process is lossless. In
lossy compression, subjective redundancy is also employed, resulting in difference
between raw video and decoded video. Lossy compression is applied to achieve higher
compression. The higher compression comes with a decrease in video quality of
decoded video compared with raw video (RICHARDSON, 2010).

32

Video coding standards are developed to encode (compress) video. Most video
coding standards employ lossy compression to attain high video compression efficiency.
When developing a video coding standard, the goal is to compress video with minimal
video quality loss under a certain compressed video size (or to achieve minimum
compressed video size under a given target video quality). Video coding standards
evolved in the last two decades, primarily driven by new video applications and the
increase in video resolution. The advances of recent video coding standards in order to
provide increasingly video compression result in a huge computational effort. Electronic
devices capable of video processing are demanded to provide increased performance at
each video coding standard generation, to encode and decode high resolution videos in
real time. In this context, section 1.1 presents motivation and problem definition which
are driving this thesis.

1.1 Motivation and Problem Definition

The recent demand for ultra-high resolution videos (beyond 1920x1080 pixels)
drives the development of new and more efficient video coding standards to provide
high compression efficiency. The most efficient new coding standard that arises is the
High Efficiency Video Coding (HEVC) standard, developed by the Joint Collaborative
Team on Video Coding (JCT-VC), formed by experts of Video Coding Experts Group
(VCEG) of International Telecommunication Union (ITU), and Motion Picture Experts
Group (MPEG) from the International Standardization Union (ISO). HEVC was
published in April 2013 as ITU-T H.265 recommendation (ITU-T, 2013).

HEVC reaches the double compression efficiency (or 50% bit rate reduction)
compared to the most efficient video coding standard at that time, and most used in the
market, the H.264/AVC (Advanced Video Coding) standard (ITU-T, 2011). The double
compression efficiency of HEVC over H.264/AVC is achieved for a similar video
quality, since both standards provide lossy compression. HEVC achieves such
compression efficiency by employing larger block sizes (to deal with increased
resolutions), sophisticated block partitioning, and new advanced coding tools
(SULLIVAN, 2012).

The higher compression efficiency of HEVC comes with a significant increase in the
computational effort of the HEVC encoder that ranges from 1.2x to 3.2x of the
H.264/AVC encoding complexity (VANNE, 2012). It requires further performance
improvement of video-capable devices to deal with the increased encoding complexity
still being able to encode high video resolutions in real time. A substantial research
effort, especially in HEVC encoder, is forecasted to reach this goal (BOSSEN, 2012).

Performance improvement was achieved in the past with the advances of silicon
fabrication technology, which enable higher operation frequencies through smaller and
faster transistors. Recently, advances in silicon fabrication still enable smaller and faster
transistors at every new Complementary metal-oxide-semiconductor (CMOS)
technology node. Chips continue to integrate more transistors into the same area,
following the Moore’s law for density (MOORE, 1965). Recent CMOS technologies are
able to integrated more and more processing cores in the same chip, the so-called multi-
core and many-core processors.

However, in new decananometer technologies, performance increase is limited by
thermal design power, since transistor power density is now increasing at each CMOS
technology node (ESMAEILZADEH, 2011). To ensure that chips remain below the

33

thermal design power, not all transistors of the chip can switch at full speed all the time,
resulting in the so-called utilization wall (VENKATESH, 2010). The portion of the chip
that is most of the time underclocked or powered-off is referred in general as “dark
silicon” (ESMAEILZADEH, 2011) (TAYLOR, 2013). Recent work (TAYLOR, 2013)
foresees that the percentage of dark silicon will increase at each technology node and
will be around 94% in the early 2020’s. Dark silicon will limit core and frequency
scaling for performance improvement.

To cope with the increased performance required by the new HEVC standard and to
keep chips below the thermal design power, future processors will integrate many on-
chip hardware accelerators for specific computational kernels, i.e. the so-called
accelerator-rich architectures (IYER, 2012) (CONG, 2014). Specialized hardware
accelerators are 500X more energy efficient than general purpose processors doing the
same job (HAMMED, 2011). As the computational kernels are not executed
simultaneously all the time, the accelerators can be powered off when not in use. Hence,
specialized hardware accelerators for important computational kernels are an efficient
way to “fill” the dark region of chips.

While dedicated hardware accelerators provide high performance and energy
efficiency for real-time video encoding and decoding, they have some drawbacks. They
are fixed in design time and cannot change the hardware in the field, after silicon
fabrication. They also incur in high costs for design and silicon fabrication.
Reconfigurable hardware provides a platform solution with low design costs, faster
time-to-market, and flexibility of quick upgrades through dynamic reconfigurations
(TUAN, 2006). Designs based on Field-programmable Gate Array (FPGA) combine the
performance efficiency of dedicated accelerators due to their capability to exploit high
degree of parallelism along with a high degree of flexibility due to their
programmability and hardware reconfigurability (SHAFIQUE, 2009)(COMPTON,
2002). The drawback of FPGA designs is the higher power compared with dedicated
accelerators.

The thesis author foresees that both dedicated and reconfigurable accelerators will
be used in future accelerator-rich processor architectures. This thesis provides different
contributions for both dedicated and reconfigurable acceleration, as discussed in section
1.2., which can be applied to the current HEVC and also to future generation video
encoders, as long as they are based on CUs comprised of blocks of video pixels.

1.2 Thesis Contribution

The goal of this thesis is the research on novel dedicated and reconfigurable
hardware accelerators for important computational kernels of the new HEVC standard.
Analysis of the HEVC application presented in Chapter 3 verifies that the most
important coding tools in terms of computational effort are the Fractional-pixel
Interpolation Filter, the Deblocking Filter (DF) and the Sum of Absolute Differences
(SAD).

In the domain of dedicated accelerators dealt with in Chapter 4, this thesis
introduces the following novel contributions:

• A high-throughput hardware architecture for HEVC Fractional-pixel
Interpolation Filter (Section 4.2) employing 12-pixel parallel filter
acceleration engines for luminance and chrominance with multiplierless
configurable interpolation datapaths and a scheduling scheme to manage the

34

operation of these interpolation datapaths depending upon the execution
scenario.

• A hardware architecture for HEVC Fractional-pixel Interpolation Filter
using Adder Compressors (Section 4.3) to improve area, performance, and
power dissipation.

• A high-throughput hardware architecture for HEVC Deblocking Filter
(Section 4.4) employing hardware reuse to accelerate filtering decision units
at low area cost.

• A comparative analysis and comparison of architectural alternatives for
SAD hardware architecture processing element (Section 4.5) in terms of
hardware area, throughput, and power dissipation.

Regarding reconfigurable video coding accelerators, this thesis additionally
introduces the following novel contributions:

• A reconfigurable hardware architecture for HEVC Fractional-pixel
Interpolation Filter, developed in Chapter 5. The architecture incorporates a
prediction scheme to estimate the number of interpolation filter calls on a
picture-by-picture basis, using the knowledge of the coding structure. A set
of different implementation versions for interpolation filter hardware
accelerator engines is developed to allow an area versus performance
tradeoff. An implementation version selection scheme is proposed. It selects
an implementation version of interpolation filter accelerator for each picture,
depending upon the predicted number of interpolation filter calls provided by
the prediction scheme. A scheduling scheme is introduced to determine the
order of processing and configure filter types. It facilitates the reuse of input
samples and prevents redundant fetching.

• A run-time accelerator binding scheme for tile-based mixed-grained
reconfigurable architectures is proposed and analyzed in Chapter 6. The
scheme employs datapath reuse and inter-tile communication cost estimation
to perform a communication-minimizing binding for datapaths of custom
instructions at run-time.

1.3 Thesis Outline

This text is organized as follows. Chapter 2 provides a background of video coding
(focusing on the new HEVC video coding standard), reconfigurable computing, power
dissipation and it discusses related work on these topics. Chapter 3 presents an
analysis of HEVC application based on software profiling and observation of function
calls at run time. Chapter 4 presents our novel dedicated hardware accelerators for
HEVC. Chapter 5 presents a new reconfigurable hardware architecture for HEVC
Fractional-pixel Interpolation Filter. Chapter 6 introduces the novel run-time
accelerator binding scheme for tile-based mixed-grained reconfigurable processors.
Chapter 7 presents the conclusions of this thesis and describes future work.

35

2 BACKGROUND AND RELATED WORK

This chapter gives a background on the concepts required to understand the novel
contributions of this work. It revises the concepts of digital video capture,
representation, quality and coding (sections 2.1 and 2.2) with an overview of the new
HEVC standard (section 2.3). Concepts of reconfigurable computing and power
dissipation in CMOS are also revised in sections 2.4 and 2.5. Related work about
hardware design and architectures for HEVC and accelerator binding schemes are
presented in section 2.6.

2.1 Digital Video Capture, Representation, and Video Quality

2.1.1 Digital Video Capture

Digital video is a discrete approximation (in time and space) of a natural scene. It is
represented by a sequence of pictures (a rectangular matrix of pixels) captured at regular
time interval. Each picture is 2D projection of a natural scene captured by an analog
semiconductor sensor, formed by an array of Charge Coupled Devices (CCD)
(RICHARDSON, 2010). Each CCD captures one pixel. For color images, there are
three matrixes of CCDs, one to capture each color. Each color component of a pixel is
called sample. Each sample is represented by a number of bits, e.g. 8 bits, that define
the intensity level of the specific color.

The size of CCD array (in horizontal and vertical pixels) defines the spatial
sampling of video, which is called resolution. There are some defined resolution
formats, e.g. Standard Definition (SD) with 720x480 pixels, Full-HD (High Definition)
with 1920x1080 pixels, 4Kx2k with 4096x2160 pixels, etc.

The time interval each picture is captured define the temporal sampling of video. It
is called picture rate or frame rate, commonly defined as frames per second (fps). With
a sufficient high capture rate, it is possible to give the observer the feeling of motion.
Common picture rates are 24 fps, 30 fps, 50 fps and 60 fps, etc. The higher is the picture
rate, more smooth is the feeling of motion to the observer (RICHARDSON, 2010).

2.1.2 Color Spaces and Color Sub-sampling

The pixel in a color picture is represented by three color components, following a
color space. A common color space is Red, Green, and Blue (RGB), which uses these
three primary colors captured by the human visual system to form the pixel. Video
coding standards uses Luminance, Chrominance Red and Chrominance Blue (YCbCr)
color space, instead. The main advantage of YCbCr color space is because the human
visual system has different photoreceptor cells, namely the rods, to sense intensities of
light (luminance, or luma), and the cones, to sense colors (chrominance, or chroma). As
the human visual system is less sensitive to color than to luminance, it is possible to
sub-sample the color pixels.

Common color sub-sampling rates are 4:2:0, in which for each four luma samples,
there are only one Cb sample and one Cr sample. It actually represents 4:1:1 ratio, but
the literature defined as 4:2:0. Other chroma sub-sampling ratios are 4:2:2 and 4:4:4, the
later with no sub-sampling (RICHARDSON, 2010). Color sub-sampling may be
considered a first tool for video compression.

36

10 

(1 2

2.1.3 Video Quality Metrics

Since video coding standards provides usually lossy compression, to achieve large
compression rates, it is important to measure the final video quality after video
encoding. Video quality is a complex parameter to define, because it is based on
subjective criteria of video observers. Subjective metrics, such as Mean Opinion Score
(MOS) exist and are used to evaluate the video quality to compare different video
coding standards. However, MOS cannot be used in all contexts, because in some cases
it is needed to compare and evaluate videos faster and objectively.

Peak Signal-to-Noise Ratio (PSNR) is a well-known objective video quality metric
used in the literature (GHANBARI, 2003). PSNR is defined in Equation 2.1, in which
MAX is the maximum value of representation of one sample (2n – 1, for 8 bits, MAX is
equal to 255) and Mean Squared Error (MSE) is calculated as shown in Equation 2.2. In
Equations 2.1 and 2.2, m and n are the horizontal and vertical dimensions of the picture.
In Equation 2.2, O and R are the original and reconstructed pictures, respectively.
Reconstruced picture is the picture after the coding losses.

PSNR(dB) = 20 ⋅ log  MAX 


(2.1)

 MSE 

MSE =

m−1 n−1

∑∑ Ri , j

− Oi, j)

(2.2)

mn i =0 j =0

Often it is useful to compare video quality between two different coded videos (e.g.
using different codecs) of a same input raw video. Two different coded videos of a same
input raw video may incur in different PSNR, but also different bit rate (the rate of a
coded video bits, in bits/s). In this case, a simple PSNR comparison is not useful,
because videos have also different bit rate values. In this situation, the Bjontegaard
Delta PSNR (BD-PSNR) metric (BJONTEGAARD, 2001) must be used. This metrics is
based on curve fitting of two different Rate Distortion (RD) curves (of the two different
coded videos) formed by four bit rate/PSNR points. BD-PSNR represents an average
difference of PSNR values (in dB) over the range of four bit rates. BD-Rate metric also
exists and represents an average bit rate difference (in %) over the range of four PSNR
values (BJONTEGAARD, 2001). More details about BD-PSNR and BD-Rate
calculation can be found in (BJONTEGAARD, 2001).

2.2 Video Coding Background

2.2.1 Brief History of Video Coding Standardization

The history of video coding standardization can be summarized by revising the
video coding standards developed by ITU and ISO organizations. The first video coding
standard is H.261 (ITU, 1990). Three years later, ISO produced its first video coding
standard, MPEG-1 (ISO, 1993). One year later, ITU and ISO groups jointly produced
the H.262/MPEG-2 video coding standard (ITU and ISO, 1994). In 1995, ITU produced
the H.263 standard (ITU, 1995). ISO produced MPEG-4 Visual standard in 1999 (ISO,
1999). After that, ITU and ISO jointly produced the H.264/MPEG-4 Advanced Video
Coding (AVC) standard (also known as H.264/AVC) (ITU and ISO, 2003).

H.264/AVC is the current video coding standard in use in the market, targeting
many video applications and ranging different video resolutions. It was developed by
the Joint Video Team (JVT) formed by experts of both ITU and ISO. H.264/AVC

37

doubles the video compression when compared to MPEG-2 standard for similar video
quality (WIEGAND, 2003).

The new High Efficiency Video Coding (HEVC) standard was recently developed
by JCT-VC, formed by experts of ITU and ISO, and published in April 2013 (ITU and
ISO, 2013). Its primary goal was to double compression efficiency of the most efficient
video coding standard until now, namely the H.264/AVC, especially focusing on ultra-
high resolution video encoding (beyond 1920x1080 pixels). In recent video coding
standards, i.e. H.264/AVC and HEVC, only the video decoder and the bitstream syntax
are subject of standardization. The video encoder flow is not standardized. It gives some
freedom to design video encoder, because the only requirement for video encoder is to
generate a conformed bitstream (WIEGAND, 2003).

2.2.2 Video CODEC

Digital video pictures are compressed by a video encoder that transforms original
pictures into a stream of bits of coded video (also called bitstream). To display the
coded video, a video decoder must be used to transform the coded video into a
reconstructed picture. Usually, the reconstructed pictures are different from original
pictures (in lossy compression). When reconstructed and original pictures are equal, it is
called a lossless compression (RICHARDSON, 2010). The pair encoder/decoder forms
the so-called COder/DECoder (CODEC).

An abstract diagram of video encoder is depicted in Figure 2.1. It is formed by three
main functional units: a prediction model, a spatial model and the entropy encoder
(RICHARDSON, 2010). The prediction model receives original (raw, uncompressed)
pictures and reduces the spatial and temporal redundancies present in video, by
exploiting stored coded data, e.g. neighboring pictures or the same picture. The
difference of prediction result and the original picture is called residue. The residue is
processed by a spatial model that transforms residue into coefficients, exploiting
similarities in the residual picture to reduce spatial redundancy. Prediction and Spatial
model parameters are further processed by entropy encoder, which is a lossless encoder
that removes statistical redundancy in the data.

Figure 2.1 – Abstract system diagram of video encoder

Prediction
model

residue

Spatial
model

coefficients
Entropy
encoder

coded
video

010010…

Stored coded data
prediction
parameters

Source: the author, modified from (RICHARDSON, 2010).

Advanced video coding standards, e.g. H.264/AVC and HEVC, follows basically
the same CODEC structure. The video encoder is based on the abstract video encoder
system diagram shown in Figure 2.1. However, advanced video coding standard are
block-based, i.e. video pictures are partitioned into smaller blocks that are processed by
the encoder and the decoder. H.264/AVC splits pictures into blocks of 16x16 pixels
called macroblocks. The macroblock is the main coding unit that is processed by all the

38

coding tools of video encoder. HEVC supports larger blocks of size up to 64x64 pixels
(SULLIVAN, 2012). More details of HEVC are given in section 2.3.

Figure 2.2 shows the diagram of a generic video encoder. It includes Inter and Intra
predictions, Forward Transform (T), Quantization (Q), Inverse Transforms (IT), Inverse
Quantization (IQ), Entropy Coding and Deblocking Filter (DF). Intra prediction
generates a prediction of a block based on the information of neighboring blocks in the
current picture (captured by the camera) that are already processed and reconstructed.
Inter prediction is formed by Motion Estimation (ME) and Motion Compensation (MC)
coding tools. The goal of Inter prediction is to generate a prediction based on previous
pictures, so-called reference pictures. ME searches for the best match, i.e. the block in
the reference pictures that is the most similar to the block in the current picture. The
most similar block is chosen by ME as the best block, and a motion vector indicates the
displacement between current block position and the position of the best block. ME/MC
process is detailed in section 2.2.2.1.

Current

Figure 2.2 – System diagram of video encoder

Entropy

Bitstream

picture T Q Coding
(original) Inter prediction

ME

Side
information

Reference MC
pictures

Intra

prediction

Current
picture DF

(reconstructed)

+ IT IQ

Source: the author, modified from (AGOSTINI, 2007).

After the prediction, the residual blocks (difference between predicted blocks and
original blocks from the current picture) are processed by Transforms and Quantization
modules. In H.264/AVC, transform module includes a 4x4/8x8 Discrete Cosine
Transforms (DCT) and 2x2/4x4 Hadamard Transform, depending on the residues and
the block type (WIEGAND, 2003). Quantization is the module that produces coding
losses in the residual blocks, controlled by a Quantization Parameter (QP). QP value is
directly proportional to the strength of coding loss. All coding information (residual
blocks and side information from other modules, e.g. prediction types, motion vectors,
etc.) is further encoded by the Entropy coding module. Advanced video coding
standards support sophisticated lossless entropy coding algorithms such as Context
Adaptive Binary Arithmetic Coding (CABAC). In particular, H.264/AVC also includes
Context Adaptive Variable Length Coding (CAVLC) for entropy coding. The output of
entropy coding module is the coded video (bitstream).

Prediction, Transforms, Quantization, and Entropy coding form the forward path of
video encoder. The inverse path is formed by Inverse Transforms (IT), Inverse

39

Quantization (IQ) and Deblocking Filter (DF). The inverse path is included in video
encoder to avoid mismatch between encoder and decoder. Reconstructed pictures in
video encoder, further used as reference pictures, must match exactly the reconstructed
pictures in video decoder, because decoder also uses the reference pictures to perform
Motion Compensation (MC). MC is the inverse process of motion estimation. The result
of MC or Intra prediction is added to the output of IT to reconstruct the block. Before
picture reconstruction, a Deblocking Filter (DF) is applied to remove blocking artifacts
caused by strong quantization.

The general diagram of a video decoder is shown in Figure 2.3. It is similar to the
inverse path of the video encoder. The coded video (bitstream) inputs to an entropy
decoding module. The residual blocks are processed by Inverse Transforms and Inverse
Quantization modules. Decoded side information e.g. prediction types, motion vectors,
feeds other modules. The result of prediction (either Intra or Inter) is added to the output
of Inverse Transforms and is processed by deblocking filter (DF in Figure 2.3) to
reconstruct the picture (which will be displayed in the user device). Reconstructed
pictures are stored as reference pictures to be used by Motion Compensation.

Figure 2.3 – System diagram of video decoder

Reference
pictures

Inter prediction

MC

Intra

prediction
Side information

Current
picture DF

(reconstructed)

+ IT IQ

Entropy

decoding

Bitstream

Source: the author, modified from (AGOSTINI, 2007).

Motion Estimation and Deblocking Filter modules are detailed in sections 2.2.2.1
and 2.2.2.2, since they are the focus of hardware accelerators proposed in this work.

2.2.2.1 Motion Estimation (ME)

Motion Estimation is available only in video encoders, in the Inter prediction
module. Figure 2.4 shows the Motion Estimation process. It has the goal to search in the
references pictures which block is the most similar with the current block (to be
encoded) in the current picture, the so-called best match.

ME search is usually limited to a search area in the reference picture. When the best
match is found, a Motion Vector (MV) is generated to indicate the displacement of
current block position and the selected block position in the reference picture. The MV
is encoded by an entropy encoder and is sent to the bitstream, along with the residue
between the best block and the current block, which is transformed and quantized. The
ME search is conducted and guided by a block-matching algorithm, which is usually
optimized according to specific coding efficiency goals set by the designer
(performance, video quality, power, or area, for instance).

40

Figure 2.4 – Motion estimation process

Reference picture

Best match

Current block

Motion vector

Search
Area

Position of
current block

in the
reference
picture

Current picture

Source: the author, modified from (PORTO, 2008).

A vast number of ME search algorithms were proposed in the literature, since they
are a non-standardized coding tool. A survey of ME algorithms is given in (HUANG,
2006). Independent of the search algorithm, they need to use a video quality metric to
determine the best match. PSNR metric, based on MSE, is very complex to be used in
practice. Sum of Squared Differences (SSD) is a video quality metric with good
correlation with MSE and PSNR. However, calculating square values also requires huge
computational effort in real systems. Some video quality metrics that require lower
computational effort are the Sum of Absolute Transformed Differences (SATD) and the
Sum of Absolute Differences (SAD). SAD is the simpler and requires the lowest
computational effort. SATD is based on transformed differences and requires usually a
Hadamard transform (RICHARDSON, 2010).

SAD calculation, used in this work, is shown in Equation 2.3, where m and n are the
dimensions of the block in samples (horizontal and vertical), O is the current (original)
block and R is the reference block.

m −1 n −1

SAD = ∑ ∑ Ri, j − Oi , j
i = 0 j =0

(2.3)

One SAD is calculated for one current block and for one specific block out of the
many possible block candidates in the reference picture, as determined by the ME
search algorithm. The SAD metric is then often used for low complexity video quality
measure in the context of block matching for ME.

In advanced video coding standards, ME has many features, e.g. variable block size,
bi-prediction (B pictures), weighted prediction, fractional-pixel motion vectors, etc.
Fractional-pixel motion vectors require an Interpolation Filter to calculate the value of
the fractional position pixels.

41

2.2.2.2 Deblocking Filter (DF)

Deblocking Filter is included in the advanced video coding standards to improve the
reconstructed picture to be used as reference pictures for ME/MC. It reduces the
blocking artifacts present in a reconstructed video, which are introduced by the inherent
block partitioning and strong quantization in video encoding. This is done by modifying
samples along the vertical and horizontal borders of blocks. The Deblocking filter is
adaptive to identify whether the artifacts are real edges of the picture (and thus must not
be filtered) or are the edges introduced by the encoding process, which then must be
filtered. Therefore, many decisions are applied before the sample modifying to decide
whether the filter must be applied or not.

2.2.3 Temporal picture structure

There are two different picture types in video coding standards: Intra (I) picture,
which includes only Intra prediction blocks, and Inter picture, that may include Inter
and Intra blocks. Regarding Inter prediction, there are two types of pictures: Predictive
(P) pictures (only P blocks) which employ Inter prediction with only one reference
picture, and Bi-predictive (B) pictures, that may include P and B blocks. Bi-prediction
is the Inter prediction in which two reference pictures must be used together to predict
the same block. Intra picture is always the first picture in a video sequence, because
there are no previous (reference) pictures to perform Inter prediction. It is usual to also
include Intra pictures in regular intervals between Inter pictures to provide the so-called
Random Access, i.e. for broadcast and streaming video applications, the decoder must
find the first Intra picture to start decoding the video stream. The period of pictures
between two Intra pictures is referred in this work as intra period.

Both P and B pictures may use reference pictures from the past or from the future of
pictures. To support this feature, the encoding order is different to the display order. The
display order is often referred as Picture Order Count (POC). The encoding order is
called frame number or picture number. In video coding standards, pictures are
organized in Group of Pictures (GOP) for encoding. An efficient temporal picture
coding structure in terms of compression is the hierarchical B-picture coding structure
shown in Figure 2.5. In this structure, pictures are encoded as I pictures or B pictures (B
pictures are more generic than P pictures, because they include both P and B blocks).

Figure 2.5 – Temporal picture coding structure using Random Access configuration

Source: the author, modified from (VANNE, 2012).

42

In the picture structure shown in Figure 2.5, different QP values are assigned for
each picture depending on their picture index and type (I or B). Figure 2.5 also shows
the prediction dependencies among pictures, i.e. reference pictures (VANNE, 2012).

2.3 Overview of the High Efficiency Video Coding (HEVC) Standard

HEVC is the new video coding standard (ITU and ISO, 2013). It achieves
approximately 50% bit rate reduction over H.264/AVC standard (ITU and ISO, 2003).
HEVC follows the same block-based video encoder structure as reviewed in section 2.2.
To achieve such compression efficiency, HEVC employs larger block sizes (up to 64x64
pixels) and a new flexible quadtree structure that splits those blocks hierarchically down
to 4x4-pixel elementary blocks. A new set of advanced coding tools was also introduced
in HEVC, as we review in this section.

In HEVC, pictures are first partitioned into Coding Tree Units (CTUs). The size of
CTUs is defined by video encoder depending on encoder constraints and video content.
CTUs can be as large as 64x64 pixels but may be smaller. CTUs are recursively
partitioned into Coding Units (CUs) with a quadtree partitioning structure (each CU in the
root may be partitioned into four smaller CUs in the leaves). Hence, HEVC defines three
basic units below CTUs:

• Coding Unit (CU): CUs have the size varying from 8x8 pixels to 64x64
pixels. The decision between Intra or Inter-prediction for the unit (or block)
PU is taken here. A CTU may contain only one CU or several smaller CUs.
Each CU can be individually partitioned into Prediction Units (PUs) and
Transform Units (TUs).

• Prediction Unit (PU): defines the type of a prediction block. The largest size
of a PU is the CU size in the root. PU sizes range from 4x4 up to 64x64 pixels.
They may assume symmetrical and asymmetrical sizes, depending on Intra or
Inter prediction. There are 35 intra prediction modes defined in HEVC (33
directional modes, a Planar mode and a DC mode).

• Transform Unit (TU): defines the sizes of transform blocks. Transforms also
from their own transform tree, so-called Residual Quad Tree. Transform sizes
range from 4x4 pixels to 32x32 pixels. The DCT transform is defined (similar
to the ones in H.264/AVC) and a new Discrete Sine Transform (DST) is
introduced in the HEVC standard.

Inside the HEVC in-loop filter, a new Sample Adaptive Offset (SAO) filter was
introduced, that is applied after the Deblocking Filter. Some tools or schemes originally
used in the H.264/AVC were removed, such as the CAVLC entropy coding, and the
Hadamard transform. Other tools from H.264/AVC are kept in HEVC, but with some
modifications, such as the Fractional-pixel Interpolation Filter, the Deblocking Filter (DF)
and the CABAC entropy encoder/decoder.

Some tools were also introduced in HEVC to facilitate the parallel processing of the
video coding software. In H.264/AVC, one way to extract parallelism for video coding is
by grouping contiguous macroblocks into slices, since slices can be independently
encoded. However, the partition of video frames into many slices may introduce high
amount of bits for slice header that increases bit rate (because slices were not created for
parallel processing, but for robust video transmission). HEVC introduces Tiles, which
split the video pictures into rectangular regions that can be encoded in parallel. A

43

Wavefront Parallel Processing (WPP) scheme was also introduced, which creates a
“wave” ordering of macroblocks that can be encoded in parallel, without mutual data
dependences.

Table 2.1 summarizes the comparison of H.264/AVC and HEVC coding tools,
according to our previous analysis.

Table 2.1 – Comparison of H.264/AVC and HEVC coding tools.

Coding tool H.264/AVC HEVC
Size of Coding Unit 16×16 (macroblock) 64×64, 32×32, 16×16, 8×8
Size of Prediction Unit 16×16, 16×8, 8×16,

8×8, 8×4, 4×8, 4×4
64×64, 64×32, 32×64, 32×32, 32×16, 16×32,

16×16, 16× 8, 8×16, 8×8, 8×4, 4×8, 4×4
Size of Transform Unit 8×8, 4×4, 2×2 32×32, 16×16, 8×8, 4×4
Transforms DCT, Hadamard DCT, DST
Entropy coding CABAC, CAVLC CABAC
In-Loop Filter Deblocking Filter Deblocking Filter, SAO
Fractional-pixel
Interpolation

6-tap (luma), 2-tap
(chroma)

7-/8-tap (luma), 4-tap (chroma)

Intra prediction modes 9 modes (4×4) and 4
modes (16×16, chroma)

35 modes

Parallel processing Slices Tiles, WPP
Source: the author.

Some coding tools are reviewed in details in this section, such as the Fractional-pixel
Interpolation Filter (section 2.3.1) and Deblocking Filter (section 2.3.2), that are the main
focus of this work. For more information on other coding tools, please refer to
(SULLIVAN, 2012) and (ITU and ISO, 2013).

2.3.1 Fractional-pixel Interpolation Filter

In HEVC, luma and chroma motion vectors (MV) have quarter- and eighth-pel
(pixel) precision, respectively. The luma half- and quarter-pels are generated using 8-tap
and 7-tap filters, respectively. The chroma eighth-pels are generated using a 4-tap filter.
The HEVC interpolation filter improves the coding efficiency of 6-tap and 2-tap
(bilinear) interpolation filters of H.264/AVC by 10% (LV, 2012). Along with the
Hadamard transform for decision in FME, it reduces the bit rate by 0.3%-2.2% and
increases the video quality by 0.04 dB-0.16 dB (CORRÊA, 2012).

Figure 2.6 shows the positions of the luma fractional-pels (green, yellow and
orange) with the luma integer-pels (blue). The arrows in Figure 2.6 highlight the
integer-pels used for interpolation of a, b and c. The numbers beside the arrows are the
filter coefficients. Each luma fractional-pel in green (a, b, or c) is calculated by applying
a horizontal filter over the luma integer-pels at positions [-3…4]. The remaining
fractional-pels are generated through vertical filters over the integer-pel (orange) or over
previously calculated fractional-pels (yellow). There are three different types for luma
filters as shown in Table 2.2.

44

Figure 2.6 – Luma fractional pixel positions for a 8x8 luma integer pixel block

Legend:
Integer-pels
of 8x8 block

Fractional-pels
calculated over
integer-pels
(Horizontal
filters)
Fractional-pels
calculated over
integer-pels
(Vertical filters)

Fractional-pels
calculated over
(a,b,c)
fractional-pels
(Vertical
filters)

Source: (DINIZ, 2015a).

The luma half-pels (b, h, i, j, and k in Figure 2.6) are generated using an 8-tap filter
(filter type 2/4 in Table 2.2) and the quarter-pels are generated using a 7-tap filter (filter
types 1/4 or 3/4, in Table 2.2). There are seven types of 4-tap chroma filters (1/8 to 7/8).
Table 2.2 shows all the HEVC interpolation filter types and their corresponding
coefficients (ITU-T, 2013).

The interpolation filter types and coefficients are the same when used for MC or
FME. However, the set of pixels and the order they are calculated may differ. MC
interpolates according to the fractional-precision MV received in the bitstream. FME (at
the encoder side) has a different behavior. Although FME’s process is not standardized,
the HM HEVC reference software (HM, 2013) employs the same interpolation filters to
generate 8 half-pel points for motion refinements.

Table 2.2 – 7-tap and 8-tap luma and 4-tap chroma filter coefficients.

 Filter type Filter coefficients
Luma 1/4 -1 4 -10 58 17 -5 1

2/4 -1 4 -11 40 40 -11 4 -1
3/4 1 -5 17 58 -10 4 -1

Chroma 1/8 -2 58 10 -2
2/8 -4 54 16 -2
3/8 -6 46 28 -4
4/8 -4 36 36 -4
5/8 -4 28 46 -6
6/8 -2 16 54 -4
7/8 -2 10 58 -2

 Index -3 -2 -1 0 1 2 3 4
Source: (DINIZ, 2015a).

45

To illustrate the filter calculation, Equation (2.4) shows an example of b0,0 luma
half-pel calculation (8-bit depth) with Ai,0, i=-3..4 integer-pel as input.

b0,0 = −A-3,0 + 4 ∗ A-2,0 − 11 ∗ A-1,0 + 40 ∗ A0,0 + 40 ∗ A1,0 − 11 ∗ A2,0 + 4
∗ A3,0 − A4,0

2.3.2 Deblocking Filter (DF)

(2.4)

The new DF in HEVC contributes to up to 6% bit-rate reduction (1.3%-3.3% bit-rate
reduction on average) for the same video quality (NORKIN, 2012). Although the DF is
an optional feature in video encoder (and thus may not be used in video decoder), it is
often employed because of the high bit-rate reduction.

The deblocking filter reduces the blocking artifacts (visible discontinuities in the
video) caused by block-based encoding with strong quantization. It is applied by
modifying samples along horizontal and vertical boundaries of PUs and TUs of size not
smaller than 8x8 samples. Filtering is applied separately in 4x4 blocks (so-called P and
Q blocks), as shown in Figure 2.7. Normal and strong filtering modes modify 2 and 3
luma samples along each boundary, respectively. The example in Figure 2.7 shows a
vertical boundary, as the horizontal boundary filtering is analogous.

Figure 2.7 – Boundary of a 4x4 block (blocks P and Q)

Boundary to be filtered
P block

p3,0 p2,0

p3,1 p2,1

p3,2 p2,2

p3,3 p2,3

p1,0 p0,0

p1,1 p0,1

p1,2 p0,2

p1,3 p0,3

q0,0 q1,0

q0,1 q1,1

q0,2 q1,2

q0,3 q1,3

Q block

q2,0 q3,0

q2,1 q3,1

q2,2 q3,2

q2,3 q3,3

Samples
used for
filtering

decisions

Source: (DINIZ, 2015b).

Before the boundary filtering, many filtering decisions have to be assessed to decide
whether or not the boundary should be filtered, and also to determine which filtering
modes, i.e. normal or strong, must be applied on a boundary. Only the samples in the
first and last rows of P and Q blocks are used for filtering decisions. Figure 2.8 shows
the complete algorithmic flow of the deblocking filter, along with the filtering decision
equations.

46

Figure 2.8 – HEVC Deblocking filter flow and filtering decision equations

Source: (DINIZ, 2015b).

Filtering decisions avoids the filtering of real video boundaries, filtering only those
which are artificially generated by the coding process. Filtering decisions depend upon
various parameters, such as block type, QP, and video content. β and tc value are
determined by a lookup table with QP as input, as shown in Table 2.3.

Table 2.3 – Derivation of threshold variables β and tc for each QP.

QP 0 ... 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
β 0 … 6 7 8 9 10 11 12 13 14 15 16 17 18 20 22 24 26 28
tc 0 .. 0 0 1 1 1 1 1 1 1 1 1 2 2 2 2 3 3 3

QP 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
β 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 - -
tc 3 4 4 4 5 5 6 6 7 8 9 40 11 13 14 16 18 20 22 24

Source: (ITU and ISO, 2013).

Block types affect boundary strength (Bs) (ITU and ISO, 2013). Chroma filter is
only performed when Bs is equal to 2 and no further decisions need to be evaluated.
Only the samples closer to the block boundary are modified.

After the filtering decision flow, normal or strong filtering may be applied to modify
samples along the boundary. If the normal filter must be applied for a boundary, and

47

only p0 and q0 samples must be modified (see Figure 2.8), the Equations (2.5) and (2.6)

 are applied. In Equations (2.5) and (2.6), p0, q0, p’0, and q’0 are the unfiltered and filtered samples of P and Q blocks, respectively. Δ0 is obtained by clipping 0 , which is
shown in Equation (2.7). If the samples p1 and q1 must also be modified according to the
decision flow, the equations (2.8) and (2.9) are applied, where p1, q1, p’1, and q’1 are the
unfiltered and filtered samples of P and Q blocks, respectively. Δp1 and Δq1 are obtained
by clipping p1 and 1, shown in Equations (2.10) and (2.11), respectively.

p′0 = p0 + Δ0 (2.5)

 ′0 = 0 − Δ0 (2.6)

 0 = (9(0 − p0) − 3(1 − p1) + 8) ≫ 4 (2.7)

p′1 = p1 + Δp1 (2.8)

 ′1 = 1 + Δ 1 (2.9)

 p1 = (p2 + p0 + 1) ≫ 1 − p1 + Δ0 ≫ 1 (2.10)

 1 = (2 + 0 + 1) ≫ 1 − 1 − Δ0 ≫ 1 (2.11)

Strong filter is similar to the normal filter. Offset values Δ0s, Δ1s and Δ2s are obtained after clipping 0s , 1s and 2s , which are shown in Equations (2.12), (2.13) and (2.14).
Offset values are added to the unfiltered samples p0, p1 and p2 to determine the filtered
samples p’0, p’1, and p’2. Samples of Q block are obtained with the same equations, by
exchanging p by q. Chroma deblocking filtering modifies only samples p0 and p1. The
chroma offset calculation is shown in Equation (2.15).

 0s = (p2 + 2p1 − 6p0 + 2 0 + 1 + 4) ≫ 3 (2.12)

 1s = (p2 − 3p1 + p0 + 0 + 2) ≫ 2 (2.13)

 2s = (2p3 − 5p2 + p1 + p0 + 0 + 4) ≫ 3 (2.14)

 c = (p0 − 0) ≪ 2 + p1 − 1 + 4 ≫ 3 (2.15)

Further details of HEVC deblocking filter are given in (ITU and ISO, 2013) and
(NORKIN, 2012).

2.3.3 HEVC reference software and common test conditions

HEVC Model (HM) (HM, 2013) is the reference software that implements the
conforming HEVC video encoder and decoder. It is free to download. One important
document is the Common Test Conditions document (BOSSEN, 2013) which defines
standard video sequences along with their pictures rates, picture count and resolution. It
also defines some coding configurations, i.e. All Intra, Random Acess, and Low Delay,
that provide difference temporal picture structures.

2.4 Reconfigurable Computing Background

Reconfigurable computing is the field that develops circuits which are first
fabricated but may be programmed in the field, i.e. after silicon fabrication. They can be

48

classified as Fine-grained (FG) or Coarse-Grained (CG) reconfigurable fabrics,
depending on the granularity of the basic reconfigurable hardware element.

The most popular FG reconfigurable fabric in the market today is the Field-
Programmable Gate Array (FPGA). Xilinx invented the first commercially viable FPGA
in 1985. FPGA is an array of basic Look-up Tables (LUTs) connected together as
Configurable Logic Blocks (CLBs). A LUT can usually implement an arbitrary 4-input
logic function defined by the user in configurable memory, usually a Random Access
Memory (RAM). The major commercial FPGA providers are the companies Xilinx and
Altera. Recent FPGAs implement 5-input, 6-input or even 8-input LUTs, and include
many more features, like: embedded Block RAM (BRAM) blocks, DSP or multiplier
hardwired blocks, hardwired custom blocks, processor cores, etc. Advanced FPGAs
also support Partial Run-Time Reconfiguration (PRR) regions (XILINX, 2010)
(ALTERA, 2010). PRR is a feature by which the FPGA user can reconfigure regions of
FPGA while the other regions are in execution.

In the literature one can find a vast number of CG reconfigurable fabrics. They are
designed by coupling a programmable Arithmetic Logic Unit (ALU) with a context
memory and a register file to deal with word-level operations (e.g. 16 bits, 32 bits). A
survey of CG reconfigurable fabrics can be found in (HARTENSTEIN, 2001).

A recent trend in reconfigurable computing is the design of mixed-grained
reconfigurable processors that integrate several CG and FG reconfigurable elements.
They are typically organized in a tiled fashion, on a single chip, to ensure scalability to
many cores. A few examples are: MORPHEUS (THOMA, 2003), 4S (SMIT, 2005), and
KAHRISMA (KÖNIG, 2010). The FG-reconfigurable elements (such as embedded
FPGAs) are more suitable to accelerate bit-level and control-flow operations. However,
it is costly in terms of delay, area and power (primarily due to the interconnect
elements) compared to a customized hardware (IAN, 2007) (SHANG, 2002). In
contrast, the CG-reconfigurable elements accelerate word-level data-flow operations
with relatively reduced reconfiguration overhead compared to the FG (due to fewer
interconnects and ALU blocks). However, CG-reconfigurable elements suffer from
inefficient area utilization and performance loss to accelerate bit-level and control-flow
computation. Therefore, these many-core mixed-grained reconfigurable architectures
overcome the limitations of individually employing FG- and CG-reconfigurable
elements and achieve better performance for applications with heterogeneous
processing behavior (i.e., with both control- and data-flow) (KÖNIG, 2010). Multiple
concurrently executing tasks on a many-core processor may also be accelerated by
sharing a mixed-grained reconfigurable architecture (WATKINS, 2010).

Many-core mixed-grained reconfigurable architectures require a run-time system to
adapt to the varying application requirements (e.g., performance, resource demand) and
to accordingly manage the reconfigurations. Such a run-time system performs the
following four key operations. (1) Application Task Allocation determines which share
of the reconfigurable fabric is given for each core of a many-core processor to
accelerate their tasks (AHMED, 2011)(SHAFIQUE, 2011)(CHEN, 2012). (2) Custom
Instruction and Accelerator Selection chooses a particular implementation version at
run time from a set of design-time developed implementation versions for each Custom
Instruction (called by the concurrently executing tasks). Each custom instruction consist
of several datapaths that can be reconfigured on FG reconfigurable elements (BAUER,
2008), CG reconfigurable elements, or the combination of both (AHMED, 2011b). (3)
Accelerator Binding (also referred as online synthesis, online placement or dynamic

49

placement) determines which datapath of a custom instruction should be placed and
reconfigured on which specific FG- and/or CG- reconfigurable element of the mixed-
grained reconfigurable architecture and how the interconnections between different
datapaths of the same custom instruction will be established. (4) Reconfiguration
Scheduling determines the reconfiguration sequence of different datapaths, since
typically only one reconfiguration interface is available (BAUER, 2008b).

2.5 Power Dissipation in CMOS

One of the main reasons to design specialized hardware accelerators for systems-on-
chip (SoC) is that they are more energy efficient than general purpose processors doing
the same function (HAMMED, 2011). The total energy consumption Etotal of a certain
computational kernel is given in Eq. (2.5), where Ptotal is the total power dissipated by
the circuit that implements this computational kernel, and t0-t1 is the interval of time to
complete the computation. Energy consumption of a computational kernel reduces when
the time to complete the task reduces (without proportionally increasing power), or
when the total power reduces (without proportionally increasing the execution time), or
when both total power and time reduce.

tl Etotal = Ptotal (t)dt to

(2.5)

Total power is the power dissipated by the circuit. In all SoCs, this total power is in
fact time-dependent, as different tasks and operations mode execute in a very complex
chip, where literally hundreds of blocks are executing in parallel, and even some of
them can be switched-off to save energy, to reduce temperature, or simply to adjust to a
lack of compute power demand.

At the basic electrical level, considering the basic devices present in CMOS SoCs,
one may classify the power dissipation according to its basic electrical origin at the
logic gate and transistor level. At this basic abstraction level, there are three main power
dissipation sources when considering CMOS circuits: leakage power, switching power,
and short circuit power.

Leakage power is a common engineering name adopted by practitioners to refer to
the CMOS circuit static power. That is, when no digital signal is switching, and the
circuit inputs are all static, a residual DC current flows through each and every digital
static CMOS gate. The dynamic power is analyzed as being composed by two
components, both present when the digital signals are switching: the capacitance
switching power and the short circuit power. Eq. (2.6) shows the total power Ptotal as the
addition of those three power dissipation sources. The leakage power dissipation, shown
in Eq. (2.7), is a result of the leakage current Ileakage. This DC power also depends on the
supply voltage VDD. The leakage current is then an unavoidable current that appears
from drain to source through MOS transistors operating in the sub-threshold, and from
metal gate electrodes into the channel, drain, and source through the carrier tunneling
through insulators. Additionally, the DC leakage has contribution from reverse-biased
pn junctions which are inherent to source or drain junctions in bulk CMOS
technologies.

The power dissipation contribution from switching capacitors is obviously caused by
the charging and discharging of capacitors associated to every signal line present in the
digital CMOS circuit. These events only occur when transistors switch the output nodes

50

of the gate, or even the internal electrical nodes of the logic gates. Eq. (2.8) shows that
switching power depends on the load capacitance CL, the frequency of operation f, the
supply voltage VDD, and on the switching activity (α) of any given logic gate output
loaded by CL. Short circuit power, shown in Eq. (2.9), is caused by the short circuit
current Ishort that appears when both P-type and N-type transistor networks are on. The
short circuit power also depends on an activity factor (beta), and it depends linearly on
the switching frequency f, and on the supply voltage VDD (COSTA, 2000).

Ptotal = Pleakage + Ps tch g + Pshort (2.6)
Pleakage = leakage ∗ VDD (2.7)

1 2 (2.8)
Ps tch g = 2 a ∗ f ∗ CL ∗ VDD

Pshort = f3 ∗ f ∗ short ∗ VDD (2.9)

 It is possible to reduce both dynamic and static power of hardware designs.
Switching power may be reduced by reducing operation frequency, switching activity,
area (that reduces the electrical parasitics and the load capacitance CL) and the supply
voltage VDD. However, reducing operation frequency and supply voltage certainly incur
in the penalty of increased computation time, and may not reduce energy consumption
in the end. Usually, a coordinated variation of applied supply voltage, as well as
frequency of operation, can reduce the power consumption of CMOS by orders of
magnitude (STANGHERLIN, 2013). However, for most portable applications, the total
energy spent on the computation is more relevant than the average power over specific
operation modes of the SoC. The most daunting design challenge is in fact to design
circuits with techniques that reduce power consumption without compromising the
application-required computation time. Static power may be reduced by using some
circuit techniques such as power-gating (when the supply voltage is disconnected, that
is the CMOS circuit, module, block or the entire SoC is powered-off). Many technology
advancements, like using higher dielectric constant insulators for transistor gate
electrode insulation, have been introduced in order to reduce sources of static
dissipation like the tunneling from the gate to the channel or the drain of the transistor.
One strategy to minimize even further the DC off-state current in MOS transistors is to
use higher-threshold field-effect transistors – the reason why digital logic gates can be
made of a variety of transistors of the same type (N or PMOS), with different threshold
voltages (low, standard or high).

2.6 Related Work

2.6.1 Chips and Hardware Accelerators for Video Encoding and Decoding

Due to the high computational complexity, severe performance requirements and
energy constrains, many works propose dedicated complete chips for video encoding
and decoding. The design of sub-modules of video codec is also subject of research.

An H.264/AVC video encoder chip for quad HDTV is presented in (DING, 2009).
An H.264/AVC decoder chip supporting scalable/multiview extensions is presented in
(CHUANG, 2010) that provides throughput for single-view 4Kx2K video. A set-top
box SoC for free-viewpoint applications supporting 4Kx2K resolution for 9 views is

51

presented in (TSUNG, 2011). An 8Kx2K decoder chip for H.264/AVC and MVC was
introduced in (ZHOU, 2012).

A few works explored FPGA-based designs for sub-modules of HEVC, e.g., intra
prediction (KHAN, 2013)(ABRAMOWSKI, 2013), motion estimation (NALLURI,
2013), transforms (DIAS, 2013)(CONCEICAO, 2013), deblocking filter (OZCAN,
2013) and entropy coding (CABAC) (PENG, 2013). A full HEVC encoder or decoder
in FPGA was not found in the literature.

2.6.2 Hardware Architectures for Interpolation Filter

In context of the previous generation of video codecs, i.e., H.264/AVC interpolation
filter, several works explored hardware architectures focusing on FME and MC. An
FME architecture is presented in (CHEN, 2004) that uses 16 multiplier-less datapaths
for 6-tap interpolation filter. The work in (WANG, 2007) presents a fast algorithm to
reduce the complexity of FME at the cost of a quality loss. A generic reconfigurable
architecture for interpolation of different video coding standards is presented in (LU,
2009). In (KAO, 2010), an architecture with three engines is introduced that supports
different block sizes along with a resource-sharing scheme. An FME architecture is
introduced in (TSUNG, 2009) that replaces the 6-tap filter by a bilinear filter to simplify
hardware at the cost of quality loss. An adaptive ME algorithm for H.264/AVC with a
hardware architecture is presented in (PASTUSZAK, 2013) that employs an interpolator
for FME. The interpolator consumes 6,732 LUTs of Altera Arria II GX FPGA device.
The work in (WANG, 2005) presents a hardware architecture for MC along with an
approach to reduce the number of interpolation datapaths to 13. The woks in (WANG,
2005a) (LI, 2008) focus on different schemes to reduce the memory data transfers on
MC. Interpolation custom instructions for a reconfigurable processor are presented in
(SHAFIQUE, 2007) (SHAFIQUE, 2010). The work in (ZATT, 2013) presents an MC
hardware architecture for H.264/AVC High 4:2:2 Profile with 12 interpolation datapaths
and a cache scheme to reduce memory bandwidth. The aforementioned approaches aim
at the previous generation of video codecs, i.e., H.264/AVC and cannot be directly
employed for the HEVC due to its different processing nature, operational flow, and
different set of filters.

Recently, a few hardware architectures were introduced for the interpolation
filtering in HEVC. The work in (GUO, 2012) presents two luma interpolation engines
with different throughput along with a scheme for hardware reuse. In (AFONSO, 2013)
a simplified FME architecture for FPGAs is presented that processes only 8x8-sized
blocks at the cost of a bit rate increase of 13% but does not support Chroma
interpolation. Moreover, the above techniques (GUO, 2012) (AFONSO, 2013) are fixed
at design-time targeting a worst-case design and cannot adapt its throughput to low-
medium complexity scenarios at run-time to achieve better energy efficiency. The
complete hardware area (i.e., all accelerators) may not be used all the time in average-
case operating scenarios or under changing quality constraints.

2.6.3 Hardware Architectures for Deblocking Filter

Some hardware architectures for the deblocking filter of HEVC were already
proposed. Ozcan et al. (OZCAN, 2013) introduced an architecture with 2 datapaths in
parallel. Each datapath is configurable to implement all decision and edge filter
operations. Operating at 108 MHz clock frequency it is able to encode videos with the
1920x1080 pixels resolution at 30 fps. Shen et al. (SHEN, 2013) proposed a four-stage
pipeline architecture. They focus on a new filtering order, but do not provide enough

52

details of the internal architecture of datapaths for filtering decisions and operations.
Operating at 28 MHz clock frequency it is able to encode 4Kx2K video resolution at 30
fps. Shen et al. (SHEN, 2013a) extended the architecture in (SHEN, 2013) to include
the sample adaptive offset (SAO) filter in a five-stage pipeline architecture.

2.6.4 Hardware Architectures for Sum of Absolute Differences

Many works are found that include SAD hardware modules, mainly into ME
hardware architectures. The work in (LIU, 2007) presents a variable block size full-
search motion estimation architecture which employs a 32-parallel SAD tree with
387.2k gates (79% of the total gate count), targeting real-time processing of HDTV
1080p video. The work in (CHANG, 2007) presents a methodology to guide the
architectural design for H.264/AVC encoder under resolution and frame rate
performance requirements. Integer and fractional motion estimation (IME and FME)
parallelism is analyzed using fixed processing unit (PU) SAD hardware, with variation
only on the size of SAD array, not on the SAD processing unit. The work in (CHEN,
2006) presents a H.264/AVC encoder chip for 720p with fixed SAD array. The work in
(VANNE, 2006) presents a new SAD processing unit and firstly includes a comparison
of various SAD processing units in terms on area and delay, but do not address power
and energy constraints for low power devices.

2.6.5 Accelerator Binding on Reconfigurable Architectures

Many works propose solutions to the binding problem on fine-grained
reconfigurable elements. The works in (WALDER, 2003) (AHMADINIA, 2007)
(MARCONI, 2010) formulate the problem as a 2D area partitioning model. They
propose methods to identify and maintain free rectangular regions where the
accelerators can be reconfigured. Some of them also consider the communication cost
and bind datapaths near to each other (AHMADINIA, 2007) (MARCONI, 2010). The
2D area model works well with architectures that contain only fine-grained elements
and have homogeneous and rich interconnections between the elements. The work in
(GRUDNITSKY, 2012) proposes communication-aware binding schemes to solve
communication hazards introduced by fine-grained reconfigurable elements organized
in 1D-configuration. The work in (FRIEDMAN, 2009) introduces a tool for compile-
time scheduling, placement (based on simulated annealing) and routing for coarse-
grained architectures. Compile-time placement cannot react to run-time scenarios
unpredictable at compile-time. Such a method is also very complex to be applied at run-
time. The work in (JAFRI, 2011) proposes a compression method of configuration data
for coarse-grained elements to enable multiple implementation versions that can be
selected at run-time. However, no run-time binding scheme is proposed in the work in
(JAFRI, 2011). Overall, state-of-the-art accelerator binding schemes do not solve the
problem of accelerator binding when jointly considering the fine- and coarse-grained
reconfigurable elements in a mixed-grained reconfigurable architecture. Moreover, they
do not consider the problem of binding for tile-based reconfigurable processors, which
is crucial to enable scalable manycore reconfigurable processors.

53

3 HIGH EFFICIENCY VIDEO CODING APPLICATION ANALYSIS

Before moving to the details of our proposed hardware accelerators, we discuss in
this section the analysis of HEVC encoder and decoder applications. This analysis
supports further decisions on which accelerators to design and also the architectural
decisions. HEVC application profiling is discussed in section 3.1. A run-time analysis
of HEVC application is discussed in section 3.2.

3.1 HEVC Application Profiling

We have profiled the HM software (HM, 2013), that includes both HEVC encoder
and decoder implementations, to identify the important computational kernels of the
HEVC encoder and decoder. Profiling is performed to quantify the contribution of each
coding tool included in HEVC in the total execution time. A similar analysis for the
older versions of the HM software can be found in (VANNE, 2012) (CORRÊA, 2012).
However, the version of HEVC codec profiled in these works, i.e. HM version 6
(MCCAN, 2012) and HM version 7 (KIM, 2012) no longer correspond to the final
standard specification (ITU, 2013). The work in (BOSSEN, 2012) profiled the HM
version 8 (KIM, 2012a) for a limited set of Quantization Parameter (QP). In this work
we perform an extensive analysis of HM version 10 (KIM 2012b) that conforms to the
current standard (ITU, 2013). Our analysis considers different QP values. GNU gprof
was used for our analysis (FENLASON, 2000).

3.1.1 Experimental Test Conditions

The experiments are performed using the HM software (HM, 2013) according to
the HEVC recommended test conditions document (BOSSEN, 2013). In this work, a
subset of the video sequences recommended in (BOSSEN, 2013) were chosen for the
HEVC application analysis and for the evaluation of the hardware accelerators proposed
in this work. This subset of video sequences is presented in Table 3.1. Video sequences
range four video resolutions: 2560x1600 pixels, 1920x1080 pixels, 832x480 pixels and
416x240 pixels.

Table 3.1 – Video sequences used for analysis and evaluation.

Video sequence name Resolution Picture Count (frames) Picture Rate (fps)
Traffic 2560x1600 150 30
PeopleOnStreet 2560x1600 150 30
Nebuta 2560x1600 300 60
SteamLocomotive 2560x1600 300 60
Kimono 1920x1080 240 24
ParkScene 1920x1080 240 24
Cactus 1920x1080 500 50
BQTerrace 1920x1080 600 60
BasketballDrive 1920x1080 500 50
RaceHorses 832x480 300 30
BQMall 832x480 600 60
PartyScene 832x480 500 50
BasketballDrill 832x480 500 50
RaceHorses 416x240 300 30
BQSquare 416x240 600 60
BlowingBubbles 416x240 500 50
BasketballPass 416x240 500 50

Source: the author.

54

Ex
ec

ut
io

n
 ti

m
e

[%
]

In this work we have employed Random Access (RA) configuration with Group of
Pictures (GOP) size of 8. The Intra-period (IP) values are 64, 48, 32, and 24 for pictures
rates of 60 fps, 50 fps, 30 fps, and 24 fps, respectively. Each video sequence is encoded
using the four recommended QP values (22, 27, 32, 37). The ME algorithm used is TZ
Search and the motion search range is 64, which is a default configuration in HM (HM,
2013). The Rate-Distortion Optimized Quantization (RDOQ) feature was disabled,
because it is a non-normative feature that increases a lot the computational effort of
HEVC encoder and provides less than 4% bit-rate reductions. The increase of
computational effort of RDOQ is huge and does not justify the compression efficiency it
provides. Other configurations are kept as default in HM (HM, 2013). All experiments
were performed on an Intel Core i7-2600 processor with 16 GB memory.

3.1.2 Analysis of HEVC application with an ultra-high resolution video sequence

The first analysis is performed by encoding (and then decoding) the ultra-high
resolution PeopleOnStreet video sequence (2560x1600 pixels). We have profiled both
HEVC encoder and HEVC decoder application software included in HM (HM, 2013).

Figure 3.1 shows the execution time distribution (in percentage) for the most
important HEVC coding tools in terms of computational complexity. In HEVC encoder,
55%-70% of execution time is spent in the following coding tools: Fractional-pixel
Interpolation Filter, Sum of Absolute Differences (SAD) and Sum of Absolute
Transformed Differences (SATD). The contribution of time of each tool depends on the
QP value (given as input by the user) because it influences the mode decision process.
As reviewed in Chapter 2, SAD and SATD are distortion metrics used to calculate RD
cost for Integer-pixel and Fractional-pixel Motion Estimation (IME/FME), respectively.
SATD are also used to calculate RD cost of Intra prediction modes. Interpolation Filter
is used to generate the fractional-pixels for FME. Other coding tools, e.g. intra
prediction, transforms, quantization, entropy coding, contribute together to the
remaining part of execution time in HEVC encoder.

Figure 3.1 – Contribution of different HEVC coding tools (in percentage) to the total
execution time. Video sequence: “People on Street” (2560x1600 pixels), 150 pictures

HEVC encoder HEVC decoder
80

Interpolation Filter SATD SAD
60

40

20

0

22 27 32 37
Quantization Parameter (QP)

60 Deblocking Filter
50
40
30
20
10

0
22 27 32 37

Quantization Parameter (QP)

Source: the author.

In the HEVC decoder, 35%-55% of the execution time is spent on Fractional-pixel
Interpolation Filter and Deblocking Filter. Interpolation Filter is also required in
decoder to reconstruct fractional-pixels during the Motion Compensation (MC) process.

55

Ex
ec

ut
io

n
tim

e
of

in

te
rp

ol
at

io
n

fil
te

r
[%

]

Deblocking filter is the second most complex coding tool in HEVC decoder.
Deblocking filter is used to reduce blocking artifacts caused by strong quantization.

Another observation is the time HM software takes to encode and decode this ultra-
high resolution video sequence. Encoding 150 frames of this video takes around 26
minutes. Decoding the same amount of frames takes 39 seconds (with QP=37) to 67
seconds (with QP=22).

In the next sections, we present a more detailed analysis of the three most complex
coding tools: Interpolation Filter, SAD and Deblocking filter.

3.1.3 Analysis of the Interpolation Filter

In this analysis, we have profiled eight video sequences of resolutions 832x480
pixels and 416x240 pixels. The total execution time to encode these videos (10 seconds
of video) is 10-106 minutes. Decoding these video takes 1 to 14 seconds.

Figure 3.2 shows the execution time of Interpolation Filter as a percentage of total
execution time in the HEVC encoder and decoder. The interpolation filter contributes
towards 15%-38% of the execution time in HEVC encoder and decoder depending upon
the video sequence and QP.

Figure 3.2 – Contribution of Interpolation Filter (in percentage) to the total execution
time of HEVC encoder and decoder for eight video sequences and four QP values

Legend (video sequences):
RaceHorsesC (832x480) BasketballDrill (832x480)
BQMall (832x480) PartyScene (832x480)
RaceHorses (416x240) BQSquare (416x240)
BlowingBubbles (416x240) BasketballPass (416x240)

40

30 HEVC encoder
20
10

0
22 27 32 37

60
HEVC decoder

40

20

0
22 27 32 37

Quantization Parameter (QP)

Source: (DINIZ, 2015a).

3.1.4 Analysis of the Deblocking Filter

In this analysis we have profiled only HEVC decoder. Four ultra-high resolution
(with 2560x1600 pixels) and five high resolution (with 1920x1080 pixels) encoded
video sequences were used as input to the HEVC decoder. Encoded video sequences
follow the same coding configuration described in section 3.1.1. Figure 3.3 shows the

56

Pe
rc

en
ta

ge
 o

f t
ot

al

de
co

di
ng

 t
im

e
[%

]
Pe

rc
en

ta
ge

 o
f t

ot
al

de

co
di

ng
 t

im
e

[%
]

execution time of Deblocking Filter as a percentage of total execution time of HEVC
decoder. Deblocking filter contributes to 5%-18% to the total decoding time, depending
on video sequence and QP. This percentage represents up to 11 seconds spent only in
deblocking filter to decode 3 seconds (150 pictures) of 2560x1600 resolution videos.
The contribution of deblocking filter in total execution time of HEVC encoder is not
significant, since other tools dominate the execution time.

Figure 3.3 – Contribution of Deblocking Filter (in percentage) to the total execution
time of HEVC decoder for nine video sequences and four QP values

20.00
15.00
10.00

5.00
0.00

20.00
15.00
10.00

5.00
0.00

2560x1600 video sequences

22 27 32 37

Quantization Parameter (QP)

1920x1080 video sequences

22 27 32 37

Quantization Parameter (QP)

Source: (DINIZ, 2015b).

Legend:

Traffic

PeopleOnStreet

Nebuta

SteamLocomotive

Legend:
Kimono

ParkScene

Cactus

BQTerrace

BasketballDrive

3.1.5 Analysis of the Sum of Absolute Differences (SAD) Calculation

SAD is executed only in the HEVC encoder. It is used to decide the best blocks in
Motion Estimation process (i.e. block matching) and Mode Decision, as reviewed in
Chapter 2. HEVC decoder does not require SAD, since the block decision is done at
encoder side. In this analysis we have profiled only HEVC encoder with four ultra-high
resolution (with 2560x1600 pixels) and five high resolution (with 1920x1080 pixels)
video sequences. Encoded video sequences follow the same coding configuration
described in section 3.1.1.

Figure 3.4 shows the execution time of SAD as a percentage of total execution time
of HEVC encoder. SAD contributes to 9%-25% to the total encoding time, depending
on video sequence and QP. Therefore, SAD is an important computational kernel in
HEVC video encoder.

3.1.6 Summary of HEVC application analysis

By observing the results of our HEVC application analysis, we conclude that the
most important computational kernels in the HEVC encoder and decoder are:
Interpolation Filter, Deblocking Filter and SAD. It is confirmed by profiling results with
various video sequences (of different resolutions) and four QP values. Since the results
vary significantly from one video to another and among different QPs, we have also
conducted a run-time analysis of HEVC application.

57

Pe
rc

en
ta

ge
 o

f t
ot

al

en
co

di
ng

 t
im

e
[%

]
Pe

rc
en

ta
ge

 o
f t

ot
al

en

co
di

ng
 t

im
e

[%
]

Figure 3.4 – Contribution of Sum of Absolute Differences (in percentage) to the total
execution time for various nine video sequences and four QP values

25.00
20.00
15.00
10.00

5.00
0.00

30.00

20.00

10.00

0.00

2560x1600 video sequences

22 27 32 37

Quantization Parameter (QP)

 1920x1080 video sequences

22 27 32 37

Quantization Parameter (QP)

Source: the author.

Legend: Traffic

PeopleOnStreet

Nebuta

SteamLocomotive

Legend:

Kimono

ParkScene

Cactus

BQTerrace

BasketballDrive

3.2 Run-time Analysis of HEVC Application

The previous analysis based on software profiling is offline, it does not consider
run-time variations. We have chosen the most complex coding tool of both HEVC
encoder and decoder, i.e. interpolation filter, to perform a run-time analysis.

We analyze the run-time behavior of the interpolation filter by recording its number
of calls per picture (i.e., execution frequency) for each video picture. We monitored the
‘filter’ method of TComInterpolation class in HM (HM, 2013), which is the basic
method for all types of interpolation filter operations defined in HEVC. Figure 3.5
shows the results for the first 180 frames of the BQMall and BasketballDrill sequences
encoded with QP=22 and QP=37. The number of filter calls per picture varies from zero
(when picture type is Intra, in which Interpolation filter and FME are not executed) to 6
million (see Figure 3.5). Video properties impact considerably the number of calls.

At the decoder side, the number of calls varies due to the variations in the number of
fractional-precision MVs in the bitstream. At the encoder side, the number of filter calls
varies due to encoder workload variations as a result of the following:

1) The IME/FME is called by a decision process that usually implements an early
skip decision, i.e., in which the ME/MC is not performed at the encoder and the MC is
performed at the decoder by inferring a MV from the neighbor blocks, already decoded.
The early skip decision is dependent on the input QP value and the input video
sequence, which cannot be determined at design-time, rather at the run-time. Moreover,
the HEVC introduces a quadtree block partitioning structure and the decision process is
sensible to this structure. Some regions of video (e.g. highly textured regions) are
partitioned into smaller blocks than other regions (e.g. homogeneous regions). In this
regions, there are more blocks for IME, and also for FME. Hence, there are more blocks
to be interpolated.

58

N
um

be
r o

f f
un

ct
io

n
ca

lls
 to

 ‘f
ilt

er
’ m

et
ho

d

2) In the hierarchical B-picture GOP structure, some pictures perform ME using two
or more reference pictures to achieve better quality results. The higher is the number of
reference picture, higher is the number of interpolation filter calls. The user that chooses
encoding parameters can configure the hierarchical B-picture GOP structure.

3) After the best match is chosen by the FME, the encoder must also perform MC to
reconstruct the block correctly to avoid mismatch between encoder and decoder
information. In this case, the MC is also performed in the encoder. The number of
interpolation filter calls in MC is not determined as it highly depends upon the outcome
of the FME and mode decision process.

4) Finally, after the IME/FME is performed for one block, the decision may even
decide to encode the block with Intra Prediction. Hence, no interpolation is called in the
reconstruction of the block (i.e., MC) inside the encoder.

Because of the above-mentioned differences between the number of calls to the
interpolation filter in encoder and decoder, and by looking at our analysis in Figure 3.5,
it can be noticed that the number of interpolation filter calls in the encoder is two orders
of magnitude higher that the number of interpolation filter calls in the decoder.
Moreover, in both encoder and decoder, it depends on many parameters such as video
content, prediction type, QP, and video resolution.

Figure 3.5 – Number of calls per picture to the interpolation filter basic method

Legend:

BQMall (832x480), RA, QP=22 BQMall (832x480), RA, QP=37

BasketballDrill (832x480), RA, QP=22 BasketballDrill (832x480), RA, QP=37

6E+6 HEVC encoder

4E+6

2E+6

0E+0

2E+4

1E+4

5E+3

0E+0

0 20 40 60 80 100 120 140 160

HEVC decoder

0 20 40 60 80 100 120 140 160

Picture number

Source: the author.

In summary, our run-time analysis shows that the number of interpolation filter calls
depends upon the video content that cannot be predicted at design-time.

59

4 DEDICATED HARDWARE ACCELERATORS

This chapter describes the novel dedicated hardware accelerators for important
computational kernels of HEVC. First, section 4.1 discusses the methodology to design
efficient hardware accelerators. In the following, hardware architectures for Fractional-
Pixel Interpolation Filter (section 4.2), Fractional-Pixel Interpolation Filter using Adder
Compressors (section 4.3), Deblocking Filter (section 4.4) and Sum of Absolute
Differences (section 4.5) are presented and discussed.

4.1 Methodology to Design Hardware Accelerators

This work follows a methodology to design optimized hardware accelerators for
HEVC, as shown in Figure 4.1.

Figure 4.1 – Methodology to design optimized hardware accelerators

Source: (DINIZ, 2015b).

First, standard equations from HEVC standard (ITU-T, 2013) are subject to
architecture independent optimizations. Examples of these optimizations are the
reformulation of equations to facilitate the reuse of many operations using the same
hardware operators and the replacing of constant multiplications by add/shift operations
(i.e. multiplierless constant multiplication) which are more area and power efficient.

The result of this analysis step contributes to hardware-specific optimizations in the
following manner:

1) Determining the sizing of registers and operators: video samples are usually
represented in 8 bits data-width. Specific hardware for video does not need to
implement 32-bit or 64-bit registers and operators (adders, subtractors, multipliers),
which are common in general purpose processors.

2) Determining the number of datapaths in parallel, scheduling, and balancing of
operating stages: application throughput requirements must be known to determine the
number of datapaths in parallel. Meeting throughput requirements is crucial for real-
time video encoding and decoding applications. In video coding applications,
throughput is measured in samples (pixels) per second and also in frames (pictures)
processed per second of a given picture resolution (e.g. 1920x1080 pixels @ 30 fps).
The application requirement may be, for instance, the number of samples to be
interpolated in each picture, and the number of pictures per second of a given
resolution. Balancing the combinational paths of the accelerators defines the operating
frequency, which is also important to meet throughput requirements. Defining the

60

scheduling of the architecture determines the number of cycles, which also affects
throughput. Hence, those three parameters must be considered jointly when designing
the architecture of the accelerator.

This methodology may be generalized to design accelerators for other dataflow
applications that are not in the domain of interest of this work, i.e. video coding.
However, the hardware designer may follow this methodology only if the application
allows some degree of parallelism (the use of datapaths in parallel), and whether it is
possible to apply some of those above-mentioned optimizations. The designer also
needs to determine if the application has some throughput requirement, how to measure
it, and how to use it to apply the hardware-specific optimizations. Designing
accelerators for applications not in the domain of video coding standards is beyond the
scope of this thesis.

4.2 Hardware Architecture for Fractional Pixel Interpolation Filter of HEVC

A dedicated hardware architecture for the Fractional Pixel Interpolation Filter is
proposed in this work, since this is an important computational kernel in both HEVC
encoder and decoder. A generic interpolation filter architecture is proposed to be used in
both HEVC encoder and decoder implementations.

The system diagram of the proposed hardware architecture is shown in Figure 4.2. It is
composed of luma and chroma filter acceleration engines, integer- and fractional-pel
buffers, and a scheduling module to feed the filtering engines. Buffers store integer-pel
and fractional-pel that are used for other fractional-pel calculation. In order to meet with
the high throughput requirements, each of the acceleration engines for luma and chroma
filtering include 12 interpolation datapaths in parallel. With this number of datapaths in
parallel the architecture is able to interpolate one line of fractional-pel for 4x4 PU size (it
requires 11 integer-pel as input).

Figure 4.2 – System diagram of the proposed hardware architecture for HEVC
interpolation filtering

Source: (DINIZ, 2013).

61

The scheduling module is adaptive to the size of PU used and the execution scenario
(ME or MC), to delivers appropriate input pixels for filtering. Other modules that
interface with the proposed architecture in a complete system implementation are not
the focus of this work. Examples of these modules are reference picture memory to
store the reference pictures, predicted buffer to store the output fractional-precision PU,
and an address generation unit to store PUs based on corresponding PU and CU indexes
and input integer luma/chroma MVs. Sections 4.2.1 and 4.2.2 discuss the internal
architecture of luma and chroma filter datapaths, respectively. Section 4.2.3 discusses
the adaptive scheduling module in more detail.

4.2.1 Luma Interpolation Filter Datapath

Three filters for luma interpolation were defined in HEVC (ITU-T, 2013): one 8-tap
filter for half-pel (2/4 pixel location) and two 7-tap filters for quarter-pel (1/4 and 3/4
pixel locations). In order to reduce area, we designed a configurable datapath that serves
for all luma filters. Furthermore, we apply the following design optimizations:

1) 7-tap filters for quarter-pel (1/4 and 3/4) are equal if the input samples are rotated;
2) 8-tap filter for half-pel (2/4) is symmetric, because the first 4 coefficients are

equal to the last 4 coefficients, if the last ones are rotated;
3) The coefficients are constant, so the multiplications can be replaced by add/shift

operations.
Considering the above three optimizations, only 9 different coefficients must be

used to implement 7-tap and 8-tap luma interpolation filtering. Table 4.1 shows a
representation of how coefficient multiplication is replaced by an add/shift operations.
The goal here is to find a replacement that results in the minimal number of operands.

Table 4.1 – Luma coefficient multiplications replaced by add/shift operations

 Coefficients
Input samples 1 -1 4 -5 -10 -11 17 40 58

<< 0 + - - - +
<< 1 - - +
<< 2 + -
<< 3 - - + -
<< 4 +
<< 5 +
<< 6 +

Source: (DINIZ, 2013).

The following equations (4.1), (4.2) and (4.3) describe the computation needed for
our optimized luma interpolation filter. Eq. (4.1) is used for half-pel filter (filter type
2/4). Eq. (4.2) and eq. (4.3) are used for quarter-pel filters (filter types 1/4 and 3/4).
These equations support all 9 different coefficients multiplication in a multiplier-less
way.

ℎ = −1 ∗ s0 + 4 ∗ s1 − 11 ∗ s2 + 40 ∗ s3 = s1 ≪ 2 + s3 ≪ 5 + s3
≪ 3 − (s0 + s2 ≪ 3 + s2 ≪ 1 + s2)

1 = −1 ∗ s0 + 4 ∗ s1 − 10 ∗ s2 + 58 ∗ s3 = s1 ≪ 2 + s3 ≪ 6 + s3

 ≪ 1 − (s0 + s2 ≪ 1 + s2 ≪ 3 + s3 ≪ 3)

(4.1)

(4.2)

62

2 = −1 ∗ s0 + 5 ∗ s1 + 17 ∗ s2 = s0 + s2 + s2 ≪ 4 − (s1 + s1 ≪ 2), s3 = 0
(4.3)

Figure 4.3 shows the detailed circuit diagram of the configurable datapath for the
luma interpolation. Luma filter datapath has four input samples (s0-s3) and is divided in
a two cycles. The type of filter has to be configured through the configuration vector in
order to select one of the three equations (4.1), (4.2) or (4.3). Configuration vector is
determined by a Finite State Machine (FSM) inside the scheduling module. Since there
are common sub-expressions in those equations, each common sub-expression is
implemented only once and the others can be eliminated. With those optimizations, the
final luma datapath uses only 7 adders. It represents a 56% saving in adders compared
with the work in (GUO, 2012).

Figure 4.3 – Configurable datapath for luma interpolation filter

Source: (DINIZ, 2013).

4.2.2 Chroma Interpolation Filter Datapath

For chroma filter, we applied the same methodology as for the luma filter. Seven
different chroma interpolation filter types are defined in HEVC (from 1/8 to 7/8 filter
types). Our chroma interpolation datapath supports only 4 filters, since the other 3 filters
are equal when the coefficients are rotated. Equations (4.4), (4.5), (4.6) and (4.7) are the
computations implemented in our optimized chroma datapath.

c1 = −2 ∗ s0 + 58 ∗ s1 + 10 ∗ s2 − 2 ∗ s3 = s1 ≪ 6 + s1 ≪ 1 + s2 ≪ 1 + s2
≪ 3 − (s0 ≪ 1 + s1 ≪ 3 + s3 ≪ 1)

 c2 = −4 ∗ s0 + 54 ∗ s1 + 16 ∗ s2 − 2 ∗ s3 = s1 ≪ 6 + s2 ≪ 4 − (s0 ≪ 2 + s1
 ≪ 3 + s1 ≪ 1 + s3 ≪ 1)

(4.4)

(4.5)

63

s1 << 1 s1 << 4
 s1 << 2

s3 << 1 s1 << 1
 0

s0 << 1 0

Fr
ac

tio
na

l
sa

m
pl

e

c3 = −6 ∗ s0 + 46 ∗ s1 + 28 ∗ s2 − 4 ∗ s3 = s1 ≪ 5 + s1 ≪ 4 + s2
≪ 5 − (s0 ≪ 2 + s0 ≪ 1 + s1 ≪ 1 + s2 ≪ 2 + s3 ≪ 2)

 c4 = −4 ∗ s0 + 36 ∗ s1 + 36 ∗ s2 − 4 ∗ s3 = s1 ≪ 5 + s1 ≪ 2 + s2 ≪ 5 + s2
 ≪ 2 − (s0 ≪ 2 + s3 ≪ 2)

(4.6)

(4.7)

Since there is no similarity between the coefficients among the 4 different chroma
filters, the optimizations applied in luma datapath for reduced area cannot be applied in
chroma datapath. The area benefit comes from configurable nature of the datapath.
Configuration vector is determined by FSM inside the scheduling module. Figure 4.4
shows our single-cycle configurable datapath supporting four 4-tap chroma filters. The
chroma datapath was also designed by removing the common sub-expressions. With
those optimizations, it uses only 7 adders.

Figure 4.4 – Configurable datapath for chroma interpolation filter

s0

clock

s1

s1 << 5

s1 << 6

s2 << 5

s2 << 4
s2 << 3

+ + -
12 +

>>6

0 clock

clock

s2 << 1
s2 << 2

0

11 10

+
s2 9 8

clock

s3

clock

0

7 6
s0 << 1
s0 << 2 +

5
s1 << 3
s3 << 2

4

+

Input samples (8-bit): s0, s1, s2, s3

3 2

Configuration 12 11 10 9 8 7 6 5 4 3 2 1 0
1 vector:

13 bits

4.2.3 Scheduling

Source: (DINIZ, 2013).

Interpolation filtering computations for motion estimation and compensation are
same, but the order in which the fractional-pels are computed inside a block could be
different. FME in HEVC software (HM, 2013) is invoked after IME finds the lowest
distortion cost motion vector. Then it interpolates only 8 half-pel points around this

64

motion vector and refines the search. Another search step is applied after interpolating 8
quarter-pel points around the best half-pel block. The motion vector with the lowest cost
in this last search step is selected as the motion vector of the PU (KIM, 2013). This
procedure is applied in this way to reduce the number of distortion calculations of FME.
In the decoder side, quarter-pel motion compensation must interpolate all fractional-pel
inside the PU pointed by the motion vector received in the bitstream.

A different order of half- and quarter-pel computations influences the processing
schedule and data fetching from the memory. In case of ME (see Figure 4.5), luma half-
pels b, h, and j should be calculated first (see specification of pixel notations in section
2.3.1). We propose a scheduling for our architecture that is parameterized depending on
PU size and the usage scenario (ME or MC), which pixels in the same row to be
delivered in parallel to the filtering interpolation datapaths. Memory locality is
exploited by calculating fractional-pels of the same row first. For example, in our
scheduling b pixels are prioritized to be delivered into the 12 luma filter interpolation
units, because they are used as input for j pixels calculation.

In case of MC, half- and quarter-pels of the same row (for horizontal filters) and of
the same column (for vertical filters) are computed in the sequence such that the
memory locality could be further exploited. Each fractional-pel computation in our
architecture involves loading the input samples into the luma and chroma interpolation
units and configuring their filter types through the configuration vector.

Prediction unit size also influences scheduling regarding memory fetching. For 8-tap
filtering, the architecture needs to fetch 8 integer-pels. If PU is of 4x4 size, to exploit all
the parallelism, our architecture needs to compute 12 half-pels (e.g. 3 rows of half-pels)
and for this 33 integer-pels are fetched. Therefore, our architecture benefits with the
increase in PU size, because as more half-pels are calculated in the same row, few
integer-pels rows need to be fetched in advance for each interpolation cycle.

Figure 4.5 – Interpolation filter scheduling

Source: (DINIZ, 2013).

65

This module is implemented as a FSM that also determines the values of
configuration vectors for luma and chroma interpolation datapaths.

4.2.4 Results and Evaluation

The proposed interpolation filter architecture was implemented in VHDL and
synthesized using TSMC 150nm and FreePDK 45 nm (FREEPDK, 2014) CMOS
standard-cell libraries using Cadence RTL Compiler tool (CADENCE, 2014). For both
technologies, a constraint of 312 MHz clock frequency was introduced. Synthesis
results are shown in Table 4.2.

Table 4.2 – Synthesis results and comparisons to the state of the art hardware
implementation of the interpolation filter.

 (GUO, 2012) GUO, 2012) Our architecture
Technology (nm) 90 90 150 45

G

at
e

co
un

t Luma datapath – – 1,363 1,298
Chroma datapath – – 1,132 974
Scheduling/Control – – 269 264
Total (luma only) 19,600 32,496 16,625 15,708
Total – – 30,209 27,396

Memory (#bits) – – 1224 1224
Frequency (MHz) 85.5 171 312 312
Throughput HD1080

@ 30 fps
QFHD

@ 60 fps
QFHD

@ 30 fps
QFHD

@ 30 fps
Power (mW) – – – 23.6

Source: the author.

Our work is compared with two state-of-the-art HEVC interpolation solutions as
presented in (GUO, 2012). Our hardware architecture delivers 12-pel at each two cycles
(or 6-pel/cycle) for luma interpolation and 12-pel/cycle for chroma interpolation.
Operating at 312 MHz frequency, our architecture achieves throughput to support the
interpolation processing of Quad Full High Definition (QFHD), i.e. 3840x2160 at 30 fps.
Note that compared to the dual-engine architecture of (GUO, 2012), our architecture has
half throughput. However, unlike our architecture, the dual-engine architecture of (GUO,
2012) does not support excessive processing for chroma interpolation. Moreover, due to
the use of configurable datapaths, our architecture, implemented in 150 nm technology
(older technology than related work) requires area reduction of 16% and 49% compared
with single- and dual-engine in (GUO, 2012), respectively. The scheduling module
allows the use of a reduced input buffer so the memory usage of the architecture is only
≈1Kbit (when PU size is 64x64 pixels).

Regarding the synthesis results for the FreePDK 45 nm CMOS technology, our
work also provides an estimation of power dissipation of the architecture proposed
herein. Comparing power results to the related work (GUO, 2012) was not possible,
since it did not provide any power estimation numbers in the paper.

4.3 Hardware Architecture for Fractional Pixel Interpolation Filter using Adder

Compressors

Our hardware architecture for fractional pixel interpolation filter (Section 4.2) is
composed by a reasonable number of additions in the filter datapaths. Since the

66

intermediate addition values are not useful for the application, but only the final
interpolated result, we have used multiple-operand, more efficient adder compressors to
reduce area and power of the filter datapaths.

A combination of 7-2 and 8-2 adder compressors, which perform the simultaneous
addition of 7 and 8 operands respectively are used in the new logic architecture for the
interpolation filter architecture. We exploit 7-2 adder compressor and different internal
structures of the hierarchical 8-2 adder compressor.

4.3.1 Adder Compressors Background

The focus of this section is not on designing new adder compressor structures, but
applying existing adder compressor structures into our proposed fractional pixel
interpolation filter architecture. This section reviews some of the existing adder
compressor structures available in the literature.

The internal structure of the 4-2 adder compressor is presented in Figure 4.6. It has a
reduced critical path since the maximum delay is given by three Exclusive OR (EXOR)
gates. The 4-2 compressor has five inputs and three outputs, where the four inputs x1, x2,
x3, x4 and the output Sum have the same weight. On the other hand, the outputs Carry
and Cout have one bit order higher. One important point to be emphasized in this
compressor is the independence of the input carry (Cin) in the output carry (Cout). This
aspect enables implementation of this structure with higher performance. The final sum
(S) result of the 4-2 adder compressor (S = x1+x2+x3+x4+Cin) is given in Eq. (4.8).

S = Sum + 2(Cout + Carry)

(4.8)

Figure 4.6 – Internal structure of 4-2 adder compressor

Source: the author, modified from (WEINBERGER, 1981).

The 8-2 adder compressor can be constructed hierarchically using basic 3-2, 4-2, 5-2
and 7-2 adder compressors. We have exploited four different versions of internal
structures for the hierarchical 8-2 adder compressor as shown in Figure 4.7. The
structures use trees of basic adder compressors.

For the 7-2 adder compressor, we have employed the very efficient structure
proposed in (ROUHOLAMINI, 2007), shown in Figure 4.8. In this structure, the critical
path is given by 6 EXOR gates. The 7-2 compressor has seven primary inputs, two carry
inputs (Cin), two carry outputs (Cout), and Sum and Carry output terms. All the inputs
and output Sum have the same weight. On the other hand, while the output Carry and
Cout1 are weighted one bit order higher, the output Cout2 has two bit order higher than the
inputs. Besides the EXOR gates and MUX, the 7-2 compressor also uses a carry

67

generator module (CGEN). For more details of the 7-2 adder compressor, please refer to
(ROUHOLAMINI, 2007).

Figure 4.7 – Hierarchical 8-2 adder compressor using internal structures based on
(a) 4-2; (b) 3-2 and 4-2; (c) 5-2, 4-2 and 3-2; (d) 7-2 and 3-2.

(a) (b)

(c) (d)

Source: (ALTERMANN, 2010).

Figure 4.8 – 7-2 adder compressor structure.

x5 x6 x7

CGEN

x5 x6 x2 x3 x4

CGEN

x3 x2

x4
x7

x1
CGEN

Cin2

Cout1

0 1 x1

Cout 2

Cin 1

Cin1 Sum
1 0

Carry

Source: (ROUHOLAMINI, 2007).

68

4.3.2 Enhancing our Fractional Pixel Interpolation Filter Hardware Architecture
with Efficient Adder Compressors

Our Fractional Pixel Interpolation Filter Hardware Architecture for HEVC (Section
4.2) has two acceleration engines, each one composed by 12 interpolation datapaths in
parallel. The adder compressors are employed in the interpolation datapaths. The details
of internal architecture of the original interpolation datapaths is also shown in Section 4.2.
With the observation that luma and chroma interpolation filter datapaths have adder
trees, and the intermediate values are not used in the calculation, we can replace the
adder trees with efficient adder compressors. In this section, we detail the modified luma
and chroma interpolation datapaths by employing adder compressors.

Regarding luma datapath, we have developed two options. The original datapath has
7 values that need to be added, namely the output values from multiplexers. The first
option (Figure 4.9a) employs a 7-2 adder compressor (see Section 4.3.1). The second
option (Figure 4.9b) includes the accumulator inside the adder compressor, thus
employing an 8-2 adder compressor. In both options, the subtraction operator is
implemented inside the adder compressors by complementing the values of the negative
part of the operation (using the four multiplexers at the bottom of Figure 4.9).

Figure 4.9 – Modified luma filter datapath using (a) 7-2 adder compressor; (b) 8-2 adder
compressor.

Source: the author.

Regarding the chroma datapath, it has 8 values to be added (output from
multiplexers). We have developed a modified chroma interpolation filter datapath
employing an 8-2 adder compressor, as shown in Figure 4.10. In this datapath, we also
complement the last four inputs due to the subtraction operation. Four different internal
structures of the hierarchical 8-2 adder compressor were exploited (see Section 4.3.1).

69

Figure 4.10 – Modified chroma filter datapath using 8-2 adder compressor.

4.3.3 Results and Discussion

Source: the author.

The luma and chroma interpolation datapaths were implemented in hardware
description language and synthesized into the 45 nm CMOS Nangate Open Cell Library
(NANGATE, 2015) using the Cadence RTL Compiler (CADENCE, 2014). The cycle
time constraint was set to 2 ns for the automated logic synthesis.

Table 4.3 shows the synthesis results of the datapaths implemented with different
adder compressor internal structures, herein referred as implementation versions. Luma
datapath has five implementation versions, while chroma datapath has four
implementation versions, all shown in Table 4.3. These versions using adder
compressors were compared to the datapaths of the original interpolation datapaths
(Section 4.2) implemented with Ripple-Carry Adders (RCA). The comparison is done in
terms of cell usage, area, delay, power and Power Delay Product (PDP). Power results
were generated using simulation of 10,000 random test vectors as inputs into the
architecture.

The most power-efficient version for both luma and chroma datapaths is the one
using the hierarchical 8-2 adder compressor composed with 3-2 and 4-2 adder
compressors (see Figure 4.7b). They dissipate 15% less power than the original
architecture with RCA. In terms of area, the most efficient version for luma and chroma
datapaths is the one using hierarchical 8-2 compressor composed of 7-2 and 3-2 adder
compressors (see Figure 4.7d). They achieve 18% and 13% area reduction in luma and
chroma datapaths, respectively, compared with RCA versions. In terms of PDP, the
most efficient version for luma and chroma datapaths is the one using hierarchical 8-2
compressor composed by 4-2 adder compressors. They achieve 30% and 18% PDP
reduction in luma and chroma datapaths, respectively, compared to RCA versions. The

70

different area, power and PDP results of the adder compressor implementation versions
leave the option to the designer, depending on what is the priority design goal the
designer has for the dedicated architecture.

Table 4.3 – Synthesis results for the Interpolation Datapaths.

Figures

Cells Area

(µm2)
Delay
(ns)

Leakage
Power
(µW)

Dynamic
Power
(µW)

Total
Power
(µW)

PDP
(×10-13)

PDP
reduction

(%)
Luma datapath
Original datapath
with RCA* 4.3 384 1,692 1.872 26.0 415.9 441.9 8.27 -

i) 7-2 4.9a 337 1,443 1.570 24.4 370.8 395.2 6.20 25
ii) 8-2 (w/ 4-2) 4.9b &

4.7a 392 1,589 1.478 25.6 367.7 393.3 5.81 30

iii) 8-2 (w/ 3-2 and
4-2)

4.9b &
4.7b 395 2,446 1.604 25.2 353.1 378.3 6.06 27

iv) 8-2 (w/ 5-2, 4-2
and 3-2)

4.9b &
4.7c 423 1,702 1.628 25.8 388.6 414.4 6.74 18

v) 8-2 (w/ 7-2 and
3-2)

4.9b &
4.7d 329 1,404 1.549 24.1 365.5 389.6 6.03 27

Chroma datapath
Original datapath
with RCA* 4.4 435 1,761 1.612 27.2 396.8 424.0 6.83 -

i) 8-2 (w/ 4-2) 4.10 &
4.7a 430 1,643 1.466 26.0 355.4 381.5 5.59 18

ii) 8-2 (w/ 3-2 and
4-2)

4.10 &
4.7b 445 1,660 1.563 25.6 337.6 363.2 5.68 17

iii) 8-2 (w/ 5-2, 4-
2 and 3-2)

4.10 &
4.7c 449 1,721 1.598 26.1 360.3 386.5 6.18 10

iv) 8-2 (w/ 7-2 and
3-2)

4.10 &
4.7d 396 1,546 1.499 24.7 354.1 378.9 5.68 17

*Uses the datapaths of the architecture in Section 4.2, but implements the adders with Ripple-Carry Adder (RCA).

Source: the author.

In the original architecture (Section 4.2), luma and chroma acceleration engines
employ 12 datapaths each one. Considering that, we estimate the impact of power in the
entire architecture. Employing the most power-efficient implementations versions of
luma and chroma datapaths (iii and ii), the architecture dissipates approximately 8.9
mW and spends 49,272 µm2 of chip area. Related works on HEVC interpolation
architectures, (GUO, 2012) and (AFONSO, 2013), do not provide area and power
results, so the direct area and power comparisons against their designs are not possible.

4.4 Hardware Architecture for Deblocking Filter of HEVC

This section describes the proposed hardware architecture for Deblocking Filter of
HEVC. The system diagram of the architecture is depicted in Figure 4.11. Our
architecture receives as input the samples of the 2 neighboring 4x4 blocks (P and Q,
please refer to deblocking filter overview in Section 2.3.2). P and Q blocks belong to
different adjacent 8x8 blocks in PU or TU boundary to be filtered, which is determined
by PU and TU flags. Our architecture decides whether filtering is required or not and
the strength of the filtering to be applied if this is the case. It depends on input samples
and also on Bs, β and tc calculated over sample values, P and Q block types, and QP,
which are also given as input to our architecture. Our architecture also has some simple
control signals to establish a handshake between a master device (e.g. a CPU that runs
the whole HEVC encoder/decoder application) and our architecture (which plays the
slave role).

71

tering

ns

delta p1 (Δp1)

delta p1 (Δp1)

delta 1s (Δ1s)

delta 1s (Δ1s)

Figure 4.11 – System diagram of the proposed hardware architecture for HEVC
deblocking filter

Fil decisio

Control (FSM)

Merged datapath
for conditions 1,

2, 3, 8 and 9

 Condition 4 Condition 5
Condition 6 Condition 7

Bs, β and tc Condition 10

Filtering operations delta c (Δc) delta c (Δc)

delta 0 (Δ0) delta p1 (Δp1)

delta 0 (Δ0) delta p1 (Δp1)

delta 0s (Δ0s) delta 1s (Δ1s)

delta 0s (Δ0s) delta 1s (Δ1s)

Source: (DINIZ, 2015b).

Samples from P and Q blocks to be filtered are first stored into a reference picture
memory. As each input sample has 8 bits, our architecture supports a 256-bit wide input
memory channel. Therefore, 32 samples (both 4x4 blocks, P and Q) are transmitted in
one clock cycle. Filtered samples are stored back into reference picture memory after
the filtering operations.

Our architecture has three main units: (1) filtering decisions; (2) filtering operations;
and (3) control unit. The filtering decisions unit calculates the conditions to decide
whether the boundary must be filtered or not and the strength of the filter. It is
composed by some datapaths in parallel, whose internal architecture is detailed in
section 4.4.1. If filtering is required, the filtering operations unit calculates the filtered
samples. Datapaths of filtering operations are detailed in section 4.4.2. The control unit
implements the control flow shown in section 2.3.2 and it establishes the handshake
with a master device. The control unit is discussed in section 4.4.3.

4.4.1 Filtering Decisions Datapaths

This unit determines the need of filtering two given 4x4 blocks. For input samples
convention and deblocking filter equations, please refer to section 2.3.2. By examining
the standard deblocking filtering equations, it can be noted that conditions 1, 2, 3, 8 and
9 share similar sub-expressions with the same input samples. Partial results from
conditions 2 and 3 and used for conditions 1, 8 and 9. Hence, we employ hardware
reuse to design a merged datapath for those conditions. The diagram of the merged
datapath is depicted in Figure 4.12. Conditions 1, 2, 3, 8 and 9 were shortened as c1, c2,
c3, c8 and c9, respectively.

72

Figure 4.12 – Merged datapath for conditions 1, 2, 3, 8 and 9

Source: (DINIZ, 2015b).

The condition equations require some multiplication by constants. We have replaced
the multiplications by adders and shift operations to use less hardware resources. The
proposed merged datapath generates the five conditions in only one clock cycle.

Datapaths for the remaining conditions (4, 5, 6, 7, and 10) are depicted in Figure
4.13. Datapaths for conditions 4 and 5 are equal, only differing by the input samples
(condition 4 is applied in the first row and condition 5 is applied in the last row of 4x4
blocks). We have included two instances of this datapath to compute both conditions
(c4 and c5) in the same clock cycle. The same was made for conditions 6 and 7.
Condition 10 is an additional filtering decision applied to δ0 for the four rows of 4x4
blocks after normal filtering operation (see more details of filtering operations in section
4.4.2). Our architecture includes two instances of this datapath in the design to compute
c10 for the four rows in two clock cycles. Each instance computes two rows of samples.
Additional datapaths for β and tc multiplications, needed to compute all the conditions,
are also shown in Figure 4.13. β and tc values are generated by a lookup table with QP
value as input index.

73

Figure 4.13 – Datapaths for conditions 4, 5, 6, 7 and 10

Source: (DINIZ, 2015b).

4.4.2 Filtering Operations Datapaths

After computing the filtering decisions, this unit computes the filtering operations
for normal and strong filters (for luma) and chroma filter.

The clipping operation, included in all the datapaths, is present in Deblocking filter
(DF) to prevent excessive blurriness. It keeps the final result inside a range that depends
on the QP value, block type and filtering strength. The value c is calculated in the first
cycle with the decision process and it is stored in register to be used by the filtering
operation datapaths.

Datapaths for normal filtering operations are depicted in Figure 4.14. Normal filter
modifies 1 or 2 samples along the block boundary. It computes the delta values (i.e. Δ0,
Δp1, Δp2) which are offsets that must be added to the original samples (p0, p1, q0 and q1)
in order to generate the final filtered sample (p0’, p1’, q0’ and q1’). They are applied to
the four rows of samples of 4x4 blocks P and Q. Delta 0 operation is always computed
when the normal filter is selected in filtering decision process and modifies the p0 and q0
samples that are close to the boundary. Delta p1 and delta q1 operations modify also p1
and q1 samples. Please refer to deblocking filter flow in section 2.3.2 for details. In our
architecture, delta p1 and delta q1 values are computed anyway in the same cycle to
achieve high throughput and to simplify control. However, the final sample
modification depends upon the result of conditions 8 and 9. This is done by the control
unit.

In the design of this unit we have also replaced the multiplications by constant by a
sequence of adders and shift operations. Our architectural design includes two instances
of each datapath shown in Figure 4.14 (please refer to the architecture diagram in Figure
4.6). This way, we can compute the normal filtering operations in two cycles. Each
datapath instance computes two rows of samples.

74

Figure 4.14 – Datapaths for normal filtering operations

Source: (DINIZ, 2015b).

Strong filtering datapaths are depicted in Figure 4.15. Strong filter always modify 3
samples along the block boundary. It computes the delta values (i.e. Δ0s, Δ1s, Δ2s)
which are offsets that must be added to the original samples (p0, p1, p2, q0, q1 and q2) in
order to generate the final filtered sample (p0’, p1’, p2’, q0’, q1’ and q2’), as shown in
Figure 4.15. They are also applied to the four rows of samples of 4x4 blocks P and Q.
Similar to normal filter datapaths, we have also replaced the multiplications by adders
and shift operations and we have included two instances of each datapath in the
architecture. Each datapath instance computes two rows of samples.

75

+

Figure 4.15 – Datapaths for strong filtering operations

Strong filter datapath delta 0s
p +
p - c

p + +
4

q

0s 0s

0 0 0s

+ + 0 0 0s

q
0s 2 1 0 0 1

Strong filter datapath delta 1s

p
- c

+ + δ

p +
1 1 1s

q + 1 1 1s

clip Δ

2 1s 2 1 0 0

Strong filter datapath delta 2s

p
+ c

p 4

p + -

q
+

p

+ δ

2 2 2s

2 2 2s

clip Δ

2s 3 2 1 0

Source: (DINIZ, 2015b).

Our architecture also includes two instances of the datapath for the chroma filtering.
The diagram of chroma filter datapath is shown in Figure 4.16. Chroma filter is only
applied when Bs is equal to 2 and does not require further decisions. It modifies only p0
and q0 samples.

Figure 4.16 – Datapath for chroma filtering operation

Source: (DINIZ, 2015b).

76

After generating the delta values, they are added with the original samples to
produce the final filtered samples, depending on the results of conditions calculated in
the filtering decisions unit. One multiplexer is included for each output.

4.4.3 Control Unit

Due to the distinct dataflow nature of the deblocking filter, the control unit of the
architecture is relatively simple. A Finite State Machine (FSM) handles the handshake
protocol between master and slave and selects the correct filtered output samples based
on the filtering conditions unit. The FSM has 4 states, as shown in Figure 4.17. The
output values are also described in Figure 4.17.

The master starts a transmission by signalizing with ‘data_in_valid’ signal. Then,
the deblocking filter architecture reads the input data port from memory. At the next
clock cycle, if filtering of the given input is required, the filtered samples are available
at the output data port and ‘data_out_valid’ signal changes to ‘1’. The deblocking filter
architecture expects to receive the next 2 rows of samples to be filtered. At the next
clock cycle, the filtered samples are available at the output data port. This process can
be repeated, resulting in new blocks at every 2 clock cycles or no filtered block (when
filtering is not necessary) at every clock cycle. The master can stop transmitting data at
the end of the second clock cycle, by signalizing ‘data_in_valid’ with ‘0’.

Figure 4.17 – State diagram of the Finite State Machine

data_in_valid = 0

data_in_valid = 1

filter_required = 0

initial_state test_filter
data_in_valid = 0

filter_required = 1

initial_state 0
test_filter 0
do_filter 1
test/do_filter 1

filter_required = 0
data_in_valid = 1

filter_required = 1

data_in_valid = 1

test/do_filter do_filter

Source: (DINIZ, 2015b).

An example of the processing scheduling of the deblocking filter architecture is
shown in Figure 4.18. We show in this example the normal filter operation which needs
to modify two samples along the boundary. This is the worst case condition for our
architecture, because it needs more clock cycles to complete. Other situations, e.g. no
filtering, strong filtering, or even normal filtering modifying only one sample along the
boundary require less clock cycles to complete the calculation (please refer to the
deblocking filter flow in section 2.3.2 and the control state machine in Figure 4.17).
Figure 4.18 shows the scheduling of processing block boundaries of 4 samples to be
filtered (P and Q blocks). The numbers inside the boxes are the boundaries’ numbers.

77

Figure 4.18 – Processing schedule of normal filter (worst case)

Source: (DINIZ, 2015b).

Our architecture has an initial latency of 5 clock cycles to complete normal filter
(modifying 2 samples along the boundary) for the first four-sample boundary. After the
initial latency, it delivers a new normal filtered boundary at each 2 clock cycles, due to
our pipelined architecture. We have considered a worst-case condition for our
architecture as follows: when a CTU (64x64-pixel block) of video is all partitioned into
8x8-pixel blocks and all boundaries between those blocks need to be filtered by the
normal filtering that modifies 2 samples along the boundary. This is a very worst case
condition, since not always the CTU is all partitioned into 8x8-pixel blocks and not
always it need to be filtered by the worst case filtering mode. However, this analysis is
useful to compare the architecture with state of the art. Hence, considering the worst
case condition, our architecture requires 1,027 clock cycles to filter one CTU.

4.4.4 Results and Evaluation

The proposed deblocking filter hardware architecture was implemented in VHDL
and synthesized to ASIC and FPGA. FPGA synthesis and mapping is performed using
Xilinx ISE design suite (XILINX, 2014) for Xilinx Virtex-6 XC6VLX130T-ff1156-3
FPGA device (XILINX, 2012). ASIC synthesis is performed using Cadence RTL
Compiler tool (CADENCE, 2014) for FreePDK 45nm CMOS standard-cell library
(FREEPDK, 2014) under a constraint of 200 MHz clock frequency. Area results for the
target clock frequency for both FPGA and ASIC are shown in Table 4.4. Area results
for FPGA are shown in terms of Slice Look-up Tables (LUTs) and slice registers. ASIC
area results are shown in terms of gate count (NAND-2 area equivalent) to enable
comparisons with related works which are implemented in different CMOS
technologies. It can be noted that our hardware architecture requires very low hardware
resources due to our architecture-independent and hardware-specific optimizations to
create very optimized datapaths for HEVC deblocking filter.

Table 4.4 – Synthesis results of the deblocking filter architecture for FPGA and ASIC

Hardware units

FPGA results ASIC results

Slice LUTs

Slice Registers Gate count
(NAND2)

Conditions 383 168 980
Operations 770 265 1,931

Control (FSM) 245 8 370
Total 1,398 441 3,281

Frequency (MHz) 140 200
Source: (DINIZ, 2015b).

78

Table 4.5 shows the comparison of our architecture against two state of the art
references (OZCAN, 2013) (SHEN, 2013) which implement in hardware the deblocking
filter. The work in (SHEN, 2013a) presents a DF architecture which is very similar to
the work in (SHEN, 2013). Herein only the work in (SHEN, 2013) is being considered
for comparison purpose.

Table 4.5 – Comparisons to the state of the art hardware implementations of the
deblocking filter

 (OZCAN, 2013) (SHEN, 2013) Our architecture
Architecture parameters
Cycles/CTU (worst case) 7,680 440 1,027
Minimum frequency (MHz) to
process 1920x1080@30fps

108

7

15.6

Minimum frequency (MHz) to
process 4096x2048@60fps

–

56

124.8

ASIC implementation
CMOS technology (nm) 90 130 45
Maximum frequency (MHz) 108 200 200
Gate count (NAND2 equiv.) 16.4k 21k 3.3k
Maximum throughput (resolution
@ frame rate)

1920x1080@ 30
fps

4096x2048 @
60 fps

4096x2048
@ 60 fps

Power (mW) – – 4.6
FPGA implementation
Device Virtex-6 – Virtex-6
Frequency (MHz) 108 – 140
Slice LUTs 5,236 – 1,398
Slice registers 1,547 – 441
Maximum throughput (resolution
@ frame rate)

1920x1080@ 30
fps

– 4096x2048
@ 60 fps

Power (mW) 31.0 – 9.0
Source: the author.

Compared to the work in (OZCAN, 2013), the ASIC implementation of our
architecture reduces gate count by approximately 5X, while providing 4X maximum
throughput in terms of real-time video processing for certain video resolution and frame
rate. The FPGA implementation reduces LUTs and slice registers by approximately 4X,
while providing high throughput with a maximum frequency of 140 MHz. We have
synthesized our design for the same FPGA device of (OZCAN, 2013) to enable direct
comparison in terms of slice LUTs and slice registers being used in the configuration.
The throughput of our architecture is higher than the related work mainly due to the
reduced number of cycles/CTU (in the worst case) of our architecture. Our architecture
reduces the cycles/CTU by more than 7X. Area is reduced in our design through our
architecture independent and hardware specific optimizations, i.e. reusing of operations,
replacing multiplications by add/shift operations.

The work in (SHEN, 2013) has a more efficient design than (OZCAN, 2013) at the
cost of a larger hardware area. It does not include FPGA implementation, so
comparisons are possible only against our ASIC results. Compared to (SHEN, 2013) the
ASIC implementation of our architecture reduces gate count by more than 6X, while
providing a similar throughput. Another comparison is conducted in terms of the
architecture (and implementation-independent) parameters: cycles/CTU (worst case)
and minimum frequency to process two video resolutions in real time: 1920x1080 @ 30

79

fps; and 4096x2048 @ 60 fps. Our work requires twice the minimum frequency to
process videos at a certain frame rate (15.6 MHz vs. 7 MHz, and 124.8 MHz vs. 56
MHz) than (SHEN, 2013). However, our architecture achieves 6X gate count reduction
compared to (SHEN, 2013). By increasing operating frequency to only 124.8 MHz, our
design achieves throughput to process 4096x2048@60 fps. Both FPGA and ASIC
implementations of our architecture reach this operating frequency, as shown in the
results in Table 4.4.

We have also provided power estimation of our architecture. Regarding the ASIC
implementation, it was not possible to compare power estimation results since the
authors of (SHEN, 2013) and (OZCAN, 2013) do not provide any power estimation
numbers for ASIC implementations. (OZCAN, 2013) quotes its power estimation for
FPGA implementation. We estimated power of our architecture and the architecture
proposed in (OZCAN, 2013), both implemented in FPGA, with the proprietary Xilinx
power estimator tool (XILINX, 2013). Our architecture dissipates 3X less power
compared to the architecture proposed by (OZCAN, 2013).

4.5 Hardware Architecture for Sum of Absolute Differences (SAD)

As reviewed in chapter 2, SAD is a low-complexity distortion metric used in mode
decision and Motion Estimation (ME) stages of advanced video encoders. Considering
our HEVC application analysis in chapter 3, it consumes a huge amount of total
encoding execution time. It is definitely an important computational kernel in HEVC
encoder. Many related works proposed different hardware architectures for SAD
calculation. Most of them are included in complete ME hardware architectures targeting
H.264/AVC and HEVC standards.

An abstract system diagram of a ME hardware architecture is shown in Figure 4.19.
It usually includes three modules: i) on-chip memory to store search area buffer; ii)
control unit that implements the ME algorithm; and iii) a SAD architecture with many
SAD processing elements (PEs) in parallel. Search area buffer stores the candidate
blocks to be compared with the current block to be encoded. This buffer is filled in
advance by fetching the search area from the picture buffer on external memory. The
control unit implements the ME algorithm (usually a fast block matching algorithm) and
delivers the candidate blocks to be compared with the current block by the SAD
architecture. The SAD architecture contains many PEs in parallel because the
candidates can be compared in parallel with the current block since there is no
dependency among different block comparison.

Figure 4.19 – A Motion Estimation (ME) architecture diagram and the Sum of Absolute
Differences (SAD) architecture

Source: the author.

80

In this thesis there is a design space exploration for the architecture of the SAD
processing element design. We have designed nine hardware architecture alternatives
for SAD processing element, varying the parallelism level (4, 8 and 16 samples in
parallel) and the number of pipeline stages. Then, we conduct a comparative analysis of
the architectural alternatives of SAD PE in terms of hardware area, throughput, power,
and energy consumption. Depending on system requirements, the designer may choose
a highly-parallel deep-pipelined SAD version, e.g. to achieve high performance, or a
less parallel SAD version to dissipate lower power and consume lower energy. Other
modules of a complete ME architecture, e.g. the ME algorithm, control, and memory
fetching, are not the focus of this thesis.

4.5.1 Exploiting Different Versions of Parallel SAD Processing Elements

We designed different hardware architecture alternatives for SAD processing
elements following a fixed structure. The generic structure of a SAD PE is defined as
follows, with N being the number of 8-bit input samples in parallel:

• N 8-bit subtractors in parallel to subtract N original samples (of current block)
from N predicted samples (of a candidate block);

• N absolute (abs) operations in parallel;

• A set of adders organized in a binary-tree, with N input values and log2 N deep
(uses N-1 adders);

• An accumulator (an adder and a register) to add partial SAD values to compose
the final SAD.

We have designed nine architecture alternatives for SAD PE with a combination of
two parameters: i) the number of input samples in parallel (4, 8 and 16); ii) the number
of pipeline stages, depending on each version of parallelism. Figures 4.20, 4.21 and 4.22
show the SAD PE architecture alternatives with 4-input samples, 8-input samples and
16-input samples, respectively.

The advantage to explore the parallelism is to increase the architecture throughput to
perform SAD calculation of more samples per clock cycle. However, doubling the
number of input samples increase in one adder the depth of adder tree, i.e. one adder is
included in the critical path for pure combinational version (1-stage). To analyze this
issue three architecture alternatives were designed for each parallelism version varying
the number of pipeline stages, as shown in Figures 4.20, 4.21 and 4.22:

a) 1-stage, 3-stage and 5-stage pipeline alternatives for 4-input samples SAD
processing element;

b) 1-stage, 3-stage and 6-stage pipeline alternatives for 8-input samples SAD
processing element;

c) 1-stage, 4-stage and 7-stage pipeline alternatives for 16-input samples SAD
processing element.

All versions contain registers at the input (Orig and Pred samples) and the output
(register to store the final SAD value). The alternatives differ on where the pipeline
registers are present, represented by dashed lines in distinct colors. At each stage of the
adder tree, the dynamic range of adders is increased by 1-bit.

81

Figure 4.20 – SAD Processing Element (PE) alternatives with 4-input samples

Legend: All versions 3-stage and 5-stage 5-stage

Orig(n): Original sample n
Orig(0)
Pred(0)

Orig(1)
Pred(1)

Orig(2)
Pred(2)

Orig(3)
Pred(3)

- abs
+

- abs

- abs
+

- abs

Pred(n): Predicted sample n

SAD
+ +

Source: (DINIZ, 2010).

Figure 4.21 – SAD Processing Element (PE) alternatives with 8-input samples

Legend: All versions 3-stage and 6-stage 6-stage

Orig(0)
Pred(0)

Orig(1)
Pred(1)

Orig(2)

Pred(2)

Orig(3)

- abs
+

- abs

- abs
+

- abs

Orig(n): Original sample n
Pred(n): Predicted sample n

+

Pred(3)

Orig(4)
Pred(4)

Orig(5)
Pred(5)

Orig(6)

Pred(6)

Orig(7)
Pred(7)

- abs
+

- abs
+

- abs
+

- abs

+ + SAD

Source: (DINIZ, 2010).

Table 4.6 shows the architectural parameters of the different SAD PE architectural
alternatives that are evaluated in this work. Since they have different input samples and
pipeline stages, they have different number of clock cycles per block. We have
considered a block of size 64×64 samples since this is the larger block size defined in
HEVC standard. The number of pipeline stages also defines the initial latency (in clock
cycles) of each architectural alternative.

82

Figure 4.22 – SAD Processing Element (PE) alternatives with 16-input samples

Legend: All versions 4-stage and 7-stage 7-stage

Orig(0)
Pred(0)

Orig(1)
Pred(1)

Orig(2)

Pred(2)

Orig(3)
Pred(3)

Orig(4)
Pred(4)

Orig(5)
Pred(5)

Orig(6)

Pred(6)

Orig(7)
Pred(7)

Orig(8)
Pred(8)

Orig(9)
Pred(9)

Orig(10)

Pred(10)

Orig(11)
Pred(11)

Orig(12)
Pred(12)

Orig(13)
Pred(13)

Orig(14)

Pred(14)

Orig(15)
Pred(15)

- abs
+

- abs

- abs
+

- abs

- abs
+

- abs

- abs
+

- abs

- abs
+

- abs

- abs
+

- abs

- abs
+

- abs

- abs
+

- abs

Orig(n): Original sample n
Pred(n): Predicted sample n

+

+

+

+ +

+

+

+

SAD

Source: the author.

Table 4.6 – Architectural parameters of the different SAD PE alternatives

SAD PE alternative

Initial latency
(cycles)

Cycles/block (one 64x64
candidate block, includes

initial latency)
Input

samples
Pipeline
stages

4 1 1 1025
4 3 3 1027
4 5 5 1029
8 1 1 513
8 3 3 515
8 6 6 518
16 1 1 257
16 4 4 260
16 7 7 263

Source: the author.

83

4.5.2 Results and Evaluation

All the SAD PE architectural alternatives were described in VHDL and synthesized
to FreePDK 45 nm (FREEPDK, 2014) CMOS standard-cells library using Cadence
RTL Compiler tool (CADENCE, 2014). Table 4.7 shows the results and comparisons of
the architecture alternatives for SAD PE in terms of area (gate count, 2-input NAND
equivalent), maximum frequency, performance, and power.

Table 4.7 – Synthesis results and comparison of the different SAD PE alternatives

SAD PE alternative

Gate
count

Max.
frequency

(MHz)

Performance
(64x64 blocks/s)

Power (µW)
@ max. freq. Input

samples
Pipeline
stages

4 1 1,097 384 374,634 994
4 3 1,420 714 695,228 1,532
4 5 1,920 769 747,327 2,315
8 1 1,995 370 721,247 1,820
8 3 2,631 667 1,295,145 2,896
8 6 3,726 714 1,378,378 4,617
16 1 4,120 344 1,338,521 3,475
16 4 5,171 526 2,023,076 5,777
16 7 7,300 667 2,536,121 9,230

Source: the author.

The performance is obtained in terms of the number of candidate 64x64 blocks (the
larger block size defined in HEVC standard) processed per second with the SAD
calculation. We show performance results considering the maximum operating
frequency of each alternative obtained after synthesis process. The alternative with 16-
input samples and 7-stage pipeline achieves the highest performance, which is 6.7X the
performance of the lowest performance architectural alternative, i.e. the 4-input samples
1-stage pipeline alternative, at the cost of 9.28X higher power dissipation.

Hence, for SAD designs in which a power constraint is imposed, alternatives with
lower performance, but also lower power dissipation, may be preferred. The designer
may choose lower parallelism/pipeline alternatives when power constraint is imposed.
Deeper pipeline versions dissipate more power because of the higher dynamic power
dissipated on the clock circuit of pipeline registers. Increasing the number of input
samples (i.e. increasing parallelism) also results in higher power dissipation, since there
is a higher number of operators and consequently more gates operating and dissipating
in parallel.

84

85

5 RECONFIGURABLE HARDWARE ARCHITECTURE FOR

FRACTIONAL-PIXEL INTERPOLATION OF HEVC

Dedicated hardware architectures provide high performance and energy efficiency
for real-time video encoding and decoding, as discussed in Chapter 4. However,
dedicated hardware architectures have some drawbacks. First, they are fixed in design
time and cannot change the hardware in the field, after silicon fabrication. Second, they
incur in high Non-Recurring Engineering (NRE) cost (the one-time cost to design and
test a new chip) and high design time. In this scenario, reconfigurable hardware,
especially FPGAs, provides a platform solution with low NRE cost, faster time-to-
market, and flexibility of quick upgrades through dynamic reconfigurations (TUAN,
2006). FPGA-based designs combine the performance and efficiency of dedicated
accelerators due to their capability to exploit high degree of parallelism along with a
high degree of flexibility due to their programmability and hardware reconfigurability
(SHAFIQUE, 2009)(COMPTON, 2002).

This chapter describes a novel reconfigurable hardware architecture for interpolation
filtering in HEVC. Unlike our dedicated interpolation filter architecture discussed in
sections 4.2 and 4.3, and different of other state-of-the-art techniques, the architecture
presented in this chapter adapts depending upon the coding configurations and
throughput requirements through run-time reconfiguration of adaptive datapaths. It
thereby provides the performance and power efficiency of dedicated accelerators along
with the high flexibility due to run-time reconfigurability. The proposed architecture is
beneficial for low-volume productions, where short time-to-market, low NRE, and
adaptivity to different coding scenarios are required. Moreover, due to the benefits of
partial reconfiguration feature, the proposed architecture is especially beneficial for
small-sized FPGAs. The general applicability of our architecture is FPGA-based video
encoding systems.

Figure 5.1 shows an overview of our novel reconfigurable hardware architecture for
the HEVC interpolation filter. It is composed of four main modules:

1) The Prediction Module (Section 5.1) provides an estimate of the number of
interpolation filter calls for the upcoming pictures based on the monitored
GOP-history.

2) Reconfigurable Hardware Accelerator Engines for the Luma and
Chroma interpolation filters (Section 5.2) with a set of different
implementation versions providing multiple area vs. performance/throughput
tradeoff options.

3) An Implementation Version Selection Module (Section 5.3) to select an
appropriate filter implementation for the reconfigurable engine based on the
predicted number of calls.

4) An Adaptive Scheduling Module (Section 5.4) to determine the processing
order and the filter type configuration in an adaptive way.

86

Figure 5.1 – Proposed reconfigurable hardware architecture for Interpolation Filter of

HEVC

Source: (DINIZ, 2015a).

The proposed hardware architecture is tightly connected to a core processor (e.g., a
Leon-II or NIOS) that executes the video codec application. During the run time, it
provides the Picture Order Count (POC), indexes for Coding Unit (CU) and Prediction
Unit (PU), PU size, and the monitored number of filter calls for each picture. In case of
the HEVC encoder, additional input parameters are: GOP size, Intra-period and the
frame-rate. We also assume that the acceleration engines are reconfigured into Partial
Run-Time Reconfiguration (PRR) regions as supported by the current FPGA
technology (XILINX, 2010) (ALTERA, 2010).

Our architecture employs internal buffers to store integer-pels from external
reference picture memory and fractional-pels delivered by the reconfigurable engines.
The Address Generation Unit (AGU) translates POC, CU and PU indexes into internal
address representation for the internal buffers.

In the following sections, we discuss the main modules in more details. Section 5.5
presents results, evaluation, comparison with related work and discussion.

5.1 Adaptive Prediction of Interpolation Filter Calls

5.1.1 Analytical Observations

To design a robust prediction, we need to analyze the pattern of interpolation filter
calls within a GOP. Figure 5.2 illustrates the number of interpolation filter calls for the
first eight GOPs of three WVGA (832x480 pixels) video sequences BQMall,
BasketballDrill, and Race Horses with 60 fps, 50 fps, and 30 fps, respectively. Common
test conditions are: RA configuration, QP=22 and GOP sizes={4,8,16}. The numbers of
filter calls among pictures at the same relative position inside GOP were compared.

Figure 5.2 shows that the pictures within a GOP have good correlation (in terms of
filter calls) with their collocated pictures in the previous GOPs. Therefore, the number
of filter calls for the to-be-soon-encoded pictures within a GOP can be accurately
predicted using the monitored filter calls in their collocated pictures in the previous
GOPs.

87

BasketballDrill

In
te

rp
ol

at
io

n
fil

te
r

ca
lls

 [
M

ill
io

ns
]

In
te

rp
ol

at
io

n
fil

te
r

ca
lls

 [
M

ill
io

ns
]

6

Figure 5.2 – Correlation of the number of interpolation filter calls considering GOP

sizes equal to (a) 8, (b) 16, and (c) 4

Legend:
GOP 0 GOP 1 GOP 2 GOP 3 GOP 4 GOP 5 GOP 6 GOP 7

8

Previous GOP correlation

Previous GOP correlation
6

4

2

0

BQMall 4 BQMall

2

0

0 1 2 3
0 1 2 3 4 5 6 7

8

6

4

2

0
0 1 2 3 4 5 6 7

Previous Intra-period correlation
10

4 BasketballDrill

2

0 1 2 3

6 Race Horses
4

Race Horses
5

0

0 1 2 3 4 5 6 7

(a) Picture position inside GOP (GOP size = 8)

2

0
0 1 2 3

(b) Picture position inside
GOP (GOP size = 4)

Previous GOP correlation

6

BQMall

4

2

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

6 BasketballDrill
4

2

0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Previous Intra-period correlation Race Horses

4

2

0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(c) Picture position inside GOP (GOP size = 16)

Source: (DINIZ, 2015a).

While most of pictures exhibit good correlation with pictures in previous GOP, there
are some exceptions for the pictures 2 and 4 of the GOP 0 and picture 0 of GOP 1. They
exhibit fewer number of filter calls than those collocated pictures in the next GOPs
because they use Intra picture as a reference for prediction. Therefore, in these cases,
the result of Integer Motion Estimation is improved and requires less effort for the
Fractional Motion Estimation leading to a reduced number of filter calls. In such cases,
we observe that these pictures exhibit a better correlation with the collocated pictures in
the previous Intra-period compared to the collocated pictures in the previous GOP. This
behavior is due to the hierarchical bi-predictive coding structure used in HEVC (KIM,

88

2013). In this structure, pictures between two successive Intra pictures are encoded as B
pictures. The Intra picture is encoded using a given QP value. The first B picture of
each GOP (except GOP 0) is called Generalized P and B (GPB) picture. It uses 4
pictures as reference and is encoded using QP+1 value. Other pictures are divided in
three layers and are encoded using QP+2, QP+3 and QP+4 values (VANNE, 2012)
(KIM, 2013). The number of interpolation calls increases when more pictures are used
as reference (due to bi-predictive ME) and when QP is low (higher quality require more
efficient prediction). For that reason, the number of interpolation filter calls is higher in
GPB picture than others (see picture 0 of Figure 5.2a). For some GPB pictures, the
lower number of filter calls is because they use Intra picture as reference.

In summary, there are two different types of correlations for the number of filter
calls: (1) correlation with the collocated in previously encoded GOPs; (2) correlation
with the collocated in previous Intra periods.

5.1.2 Prediction Design

Based on the above analytical observations, we designed two types of predictions
for the number of filter calls. The first one calculates a Predicted Number of Filter Calls
(PNFC) for a current picture with position p[0..GOP_size] inside GOP of index g,
based on the Monitored Number of Filter Calls (MNFC) of collocated picture in
position p from the previous GOP (see Equation 5.1). The position p of a picture inside
GOP is calculated from Picture Order Count (POC) and GOP size, i.e., p = POC mod
GOP_size. In order to improve the prediction quality, the prediction error ε (Equation
5.2) for the previous GOP (i.e., ε(p,g-1)) is added in a weighted way, such that the
weighting factor is given as δ1.

PNFC(p , g) = MNFC(p , g − 1) + δ 1 * ε (p , g − 1)

ε (p , g) = MNFC(p , g) − PNFC(p , g)
(5.1)
(5.2)

The second type of prediction shown in Equation (5.3) computes a PNFC for the
current picture p and GOP g based on MNFC of the collocated picture in the previous
Intra-period gPREV_IP, as shown in Equation (5.4). In order to improve the prediction
quality, the prediction error ε (Eq. 2) for the previous Intra-period (i.e., ε(p,gPREV_IP)) is
added in a weighted way, such that the weighting factor is given as δ2. The division in
Equation (5.4) is an integer division as the Intra-period is always in multiples of the
GOP size.

P N F C (p , g) = M N FC (p , g PR EV _ IP) + δ 2 * ε (p , g PR EV _ IP)

g PREV _ IP = g − Intra _ period / GOP _ size

(5.3)

(5.4)
Based on the observations in Figure 5.2a and Figure 5.2c, we apply the second type

of prediction, as shown in Equation (5.3) for the GPB picture (position 0) and for the
picture in the center of the GOP (position 4). These pictures have a lower QP and a
higher number of reference pictures, so they exhibit a high number of interpolation filter
calls. A different behavior happens with the first picture in position 2 inside an Intra-
period. It exhibits a considerably less number of filter calls than the average. This is
because this picture uses Intra picture as reference, so the IME finds a good match
without FME refinement. Equation (5.3) is also used for picture in position 2 in the first
GOP. The following pictures in position 2 have a higher number of filter calls than the
first one, but a higher correlation with each other. Therefore, Equation (5.3) is also used
for the picture in position 10 inside an Intra-period (i.e. picture position 2 of the second

89

GOP of an Intra-period). For all the other pictures, we apply the first type of prediction,
i.e. Equation 5.1. Prediction is performed separately for luma and chroma.

To reduce the prediction error along time, we back-propagate a percentage of the
error to the prediction value. The strength of back-propagation is defined by the design-
time parameters δ1 and δ2, which are selected from offline simulation of a set of video
sequences. The set of video sequences are offline simulated with the prediction scheme,
and the prediction error is calculated for each picture of each video sequence. The Mean
Squared Error (MSE) of each video sequence is computed. Values of δ1 and δ2 are
adjusted empirically to reduce the MSE of prediction for this set of video sequences.

5.2 Reconfigurable Hardware Engines for Interpolation Filter

We have developed two reconfigurable hardware accelerator engines for luma and
chroma interpolation filters. Figure 5.3 illustrates the datapath templates of both
engines. We exploit the concept of providing different implementation versions at
compile-time for a function to be accelerated (BAUER, 2008). The implementation
versions exhibit different requirements of silicon area and performance. They are
selected and reconfigured at run-time, as shown in section 5.3. Our datapath templates
are scalable and provide the instantiation of 1 to max(nDPs) basic datapaths in parallel.
nDPs is the number of datapaths in parallel of a particular implementation version.
max(nDPs) is the maximum number of datapaths in parallel that can be instantiated by
any implementation version. It must be determined at design-time by the designer
considering the worse-case throughput requirements. Each engine also contains local
buffers to store input data of datapaths.

Figure 5.3 – Architectural template of the reconfigurable engines. Luma and chroma

datapaths are shown in section 4.2. Luma datapath is shown here as an example.

Source: (DINIZ, 2015a).

90

1 





Luma and chroma datapaths are the same datapaths used in our proposed dedicated
hardware architecture for HEVC interpolation filter, shown in section 4.2. Four input
pels (s0-s3) are given as input. Luma datapath generates one fractional-pel of 7-/8-tap
filter at each 2 cycles. Instead, chroma datapath generates one fractional-pel per cycle.
This way, an implementation version of the luma reconfigurable hardware engine with
nDPs datapaths has an equivalent throughput of nDPs/2 fractional-pels per cycle. An
implementation version of the chroma engine with nDPs has throughput of nDPs
fractional-pels per cycle. Local buffer is designed to store necessary input data to
process the implementation version with the highest parallelism.

5.3 Implementation Version Selection

This module selects one out of N different implementation versions (section 5.2) for
interpolation filter acceleration. The selection is based on the predicted number of
interpolation filter calls, i.e., PNFC (section 5.1). An optimal selection is the one that
finds the implementation version with the lowest number of datapaths that satisfies the
required performance. The optimal selection consumes less area and saves (leakage)
energy. The Estimated Performance (EP) in pixels/picture of a particular
implementation version i∈{1, ..., N} is given by Equation (5.5). In Equation (5.5), f is the frequency of the reconfigurable engine obtained after synthesis (see Section 5.5).
nDPs is the number of datapaths (that process in parallel) of the implementation version
i.

(f * nDPs (i)) (2 * frame _ rate)
EP(i) = 

if Luma

(5.5)

 (f * nDPs (i)) (frame _ rate) if Chroma

Equation (5.6) is used to select an implementation version S1 with nDPs(i) datapaths
that produces an EP higher than the estimated prediction given by PNFC. Apparently, it
satisfies both area and performance requirements. However, the prediction may incur an
error (see Equation 5.2), and the monitored number of filter calls may be higher than the
predicted. Consequently, this selection method may not guarantee performance. The
required throughput can be achieved by choosing an implementation version S2
(Equation 5.7), which has only one additional datapath than S1 (Equation 5.6).

  2 * PNFC(p, g)* frame _ rate 
n (i) =

if Luma

 DPs  
S (p, g) = i,  f  (5.6)

 PNFC(p, g)* frame _ rate 
n (i) =

if Chroma
 DPs  
  f 

S 2 (p , g) = i , nDPs (i) = nDPs (S1 (p , g)) + 1

(5.7)
Equation (5.7) always selects an implementation version with slightly higher

parallelism at the cost of increased area and leakage energy. To address this issue,
Equation (5.8) considers the maximum prediction error max(ε) that may occur at a
certain point in time. For each picture p of GOP g, we calculate S1 (Equation 5.6) and
EP(S1) (Equation 5.5) based on the PNFC(p,g) from the prediction scheme. PNFC(p,g)
is then subtracted by EP(S1). If the result is lower than the maximum error, the selected
implementation version with S datapaths is calculated as S1 (Equation 5.6).

S1 (p , g) if (EP(S1) − PNFC(p , g) < max(ε)) S(p , g) =
S2 (p , g) if (EP(S1) − PNFC(p , g) >= max(ε))

(5.8)

91

/ 2 * frame _ rate if Luma
f / frame _ rate if Chroma

For example, in case the PNFC for luma is 40 million, the frame rate is 30 fps, and
the operation frequency f is 283 MHz, an implementation version with 10 luma
datapaths in parallel would be selected as being the best tradeoff.

To evaluate the performance impact of our architecture due to an error of prediction,
we defined the concept of Tolerable Error (TE). TE is the maximum error that can be
tolerated by our reconfigurable engine. It is defined by the difference between the EP
values of two implementation versions i1 and i2 that differ in only one datapath, i.e.,
EP(i1)=nDPs and EP(i2)= nDPs-1. Equation (5.9) shows the TE calculation after applying
Equation (5.5). We assume that all implementation versions work at the same
frequency.

 f TE = 


(5.9)

This way, max(ε) must be lower than TE, otherwise, even S2 (Equation 5.7) does not
guarantee required performance. By means of our experimental results (Section 5.5) we
show this holds true after 2 GOPs, when prediction scheme has sufficient input
information (i.e., monitored history of the interpolation filter calls) to provide good
prediction result.

5.4 Adaptive Scheduling

Once the accelerator implementation versions are selected, the processing order of
fractional-pel is determined by the Adaptive Scheduling scheme. This scheduling
scheme is a generalization of the one discussed in section 4.2, since now the number of
datapaths in parallel in the accelerating engines are not fixed, but may vary from one
picture to another. The pseudo-code of the adaptive scheduling scheme is shown in
Figure 5.4. It adapts to the different processing behavior of the interpolation filter
depending upon it usage for FME or MC. In FME, it adapts to half-pel and quarter-pel
computation.

In MC, it schedules fractional-pels calculation according to the fractional-precision
MV received as an input. In general, our scheme calls the schedule function for each
case, prioritizing the computation of fractional-pels of the same row or column in
parallel, whether filters are applied in horizontal or vertical direction, respectively. In
this way, our scheme reuses input data.

The pseudo-code of the schedule function is depicted in Figure 5.5. This function
abstracts input data fetching and reconfiguration of interpolation filter types, i.e., fetch
and reconfigure functions. It considers the size of PU and the selected implementation
version S(p,g) to reconfigure datapaths accordingly. The fetch function is used to read
the input data from the internal buffers (as shown in Figure 5.1). Input data may either
be integer-pels or fractional-pels. Integer-pels are fetched from external reference
picture memory. Fractional-pels a, b and c (see fractional pixel positions in section
2.3.1) are stored into internal buffers since they are used to calculate other fractional-
pels. The reconfigure function takes into consideration the nDPs(S(p,g)) that defines the
number of datapaths in parallel of the selected implementation version S(p,g). The
configuration of filter types involves choosing the appropriate input data to the
multiplexers of datapaths. When PU_width and PU_height is lower than the number of
datapaths in parallel S(p,g) the remaining datapaths can be used to process other
samples. Figure 5.6 shows an example of the proposed adaptive scheduling.

92

Figure 5.4 – Pseudo-code of the adaptive scheduling scheme (for luma engine)
Adaptive Scheduling ()
Inputs: FME_flag : a flag to indicate if it is FME

quarter_flag : a flag to indicate quarter refinement
PU_width : the width of PU (in pixels)
PU_height : the height of PU (in pixels)
MV[x,y] : the motion vector

Output: order of schedule function calling
begin

if (FME_flag = 1) // Interpolation for FME
if (quarter_flag = ‘0’) // half-pel refinement for FME

for row = -3..PU_height+4
schedule frac.-pels b (type 2)
for col = -3..PU_width

schedule frac-pels h (type 2)
schedule frac-pels j (type 2)

else // quarter-pel refinement
for row = -3..PU_height+4

schedule frac.-pel calc. of types a, and c
for col = -3..PU_width+4
if best match is in b position

schedule fractional-pel calc. of types p, e, q, f, r, g
if best match is in h position

schedule fractional-pel calc. of types g, k, r, d, n, e, i, p
if best match is in j position

schedule fractional-pel calc. of types e, i, p, f, q, g, k, r
else // Interpolation for MC

xFrac = MV[0] && 3;
yFrac = MV[1] && 3;
if (xFracL != ‘0’) // green and yellow samples (see Fig. 1)

for row = -3..PU_height+4
schedule frac.-pel calc. of type [xFracL,yFracL]

if (yFracL != ‘0’) // yellow samples (see Fig. 1)
for col = -3..PU_width+4

schedule fractional-pel calc. of type [xFracL,yFracL]
else // orange samples (see Fig. 1)

for col = -3..PU_width+4
schedule fractional-pel calc. of type yFracL

end

schedule ()

Source: (DINIZ, 2015a).

Figure 5.5 – Pseudo-code of the schedule function

Inputs: int-pel[] : a block of integer-pels (internal buffer)
frac-pel[] : a block of fractional-pels (internal buffer)
PU_width : the width of PU (in pixels)
PU_height : the height of PU (in pixels)
S(p,g) : the selected implementation version
types[S(p,g)] : a vector with the interpolation types

Output: Reconfiguration of DPs.
begin

if (types[] are a, b or c) // horizontal filters
fetch PU_width+7 of row from int-pel[]
if (PU_width > S(p,g))

for i = 1…ceil(PU_width / S(p,g))
reconfigure nDPs(S(p,g)) DPs with corresponding types[]

else
reconfigure PU_width DPs with corresponding types[]

else // vertical filters
fetch PU_height+7 of col from int-pel[] (d,h,n) or frac-pel[]
if (PU_height > nDPs(S(p,g)))

for i = 1…ceil(PU_height / S(p,g))
reconfigure nDPs(S(p,g)) DPs with corresponding types[]

else
reconfigure PU_height DPs with corresponding types[]

end
Source: (DINIZ, 2015a).

93

Figure 5.6 – Example of scheduling for S(p,g) = 6 and PU_width = 8

Source: (DINIZ, 2015a).

5.5 Results and Evaluation

The reconfigurable hardware engines of our architecture were designed in VHDL
and synthesized for the Xilinx XC5VLX110T-2ff1136 FPGA device that supports
partial dynamic reconfiguration. Synthesis was performed with the Xilinx ISE synthesis
tool. Prediction, Implementation Version Selection and Adaptive Scheduling modules
were implemented in software and integrated into the HM (HM, 2013). The detailed
results and discussions are shown in the next sections.

5.5.1 Fairness of comparison

Our work provides fully standard compliant filter implementation, thus producing
the video quality that matches exactly that of the reference software. Moreover, our
architecture provides a standard interface which can easily be used by a fast motion
search algorithm, thus not limiting its applicability. Approaches that employ fast mode
decision and search algorithm may exhibit quality loss compared with our work. We
employed the same ME and mode decision schemes as those being used in the reference
software (HM, 2013). Therefore, our comparison results only demonstrate the effects of
fast architecture on performance/throughput, power, and area results.

We determined the throughput values of our architecture using full, detailed logic
system simulations (containing the function accurate model of the hardware
architecture) for the operating frequency obtained after the synthesis. For instance, for
the worst case scenario, we executed a set of 2560x1600 videos. The input to the
implementation selection mechanism is the predicted number of filter calls (PNFC) and
the output of this analysis is the number of datapaths to be reconfigured for each
picture. The maximum number of datapaths selected considered all pictures of all
videos for the 2560x1600 resolution was 17.

5.5.2 Synthesis Results

Table 5.1 shows the synthesis results of the reconfigurable hardware accelerator
engines given a worst-case scenario to process videos of resolution = 2560x1600.

It employs 17 DPs, since our scheme selects implementation versions for ultra-high
resolution videos with nDPs in which max(nDPs)=17. The luma engine operates at 283
MHz frequency, and the chroma engine operates at 184 MHz. The luma and chroma
local buffers store 71 and 35 input samples, respectively. By means of our adaptive

94

scheduling scheme, it is sufficient to store input data to interpolate one row or column at
a time for a PU of size up to 64x64.

Table 5.1 – Synthesis results of the proposed hardware architecture for the worst-case
throughput constraint (i.e., 2560x1600 @ 30 fps). Consider max(nDPs)=17.

Module Slice LUTs Slice
registers

Occupied

Slices

BRAMs

Dynamic

Power
(mW)

Reconfiguration

Time2 (µs)

Luma local buffer - - - 1 2 -
Luma datapaths1 2,602 1,513 1,131 - 47 636.51
Chroma local buffer - - - 1 2 -
Chroma datapaths1 2,415 1,037 1,050 38 590.93
Total 5,017 2,550 2,181 2 89 1,227.44
1. max(nDPs)=17.
2. Estimated based on Occupied Slices and considering a reconfiguration bandwidth of 3.2 Gbps (ICAP with 32-bit
operating at 100 MHz (XILINX, 2012)).

Source: (DINIZ, 2015a).

The pure software implementation of interpolation filter for an 8x8 block on the
Leon-II requires 6336 cycles. However, our hardware architecture requires only 160
cycles that correspond to a speedup of 39x.

Our approach supports reconfiguration of different architectural templates with different
number of datapaths to support diverse coding configurations, i.e., resolutions, and frame
rate (see Table 5.2). Each of these architectural templates with a given number of datapaths
supports the maximum requirements for the corresponding coding configuration. Since our
architecture is scalable, the supported throughput requirements of the architecture can be
decided at design-time. Table 5.1 shows a design case to support 2560x1600@30 fps. Table
5.2 shows another design case with max(nDPs)=6 to support 832x480@60 fps. The design
for 832x480@60 fps requires 65% less Look-up tables (LUTs) than the design for
2560x1600@30fps. In case the system requirements denote smaller resolutions, a small-
sized FPGA may be deployed that saves area. However, for a given coding configuration,
sufficient area should be provided. In addition to that, our architecture saves area by
applying design optimizations to reduce the number of operations to support the three types
of filters in the reconfigurable filter datapaths of the luminance engine.

Table 5.2 shows the synthesis results of six different implementation versions (with
nDPs varying from 1…6) for the same FPGA device. These versions provide the required
throughput to encode video sequences of resolution 832x480 pixels. At run-time, our
technique saves dynamic power for changing workload scenarios, while the total area is
fixed at design-time for the worst case of a given coding configuration. We estimated
the dynamic power consumption of our architecture for FPGA using the Xilinx Power
Estimator (XPE) tool (XILINX, 2013). In case our architecture is mapped to a low
power FPGA that supports power-gating (TUAN, 2006) we can also achieve leakage
power reduction.

95

Table 5.2 – Synthesis results of six implementation versions for luma and chroma
hardware acceleration engines

nDPs
Number of Slice Slice Occupied Reconfiguration Dynamic

Interpolated Pixels LUTs registers Slices Time1 (µs) Power (mW)

Lu
m

a
en

gi
ne

1 4,716,667 154 89 60 33.77 4
2 9,433,333 307 178 131 73.73 8
3 14,150,000 460 267 167 93.99 12
4 18,866,667 613 356 266 149.70 16
5 23,583,333 766 445 333 187.41 20
6 28,300,000 919 534 370 208.23 23

C
hr

om
a

en
gi

ne

1 9,433,333 143 61 59 33.20 2
2 18,866,667 285 122 118 66.41 4
3 28,300,000 427 183 177 99.61 7
4 37,733,333 569 244 237 133.38 9
5 47,166,667 711 305 296 166.59 11
6 56,600,000 853 366 356 200.35 13

1. Estimated based on Occupied Slices and considering a reconfiguration bandwidth of 3.2 Gbps (ICAP with 32-
bit operating at 100 MHz (XILINX, 2012)).

Source: (DINIZ, 2015a).

5.5.3 Discussion on Reconfiguration Latency

To provide such flexibility to adapt to different throughputs, our architecture incurs
reconfiguration latency, as shown in Tables 5.1 and 5.2. However, this is only a startup
time reconfiguration when switching between different coding configurations on a
picture-by-picture basis. In the following, we show that the reconfiguration time is
negligible compared to the full frame encoding time. It can even be hidden using partial
reconfiguration (XILINX, 2010) (ALTERA, 2010) and configuration prefetching (LI,
2002).

The reconfiguration time for the real-time encoding scenarios is estimated as
follows. The total number of configuration bits of our target FPGA device
(XC5VLX110T) is 31,118,848 bits (XILINX, 2012). Considering that the
reconfiguration is performed through the Xilinx Internal Configuration Access Port
(ICAP) operating at 100 MHz with 32-bit interface (XILINX, 2012), the reconfiguration
bandwidth is 3.2 Gbps. Therefore, the time to reconfigure the entire device (17,280
Slices) is 9.725 ms. A particular implementation version corresponds to a partial
bitstream to be loaded using PRR. We estimated the reconfiguration time of the partial
bitstream by Equation (5.10) where Number_of_occupied_Slices is the number of slices
occupied by a particular implementation version with nDPS (see Tables 5.1 and 5.2).

Reconfiguration _ time = Number _ of _ occupied _ Slices* 9.725ms
17280

(5.10)

Note, in our work, the reconfiguration of a particular implementation version is
performed only once per encoded picture. In a real-time encoding scenario, each picture
needs to be processed within 16.67 ms for a 60 fps scenario. Considering the worst case
condition, i.e., to reconfigure the implementation version with 17 DPs for both luma and
chroma engines (the worst case for 2560x1600 resolution) the reconfiguration time
consumes 1.23 ms (as shown in Table 5.1) that corresponds to only 7.3% of the total

96

time to encode 2560x1600@ 60 fps video. Since our architecture is adaptive, for some
pictures it may require a lower reconfiguration time, e.g.,

• 66 µs, if nDPS=1 for both luma and chroma engines (33 µs for luma and 33
µs for chroma). It represents only 0.39% of the picture encoding time at 60
fps.

• 408 µs, if nDPS=6 for both luma and chroma engines (208 µs for luma and
200 µs for chroma). It represents only 2.44% of the picture encoding time at
60 fps.

5.5.4 Discussion on Reconfiguration Energy

Since the available FPGA power estimation tools (XILINX, 2013) do not provide
reconfiguration power, we use the data provided by the work in (BECKER, 2010) that
measured the reconfiguration power of a Xilinx Virtex-5 FPGA device using the
Microblaze processor and ICAP, the same as we used in this work. The work in
(BECKER, 2010) measured the reconfiguration power of a Virtex-5 FPGA device by
measuring the reconfiguration current of a modified Xilinx ML505 FPGA board that
includes a precision current sense resistor between the voltage regulator and the FPGA
core supply, with the help of a digital storage oscilloscope. The measured
reconfiguration power to reconfigure 12,867 LUTs on a Virtex-5 device, in their
experiment was 0.44 W (BECKER, 2010). This experimental data from these authors
was used herein for estimations of reconfiguration power cost. Therefore, the estimated
power to reconfigure our worst case design (for 2560x1600 resolution, consuming 5,017
LUTs) is 0.17 W. The worst case reconfiguration energy is given as 0.21 mJ (i.e., 0.17
W * 1.23 ms; consider the reconfiguration latencies shown in Table 5.1 and Table 5.2).
For this case, the processing energy is given as 1.48 mJ (89 mW * 16.67 ms) to
interpolate one frame at a frame rate of 60 fps. This shows that, in the worst case, the
reconfiguration energy contributes towards 12% of the total energy. However, this is
done for only once, if the picture requires 17 datapaths in parallel for both luma and
chroma. If the subsequent pictures also require 17 datapaths, then no (additional)
reconfiguration is performed.

We now analyze two normal cases, as we showed in the reconfigurable time
discussion. In case 1, one datapath of luma and one datapath of chroma (297 LUTs)
need to be reconfigured. It requires a reconfiguration time of 66 µs for each picture. The
power to reconfigure 297 LUTs is 10.15 mW. The reconfiguration energy in this case is
0.67 µJ (i.e., 10.15 mW * 66 µs). As the processing energy is 100 µJ (i.e., 6 mW *
16.67 ms), the reconfiguration energy represents only 0.66% of the total energy. The
second case is when 6 datapaths of luma and 6 datapaths of chroma (1,772 LUTs) need
to be reconfigured. It requires a reconfiguration time of 408 µs for each picture. The
power to reconfigure 1,772 LUTs is 60.59 mW (i.e., 60.59 mW * 408 µs). The
reconfiguration energy in this case is 24.72 µJ. As the processing energy is 600.12 µJ
(i.e., 36 mW * 16.67 ms), the reconfiguration energy represents 3.9% of the total
energy.

Considering the average case variations, the net reconfiguration overhead is always
below 1.32% only. Figure 5.7 shows the reconfiguration energy overhead per picture (in
% of the total energy per picture) for People on Street video sequence (2560x1600
pixels). Further optimizations on reducing the reconfiguration overhead may be
performed which are orthogonal to the novel contributions of our work. For instance,
lowering the reconfiguration power using the methods of (CLAUS, 2008) will further

97

Re
co

nf
ig

ur
at

io
n

en
er

gy
 o

ve
rh

ea
d

(%
)

reduce our reconfiguration energy overhead to 14.52 µJ, i.e., only 2.36 % of the total
energy.

Figure 5.7 – Reconfiguration energy overhead (%)

10 People on Street QP=22

5

0
0 20 40 60 80 100 120 140

Picture number

Source: (DINIZ, 2015a).

5.5.5 Comparison with State of the Art

Table 5.3 shows the comparison of our architecture with state of the art. The most
relevant comparison partners are the works in (PASTUSZAK, 2013) (ZATT, 2013)
(AFONSO, 2013) as they provide results for FPGA. Since our architecture is scalable,
we show results of two versions with different throughputs: (1) for ultra-high resolution
2560x1600 @ 30 fps, which is the higher resolution video provided in (BOSSEN,
2013); and (2) for medium 832x480 @ 60 fps.

Table 5.3 – Comparisons with state of the art hardware architectures for fractional-pixel
interpolation filter

(PASTUSZAK,

2013)1

(ZATT,
2013)1

(AFONSO,

2013) This work
Standard H.264 H.264 HEVC HEVC HEVC
Chroma Interpolation Yes Yes No Yes Yes
FPGA device &
technology
Throughput

Aria II GX
40 nm

Virtex-2P
90 nm

Stratix-III
65 nm

Virtex-5
65 nm

Virtex-5
65 nm

(pixels/cycle) 8 6 27 25.5 9
LUTs 6,732 6,742 4,077 + 16334 5,017 1,772
Registers - 5,904 3,861 2,550 900
BRAMs - 0 12,3 2 2
Multipliers - 8 - - -
Resource efficiency
(throughput/LUT)*100 0.11 0.08 0.47 0.50 0.50
Dynamic Power for 5

worst case (mW) 60
Dynamic power (mW)

886

3795

896

366

scaled to 65 nm7 85 88 379 89 36

Throughput 1920x1080
@ 30 fps

1920x1080
@ 60 fps

3840x2160
@ 60 fps2

2560x1600
@ 30 fps

832x480
@ 60 fps

Throughput/power 0.09 0.06 0.07 0.28 0.25
1Results of the Interpolation Filter only. 2Considers only luma interpolation. 3Includes 16,547 bits of buffers,

which compares to one 18 Kb BRAM. 4Corresponding to the MUX in (AFONSO, 2013). 5Estimated with Altera
early power estimator tool (ALTERA, 2013). 6Estimated with Xilinx power estimator tool (XILINX, 2013). 7Scaled

using the power scaling factors derived in (SHAFIQUE, 2014) using data provided in (KLEIN, 2009).
Source: (DINIZ, 2015a).

Since different architectures in related works use different settings which are either
incomplete, e.g., no chroma interpolation in (AFONSO, 2013), or for a different

98

technology, e.g. work in (ZATT, 2013) targets 90nm, a direct power/performance
comparison to our architecture is not straightforward. Therefore, we have performed
power estimation and power normalization for our work and related works using the
same methodology. Power estimation uses Xilinx power estimator tool (XILINX, 2013)
and Altera early power estimator tool (POWERPLAY, 2014). Power normalization is
based on dynamic power scaling factors between older and new technology FPGAs
obtained by the work in (SHAFIQUE, 2014) based on information provided in Xilinx
datasheet (KLEIN, 2009). Power scaling factors for 90 nm, 65 nm and 40 nm
technologies are 0.4, 0.41, and 0.287, respectively, compared to 150 nm technology.
Based on these power scaling factors derived in (SHAFIQUE, 2014), we have
normalized to 65 nm the dynamic power results from related work whose technologies
differ from our work, i.e. 40 nm (PASTUSZAK, 2013) and 90 nm (ZATT, 2013).
Additionally, to have a more fair comparison independent of different resolutions and
area values, we compare different architectures for two new metrics: (1) Throughput in
terms of pixels processed per cycle (i.e., pixels/cycle); and (2) Resource Efficiency in
terms of throughput per area. Table 5.3 shows that our architecture is better compared to
state of the art in terms of area, throughput, resource efficiency, and power consumption
for different cases. Detailed discussion is shown in the following.

The buffers requirements in (AFONSO, 2013) are 16,547 bits that correspond to one
18 Kb Block RAM in our design. Our design requires 6,112 bits of buffers, which could
be mapped to only one BRAM. However, it uses two BRAMs to provide parallel access
to luma and chroma input samples to achieve high throughput. Work in (AFONSO,
2013) does not support chroma interpolation (less data need to be stored). If we disable
BRAMs in our design, it uses additional 764 LUTs to store samples into registers. The
buffers in (AFONSO, 2013) correspond to 2,069 LUTs. Moreover, the design of
(AFONSO, 2013) requires 256 4:1 MUX and 1377 2:1 MUX that are mapped to
additional 1633 LUTs. Therefore, in total, the design in (AFONSO, 2013) requires
5,710 LUTs. In terms of functionality, our work is still better compared to the work of
(AFONSO, 2013) because the latter only supports Luma interpolation consuming 5,710
LUTs while our proposed architecture requires 5,017 LUTs for both Luma and Chroma
interpolation, which demonstrates high area efficiency of our work compared to the
related work. We provide area comparison in terms of LUT count because it is a widely
adopted metric for comparison of different FPGA based designs. Since FPGA devices’
Altera LUTs in (PASTUSZAK, 2013) and (AFONSO, 2013) implement all 6-input
functions, comparing LUT count with our work (Xilinx 6-input LUT) is a fair
comparison. Since the work in (ZATT, 2013) uses a FPGA with 4-input LUT, we have
normalized the LUT counts accordingly for a fair comparison.

Regarding throughput comparison, the work in (AFONSO, 2013) have a throughput
of 27 luma pixels/cycle at 379mW, while our 2560x1600-pixel version have 25.5
pixels/cycle (i.e., 17 luma pixels are produced at each 2 cycles, which is equivalent to
8.5 pixels/cycle; and 17 chroma pixels/cycle are produced) at only 89 mW.

The comparison with related work can also by conducted in terms of resource
efficiency. This metric, as shown in Table 5.3, is computed as (pixels/cycle)*100/LUT.
Our architecture provides a resource efficiency of 0.50 while the work in (AFONSO,
2013) leads to a resource efficiency of 0.47. It shows that our architecture brings 6%
improvement in the resource efficiency while also providing the complete interpolation
functionality (Luma and Chroma) compared to (AFONSO, 2013) that only supports
Luma interpolation. Note that the work in (AFONSO, 2013) synthesizes the architecture

99

to an 8-input LUT Altera Stratix-III FPGA, while our work uses a 6-input LUT Xilinx
Virtex-5 FPGA, which further demonstrates improved design efficiency of our
architecture.

The work in (AFONSO, 2013) achieves high throughput using (1) deep pipeline (4-
stage pipeline) that consumes 3,861 registers, i.e., a 39% increase compared to our
work; and (2) high operating frequency (403 MHz), i.e., a 70% increase compared to
our work. As a result it incurs a much higher dynamic power (379 mW) compared to
our work (89 mW), i.e., 4.25x higher compared to the power consumed by our
architecture in the worst case scenario.

Table 5.4 provides comparisons for the worst-case dynamic power for the same
throughput (i.e. same video resolution and frame rate) with respective state-of-the-art.
We achieve 32% power reduction compared to (PASTUSZAK, 2013) and around 1%
power increase compared to (ZATT, 2013) (both implement the 2x less complex H.264
interpolation filter). Our design (processing both Luma and Chroma) achieves a worst-
case dynamic power saving of 7% compared to the design of (AFONSO, 2013)
(processing only Luma) for the same frame resolution and frame rates. Practically, our
savings would be more than 7% compared to (AFONSO, 2013) when considering both
Luma and Chroma.

When processing 2560x1600 video, the work in (AFONSO, 2013) would use 379
mW of power due to its non-adaptivity, but using 4x less time, i.e. 0.25 second to
process 30 frames. Hence, its energy consumption is equal to 94.75 mJ for processing
2560x1600 @ 30fps. However, in the worst-case (i.e., when always using 17 datapaths),
our architecture consumes 89 mJ to process 2560x1600 @ 30fps.

Table 5.4 – Worst-case dynamic power (mW)1 comparison with state of the art for the
same throughput

 Throughput (resolution and frame rate)
 1920x1080@30fps 1920x1080@60fps 3840x2160@60fps

(PASTUSZAK, 2013) 85 mW - -
(ZATT, 2013) - 88 mW -

(AFONSO, 2013) - - 379 mW
This work 58 mW 89 mW 356 mW

1Scaled using the power scaling factors derived in (SHAFIQUE, 2014) using data provided in (KLEIN, 2009).

Source: (DINIZ, 2015a).

Our architecture still keeps all the benefits of adaptivity, i.e., our work is capable to
adapt to different coding scenarios with resolutions smaller than 2K in a power efficient
way as demonstrated in the last two columns of Table 5.3. In contrast, the related works
always consumes a high power, i.e. of (AFONSO, 2013) consumes 379 mW. Our
architecture provides more energy savings under varying workload scenarios (see
section 5.5.9). Therefore, the throughput/power efficiency of our design is higher
compared to that of state-of-the-art techniques. Our flexibility, power-efficiency, and
completeness w.r.t. providing both Luma and Chroma enables our architecture to be
preferable in practical scenarios.

5.5.6 Performance Results for Different Video Sequences

In this section we analyze the performance of our reconfigurable architecture for
different videos and QPs. Figure 5.8 shows the total number of filter interpolations that
our architecture performs to encode 300 pictures of each video sequence. Each bar

100

To
ta

l #
fil

te
r

in
te

rp
ol

at
io

ns
 [

Bi
lli

on
s]

To
ta

l #
fil

te
r

In
te

rp
ol

at
io

ns

[B
ill

io
ns

]

shows the average over results extracted with four QPs (22, 27, 32, and 37). Unlike
state-of-the-art architectures, Figure 5.8 shows that our architecture adapts its
performance depending upon the processing requirements of different video sequences.
As motivated in chapter 3, the number of video calls varies depending on video content
and our architecture adapts its performance to this variation.

Figure 5.8 – Number of total filter interpolations of our architecture for the set of test

video sequences (averaged over QPs)

3.5
3

2.5
2

1.5
1

0.5
0

Source: (DINIZ, 2015a).

A more detailed performance analysis is depicted in Figure 5.9. It shows the total
number of interpolations calculated by our architecture for each video sequence,
detailing the results for each QP. Figure 5.9 shows that our architecture adapts also to
the variations on QP even for the same video sequence. WQVGA video sequences
(Race Horses, BQSquare, Blowing Bubbles and Basketball Pass) do not exhibit
significant variations over QP changes because the implementation version with 1 DP in
parallel is often selected by our Implementation Version Selection scheme. This
implementation version is enough to provide the required performance. However, for
some WVGA video sequences the adaptation is more evident when comparing different
QPs in the same video sequence. Not all sequences exhibit significant variations in the
interpolation filter calls for different Quantization Parameter (QP) values.

Figure 5.9 – Number of total filter interpolations of our architecture for each video

sequence (for each QP)

3.6

3.4

3.2

3

2.8

4

3

2

1

0

 Race Horses C

QP 22 QP 27 QP 32 QP 37

Race Horses

QP 22 QP 27 QP 32 QP 37

2.3

2.2

2.1

2

1.9

1.48

1.46

1.44

1.42

1.4

 BQMall

QP 22 QP 27 QP 32 QP 37

BQSquare

QP 22 QP 27 QP 32 QP 37

2.65
2.6

2.55
2.5

2.45
2.4

1.8
1.75

1.7
1.65

1.6
1.55

 Party Scene

QP 22 QP 27 QP 32 QP 37

Blowing Bubbles

QP 22 QP 27 QP 32 QP 37

2.62
2.6

2.58
2.56
2.54
2.52

2.5

1.8

1.75
1.7

1.65
1.6

1.55

 Basketball Drill

QP 22 QP 27 QP 32 QP 37

Basketball Pass

QP 22 QP 27 QP 32 QP 37

Source: (DINIZ, 2015a).

101

M
on

ito
re

d
an

d
Pr

ed
ic

te
d

fil

te
r

ca
lls

Pr

ed
ic

tio
n

Er
ro

r (
av

er
ag

e)

[#
 fi

lte
r

ca
lls

]

As we motivated in chapter 3, the sensitivity of variations and QP values is due to
many reasons like motion/texture content and the IME algorithm. For low-to-medium
motion video sequences such as Basketball Drill (the camera remains still while the
basketball players are moving), IME already finds a good match for many blocks, so the
total number of interpolation calls is lower. For another case, Race Horses is a complex
video scene where a group of horse riders move around a grassy background and the
camera also moves, following their motion. Therefore, in this case, the total filtering
interpolation is the highest among all video sequences, as the FME is needed more
frequently. An efficient interpolation filter architecture needs to take care of above-
discussed factors. Therefore, we evaluate our proposed architecture for all these
different types of test videos and demonstrate our benefits for all cases.

5.5.7 Evaluation of Prediction Results

Our Prediction Scheme is implemented into HM (HM, 2013) and evaluated for
various video sequences. Figure 5.10a shows monitored and predicted values along with
the prediction error using δ1=0.2 and δ2=0.05. These weight values reduced MSE for the
tested video-set that includes 832x480-pixel and 416x240-pixel resolutions (see Figure
5.10b). The prediction error in Figure 5.10b is an average of the videos and the four
different QP values. Figure 5.10a shows that our scheme starts the prediction after
monitoring one GOP. It improves the estimation after concluding one Intra-Period. As
from the second Intra-Period it could apply both prediction types that we proposed in
Section 5.1. By applying both prediction types, the average prediction error is well below
the Tolerable Error (TE) for three different frame-rates.

Figure 5.10 – (a) Monitored and predicted number of filter calls; (b) Prediction error for

832x480 and 416x240 video sequences

1E+7

8E+6

6E+6

4E+6

2E+6

0E+0

Legend: Monitored Predicted

 Party Scene (QP=22)

(a)

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280

Picture Order Count (POC)

Legend:
832x480 videos 416x240 videos TE (30 fps) TE (50 fps) TE (60 fps)

6E+6

4E+6

2E+6

0E+0

-2E+6

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280

(b) Picture Order Count (POC)

Source: (DINIZ, 2015a).

102

Pr
ed

ict
io

n
Er

ro
r [

fil

te
r

ca
lls

]

In order to illustrate the generality of our concept and to validate that our offline
selected parameters are equally applicable to other video sequences, we present in
Figure 5.11 the results of prediction error using another 6 video sequences of
2560x1600-pixel resolution “Traffic” and “People on Street” and 1920x1080-pixel
resolution “Kimono”, “Park Scene”, “Cactus” and “Basketball Drive”. These sequences
are encoded according to the common test conditions (as recommended by the
standardization committee) with four different QPs={22,27,32,37}.

Figure 5.11 – Prediction error for 2560x1600 and 1920x1080 videos, considering four

QP values

4.5E+7

2.5E+7

5.0E+6

-1.5E+7

Legend:

QP=22 QP=27 QP=32 QP=37 TE

People on Street

0 20 40 60 80 100 120 140

4.5E+7

2.5E+7

5.0E+6

-1.5E+7

Traffic

0 20 40 60 80 100 120 140

2.5E+7

1.5E+7

5.0E+6

-5.0E+6

Kimono

0 20 40 60 80 100 120 140

2.5E+7

1.5E+7

5.0E+6

-5.0E+6

 Cactus

0 20 40 60 80 100 120 140

2.5E+7

1.5E+7

5.0E+6

-5.0E+6

Park Scene

0 20 40 60 80 100 120 140

2.5E+7

1.5E+7

5.0E+6

-5.0E+6

Basketball Drive

0 20 40 60 80 100 120 140

Picture Order Count (POC)

Source: (DINIZ, 2015a).

103

N
um

be
r

of
 #

fil
te

r
ca

lls

N
um

be
r

of
 d

at
ap

at
hs

 (
n D

Ps
)

Note that these video sequences are not used to determine the parameters δ1 and δ2,
rather for only evaluation. These new results demonstrate that the prediction error is
also well below the TE.

5.5.8 Evaluation of Run-time Implementation Version Selection

Figure 5.12 shows the detailed results of our run-time implementation version
selection scheme. It shows how our architecture adapts to different throughputs on a
picture-by-picture basis based on the adaptive prediction. Different throughputs are
achieved by the varying number of datapats of the selected implementation versions, as
shown in Figure 5.12a. In the first GOP, as the prediction may incur in errors, we
guarantee throughput by selecting the highest throughput implementation version (with
17 datapaths in this case). For the following GOPs, implementation versions with 6 up
to 17 datapaths are selected depending upon the frame-rate and frequency (fixed at
design-time), and the estimated prediction value at run-time. Figure 5.12b compares the
estimated performance (EP) of the selected implementation versions with the monitored
number of interpolation filter calls. This figure shows that our architecture guarantees
the performance for all pictures after the first Intra-Period (when Prediction accuracy is
enhanced) and adapts at run-time to the number of filter calls for each picture.

Figure 5.12 – Implementation version selection results: (a) Number of DPs of

implementation versions selected; (b) Comparison of Estimated Performance (EP) of

implementation version selected and the monitored number of filter calls for each

picture (FME case, luma interpolation filter)
Legend:

Number of DPs of the implementation versions selected
Estimated performance EP(i)

20

15

Monitored #filter calls

People on Street QP=22

10

5

0

1E+8

0 20 40 60 80 100 120 140

(a)

8E+7

6E+7

4E+7

2E+7

0E+0

0 20 40 60 80 100 120 140

Picture number (b)

Source: (DINIZ, 2015a).

104

5.5.9 Comparison with a Non-Reconfigurable Implementation

In this section, we compare two solutions (all using on FPGA-based designs):

• Case 1 – All 17 datapaths are available and always powered-on and no
reconfiguration is performed: In this case the system will consume more
dynamic power but saving the reconfiguration energy.

• Case 2 – All 17 datapaths are available and unused datapaths are power-
gated. In this case, power-gating will incur the loss of reconfiguration data
(SHAFIQUE, 2009) (SHAFIQUE, 2010). Therefore, before using the
additional datapaths again, additional reconfigurations need to be performed.
In this case, the energy of unused datapaths is saved at the cost of additional
reconfiguration energy. We in fact do consider such a case for our work.
Since power-gating is not currently available in the commercial FPGAs, we
aligned our discussion more towards the reconfiguration and dynamic
power/energy.

Let us now compare the energy consumption of two cases for a scenario requiring 6
datapaths of luma and 6 datapaths of chroma (1,772 LUTs); see summary of results in
Table 5.5. In Case 1, since the system does not support reconfiguration of additional
datapath, all 17 datapaths are made always available and therefore are always kept
powered-on. In this case, the total energy consumption is given as 1.48 mJ (i.e., 89 mW
* 16.67 ms). In Case 2, we consider both the energy to reconfigure the 6 datapaths of
luma and 6 datapaths of chroma and the processing energy of those datapaths for a
picture. The reconfiguration energy is given as 24.72 µJ (i.e., 60.59 mW * 408 µs) and
the processing (dynamic) energy is given as 600.12 µJ (i.e., 36 mW * 16.67 ms). It
results in total energy of 624.84 µJ that represents an energy saving of 58% for our case
compared to the non-reconfigurable solution.

Table 5.5 – Comparison with non-reconfigurable design

 Non-reconfigurable Our
Reconfiguration energy - 24.72 µJ
Processing energy 1.48 mJ 600.12 µJ
Total energy 1.48 mJ 624.84 µJ

Source: (DINIZ, 2015a).

105

6 RUN-TIME ACCELERATOR BINDING INTO RECONFIGURABLE

ARCHITECTURES

Section 2.4 discussed some benefits of reconfigurable architectures compared to
dedicated architectures. In addition to providing low NRE cost, reconfigurable
architectures (especially FPGAs) can enable run-time power/energy saving as discussed
in Chapter 5. FPGAs introduce flexibility at bit level through fine-grained
reconfiguration, at the cost of higher power dissipation compared to dedicated circuits.
On the other hand, coarse-grained reconfiguration provides lower flexibility than FPGA
but also lower power dissipation.

Section 2.4 contains a review of a recent trend of mixed-grained reconfigurable
processors that integrate several coarse-grained (CG) and fine-grained (FG)
reconfigurable elements. Those mixed-grained reconfigurable processors combine the
benefits CG and FG reconfigurable elements for an efficient accelerator-rich
architecture. In this work, we envision that, with the rise of on-chip reconfigurable
fabrics coupled with many core processors, these architectures will be organized in
processing tiles, on a single chip, to ensure scalability to many cores. Such architectures
require a run-time system to adapt to the application requirements and to manage
accordingly the reconfigurations. One important step of the run-time system is the
accelerator binding.

This chapter presents and discusses our novel run-time accelerator binding scheme
for tile-based mixed-grained reconfigurable processors. It is generic to account for the
diverse properties of CG- and FG- reconfigurable elements, their organization inside
tiles, and the total communication delay. Given an architectural configuration, our
scheme determines a communication-minimizing binding for datapaths of custom
instructions at run-time, employing datapath reusing and inter-tile communication cost
estimation.

6.1 Overview of Tile-based Reconfigurable Architecture

Figure 6.1 shows the system diagram of our tile-based mixed-grained reconfigurable
architecture with our novel run-time accelerator binding module. The Custom
Instruction Selection module delivers a set of accelerators that compose custom
instructions to our binding module at run time. The internal composition of custom
instructions is detailed in (SHAFIQUE, 2011). They are similar to the proposed
accelerators for HEVC in this work. This set of accelerators is chosen for each custom
instruction from a set of implementation versions (available at design time) depending
upon the available reconfigurable area (AHMED, 2011) (AHMED, 2011a). After
selection, these datapaths need to be bound/placed and reconfigured onto physical FG-
and CG-reconfigurable elements to realize the functionality of the custom instructions.

The mixed-grained reconfigurable processor is composed of multiple tiles. Each tile
consists of multiple CG- and FG- reconfigurable elements. The number of
reconfigurable elements inside each tile and in the whole architecture is a design time
decision. In this paper, we adopt the architecture of CG- and FG- reconfigurable
elements of KAHRISMA architecture (KÖNIG, 2010), which illustrate the benefits of
their design over existing mixed-grained reconfigurable processors. The FG fabric is
partitioned into run-time Partial Reconfigurable Containers (PRC). Each PRC
reconfigures one datapath with FG granularity (AHMED, 2011a). The CG-fabric is

106

composed of configurable ALUs with dedicated register file and context memory
(KÖNIG, 2010).

Figure 6.1 – Abstract System Overview: Our proposed run-time accelerator binding

module integrated within the tile-based mixed-grained reconfigurable architecture

Task allocation, Custom
Instruction Selection

Run-Time Accelerator Binding

Mixed-grained reconfigurable array

Custom Instructions

(set of implementation versions)
Legend: Reconfigurable elements
CG: Coarse-grained
FG: Fine-grained
PRC: Partial Reconfigurable Container
TI: Tile interconnection

0 1

TI TI

0 1 2

3 4 5 6 7

TI TI

PRC
2 3

Tile

Source: (DINIZ, 2014).

The reconfigurable elements inside a tile exchange data with dedicated point-to-
point interconnections. Different tiles exchange data through a fixed word-width Tile
Interconnection (TI) on-chip network. For this reason, the communication between
reconfigurable elements of different tiles may spend much more cycles than
communicating within the same tile. To achieve high performance, a binding scheme
has to prioritize mapping datapaths of the same custom instruction inside the same tile,
as motivated in section 6.2.

6.2 Motivational Analysis

Before proceeding to the details of our novel binding scheme, we present a binding
scenario and its implications by means of a H.264/AVC video encoder application.

Figure 6.2 shows an example of binding three custom instructions used to accelerate
compute-intensive kernels of the H.264 encoder: (1) Sum of Absolute Differences
(SAD), (2) Sum of Absolute Transformed Differences (SATD), and (3) Discrete Cosine
Transform (DCT). Each custom instruction is composed of a set of datapaths, e.g., the
SADrow datapath perfoms SAD to a row of a 16x16-pixel block in the input video and
the Repack datapath performs different byte packing and merging operations. Each
datapath can be accelerated either by a CG- or a FG- reconfigurable element. For each
custom instruction, a set of implementation versions, with different number of CG and
FG datapaths, is available at design-time. An appropriate version is selected at run-time
for each custom instruction by the Custom Instruction Selection scheme (AHMED,
2011a). In the example of Figure 6.2, SAD custom instruction implementation version
selected has 4 datapaths of SADrow (in FG) and 2 datapaths of Repack (in CG).

Figure 6.2 shows the binding of datapaths of three custom instructions using a first-
fit with datapath reusing scheme (BAUER, 2008). In the example, each tile includes 4
CG-elements and 2 FG-elements each containing 8 PRCs. The elements of the
architecture are labeled with indexes. To bind a datapath, the first-fit scheme scans the

107

indexes of the elements from low to high and binds to the first element that is free. This
scanning is performed separately for CG and FG, because the datapath must match the
granularity of the physical element. Hence, this scheme is not aware of the tile
organization shown in Figure 6.2. We assume that the custom instruction selection
scheme is aware of the total number of CG and FG elements (AHMED, 2011a). In this
way, when a custom instruction is available for binding there are enough elements
available in the architecture. Different custom instructions can also share datapaths that
share the same function, in a time-multiplexed way. It thereby reduces the
reconfiguration time that would be needed to bind all the datapaths of a custom
instruction.

Figure 6.2 – Example of binding three custom instructions using first-fit strategy with

datapath reusing scheme

Source: (DINIZ, 2014).

In the first phase, datapaths from SAD custom instruction are bound to the first four
FG-PRCs and two CGs. In the second phase, datapaths from SATD custom instruction
are bound. The selected SATD implementation version in the example employs three
Repack datapaths. As there are already two CG elements configured with Repack
datapath, one more CG element is reconfigured and the other two could be reused by
SATD. The other datapaths of SATD are bound to the first FG element (FG0).
However, FG0 does not have enough free PRCs when binding the second Transform
datapath. Then, the second Transform datapath is bound to the first PRC of the second
FG element (FG1), i.e., the eighth PRC.

When considering the tile organization, binding the second Transform datapath to a
different tile results in a high communication cost. It reduces performance when
processing SATD instruction, compared to a situation where all datapaths are bound
into the same tile. In the third phase, datapaths of DCT custom instruction are bound.
All datapaths of DCT custom instruction can be reused by the already bound datapaths
(in first and second phases), because they share the same function. However, the inter-
tile communication remains, as the Transform datapath is bound to a different tile.

This first-fit with datapath reusing scheme prioritizes filling the first tile before
binding to the second tile, reducing fragmentation and maintaining free contiguous
elements, similar to other FG strategies (WALDER, 2003). However, it may bind

108

datapaths of one custom instruction to two different tiles, incurring in a high
communication cost because of the interconnection between tiles. Such a high
communication cost degrades not only the performance of an ill-bound custom
instruction (e.g., SATD), but all the custom instructions that have some reused elements
(e.g., DCT). In short an efficient binding scheme needs to account for the inter-tile
communication costs to maximize the overall performance of the combined set of
custom instructions.

6.3 Run-time Accelerator Binding Scheme

6.3.1 Problem Formulation

Custom instructions are employed to accelerate computational kernels of all
concurrently executing tasks that receive a share of the reconfigurable fabric by the task
allocation algorithm. The set of custom instructions to be accelerated at a given time is
defined by I={I1,…, In}. Each custom instruction Ii is composed of a set of datapaths
D(Ii)={D1,…, Dm} in which m is the number of datapaths obtained after the custom
instruction selection algorithm that also determines the granularity of each datapath, i.e.
g(Dk)=CG or g(Dk)=FG.

Our architecture is composed by a set of tiles T={T1,…, Tl} and a set of
reconfigurable elements E={E1,…,Er}, such that its granularity is given as g(Eej)=CG or
g(Eej)=FG. Each element Eej belongs to a certain tile Tj. All tiles have the same number
of CG and FG elements. The function t(Eej) returns the tile of element Eej. Each tile is
associated to a coordinate (x, y) that corresponds to the horizontal/vertical position of
the tile in the floorplan. The total number of tiles |T|, the number of CG elements
nCG(Tj) and PRCs FG elements nFG(Tj) inside a tile Tj are fixed at design-time. Two tiles
directly connected through interconnection structure are able to communicate data from
one datapath in c cycles. A binding algorithm is defined as a function b : D → E such
that each datapath of custom instruction is mapped to a unique reconfigurable element.
For instance, two datapaths (D1 and D2) of a custom instruction are mapped to the first
two elements: b(D1)=E1, b(D2)=E2.

6.3.2 Run-time Accelerator Binding Scheme

The pseudo-code of our run-time accelerator binding scheme is shown in Figure 6.3.
It receives the set of datapaths of a given selected implementation version of a custom
instruction Ii (of a given task) to be bound. We assume that custom instructions from the
multiple concurrently executing tasks are delivered sequentially to our scheme.
Moreover, the architectural characteristics like number and performance properties of
CG- and FG- reconfigurable elements and the tile structure are available to our scheme.

The first phase of our scheme is to choose the best tile (Section 6.3.3) to bind all or
most of datapaths of a given custom instruction. As discussed earlier, it is beneficial that
datapaths of the same custom instruction are mapped to reconfigurable elements in the
same tile to achieve high performance by avoiding the frequent and high cost of inter-
tile communication. In some case, it is possible to bind all datapaths of a custom
instruction inside the best tile, i.e. there are enough free elements in the best tile that fit
all the datapaths of a custom instruction (min_diff_DPs equal to 0). In this case, our
scheme simply binds datapaths inside the best tile (Section 6.3.5). When not all
datapaths of a custom instruction fit into the best tile, the remaining datapaths are bound
into other tiles in a way to minimize the total communication cost with datapaths
already bound into the best tile (Section 6.3.4).

109

6.3.3 Choosing the Best Tile to Bind a Custom Instruction

We propose a new tile-aware datapath reusing method to determine the so-called
best tile to bind one custom instruction. We define the best tile as the tile in which all or
at least most of the datapaths of a custom instruction must be bound. This method is
shown in lines 2-16 of Figure 6.3. The first goal of our method is to bind all datapaths
of one custom instruction onto the same tile. If there are no tiles with enough free
elements available, the second goal is to find a tile where the minimum number of
datapaths is bound in other tile. Before looking for free elements, we employ datapath
reusing (line 4 in Figure 6.3) inside each tile, i.e. reusing datapaths from the custom
instruction to be bound and the datapaths already bound in the current tile. When
datapaths are reused across custom instructions, only the remaining datapaths (that
cannot be reused) need to be bound. This results in fewer datapaths to be bound. This is
beneficial for two reasons: 1) The method increases the probability of binding all
datapaths of one custom instruction inside the same tile, reducing the inter-tile
communication cost; 2) When fewer datapaths need to be reconfigured, less
reconfiguration time is needed. After evaluating the reusing condition, if there are free
elements available in the current tile, the method stops the search (break in line 15 in
Figure 6.3) and associates the best tile as the current tile Tj. In this case, the algorithm
employs first-fit algorithm inside the best tile (line 17 in Figure 6.3, see Section 6.3.5)
and finishes.

Figure 6.3 – Pseudo-code of our run-time accelerator binding sheme.
Binding () :
Inputs: Ii: custom instruction Ii to be bound

E : reconfigurable elements of the architecture.
T: tile organization.

Output: b : D → E : mapping each datapath of Ii to one element.
begin
1. j = 0; min_diff_DPs = MAX_INT; best_tile = 0;
2. for each tile Tj {
3. if (nf(Tj) < n(Tj)) { // datapaths already bound in Tj
4. (CGs_reused, PRCs_reused) = datapath_reusing(D(Ii),E);
5. }
6. else { CGs_reused = 0; PRCs_reused = 0; }
7. nCG_to_bind(Ii) = nCG(Ii) – CGs_reused;
8. nFG_to_bind(Ii) = nFG(Ii) – PRCs_reused;
9. diff_DPs = Clip(nCG_to_bind - nfCG(Tj)) +
10. Clip(nFG_to_bind - nfFG(Tj));
11. if (diff_DPs > 0) { // not all datapaths fit into tile Tj
12. if (diff_DPs < min_diff_DPs) {
13. min_diff_DPs = diff_DPs; best_tile = Tj }
14. }
15. else { min_diff_DPs = 0; best_tile = Tj; break; }
16. }
17. first_fit_binding(best_tile, nCG_to_bind(Ii), nFG_to_bind(Ii));
18. if (min_diff_DPs > 0) {
19. compute_comm_cost(T,best_tile); // see Eq.1
20. sort_by_increasing_comm_cost(T);
21. for each tile Tj {
22. if (nCG_to_bind(Ii) > 0 or nFG_to_bind(Ii) > 0) {
23. datapath_reusing(D(Ii),E);
24. first_fit_binding(Tj, nCG_to_bind(Ii), nFG_to_bind(Ii));
25. }
26. else return;
27. }
28. }
29. else return;
end

Source: the author.

110

After the reusing procedure, if still there are no free elements, our method applies a
greedy approach to determine the best tile (lines 11-14 in Figure 6.3). First, it computes
the number of datapaths that cannot be bound to this tile (diff_DPs) using the number of
CG- and FG- datapaths to bind (nCG_to_bind and nFG_to_bind) and the free CG- and
FG- elements available to bind in tile Tj (nfCG(Tj) and nfFG(Tj)). If the number of
datapaths that cannot be bound to this tile is lower than the minimum number of
datapaths that cannot be bound among all tiles evaluated (line 12 in Figure 6.3), it
updates the minimum number min_diff_DPs and repeats all the procedure.

In the last case, the algorithm may loop over all tiles and may not find a tile with
enough free elements in one tile to bind all DPs of a custom instruction. Then, our
method returns the index of the tile with the minimum number of elements that cannot
be bound on one tile (min_diff_DPs), determined by a greedy approach.

6.3.4 Binding into Tiles with Low Communication Cost

In some cases, the number of datapaths of a custom instruction to be bound cannot
fit into only the best tile (as shown in Section 6.3.3) because there are no available/free
reconfigurable elements. Hence, the remaining datapaths must be bound to other tile(s)
in addition to the initial best selected tile. In order to determine the best tiles to bind
these remaining datapaths, our scheme estimates the communication cost between the
selected best tile and the other tiles of the architecture. We assume that the
communication cost between every two neighboring tiles in the architecture is fixed and
consumes c cycles to transfer data of one datapath. Because of that, the communication
cost between the best tile b with coordinates (xb, yb) and other tile i with coordinates
(xi, yi) can be estimated by calculating the Manhattan Distance (MD) of the tile
coordinates, as shown in Equation 6.1.

comm_cost = | xb – xi | + | yb – yi | (6.1)

After the communication cost is estimated for all tiles that have free elements, the
tiles are sorted w.r.t. the increasing communication cost (see lines 19-20 in Figure 6.3).
Finally, the remaining datapaths are bound to the tiles from low to high communication
cost, until the list of datapaths to be bound is empty. Before binding the remaining
datapaths in free reconfigurable elements, our scheme also try to employ datapath
reusing (line 23 of Figure 6.3). If no reusing is found, we finally employ first-fit binding
to bind datapaths in the remaining tiles (line 24 of Figure 6.3, see also Section 6.3.5).

6.3.5 Binding Datapaths inside a Tile

The binding problem of datapaths inside one tile is simplified to finding free CG-
and FG- elements inside the selected tile. In this case, a simple first fit algorithm
(first_fit_binding function, see lines 17 and 24 in Figure 6.3) provides a good binding
solution inside a tile with reduced fragmentation problem. We assume that, inside a tile
the communication cost between the reconfigurable elements is negligible due to a fast
point-to-point interconnection between reconfigurable elements.

6.3.6 An Example of Our Binding Scheme

Figure 6.4 shows an example illustrating the procedure of our binding scheme using
the same set of custom instructions and architecture as used in the motivational analysis
(Section 6.2). Note in Figure 6.4 that, when binding the SATD custom instruction, our
scheme selects tile 1 to bind most of datapaths (the so-called best tile). In this case, all

111

FG datapaths fit into tile 1 and only one Repack (CG) datapath has to be bound in other
tile (tile 0). This remaining Repack (CG) datapath can be reused in tile 0. The number
of datapaths communicating inter-tile in SATD custom instruction is 1 datapath using
our scheme, instead of 2 datapaths when using first-fit strategy with datapath reusing
scheme (see Section 6.2). When binding the DCT custom instruction, our scheme
selects tile 1 as the best tile, because it can reuse all of its datapaths. No datapaths
communicate inter-tile for DCT custom instruction when using our scheme, instead of 1
datapath when using first-fit strategy with datapath reusing scheme (see Section 6.2).

Figure 6.4 – Example of binding three custom instructions using our run-time

accelerator binding scheme

Source: (DINIZ, 2014).

6.4 Results and Evaluation

6.4.1 Experimental Setup

We considered a tile-based architecture with a fixed number of CG-elements and
one FG-element with a fixed number of PRCs per tile. The number of CG and FG-PRC
elements can be parameterized. Communication between two elements inside the same
tile requires one cycle. Communication c between two elements in neighboring tiles
(i.e., when MD = 1) requires 10 cycles. For the evaluation, we employed a H.264/AVC
video encoder application and their design-time available custom instructions
(SHAFIQUE, 2011) and the selection algorithm in (AHMED, 2011a). This application
exhibits various compute-intensive kernels with both control- and data-flow dominant
processing. Custom instruction selection is not aware of the tile structure, but it
considers the total number of CG and FG elements in the architecture when selecting an
appropriate implementation version for each custom instruction. The complete system is
evaluated with KAHRISMA cycle-accurate instruction-set simulator (AHMED, 2011a).
The inputs of the simulator (i.e., datapath latency for FG- and CG-fabrics) are obtained
after place-and-route using Xilinx FPGA tools (i.e., Virtex-4) and ASIC-synthesis-flow
for TSMC 90 nm (i.e., the same technology of FPGA). We considered a reconfiguration
bandwidth of the FG-element of 67584 KB/s.

112

D

at
ap

at
hs

(in

te
r-

til
e

co
m

m
.)

6.4.2 Evaluation of inter-tile communications

This section evaluates the efficiency of our scheme (compared to first-fit with
datapath reusing; see motivational analysis in section 6.2) in determining the best tile
for binding most of datapaths of a custom instruction. For simplicity, we show the
results for architectures with only 2 tiles for 6 different combinations on the number of
CG and FG elements per tile. Figure 6.4 shows the results of the number of datapaths
communicating inter-tile, accumulated over all the bound custom instructions of the
application. Our scheme reduces the number of inter-tile communicating datapaths by
up to 37% (23% on average) compared to first-fit scheme. This result indicates that a
tile-aware reusing can reduce the number of inter-tile communication compared to first-
fit with datapath reusing scheme.

Figure 6.4 – Number of datapaths with inter-tile communication for 2 tiles

400

200

0
#CGs per tile 4 4 4

#PRCs per tile 8 6 4

2 2 2
8 6 4

Legend:

First-fit with
datapath reusing
Our binding
scheme

Internal tile configuration

Source: (DINIZ, 2014).

6.4.3 Evaluation of communication overhead for many tiles

This section analyzes the communication overhead (in number of cycles) of our
scheme compared to first-fit with datapath reusing scheme. For that, we have selected
four different internal tile organizations with: 1) 1 CG and 2 FG-PRC elements; 2) 1 CG
and 4 FG-PRC elements; 3) 2 CG and 4 FG-PRC elements; 4) 2 CG and 6 FG-PRC
elements. We keep the tile size small (low number of CG and FG-PRCs) to better
evaluate the efficiency of our method to bind datapaths into tiles with low
communication cost. We show results for architectures with 2, 4 (i.e., 2x2), 9 (i.e., 3x3)
and 16 (i.e., 4x4) tiles.

To compute the communication overhead of each bound custom instruction, we
consider four parameters: 1) the number of datapaths bound to each tile; 2) the MD
between the tiles that have datapaths of the custom instruction bound into it and the best
tile; 3) the number of cycles c to communicate between two neighboring tiles; 4) the
number of times the custom instruction is executed in the application. The results for all
internal tile organizations are shown in Figure 6.5.

Our scheme reduces the communication overhead compared to first-fit scheme for
all the configurations. The communication overhead is larger in the configurations with
lower number of resources, because it is more probable that the custom instructions
need more than one tile to be bound. Even for these cases, our scheme still benefits with
lower communication cost. In summary, our scheme reduces the communication
overhead by up to 44% (23% on average) compared to first-fit with datapath reusing
scheme. This is achieved due to the combination of our two novel methods of tile-aware

113

Co
m

m
un

ic
at

io
n

ov
er

he
ad

 (c
yc

le
s)

Co

m
m

un
ic

at
io

n
ov

er
he

ad
 (c

yc
le

s)

datapath reusing and binding into tiles with low communication cost that integrate our
run-time accelerator binding scheme.

Figure 6.5 – Communication overhead for different tile internal organizations

Legend:
First-fit with datapath reusing Our binding scheme

2.0E+08

1.0E+08

0.0E+00

2 4 9 16
Number of tiles

1.5E+08

1.0E+08

5.0E+07

0.0E+00

2 4 9 16
Number of tiles

(a) 1 CG and 2 FG-PRCs

1.0E+08

(b) 1 CG and 4 FG-PRCs

1.0E+08

5.0E+07 5.0E+07

0.0E+00

2 4 9 16
Number of tiles

0.0E+00
2 4 9 16
Number of tiles

(c) 2 CG and 4 FG-PRCs (d) 2 CG and 6 FG-PRCs

Source: (DINIZ, 2014).

114

115

7 CONCLUSIONS AND FUTURE WORK

The presented thesis focused on the contribution of novel dedicated and
reconfigurable hardware accelerators for the HEVC Standard.

The research work started with an analysis of the HEVC encoding application,
presented in Chapter 3, which indicates that the most important computations to be
accelerated in hardware are those of the Interpolation Filter, of the Deblocking Filter,
and of the calculation of the Sum of Absolute Differences needed for motion estimation.
Our analysis shows that the results vary significantly depending on the video sequence
(given as input by the user) and on the quantization parameter which in turn defines the
level of video encoding loss being incurred. A run-time analysis on the Interpolation
Filter coding tool indicates that there is a great potential of power/energy saving by
adapting the hardware accelerator to the varying workload.

The results obtained of our novel dedicated hardware accelerators (Chapter 4)
indicate significant gains over state-of-the-art hardware accelerators. The proposed
dedicated hardware architecture for Interpolation Filter achieves sufficient throughput
to process ultra-high resolution videos while reducing hardware area by ≈50%
compared to a state-of-the-art interpolation architecture. It was achieved by designing
area-efficient configurable multiplier-less datapaths. The throughput was improved
through the use of two 12-pixel-parallel acceleration engines containing the
configurable datapaths. A scheduling module was also designed to prevent pipeline
stalls and to improve memory locality, reducing memory usage. The proposed dedicated
hardware architecture for the Deblocking Filter achieves throughput similar with the
state of the art with 5X to 6X reduction in gate count and 3X reduction in power
dissipation. The datapaths developed in this work are highly optimized for area and
employed hardware reuse. Our comparative analysis of SAD processing elements
introduced various architecture design alternatives in order to explore different area,
performance and power tradeoffs.

The Reconfigurable Interpolation Filter Hardware Architecture for HEVC
standard, described in Chapter 5, is new and it provides significant design-time area
reduction and run-time power/energy adaptation in a picture-by-picture basis. This
feature was not yet supported by state-of-the-art interpolation filter architectures. Run-
time adaptation is performed through a Prediction Scheme that estimates the number of
interpolation filter calls and an Implementation Selection Version module that adapts to
different throughput by selecting from a set of implementation versions.

Our novel Run-Time Accelerator Binding Scheme for tile-based mixed-grained
reconfigurable architectures, presented in Chapter 6, reduces the communication
overhead, compared to first-fit strategy with datapath reusing scheme, by up to 44%
(23% on average) for different number of tiles and internal tile organizations. Our run-
time accelerator binding scheme is aware of the underlying architecture to bind
datapaths in an efficient way to avoid inter-tile communications.

The overall results demonstrate that the novel dedicated and reconfigurable
hardware accelerators and techniques proposed in this thesis are in front of the state of
the art solutions. Due to the power and energy limitations of current CMOS
technologies and the high performance requirements of next-generation video coding
standards, future video coding system implementations will integrate, in the same chip,

116

many-core processors with many dedicated and reconfigurable accelerators in a so-
called accelerator-rich architectures. The accelerator-rich architectures are needed for
high performance ultra-high resolution video encoding/decoding in real time with
power/energy efficiency. In this context, this thesis introduces novel hardware
accelerators and techniques which enable next-generation video coding standard
implementations with improved area, performance, and power/energy efficiency.

7.1 Future Work

Beyond the novel contributions presented in this thesis work, several research
directions arise for the future, which were not addressed in this work. Some of those
research directions are suggested in this section as future work.

Hardware accelerators for other HEVC coding tools: while this thesis focused on
the most compute-intensive kernels of HEVC standard, there are other coding tools not
addressed that can be implemented as hardware accelerators to design a complete video
coding system, such as Sum of Absolute Transform Differences (SATD), Context-
Adaptive Binary Arithmetic Coding (CABAC), Intra Prediction, Transforms,
Quantization, and Sample Adaptive Offset (SAO) Filter. The research challenge here is
to design performance/area/power efficient hardware accelerators for these coding tools
compared to the ones already presented in the literature.

Exploiting the HEVC parallel coding tools: as reviewed in Section 2.2, HEVC
includes some parallel coding tools to facilitate parallel processing of video coding,
such as Tiles and Wavefront Parallel Processing (WPP). Regarding tiles, there are many
research challenges that affect both performance and video quality. The number of tiles
for each picture and where the tile boundaries are placed is decided at video encoder
side and it is not standardized. Breaking pictures into more tiles increase scalability for
many-core processors, but decreases video quality. Hence, there is a tradeoff between
performance and video quality when using tiles. Regarding WPP (where some CTUs of
a picture can be processed in parallel in a multi-thread approach), the research challenge
is to decide in which situations is beneficial to use it. There is also a decision on using
tiles or WPP for each picture, because HEVC standard does not support both tools
together yet.

Hardware accelerators for image and video processing: some methodologies are
used in this thesis work to design efficient hardware accelerators for specific kernels of
HEVC video coding standard. These methodologies may be applied to design hardware
accelerators for other image and video applications, such as image processing (e.g.
filtering, interpolation), image coding, video pre-processing, etc.

Accelerator-rich architectures for the Dark Silicon Era: the benefits of hardware
accelerators compared to general purpose processors is pushing the multi-core and
many-core processor research in the direction of accelerator-rich architectures, i.e.
coupling the multi/many-core processors with many dedicated and reconfigurable
hardware accelerators for specific kernels of applications. In this research topic, many
research challenges arise. First of all, research challenges at design time need to be
addressed. Good questions are what accelerators to design and whether they are
designed as dedicated or reconfigurable kernels. Application profiling can help
designers to choose what accelerators to design. Important kernels used in many
applications and/or in successive application generations, are good candidates for
dedicated accelerators. Reconfigurable accelerators can be used to provide flexibility for

117

important emerging kernels (e.g. the new Interpolation Filter of HEVC) and to map
other accelerators that are used in only some phases of application execution (as
reconfigurable accelerators are more power hungry). In the higher-level system
architecture design, other research challenge is how to couple those many hardware
accelerators to many processing cores, and how to connect them. Design time decisions
are limited by chip area and thermal design power. Another research challenge appears
for the run-time control: how to deal with the workload unbalance of threads in the
accelerator-rich architecture. A run-time system is essential to allocate threads and
power-on/off accelerators with the main goal to sustain performance under a power
upper limit. The run-time system should be fed by application monitoring and
prediction to improve the final application performance in power and timing.

7.2 Published Papers by the Author

This section presents a list of original research papers developed within the scope of
this thesis. One journal paper and five conference papers were published during the
development of the research which led to this thesis.

7.2.1 Journal Paper

DINIZ, C. M., SHAFIQUE, M., BAMPI, S., HENKEL, J. A Reconfigurable Hardware
Architecture for Fractional Pixel Interpolation in High Efficiency Video Coding. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems. v. 34, pp.
238-251, 2015.

7.2.2 Conference and Symposia Papers

DINIZ, C. M., FONSECA, M. B., COSTA, E. BAMPI, S. Enhancing a HEVC
Interpolation Filter Hardware Architecture With Efficient Adder Compressors. In: 13th
IEEE International NEW Circuits and Systems (NEWCAS) Conference, 2015, Grenoble.

DINIZ, C. M., SHAFIQUE, M., DALCIN, F., BAMPI, S. HENKEL, J. A Deblocking
Filter Hardware Architecture for the High Efficiency Video Coding Standard. In:
Design, Automation & Test in Europe Conference and Exhibition (DATE), 2015,
Grenoble. pp. 1509-1514.

DINIZ, C. M., SHAFIQUE, M., BAMPI, S. HENKEL, J. Run-time accelerator binding
for tile-based mixed-grained reconfigurable architectures. In: 24th International
Conference on Field Programmable Logic and Applications (FPL), 2014, Munich. 4 p.
1-4.

DINIZ, C. M., SHAFIQUE, M., BAMPI, S. HENKEL, J. High-throughput interpolation
hardware architecture with coarse-grained reconfigurable datapaths for HEVC. In: 20th
IEEE International Conference on Image Processing (ICIP), 2013, Melbourne. pp.
2091-2095.

DINIZ, C. M., CORRÊA, G., AGOSTINI, L. V., SUSIN, A. A., BAMPI, S.
Comparative Analysis of Parallel SAD Calculation Hardware Architectures for
H.264/AVC Video Coding. In: IEEE Latin American Symposium on Circuits and
Systems (LASCAS), 2010, Foz do Iguaçu. pp. 132-135.

118

119

REFERENCES

ABRAMOWSKI, A. and PASTUSZAK, G. A; Novel Intra Prediction Architecture for
the Hardware HEVC Encoder. In: EUROMICRO CONFERENCE ON DIGITAL
SYSTEM DESIGN (DSD), 2013...Proceedings [S.l.:s.n.], 2013, p. 429-436.

AFONSO, V., H. MAICH, L. AGOSTINI, D. FRANCO; Low cost and high throughput
FME interpolation for the HEVC emerging video coding standard. In: IEEE LATIN
AMERICAN SYMPOSIUM ON CIRCUITS AND SYSTEMS (LASCAS), 2013…
Proceedings New York: IEEE, 2013, p.1-4
AGOSTINI, L. V., Desenvolvimento de Arquiteturas de Alta Performance
Dedicadas à Compressão de Vídeo Segundo o Padrão H.264. Doctor Thesis -
Universidade Federal do Rio Grande do Sul. Graduate Program in Computer Science,
Porto Alegre, RS, 2007.

AHMADINIA, A. et al. Optimal free-space management and routing-conscious
dynamic placement for reconfigurable devices. IEEE Transactions on Computers, v.
56 n. 5, 2007, pp. 673–680.

AHMED, W. et al; Adaptive resource management for simultaneous multitasking in
mixed-grained reconfigurable multi-core processors. In: INTERNATIONAL
CONFERENCE ON HARDWARE/SOFTWARE CODESIGN AND SYSTEM
SYNTHESIS (CODES+ISSS), 2011…Proceedings [S.l.]: ACM, 2011, p. 365–374.
AHMED, W., SHAFIQUE, M., BAUER, L., HENKEL, J; mRTS: Run-time system for
reconfigurable processors with multi-grained instruction-set extensions. In: DESIGN,
AUTOMATION & TEST IN EUROPE (DATE) Conference, 2011…Proceedings New
York: IEEE, 2011, p. 1554–1559.

ALTERA Corporation. Increasing Design Functionality with Partial and Dynamic
Reconfiguration in 28-nm FPGAs. White Paper (WP-01137-1.0), 2010.

ALTERMANN, J. S., COSTA, E. A. C., BAMPI, S.; Fast forward and inverse
transforms for the H.264/AVC standard using hierarchical adder compressors. In: 18TH
IEEE/IFIP VLSI SYSTEM ON CHIP CONFERENCE (VLSI-SOC),
2010…Proceedings New York: IEEE, 2010, p. 310-315
BAUER, L. et al; Run-time instruction set selection in a transmutable embedded
processor. In: DESIGN AUTOMATION CONFERENCE (DAC), 2008…Proceedings
[S.l.]: ACM, 2008, p. 56–61.

BAUER, L., M. SHAFIQUE, J. HENKEL. Efficient Resource Utilization for an
Extensible Processor Through Dynamic Instruction Set Adaptation. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol.16, no.10,
pp.1295-1308, 2008.

BAUER, L., M. SHAFIQUE, S. KREUTZ, J. HENKEL; Run-time system for an
extensible embedded processor with dynamic instruction set. In: DESIGN,
AUTOMATION & TEST IN EUROPE (DATE) CONFERENCE, 2008…Proceedings
New York: IEEE, 2008, p. 752–757.
BECKER, T., LUK, W., CHEUNG, P. Y. K; Energy-Aware Optimisation for Run-Time
Reconfiguration. In: IEEE ANNUAL INTERNATIONAL SYMPOSIUM ON FIELD-

120

PROGRAMMABLE CUSTOM COMPUTING MACHINES (FCCM), 2010…
Proceedings [S.l.]: IEEE, 2010, p.55-62
BJONTEGAARD, G. Calculation of average PSNR differences between RD-curves. In:
Video Coding Experts Group Meeting (document VCEG-M33), Austin, Apr. 2011.

BOSSEN, F. Common Test Conditions and Software Reference Configurations, Joint
Collaborative Team on Video Coding Meeting (document JCTVC-L1100), Geneva,
Jan. 2013.

BOSSEN, F., BROSS, B., SUHRING, K., FLYNN, D. HEVC Complexity and
Implementation Analysis. IEEE Transactions on Circuits and Systems for Video
Technology, vol. 22, no. 12, 2012, pp. 1685-1696
CADENCE Encounter RTL Compiler,
http://www.cadence.com/products/ld/rtl_compiler/pages/default.aspx. Access: Nov.
2014

CHANG, S., CHENG, C.-C. CHEN, L.-G.; System Architecture Design Methodology
for H.264/AVC Encoder. In: IEEE INTERNATIONAL SYMPOSIUM ON
CONSUMER ELECTRONICS (ISCE), 2007…Proceedings New York: IEEE, 2007, p.
1-5

CHEN, L., MARCONI, T., MITRA, T.; Online scheduling for multi-core shared
reconfigurable fabric. In: DESIGN, AUTOMATION & TEST IN EUROPE (DATE)
CONFERENCE, 2012… Proceedings New York: IEEE, 2012, p. 582–585
CHEN, T.-C. et al., Analysis and Architecture Design of an HDTV720p 30 Frames/s
H.264/AVC Encoder, IEEE Transactions on Circuits and Systems for Video
Technology, Jun. 2006, pp. 673-688.

CHEN, T.-C., HUANG, Y.-W., CHEN, L.-G.; Fully utilized and reusable architecture
for fractional motion estimation of H.264/AVC. In: IEEE INTERNATIONAL
CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING
(ICASSP), 2004… Proceedings New York: IEEE, 2004, p. V-9-12.
CHUANG, T.-D. et al.; A 59.5mW scalable/multi-view video decoder chip for
Quad/3D Full HDTV and video streaming applications. In: IEEE INTERNATIONAL
SOLID-STATE CIRCUITS CONFERENCE (ISSCC), 2010…Proceedings New York:
IEEE, 2010, p.330-331.

CISCO. Cisco Visual Networking Index: Forecast and Methodology, 2013–2018, White
Paper, June 2014.

CLAUS, C. et al.; A multi-platform controller allowing for maximum dynamic partial
reconfiguration throughput. In: IEEE FIELD PROGRAMMABLE LOGIC AND
APPLICATIONS (FPL), 2008…Proceedings New York: IEEE, 2008, p. 535–538.
COMPTON, K. and HAUCK, S. Reconfigurable computing: a survey of systems and
software. ACM Computing Surveys, vol. 34, pp. 171-210, 2002.

CONCEICAO, R. et al.; Hardware design for the 32×32 IDCT of the HEVC video
coding standard. In: 26TH SYMPOSIUM ON INTEGRATED CIRCUITS AND
SYSTEMS DESIGN (SBCCI), 2013…Proceedings [S.l.]: ACM, 2013, p.1-6

CONG, J. et al.; Accelerator-Rich Architectures: Opportunities and Progresses. In:
DESIGN AUTOMATION CONFERENCE (DAC), 2014…Proceedings [S.l.]: ACM,
2014, p. 1-6

http://www.cadence.com/products/ld/rtl_compiler/pages/default.aspx
http://www.cadence.com/products/ld/rtl_compiler/pages/default.aspx

121

CORRÊA, G., et al., Performance and Computational Complexity Assessment of High-
Efficiency Video Encoders. IEEE Transactions on Circuits and Systems for Video
Technology, v. 22, n. 12, pp. 1899-1909, 2012.
COSTA, E. A. C., CORTES, F. P., CARDOZO, R., CARRO, L., BAMPI, S.; Modeling
of Short Circuit Consumption Using Timing-Only Logic Cell Macromodels. In: 13TH
SYMPOSIUM ON INTEGRATED CIRCUITS AND SYSTEMS DESIGN (SBCCI),
2000…Proceedings [S.l.]: ACM, 2000, p. 222-227

DIAS, T., ROMA, N., SOUZA, L.; High performance multi-standard architecture for
DCT computation in H.264/AVC High Profile and HEVC codecs. In: CONFERENCE
ON DESIGN AND ARCHITECTURES FOR SIGNAL AND IMAGE PROCESSING
(DASIP), 2013...Proceedings [S.l.:s.n.], 2013, p.14-21.

DING, L.-F. et al.; A 212MPixels/s 4096×2160p multiview video encoder chip for
3D/quad HDTV applications. In: IEEE INTERNATIONAL SOLID-STATE CIRCUITS
CONFERENCE (ISSCC), 2009…Proceedings New York: IEEE, 2009, p.154-155
DINIZ, C. M., CORRÊA, G., AGOSTINI, L. V., SUSIN, A. A., BAMPI, S.;
Comparative Analysis of Parallel SAD Calculation Hardware Architectures for
H.264/AVC Video Coding. In: IEEE LATIN AMERICAN SYMPOSIUM ON
CIRCUITS AND SYSTEMS (LASCAS), 2010…Proceedings New York: IEEE, p.
132-135

DINIZ, C. M., SHAFIQUE, M., BAMPI, S. HENKEL, J.; High-throughput
interpolation hardware architecture with coarse-grained reconfigurable datapaths for
HEVC. In: 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE
PROCESSING (ICIP), 2013…Proceedings New York: IEEE, 2013, p. 2091-2095

DINIZ, C. M., SHAFIQUE, M., BAMPI, S. HENKEL, J.; Run-time accelerator binding
for tile-based mixed-grained reconfigurable architectures. In: 24TH INTERNATIONAL
CONFERENCE ON FIELD PROGRAMMABLE LOGIC AND APPLICATIONS
(FPL), 2014…Proceedings New York: IEEE, 2014, p. 1-4.

DINIZ, C. M., SHAFIQUE, M., BAMPI, S., HENKEL, J. A Reconfigurable Hardware
Architecture for Fractional Pixel Interpolation in High Efficiency Video Coding. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems. v. 34,
n.2, p. 238-251, Feb. 2015a.

DINIZ, C. M., SHAFIQUE, M., DALCIN, F., BAMPI, S. HENKEL, J.; A Deblocking
Filter Hardware Architecture for the High Efficiency Video Coding Standard. In:
DESIGN, AUTOMATION & TEST IN EUROPE (DATE) CONFERENCE,
2015…Proceedings New York: IEEE, 2015b, p. 1509-1514

DINIZ, C. M., FONSECA, M. B., COSTA, E., BAMPI, S.; Enhancing a HEVC
Interpolation Filter Hardware Architecture With Efficient Adder Compressors. In:
13TH IEEE INTERNATIONAL NEW CIRCUITS AND SYSTEMS (NEWCAS)
CONFERENCE, 2015…Proceedings New York: IEEE, 2015c

ESMAEILZADEH, H. et al.; Dark silicon and the end of multicore scaling. In:
INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE (ISCA),
2011…Proceedings [S.l]: ACM, 2011, p. 365–376

FENLASON, J., R. Stallman. GNU gprof—The GNU Profiler, Free Software
Foundation, Inc., 2000.

122

FORBES. Netflix Eyes Global Streaming Domination As It Crosses 50 Million
Subscriber Mark. Available at: http://onforb.es/1ncjMod. Access: December, 2014.
FreePDK 45nm standard-cell library, Oklahoma State University,
http://vlsiarch.ecen.okstate.edu/flow. Access: Nov. 2014

FRIEDMAN, S. et al.; SPR: An architecture-adaptive CGRA mapping tool. In:
ACM/SIGDA INTERNATIONAL SYMPOSIUM ON FIELD-PROGRAMMABLE
GATE ARRAYS (FPGA), 2009…Proceedings [S.l]: ACM, 2009, p.191–200

GHANBARI, M. Standard Codecs: Image Compression to Advanced Video Coding.
United Kingdom: The Institute of electrical Engineers, 2003.
GOOSSENS, K. et al.; Hardwired Networks on Chip in FPGAs to Unify Functional and
Configuration Interconnects. INTERNATIONAL SYMPOSIUM ON NETWORKS-
ON-CHIP (NOCS), 2008…Proceedings [S.l.:s.n.], 2008, p. 45-54.

GRUDNITSKY, A. et al.; Partial Online-Synthesis for Mixed-Grained Reconfigurable
Architectures. In: DESIGN, AUTOMATION & TEST IN EUROPE (DATE)
CONFERENCE, 2012…Proceedings New York: IEEE, 2012, p. 1555–1560

GUO, Z., ZHOU, D., GOTO, S.; An optimized MC interpolation architecture for
HEVC. In: IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH
AND SIGNAL PROCESSING (ICASSP), 2012…Proceedings New York: IEEE,
p.1117-1120
HAMMED, R. et al., Understanding sources of inefficiency in general-purpose chips.
Communications of the ACM, v. 54, n. 10, Oct 2011, pp. 85-93

HARTENSTEIN, R.; A Decade of Reconfigurable Computing: a Visionary
Retrospective. Embedded Tutorial. In: DESIGN AUTOMATION CONFERENCE
(DAC), 2001…Proceedings [S.l]: ACM, 2001, p. 642-649

HEVC Test Model (HM) version 10.0, 2013. http://hevc.hhi.fraunhofer.de.
HUANG, Y.-W. et al. Survey on Block Matching Motion Estimation Algorithms and
Architectures with New Results. Journal of VLSI signal processing systems for
signal, image and video technology, Springer, v. 42, n.3, 2006, pp. 297-320

IAN, K. and ROSE, J., Measuring the Gap Between FPGAs and ASICs, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, v. 26,
n. 2, pp. 203–215, 2007
ISO, Coding of Audio-Visual Objects—Part 2: Visual, ISO/IEC 14496-2 (MPEG-4
Visual version 1), ISO/IEC JTC 1, Apr. 1999.

ISO, Coding of Moving Pictures and Associated Audio for Digital Storage Media at up
to About 1.5 Mbit/s—Part 2: Video, ISO/IEC 11172-2 (MPEG-1), ISO/IEC JTC 1,
1993.

ITU-T and ISO/IEC JTC 1, Advanced video coding for generic audiovisual services,
ITU-T Recommendation H.264 and ISO/IEC 14496-10 (MPEG-4 AVC), 2003.
ITU-T and ISO/IEC JTC 1, Generic Coding of Moving Pictures and Associated Audio
Information - Part 2: Video, ITU-T Rec. H.262 and ISO/IEC 13818-2 (MPEG 2 Video),
Nov. 1994.

ITU-T and ISO/IEC, High Efficiency Video Coding, ITU-T Recommendation H.265
and ISO/IEC 23008-2, 2013.

http://onforb.es/1ncjMod
http://vlsiarch.ecen.okstate.edu/flow
http://vlsiarch.ecen.okstate.edu/flow
http://hevc.hhi.fraunhofer.de/

123

ITU-T, Video Codec for Audiovisual Services at 64 kbit/s, ITU-T Rec. H.261, version
1: Nov. 1990.
ITU-T, Video Coding for Low Bit Rate Communication, ITU-T Rec. H.263, Nov. 1995.
IYER, R. et al.; Accelerator-rich architectures: Implications, opportunities and
challenges. In: ASIA AND SOUTH PACIFIC DESIGN AUTOMATION
CONFERENCE (ASP-DAC), 2012…Proceedings [S.l.:s.n.], 2012 p.106-107

JAFRI, S. et al.; Compact generic intermediate representation (CGIR) to enable late
binding in coarse grained reconfigurable architectures. In: INTERNATIONAL
CONFERENCE ON FIELD PROGRAMMABLE TECHNOLOGY (FPT),
2011…Proceedings [S.l.:s.n.], 2011, p. 1–6
KAO, C.-Y., WU, C.-L., LIN, Y.-L. A High-Performance Three-Engine Architecture
for H.264/AVC Fractional Motion Estimation. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, v. 18, n. 4, pp.662-666, 2010

KHAN, M. U. K., SHAFIQUE, M., GRELLERT, M., HENKEL, J.; Hardware-software
collaborative complexity reduction scheme for the emerging HEVC intra encoder. In:
DESIGN, AUTOMATION & TEST IN EUROPE (DATE) CONFERENCE,
2013…Proceedings New York: IEEE, 2013, p.125-128

KIM, I.-K. MCCANN, SUGIMOTO, K. BROSS, B. HAN, W.-J. HM10: High
Efficieny Video Coding (HEVC) Test Model 10 Encoder Description, JCT-VC-L1002,
JCT-VC, Geneva, Jan. 2013.
KIM, I.-K., K. McCann, K. Sugimoto, B. Bross, W.-J. Han. HM10: High Efficieny
Video Coding (HEVC) Test Model 10 Encoder Description, JCT-VC-L1002, JCT-VC,
Geneva, Jan. 2013.

KIM, I.-K., K. McCann, K. Sugimoto, B. Bross, W.-J. Han. HM7: High Efficieny
Video Coding (HEVC) Test Model 7 Encoder Description, JCT-VC-I1002, JCT-VC,
Geneva, Apr-Mai. 2012.
KIM, I.-K., K. McCann, K. Sugimoto, B. Bross, W.-J. Han. HM8: High Efficieny
Video Coding (HEVC) Test Model 8 Encoder Description, JCT-VC-J1002, JCT-VC,
Stockholm, Jul. 2012.
KLEIN, M. White Paper WP298, Power consumption at 40 and 45 nm. Xilinx, 2009.
KOKARAM, A. Challenges in Video Ingest at YouTube. Special Panel on Large Scale
Image and Video Repositories. In: PICTURE CODING SYMPOSIUM (PCS),
2013…Proceedings [S.l.:s.n.], 2013
KÖNIG, R. et al.; KAHRISMA: A novel hypermorphic reconfigurable instruction-set
multi-grained-array architecture. In: DESIGN, AUTOMATION & TEST IN EUROPE
(DATE) CONFERENCE, 2010…Proceedings New York, IEEE, 2013, p. 819–824.

LI, Y. and Y. He.; Bandwidth Optimized and High Performance Interpolation
Architecture in Motion Compensation for H.264/AVC HDTV Decoder. Journal of
Signal Processing Systems, v. 52, pp. 111–126, 2008.

LI, Z., HAUCK, S.; Configuration prefetching techniques for partial reconfigurable
coprocessor with relocation and defragmentation. In: ACM/SIGDA INTERNATIONAL
SYMPOSIUM ON FIELD-PROGRAMMABLE GATE ARRAYS (FPGA),
2002…Proceedings [S.l.]: ACM, 2002, p. 187-195.

124

LIU, Z., et al.; 32-Parallel SAD Tree Hardwired Engine for Variable Block Size Motion
Estimation in HDTV1080P Real-Time Encoding Application. In: IEEE SYMPOSIUM
ON SIGNAL PROCESSING (SIPS), 2007…Proceedings New York: IEEE, 2007, p.
675-680.
LU, L., MCCANNY, J. V., SEZER, S. Subpixel Interpolation Architecture for
Multistandard Video Motion Estimation. IEEE Transactions on Circuits and Systems
for Video Technology, v.19, n.12, pp.1897-1901, 2009

LV, H., WANG, R., XIE, X., JIA, H., GAO, W. A comparison of fractional-pel
interpolation filters in HEVC and H.264/AVC. In: IEEE Visual Communications and
Image Processing (VCIP), 2012, pp.1-6, 2012.

MCCANN, K. et al., HM6: High Efficieny Video Coding (HEVC) Test Model 6
Encoder Description”, JCT-VC-H1002, JCT-VC, San Jose, Feb. 2012.
MOORE, G. “Cramming more components onto integrated circuits”, Electronics
Magazine, 1965, p. 4

NALLURI, P., ALVES, L. N., NAVARRO, A.; A novel SAD architecture for variable
block size motion estimation in HEVC video coding. In: INTERNATIONAL
SYMPOSIUM ON SYSTEM ON CHIP (SOC), 2013…Proceedings [S.l.:s.n.], 2013,
pp.1-4

NANGATE, NanGate 45 nm Open Cell Library, www.nangate.com/?page_id=22.
Access: Feb. 2015.
NORKIN, A., et al. HEVC Deblocking Filter. IEEE Transactions on Circuits and
Systems for Video Technology, v. 22, n. 12, pp.1746-1754, Dec. 2012

OHM, J.-R., et al. Comparison of the Coding Efficiency of Video Coding Standards—
Including High Efficiency Video Coding (HEVC). IEEE Transactions on Circuits
and Systems for Video Technology, v.22, n.12, pp.1669-1684, Dec. 2012

OZCAN, E., ADIBELLI, Y., HAMZAOGLU, I.; A high performance deblocking filter
hardware for High Efficiency Video Coding. In: INTERNATIONAL CONFERENCE
ON FIELD PROGRAMMABLE LOGIC AND APPLICATIONS (FPL),
2013…Proceedings New York, IEEE, 2013, p.1-4

PASTUSZAK, G. and JAKUBOWSKI, M. Adaptive Computationally Scalable Motion
Estimation for the Hardware H.264/AVC Encoder. IEEE Transactions on Circuits
and Systems for Video Technology, vol. 23, no. 5, pp. 802-812, May 2013.

PENG, B., et al.; A hardware CABAC encoder for HEVC. In: IEEE
INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS),
2013…Proceedings New York: IEEE, 2013, p.1372-1375
PORTO, R. Desenvolvimento Arquitetural para Estimação de Movimento de
Blocos de Tamanhos Variáveis Segundo o Padrão H.264/AVC de Compressão de
Vídeo Digital, 2008. 96f. Master Dissertation (Master in Computer Science) – Instituto
de Informática, UFRGS, Porto Alegre, Brazil.

PowerPlay Early Power Estimator for Stratix III/IV/V Devices, Altera,
www.altera.com, 2014.
RICHARDSON, I. The H.264/AVC Advanced Video Compression Standard. 2nd

Edition. Chichester: John Wiley and Sons, 2010.

http://www.nangate.com/?page_id=22
http://www.altera.com/
http://www.altera.com/

125

ROUHOLAMINI, et al.; A New Design for 7:2 Compressors. In: IEEE/ACS
INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS AND
APPLICATIONS (AICCSA), 2007…Proceedings [S.l.:s.n.], 2007
SHAFIQUE, M. and J. Henkel. Hardware/software architectures for low-power
embedded multimedia systems. Springer Science+Business Media, LLC, 2011.

SHAFIQUE, M. et al. Minority-Game-based resource allocation for run-time
reconfigurable multi-core processors. In: DESIGN, AUTOMATION & TEST IN
EUROPE (DATE) CONFERENCE, 2011…Proceedings New York: IEEE, 2011, pp.
1–6

SHAFIQUE, M., BAUER, L., HENKEL, J. Optimized Application Architecture of the
H.264 Video Encoder for Application Specific Platforms. In: IEEE Symposium on
Embedded Systems for Real-time Multimedia (ESTIMEDIA), pp. 119-124, 2007.
SHAFIQUE, M., BAUER, L., HENKEL, J. Optimizing the H.264/AVC Video Encoder
Application Structure for Reconfigurable and Application-Specific Platforms. Journal
of Signal Processing Systems, vol. 60, no. 2, pp. 183-210, 2010.

SHAFIQUE, M., BAUER, L., HENKEL, J.; Selective Instruction Set Muting for
Energy-Aware Adaptive Processors. In: IEEE/ACM INTERNATIONAL
CONFERENCE ON COMPUTER-AIDED DESIGN (ICCAD), 2010…Proceedings
[S.l]: ACM, 2010, p. 353-360

SHAFIQUE, M., BAUER, L., HENKEL, J.; REMiS: Run-time Energy Minimization
Scheme in a Reconfigurable Processor with Dynamic Power-Gated Instruction Set. In:
IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN
(ICCAD), 2009…Proceedings [S.l]: ACM, 2009, p. 55-62
SHAFIQUE, M., BAUER, L., HENKEL, J. Adaptive energy management for
dynamically reconfigurable processors." IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, v. 33. n. 1,p. 50-63, Jan. 2014.

SHANG, L., KAVIANI, A. S., BATHALA, K.; Dynamic power consumption in Virtex-
II FPGA family. In: ACM/SIGDA INTERNATIONAL SYMPOSIUM ON FIELD-
PROGRAMMABLE GATE ARRAYS (FPGA), 2002…Proceedings [S.l]: ACM, 2002,
p. 157–164
SHEN, W., SHANG, Q., SHEN, S., FAN, Y., ZENG, X.; A high-throughput VLSI
architecture for deblocking filter in HEVC. In: IEEE INTERNATIONAL
SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2013…Proceedings New
York: IEEE, 2013, p. 673-676

SHEN, S., et al; A pipelined VLSI architecture for Sample Adaptive Offset (SAO) filter
and deblocking filter of HEVC. IEICE Electronics Express, v.10, n.11, pp. 1–11,
2013a

SMIT, G., et al.; Overview of the 4S project. In: IEEE SYSTEMS ON CHIP
CONFERENCE (SOCC), 2005…Proceedings [S.l.:s.n.], 2005, p. 70–73
STANGHERLIN, K. H., BAMPI, S.; Energy-speed exploration for very-wide range of
dynamic V-F scaling. In: 26TH SYMPOSIUM ON INTEGRATED CIRCUITS AND
SYSTEMS DESIGN (SBCCI), 2013…Proceedings [S.l.]: ACM, 2013, p. 1-6

SULLIVAN, G. J., et al., Overview of the High Efficiency Video Coding (HEVC)
Standard. IEEE Transactions on Circuits and Systems for Video Technology, v. 22,
n. 12, pp.1649-1668, Dec. 2012

126

SYNOPSYS, Synopsis PowerCompiler, datasheet available at homepage:
http://www.synopsys.com/products/power/power_ds.pdf
TAYLOR, M.B. et al. A Landscape of the New Dark Silicon Design Regime, IEEE
Micro, vol.33, no.5, pp.8,19, Sept.-Oct. 2013

THOMA, F. et al.; MORPHEUS: Heterogeneous reconfigurable computing. In: FIELD
PROGRAMMABLE LOGIC CONFERENCE (FPL), 2007…Proceedings New York:
IEEE, 2007, p. 409–414

TSUNG, P.-K., et al.; A 216fps 4096×2160p 3DTV set-top box SoC for free-viewpoint
3DTV applications. In: IEEE INTERNATIONAL SOLID-STATE CIRCUITS
CONFERENCE (ISSCC), 2011…Proceedings New York: IEEE, 2011, p. 124-126
TSUNG, P.-K., et al.; Single-iteration full-search fractional motion estimation for quad
full HD H.264/AVC encoding. In: IEEE INTERNATIONAL CONFERENCE ON
MULTIMEDIA AND EXPO (ICME), 2009…Proceedings New York: IEEE, 2009, p.
9-12

TUAN, T. et al.; A 90nm low-power FPGA for battery-powered applications. In:
ACM/SIGDA INTERNATIONAL SYMPOSIUM ON FIELD PROGRAMMABLE
GATE ARRAYS (FPGA), 2006…Proceedings [S.l]: ACM, 2006, p. 3-11

VANNE, J. et al., A High-Performance Sum of Absolute Difference Implementation for
Motion Estimation, IEEE Transactions on Circuits and Systems for Video
Technology, v. 16, n. 7, pp. 876-883, Jul. 2006
VANNE, J. et al., Comparative Rate-Distortion-Complexity Analysis of HEVC and
AVC Video Codecs, IEEE Transactions on Circuits and Systems for Video
Technology, v. 22, n. 12, pp.1885-1898, Dec. 2012.

VENKATESH, G. et al.; Conservation cores: Reducing the energy of mature
computations. In: International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2010…Proceedings [S.l]: ACM, 2010,
p. 205-218.
WALDER, H., STEIGER, C., PLATZNER, M.; Fast Online Task Placement on
FPGAs: Free Space Partitioning and 2D-Hashing. In: IEEE INTERNATIONAL
PARALLEL & DISTRIBUTED PROCESSING SYMPOSIUM (IPDPS),
2003…Proceedings [S.l.:s.n.], 2003, p 1-8

WANG, R. et al. High throughput and low memory access sub-pixel interpolation
architecture for H.264/AVC HDTV decoder, IEEE Transactions on Consumer
Electronics, v. 51, n. 3, pp. 1006-1013, 2005.

WANG, S.-Z. et al.; A new motion compensation design for H.264/AVC decoder. In:
IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS),
2005…Proceedings New York: IEEE, 2005, p.4558-4561
WANG, Y.-J., CHENG, C.-C., CHANG, T.-S. A Fast Algorithm and Its VLSI
Architecture for Fractional Motion Estimation for H.264/MPEG-4 AVC Video Coding.
IEEE Transactions on Circuits and Systems for Video Technology, v. 17, n. 5, pp.
578-583, 2007.

WATKINS, M. and ALBONESI, D.; ReMAP: A reconfigurable heterogeneous
multicore architecture. In: INTERNATIONAL SYMPOSIUM ON
MICROARCHITECTURE (MICRO)…Proceedings New York: IEEE, 2010, p. 497–
508

http://www.synopsys.com/products/power/power_ds.pdf

127

WEINBERGER, A. 4-2 carry-save adder module. [S.l.]: IBM, 1981. Technical
Disclosure Bulletin.
WIEGAND, T. et al. Overview of the H. 264/AVC video coding standard. IEEE
Transactions on Circuits and Systems for Video Technology, v. 13 n. 7, pp. 560-576,
Jul. 2003

WIEGAND, T. et al. Rate-Constrained Coder Control and Comparison of Video Coding
Standards. IEEE Transactions on Circuits and Systems for Video Technology, v. 13
n. 7, pp. 688-703, Jul. 2003

XILINX, Inc. “Partial Reconfiguration on Xilinx FPGAs”, WP374, 2010.
XILINX, Inc. Virtex-5 FPGA Configuration User Guide, UG191 (v3.11), Oct. 2012.
XILINX, Inc. Xilinx Power Estimator, UG440 (v2013.2/14.6), Jun. 2013
XILINX, Xilinx ISE Design Suite version 14.4, http://www.xilinx.com/products/design-
tools/ise-design-suite/index.htm. Access: Nov. 2014
XILINX, Xilinx Virtex-6 Family Overview, DS150 (v2.4)
http://www.xilinx.com/support/documentation/data_sheets/ds150, Jan. 2012

YI, L. et al.; A Communication Aware Online Task Scheduling Algorithm for FPGA-
Based Partially Reconfigurable Systems. In: IEEE INTERNATIONAL SYMPOSIUM
ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES (FCCM),
2010)…Proceedings New York: IEEE, 2010, p. 65–68

ZATT, B., et al. A Reduced Memory Bandwidth and High Throughput HDTV Motion
Compensation Decoder for H.264/AVC High 4:2:2 Profile. Journal of Real-Time
Image Processing, v. 8, n.1, pp. 127-140, Mar. 2013.
ZHOU, D. et al.; A 2Gpixel/s H.264/AVC HP/MVC video decoder chip for Super Hi-
Vision and 3DTV/FTV applications. In: IEEE INTERNATIONAL SOLID-STATE
CIRCUITS CONFERENCE (ISSCC), 2012…Proceedings New York: IEEE, 2012, p.
224-226

http://www.xilinx.com/products/design-
http://www.xilinx.com/support/documentation/data_sheets/ds150

128

129

APPENDIX A <EXTENDED ABSTRACT IN PORTUGUESE>

A.1. Introdução

Hoje em dia, existem muitos dispositivos no mercado capazes de gravar e exibir
vídeo digital, como televisores digitais smart, computadores de mesa e portáteis, tablets,
smartphones, aparelhos de videogame, câmeras gravadoras, câmeras de segurança, etc.
Estes dispositivos possibilitam uma variedade de aplicações de vídeo digital, como
streaming de vídeo, transmissão de televisão digital, vídeo-conferência, cinema digital,
vídeo-vigilância, etc. Dois serviços de vídeo digital sob demanda pela Internet,
YouTube e Netflix, tornaram-se incrivelmente populares nos últimos anos. O Youtube é
o maior repositório de vídeo e serviço de transmissão de vídeo pela Internet, com 80
horas de vídeo enviadas por minuto pelos usuários e milhões de visualizações por dia
(KOKARAM, 2013). O Netflix é um serviço pago de transmissão de vídeo sob-
demanda que contém vídeos e séries de TV. O Netflix atingiu a marca de 50 milhões de
assinantes no segundo quadrimestre de 2014 (FORBES, 2014). É previsto que o tráfego
de vídeo pela Internet será de 79% de todo o tráfego da Internet até 2018 (CISCO,
2014).

Para lidar com o armazenamento e transmissão de vídeo pela Internet (e por outras
redes de comunicação), compressão de vídeo é essencial. A seguir, segue um exemplo
do motivo pelo qual a compressão de vídeo é importante: um vídeo cru (não
comprimido) de 10 minutos com resolução de 720x480 pixels (Standard Definition -
SD) representado com 24 bits por pixel (8 bit para cada canal de cor, usando 3 canais de
cor) e com 30 quadros por segundo (frames per second - fps) necessita de 19 gigabytes
(GB) para ser armazenado ou transmitido pela Internet. O mesmo vídeo não
comprimido de 10 minutos com resolução de 1920x1080 pixels (Full-HD) necessita de
112 GB. O mesmo vídeo no novo formato de resolução Sony 4K (4096x2160 pixels),
usado na Copa do Mundo da FIFA de 2014, necessita de 477 GB. Não é viável lidar
com este volume de dados de sequências de vídeo não comprimidas usando as
tecnologias recentes de armazenamento e comunicação.

Codificação de vídeo é o processo de comprimir e decomprimir vídeo digital. Em
outras palavras, codificação de vídeo é o processo de conversão de vídeo digital em um
formato adequado para transmissão ou armazenamento. O número de bits para
representar o vídeo codificado (comprimido) é reduzido comparado ao vídeo não
codificado (não comprimido). A codificação de vídeo é baseada em um par
complementar de sistemas: um codificador (compressor) e um decodificador
(descompressor). O codificador de vídeo converte o vídeo não comprimido em uma
forma comprimido, antes do armazenamento ou transmissão. Este processo é conhecido
como codificação de vídeo. O decodificador de vídeo converte o vídeo da forma
comprimida de volta à representação do vídeo original (ou muito similar ao original).
Este processo também é conhecido como decodificação de vídeo. O par
codificador/decodificador é muitas vezes descrito como CODEC (do inglês,
enCOder/DECoder). A compressão de vídeo é feita pela remoção de redundâncias, ou
seja, informações não necessárias para representação do vídeo. A compressão de vídeo
também pode introduzir redundância subjetiva, ou seja, informação que pode ser
removida sem que afete de forma significativa a percepção do observador da qualidade
do vídeo. Se o vídeo decodificado é idêntico ao vídeo original não comprimido, o

130

processo de codificação é sem perdas. Na compressão com perdas, a redundância
subjetiva também é aplicada, resultando em uma diferença entre o vídeo não
comprimido e o vídeo decodificado (após ter sido comprimido). Compressão com
perdas é aplicada para atingir maior compressão. A alta compressão resulta porém em
uma redução da qualidade do vídeo decodificado comparado com o vídeo original não
comprimido (RICHARDSON, 2010).

Os padrões de codificação de vídeo são desenvolvidos para codificar (comprimir)
vídeos. A maioria dos padrões de codificação de vídeo aplica compressão com perdas
para alcançar alta eficiência de compressão de vídeo. Quando os padrões de codificação
de vídeo estão sendo desenvolvidos, o objetivo é comprimir vídeo com o mínimo de
perda de qualidade para um certo tamanho do vídeo comprimido (ou para atingir o
menor tamanho de vídeo comprimido para um certo alvo de qualidade de vídeo). Os
padrões de codificação de vídeo evoluíram nas últimas duas décadas, principalmente
impulsionados por novas aplicações de vídeo e o aumento na resolução dos vídeos. Os
avanços nos padrões de codificação de vídeo recentes para prover aumento da eficiência
de compressão de vídeo resultam em um imenso esforço computacional. É exigido dos
dispositivos eletrônicos capazes de processar vídeo que proporcionem maior
desempenho a cada geração de padrão de codificação de vídeo, para codificar e
decodificar vídeos de alta resolução em tempo real. Neste contexto, a seção A.1.1
apresenta a motivação e a definição do problema que norteia esta tese.

A.1.1. Motivação e Definição do Problema

A recente demanda por vídeos de resolução ultra-alta (além de 1920x1080 pixels)
impulsiona o desenvolvimento de novos padrões de codificação de vídeo mais eficientes
para prover alta eficiência de compressão O mais novo e mais eficiente padrão de
codificação de vídeo é o padrão High Efficiency Video Coding (HEVC), desenvolvido
pelo Joint Collaborative Team on Video Coding (JCT-VC), formado por especialistas
do Video Coding Experts Group (VCEG) da International Telecommunication Union
(ITU) e do Motion Picture Experts Group (MPEG) da International Standardization
Union (ISO). O HEVC foi publicado em Abril de 2013 como uma recomendação
chamada ITU-T H.265 (ITU-T, 2013).

O HEVC atinge o dobro da eficiência de compressão (ou 50% de redução na taxa de
bits) comparado com o padrão de codificação de vídeo mais eficiente até o momento, e
mais utilizado no mercado, o padrão H.264/AVC (Advanced Video Coding) (ITU-T,
2011). O dobro da eficiência de compressão do HEVC sobre o H.264/AVC é atingido
para qualidade de vídeo similar, pois ambos os padrões aplicam compressão com
perdas. O HEVC atinge tal eficiência de compressão pelo uso de tamanhos de bloco
maiores (para lidar com as resoluções maiores), particionamento de bloco sofisticado, e
novos ferramentas de codificação avançadas (SULLIVAN, 2012).

A alta eficiência de compressão do HEVC resulta em um aumento do esforço
computacional do codificador HEVC que varia de 1,2 a 3,2 vezes o esforço
computacional do codificador H.264/AVC (VANNE, 2012). Isto requer melhoria de
desempenho adicional dos dispositivos capazes de processar vídeo, para lidar com o
aumento da complexidade e mesmo assim ser capaz de codificar vídeos de alta
resolução em tempo real. Um esforço de pesquisa substancial, especialmente no
codificador HEVC, é previsto para atingir este objetivo (BOSSEN, 2012).

131

No passado, a melhoria de desempenho era atingida devido aos avanços da
tecnologia de fabricação dos semicondutores, que proporcionam altas frequências de
operação através de transistores menores e mais rápidos. Recentemente, o avanço na
fabricação em silício ainda proporciona transistores menores e mais rápidos a cada novo
nodo tecnológico CMOS. Os chips continuam integrando mais transistores na mesma
área, seguindo a lei de Moore para densidade (MOORE, 1965). As tecnologias CMOS
recentes são capazes de integrar mais e mais núcleos (cores) de processamento no
mesmo chip, chamados de processadores multi-core e many-core.

Entretanto, nas novas tecnologias abaixo de 100 nm, o desempenho é limitado por
uma potência máxima denominada Potência Térmica de Projeto (Thermal Design
Power), dado que atualmente a densidade de potência do transistor está aumentando a
cada novo nodo tecnológico CMOS (ESMAEILZADEH, 2011). Para garantir que os
chips permaneçam abaixo da potência térmica de projeto, nem todos os transistores do
chip podem operar na máxima velocidade a todo o tempo, resultando no chamado
“muro de utilização” (utilization wall) (VENKATESH, 2010). A região do chip que fica
a maior parte do tempo operando a baixa frequência ou desligada é chamada em geral
de “dark silicon” (ESMAEILZADEH, 2011) (TAYLOR, 2013). Um trabalho recente
(TAYLOR, 2013) prevê que a porcentagem de dark silicon irá aumentar a cada nodo
tecnológico e estará por volta de 94% até o ano 2020. Dark silicon irá limitar o aumento
da frequência de operação dos processadores para proporcionar aumento de
desempenho.

Para lidar com o alto desempenho necessário para o novo padrão HEVC e para
manter os chips abaixo da potência térmica de projeto, os processadores no futuro irão
integrar muitos aceleradores de hardware no chip para cada função específica da
computação, chamados de arquiteturas ricas em aceleradores (IYER, 2012) (CONG,
2014). Aceleradores de hardware especializados são 500X mais eficientes em energia
que processadores de propósito geral realizando a mesma função (HAMMED, 2011).
Como as funções da computação não são executadas todo tempo simultaneamente, os
aceleradores podem ser desligados quando não estão em uso. Logo, aceleradores de
hardware especializados para funções intensivas em computação são uma maneira
eficiente de “preencher” a área “escura” dos chips.

Apesar dos aceleradores de hardware dedicados proporcionarem alto desempenho e
eficiência energética para codificação e decodificação de vídeo em tempo real, eles tem
algumas desvantagens. Eles são fixos em tempo de projeto e não podem alterar o
hardware em campo, depois da fabricação do chip em silício. Eles também possuem
altos custos para o projeto e fabricação em silício. Hardware reconfigurável fornece
uma solução com baixos custos de projeto, rápida chegada ao mercado, e flexibilidade
para rápidas alterações do circuito através de reconfigurações dinâmicas (TUAN, 2006).
Projetos baseados em Field-programmable Gate Array (FPGA) combinam o alto
desempenho de aceleradores dedicados com a capacidade de explorar alto grau de
paralelismo com alto grau de flexibilidade através de capacidade de programação e
reconfiguração do hardware (SHAFIQUE, 2009)(COMPTON, 2002). A desvantagem
dos FPGAs é sua alta potência comparada a aceleradores dedicados.

O autor desta tese prevê que tanto aceleradores dedicados como aceleradores
reconfiguráveis serão usados nas futuras arquiteturas de processadores ricas em
aceleradores. Esta tese apresenta diferentes contribuições, tanto em aceleração dedicada
como reconfigurável, como é discutido na seção A.1.2. Estas contribuições podem ser
aplicadas aos codificadores HEVC atuais e nos codificadores de vídeo de gerações

132

futuras, se estes codificadores forem baseados em unidades de codificação baseadas em
blocos de pixels de vídeo.

A.1.2. Contribuições desta Tese

O objetivo desta tese é pesquisar aceleradores de hardware dedicados e
reconfiguráveis inovadores para ferramentas de codificação mais intensivas em
computação do novo padrão HEVC. Uma análise da aplicação HEVC, apresentada na
seção A.2, verifica que as ferramentas mais importantes em termos de esforço
computacional são o Filtro de Interpolação de Pixel Fracionário, o Filtro de
Deblocagem e a computação da Soma das Diferenças Absolutas.

No domínio dos aceleradores dedicados, apresentados na seção A.3, esta tese
introduz as seguintes contribuições inovadoras:

• Uma arquitetura de hardware de alta taxa de processamento para o Filtro
de Interpolação de Pixel Fracionário do HEVC, que inclui núcleos de
aceleração de luminância e crominância com 12 unidades de módulos de
filtragem cada um.

• Uma arquitetura de hardware para o Filtro de Interpolação de Pixel
Fracionário do HEVC utilizando somadores compressores para otimizar
área, desempenho e dissipação de potência.

• Uma arquitetura de hardware de alta taxa de processamento para o Filtro
de Deblocagem utilizando reuso de dados para acelerar a decisão do filtro
com baixo custo de área.

• Uma análise comparativa de diferentes alternativas arquiteturais para o
cálculo da Soma das Diferenças Absolutas em termos de área de hardware,
taxa de processamento e dissipação de potência.

Com relação a aceleradores de vídeo reconfiguráveis, esta tese introduz
adicionalmente as seguintes contribuições:

• Uma arquitetura reconfigurável para o Filtro de Interpolação de Pixel
Fracionário do HEVC é apresentada na seção A.4. A arquitetura incorpora
um esquema de predição para estimar o número de chamadas do filtro de
interpolação a cada imagem, utilizando o conhecimento da estrutura de
codificação. Um conjunto de diferentes versões de implementação para os
núcleos de aceleração do filtro de interpolação são desenvolvidos para
permitir um compromisso de área versus desempenho. Um esquema de
seleção de versão de implementação é proposto. Ele seleciona uma versão de
implementação do núcleo de aceleração para cada imagem, dependendo do
número predito de chamadas do filtro de interpolação calculado pelo
esquema de predição. Um esquema de escalonamento é introduzido para
determinar a ordem do processamento e configurar os tipos de filtro. Ele
facilita o reuso das entradas e previne leitura redundante das amostras de
entrada.

• Um esquema de alocação de aceleradores em tempo de execução para
arquiteturas reconfiguráveis de grão misto baseadas em tiles de
processamento é apresentado na seção A.5. O esquema aplica reuso de
módulos de hardware e estimativa de custo de comunicação entre tiles para
calcular em tempo de execução uma alocação de aceleradores que minimize
a comunicação entre tiles destes módulos.

133

Ex
ec

ut
io

n
 ti

m
e

[%
]

A.2. Análise da Aplicação HEVC

A primeira etapa deste trabalho foi a análise da aplicação HEVC (codificador e
decodificador). Esta análise suporta as decisões de quais aceleradores projetar e também
algumas decisões arquiteturais. A análise se baseia no perfilhamento (profiling) do
software do HEVC, o HM (HM, 2013). A contribuição de cada ferramenta de
codificação foi quantificada, para um conjunto de sequências de vídeo de diferentes
resoluções para um conjunto de quatro valores de parâmetro de quantização
(Quantization Parameter – QP). O experimento foi realizado executando o software
HM em uma plataforma com processador Intel Core i7-2600 com 16 GB de memória.

Neste resumo é mostrado o resultado do profiling para a sequência de vídeo de
resolução ultra-alta PeopleOnStreet (com 2560x1600 pixels). A Figura A.1 apresenta a
distribuição do tempo de execução para as ferramentas de codificação mais importantes
do HEVC em termos de esforço computacional. No codificador HEVC, 55%-70% do
tempo total de codificação corresponde a três ferramentas de codificação: Filtro de
Interpolação de Pixel Fracionário, Soma das Diferenças Absolutas (SAD) e Soma das
Diferenças Transformadas Absolutas (SATD). A contribuição no tempo depende do
QP. No decodificador HEVC, 35%-55% do tempo de execução corresponde a duas
ferramentas: Filtro de Interpolação de Pixel Fracionário e o Filtro de Deblocagem.

Figura A.1 – Contribuição de diferentes ferramentas de codificação do HEVC
(percentual) do tempo de execução total. Sequência de vídeo: “People on Street”

(2560x1600 pixels), 150 quadros
HEVC encoder HEVC decoder

80
Interpolation Filter SATD SAD

60

40

20

0
22 27 32 37

Quantization Parameter (QP)

60 Deblocking Filter
50
40
30
20
10

0
22 27 32 37

Quantization Parameter (QP)

Fonte: o autor.

Com relação ao Filtro de Interpolação de Pixel Fracionário, foi realizada também
uma análise de tempo de execução, como mostrado na Figura A.2. Esta análise mostra
que o número de interpolações por imagem (quadro) varia significantemente mesmo
para vídeos de mesma resolução e mesmo QP. Desta forma, existe um grande potencial
de redução de potência em tempo real se for explorada esta variação de carga de
trabalho (workload).

134

N
um

be
r o

f f
un

ct
io

n
ca

lls
 to

 ‘f
ilt

er
’ m

et
ho

d

Figura A.2 – Número de chamadas por quadro à função básica do filtro de interpolação

Legend:

BQMall (832x480), RA, QP=22 BQMall (832x480), RA, QP=37

BasketballDrill (832x480), RA, QP=22 BasketballDrill (832x480), RA, QP=37

6E+6 HEVC encoder

4E+6

2E+6

0E+0

2E+4

1E+4

5E+3

0E+0

0 20 40 60 80 100 120 140 160

HEVC decoder

0 20 40 60 80 100 120 140 160

Picture number

Fonte: o autor.

A.3. Aceleradores de Hardware Dedicados

Primeiramente, uma arquitetura dedicada para o Filtro de Interpolação de Pixel
Fracionário foi proposta nesta tese. Esta arquitetura é mostrada na Figura A.3.

Figura A.3 – Diagrama da Arquitetura Proposta para o Filtro de Interpolação de Pixel
Fracionário do HEVC

Fonte: (DINIZ, 2013).

A arquitetura é composta de dois núcleos de aceleração, um para luminância e outro
para crominância. Cada núcleo é composto de 12 datapaths em paralelo para atingir a taxa
de processamento desejada. Cada datapath é configurável para selecionar o tipo de
filtragem, e substitui as multiplicações por constantes através de operações de soma e

135

deslocamento. Um módulo para escalonamento dos datapaths também é proposto nesta
tese. Outros módulos apresentados na Figura A.3 não fazem parte do escopo do trabalho.
Esta arquitetura reduz a área de hardware comparada com trabalho estado da arte. Mais
detalhes desta arquitetura podem ser encontrados em (DINIZ, 2013).

Esta arquitetura também foi objeto do estudo de uma proposta para substituição dos
somadores, presentes nos datapaths, por somadores compressores, que fornecem uma
eficiência maior quando a soma de múltiplos operandos é necessária, o que é o caso
desta arquitetura. A aplicação de somadores compressores 8-2 e 7-2 no datapath de
luminância do filtro de interpolação de pixel fracionário do HEVC é mostrada na Figura
A.4. Mais detalhes a arquitetura do filtro de interpolação usando somadores
compressores pode ser consultada em (DINIZ, 2015c).

Figura A.4 – Arquitetura modificada do datapath do filtro de interpolação de luminância

usando (a) somador compressor 7-2; (b) somador compressor 8-2.

Fonte: o autor.

Uma arquitetura para o Filtro de Deblocagem do HEVC é proposta nesta tese, sendo
apresentada na Figura A.5. Ela contém dois módulos principais: o módulo de decisões
de filtragem (pois trata-se de um filtro adaptativo) e o módulo de operações de filtragem
(que inclui dois tipos de filtro, o normal e o forte). Cada módulo contém datapaths que
calculam as decisões e operações conforme as equações de filtro definidas no padrão
HEVC. Onde haviam multiplicações por constantes, estas foram substituídas por
operações de soma e deslocamento. No módulo de decisões, foi possível realizar um só
datapath para calcular as condições 1, 2, 3, 8 e 9, reusando hardware. Esta arquitetura
reduz a área de hardware comparada com trabalhos estado da arte, mantendo a taxa de
processamento. Mais detalhes sobre a arquitetura podem ser consultados em (DINIZ,
2015b).

136

p

Figura A.5 – Diagrama da arquitetura de hardware proposta para o filtro de deblocagem
do HEVC

PU & QP

TU flags

P and Q
block types

Filtering decisions

c

Filtering operations c c

0 p1 1

0 p1 p1

0s 1s 1s

0s 1s 1s

Legend: Normal filter Strong filter

Fonte: (DINIZ, 2015b).

Esta seção também apresenta o desenvolvimento de alternativas arquiteturais para o
elemento de processamento do cálculo da Soma das Diferenças Absolutas (SAD).
Foram desenvolvidas nove alternativas arquiteturais, combinando dois parâmetros: i) o
número de amostras de entrada em paralelo (4, 8 e 16); ii) o número de estágios de
pipeline, dependendo de cada versão de paralelismo, conforme abaixo:

a) Alternativas com 1, 3 e 5 estágios de pipeline para o elemento de
processamento de SAD com 4 amostras de entrada;

b) Alternativas com 1, 3 e 6 estágios de pipeline para o elemento de
processamento de SAD com 8 amostras de entrada;

c) Alternativas com 1, 4 e 7 estágios de pipeline para o elemento de
processamento de SAD com 16 amostras de entrada.

A Figura A.6 ilustra somente o elemento de processamento de SAD com 4 amostras
de entrada. Mais detalhes sobre este trabalho podem ser consultados em (DINIZ, 2010).

Figura A.6 – Alternativas para arquitetura de SAD com 4 amostras de entrada

Legend: All versions 3-stage and 5-stage 5-stage

Orig(n): Original sample n
Orig(0)
Pred(0)

Orig(1)
Pred(1)

Orig(2)
Pred(2)

Orig(3)
Pred(3)

- abs
+

- abs

- abs
+

- abs

Pred(n): Predicted sample n

SAD
+ +

Fonte: (DINIZ, 2010).

137

A.4. Arquitetura de Hardware Reconfigurável para o Filtro de Interpolação de

Pixel Fracionário do HEVC

Esta tese propõe uma arquitetura reconfigurável para o Filtro de Interpolação de
Pixel Fracionário, dado a análise da seção A.2 de que é possível economizar
potência/energia em tempo de execução. A arquitetura é composta por quatro módulos
principais:

1) Módulo de Predição que estima o número de chamadas do filtro de
interpolação para próximos quadros a serem codificados, baseado no
monitoramento de interpolações em GOPs passados.

2) Núcleos de Aceleração para Luma e Chroma. Filtros de interpolação em
hardware com um conjunto de diferentes versões de implementação
proporcionando um número de opções com diferentes resultados de área de
desempenho.

3) Módulo de Seleção da Versão de Implementação que seleciona a versão de
implementação adequada, reconfigurando a versão de implementação (número
de datapaths em paralelo) baseado no número de chamadas de interpolação
preditas pelo módulo de predição.

4) Módulo de Escalonamento Adaptativo que determina a ordem de
processamento e a configuração do tipo de filtro de forma adaptativa.

O diagrama da arquitetura é mostrado na Figura A.7. Esta arquitetura assume que os
núcleos de aceleração são reconfigurados em FPGA que suportam reconfiguração
parcial dinâmica (XILINX, 2010) (ALTERA, 2010). Mais detalhes sobre esta
arquitetura podem ser consultados em (DINIZ, 2015a).

Figura A.7 – Arquitetura Reconfigurável para o Filtro de Interpolação de Pixel

Fracionário do HEVC

Fonte: (DINIZ, 2015a).

138

A.5. Alocação de Aceleradores em Tempo de Execução para Arquiteturas

Reconfiguráveis

Esta seção apresenta o esquema de alocação em tempo de execução para arquiteturas
reconfiguráveis de grão misto baseadas em tiles de processamento. Trata-se de um
problema que não foi encontrada solução reportada na literatura. O problema do uso de
uma estratégia trivial, não ciente da arquitetura, para alocação de aceleradores neste tipo
de arquitetura é mostrado na Figura A.8.

Figura A.8 – Exemplo de alocação de aceleradores para 3 instruções usando esquema

first-fit com reuso de datapaths

Fonte: (DINIZ, 2014).

Este trabalho propõe um novo esquema para alocação de aceleradores (Figura A.9)
que é ciente da arquitetura reconfigurável baseada em tiles. Ele aplica o reuso de
datapaths, somente nos casos em que é benéfico devido à divisão de tiles. Ele também
aplica estimação de comunicação quando é necessário alocar aceleradores em tiles
diferentes. Mais detalhes podem ser consultados em (DINIZ, 2014).

Figura A.9 – Esquema de alocação proposto (usando mesmo exemplo anterior)

Fonte: (DINIZ, 2014).

139

A.6. Conclusões e Trabalhos Futuros

A presente tese focou na contribuição de aceleradores dedicados e reconfiguráveis
inovadores para o padrão HEVC.

O trabalho de pesquisa começou com uma análise da aplicação de codificação
HEVC, como apresentada na seção A.2, o que indicou que as ferramentas de
codificação mais importantes a serem aceleradas em hardware são o Filtro de
Interpolação de Pixel Fracionário, o Filtro de Deblocagem, e o cálculo da Soma das
Diferenças Absolutas, necessária para Estimação de Movimento. Os resultados da
análise mostraram que há variações significativas dependendo da sequência de vídeo a
ser codificada (definida como entrada pelo usuário) e do parâmetro de quantização que
define o nível de perda de dados na codificação. Uma análise de tempo real do Filtro de
Interpolação indica que existe um grande potencial de economia de potência/energia
através da adaptação do acelerador de hardware à carga de trabalho variável.

Os resultados obtidos dos aceleradores de hardware dedicados inovadores (seção
A.3) indicam ganhos significativos sobre aceleradores de hardware do estado da arte. A
arquitetura dedicada de hardaware para o Filtro de Interpolação atinge taxa de
processamento suficiente para processar vídeos de resolução ultra-alta e reduz a área de
hardware por cerca de 50% comparado com uma arquitetura estado da arte. Tal ganho
foi obtido pelo projeto de datapaths configuráveis sem multiplicadores e eficientes em
área. A taxa de processamento foi melhorada através do uso de dois núcleos de
aceleração com nível de paralelismo de 12 pixels em paralelo, que contém os datapaths
configuráveis. Um módulo de escalonamento foi projetado para prevenir bolhas no
pipeline e para aprimorar a localidade de memória, reduzindo o uso de memória. A
arquitetura proposta para o Filtro de Deblocagem atinge taxa de processamento similar
com arquiteturas do estado da arte, enquanto reduz o número de portas (gate count) em
5 a 6 vezes, e reduz a potência em 3 vezes comparado com estas arquiteturas. Os
datapaths desenvolvidos neste trabalho são altamente otimizados para área em utilizam
reuso de hardware. Nossa análise comparativa de elementos de processamento para o
SAD introduziu várias alternativas arquiteturais para explorar diferentes compromissos
de área, desempenho e potência.

A arquitetura reconfigurável para o filtro de interpolação de pixel fracionário do
padrão HEVC, descrita na seção A.4, é nova e proporciona significativa redução de área
em tempo de projeto e adaptação de potência/energia em tempo de execução a cada
quadro do vídeo. Esta característica não era ainda suportada pelas arquiteturas do filtro
de interpolação do estado da arte. A adaptação em tempo de execução é realizada
através de um esquema de predição, que estima o número de chamadas ao filtro de
interpolação e um módulo de seleção de versão de implementação que adapta a
diferentes taxas de processamento pela seleção de diferentes versões de implementação.

O esquema de alocação de aceleradores em tempo de execução para arquiteturas
reconfiguráveis de grão misto baseadas em tiles de processamento, apresentado na
seção A.5, reduz o overhead de comunicação, comparado com uma estratégia first-fit
com reuso de datapaths, em até 44% (23% em média) para diferentes números de tiles e
diferentes organizações internas de tiles. Este esquema de alocação é ciente da
arquitetura baseada em tiles, para alocar de forma eficiente os aceleradores, evitando
comunicações de aceleradores entre dois ou mais tiles diferentes.

Os resultados no geral demonstraram que os novos aceleradores dedicados e
reconfiguráveis propostos nesta tese estão à frente de soluções do estado da arte. Devido

140

às limitações de potência e energia das tecnologias CMOS atuais e aos altos requisitos
de desempenho dos padrões de codificação de vídeo da nova geração, futuras
implementações de sistemas de codificação de vídeo irão integrar, no mesmo chip,
processadores de muitos núcleos (many-core) com muitos aceleradores dedicados e
reconfiguráveis, nas chamadas arquiteturas ricas em aceleradores.

As arquiteturas ricas em aceleradores são necessárias para codificação de vídeo de
ultra-alta resolução em tempo real com eficiência em potência/energia. Neste contexto,
esta tese introduz novos aceleradores e técnicas que possibilitam implementações de
codificação de vídeo de nova geração com aperfeiçoamento em área, desempenho, e
eficiência em potência/energia.

Além das contribuições apresentadas nesta tese, várias direções de pesquisa
emergem para o futuro, as quais não foram tratadas neste trabalho. Algumas destas
direções de pesquisa são sugeridas abaixo como trabalhos futuros.

Aceleradores de hardware para outras ferramentas de codificação do HEVC:
enquanto esta tese focou nas ferramentas de codificação mais intensivas em computação
do HEVC, há outras ferramentas de codificação não tratadas que podem ser
implementadas como aceleradores de hardware para um sistema completo de
codificação de vídeo, tais como o cáculo da Soma das Diferenças Transformadas
Absolutas (SATD), Codificação Binária Aritmética Adaptativa ao Contexto (CABAC),
Predição Intra, Transformadas, Quantização, e o filtro de Offset de Amostra Adaptativo
(Sample Adaptive Offset - SAO). O desafio de pesquisa é projetar aceleradores
eficientes em desempenho/área/potência para estas ferramentas de codificação,
comparadas a outras soluções presentes na literatura.

Exploração das ferramentas de codificação paralelas do HEVC: o HEVC inclui
algumas ferramentas de codificação para facilitar o processamento paralelo para
codificação de vídeo, tais como os Tiles e o Wavefront Parallel Processing (WPP).
Com relação aos tiles, há muitos desafios de pesquisa que afetam tanto o desempenho
como a qualidade do vídeo. O número de tiles para cada imagem e onde as fronteiras
dos tiles são colocadas é decidido no lado do codificador do vídeo e não são
padronizadas. Quebrar imagens em mais tiles aumenta a escalabilidade para
processadores de muitos núcleos, mas degrada a qualidade do vídeo. Portanto, existe um
compromisso entre o desempenho e qualidade do vídeo quando se usa tiles. Com
relação ao WPP (quando algumas CTUs de uma imagem podem ser processadas em
paralelo em uma abordagem multi-thread), o desafio de pesquisa é decidir em quais
situação é benéfico utilizar dela. Existe também a decisão entre usar tiles ou WPP para
cada imagem, porque o padrão HEVC ainda não suporta a coexistência destas duas
ferramentas.

Aceleradores de hardware para processamento de imagens e vídeo: algumas
metodologias são usadas neste trabalho para projetar aceleradores de hardware
eficientes para ferramentas específicas do padrão HEVC. Estas metodologias podem ser
aplicadas para projetar aceleradores para outras aplicações de imagens e vídeo, como
processamento de imagens (filtragem e interpolação, por exemplo), codificação de
imagens, pré-processamento de vídeo, etc.

Arquiteturas ricas em aceleradores para a era do Dark Silicon: os benefícios dos
aceleradores de hardware comparados a processadores de propósito geral estão levando
a pesquisa de processadores multi-core e many-core para a direção de arquiteturas ricas
em aceleradores, ou seja, acoplar muitos núcleos de processamento com muitos

141

aceleradores de hardware dedicados e reconfiguráveis para funções específicas das
aplicações. Neste tópico de pesquisa, muitos desafios são encontrados. Primeiramente,
desafios de pesquisa em tempo de projeto devem ser abordados. Quais aceleradores a
ser projetados e se eles devem ser projetados como aceleradores dedicados ou
reconfiguráveis são boas questões de pesquisa. Perfilhamento da aplicação pode ajudar
os projetistas a escolher quais aceleradores a projetar. Funções importantes usadas em
muitas aplicações e/ou em sucessivas gerações de aplicações, são boas candidatas para
os aceleradores dedicados. Aceleradores reconfiguráveis podem ser usados para
proporcionar flexibilidade a funções importantes e emergentes (como o novo filtro de
interpolação de pixel fracionário do HEVC, por exemplo) e para mapear outros
aceleradores que são usados em algumas fases da execução da aplicação (devido ao fato
de que aceleradores reconfiguráveis dissipam mais potência). No nível mais alto do
projeto de sistema, outro desafio é como acoplar muitos aceleradores de hardware em
muitos núcleos de processamento, e como conectá-los. Decisões em tempo de projeto
são limitadas pela área do chip e potência máxima. Outro desafio de pesquisa emerge no
contexto do controle em tempo de execução: como lidar com o desbalanceamento de
carga de trabalho nas threads que executam em uma arquitetura rica em aceleradores.
Um sistema de tempo de execução é essencial para alocar threads e ligar/desligar os
aceleradores, com o principal objetivo de sustentar o desempenho dado um limite
máximo de potência. O sistema de tempo de execução deve ser alimentado pelo
monitoramento da aplicação e predição para otimizar o desempenho final da aplicação
em potência e tempo.

