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ABSTRACT

Filtering is arguably the single most important operation in image and video process-
ing. In particular, high-dimensional filters are a fundamental building block for several
applications, having recently received considerable attention from the research commu-
nity. Unfortunately, naive implementations of such an important class of filters are too
slow for many practical uses, specially in light of the ever increasing resolution of dig-
itally captured images. This dissertation describes three novel approaches to efficiently
perform high-dimensional filtering: the domain transform, the adaptive manifolds, and
a mathematical formulation for recursive filtering of non-uniformly sampled signals.

The domain transform defines an isometry between curves on the 2D image manifold
in 5D and the real line. It preserves the geodesic distance between points on these curves,
adaptively warping the input signal so that high-dimensional geodesic filtering can be
efficiently performed in linear time. Its computational cost is not affected by the choice
of the filter parameters; and the resulting filters are the first to work on color images at
arbitrary scales in real time, without resorting to subsampling or quantization.

The adaptive manifolds compute the filter’s response at a reduced set of sampling
points, and use these for interpolation at all input pixels, so that high-dimensional Eu-
clidean filtering can be efficiently performed in linear time. We show that for a proper
choice of sampling points, the total cost of the filtering operation is linear both in the num-
ber of pixels and in the dimension of the space in which the filter operates. As such, ours
is the first high-dimensional filter with such a complexity. We present formal derivations
for the equations that define our filter, providing a sound theoretical justification.

Finally, we introduce a mathematical formulation for linear-time recursive filtering
of non-uniformly sampled signals. This formulation enables, for the first time, geodesic
edge-aware evaluation of arbitrary recursive infinite impulse response filters (not only
low-pass), which allows practically unlimited control over the shape of the filtering kernel.
By providing the ability to experiment with the design and composition of new digital
filters, our method has the potential do enable a greater variety of image and video effects.

The high-dimensional filters we propose provide the fastest performance (both on
CPU and GPU) for a variety of real-world applications. Thus, our filters are a valuable
tool for the image and video processing, computer graphics, computer vision, and com-
putational photography communities.

Keywords: High-Dimensional Filtering, Domain Transform, Adaptive Manifolds, Non-
Uniformly Sampled Signals, Geodesic Filtering, Euclidean Filtering, Hybrid Filtering.





RESUMO

Filtragem Eficiente em Altas-Dimensões para Processamento de Imagens e Vídeos

Filtragem é uma das mais importantes operações em processamento de imagens e
vídeos. Em particular, filtros de altas dimensões são ferramentas fundamentais para di-
versas aplicações, tendo recebido recentemente significativa atenção de pesquisadores da
área. Infelizmente, implementações ingênuas desta importante classe de filtros são de-
masiadamente lentas para muitos usos práticos, especialmente tendo em vista o aumento
contínuo na resolução de imagens capturadas digitalmente. Esta dissertação descreve três
novas abordagens para filtragem eficiente em altas dimensões: a domain transform, os
adaptive manifolds, e uma formulação matemática para a aplicação de filtros recursivos
em sinais amostrados não-uniformemente.

A domain transform, representa o estado-da-arte em termos de algoritmos para fil-
tragem utilizando métrica geodésica. A inovação desta abordagem é a utilização de um
procedimento simples de redução de dimensionalidade para implementar eficientemente
filtros de alta dimensão. Isto nos permite a primeira demonstração de filtragem com pre-
servação de arestas em tempo real para vídeos coloridos de alta resolução (full HD).

Os adaptive manifolds, representam o estado-da-arte em termos de algoritmos para
filtragem utilizando métrica Euclidiana. A inovação desta abordagem é a ideia de subdi-
vidir o espaço de alta dimensão em fatias não-lineares de mais baixa dimensão, as quais
são filtradas independentemente e finalmente interpoladas para obter uma filtragem de
alta dimensão com métrica Euclidiana. Com isto obtemos diversos avanços em relação
a técnicas anteriores, como filtragem mais rápida e requerendo menos memória, além da
derivação do primeiro filtro Euclidiano com custo linear tanto no número de pixels da
imagem (ou vídeo) quanto na dimensionalidade do espaço onde o filtro está operando.

Finalmente, introduzimos uma formulação matemática que descreve a aplicação de
um filtro recursivo em sinais amostrados de maneira não-uniforme. Esta formulação es-
tende a ideia de filtragem geodésica para filtros recursivos arbitrários (tanto passa-baixa
quanto passa-alta e passa-banda). Esta extensão fornece maior controle sobre as respos-
tas desejadas para os filtros, as quais podem então ser melhor adaptadas para aplicações
específicas. Como exemplo, demonstramos—pela primeira vez na literatura—filtros geo-
désicos com formato Gaussiano, Laplaciana do Gaussiano, Butterworth, e Cauer, dentre
outros. Com a possibilidade de se trabalhar com filtros arbitrários, nosso método permite
uma nova variedade de efeitos para aplicações em imagens e vídeos.

Palavras-chave: Filtragem em Altas Dimensões, Transformação de Domínio, Variedades
Adaptativas, Sinais Amostrados Não-Uniformemente, Filtragem Geodésica e Euclidiana.
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1 INTRODUCTION

High-dimensional filtering has recently received significant attention in the image
processing, computer vision, and computational photography communities. Such filters
are fundamental building blocks for several applications, including tone mapping (DU-
RAND; DORSEY, 2002), denoising (BUADES; COLL; MOREL, 2005), detail manipu-
lation (BAE; PARIS; DURAND, 2006; FATTAL; AGRAWALA; RUSINKIEWICZ, 2007),
upsampling (KOPF et al., 2007), spatio-temporal filtering (BENNETT; MCMILLAN,
2005; RICHARDT et al., 2010), photon-map filtering (WEBER et al., 2004; BAUSZAT;
EISEMANN; MAGNOR, 2011), alpha matting (GASTAL; OLIVEIRA, 2010; HE et al.,
2011), recoloring (CHEN; PARIS; DURAND, 2007), and stylization (WINNEMöLLER;
OLSEN; GOOCH, 2006). Existing methods are able to produce good results in many
practical scenarios, and high-dimensional filters are readily available to end users in com-
mercial and open source software (Adobe Systems Inc., 2012a,b; KIMBALL; MATTIS;
GIMP Development Team, 2012).

High-dimensional filters can be classified as Euclidean or geodesic, according to how
they compute distances between samples. The main difference between the two groups is
the filter behavior near strong discontinuities (commonly called edges) in the signal. In
general, Euclidean filters allow for samples belonging to different sides of a discontinuity
to be combined, while geodesic filters do not (see Section 2.2.1). Thus, each filter type
provides best results for different applications.

Due to their wide applicability, several high-dimensional and related filters have been
proposed. The most popular one is the bilateral filter (AURICH; WEULE, 1995; SMITH;
BRADY, 1997; TOMASI; MANDUCHI, 1998), which works by weight-averaging the
colors of neighbor pixels based on their distances in image and color space. For 2D
RGB images, it operates in a 5D space (BARASH, 2002), and a naïve implementa-
tion is too slow for many practical uses. Another popular filter is anisotropic diffu-
sion (PERONA; MALIK, 1990). It is modeled using partial differential equations and
implemented as an iterative process, which is usually equally slow. As a result, several
techniques have been proposed that either try to accelerate anisotropic diffusion or bi-
lateral filtering, or introduce alternative ways of performing similar filtering operations
on images and videos. While they clearly improve performance, these solutions natively
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only handle grayscale images (DURAND; DORSEY, 2002; CHEN; PARIS; DURAND,
2007; YANG; TAN; AHUJA, 2009), are still not sufficiently fast for real-time applica-
tions (PARIS; DURAND, 2009; ADAMS et al., 2009; ADAMS; BAEK; DAVIS, 2010;
GREWENIG; WEICKERT; BRUHN, 2010; SUBR; SOLER; DURAND, 2009), restrict
filtering to certain scales (FATTAL, 2009), or may introduce artifacts by not using true
Euclidean distances (HE; SUN; TANG, 2010).

1.1 Thesis Statement

This dissertation introduces new ways to efficiently perform high-dimensional filter-
ing with both Euclidean and geodesic metrics. We propose several filters that address the
main limitations of previous techniques, in addition to providing the fastest performance
(on both CPU and GPU) for a variety of real-world applications. This efficiency comes
from their linear cost in both the number of pixels and the dimensionality of the space in
which the filters operate. Thus, the central thesis statement of this research follows:

It is possible to perform high-dimensional filtering of images and videos in linear
time in both the number of pixels and the dimensionality of the space in which
the filters operate. The filter response can be computed with such complexity for
all of Euclidean, geodesic, and hybrid Euclidean-geodesic metrics. Moreover,
it is possible to use arbitrary recursive filters with the geodesic metric to obtain
fine control over the filter’s response.

We demonstrate the validity of these claims as well as the efficiency and versatility of
our filters on several real-time image and video processing tasks, including color edge-
aware smoothing, depth-of-field effects, stylization, recoloring, colorization, detail en-
hancement, denoising (using up to 147 dimensions), global illumination smoothing, and
tone mapping. Some of these applications are illustrated in Figure 1.1.

1.2 Publications

The results presented in this dissertation have been published at ACM SIGGRAPH
2011–2012 (Chapters 3 and 4), and at Eurographics 2015 (Chapter 5). Our filters have
already been put to use by researchers at Adobe, NVIDIA, Google, and Disney, in ap-
plications such as color grading (BONNEEL et al., 2013), viewfinder editing for digital
cameras (BAEK et al., 2013), synthetic defocus for smartphone cameras (BARRON et al.,
2015), and enforcing temporal consistency in video effects (LANG et al., 2012). Thus,
our filters provide a valuable tool for the image and video processing, computer graphics,
computer vision, and computational photography communities.

We provide official implementations of our filters in the Appendix and in our web-
pages (GASTAL; OLIVEIRA, 2014a,b,c):
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(a) Denoising (b) Non-photorealism (c) Stylization

(d) Detail enhancement (e) Colorization

(f) Recoloring (g) HDR tone mapping

Figure 1.1: Some of the several applications of our high-dimensional filters.
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http://inf.ufrgs.br/~eslgastal/DomainTransform,
http://inf.ufrgs.br/~eslgastal/AdaptiveManifolds,
http://inf.ufrgs.br/~eslgastal/NonUniformFiltering.

An unofficial implementation of our filters is also available in the Open Source Computer
Vision library (OpenCV, 2014a,b), as of August 2014.

1.3 Overview of our High-Dimensional Filters

1.3.1 Domain Transform for Geodesic Filtering

Chapter 3 presents the Domain Transform technique we introduced in (GASTAL;
OLIVEIRA, 2011), used to efficiently perform geodesic filtering of images and videos.
Its efficiency derives from a key observation: if the geodesic distances measured on top of
a manifold are preserved in a space of lower dimensionality, many translation-invariant
filters in this new space will behave as geodesic filters. Thus, treating an RGB image as a
2D manifold embedded in a 5D space, our transform defines an isometry between curves
on this manifold and the real line: it preserves the geodesic distances between points on
the curve, adaptively warping the input signal so that 1D geodesic filtering can be effi-
ciently performed in linear time in the number of pixels and dimensionality of the space
in which the filter operates. We demonstrate three realizations for our 1D geodesic filters,
based on normalized convolution, interpolated convolution, and recursion. These filters
have very distinct impulse responses, making each one more appropriate for specific ap-
plications. Finally, although our 1D filters cannot be exactly generalized to higher spatial
dimensions, we show how to use them to efficiently produce high-quality nD geodesic
filters.

Our domain transform approach has several desirable features. First, the use of 1D
operations leads to considerable speedups over previous techniques and potential memory
savings. For instance, it can filter one megapixel color images in 0.007 seconds on a
GTX 280 GPU. Second, its computational cost is not affected by the choice of the filter
parameters. Third, it is the first geodesic filter technique capable of working on color
images at arbitrary scales in real time, without resorting to subsampling or quantization.
Figure 3.1 shows a few examples of geodesic-filtering effects possible with the domain
transform.

The contributions of our domain-transform filtering technique include:

• A novel approach for efficiently performing high-quality edge-aware filtering of im-
ages and videos based on a dimensionality-reduction strategy (Sections 3.1 and 3.2).
Our approach leads to filters with several desirable features and significant speed-
ups over previous techniques;

• A technique to perform anisotropic edge-preserving filtering on curves of the 2D
image manifold using 1D linear filters. It consists of anisotropically scaling the

http://inf.ufrgs.br/~eslgastal/DomainTransform
http://inf.ufrgs.br/~eslgastal/AdaptiveManifolds
http://inf.ufrgs.br/~eslgastal/NonUniformFiltering
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curve, which is then mapped to the real line using an isometry, followed by the
application of a 1D linear filter (Section 3.2);

• A technique to efficiently implement 2D edge-preserving smoothing filters as a
sequence of 1D filtering operations (Section 3.3). The resulting 2D filters cor-
rectly handle color images and behave as expected even in extreme situations (Sec-
tion 3.2.3);

• The first edge-preserving smoothing filter that simultaneously exhibits the follow-
ing properties: (i) it supports a continuum of scales; (ii) its processing time is linear
in the number of pixels, and is independent of the filter parameters, allowing for
real-time computations; (iii) correctly handles color images; and (iv) offers control
over the kernel’s shape. For this, we show examples of approximate Gaussian and
exponential responses (Section 3.4);

• A demonstration that our approach can be used to create a variety of effects for
images and videos in real time (Section 5.5).

1.3.2 Adaptive Manifolds for Euclidean Filtering

Chapter 4 presents the Adaptive Manifolds technique we introduced in (GASTAL;
OLIVEIRA, 2012), used to efficiently perform Euclidean filtering of images and videos.
Our solution accelerates filtering by evaluating the filter’s response on a reduced set of
sampling points and using these values to interpolate the filter’s response at all N input
pixels. We show that, given an appropriate choice of sampling points, the image can
be filtered in O(dNK) time, where d is the dimension of the space in which the filter
operates, and K is a value independent of N and d (K typically varies from 3 to 15).
Thus, the resulting filter is the first high-dimensional Euclidean filter with linear cost both
inN and in d. We present a derivation for the equations that define our method, providing
a theoretical justification for the technique and for its properties. We also show that the
response of our filter can easily approximate either a standard Gaussian, a bilateral, or a
non-local-means filter (BUADES; COLL; MOREL, 2005). This kind of versatility has
also been described by Adams et al. (ADAMS et al., 2009; ADAMS; BAEK; DAVIS,
2010). However, our filter is faster and requires less memory than previous approaches.
For instance, we can “bilateral-like” filter a 10-Megapixel full-color image in real time
(50 fps) on a GTX 580 GPU. Furthermore, the flexibility of our approach allows for the
first hybrid Euclidean-geodesic filter that runs in a single pass. This allows for a filter
with Euclidean response in selected dimensions of the space and geodesic response in the
remaining dimensions. Figure 4.1 shows a few examples of Euclidean-filtering effects
possible with the adaptive manifolds.

The contributions of our adaptive-manifold filtering technique include:

• An efficient approach for performing high-dimensional Euclidean filtering. Our
solution produces high-quality results, and is faster and requires less memory than
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previous approaches (Section 4.3). It is the first filter with linear complexity in both
the number of pixels N , and in the dimension d of the space in which the filter
operates (Section 4.5.2);

• A theoretical justification for the method and for its properties, by means of a formal
derivation of the equations that define it (Section 4.2);

• An algorithm for hierarchically computing nonlinear manifolds adapted to an input
signal (Section 4.3);

• A mechanism for trading off accuracy and speed, which also lends to a filter with
outlier-suppression properties (Section 4.4);

• The first demonstration of a hybrid Euclidean-geodesic filter that runs in a single
pass (Section 4.7).

1.3.3 High-Order Recursive Filtering of Non-Uniformly Sampled Signals

Chapter 5 presents a discrete-time mathematical formulation for applying recursive
digital filters to non-uniformly sampled signals, which we introduced in (GASTAL;
OLIVEIRA, 2015). This formulation enables, for the first time, geodesic edge-aware
evaluation of arbitrary recursive infinite impulse response digital filters (not only low-
pass), which allows practically unlimited control over the shape of the filtering kernel. It
also presents several desirable features: it preserves the stability of the original filters; is
well-conditioned for low-pass, high-pass, and band-pass filters alike; its cost is linear in
the number of samples and is not affected by the size of the filter support. Our method
is general and works with any non-uniformly sampled signal and any recursive digital
filter defined by a difference equation. Since our formulation directly uses the filter coef-
ficients, it works out-of-the-box with existing methodologies for digital filter design. We
demonstrate the effectiveness of our approach by filtering non-uniformly sampled signals
in various image and video processing tasks.

The contributions of our non-uniform filtering formulation include:

• A discrete-time O(r N) mathematical formulation for applying arbitrary recursive
filters to non-uniformly sampled signals (Section 5.2), where N is the number of
samples being filtered and r is the order of the filter;

• Two normalization schemes for filtering non-uniformly sampled signals: one based
on piecewise resampling (Section 5.2.5), and the other based on spatially-variant
scaling (Section 5.2.6). In edge-aware applications, our infinite impulse response
(IIR) normalization schemes provide control over the filter’s response to signal dis-
continuities (i.e., edges). This was previously only possible for finite impulse re-
sponse (FIR) filters;
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• A general technique to obtain linear-time low-pass, high-pass, and band-pass edge-
aware filters (Section 5.5.1). Our approach allows one to perform all these filters in
real time;

• The first linear-time edge-aware demonstrations of several low/high/band-pass fil-
ters, including Gaussian, Laplacian of Gaussian, and Butterworth (Section 5.5);

• A demonstration of uses of non-uniform filtering in various image and video pro-
cessing applications (Section 5.5), for which we discuss important details, such
as common boundary conditions (Section 5.2.7), and symmetric filtering (Sec-
tion 5.2.8).
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2 BACKGROUND ON HIGH-DIMENSIONAL FILTERING

2.1 Notation used in this dissertation

A signal is defined by a function

f : S ⊂ RdS → R ⊂ RdR

associating each point from its dS-dimensional spatial domain S to a value in its dR-
dimensional rangeR. Examples of such a signal include grayscale images (dS = 2, dR =

1), RGB color images (dS = 2, dR = 3), RGB color videos (dS = 3, dR = 3), and 3D
tomographic images (dS = 3, dR = 1). For digital manipulation, the domain S must be
discretized. Thus, let

DN(S) = {p1, . . . , pN}

be the set of N samples obtained by sampling S using a regular grid (a discretization
of S). We refer to each pi as a pixel, even for signals with dS 6= 2. We also adopt the
abbreviated notation fi = f(pi), and generically refer to fi as the color of pixel pi.

For each pixel pi ∈ S , let p̂i ∈ S × R be the point in a d-dimensional space (d =

dS + dR) with coordinates given by the concatenation of the spatial coordinates pi ∈ S
and the range coordinates fi ∈ R. For example, in an RGB image, a pixel pi = (xi, yi)

T

with color value fi = (Ri, Gi, Bi)
T has p̂i = (xi, yi, Ri, Gi, Bi)

T ; and in a YUV video, a
pixel pi = (xi, yi, ti)

T with color value fi = (Yi, Ui, Vi)
T has p̂i = (xi, yi, ti, Yi, Ui, Vi)

T .
This concatenation of coordinates will also be denoted as p̂i = (pi, fi).

2.2 High-Dimensional Filtering

High-dimensional filtering produces a new set of pixel colors as weighted sums of the
colors of the input pixels. The weights of this linear combination are given by a function
φ called the filter kernel.Filtering a signal f with φ gives a new signal g. This process is
expressed by the discrete high-dimensional convolution (a linear operator) of f and φ:

gi =
∑
pj∈S

φ (∆(p̂i, p̂j)) fj, (2.1)

where ∆(p̂i, p̂j) is a distance-measurement function based on some specified metric. For
example, the Euclidean distance would be given by ∆(p̂i, p̂j) = ‖p̂i− p̂j‖2, where ‖ ·‖2 is
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(a) Grayscale Image (b) Euclidean Distance (c) Geodesic Distance

Figure 2.1: Comparison of Euclidean and geodesic distance metrics. The grayscale
image in (a) is defined by a function f : R2 → R. It can be interpreted as a surface
(2D manifold) embedded in 3D space—a heightfield. This is illustrated in (b) and (c).
Note how the pixels marked by white circles in (a) sit on top of the manifold in (b-c).
The Euclidean distance shown in (b) is the smallest distance in 3D space: the length of a
straight line (shown in green) between the high-dimensional points. The geodesic distance
shown in (c) is the smallest distance on top of the manifold: the length of a straight line
(shown in blue) in a curved space (for clarity, the illustration omits the small variations
present in the blue line due to the noisy manifold). Each metric provides best results for
different types of applications.

the `2 norm. Furthermore, in this example, φ is then the impulse response of the filter in
Euclidean space. Note that Equation 2.1 defines a high-dimensional translation-invariant
filter: the weights defined by the kernel φ depend only on the distance between p̂i and p̂j .
Their absolute positions are irrelevant.

In the following sections, we review the relevant literature for high-dimensional fil-
tering in image and video processing. It’s important to note that previous works usually
equate high-dimensional filtering with low-pass high-dimensional filtering. In this case,
the filter kernel is designed to have unit gain at zero frequency, meaning that the DC com-
ponent (average value) of the signal is preserved by the filter. In practice this is achieved
by normalizing Equation 2.1 through a division by the sum of the weights:

gi =
∑
pj∈S

φ (∆(p̂i, p̂j)) fj

/∑
pj∈S

φ (∆(p̂i, p̂j)) . (2.2)

We focus on this normalized equation throughout Chapters 3 and 4. In such cases, similar
to previous works, we build high-pass filters for detail manipulation by computing differ-
ences between the outputs of low-pass filters. In Chapter 5, however, we present a generic
mathematical formulation capable of working with arbitrary digital filters (low, high and
band-pass).
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(a) Photograph (b) Our Euclidean filter (c) Our geodesic filter

Figure 2.2: Example of color detail enhancement using our geodesic and Euclidean fil-
ters: the Domain Transform (Chapter 3) and the Adaptive Manifolds (Chapter 4), respec-
tively. Each filter enhances image features differently: note the colors of the parrot’s eye.
The Euclidean filter generates a result in between global and local contrast enhancement,
while the result of the geodesic filter is mostly local. Choosing between the two results is
a subjective choice.

2.2.1 Euclidean vs Geodesic Filters

The weights for the linear combination defined by the filter are a direct function of
the distance between pixels. In other words, the filter response changes according to the
metric chosen for computing the high-dimensional distances between pixels. In this work
we focus on two types of metrics: Euclidean and geodesic.

The main difference between the two groups is the filter behavior near strong discon-
tinuities (commonly called edges) in the signal, as illustrated in Figure 2.1. Note how the
Euclidean distance between the two bottom pixels in Figure 2.1(a), marked by the white
circles, is much smaller than their geodesic distance. This is mainly due to the fact that
these two pixels lie on dark gray areas of the image, but between them lies a vertical band
of light gray pixels. Since the geodesic distance respects the structure of the manifold,
it is forced to “go over the hill” when connecting the two pixels, as shown in (c). The
Euclidean metric does not know about this underlying structure, and simply connects the
two pixels with a straight line in 3D space, avoiding the “hill” and computing a smaller
distance.

Each metric provides different filtering response and gives best results for different
types of applications. This difference is illustrated in Figure 2.2 for a simple detail en-
hancement example. Other examples include the fact that Euclidean response is better
suited for recoloring disjoint elements in an image (CHEN; PARIS; DURAND, 2007),
while geodesic response is best for adding colors to grayscale images (LEVIN; LISCHIN-
SKI; WEISS, 2004). These are illustrated in Chapters 3 and 4.
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2.2.2 Euclidean Filters

For Euclidean low-pass filters, the weights defined by the kernel decrease with the
Euclidean distance. A common choice for φ with the Euclidean metric is an axis-aligned
Gaussian function:

φΣ (∆(p̂i, p̂j)) = φΣ (p̂i − p̂j) = exp

(
−1

2
(p̂i − p̂j)TΣ−1(p̂i − p̂j)

)
, (2.3)

where Σ is a d× d diagonal covariance matrix that controls, for each dimension, how fast
the weights decrease with distance.

If the input signal f is an image, Equations 2.2 and 2.3 describe the standard bilat-
eral filter (AURICH; WEULE, 1995; SMITH; BRADY, 1997; TOMASI; MANDUCHI,
1998), which works by weighted-averaging the colors of neighbor pixels based on their
(Euclidean) distances in space and range. That is, the bilateral filter only mixes pixels
which are close in imagespace and have similar colors. For (2D) RGB images, it can
be interpreted as operating in a 5D space (BARASH, 2002). Filters of this kind are com-
monly called edge-preserving smoothers, since they manage to remove small scale details
from an image while preserving well-defined edges. This is illustrated in Figure 2.3.

A joint bilateral filter (EISEMANN; DURAND, 2004; PETSCHNIGG et al., 2004)
is obtained by taking the vectors p̂i and p̂j (used for distance computation with φ) from
some image other than f (which may include depth and normal images (WEBER et al.,
2004)). Common applications for this procedure are upsampling sparse data using a guide
image (KOPF et al., 2007), colorization (GASTAL; OLIVEIRA, 2011), and image ab-
straction (ZHANG et al., 2014).

A non-local-means filter (BUADES; COLL; MOREL, 2005) is obtained by replacing
p̂i and p̂j with neighborhoods around the corresponding pixels. Other spatial dimensions
can also be taken into account, such as time in a video-sequence (BENNETT; MCMIL-
LAN, 2005). This gives a new notion of distance: pixels are considered close if they
have similar local neighborhoods (i.e., structure) around them. This is illustrated in Fig-
ure 2.4. By describing such a local neighborhood by an M ×M window around a pixel, a
non-local-means filter can then be seen as working on a (dRM

2 +dS)-dimensional space.

2.2.2.1 Accelerating Euclidean filters

Naïvely evaluating Equation 2.2 for N pixels requires O(dN2) operations, which is
impractical for most applications. For this reason, many acceleration techniques have
been proposed in recent years.

For grayscale image filtering, Durand and Dorsey (DURAND; DORSEY, 2002) com-
pute the filter response by linearly interpolating several discretized range values, each fil-
tered with a Gaussian kernel in the frequency domain. Using the Fast Fourier Transform,
the best-case time complexity is superlinear O(N logN) in the number of pixels being
filtered. Porikli (PORIKLI, 2008) uses summed-area tables to filter each intensity level
using box filters, or polynomial approximations for the Gaussian. This improves the time
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(a) Photograph

(b) Bilateral Filtering (c) Gaussian Filtering

Figure 2.3: A photograph (a) is filtered using the edge-preserving bilateral filter (b). Pixel
neighborhoods are computed in 5-D space, composed of the image coordinates and RGB
pixel colors. Thus, the bilateral filter only mixes pixels which are similar in color and have
similar positions in the image. Note how strong edges and the overall structure of the im-
age are preserved, while small texture variations, such as on the gray coat, are smoothed.
For comparison, a standard Gaussian filter (c) completely removes high-frequency details
from the image, generating a blurred image.
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(a) Photograph (b) Bilateral similarity (c) Non-Local Similarity

Figure 2.4: Comparison of pixel similarity as computed by the bilateral filter (b) and the
non-local means filter (c). Similarity is computed as the distance in the high-dimensional
space between the pixel marked with the blue dot in (a) and all other pixels in the image.
Darker values for similarity means the pixels are closer, in the high-dimensional space,
to the marked pixel. Note how the bilateral similarity (b) only takes into account pixel
colors, while the non-local similarity takes into account the structure around the marked
pixel. Thus, in (c) only pixels belonging to “T” joints in the brick wall are considered as
similar to the marked pixel.

complexity to linear in the number of pixels. Yang et al. (YANG; TAN; AHUJA, 2009)
push the idea further, and avoid representing the entire filtering space. Recursive filters
are used to process each discretized range “slice”. Time complexity of all these methods
grows exponentially with the dimensionality of the range dR, thus, in practice, they can
only be efficiently applied to grayscale images (i.e., one-dimensional range).

For color image filtering, Paris and Durand (PARIS; DURAND, 2009) represent the
entire filtering space using a 5D bilateral grid and perform filtering by downsampling,
which makes Equation 2.2 tractable for kernels φΣ with large support. This is possible
since the bilateral filter is a high-dimensional low-pass operator, and according to the
sampling theorem one can represent this (practically) band-limited signal using a small
set of samples (PROAKIS; MANOLAKIS, 2007). Since the full high-dimensional space
is represented in the grid structure, sometimes unneeded work is performed in empty re-
gions of the space. A simplified version of this method was shown to perform in real-time
on GPUs for three-dimensional (grayscale) bilateral filtering (CHEN; PARIS; DURAND,
2007). Worst-case performance for the bilateral grid is exponential in the dimensionality
of the range: O(N2dR). Pham and van Vliet (PHAM; VAN VLIET, 2005) approximate
Equation 2.2 for small 2D kernels as two separate 1D kernels (in the imagespace). While
this process does not approximate the true 2D bilateral filter, it was successfully applied
to video preprocessing tasks such as abstraction. Worst-case performance for this decom-
position is still quadratic in the number of pixels.

For higher-dimensional filtering, Adams et al. (ADAMS et al., 2009) use a kd-tree
with efficient Monte-Carlo sampling to sparsely gather the filter response. Querying
this data-structure leads to superlinear complexity in the number of pixels being filtered.
Adams et al. (ADAMS; BAEK; DAVIS, 2010) use a permutohedral lattice to tessellate
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the high-dimensional space using uniform simplicies, and a hash table to store pixel col-
ors. This effectively avoids performing unneeded work in empty regions of the high-
dimensional space. Other approaches, such as the guided filter (HE; SUN; TANG, 2010),
reduce the dimensionality of the problem by comparing pixels indirectly by their rela-
tion to a third point. Although its response is not exactly Euclidean, it has successfully
been used in applications such as global-illumination filtering (BAUSZAT; EISEMANN;
MAGNOR, 2011), among others. The improved fast Gauss transform (YANG et al.,
2003) computes the filter response as a series expansion around a few clusters. Its high
accuracy is obtained at the expense of long computational times. With the exception of
the guided filter, all these techniques achieve interactive rates, but are still not fast enough
for real-time applications.

2.2.3 Geodesic Filters

A popular approach for edge-aware image processing is the anisotropic diffusion (AD)
operator (PERONA; MALIK, 1990). It is modeled using a partial differential equation
(PDE) which is a modified version of a linear diffusion process (i.e., a Gaussian low-
pass). In 1D we have

∂

∂t
u(x, t) =

∂

∂x

(
s(u, x, t)

∂

∂x
u(x, t)

)
, (2.4)

with initial condition given by the input signal u(x, 0) = f(x), and the filtered output
given by g(x) = u(x, t∗) for a chosen time t∗ > 0. s(u, x, t) is the edge-stopping func-
tion, which should have a small value near strong edges in the signal. To understand
the intuition behind Equation 2.4, note that where s(u, x, t) = 0 we have ∂

∂t
u(x, t) = 0,

which means no diffusion is performed (i.e., u(x, t) does not vary in time); and where
s(u, x, t) = 1 we have ∂

∂t
u(x, t) = ∂2

∂x2u(x, t), which means linear diffusion (Gaussian
smoothing) is performed.

The PDE in Equation 2.4 is implemented as an iterative process, which is usually slow.
Some approaches have been proposed to improve the speed of anisotropic diffusion (WE-
ICKERT; ROMENY; VIERGEVER, 1998; GREWENIG; WEICKERT; BRUHN, 2010).
However, they do so at the cost of accuracy and still hardly achieve interactive perfor-
mance. Kimmel et al. (KIMMEL; SOCHEN; MALLADI, 1997) generalized many diffu-
sion processes through the use of Beltrami flow.

Farbman et al. (FARBMAN et al., 2008) perform edge-preserving smoothing using a
weighted least squares framework. They solve a sparse linear system derived from the
following quadratic minimization problem:

g = argmin
u

(u− f)2 + λ

(
∂u

∂x

)2
/(

∂f

∂x

)
.

The first term (u − f)2 encourages a solution u close to the input image f , the term(
∂u
∂x

)2 minimizes the magnitude of the derivatives of the output (i.e., smoothes the result),



29

but only where the input image does not have strong edges (i.e., the term ·
/(

∂f
∂x

)
). The

parameter λ controls the amount of smoothing. The solution of a sparse linear system
limits the performance of the technique.

The solution of linear systems has also been employed by Levin et al. (LEVIN;
LISCHINSKI; WEISS, 2004) for image colorization, and by Subr et al. (SUBR; SOLER;
DURAND, 2009) for multiscale image decomposition. More recently, Fattal (FATTAL,
2009) proposed a new family of edge avoiding wavelets (EAW). This multiscale repre-
sentation can be quickly computed, but constrains the sizes of the smoothing kernels (in
pixels) to powers of two. Criminisi et al. (CRIMINISI et al., 2010) presented a geodesic
framework for edge-aware filtering defined for grayscale images that employs quantiza-
tion of the luma channel.
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3 DOMAIN TRANSFORM FOR GEODESIC FILTERING

This chapter presents a new approach for efficiently performing edge-preserving
geodesic filtering of images and videos that addresses the main limitations of previous
techniques. Our approach is based on a novel domain transform and its efficiency de-
rives from a key observation: an RGB image is a 2D manifold in a 5D space, and an
edge-preserving filter can be defined as a 5D translation-invariant kernel, whose response
decreases as the distances among pixels increase in 5D (see Section 2.2). If these distances
are preserved in a space of lower dimensionality, many translation-invariant filters in this
new space will also be edge-preserving. This observation is true since the weights defined
by the filter kernel depend only on the distances between pixels, and not their absolute
positions in space (Equation 2.1). Thus, one is free to compute new coordinates for the
pixels, as long as their positions relative to each other are preserved. By choosing new
coordinates in a lower-dimensional space, we are able to significantly improve the time
performance of edge-preserving filtering.

The domain transform defines an isometry between curves on the 2D image mani-
fold and the real line. It preserves the geodesic distances between points on the curve,
adaptively warping the input signal so that 1D edge-preserving filtering can be efficiently
performed in linear time. We demonstrate three realizations for our 1D geodesic filters,
based on normalized convolution, interpolated convolution, and recursion. These filters
have very distinct responses, making each one more appropriate for specific applications.
Finally, although our 1D filters cannot be exactly generalized to higher dimensions, we
show how to use them to efficiently produce high-quality 2D edge-preserving filters.

Our approach has several desirable features. First, the use of 1D operations leads
to considerable speedups over existing techniques and potential memory savings. For
instance, it can filter one-megapixel color images in 0.007 seconds on a GeForce GTX 280
GPU. Second, its computational cost is not affected by the choice of the filter parameters.
Third, it is the first edge-preserving technique capable of working on color images at
arbitrary scales in real time, without resorting to subsampling or quantization.

We demonstrate the versatility of our domain transform and edge-preserving geodesic
filters on several real-time image and video processing tasks including edge-preserving
smoothing, depth-of-field effects, stylization, recoloring, colorization, detail enhance-
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(a) Photograph

(b) Edge-aware smoothing (c) Detail enhancement (d) Stylization

(e) Recoloring (f) Pencil drawing (g) Depth-of-field simulation

Figure 3.1: A variety of effects illustrating the versatility of our domain transform and
edge-preserving filters applied to the photograph in (a).
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ment, and tone mapping (Section 5.5). Examples of some of these effects can be seen
in Figure 3.1, applied to the photograph shown in (a).

3.1 Transform for Edge-Preserving Filtering

Our approach is inspired by the multi-dimensional interpretation of edge-preserving
filters (BARASH, 2002). Let f : S ⊂ R2 → R3 be a 2D RGB color image, defining a 2D
manifold Mf in R5 (KIMMEL; SOCHEN; MALLADI, 1997). Thus, p̂i = (pi, fi) ∈ Mf

is a point on this manifold. Let F be an edge-preserving translation-invariant filter kernel
in 5D. The image g obtained when filtering f with F can be expressed as the linear
combination

gi =
∑

pj∈DN (S)

F (p̂i, p̂j) fj, (3.1)

where the kernel F is assumed to be normalized:
∑

pj∈DN (S) F (p̂i, p̂j) = 1. As dis-
cussed in Section 2.2.2, the bilateral filter kernel (disregarding normalization) is given by
a Gaussian function:

F (p̂i, p̂j) = φΣ (p̂i − p̂j) = exp

(
−1

2
(p̂i − p̂j)TΣ−1(p̂i − p̂j)

)
, (3.2)

where Σ is a 5× 5 diagonal covariance matrix that controls, for each dimension, how fast
the weights decrease with distance. Σ is commonly defined using only two parameters σs
and σr (respectively referred to as the spatial and range standard deviations of the kernel):

Σ =


σ2
s 0 0 0 0

0 σ2
s 0 0 0

0 0 σ2
r 0 0

0 0 0 σ2
r 0

0 0 0 0 σ2
r

 . (3.3)

Since the bilateral filter works in 5D space, its naive implementation is too slow for many
practical uses.

3.1.1 Problem Statement

Our work addresses the fundamental question of whether there exists a transformation
t : R5 → Rl, l < 5, and a filter kernel H defined over Rl that, for any input image f ,
produce an equivalent result as the 5D edge-preserving kernel F :∑

pj∈DN (S)

F (p̂i, p̂j) fj =
∑

pj∈DN (S)

H ( t(p̂i), t(p̂j) ) fj. (3.4)

This construction becomes attractive when evaluating t plus H is more efficient than
evaluating the original kernel F . In our case, we are interested in replacing the evaluation
of a computationally expensive edge-preserving filter defined in 5D with a transformation
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t and a lower-dimensional linear filter H , evaluated in Rl, l < 5. While one could try to
exactly mimic the response of a specific filter F (e.g., anisotropic diffusion or the bilateral
filter), in this work we instead focus on finding a transformation that maintains the edge-
preserving property of the filter.

3.1.2 Distance-Preserving Transforms

When performing edge-preserving smoothing, the amount of mixing between two pix-
els should be decrease with their distance, which can be expressed in any metric in the 5D
space (FARBMAN; FATTAL; LISCHINSKI, 2010). For example, the bilateral filter uses
the `2 norm (CHEN; PARIS; DURAND, 2007), while Criminisi et al. (CRIMINISI et al.,
2010) use the intrinsic (geodesic) distance on the image manifold. If the transformation
t preserves the original distances from R5 in Rl, it will also maintain the edge-preserving
property of a filter defined in the lower-dimensional space.

A distance-preserving transformation is known as an isometry (O’NEILL, 2006), and
finding one is not an easy task. Let us consider the case of mapping a grayscale image
to a plane, which involves finding an isometry t : R3 → R2. This can be visualized as
trying to flatten a heightfield without introducing any metric distortions. Unfortunately, it
is known that such mappings do not exist in general (they only exist for surfaces with zero
Gaussian curvature) (O’NEILL, 2006), and only approximate solutions can be found.

For our purpose of edge-aware filtering, preserving the distances among pixels is es-
sential. Solutions which fail to correctly preserve the relative position between pixels
introduce hard to predict and image-dependent errors, as shown in Figure 3.2. Further-
more, existing approaches from the dimensionality-reduction (BELKIN; NIYOGI, 2003)
and texture-mapping (LÉVY et al., 2002) literature use optimization methods, which are
too slow for our use in real-time edge-preserving filtering. While a solution for 2D and
above spatial domains (dS ≥ 2) does not exist in general, Section 3.2 shows that an
isometric transform exists for a 1D spatial domain (dS = 1) if distances are measured
geodesically. Section 3.3 then shows how this 1D transform can be effectively used to
filter 2D color images, as well as higher dimensions: by performing separate passes along
each spatial dimension of the signal. Note that this approach works for all dimensionality
of the range — i.e., all values of dR are treated correctly.

3.2 The Domain Transform

For deriving an isometric 1D transform, let f : S → R, S = [0,+∞) ⊂ R, be a
1D signal, which defines a curve C in R2 by the graph (x, f(x)), for x ∈ S (Figure 3.3,
left). Our goal is to find a transform t : R2 → R which preserves, in R, the original
distances between points on C, given by some metric. Thus, let the sampling DN(S) =

{x1, x2, . . . , xN} of S be defined as xi+1 = xi + h, for some sampling interval h. Note
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(a) Input photograph (400x267 pixels) (b) 5D space reduced to 2D using Laplacian Eigen-
maps (BELKIN; NIYOGI, 2003). Only 10% of pix-
els are shown.

(c) Result produced by a 2D Gaussian filter applied
to the domain in (b)

(d) Result produced by our NC filter with σs = 8

and σr = 0.4

Figure 3.2: Dimensionality reduction techniques could be used to find an approximate
isometric transformation. However, such approximations lead to artifacts in the filtered
image. For this example we used Laplacian Eigenmaps (BELKIN; NIYOGI, 2003) to
reduce the dimensionality of the color image in (a) from 5D to 2D. Notice how the red
flower got clustered into the middle of the domain, and the background foliage got com-
pressed to the sides. When filtering the dimensionality-reduced image with a 2D Gaus-
sian kernel, as shown in (c), edges in the background are not correctly preserved (the
background is mostly blurred), as in the case of the branch and foliage edges on the
right of the image. Generating the dimensionality-reduced image shown in (b) took
25 minutes on a MATLAB implementation. Our approach takes 0.015 seconds (us-
ing C++) to produce its result, shown in (d), and correctly handles all image edges.
Finally, we note that approximate solutions for the transformation produce worse re-
sults for more complex images. An animated GIF image, flipping between (c) and (d),
can be found at http://inf.ufrgs.br/~eslgastal/DomainTransform/
Approximate_2D_Transform_Example/flower_flip.gif. This animation
shows how our NC filter correctly preserves the background edges.

http://inf.ufrgs.br/~eslgastal/DomainTransform/Approximate_2D_Transform_Example/flower_flip.gif
http://inf.ufrgs.br/~eslgastal/DomainTransform/Approximate_2D_Transform_Example/flower_flip.gif
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Figure 3.3: (Left) Curve C defined by the graph (x, f(x)), x ∈ S. (Center) In `1 norm,
‖(x + h, f(x + h))− (x, f(x))‖1 = h + d = h + |f(x+ h)− f(x)|. (Right) Arc length
of C, from u to w.

that {xi} represent 1D pixel positions, i.e. pi = (xi). We seek a transform t that satisfies

|t(xi, fi)− t(xj, fj)| = ∆ ((xi, fi), (xj, fj)) , (3.5)

where xi, xj ∈ DN(S), fi = f(xi), | · | is the absolute value operator, and ∆(·, ·) is some
chosen metric. In this work, we use the nearest-neighbor `1 norm; thus, t only needs
to preserve the distances between neighboring samples xi and xi+1. As we will soon
show, this choice gives rise to the geodesic metric. Finally, let Dt : R → R be defined
as Dt(x) = t(x̂) = t(x, f(x)). To be isometric, the desired transform must satisfy the
following equality (in `1 norm) (Figure 3.3, center):

Dt(x+ h)−Dt(x) = h+ |f(x+ h)− f(x)| , (3.6)

which states that the distance between neighboring samples in the new domain (R, on the
left-hand-side of the Equation) must equal the `1 distance between them in the original
domain (R2, on the right-hand-side of the Equation). To avoid the need for the absolute
value operator on the left of (3.6), we constrain Dt to be monotonically increasing — i.e.,
Dt(x + h) ≥ Dt(x). Dividing both sides of Equation 3.6 by h and taking the limit as
h→ 0 we obtain

Dt′(x) = 1 + |f ′(x)| , (3.7)

where Dt′(x) denotes the derivative of Dt(x) with respect to x. Integrating Equation 3.7
on both sides and defining Dt(0) = 0, we get

Dt(u) =

∫ u

0

1 + |f ′(x)| dx, u ∈ S. (3.8)

We assume f is everywhere differentiable and thus Equation 3.8 is well defined. In image
and video processing this is not a significant constraint since f is sampled (discretized).
In this case, derivatives are finite and must be approximated somehow (we use backward
differences—see Section 3.4 and the discussion on denoising in Section 3.5.2).

Intuitively,Dt is “unfolding” the curve C defined in R2 (Figure 3.3, left) into R, while
preserving the distances among neighboring samples. Moreover, for any two points u and
w in S, w ≥ u, the distance between them in the new domain is given by

Dt(w)−Dt(u) =

∫ w

u

1 + |f ′(x)| dx, (3.9)
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which is the arc length of curve C in the interval [u,w], under the `1 norm (Figure 3.3,
right). As such, the transformation given by Equation 3.8 preserves the geodesic distance
between all points on the curve. A similar derivation is possible for the `2 norm (as shown
in Section 3.2.4).

3.2.1 Multichannel Signals

For edge-preserving filtering, it is important to process all channels of the input
signal at once, as processing them independently will introduce artifacts around the
edges (TOMASI; MANDUCHI, 1998).

A 1D signal f : S ⊂ R→ R ⊂ RdR has dR “channels”:

f(x) =
(
f[1](x), f[2](x), . . . , f[dR](x)

)T
.

In the case f is an image, the k-th channel f[k] can be a color channel in some color
space (e.g., RGB or CIE Lab), or a more complex representation, such as a diffusion
map (FARBMAN; FATTAL; LISCHINSKI, 2010).

The signal f defines a curve C in RdR+1. Applying a derivation similar to the one in
Section 3.2, one obtains the multichannel transformation:

Dt(u) =

∫ u

0

1 +

dR∑
k=1

∣∣f ′[k](x)
∣∣ dx,

which can be written more compactly as

Dt(u) =

∫ u

0

1 + ‖f ′(x)‖1 dx, (3.10)

(where ‖ · ‖1 is the `1 norm) since the derivative of a vector-valued function is computed
by differentiating its components (i.e., channels):

‖f ′(x)‖1 =
∥∥∥( f ′[1](x), f ′[2](x), . . . , f ′[dR](x)

)T∥∥∥
1

= |f ′[1](x)|+ |f ′[2](x)|+ . . .+ |f ′[dR](x)|

=

dR∑
k=1

∣∣f ′[k](x)
∣∣ .

Equation 3.10 defines a warping Dt : S → Sw of the signal’s 1D spatial domain by
the isometric transform t : RdR+1 → R, where

Dt(u) = t(û) = t(u, f[1](u), . . . , f[dR](u)).

We call Dt a domain transform.

3.2.2 Application to Edge-Preserving Filtering

Equation 3.10 reduces the evaluation domain of the filter from RdR+1 to R. Thus,
the filter H (see Equation 3.4) is one-dimensional. Since our transformation is isometric,
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any filter H , whose response decreases with distance at least as fast as F ’s, will be edge-
preserving. Section 3.4 discusses some choices of H . By reducing the dimensionality of
the filter from dR + 1 to 1, it may seem that we lost the ability to control its support over
the signal’s space and range (i.e., control the values of σs and σr). But, as we show, one
can encode the values of σs and σr in the transformation itself.

Given a 1D signal f and a 1D normalized filtering kernel H (e.g., with unit area),
we can define fa(u) = f(u/a), which stretches/shrinks f by a, and H1/a(u − τ) =

aH(au− τ), which shrinks/stretches H by 1/a and renormalizes it to unit area, where τ
is a translation. One can confirm that H1/a is normalized:∫ +∞

−∞
H1/a(u− τ) du =

∫ +∞

−∞
H(au− τ) a du

(Substitute w = au− τ) =

∫ +∞

−∞
H(w) a a−1 dw

=

∫ +∞

−∞
H(w) dw

def
= 1,

since H has unit area by definition.
Representing the convolution operator by ∗, one verifies that

(f ∗H1/a)(τ)
def
=

∫ +∞

−∞
f(u)H1/a(u− τ) du

=

∫ +∞

−∞
fa(au)H(au− τ) a du

(Substitute au = w) =

∫ +∞

−∞
fa(w)H(w − τ) a a−1 dw

=

∫ ∞
−∞

fa(w)H(w − τ) dw

def
= (fa ∗H)(τ),

or more compactly:

(f ∗H1/a)(τ) = (fa ∗H)(τ). (3.11)

Thus, under convolution, scaling the filter’s support by 1/a is equivalent to scaling the
signal’s support by a (and vice-versa). This is an important observation, since it shows
that the support of the original multi-dimensional kernel F can be completely encoded
in 1D. Thus, to encode the filter’s support onto the domain transform filtering operation,
we:

1. Derive ai, for each dimension di of the signal, from the desired support of filter F
over di — i.e., one needs to find the value of ai which makes filtering the scaled
signal fa with filter H equivalent to filtering the original signal f with filter F ;
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Dt(u)
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(c)
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φ ∗ fw

(d)
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{φ ∗ fw}−w
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Figure 3.4: 1D edge-preserving filtering using Dt(u). (a) Input signal f . (b) The domain
transform Dt(u), u ∈ S . (c) Signal f plotted in the transformed domain (Sw). (d) Signal
f filtered in the transformed domain Sw with a 1D Gaussian φ (e) and plotted in S.

2. Scale each dimension di of the signal by its corresponding ai, obtaining the scaled
signal fa;

3. Compute and apply the domain transform to the scaled signal fa;

4. Filter the scaled signal in 1D using H on the new domain;

5. Reverse the domain transform to obtain the resulting filtered signal.

Figure 3.4 illustrates these steps: the use of a domain transform for filtering the 1D signal
f , shown in (a) in its original domain S. (b) shows the associated domain transformDt(u)

(computed using Equation 3.12, described below). (c) shows signal f in the transformed
domain Sw or, more compactly, fw(Dt(u)) = f(u). The result of filtering f with a
Gaussian filter H in Sw is shown in (d). (e) shows the desired filtered signal obtained by
reversing Dt(u) for the signal shown in (d). The small-scale variations were eliminated
and the strong edges preserved. In practice the parameter σs controls how strong an edge
needs to be in order for it to get preserved in the filtered image (TOMASI; MANDUCHI,
1998).

The remaining of this section discusses how to compute the appropriate scaling factors
and how to use them in scaling the signal. We will refer to the desired variances of the
filter F over the signal’s spatial domain S as σ2

s , and over the signal’s range as σ2
rk

, for all
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channels k ∈ {1, . . . , dR}.
Obtaining the scaling factors Since filtering fa with H is equivalent to filtering f

with H1/a (Equation 3.11), we need to find the scaling factors (for each dimension) that
make Var(H1/a) = Var(F ). Thus, let σ2

H be the variance of the filter H . Note that σ2
H

is a free parameter. By the scaling property of variances (LOEVE, 1977), one can derive
the scaling factor as for the spatial dimensions as:

Var(H1/as) = Vars(F )

=⇒ Var(H1/as) = σ2
s

=⇒ Var(H/as) = σ2
s

=⇒ Var(H)/a2
s = σ2

s

=⇒ σ2
H/a

2
s = σ2

s

=⇒ as = σH/σs.

A similar derivation yields the scaling factors for the range dimensions:

ark = σH/σrk .

Note that the scaling factors ‘a’ may vary for each dimension in S×R ⊂ R1+dR , allowing
the definition of anisotropic filtering in 1D. These results are valid for any value σH > 0.

Scaling the signal According to Equation 3.11, before it can be filtered by H , the
signal f should be scaled by ‘a’ prior to evaluating the domain transform, resulting in fa.
Scaling the distances in the right-hand side of Equation 3.6 by the appropriate a factors
(i.e., ash+ ar |f(x+ h)− f(x)|) and carrying out the derivation, one obtains

Dt(u) =

∫ u

0

σH
σs

+

dR∑
k=1

σH
σrk

∣∣f ′[k](x)
∣∣ dx.

Since σH is a free parameter, we let σH = σs and obtain our final domain transform,
where a single value of σr has been used for all channels for simplicity:

Dt(u) =

∫ u

0

1 +
σs
σr
‖f ′(x)‖1 dx. (3.12)

Filtering the signal in the transformed domain is done through 1D convolution with H .
Further details are presented in Section 3.4.

3.2.3 Analysis

This section analyzes the filtering-related properties of our domain transform (Equa-
tion 3.12). As Dt(x) is applied to a 1D signal f , its domain is locally scaled by

Dt′(x) = 1 +
σs
σr
|f ′(x)|, (3.13)

where the summation over all channels has been omitted for simplicity. By making the
substitution a = Dt′(x) in Equation 3.11, one can see that scaling the input signal f by
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Dt′(x) is equivalent to scaling the support of the filter H by 1/Dt′(x). Thus, the amount
of local smoothing introduced by H in the signal at f(x), can be expressed as

smoothingH(x) ∝
(
σH

/
Dt′(x)

)
= σs

/(
1 +

σs
σr
|f ′(x)|

)
. (3.14)

Using Equation 3.14, we analyze the relationship of H’s response with the parameters σs
and σr, as well as with f(x), using the following limits:

lim
σr→∞

smoothingH(x) = σs, lim
σr→0

smoothingH(x) = 0,

lim
σs→∞

smoothingH(x) =
σr
|f ′(x)|

, lim
σs→0

smoothingH(x) = 0,

lim
|f ′(x)|→∞

smoothingH(x) = 0, lim
|f ′(x)|→0

smoothingH(x) = σs.

Relationship to σr When σr approaches infinity, Dt(x) = x, and, as expected,
H’s response will be no longer edge-preserving, but a smoothing one proportional to σs.
When σr approaches zero, Dt′(x) goes to infinity, and any filter H with compact support
will produce a filtered signal identical to the input, as expected.

Relationship to σs Interestingly, as σs approaches infinity, H does not produce
unbounded smoothing in the image. This is exactly what is expected from an edge-
preserving filter when σr is held constant. Furthermore, the amount of smoothing is
inversely proportional to the gradient magnitude of the signal, which is the most com-
monly used estimator of image edges. Finally, when σs approaches zero, no smoothing is
performed, as expected.

Relationship to f When the gradient magnitude of the input signal is very large,
no smoothing is performed. On the other hand, in regions where the gradient magnitude
is not significant, smoothing is performed with the same response of a linear smoothing
filter. Note that in both cases, our filter behaves as an edge-preserving one.

3.2.4 The Domain Transform with `2 norm

For completeness, this section presents the equations for computing a domain trans-
form using the `2 norm. The `2 norm domain transform described below is used as a
building block for the Euclidean high-dimensional filter we describe in Chapter 4.

By using the `2 norm on the right-hand-side of Equation 3.5 and carrying out the same
derivation, one obtains the `2 norm domain transform for multichannel signals:

Dt(u) =

∫ u

0

√√√√1 +

(
σs
σr

)2 dR∑
k=1

f ′[k](x)2 dx,

which can be written more compactly as

Dt(u) =

∫ u

0

√
1 +

(
σs
σr

)2 ∥∥f ′(x)
∥∥2

2
dx. (3.15)
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For simplicity, we use the `1 norm domain transform (Equation 3.12) for all the ex-
amples and analysis in the remaining of this Chapter 3. However, all of the following
discussion is valid for both the `1 and the `2 norm domain transforms.

3.2.5 The Multivariate Non-Axis-Aligned Domain Transform with `p norm

It is similarly easy to derive the equations for a domain transform based on an arbitrary
non-diagonal positive-definite covariance matrix Σ. Let γ : R → RdR+1 be a parametric
curve defined by the input signal f(x):

γ(x) =
(
x, f[1](x), . . . , f[dR](x)

)T
. (3.16)

The multivariate non-axis-aligned domain transform defined with distances measured
with an `p norm is

Dtp(u) = σH

∫ u

0

∥∥Σ−1/2 γ′(x)
∥∥
p
dx. (3.17)

3.3 Filtering 2D Signals

Equation 3.12 defines a domain transform for signals with one-dimensional spatial do-
main (dS = 1) and arbitrary range dimensionality. Ideally, an inherently two-dimensional
transformDt(x, y) should be used for signals with two-dimensional spatial domain (dS =

2), directly mapping the content at positions (x, y) in the original domain to positions
(u, v) in the transformed domain. Unfortunately, as discussed in Section 3.1, Dt(x, y)

(i.e., t : RdR+2 → R2) does not exist in general (O’NEILL, 2006), even in geodesic
space (one where distances are measured geodesically). Since it is not possible to si-
multaneously satisfy all the distance requirements in R2, the use of a space with higher-
dimensionality would be needed, implying additional computational and memory costs.
To avoid these extra costs, we use our 1D geodesic transform to perform 2D geodesic
filtering.

The most common approach for filtering signals with 2D spatial domain using 1D op-
erations is to perform separate passes along each spatial dimension of the signal. For an
image, this means performing a (horizontal) pass along each image row, and a (vertical)
pass along each image column (SMITH, 1987; OLIVEIRA; BISHOP; MCALLISTER,
2000). Assuming the horizontal pass is performed first, the vertical pass is applied to
the result produced by the vertical one (and vice-versa). This construction is extensively
used with standard separable linear filters (DOUGHERTY, 1994) and anisotropic diffu-
sion (WEICKERT; ROMENY; VIERGEVER, 1998), and is also related to the computa-
tion of geodesic distances on the image manifold using raster-scan algorithms (CRIMIN-
ISI et al., 2010).

One caveat is that filtering a 2D signal using a 1D domain transform is not a separa-
ble operation; otherwise, this would be equivalent to performing Dt(x, y) in 2D. Since
edge-preserving filters should not propagate information across strong edges, they cannot
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(a) (b) horz. (c) 1 itr. (d) 1 itr.+horz. (e) 2 itr.

Figure 3.5: 2D edge-preserving smoothing using two-pass 1D filtering. (a) pi and pj be-
long to same region. (b) One horizontal pass. (c) One complete iteration (i.e., horz.+vert.
pass). Information from pi cannot yet reach pj . (d) After an additional horizontal pass.
(e) Two complete iterations (i.e., horz.+vert.+horz.+vert. passes).

be implemented using a single iteration of a two-pass 1D filtering process (we define one
iteration to be a horizontal pass followed by a vertical one, or vice-versa). This situation
is illustrated in Figure 3.5, where pixels pi and pj belong to a same region (represented
in white in (a)) and, therefore, should have their information combined. Figure 3.5 (b)
shows, in blue, the region reachable from pi after one horizontal pass; and (c) after one
complete iteration (assuming that the horizontal pass is performed first). The region reach-
able from pj is analogous. By not reaching the entire white region after one iteration, this
process may introduce visual artifacts perceived as “stripes” (indicated by the black ar-
row in Figure 3.5 (c)). For this example, one additional horizontal pass would be needed
to propagate pi’s information to the entire white region, thus eliminating the stripe (Fig-
ure 3.5 (d)). Further passes do not alter the result (e).

The required number of horizontal and vertical passes depends on (the geometry of)
the image content, and, therefore, is hard to predict. However, we use two key obser-
vations to make these artifacts unnoticeable in the filtered images: (i) stripes are only
present along the last filtered dimension: a horizontal (cf. vertical) step removes stripes
introduced by the previous vertical (cf. horizontal) step; and (ii) the length of the stripes
is proportional to the size of the filter support used in the last pass. Thus, we interleave
a sequence of vertical and horizontal passes, such that the two 1D filters used in each
iteration (consisting of a vertical filter and a horizontal filter) have a σ value that is half
of the one used in the previous iteration. This progressively reduces the extension of the
artifacts, making them virtually unnoticeable. In practice, three iterations usually suffice
to achieve good results (Section 3.3.1). During a horizontal pass, f ′ in Equation 3.12 is
the partial derivative computed along the rows of image f , while, in a vertical pass, f ′

represents the partial derivative computed along the image columns.

Since variances (and not standard deviations) add (LOEVE, 1977), care must be taken
when computing the σH value for each iteration: we must use standard deviations that
halve at each step and whose squared sum matches the original desired variance σ2

H . This
is achieved by the following expression:

σHi = σH
√

3
2K−i√
4K − 1

, (3.18)
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where σHi is the standard deviation for the kernel used in the i-th iteration, K is the total
number of iterations, and σH is the standard deviation of the desired kernel. The image
resulting from the i-th iteration is used as input for the (i + 1)-th iteration. The domain
transforms Dt(x) and Dt(y) are computed only once (for the original image) and used
with all the different scales of the filter H .

Figures 3.6 (b) and (c) illustrate the results of performing, respectively, one and three
1D edge-preserving filtering iterations on the image shown in (a). Figure 3.6 (d) and (e)
compare the face of the statue before and after the filtering operation, and shows that
small scale details have been smoothed while the important edges have been preserved.
Although our filter is performed as a series of 1D operations along rows and columns,
it correctly handles diagonal edges. Figure 3.7 illustrates this property on an example
containing several sharp edges at various slopes. The image on the right shows the filtered
result obtained using only two iterations of our two-pass 1D filter. The original edges have
been faithfully preserved, while the colors have been properly filtered.

The decomposition of a 2D edge-preserving filter as a sequence of 1D filtering oper-
ations can be generalized to higher dimensions. One needs to simply add filtering steps
along the added dimensions (e.g., along time in a video sequence). Unfortunately, the
use of 1D operations causes the filter not to be rotationally invariant: e.g., filtering an
image and then rotating it 90 degrees will not result in the same output as first rotating
it 90 degrees and then filtering it (even if the filter is rotationally symmetric). However,
this is also true for other fast edge-preserving filters (FARBMAN et al., 2008; FATTAL,
2009). Finally, some extreme cases do exist. For example, consider a very thin line which
is almost, but not exactly, horizontal. Propagating information along a wide extent of
this structure would take a considerable number of horizontal + vertical iterations. This
problem can be mitigated by adding filtering iterations along non-axis-aligned directions,
such as 45-degree diagonals or multiples of some other angle. This is a similar proce-
dure to the one used in algorithms for computing geodesic distance-maps in parametric
surfaces (WEBER et al., 2008). Another alternative is to use a Euclidean filter, such as
the Adaptive-Manifold filter we describe in Chapter 4. Still, we did not find any visible
artifacts caused by this extreme case in the large number of images and videos we filtered
with the domain transform (using only horizontal + vertical iterations),

3.3.1 Convergence Analysis

Artifact-free filtered images can be obtained by increasing the number of iterations.
Here, we describe an experiment designed to empirically analyze the convergence of the
2D filtering process. For color images with channels in the [0, 1] range, ten to twelve
iterations are sufficient to cause the mean-square difference between the results of sub-
sequent iterations to fall below a threshold of 10−4, chosen experimentally. The quality
of a filtered result obtained after n iterations is evaluated by comparing it to the result
obtained for the same image after 15 iterations, which, for practical purposes, can be con-
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sidered artifact free. The comparison is performed using the Structural Similarity (SSIM)
index (WANG et al., 2004). SSIM is an image-quality metric consistent with human
perception. Its structural nature makes it appropriate for detecting the “stripe” artifacts
discussed in the previous section. Since the SSIM index detects similarity, we use its
complement (1− SSIM) as an error measure.

The graph in Figure 3.8 summarizes the errors measured for various numbers of fil-
tering iterations. These results represent the maximum errors obtained while filtering 31
natural images with various contents. Each curve corresponds to a fixed value of σr. For
each point along a σr curve, we plot the maximum error obtained among all values of σs ∈
{1, 10, 20, 40, 60, 80, 100, 200, 500, 1000, 3000}. The graph shows that the dissimilarity
metric decreases quickly with the first three iterations, which represents a good tradeoff
between filtering quality and computational time.

3.4 Filtering in the Transformed Domain

Our full MATLAB source code is available in Appendix A.

Given a domain transform Dt : S → Sw, the transformed signal fw(Dt(x)) = f(x)

is then filtered using the 1D kernel H . This section discusses alternatives for performing
this filtering operation on digital signals, where fw will likely be non-uniformly sampled.

Chapter 5 analyses in-depth the concept of filtering non-uniformly sampled signals.
More specifically, Section 5.5.1 shows how to perform geodesic edge-aware evaluation
of arbitrary digital filters using the domain transform.

3.4.1 Normalized Convolution (NC)

Filtering the non-uniformly sampled signal fw in Sw can be seen as filtering a uni-
formly sampled signal with missing samples (Figure 3.9, left). This scenario has been
studied by Knutsson and Westin (KNUTSSON; WESTIN, 1993) in the context of data
uncertainty, where they showed that optimal filtering results, in the mean square sense,
are obtained by normalized convolution (NC). For a uniform discretization DN(S) of the
original domain S, NC describes the filtered value g(xi) of a sample xi ∈ DN(S) as

g(xi) =
1

Ki

∑
xj∈DN (S)

f(xj) H ( t(x̂i), t(x̂j) ) , (3.19)

where
Ki=

∑
xj∈DN (S)

H( t(x̂i), t(x̂j) ) (3.20)

is a normalization factor for xi, and t(x̂i) = Dt(xi). For N samples and an arbitrary ker-
nel H , the cost of evaluating Equation 3.19 for all xi is O(N2). However, as Dt(x)

is monotonically increasing (Equation 3.12), we use an efficient moving-average ap-
proach (DOUGHERTY, 1994) to perform NC with a box filter in O(N) time. The box
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kernel is defined as

H ( t(x̂i), t(x̂j) ) =
[
|t(x̂i)− t(x̂j)| ≤ r

]
, (3.21)

where r = σH
√

3 is the filter radius (see Section 3.4.1.1 for the derivation of r), and
[·] is the Iverson bracket: a boolean function that returns 1 when its argument is true,
and 0 otherwise. This box kernel has a constant radius in Sw, but a space-varying and
non-symmetric radius in S, where its size changes according to the similarity between xi
and its neighborhood in the image manifold Mf (Figure 3.9, right, in blue). This can be
interpreted as an estimate of which neighbors belong to the same population as xi. The
box kernel is then a robust estimator of the population mean, with connections to robust
anisotropic diffusion (BLACK et al., 1998) and bilateral filtering (DURAND; DORSEY,
2002).

The cost of evaluating Equation 3.19 using the box kernel from Equation 3.21 is linear
in the number of samples. We use it for the 1D filtering iterations described in Section 3.3,
with σHi defined by Equation 3.18. For three iterations, the resulting filter produces an
indistinguishable approximation to a Gaussian filter (PSNR > 40) when σr = ∞. Fig-
ure 3.13 compares this result to the ones obtained with several other filters.

CPU Implementation Since samples are not uniformly spaced in Sw, the number
of samples added to and removed from the kernel window as it slides from one sample to
the next is not constant. Thus, performing box filtering in Sw requires updating Ki, plus
one additional memory read per sample to check its domain coordinate. One only needs
to perform convolution at positions in Sw that contain samples, as other positions will not
contribute to the filtered image in the (discrete) original domain. Finally, derivatives are
estimated using backward differences.

GPU Implementation Our domain transform is highly parallel: each thread cal-
culates the value of Dt′(x) (Equation 3.13) for one sample, and a parallel scan operation
performs the integration. For filtering, each thread computes the filtered value of one
pixel. To find the first and last pixels inside the current 1D kernel window (Figure 3.9,
right, in blue), we perform two binary searches on the transformed domain (Sw) coordi-
nates. Once the first and last pixels under the 1D kernel have been identified, the sum of
the colors of all contributing pixels is calculated using a 1D summed area table (per color
channel). These tables need to be updated before each horizontal/vertical pass.

3.4.1.1 Derivation of Box Filter radius ’r’ from the desired variance σ2
H

The continuous, normalized box filter kernel is

h(x) =

 1
2r

for |x| ≤ r,

0 for |x| > r.
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The first and second moments of h are, respectively:

〈h〉 =

∫ ∞
−∞

xh(x) =

∫ r

−r

x

2 r
= 0 and

〈h2〉 =

∫ ∞
−∞

x2 h(x) =

∫ r

−r

x2

2 r
=
r2

3
.

The variance of h is then given by

Var(h) = 〈h2〉 − 〈h〉2 =
r2

3
.

Given the desired variance σ2
H , which must be equal to Var(h), we solve for r:

σ2
H =

r2

3
=⇒ |r| = |σH |

√
3.

The absolute value operators on the right hand side can be discarded since both r and σH
are always positive.

3.4.2 Interpolated Convolution (IC)

Another option when dealing with irregularly sampled data is to use interpolation for
approximating the original continuous function (PIRODDI; PETROU, 2004). Figure 3.9
(center) shows a reconstructed signal lw obtained by linear interpolation (in Sw) of the
samples shown in Figure 3.9 (left). Filtering lw is performed by continuous convolution:

g(xi) =

∫
Sw
lw(xw) H ( t(x̂i), xw ) dxw, (3.22)

where H is a normalized kernel. Interpolated convolution has an interesting interpreta-
tion: a linear diffusion process working on the signal. Figure 3.9 (right) shows this inter-
pretation for a box filter of radius r, where the kernel window is shown in red. This is the
same interpretation as the 1D Beltrami flow PDE (SOCHEN; KIMMEL; BRUCKSTEIN,
2001).

Implementation For a box filter, Equation 3.22 can be evaluated for all pixels in
O(N) time. This is achieved by a weighted moving-average (DOUGHERTY, 1994). The
normalized box kernel is given by

H ( t(x̂i), xw ) =
[
|t(x̂ip)− xw| ≤ r

]/
2 r, (3.23)

where r = σH
√

3 is the filter radius. Substituting Equation 3.23 in Equation 3.22:

g(xi) =
1

2 r

∫ t(x̂i)+r

t(x̂i)−r
lw (xw) dxw. (3.24)

The linearly-interpolated signal lw does not need to be uniformly resampled, since the
area under its graph can be explicitly computed using the trapezoidal rule.
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3.4.3 Recursive Filtering (RF)

For a discrete signal f [i] = f(xi), non edge-preserving filtering can be performed
using a 1st-order recursive filter as

g[i] = (1− a) f [i] + a g[i− 1], (3.25)

where a ∈ [0, 1] is a feedback coefficient (SMITH, 2007). This filter has an infinite
impulse response (IIR) with exponential decay: an impulse of magnitude m at position i
generates a response of magnitude m (1 − a) aj−i at position j ≥ i. Note that j − i can
be interpreted as the distance between samples xi and xj , assuming a unitary sampling
interval. Based on this observation, a recursive edge-preserving filter can be defined in
the transformed domain as

g[i] = (1− adi) f [i] + adi g[i− 1], (3.26)

where di = Dt(xi) − Dt(xi−1) is the distance between neighbor samples xi and xi−1

in the transformed domain (Sw). With this filter, an impulse of magnitude m at pixel xi
generates a response at pixel xj > xi of magnitude

m (1− adi) adi+1+...+adj = m (1− adi) aDt(xj)−Dt(xi).

As the distances di increase, adi goes to zero, stopping the propagation chain and, thus,
preserving edges. This can be interpreted as a geodesic propagation on the image lat-
tice. The impulse response of Equation 3.26 is not symmetric, since it only depends on
previous inputs and outputs (it is a causal filter). A symmetric response is achieved by
applying the filter twice: for a 1D signal, Equation 3.26 is performed left-to-right (cf. top-
to-bottom) and then right-to-left (cf. bottom-to-top).

The feedback coefficient of this filter is computed from the desired filter variance as
a = exp(−

√
2/σH) (see Section 3.4.3.1 for the derivation). Since a ∈ [0, 1], the filter is

stable (SMITH, 2007), and its implementation in O(N) time is straightforward.
Finally, as mentioned in the beginning of Section 3.4, we note that it is possible to use

the domain transform with arbitrary recursive digital filters. This topic is dealt with in
Chapter 5, more specifically Section 5.5.1.

3.4.3.1 Derivation of RF feedback coefficient ‘a’ from the desired variance σ2
H

The continuous equivalent of the recursive kernel is

h(x) = (1− a) ax, x ∈ [0,+∞), a ∈ (0, 1);

where x represents the distance between samples and a is the feedback coefficient. h(x)

is not normalized since ∫ ∞
0

h(x) dx =
(1− a)ax

log(a)

∣∣∣∣∞
0

= − 1− a
log(a)

.
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Normalizing h we obtain
h(x) = − log(a) ax.

The first and second moments of h are, respectively:

〈h〉 = − log(a)

∫ ∞
0

x axdx = − 1

log(a)
and

〈h2〉 = − log(a)

∫ ∞
0

x2 axdx =
2

log(a)2
.

The variance of h is then given by

Var(h) = 〈h2〉 − 〈h〉2 =
1

log(a)2
.

Since the signal is filtered twice with h (left-to-right and right-to-left), the total variance
of the filter is 2 Var(h). Given the desired variance σ2

H :

σ2
H = 2 Var(h) =

2

log(a)2
;

we solve for a and find

a = exp(−
√

2/σH) and a = exp(
√

2/σH);

where the former is our solution since a ∈ (0, 1).

3.5 Comparison to Other Approaches

We compare our edge-preserving filters based on normalized convolution (NC), inter-
polated convolution (IC), and recursion (RF) against previous works: brute-force bilat-
eral filter (BF) (TOMASI; MANDUCHI, 1998); anisotropic diffusion (AD) (PERONA;
MALIK, 1990); edge-avoiding wavelets (EAW) (FATTAL, 2009); weighted least squares
filter (WLS) (FARBMAN et al., 2008), which has been shown to produce good results for
tone and detail manipulation; and finally the permutohedral lattice BF (PLBF) (ADAMS
et al., 2009) and constant time BF (CTBF) (YANG; TAN; AHUJA, 2009), which are,
respectively, the fastest color and grayscale bilateral filter approximations.

3.5.1 Filter Response

Figure 3.10 shows a comparison of the impulse response of our three filters NC, IC
and RF (all performed using three iterations) against the impulse response of BF, AD and
WLS. The NC and IC filters have Gaussian-like response, similar to AD and BF. In the
presence of strong edges, the IC filter behaves similarly to AD. The NC filter has a higher
response near strong edges, which is a direct implication of its interpretation as a robust
mean: pixels near edges have fewer neighbors in the same population, and will weight
their contribution strongly. Finally, our recursive filter (RF) has an exponential impulse
response which is completely attenuated by strong edges, like the WLS’s response.
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The NC filter is ideal for stylization and abstraction, since it accurately smoothes simi-
lar image regions while preserving and sharpening relevant edges. For applications where
sharpening of edges is not desirable (e.g., tone mapping and detail manipulation), the IC
and RF filters produce results of equal quality as the state-of-the-art techniques (FARB-
MAN et al., 2008; FATTAL, 2009). Finally, for edge-aware interpolation (e.g., coloriza-
tion and recoloring), the RF filter produces the best results due to its infinite impulse
response, which propagates information across the whole image lattice. Section 5.5 illus-
trates the use of our filters for all these applications.

3.5.2 Smoothing Quality

Figure 3.11 shows a side-by-side comparison of edge-aware smoothing applied to a
portion of the photograph shown in Figure 3.1 (a). For small amounts of smoothing,
the bilateral filter (b) and our NC filter (c) produce visually similar results. For further
smoothing, the bilateral filter may incorrectly mix colors, as observed in the window
frame (Figure 3.11 (d)). In contrast, our filter manages to continuously smooth image
regions while preserving strong edges, due to its geodesic nature. This effect, illus-
trated in Figure 3.11 (e), is similar to the results obtained with WLS, shown in (f), and
anisotropic diffusion (using (D’ALMEIDA, 2004)), shown in (g). Since the scale of EAW
cannot be freely controlled, the technique is not ideal for edge-preserving smoothing. Fig-
ure 3.11 (h) shows the result produced by EAW with a maximum decomposition depth
of 5 and coefficients for each detail level defined by 0.6(5−level), which preserves some
high-frequency details. Setting these coefficients to zero results in distracting artifacts.

Our filters converge to standard linear smoothing filters on regions with weak edges,
or when the range support σr is set to a large value (see Section 3.2.3). This feature is
desirable, for instance, in joint filtering for performing depth-of-field effects, as shown in
Figure 3.1 (g) and discussed in Section 5.5. Figure 3.13 shows that previous techniques
have difficulty to simulate a regular smoothing filter, either because their kernels cannot be
explicitly controlled, as in the cases of WLS (b) and EAW (c); or because the downsam-
pling required for performance introduces structural artifacts, as in the case of PLBF (d).
In contrast, our filters provide an indistinguishable approximation to a Gaussian (f) for
σr =∞, as shown in (e).

Temporal Coherence The domain transform filters are guaranteed to be temporally
coherent as long as the input image derivatives are temporally coherent. This observation
is derived directly from Equation 3.10: as long as f ′(x) varies smoothly over time,Dt′(x)

will also vary smoothly over time. In fact, the domain transform has already been used
by other researchers exactly to improve the temporal coherence of video data, such as
optical flow, depth, and disparity (LANG et al., 2012). In our project webpage (GASTAL;
OLIVEIRA, 2014a) we include video filtering examples where each frame was filtered
independently and the results are of high quality and without temporal artifacts.

Denoising One will note that we do not include denoising as an effective applica-
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tion of the domain transform, despite the fact that we have had some success using our
filters for removing small to medium amounts of noise. The main issue with noisy images
is finding robust estimates for their derivatives, which cannot be done using simple back-
ward differences. One possible solution is pre-filtering the image with a low-pass filter
to avoid large oscillations in the image gradient. See (CATTÉ et al., 1992) for a similar
approach applied to anisotropic diffusion filtering.

3.5.3 Performance Evaluation

This section reports performance numbers obtained on a 2.8 GHz Quad Core PC with
8 GB of memory and a GeForce GTX 280.

Filtering on CPU We implemented our NC and RF filters on CPU using C++. For
the IC filter we have a MATLAB implementation, but its performance in C++ is expected
to be similar to NC’s. On a single CPU core, the typical runtimes of our NC and RF filters
for processing a 1 megapixel color image using three iterations are 0.16 and 0.06 seconds,
respectively. Their performances scale linearly with image size, filtering 10 megapixel
color images in under 1.6 and 0.6 seconds. On a quad-core CPU, we achieve a 3.3×
speedup.

We compare the performance of our edge-aware filters against the fastest filters from
previous works: EAW, PLBF and CTBF. The PLBF and our NC and RF filters process
all three color channels simultaneously, while CTBF only processes grayscale. Thus,
CTBF is actually performing one third of the work done by the other three methods. We
measured the reported results on a single CPU core. For PLBF and CTBF we used source
code provided by the authors.

The runtimes for both PLBF and CTBF are inversely proportional to the value of σr.
For σr approaching zero, their runtimes are above 10 seconds. The runtimes of our filters
are independent of the σs and σr parameters, and they use no simplifications to improve
performance. In our experience, to achieve good edge-preserving smoothing with PLBF
or CTBF values of σr < 0.15 should be used. In this range, our filters with three iterations
are 5 to 15× faster than these approaches. For small amounts of smoothing, one can obtain
good results using two or even one iteration of our filter (Figure 3.8), with speed-ups of
25 to 40× over PLBF for color filtering. According to Fattal (FATTAL, 2009), EAW
can smooth a 1 megapixel grayscale image in 0.012 seconds on a 3.0 GHz CPU. Since
it generates decompositions at only a few scales, it is not generally applicable for edge-
preserving smoothing. WLS takes 3.5 seconds to solve its sparse linear system using a
fast CPU implementation.

A graph comparing the performances of these techniques can be seen in Figure 3.12.
The PLBF and our NC and RF filters process all three color channels simultaneously,
while WLS, EAW and CTBF only process grayscale range. Note however that WLS and
EAW can also perform true color filtering, but the available implementations from the
respective authors can process grayscale images only. For PLBF and CTBF, the values of
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σs were chosen so as to minimize their run times. The available implementation of CTBF
only produces accurate results for σr < 0.45. This is indicated in Figure 3.12 by the red
“x", after which CTBF outputs a black image. EAW and WLS do not explicitly use a σr
parameter. For our NC and RF filters, we tuned their parameters to obtain similar blurring
and edge-preserving results as PLBF and CTBF. Note that our σr value is defined for the
`1 norm in R3, while the σr of PLBF and CTBF is defined for the `2 norm. The reported
performances for the EAW and WLS filters were taken directly from (FARBMAN et al.,
2008) and (FATTAL, 2009). The EAW filter can only generate smoothing decompositions
at a few scales, indicated in the graph as discrete green triangles.

Filtering on GPU We implemented our NC filter on GPU using CUDA. The total
time required for filtering a 1 megapixel color image is 0.7 milliseconds for computing
the domain transform plus 2 milliseconds for each 2D filtering iteration. This gives a total
runtime of approximately 0.007 seconds for three iterations of our filter — a speedup of
23× compared to our one-core CPU implementation. Since our filter scales linearly with
the image size, our GPU implementation is able to filter 10 megapixel color images in
under 0.07 seconds.

We compare the performance of our GPU filter against the GPU Bilateral Grid (CHEN;
PARIS; DURAND, 2007). While their implementation is as fast as ours, it only processes
luminance values, which may generate undesired color-ghosting artifacts. Their approach
draws its efficiency from downsampling, which is not possible for small spatial and range
kernels. The GPU implementation of PLBF can filter a 0.5 megapixel image in 0.1 sec on
a GeForce GTX 280 (ADAMS; BAEK; DAVIS, 2010). A GPU implementation of WLS
filters a 1 megapixel grayscale image in about 1 second (FARBMAN et al., 2008).

3.6 Real-Time Applications

We show a variety of applications that demonstrate the versatility of our domain trans-
form and filters for image processing. Given its speed, our approach can be performed
on-the-fly on high-resolution images and videos. This improved performance provides
users with instant feedback when tuning filter parameters.

3.6.1 Detail Manipulation

Edge-preserving filters can be used to decompose image details into several scales,
which can be manipulated independently and recombined to produce various effects (FARB-
MAN et al., 2008; FATTAL, 2009). Let J0, . . . , Jk be progressively smoother versions
of an image f = J0. Several detail layers capturing progressively coarser details are
constructed as Di = Ji − Ji+1. Figure 3.14 shows an example of fine-scale detail en-
hancement applied to the flower image in (a). The result in (b) was created by filtering
the image in (a) once using our IC filter (σs = 20 and σr = 0.08) and by manipulating the
detail layer D0 using a sigmoid function described by Farbman et al. (FARBMAN et al.,
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2008). Figure 3.14 (c) shows the result produced by an EAW filter of Fattal (FATTAL,
2009). The images (b) and (c) present similar visual quality. Our filter, however, allows
for extra flexibility when decomposing image details, since it can produce a continuum of
smoothed images Ji, by varying the values of the parameters σs and σr.

3.6.2 Tone Mapping

Edge-aware tone mapping avoids haloing and other artifacts introduced in the com-
pression process. Figure 3.15 compares the result of a tone mapping operator imple-
mented using our RF filter (a) and the WLS filter by Farbman et al. (FARBMAN et al.,
2008) (b). The quality of these results is similar, but our filter is significantly faster,
resulting in the fastest high-quality tone-mapping solution available. The result in Fig-
ure 3.15 (a) was obtained by manipulating three detail layers from the HDR image’s
log-luminance channel. Each layer was obtained in 12 milliseconds using two iterations
of our RF filter with: σs = 20 and σr = 0.33 for J1; σs = 50 and σr = 0.67 for J2; and
σs = 100 and σr = 1.34 for J3. The compressed luminance channel LC was obtained as:

LC = 0.12 + µ+ 0.9 (B − µ) + 0.3 D0 + 0.2 D1 + 0.2 D2;

where B is a linear compression of J3 to the range [0, 1]:

B = (J3 −min(J3))/(max(J3)−min(J3));

and µ is the mean value of all pixels in B. Ji and Di were defined in the previous section.

3.6.3 Stylization

Stylization aims to produce digital imagery with a wide variety of effects not focused
on photorealism. Edge-aware filters are ideal for stylization, as they can abstract regions
of low-contrast while preserving, or enhancing, high-contrast features. Figure 3.16 illus-
trates an application of our NC filter to produce abstracted results. Given an input image
(top left), the magnitude of the gradient of the filtered image (top right) is superimposed
to the filtered image itself to produce high-contrast edges around the most salient features.
Another interesting stylization effect can be obtained by assigning to each output pixel a
scaled version of the value of the normalization factor Ki from Equation 3.19. This pro-
duces a pencil-like non-photorealistic drawing, such as the one shown in Figure 3.1 (f),
obtained scaling Ki by 0.11.

3.6.4 Joint Filtering

Our approach can also be used for joint filtering, where the content of one image is
smoothed based on the edge information from a second image. For instance, by using
the values of an alpha matte (GASTAL; OLIVEIRA, 2010) as the the image derivatives
in Equation 3.12, one can simulate a depth-of-field effect (Figure 3.1 (g)). This example
emphasizes why converging to a Gaussian-like response is an important property of our
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filter. Alpha mattes can also be combined with other maps to create some localized or
selective stylization, as shown in Figure 3.17. In this example, an alpha matte and a struc-
ture resembling a Voronoi diagram have been added to define new edges to be preserved
(Figure 3.17, bottom left). The resulting filter produces a unique stylized depth-of-field
effect. The edges of the diagram were then superimposed to the filtered image to create
the result shown on the right. A similar result is shown in Figure 3.1 (d), where the edges
to be preserved were identified by a Canny edge detector.

3.6.5 Colorization

Similar to previous approaches (LEVIN; LISCHINSKI; WEISS, 2004; FATTAL, 2009),
we propagate the colors S from user-supplied scribbles by blurring them using the edge
information from a grayscale image f (Figure 5.11, left). To keep track of how much
color propagates to each pixel, we also blur a normalization function N , which is defined
to be one at pixels where scribbles are provided and zero otherwise. Let S̃ and Ñ be
the blurred versions of S and N , respectively. The final color of each pixel p is obtained
as S̃(pi)/Ñ(pi). This value is combined with the original luminance from the grayscale
image to produce the colorized result. Figure 5.11 compares the results obtained with our
RF filter (σs = 100 and σr = 0.03) with the ones of Levin et al. (LEVIN; LISCHINSKI;
WEISS, 2004). In our experience, good colorization results can be obtained with values
of σr from 0.01 to 0.1 and σs > 100.

3.6.6 Recoloring

Localized manipulations of image colors is achieved using soft segmentation. Color
scribbles define a set of regions of interest, where each region Ri is defined by a color
ci. For each region Ri, an influence map (LISCHINSKI et al., 2006) is obtained by blur-
ring its associated normalization function NRi defined by all scribbles with color ci. The
contribution of Ri for the recoloring of pixel p is defined as ÑRi(p)/

∑
j ÑRj(p). Fig-

ure 3.1 (e) shows a recoloring example obtained using this technique.
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(a) Input (b) 1 itr. (c) 3 itr.

(d) Details from Input (a) (e) Details from 3 iterations (c)

(f) Details from 1 iterations (b)

Figure 3.6: Two-pass 1D filtering (σH = σs = 40 and σr = 0.77). (a) Input image.
(b) One filtering iteration. (c) Three filtering iterations. (d) Details from (a). (e) Details
from (c). The image content has been smoothed while its edges have been preserved.
(f) Details from (b). An insufficient number of iterations leads to vertical stripes in this
example. The large value for σr was used to generate an exaggerated smoothing effect,
which also ends up smoothing lower-contrast edges. A smaller value for σr may be used
to preserve more edges in the filtered image.
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Figure 3.7: Filtering of diagonal edges. (Top Left) Input image (1280×960 pixels). (Top
Right) Filtered image with two iterations of our two-pass 1D filter (σH = σs = 50 and
σr = 0.5). (Bottom Left) Detail from the input image. (Bottom Right) Detail from the
filtered image.
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Figure 3.8: Maximum measure of dissimilarity (according to SSIM) between filtered
images and their corresponding “ideal” results as a function of number of iterations, for
different values of σr.
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Figure 3.9: Filtering in the transformed domain. (Left) Normalized convolution (NC).
(Center) Interpolated convolution (IC). (Right) Their interpretation: NC box kernel in
blue, IC box kernel in red.

NC IC RF

BF AD WLS

Figure 3.10: Impulse response for various filters at neighborhoods without (left of each
graph) and with strong edges (right of each graph). NC: Normalized Convolution; IC:
Interpolated Convolution; RF: Recursive Filter; BF: Bilateral Filter; AD: Anisotropic
Diffusion; WLS: Weighted Least Squares. The parameters for each filter were selected
to achieve similar variance for all impulse responses. For all filters the edge at the right
of each graph was set to match the maximum possible variation in the signal, such as
to completely stop propagation/diffusion if possible (note that the bilateral filter, which
works in Euclidean space, manages to “jump” the edge regardless of its magnitude).
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(a) Input (b) BF, σs = 17 (c) NC, σs = 17 (d) BF, σs = 40

(e) NC, σs = 80 (f) WLS (g) AD (h) EAW

Figure 3.11: Qualitative comparison of the results of bilateral filters (BF) with σr = 0.2

(b and d), our normalized convolution filter (NC) with σr = 0.8 (c and e), weighted least
squares filter (WLS) (f) with λ = 0.15 and α = 2, anisotropic diffusion (AD) (g), and the
edge-avoiding wavelets (EAW) (h).
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Figure 3.12: CPU performance of various edge-preserving filters for filtering a 1
megapixel image. Note that WLS and EAW do not explicitly use a σr parameter, and their
reported performances were taken directly from (FARBMAN et al., 2008) and (FATTAL,
2009), respectively. For our NC and RF filters, we tuned their parameters to obtain similar
blurring and edge-preserving results as PLBF and CTBF. The reported performances for
WLS, EAW and CTBF are for processing grayscale range only.
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(a) Input (b) WLS (c) EAW

(d) PLBF (e) Our NC (f) Gaussian

Figure 3.13: Approximating a Gaussian filter. Parameters from all approaches where
tuned to best approximate a Gaussian with σ = 15. For the NC filter, σs = 15, and
σr =∞. Note that WLS and EAW were not designed to approximate Gaussian blur. Best
viewed in the electronic version.
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(a) Input (b) Ours (IC) (c) EAW

Figure 3.14: Fine detail manipulation. (a) Input image. (b) Our result. J1 was obtained
with the IC filter (σs = 20 and σr = 0.08). (c) EAW result by Fattal (FATTAL, 2009).

(a) Ours (RF) (b) WLS

Figure 3.15: Tone mapping results: (a) using our RC filter and (b) using the WLS filter.
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Figure 3.16: High-contrast edges around the most salient features of an edge-aware fil-
tered image, producing a stylized look.

Figure 3.17: Stylized depth-of-field effect. (Top Left) Input image. (Bottom Left) Alpha
matte combined with a Voronoi-like diagram. (Right) Result produced by our edge-aware
filter using joint filtering. See text for details.
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(a) Input (b) Ours (c) Levin et al. (LEVIN;
LISCHINSKI; WEISS, 2004)

Figure 3.18: Colorization example. (a) Grayscale input image with user scribbles. (c) Our
result using RF (σs = 100 and σr = 0.03). (b) Result of Levin et al. (LEVIN; LISCHIN-
SKI; WEISS, 2004).
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4 ADAPTIVE MANIFOLDS FOR EUCLIDEAN FILTERING

This chapter presents a new approach for efficiently performing high-quality high-
dimensional Euclidean filtering that avoids the shortcomings found in previous tech-
niques. Our solution accelerates filtering by evaluating the filter’s response on a reduced
set of sampling points and using these values to interpolate the filter’s response at all N
input pixels. We show that, given an appropriate choice of sampling points, the image
can be filtered in O(dNK) time, where d is the dimension of the space in which the filter
operates, and K is a value independent of N and d. K controls the visual quality of the
resulting filter. For color images, K typically varies from 3 to 15 for high-quality filter-
ing. Thus, the resulting filters are the first high-dimensional Euclidean filters with linear
cost both in N and in d. We present a derivation for the equations that define our method,
providing a solid theoretical justification for the technique and for its properties. We also
show that the response of our filter can easily approximate either a standard Gaussian,
a bilateral, or a non-local-means filter (BUADES; COLL; MOREL, 2005). This kind
of versatility has also been described by Adams et al. (ADAMS et al., 2009; ADAMS;
BAEK; DAVIS, 2010). However, our filters are faster and require less memory than pre-
vious approaches. For instance, we can “bilateral-like” filter a 10-Megapixel full-color
image in real time (50 fps) on modern GPUs.

Figure 4.1 shows some filtering examples obtained using our technique. Figure 4.1(a)
depicts the result of filtering indirect illumination from an undersampled scene, rendered
with path tracing. The filter works in an 8-D space, composed of two spatial dimensions
and six range dimensions (3-D scene position and normal vector). Note the quality of the
filtered image, despite the highly-noisy input. Figure 4.1(b) shows an example of edge-
aware smoothing of an RGB color image (5-D space). Note how the skin of the model has
been smoothed out, while important high-frequency features have been preserved (e.g.,
the rugged leaves on the model’s head). The filtered image maintains the artistic integrity
of the photograph. Figure 4.1(c) shows the result of applying a non-local-means filter to
obtain a denoised version (right) of a corrupted image (left). For this example, the affinity
among pixels was computed using a 7×7-pixel neighborhood, reduced through PCA to
25-D, plus two spatial dimensions. Note how delicate features were correctly preserved.
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(a) Filtering using geometric information

(b) Edge-aware smoothing

(c) Non-local means denoising

Figure 4.1: Examples of filtering results produced with our adaptive-manifold filter. (a)
Filtering (performed in 8-D) of a noisy undersampled image generated using path tracing.
The split rendition compares the input (bottom right) and the filtered result (top left).
Note the smoothness of the shading. (b) Edge-aware filtering of color images (performed
in 5-D) showing large regions smoothed out, and sharp edges preserved. (c) Denoising
of natural images using non-local-means (performed in 27-D). Notice the noise reduction
while retaining fine details.
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4.1 Adaptive Manifolds

The filtering operation described by Equations 2.2 and 2.3 can be greatly accelerated
by computing the filter’s response at a set ofM sampling points η̂ ∈ S×R and using them
to interpolate the filter’s response at all N pixels p̂i ∈ S×R. This approach shows perfor-
mance gains when M � N (PARIS; DURAND, 2009; ADAMS et al., 2009; ADAMS;
BAEK; DAVIS, 2010), and/or the M points η̂ are distributed in a structured way on some
flats (generalized planes) embedded in S×R (PARIS; DURAND, 2009; YANG; TAN;
AHUJA, 2009; ADAMS; BAEK; DAVIS, 2010). We call such points a structured set
of points. In this case, using linear-time filtering approaches (DERICHE, 1993; HECK-
BERT, 1986; YANG; TAN; AHUJA, 2009) and the separability of the Gaussian function,
the filter’s response for the M sampling points can be computed in O(dN + dM) time
instead of O(dNM).

Previous approaches build a structured set of points by laying them onto oriented
dS-dimensional flats in S ×R, either axis-aligned (PARIS; DURAND, 2009; YANG;
TAN; AHUJA, 2009) or with a few discrete orientations (ADAMS; BAEK; DAVIS, 2010).
These flats define a tessellation of S×R into cells given by hyperrectangles or simplices,
respectively. To compute the filter’s response for the original pixels, one then performs
multi-linear or barycentric interpolation. Since the signal being filtered is rarely a linear
manifold, as dimensionality of the range domain dR increases, one needs more flats to en-
close the original pixels p̂i into cells, degrading runtime performance. Furthermore, many
of the defined cells will not contain any pixels, and thus any work performed on them is
wasted. While this can be avoided using sparse representations of the high-dimensional
space such as hash tables (ADAMS; BAEK; DAVIS, 2010), this makes the algorithm’s
cost quadratic in the dimensionality d, and its implementation less parallelizable, spe-
cially on GPUs. Kd-trees (ADAMS et al., 2009) can also be used to reduce the amount
of wasted work. But in this case, Equation 2.2 has to be evaluated using nearest-neighbor
queries, which generates significant overhead to the algorithm, making its cost superlinear
in the number of pixels.

Our approach computes a structured set of sampling points adapted to the signal. This
is done by laying the sampling points on nonlinear dS-dimensional manifolds adapted
specifically to each signal and constructed considering the spatial standard deviations of
the high-dimensional filter. To obtain a good approximation for Equation 2.2, we show
(Section 4.2) that it is sufficient for such manifolds to be only approximately linear in all
local neighborhoods. The filter’s response is computed using a normalized convolution
interpolator (KNUTSSON; WESTIN, 1993). The benefits of our approach are:

1. One can sample the high-dimensional space at scattered locations (on the mani-
folds), without having to worry about enclosing pixels into cells to perform multi-
linear or barycentric interpolation. This is a key factor for the performance of our
method, and results from the use of normalized convolution;
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S
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(a)1-D Adaptive manifold

S

R

(b)1-D Standard linear manifold

Figure 4.2: Our adaptive sampling versus standard linear sampling, applied to a 1-D
signal shown in blue. (a) Our adaptive manifolds adjust themselves to the signal in high-
dimensional space, creating pathways to exchange information among pixels with similar
range values. (b) Standard linear quantization underrepresents certain regions of the signal
(see black arrow), and performs unnecessary work in other regions (in red).

2. Computation is performed only where it is needed. We obtain this by adapting the
manifolds (and, in turn, the sampling points) to each specific signal;

3. The filter response can be computed in linear time. This is possible since the sam-
pling points are structured on dS-dimensional manifolds;

4. The number of manifolds required to compute the filter’s response is independent of
the dimension d of the space in which the filter operates. As the manifolds are dS-
dimensional (i.e., locally homeomorphic to RdS ), they adapt to the signal equally
well, regardless of the range dimensionality dR.

Thus, our filter is the first high-dimensional Euclidean filter with linear cost both in the
number of pixelsN and in dimensionality d (Section 4.5.2). Furthermore, its implementa-
tion is faster and requires less memory than previous approaches. Figure 4.2(a) illustrates
our approach for a 1-D signal (dS = dR = 1). Our adaptive manifolds (dashed lines)
adjust themselves to the underlying signal (in blue) in high-dimensional space (in Fig-
ure 4.2(a), d = 2). This defines pathways to exchange information among pixels with
similar range values. In contrast, the linear manifolds shown in (b) do not represent well
certain regions of the signal (black arrow), while performing unnecessary work in other
regions (in red). The occurrence of these issues tend to increase with the dimensionality
of the range dR.

4.1.1 Euclidean Filtering Using Adaptive Manifolds

The steps for computing Equation 2.2 with a Gaussian kernel using our nonlinear
adaptive manifolds are illustrated in Figure 4.3 for a 1-D signal. To help the readers
establish an analogy and compare it with other approaches (e.g., the Gaussian kd-trees,
the permutohedral lattice, and the 5-D bilateral grid), we use the terminology adopted
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(c) Slicing

Figure 4.3: Steps of our adaptive-manifold filter (in 1-D), using the terminology from
Adams et al. (ADAMS et al., 2009; ADAMS; BAEK; DAVIS, 2010). (a) Splatting per-
forms a distance-weighted projection of the colors fi onto each adaptive manifold. (b)
Blurring performs Gaussian filtering over each manifold, mixing the distance-weighted
projections from all pixels. (c) Slicing computes the filter response for each pixel using
normalized convolution.
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by Adams et al. (ADAMS et al., 2009; ADAMS; BAEK; DAVIS, 2010). Furthermore, to
simplify the exposition, this section presents the final form of our equations. Please refer
to Section 4.2 for their derivations.

Let K be the total number of adaptive manifolds that will be used to filter a signal f
(Section 4.4.1 shows how to compute this number). Each pixel pi ∈ S has an associated
sampling point η̂ki ∈ S×R which lies on the k-th adaptive manifold. The point η̂ki has
the same spatial coordinates of pi, but its range coordinates are given by ηki ∈ R (note
the absence of the hat ‘ˆ’). Thus, η̂ki = (pi, ηki). Section 4.3 discusses how the range
coordinates ηki for the sampling points are computed.

The three steps of our filter are: splatting, blurring, and slicing. Splatting performs
a Gaussian distance-weighted projection of the colors fi of all pixels pi onto each adap-
tive manifold (Figure 4.3(a)). The projected values are stored at the sampling points η̂ki
associated with pi:

Ψsplat(η̂ki) = φΣR
2

(ηki − fi) fi. (4.1)

ΣR is the dR × dR diagonal covariance matrix which controls the decay of the Gaus-
sian kernel φ in the dimensions of R. The need for scaling ΣR by 1/2 is explained in
Section 4.2.

Blurring performs Gaussian filtering over each adaptive manifold, mixing the splat-
ted values Ψsplat from all sampling points η̂ki (Figure 4.3(b)). This results in a new value
Ψblur(η̂ki) stored at each η̂ki. Distances for this filtering process on the manifolds are com-
puted taking into account the manifold’s curvature in a scaled version of the space S×R.
This scaling maps the (possibly) anisotropic, axis-aligned Gaussian onto an isotropic
Gaussian with identity covariance matrix. This is a common operation when implement-
ing high-dimensional filters (CHEN; PARIS; DURAND, 2007; ADAMS; BAEK; DAVIS,
2010; GASTAL; OLIVEIRA, 2011).

Slicing computes the final filter response gi for each pixel pi by interpolating blurred
values Ψblur gathered from all adaptive manifolds (Figure 4.3(c)). We gather from the
same sampling points η̂ki used for splatting pi (Figure 4.3(a)). Interpolation is done with
normalized convolution, described by Knutsson and Westin (KNUTSSON; WESTIN,
1993) in the context of missing data. gi is then computed using nearby values known
at positions η̂ki:

gi =

∑K
k=1wki Ψblur(η̂ki)∑K
k=1wki Ψ

0
blur(η̂ki)

, wki = φΣR
2

(ηki − fi). (4.2)

The value Ψ0
blur is the blurred version of Ψ0

splat:

Ψ0
splat(η̂ki) = φΣR

2

(ηki − fi). (4.3)

Contrast Ψ0
splat from Equation 4.3 with Ψsplat from Equation 4.1, and note the absence of

the color fi on the far right of Ψ0
splat.
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The next section provides a detailed derivation of these equations and shows that this
process indeed approximates the brute-force evaluation of Equation 2.2. Section 4.3 dis-
cusses how to compute the sampling points η̂ki = (pi, ηki) that define the adaptive mani-
folds.

4.2 Formal Derivation of Our Approach

A d-dimensional unit-height axis-aligned Gaussian function can be expressed as the
convolution of two d-dimensional Gaussian functions:

φΣa+Σb (t) = C

∫
Rd
φΣa (t− τ) φΣb (τ) dτ, (4.4)

where C is a normalization factor. Let t = x− y, τ = η − y, and Σa = Σb. Equation 4.4
can then be rewritten as:

φΣ(x− y) =
1

|Σ|1/2

(
2

π

)d
2
∫
Rd
φΣ

2
(x− η) φΣ

2
(η − y) dη, (4.5)

where |Σ| is the determinant of the diagonal covariance matrix Σ.
Since the Gaussian is separable over orthogonal directions, one can write φΣ as

φΣ(p̂i − p̂j) = φΣS (pi − pj) φΣR (fi − fj) , (4.6)

where ΣS and ΣR are the diagonal submatrices of Σ associated with the spatial and range
dimensions, respectively. The Gaussian over the range R in Equation 4.6 can be rewrit-
ten using Equation 4.5 and evaluated numerically (using an approximation to the Gauss-
Hermite quadrature rule — see Section 4.2.3) as a weighted sum:

φΣR (fi − fj) ∝
∫
RdR

φΣR
2

(fi − η)φΣR
2

(η − fj) dη

≈
K∑
k=1

wki φΣR
2

(ηki − fj) .
(4.7)

The scaling factor outside the integral was not included as it will cancel out in the division
performed in Equation 2.2. The K summation points ηki ∈ RdR are the locations where
the integrand is sampled, and each pixel pi has its own sampling set {η1i, . . . , ηKi}. In
practice, K will be the number of adaptive manifolds, and each pixel pi has exactly one
sampling point ηki on the k-th adaptive manifold. Increasing the number of K sampling
points (i.e., the number of adaptive manifolds) gives a better approximation for the in-
tegral. The integration weights wki are discussed in Section 4.2.3. We can substitute
Equations 4.6 and 4.7 in the numerator of Equation 2.2:∑

pj∈S

φΣ(p̂i − p̂j) fj ∝∼
∑
pj∈S

[
φΣS (pi − pj)

K∑
k=1

wki φΣR
2

(ηki − fj)

]
fj (4.8a)

=
K∑
k=1

wki
∑
pj∈S

φΣS (pi − pj) φΣR
2

(ηki − fj) fj, (4.8b)
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where “∝∼” is the approximately proportional relation. Equation 4.8b was obtained by
reordering the summations. The expression for the denominator of Equation 2.2 is similar,
not including the last term fj .

Key observation: by a suitable choice of sampling points {ηki}, the inner summation
from Equation 4.8b can be computed in O(dN) time for all N pixels pi. This makes the
total cost of Gaussian filtering all pixels O(dNK). Next, we show how to choose {ηki}.
All our results were produced with K � N .

4.2.1 Choosing the Set of Sampling Points {ηki}

This section shows that, for each k = 1 . . . K, if the set of sampling points {η̂ki} lies
on a dS-dimensional manifold Mk in d-dimensional space, and if Mk is approximately
linear in all local neighborhoods, then the inner summation in Equation 4.8b can be com-
puted in O(dN) time for all N pixels pi. This makes the total cost of Gaussian filtering
all pixels O(dNK).

Let η̂ki = (pi, ηki) be the d-dimensional vector whose coordinates are the concatena-
tion of the (S) coordinates pi and the (R) coordinates ηki. Using the separability property
of the Gaussian to combine the product of φΣS and φΣR/2 into a single Gaussian φΣη , the
inner summation in Equation 4.8b can then be rewritten as

Ψblur(η̂ki) =
∑
pj∈S

φΣη (η̂ki − p̂j) fj, Ση =

[
ΣS

ΣR /2

]
, (4.9)

where p̂j = (pj, fj). Note that Ψblur defines a Gaussian filtering (a convolution) on a
d-dimensional space.

Proposition 4.1: For each k = 1 . . . K, if the set of sampling points {η̂ki} lies on a
dS-dimensional flat (a generalized plane) Pk in d-dimensional space, then Ψblur(η̂ki) can
be computed, for all η̂ki, by a Gaussian filtering over Pk . In other words, Ψblur can be
computed as a Gaussian convolution on a dS-dimensional space instead of d-dimensional
space (note that dS < d since d = dS + dR).

Proof. Let BPk = (b1 . . . bdS ) be any orthonormal basis that spans the flat Pk.
Also, let B⊥Pk = (bdS+1 . . . bd) be any orthonormal basis which is also orthogonal to
BPk . Together, BPk and B⊥Pk form an orthonormal basis for Rd. Thus, since the Gaussian
function is separable in any orthonormal basis, Equation 4.9 can be rewritten as

Ψblur(η̂ki) =
∑
pj∈S

φ1

(
BT
Pk
ξkij
)
φ1

(
B⊥TPk ξkij

)
fj︸ ︷︷ ︸

ΨPk
splat(η̂kj)

, (4.10)

where
ξkij = Σ−1/2

η (η̂ki − p̂j). (4.11)

This decomposition defines a Gaussian filtering of the term ΨPk
splat in Equation 4.10 over

the dS-dimensional flat Pk, and corresponds to the blurring step in Figure 4.3 (b). �
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The term ΨPk
splat(η̂kj) computes a Gaussian distance-weighting of fj , and corresponds

to the splatting operation in Figure 4.3(a), modeled by Equation 4.1. Furthermore, Equa-
tion 4.8b can be rewritten as

K∑
k=1

wki Ψblur(η̂ki).

This is, after the normalization defined in Equation 2.2, the slicing operation modeled by
Equation 4.2 and illustrated in Figure 4.3(c).

The subscript ‘1’ of the Gaussian φ1 in Equation 4.10 indicates that its covariance
matrix is an identity matrix, and can be disregarded. The product BT ξkij computes the
projection of vector ξkij ∈ Rd onto the basis vectors of B. The scaling matrix Σ−1/2

η in
Equation 4.11 transforms an anisotropic, axis-aligned Gaussian onto an isotropic Gaus-
sian with identity covariance matrix (hence, φ1).

Proposition 4.2: For each k = 1 . . . K, if the set of sampling points {η̂ki} lies on a
dS-dimensional manifold Mk in d-dimensional space, and if Mk is approximately linear
in all local neighborhoods of S, then Ψblur(η̂ki) can be approximated, for all η̂ki, by a
Gaussian filtering over Mk.

Proof. Due to the compactness of the Gaussian function, over 99% of the value fi
of pixel pi is “diffused” to pixels pj whose Mahalanobis distance in space

‖pj − pi‖ΣS
=
√

(pj − pi)T Σ−1
S (pj − pi)

is less than 3. Thus, by Proposition 4.1, if the manifold Mk is approximately linear in
a neighborhood of size 3 around each pixel pi (as measured in a space scaled by Σ−1

S ),
Ψblur(η̂ki) can be well approximated for all η̂ki by a Gaussian filtering over Mk. �

Splatting the pixel colors onto the manifold Mk has cost O(dR) (Section 4.2.2
presents further discussion on this). Finally, approaches for performing filtering over
manifolds (SOCHEN; KIMMEL; BRUCKSTEIN, 2001) include methods which work in
O(dN) time forN d-dimensional points (CRIMINISI et al., 2010; GASTAL; OLIVEIRA,
2011). Thus, if one selects a sampling set {η̂ki} lying on the manifolds Mk, the value
Ψblur(η̂ki) can be computed for all η̂ki in O(dN) time. This makes the total cost of Gaus-
sian filtering all pixels O(dNK).

4.2.2 Splatting onto the Adaptive Manifolds

The term ΨPk
splat(η̂kj) in Equation 4.10 defines a Gaussian distance-weighted splatting

of a pixel’s color fj onto a flat Pk. Note that the argument of the Gaussian is the distance
of p̂j to the flat Pk (in a space scaled by Σ

−1/2
η ).

Our approach uses nonlinear manifolds instead of flats, thus, when splatting a pixel’s
color fj onto an adaptive manifold Mk, one must compute the distance from p̂j to Mk.
Since this manifold is nonlinear (it is only approximately linear), this can be done in a
few ways.
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Following the term ΨPk
splat(η̂kj) in Equation 4.10, one way to compute the distance to

a manifold would be to find the flat Pkj which approximates this manifold in the neigh-
borhood around pj . The Gaussian distance-weighted projection should then be performed
using the closest distance between p̂j and Pkj . However, finding this flat would require
some sort of linear regression on points sampled from the manifold; or the computation
of tangent flats.

Another way of computing this distance is by projecting the point p̂j onto the manifold
Mk along the dimensions of the range R. With this approach, the projection point on the
manifold would be, by definition, η̂kj . Furthermore, since this projection is along R,
the complexity of computing the distance from p̂j to η̂kj , used for splatting, is O(dR)

(remember that p̂j and η̂kj have exactly the same coordinates in S). This is the approach
we use to splat onto the manifolds (Equation 4.1). However, notice that at the projection
point η̂kj on the manifold, the basis which locally spans the manifold (and which defines,
in the blurring stage, the direction of blurring) is not orthogonal to the direction of this
projection (i.e., not orthogonal to the vector η̂kj − p̂j). Thus, this introduces an accuracy
penalty, since the Gaussian is only truly separable for orthogonal directions. A similar
error appears in other approaches which discretize the high-dimensional space (i.e., it is a
sampling error).

4.2.3 Approximate Gauss-Hermite Quadrature

The Gauss-Hermite quadrature rule (NIST, 2011) defines the following approximation
for a Gaussian integral:

∫
R
φΣa (y − x) φΣb (x− z) dx ≈

K∑
k=1

wk φΣb (xk − z) , (4.12)

where xk are the roots of the Hermite polynomial HK(y − x), and the weights wk are
approximately Gaussian: wk ≈ sK φΣa(y − xk), for some constant scaling factor sK . This
rule can be easily extended to the multidimensional integral in Equation 4.7 by successive
applications (ARASARATNAM; HAYKIN; ELLIOTT, 2007). According to this rule,
the integral in Equation 4.7 can be computed exactly by a weighted sum if the sampling
set {ηki} coincides with the roots of HK(fi− η), and also if the Gaussian φΣR/2(ηki− fj)
is well interpolated by a polynomial of degree at most 2K−1 (which is not a big problem
since the Gaussian is smooth and has, practically, compact support).

For each pi, the sampling set {ηki} computed in Section 4.3 does not coincide with
the roots of HK(fi − η). Otherwise, the manifolds would be an exact copy of the orig-
inal signal, and this would break the approximate linearity (among samples ηki from the
k-th manifold) required by Proposition 4.2, strongly impacting the performance of our
method. Nonetheless, one can still approximate the integral in Equation 4.7 using a Gaus-
sian weighting function evaluated at {ηki}. The error introduced by this approach is ex-
pected to be small for a few reasons: (i) by using Gaussian weights one is still respecting
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how much each sample should contribute to the integral, according to the quadrature rule
from Equation 4.12; (ii) for non-outlier pixels, the set {ηki} computed in Section 4.3 pro-
vides a sampling of R with a density similar to the roots of HK(fi − η) — i.e., denser in
regions close to samples of the original signal fi ∈ R; (iii) the integrand in Equation 4.7
is given by smooth Gaussian functions; and (iv) Equation 2.2 can be seen as a Gauss
transform in homogeneous coordinates, which (as discussed by Adams (ADAMS, 2011))
hides scaling errors in the division by the sum of the weights.

From Equation 4.8b, Equation 4.9, and Equation 4.12, it follows that the estimator for
the filtered value of a pixel is given by Equation 4.2, which defines a normalized convolu-
tion interpolator (KNUTSSON; WESTIN, 1993). Next, we discuss how to compute the
sampling points η̂ki = (pi, ηki) that define the adaptive manifolds.

4.3 Computing Adaptive Manifolds

The k-th dS-dimensional adaptive manifold (embedded in S×R) is represented by
a graph (pi, ηki). The manifold value ηki ∈ R associated with pixel pi ∈ S is defined
by the evaluation of a function ηk : S → R at pi: ηki = ηk(pi). Algorithm 4.1 generates
manifolds (i.e., functions ηk) with the following properties:

• They are approximately linear in all local neighborhoods. As we show in Section 4.2,
this is required to obtain a good approximation of Equation 2.2 for all pixels in
O(dNK) time;

• They approximate the input signal in the high-dimensional space. This maximizes the
number of sampling points with significant interpolation weights wki in Equation 4.2,
producing good estimates for Equation 2.2. It also reduces bias, as most pixels are
well represented by the manifolds (see Section 4.4 for a discussion on outliers).

The idea behind obtaining manifolds with these properties is to locally average pixel
values from the input signal. Since the sample mean is a good estimator for the popula-
tion mean, these averages are good representatives of their corresponding neighborhoods.
Furthermore, since local averages define a low-pass filter, the resulting manifolds are
guaranteed to be approximately linear in all local neighborhoods (see the discussion in
Section 4.3.1). However, close to an edge, the local average will not be a good neigh-
borhood representative. At these locations, one needs more than one mean estimate to
represent the local mixture of two (or more) populations. For this reason, we use a hier-
archical segmentation approach to iteratively separate pixels from different populations
into different clusters. Averaging values only from pixels belonging to the same cluster
generates better estimates for the local population means.

An algorithm for creating adaptive manifolds for an input signal f can be summarized
as follows:

Step 1: Generate the first manifold, η1, by low-pass filtering the input signal: η1(pi) =

(hΣS ∗ f)(pi), where ∗ is convolution, and hΣS is a low-pass filter in S with covariance
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matrix ΣS . Recall that ΣS is a dS × dS diagonal matrix that controls the decay of the
Gaussian kernel φ in the S dimensions.

Step 2: Compute the direction v1 ∈ RdR that summarizes the variations of pixel colors
fi about the manifold η1. Direction v1 corresponds to the eigenvector associated with the
largest eigenvalue of the covariance matrix (f1−η1)(f1−η1)T , where f1 = (f1 . . . fN) is
a dR×N matrix containing all pixel colors fi, and η1 = (η11 . . . η1N) is a dR×N matrix
containing all manifold values η1i associated with each pixel pi. Section 4.3.2 shows how
to approximate v1 efficiently in O(dRN) time.

Step 3: Segment the pixels into two clusters C− and C+ using the sign of the dot
product doti = vT1 (fi − η1i): {

pi ∈ C− if doti < 0,

pi ∈ C+ otherwise.
(4.13)

This can be intuitively understood as segmenting the pixels of the input signal into two
subsets: one that is locally above the manifold and another that is locally below the man-
ifold. This defines two distinct populations. Note that this is just an intuition, since above
and below are only defined for flats with dimension (d− 1) in Rd.

Step 4: Compute a new manifold η− by (weighted) low-pass filtering the input signal,
giving weight zero to pixels not in C−:

η−(pi) =
N∑

pj∈C−

W−(pj) fj

/
N∑

pj∈C−

W−(pj),

W−(pj) = θ(η1j − fj)hΣS (pi − pj).

(4.14)

hΣS is the low-pass filter used to generate η1, and θ is a function that gives more weight
to pixels pj not well represented by the manifold η1:

θ(η1j − fj) = 1− w1j. (4.15)

The values w1j are the interpolation weights from Equation 4.2. The construction of the
manifold η+ associated with C+ is done similarly.

Step 5: Based on the stopping criterion discussed in Section 4.4.1, decide whether
more manifolds are needed. If yes, recursively repeat Step 2, replacing every occurrence
of η1 with η−, and only using pixels pi ∈ C− to build the matrices f− and η−, and clusters
C−− and C−+. Do the same for η+ using pixels pi ∈ C+. �

These steps are shown in Algorithm 4.1, and define manifolds in a hierarchical tree
(Figure 4.4). Going further down this tree yields manifolds better adapted to local pop-
ulations: each cluster will contain fewer and more correlated pixels, and Equation 4.14
will perform more robust local mean estimates. Figure 4.5 shows the first three levels of
the manifold tree computed to filter the image in Figure 4.9(a).
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Algorithm 4.1 Computing the Adaptive Manifolds
η1 ← hΣS ∗ f (∗ First manifold ∗)
C1 ← {p1, . . . , pN} (∗ First pixel cluster contains all pixels ∗)

return {η1} ∪ build_manifolds(η1, C1)

function build_manifolds(ηk, Ck)

(∗ Build two pixel clusters by a segmentation ofR ∗)

Build matrices fk, ηk only using pixels in Ck
Find largest eigenvector v1 of matrix (fk − ηk)(fk − ηk)

T

C− ← ∅; C+ ← ∅;
for all pixels pi ∈ Ck do

(∗ Use a dot product for segmentation ∗)

if vT1 (fi − ηki) < 0 then
C− ← C− ∪ {pi}

else
C+ ← C+ ∪ {pi}

end if

end for

(∗ Build new manifolds ∗)
Compute η− and η+ using Equation 4.14

(∗ Recurse if more manifolds are needed ∗)
M− ← {η−}; M+ ← {η+};
if stopping criterion not reached (Section 4.4.1) then
M− ←M− ∪ build_manifolds(η−, C−)

M+ ←M+ ∪ build_manifolds(η+, C+)

end if

(∗ Return the set of all constructed manifolds ∗)
returnM− ∪M+

end function
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η1

η− η+

η−− η−+ η+− η++

Figure 4.4: Manifold tree constructed using Algorithm 4.1.

4.3.1 Low-Pass Filtering

Section 4.2 shows that a good approximation for Equation 2.2 can be obtained using
nonlinear manifolds if they are approximately linear in all local neighborhoods. Although
not true in general, for natural images such approximately-linear manifolds can always
be obtained by applying a low-pass filter h to the original pixels, and by making the
standard deviation of this filter adequately large. This is proven below. The following
analysis is performed for 1-D signals, however the same argument generalizes to arbitrary
dimensions due to the separability of the filtering operations. We also assume f is twice
differentiable, which is not a significant constraint since f (the input image) is sampled
(discretized).

Definition 4.1: A 1-D function (e.g., manifold) η(x) is linear if its second derivative
(or curvature) is zero for all x: ∂xxη = 0. It is said to be approximately-linear in an
interval [a, b] if the total curvature over this interval is less than some small value ε:∫ b

a

∣∣∂xxη∣∣ dx < ε. (4.16)

Proposition 4.3: For any ε > 0, any interval [a, b], and any signal f whose deriva-
tives follow natural-image distributions (WEISS; FREEMAN, 2007), there exists a low-
pass filter hσ with standard deviation σ for which the function defined by the convolution
η = f ∗ hσ is approximately linear according to Equation 4.16.

Proof. The derivative of a convolution can be decomposed as:

∂xxη = ∂xx(f ∗ hσ) = (∂xxf) ∗ hσ. (4.17)

This convolution performs local averaging of the values ∂xxf , which are realizations of a
random variable. Equation 4.17 converges to the population’s expected value E[∂xxf ] as
more samples are averaged — i.e., as the standard deviation σ of the filter increases. For a
particular σ value, the variance of the estimator given by Equation 4.17 is proportional to
Var[∂xxf ]/σ. Thus, for some proportionality constant γ, one can state a high-confidence
bound on the error of the estimator:∣∣(∂xxf) ∗ hσ − E[∂xxf ]

∣∣ < γ

σ
Var[∂xxf ]. (4.18)

The output of derivative filters applied to natural images have (non-Gaussian) distributions
which peak at, and are symmetric about, zero (WEISS; FREEMAN, 2007), and hence
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η1

η− η+

η−− η−+ η+− η++

Figure 4.5: The manifolds used by our filter to compute Figure 4.9(b).
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E[∂xxf ] ≈ 0. Plugging this into Equation 4.18 and integrating both sides in [a, b]:∫ b

a

∣∣(∂xxf) ∗ hσ
∣∣ dx < ∫ b

a

γ

σ
Var[∂xxf ] dx. (4.19)

Evaluating the integral on the right-hand-side yields:∫ b

a

∣∣(∂xxf) ∗ hσ
∣∣ dx < γ

σ
(b− a) Var[∂xxf ]. (4.20)

Since the standard deviation σ is a free parameter of the low-pass filter, for any ε > 0 and
any interval [a, b] one can always find a filter hσ with standard deviation σ sufficiently
large such that the right-hand-side of Equation 4.20 evaluates to less than ε, and thus
η = f ∗ hσ is approximately linear according to Definition 4.1. �

Note that Proposition 4.3 is not valid for a general signal f . One particular example
would be the signal defined by f(x) = x2, for which a convolution with any symmetric
low-pass filter (disregarding boundary conditions) does not alter its curvature ∂xxx2 = 2.

According to our experience, using (in Steps 1 and 4 of our algorithm) a low-pass
filter hΣS with covariance matrix given by ΣS (i.e., the spatial variance of φΣ) produces
adaptive manifolds which are sufficiently linear (according to Proposition 4.2) and gener-
ate good filtering results. Section 5.4.3 discusses implementation details for this low-pass
filter.

4.3.2 Fast Eigenvector Approximation in O(dRN) Time

Proposition 4.4: The eigenvector v1 associated with the largest eigenvalue of the
dR × dR matrix XXT , where X = fk − ηk, can be approximated in O(mdRN) time
using an iterative algorithm withm iterations. This avoids theO(d2

RN) cost of computing
the matrix XXT , which is very desirable when m� dR.

Proof. It can be shown that limm→∞(XXT )mw ∝ v1 for a random vector w which
is not orthogonal to v1 (see Section 4.3.2.1). Thus, since matrix multiplication is associa-
tive,

(XXT )mw = (XXT. . . XXT )︸ ︷︷ ︸
m termsXXT

w = (X(XT. . . (X (XTw)︸ ︷︷ ︸
(a)

) . . .)),

where the term (a) is a O(dRN) matrix-vector multiplication which results in a vec-
tor. Repeating this multiplication until all terms XXT are exhausted yields a (non-
normalized) vector which approximates v1. The total time complexity isO(2mdRN). �

In our experience m = 1 generates great results for color bilateral filtering (dR = 3)
and for non-local-means denoising (dR = 6), while m = 2 to 3 is best when the range
dimensionality is larger than 20 (dR > 20). Such a low number of iterations is possible
since this algorithm converges quickly when the vectors in the matrix X = fk − ηk are
highly anisotropic (i.e., when some eigenvalues of XXT are considerably larger than
the others). When the data is more isotropic, pixels are evenly distributed around the
manifolds, and thus any vector v1 will provide a good segmentation for Step 3 of our
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manifold creation process (Section 4.3). Finally, when filtering video sequences frame-
by-frame, one should set the vector w used to filter the t-th frame equal to v1 from the
previous (t−1)-th frame, to preserve temporal coherence. The first frame is filtered using
a random w.

4.3.2.1 Dominant Eigenvector Computation

Proposition 4.5: For a positive-definite matrix XXT of size dR × dR, with eigen-
vectors v1, . . . , vdR and eigenvalues λ1 > λ2 ≥ . . . ≥ λdR > 0, it is true that

lim
m→∞

(XXT )mw ∝ v1;

where w is a random vector not orthogonal to v1. This is the Power Method (DATTA,
2010).

Proof. The eigenvectors v1, . . . , vdR form an orthonormal basis for RdR . The vector
w can be expressed on this basis as

w = a1v1 + a2v2 + · · · + adRvdR ,

for scalars a1, . . . , adR . From this it follows that

(XXT )mw = (XXT )m(a1v1 + a2v2 + · · · + adRvdR)

= a1(XXT )mv1 + a2(XXT )mv2 + · · · + adR(XXT )mvdR

= a1λ
m
1 v1 + a2λ

m
2 v2 + · · · + adRλ

m
dR
vdR

= a1λ
m
1

(
v1 +

a2

a1

(
λ2

λ1

)m
v2 + · · ·+ adR

a1

(
λdR
λ1

)m
vdR

)
.

The last line is well defined since w is not orthogonal to v1 (i.e., a1 6= 0). Noting that

if (∀i 6= 1, λ1 > λi) then

(
lim
m→∞

(
λi
λ1

)m
= 0

)
,

we have
lim
m→∞

(XXT )mw = a1λ
m
1 v1 ∝ v1. �

Observation: if the largest eigenvalue λ1 is not unique (i.e., the characteristic poly-
nomial has a multiple root at λ1, with multiplicity r), (XXT )mw will converge to a linear
combination of all r eigenvectors v1, . . . , vr associated with λ1. This combination will be
defined by the scalars a1, . . . , ar — i.e., will be defined by the choice of random vector w.
For our filter, this means that the pixels are isotropically distributed around the manifolds
for the r directions of maximum variation. Thus this combination of eigenvectors will
provide a good segmentation for Step 3 of our manifold creation process (Section 4.3).

Note also that using a value of m + 1 for the exponent always produces a better
approximation for v1 than using a value of m. In practice, though, we found that as little
as m = 1 iteration is enough for obtaining good 5D RGB color filtering; and m = 2 to
m = 3 is enough for non-local means denoising.
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4.4 Filter Behavior Analysis

It is instructive to analyze the behavior of our filter by contrasting its response with
the response of the brute-force filter defined by Equation 2.2, in the presence of outliers.
Outlier pixels have range R coordinates very different from the ones of their neighbors
in the spatial domain S . Given an outlier pixel pi, the filter defined by Equation 2.2
preserves its colors fi (i.e., gi = fi), since pi has no neighbors in the high-dimensional
space S×R. This is different from the result obtained with Equation 4.2, which suppresses
contributions from outliers. To understand the source of this suppressive property, recall
that outliers do not fit the local population and thus, the adaptive manifolds generated by
Algorithm 4.1 do not represent them well. As a result, the values of their colors fi are
highly attenuated during their projections onto the manifolds (Equation 4.1, illustrated in
Figure 4.3(a)).

One can handle outlier pixels in two ways: accept the values computed by Equa-
tion 4.2, or change the filtered values to better approximate the response of Equation 2.2.
The first alternative forces outliers to behave like their neighborhoods, thus, as discussed
above, suppressing their influence in the filtered signal. This is desirable for some appli-
cations, such as denoising. Figure 4.15 shows an example where our approach was used
to implement a non-local-means filter (BUADES; COLL; MOREL, 2005). Note how the
resulting filter (d) is slightly more aggressive in reducing noise than a conventional non-
local-means filter (e). While algorithms designed specifically for denoising (DABOV
et al., 2007) are expected to produce better results than non-local means, they tend to
be slow. Thus, performing non-local-means denoising with our approach offers a good
alternative for interactive applications.

The second alternative adjusts the response of Equation 4.2 to better approximate
the response of Equation 2.2, which preserves the colors fi from outliers. (i.e., gi = fi).
Since outlier pixels are far away from all manifolds, this adjustment is performed as

gi = αi g̃i + (1− αi) fi, αi = maxk
(
φΣ(p̂i − η̂ki)

)
; (4.21)

where g̃i is the result of Equation 4.2 for pixel pi, and αi is the maximum kernel response
for the distance of pixel pi to its associated sampling point on all manifolds. Since αi ∈
[0, 1] (recall that the peak of the Gaussian φΣ in Equation 2.3 is 1), gi becomes a linear
interpolation of g̃i and fi. For an outlier pixel (far away from all manifolds): αi ≈ 0 and
gi ≈ fi; while for a non-outlier pixel (close to at least one manifold): αi ≈ 1 and gi ≈ g̃i.

4.4.1 Stopping Criteria

According to Proposition 4.2, the size of the neighborhood where the manifolds should
be approximately linear is proportional to the standard deviations of the filter in S (i.e.,
the square-root of the values in ΣS), which are parameters of the filter. As these values
increase, the manifolds slowly become flats in S×R, and, in turn, become less adapted
to the signal. This means that more manifolds will be needed to accurately represent the
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σs

1 4 8 16 32 64 128

σ
r

0.01 3 3 3 7 15 31 63
0.10 3 3 3 7 15 31 63
0.20 3 3 3 7 15 15 31
0.40 3 3 3 3 7 7 15
1.00 3 3 3 3 3 3 3

Table 4.1: Several values for number of manifolds (K) computed for RGB color im-
age filtering from Equation 4.22. This table assumes isotropic kernels in space S and
rangeR, with standard deviations given by σs and σr, respectively (see first paragraph of
Section 4.6).

pixel population when the spatial standard deviation of the filter is large. Furthermore,
when the values in ΣR increase, the interpolation weight wki given by each pixel pi to
its associated sampling point η̂ki on the k-th manifold (Equation 4.2) also increases. This
means that fewer manifolds will be needed to estimate Equation 2.2 with good accuracy
when the range standard deviation of the filter is large.

With these guidelines in mind, the next paragraphs discuss how to select the number
of manifolds (K) for different applications. This custom selection provides control over
the filter based on properties such as expected outlier behavior and performance goals.
We discuss how to compute the height H of the manifold tree (Figure 4.4), from which
the number of manifolds K can be obtained as K = 2H − 1.

For RGB color image filtering, the tree height is computed as

H = max
(
2,
⌈
HS LR

⌉)
, (4.22)

where HS is a height computed from the spatial standard deviations of the filter, and LR
is a linear correction computed from the range standard deviations:

HS = blog2 (σSmax)c − 1, and LR = 1− σRmin .

The maximum and minimum standard deviations σSmax and σRmin are computed from
their respective covariance matrices:

σSmax =
√

max (ΣS), and σRmin =
√

min (ΣR). (4.23)

Table 4.1 shows several values for the number of manifolds (K), computed using Equa-
tion 4.22 for performing RGB color image filtering. Note how these values follow the
guidelines outlined in the beginning of this section: the number of manifolds should in-
crease with increasing spatial standard deviation, and should decrease with increasing
range standard deviation.

Using the tree height given by Equation 4.22 and treating outliers according to Equa-
tion 4.21, one achieves good accuracy when compared to brute-force bilateral filtering:
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σs

1 4 8 16 32 64 128

σ
r

0.01 57.8 52.7 51.2 50.9 50.6 50.4 50.3
0.05 50.7 44.8 42.5 43.3 43.6 43.5 43.3
0.10 47.9 43.7 41.1 41.7 42.1 41.6 40.6
0.15 46.3 43.8 41.2 40.8 41.4 40.4 39.2
0.20 45.3 44.1 41.6 40.2 41.0 39.4 38.0
0.40 43.0 44.5 42.1 40.1 38.6 37.3 36.5
0.60 41.8 43.7 41.7 40.1 39.0 37.4 35.5
1.00 40.8 42.4 41.1 39.7 38.8 37.2 35.1

Table 4.2: Mean PSNR of the adaptive-manifold filter (computed with respect to brute-
force RGB color bilateral filtering) for various combinations of σs and σr values. The
mean values were obtained from a set of 24 images. The number of manifolds, K, was
computed using the tree height given by Equation 4.22. Section 4.6 defines the parameters
σs and σr.

average PSNR above 40 dB for most combinations of σs and σr parameters (Table 4.2).
Towards the bottom-right of Table 4.2, the adaptive-manifold filter’s results diverge from
the bilateral filter’s results due to our choice of low-pass filter over the manifolds (we
use the RF filter from Chapter 3, discussed in Section 5.4.3), which is not Gaussian, but
approximates it. For combinations of large values for both σs and σr (bottom-right por-
tion of Table 1), the adaptive-manifold filter behaves more like a low-pass filter than as
an edge-preserving one. A similar behavior is also observed for the bilateral filter (Fig-
ure 4.6). Figure 4.7 provides further examples of the impact, on the filtered images, of
varying the values of the parameters σs and σr.

For natural image denoising using the non-local-means algorithm (BUADES; COLL;
MOREL, 2005), more manifolds are required to deal with the noisy data. Good results
are achieved with a small increment to the tree height used for color bilateral filtering:

H = 2 + max
(
2,
⌈
HS LR

⌉)
. (4.24)

Note that the number of manifolds is independent of the filter dimensionality (see Sec-
tion 4.6.3). In our tests, we achieve consistent results by using the same tree height
(Equation 4.24) for denoising in dimensions from 6 to 147 (Figure 4.15). Finally, since
outliers will be mostly noise, they should be suppressed (i.e., do not use Equation 4.21).

For global illumination filtering one can play with the number of manifolds to trade
off performance and quality. This is specially useful in games and other real-time appli-
cations. In this case, outliers should also be suppressed. Figure 4.1 and Figure 4.17 show
an example of noise reduction applied to an image rendered using path tracing, which will
be discussed in Section 4.7.

For other applications, the number of manifolds can be dynamically computed. A
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(a) Input

(b) Bilateral filter (σs = 16, σr = 0.2)

(c) Ours (σs = 16, σr = 0.2), PSNR 41 dB vs Bilateral filter

(d) Bilateral filter (σs = 64, σr = 1.0)

(e) Ours (σs = 64, σr = 1.0), PSNR 37 dB vs Bilateral filter

Figure 4.6: For values of the parameters σs and σr preserving image edges (b and c), the
adaptive-manifold (AM) filter obtains results visually very similar to the bilateral filter
(BF). For large values of both σs and σr (d and e — bottom-right portion of Table 4.2),
the AM filter results diverge from the BF results (lower PSNR) due to our choice of low-
pass filter used over the manifolds (see Section 5.4.3).
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Photograph BF σs = 16, σr = 0.1 BF σs = 8, σr = 0.25 BF σs = 16, σr = 0.5

AM σs = 16, σr = 0.1 AM σs = 8, σr = 0.25 AM σs = 16, σr = 0.5

Inset BF σs = 16, σr = 0.1 BF σs = 8, σr = 0.25 BF σs = 16, σr = 0.5

AM σs = 16, σr = 0.1 AM σs = 8, σr = 0.25 AM σs = 16, σr = 0.5

Figure 4.7: Our adaptive-manifold filter (AM) achieves a PSNR above 40 dB when com-
pared to brute-force bilateral filtering (BF), which is practically indistinguishable visual
difference.
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simple and effective approach would be to traverse the manifold tree (Figure 4.4) breadth-
first and stop generating manifolds when a high-percentage of pixels are within close
range to at least one manifold. We define close as having a Mahalanobis distance ‖p̂i −
η̂ki‖Σ less than 1. This is equivalent to being within the range of 1-sigma in an isotropic
Gaussian kernel. The pixels outside this range are considered outliers in the pixel color
distribution, and should be treated as discussed in Section 4.4 in accordance with the
desired filter response.

4.5 Implementation Details

Our full MATLAB source code is available in Appendix B.

For the low-pass filter hΣS used to compute the adaptive manifolds ηk (see Step 1 of
the algorithm in Section 4.3), we use a linear-time recursive filter with exponential decay:

out[i] = in[i] + exp
(
−
√

2
/
σl

)
(out[i− 1]− in[i]) . (4.25)

This 1-D filter is applied along each S dimension of the signal being filtered. Since its
impulse response is not symmetric, it must be applied twice (once in each direction).
For example, in a 2-D image, Equation 4.25 is performed left-to-right and then right-to-
left for the horizontal dimension. The value σl is the square root of the variance at the
diagonal position (l, l) of matrix ΣS , where l = 1, . . . , dS is the current S dimension
being filtered. Furthermore, since the samples {ηki} of the k-th adaptive manifold are
computed applying the low-pass filter hΣS to an already band-limited signal (the discrete
input f in Equation 4.14), they define an “even more” band-limited signal. Thus, one can
correctly represent the set {ηki} using fewer than N samples (N is the original number of
samples in f , i.e., the number of pixels in the input image). For the filter in Equation 4.25,
one can use min(N, 4N/σl) samples (see Section 4.5.1 for the derivation of this bound).

For blurring over each manifold ηk (Figure 4.3(b)), we use the recursive filter (RF) we
introduced in Section 3.4.3, based on our Domain Transform geodesic-filtering approach.
This filter uses the domain transform to isometrically map geodesic curves from the high-
dimensional manifold onto the real line, filtering in linear time and achieving real-time
performance. Although the response of such a filter for computing Ψblur is exponential
instead of Gaussian, we found that results are visually similar and of equal quality. In fact,
such a solution achieves average PSNR above 40 dB when compared to the brute-force
Gaussian bilateral filter for RGB images (Table 4.2). If a more Gaussian-like response is
needed, one can use iterations of recursive or box filters (HECKBERT, 1986; GASTAL;
OLIVEIRA, 2011).

In general, the output of the RF filter is not band-limited. However, since the filtering
process takes place on band-limited manifolds (i.e., smooth manifolds), the output of
RF will also be band-limited. Thus, one can safely downsample the signal defined by
Ψsplat before using RF to compute Ψblur, which is then upsampled for slicing. Due to the
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nonlinear nature of the domain-transform RF, one cannot find a closed-form expression
for the Nyquist sampling rate. Using min(N,N/r) samples generates good results for
color-image filtering, where r = min (σSmin/4, 256 σRmin), and σSmin and σRmin are the
minimum spatial and range standard deviations.

4.5.1 Sampling Rate for Recursive Filter

The recursive filter h described by Equation 4.25, when applied twice (once in each
direction) has discrete impulse response (for an impulse at n = 0) given by

h[n] = − 1√
2σl

exp

(
−
√

2 |n|
σl

)
, (4.26)

where |n| is the absolute value of n. The discrete-time Fourier transform of this filter is
given by

H[ω] =

sinh

(√
2

σl

)
√

2σl

(
cosh

(√
2

σl

)
− cos (ω)

) , (4.27)

where ω ∈ [−π, π] is the frequency parameter. Note thatH is periodic outside the interval
[−π, π], since the filter is discrete-time. The cut-off frequency ωc of h (i.e., the frequency
above which all frequencies are attenuated by h below a small threshold τ ), is obtained
solving H[ωc] = τ for ωc. This yields

ωc = acos

cosh

(√
2

σl

)
−

sinh

(√
2

σl

)
√

2 τ σl

 . (4.28)

When this equation is solvable for ωc ∈ R, any signal f filtered with h can be consid-
ered bandlimited to the interval [−ωc, ωc]. Thus, in practice, if the original signal f is
represented by N samples, the filtered version of f , obtained with the filter h, should
be represented by at least N ωc/π samples. In our implementation, we represent this fil-
tered signal with min(N, 4N/σl) samples, which is equivalent to a cut-off frequency ωc
obtained with threshold τ = 0.0125.

4.5.2 Complexity Analysis

Since each pixel appears in a single cluster at each level of the binary tree in Fig-
ure 4.4, clustering takes O(dN log K) time, where d = dS + dR is the total dimen-
sionality of the space, N is the number of input pixels, and K is the number of adaptive
manifolds used for filtering. Computing the manifolds using the filter from Equation 4.25
takes O(dN K/σSmin) time, since they are band-limited. Performing the filtering over all
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manifolds has a cost of O(dNK + dNK/σSmin) since splatting (Equation 4.1) is evalu-
ated for all pixels, and the RF filter is linear-time. Finally, evaluating the summations in
Equation 4.2 for all pixels has costO(dNK). Thus, the total cost of our filter isO(dNK).

Only one manifold has to be kept in memory at each moment, since manifolds can
be discarded after being used for blurring (Section 4.1.1) and clustering (Section 4.3). To
evaluate the filter, one needs the following amounts of memory: (i) dRN/σSmin , to store
the current manifold; (ii) (dR + 1)N/σSmin , to store the Ψblur and Ψ0

blur values for the
current manifold; (iii) (dR + 1)N , to sequentially accumulate Ψblur and Ψ0

blur from all
manifolds (scaled by wki), and perform the final division (Equation 4.2); and (iv) N , to
store the clusters belonging to the current manifold-tree branch.

4.6 Performance Evaluation

We have implemented three versions of the high-dimensional adaptive-manifold filter,
and tested them on a large number of images and videos. These implementations include
two CPU versions, one written in C++ and one in MATLAB, and a GPU version written in
CUDA. The performance numbers reported in the paper were measured on a 3.3 GHz Intel
Core i5 2500K processor with 16 GB of memory, and on two GPUs: a GeForce GTX 280
with 1 GB of memory, and a GeForce GTX 580 with 1.5 GB of memory. All comparisons
with other techniques were done on the same machine, using a single CPU core, and
using code provided by their respective authors. Furthermore, we adopt the conventional
isotropic kernels in S andR, with standard deviations σs and σr, respectively. In this case,
covariance matrices are obtained as ΣS = σ2

s IdS×dS and ΣR = σ2
r IdR×dR , where Im×m

is the m×m identity matrix. σs is measured in pixels, and σr is measured in normalized
units (e.g., for RGB color filtering, the RGB cube is given by [0, 1]3).

4.6.1 RGB color image filtering on the CPU

Computing the number of manifoldsK using Equation 4.22, our CPU implementation
of the adaptive-manifold (AM) filter processes a 1-megapixel color image in about 0.2
seconds for a wide range of filtering parameters. The fastest color bilateral filter currently
available is the permutohedral lattice (PL) of Adams et al. (ADAMS; BAEK; DAVIS,
2010). Figure 4.8 shows that our AM filter is 2 to 5× faster than PL for a wide range
of filtering parameters. Furthermore, the AM filter is slightly faster than the guided filter
(GF) of He et al. (HE; SUN; TANG, 2010), while generating results indistinguishable
from brute-force bilateral filtering (Figure 4.9). The guided filter does not compute true
5-D Euclidean distances between pixels. Instead, it computes their similarity with respect
to a third point (a local average). As a result, GF may introduce artifacts in the filtered
images (Figure 4.9(d)). In fact, in some cases, it completely ignores color differences
between pixels (Figure 4.10). A real-world application example where this problem be-
comes noticeable is shown in Figure 4.11, where a noisy path-traced global illumination
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Figure 4.8: CPU performance of our adaptive-manifold (AM) filter versus the permuto-
hedral lattice (PL) and the guided filter (GF). The vertical axis shows time, in seconds, to
filter a 1-megapixel color image. The shaded areas represent performance changes when
σr varies from 1 (bottom curve) to 0.05 (top curve).

image, shown in (a), was filtered using our adaptive manifolds filter, shown in (b), and us-
ing the guided filter, shown in (c). Note how the guided filter introduces haloing artifacts
in certain regions of the image. These artifacts are not present in the result produced by
our filter.

For a combination of large spatial standard deviations and small range standard devi-
ations, our filter is slower than PL (Figure 4.8). This happens because, in such situations,
the manifolds become linear almost everywhere, loosing their ability to adapt to the sig-
nal. To compensate for this, more manifolds are needed to guarantee a sufficient number
of sampling points with significant integration weights (see Section 4.2), which affects
performance. However, as noted by other researchers (ADAMS et al., 2009; FARBMAN
et al., 2008), to achieve best results, applications that use Euclidean filters usually require
spatial standard deviations of small to medium sizes. Thus, our filter provides the fastest
alternative for the most common situations.

4.6.2 RGB color image filtering on the GPU

Due to the simple and parallel operations used by our approach, our filter achieves
significant performance gains on GPUs. We implemented our AM filter using CUDA. On
a GTX 280 GPU, the total time required for filtering a 1-megapixel color image ranges
from 0.001 to 0.036 seconds (considering σs ∈ [1, 128], and σr ∈ [0.05, 1.0]). This
represents a speedup from 15 to 50× compared to our one-core CPU implementation.
Since a 1-megapixel image is relatively small for a modern GPU, the performance of our
filter scales sub-linearly with small image size. Our approach can filter a 10-megapixel
image under 0.04 seconds. Finally, the bottleneck of our GPU implementation are the
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(a) Photograph (b) Our AM (c) Bilateral (BF) (d) Guided (GF)

Figure 4.9: Comparison of smoothing quality (best viewed in the electronic version).
Our filter generates results virtually indistinguishable from the brute-force bilateral filter
(BF). The guided filter (GF) failed to smooth certain regions of the sky. Results obtained
with the permutohedral lattice and Gaussian kd-trees (not shown) are very similar to ours.
Filtering parameters: σs = 16 and σr = 0.2 for our AM and for BF; r = 16 and ε = 0.182

for GF (chosen to maximize overall visual similarity of the results).

Input
Our Adaptive Manifolds

Permutohedral
Gaussian kd-trees

Brute force bilateral
Guided

Figure 4.10: Response of filtering the blue impulse in the top image using small ΣR

values and the edges from the grayscale image. Our filter and bilateral filters preserve
discontinuities from the input signal. The guided filter does not manage to do the same,
because the gray shade is halfway between white and black. Black regions in the filtered
signal indicate gi = 0.
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(d) Path-traced image (e) Our AM filter (f) Guided filter

Figure 4.11: Example of global illumination filtering. The path-traced image in (a) was
rendered with 1 sample per pixel for direct and indirect illumination. Our filter in (b)
generates a smooth shading from the noisy input by working in a 4-D space composed
of 3-D geometric normal vectors and 1-D scene depth. The guided filter in (c) works on
the same 4-D space, however it introduces haloing artifacts in certain image regions. This
happens since the guided filter does not compute true Euclidean distance between pixels,
as discussed in the text.

recursive filters from Section 5.4.3 (i.e., Equation 4.25 and the RF filter). Its performance
can be further improved using recent approaches for GPU recursive filtering (NEHAB
et al., 2011).

On a GTX 280 1GB GPU, the PL filter has a poor performance due to the lack of L1
cache and atomic instructions, both of which are essential for implementing an efficient
parallel hash-table. On this GPU, the PL filter requires from 0.5 to 0.7 seconds to filter
a 1-megapixel color image — our AM filter is 10 to 100× faster for σr < 0.2, or up to
200× faster for σr up to 1. The GPU implementation of the guided filter by Bauszat et al.
(BAUSZAT; EISEMANN; MAGNOR, 2011) filters a 0.75 megapixel color image in 0.07
sec — our AM filter is 2 to 10× faster for σr < 0.2, or up to 40× faster for σr up to 1.
All cases consider σs ∈ [1, 128]. Figure 4.12 shows a performance graph.

On a GTX 580 1.5GB GPU, the PL filter has much improved performance: from 0.05
to 0.1 seconds to filter a 1-megapixel color image. Our AM filter is 10 to 30× faster for
σs ∈ [4, 32], filtering the same image in 0.001 to 0.007 sec. Considering σs ∈ [1, 128], our



91

1 2 4 8 16 32 64 128

0.001

0.01

0.1

1

Spatial standard deviation (σs)

G
TX

28
0

R
un

tim
e

(s
ec

.) AM (ours)
PL
GF

Figure 4.12: Performance on a GTX 280 GPU of our adaptive-manifold filter (AM)
versus the permutohedral lattice (PL), and the guided filter (GF). The vertical axis shows
time, in seconds, to filter a 1 Megapixel RGB color image. The shaded areas represent
performance changes when σr varies from 1 (bottom curve) to 0.05 (top curve). The
guided filter performance curve, in dashed red, is based on performance numbers reported
by Bauszat et al. (BAUSZAT; EISEMANN; MAGNOR, 2011) on a GTX 285 GPU.
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Figure 4.13: Performance on a GTX 580 GPU of our adaptive-manifold filter (AM)
versus the permutohedral-lattice filter (PL). The guided filter (GF) has no performance
data available for such a GPU. The vertical axis shows time, in seconds, to filter a 1
Megapixel RGB color image. The shaded areas represent performance changes when σr
varies from 1 (bottom curve) to 0.05 (top curve).
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Figure 4.14: PSNR (with respect to ground-truth) for non-local means denoising us-
ing the adaptive-manifold filter with different range dimensions, using a fixed number of
manifolds (K = 15, σs = 8, σr = 0.35). PCA was not applied to the filtering space. Each
gray line represents one of the 24 test images. The black dashed line shows the mean
PSNR of the denoised images (∼26 dB). The mean PSNR for the noisy input images is
∼14 dB. As noted by Tasdizen (TASDIZEN, 2008), lower dimensions provide best results
for non-local means denoising, which, as can be seen on the graph, also holds true for the
adaptive-manifold filter. Furthermore, for higher dimensionalities, the adaptive-manifold
filter obtains fairly constant denoising performance using the same number of manifolds,
showing its independence of dimensionality.

filter is 3 to 50× faster. Furthermore, the AM filter can process a 10-megapixel image in
0.02 to 0.07 seconds. For images of this size, PL runs out of memory. Figure 4.13 shows
a performance graph.

4.6.3 Higher-Dimensional Filters

Since the signal f : RdS → RdR and the adaptive manifolds ηk : RdS → RdR both
define dS-dimensional manifolds in Rd, ηk is able to adapt to f equally well regardless of
the range dimensionality dR. Thus, the number of manifolds (K) is independent of the
dimension of the space in which the filter operates — that is, the complexity O(dNK) of
the AM filter is linear in both the number of pixels N and dimensionality d, since K is
independent of these two values. This independence is shown in Figure 4.14, where the
AM filter achieves fairly constant PSNR for a wide range of dimensionalities using the
same number of manifolds. For the graph shown in Figure 4.14, K = 15.

The complexity of previous filters available in the literature are either quasilinear inN
or quadratic in d: O(dN logN) for the Gaussian kd-trees (ADAMS et al., 2009); O(d2N)

for the permutohedral lattice (ADAMS; BAEK; DAVIS, 2010); and O(d2.807...
R N) for the

guided filter (HE; SUN; TANG, 2010), since it requires the inversion of one dR × dR

matrix per pixel. As such, our filter scales significantly better with dimensionality and
image size. For example, our C++ CPU implementation of the AM filter applies non-
local-means (BUADES; COLL; MOREL, 2005) denoising to a 1 megapixel image, using
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25 dimensions, in 3.5 seconds (K = 15, σs = 8, σr = 0.2). The C++ CPU implemen-
tation of the Gaussian kd-trees (accuracy parameter equal to 1) generates a similar result
in 45 seconds, and the C++ CPU implementation of the permutohedral lattice takes 105
seconds. The guided filter has no implementation available for dR > 3. Our MATLAB
implementation of the AM filter processes the same image in 23 seconds.

4.7 Applications

Our high-dimensional filter can provide real-time feedback for several applications.
Next, we describe a few examples.

4.7.1 5-D color filters

5-D color filters can be used to create several effects for images and videos. Figure 4.9
compares the results produced by our 5-D color filter (b) and the ones generated by a
brute-force bilateral filter (c), and by the guided filter (HE; SUN; TANG, 2010). Note
how our filter smooths the sky, while preserving thin features, such as the lighthouse’s
handrail. For this example, the guided filter failed to smooth certain parts of the sky, which
are highlighted in (d). Figure 2.2 compares the use of our Euclidean filter (b) to a geodesic
filter (c) to perform adaptive contrast enhancement without introducing noticeable haloing
artifacts. Such artifacts tend to appear with the use of standard unsharp masking.

4.7.2 Non-local-means filters

Non-local-means filters for denoising (BUADES; COLL; MOREL, 2005) work by
averaging pixels which have similar neighborhoods in the image. The idea is that by using
more image features to evaluate the similarity between pixels, one can generate more
robust estimators for the noisy input data. This is implemented by replacing the vectors p̂i
from Equation 2.2 by the colors of all pixels in am×m patch around pi. For an RGB color
image, this defines a (3m2 + 2)-D space, for which a naïve evaluation of Equation 2.2
becomes intractable. For efficiency, one uses PCA to reduce the dimensionality of the
resulting feature space (R). Tasdizen (TASDIZEN, 2008) has shown that using only 6
main PCA-computed dimensions actually produces better denoising results than working
with the full space. Figure 4.15 illustrates the use of our approach to implement non-
local-means filtering.

4.7.3 Filtering with additional information

Filtering with additional information can help to increase the robustness of pixel-
correlation estimation. For instance, the recent work of Zhuo et al. (ZHUO et al., 2010)
uses an infrared flash to simultaneously capture a crisp infrared image, and a color im-
age obtained under low-lighting conditions (and thus, noisy). Figure 4.16(a-b) show an
infrared-color pair from (ZHUO et al., 2010). Note the noisy color image (b). Using
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the non-local-means algorithm (in 6-D) on the color data results in noise reduction, but
introduces blur (see the horse head on the back of the book in (c)). By incorporating the
infrared data as an extra dimension, our filter achieves optimal denoising results for this
scene, as shown in (d). The original algorithm of Zhuo et al. uses a geodesic filter for
denoising (as opposed to a Euclidean filter), and cannot be effectively used with high-
dimensional spaces. Their result exhibits blurring in many regions of the image, such as
in the text on the back of the book in (e).

4.7.4 Ray-traced indirect illumination

Ray-traced indirect illumination is increasingly making its way into interactive and
real-time applications. Despite the advances in algorithms and hardware, sampling all
light paths in a scene still requires considerable time. For this reason, modern techniques
apply fast and approximate algorithms to denoise undersampled global illumination im-
ages (BAUSZAT; EISEMANN; MAGNOR, 2011), with the goal of obtaining visually
pleasing, albeit physically incorrect renderings. Our high-dimensional filter can be ef-
fectively used for this task. In the example in Figure 4.17, the underlying geometric
information of the scene is used to help filtering noisy indirect illumination, consider-
ably improving the final rendering (Figure 4.1(a), which uses K = 7). This 8-D filter
only considers pixels pi = (xi, yi) that are close in the 2-D image, and have similar
positions (Xi, Yi, Zi) and normal vectors (nix, niy, niz) in the 3-D scene. In this case,
p̂i = (xi, yi, Xi, Yi, Zi, nix, niy, niz).

4.7.5 Hybrid Euclidean-geodesic filter

A hybrid Euclidean-geodesic filter uses Euclidean distances for some dimensions and
geodesic distances for others. Let [p̂i]c be the c-th coordinate of the point p̂i ∈ S×R asso-
ciated with an input pixel pi. For each range coordinate c for which one wants to perform
geodesic filtering, we make [η̂ki]c = [p̂i]c, ∀k ∀pi. For such dimensions, blurring over the
adaptive manifolds ηk is equivalent to blurring over the original signal’s manifold. Fig-
ure 4.18 shows one possible application of such a Euclidean-geodesic filter: performing
local tonal adjustments (LISCHINSKI et al., 2006) using additional depth information.
In this example, a scribble over the color image in (a) is used to compute a selection
mask for pixels with similar colors and depth. A pure Euclidean filter causes the mask to
bleed into other statues, as shown in Figure 4.18(b). On the other hand, using Euclidean
distance for color, and geodesic distance for depth, the selection mask is constrained to
the desired statue (Figure 4.18(c)). While this operation could be performed with a two-
pass Euclidean filter for color followed by a geodesic filter for depth (or vice-versa), the
flexibility of our approach supports a single-pass hybrid Euclidean-geodesic filter.
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(a) Photograph (b) Photograph with noise (std.
dev. 0.2), PSNR 14.7 dB vs Pho-
tograph

(c) Our filter (147-D), PSNR 27.5
dB vs Photograph

(d) Our filter (6-D), PSNR 28.3 dB
vs Photograph

(e) Brute force (6-D), PSNR 26.8
dB vs Photograph

Figure 4.15: Example of non-local means denoising using our filter. For (c) the patch
space of 7 × 7 RGB pixel colors was used in full, resulting in a 147-D space (PCA
was not applied). For (d) the space was reduced to 6-D using PCA, as suggested by
Tasdizen (TASDIZEN, 2008). Our filter works on both 147-D and 6-D using the same
number of manifolds K = 15 (and σs = 8, σr = 0.35). When compared to a brute-force
evaluation of Equation 2.2 shown in (e), our filter is slightly more aggressive in reducing
noise, due to its outlier-suppression property.
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(a) Infrared (IR) (b) Photograph (color)

(c) Ours 6-D color (d) Ours 6-D color + 1-D IR (e) Zhuo et al. color + IR

Figure 4.16: Example of denoising using additional information from an infrared-color
image pair (a) and (b). Using non-local-means on the color data (7 × 7-pixel patches,
reduced to 6-D) reduces noise but introduces blur (c). By using the infrared data as an
extra dimension, our filter achieves optimal denoising for the scene (d). The original
algorithm of Zhuo et al. (ZHUO et al., 2010) uses a geodesic filter for denoising, which
does not work effectively for higher dimensions. Their result exhibits blurring in regions
such as in the text on back of the books (e).
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Indirect illumination:

Indirect + direct illumination:

(a) Unfiltered (b) K = 1 (c) K = 3 (d) K = 7

Figure 4.17: Path-traced scene was rendered with 1 sample per pixel for indirect illumi-
nation, plus 16 light samples for direct illumination. While the unfiltered indirect illumi-
nation result in (a) is unusable, applying our filter with as few as K = 1 manifold (b-d)
can produce high-quality indirect-illumination denoising.

(a) Input (b) Euclidean (c) Euclidean-geodesic

× X

Color

Depth

Figure 4.18: Hybrid Euclidean-geodesic filter. A user wants to lighten the middle statue,
shown by the blue scribble. (b) Using a filter with Euclidean response in color and depth,
the selection mask bleeds to other statues. (c) A filter with Euclidean response in color
and geodesic response in depth produces the desired mask.
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5 HIGH-ORDER RECURSIVE FILTERING OF NON-
UNIFORMLY SAMPLED SIGNALS

Digital filters are fundamental building blocks for many image and video process-
ing applications. Recursive digital filters are particularly important in this context, as
they have several desirable features: they can be evaluated in O(N)-time for N pixels,
being ideal for real-time applications; they can represent infinite impulse response (i.e.,
the value of a pixel may contribute to the values of the entire image or video frame,
which is necessary for several applications, such as recoloring and colorization); and
their implementation is relatively straightforward, since they are defined by a difference
equation (Equation 5.1).

For digital manipulation and processing, continuous signals (often originating from
real-world measurements) must be sampled. Traditionally, uniform sampling is pre-
ferred, and samples are arranged on a spacetime regular grid (for example, the rows,
columns, and frames of a video sequence). However, several applications are better
defined using non-uniform sampling, such as alias-free signal processing (SHAPIRO;
SILVERMAN, 1960), global illumination (JENSEN, 1996), edge-aware image pro-
cessing (GASTAL; OLIVEIRA, 2011), filtering in asynchronous systems (FESQUET;
BIDéGARAY-FESQUET, 2010), particle counting in physics (POULTON; OKSMAN,
2000), among many others (ENG, 2007). The main difficulty is that standard operations
for filtering—such as fast Fourier transforms (FFT), convolutions, and recursive filters—
are commonly formulated with uniform sampling in mind.

This chapter introduces a mathematical formulation for applying recursive digital
filters to non-uniformly sampled signals. Our approach is based on simple constructs
and provably preserves stability of any digital filter, be it low-pass, high-pass, or band-
pass. We also explore relevant aspects and implications to image and video processing
applications, such as filter behavior to image edges (Sections 5.2.5, 5.2.6 and 5.4), and
common boundary condition specification (Section 5.2.7). The flexibility of our solution
allows for the fine-tuning of the filter response for specific applications (Section 5.5).

Our method is general and works with any non-uniformly sampled signal and any
recursive digital filter defined by a difference equation. Since our formulation works
directly with the filter coefficients, it works out-of-the-box with existing methodologies



99

(a) Photograph (b) Low-pass Gaussian

(c) Modified Laplacian of Gaussian (d) High-pass enhancer (Butterworth)

(e) Band-pass enhancer (Butterworth) (f) Tiger’s right eye details (a)–(e)

Figure 5.1: A variety of high-order recursive filters applied by our method to the pho-
tograph in (a). For these examples, non-uniform sampling positions are computed using
an edge-aware transform. Thus, the resulting filters preserve the image structure and do
not introduce visual artifacts such as halos around objects. The graphs in the insets show
the filter’s impulse response in blue, and its frequency response (Bode magnitude plot) in
orange.
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for digital filter design. In particular, we illustrate the usefulness of our formulation by
using it to integrate higher-order recursive filtering with recent work on edge-aware trans-
forms (Section 5.5.1). Such an integration allows us to demonstrate, for the first time
ever, linear-time edge-aware implementations of arbitrary recursive digital filters. We
show examples of a variety of such filters, including Gaussian, Laplacian of Gaussian,
and low/high/band-pass Butterworth and Chebyshev filters (Figure 5.1).

Our solution produces high-quality results in real time, and works on color images at
arbitrary filtering scales. The resulting filters have infinite impulse responses, and their
computational costs are not affected by the shapes of the filtering kernels. We demonstrate
the flexibility and effectiveness of our solution in various image and video applications,
including edge-aware color filtering, noise reduction, stylization, and detail enhancement.

5.1 Background on Recursive Filtering

Recursive filters have been extensively studied in the past 50 years, and a vari-
ety of mathematical techniques are available for their design and analysis (PROAKIS;
MANOLAKIS, 2007). In computer graphics, recursive filtering has been employed in
a large number of applications, including interpolation (BLU; THÉVENAZ; UNSER,
1999), temporal coherence (FLEET; LANGLEY, 1995), edge-aware image process-
ing (GASTAL; OLIVEIRA, 2011, 2012; YANG, 2012), and efficient GPU filtering (NE-
HAB et al., 2011). These filters have several advantages compared to other filtering meth-
ods based on brute-force convolution, summed-area-tables, and fast Fourier transforms.
For instance, they have linear-time complexity in the number of input samples; infinite
impulse responses; and a relatively straightforward implementation.

A causal infinite impulse response (IIR) linear filter is described by a difference equa-
tion in the spatial/time domain:

g[k] =

Q∑
i=0

ni f [k − i] +
P∑
i=1

di g[k − i], k = 0 . . . N − 1; (5.1)

where f [k] is the input sequence of lengthN , g[k] is the output sequence, and {ni, di} ∈ R
are the filter coefficients. P is called the feedback order of the filter. A 0th-order filter is
simply a finite impulse response (FIR) one. Since the input sequence is finite and only
defined for k = 0 . . . N − 1, one needs to define the values of f [−q] for q = 1 . . . Q and
g[−p] and for p = 1 . . . P , called the initial conditions of the system. Equation 5.1 can be
evaluated in O(N) time, and it implements a causal filter since its output only depends
on previous outputs and current/previous inputs.

The causal system from Equation 5.1 is equivalently described by its transfer function
H(z) in the z-domain (PROAKIS; MANOLAKIS, 2007):

H(z) =
G(z)

F (z)
=

∑Q
i=0 ni z

−i

1−
∑P

i=1 di z
−i
, (5.2)
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where F (z) = Z{f [k]} and G(z) = Z{g[k]} are the z-transforms of the input and output
sequences, respectively. The unilateral z-transform of a sequence x[k] is given by

X(z) = Z {x[k]} =
∞∑
k=0

x[k] z−k. (5.3)

The P roots of the denominator in Equation 5.2 are the finite poles of the transfer function.
The output sequence g[k] can be obtained from H(z) and F (z) by computing the inverse
z-transform (on both sides) ofG(z) = H(z)F (z). This yields g[k] = (h∗f)[k], where ∗ is
discrete convolution. h[k] is the impulse response of the filter described by Equation 5.1,
given by the inverse z-transform of H(z). Its discrete-time Fourier transform ĥ(ω) is
obtained from its z-transform as ĥ(ω) = H(ej ω), where j =

√
−1. Since the filter is

causal, the impulse response is zero for negative indices: h[k] = 0 for k < 0.

5.1.1 Non-Uniform Sampling

Recursive filtering of non-uniformly sampled signals has been studied by Poulton
and Oksman (POULTON; OKSMAN, 2000), and by Fesquet and Bidégaray (FESQUET;
BIDéGARAY-FESQUET, 2010). They model the filtering process in the s-domain, re-
lated to the continuous spatial/time domain by the Laplace transform. The filter then be-
comes a continuous differential equation, which can be solved numerically using a vari-
able time-step to represent the non-uniformly sampled output. Essentially, the scheme
chosen for the numerical solution defines how one transforms the s-domain (where the
filter is modeled in continuous-time) to the z-domain (where the filter is evaluated in
discrete-time).

Poulton and Oksman (POULTON; OKSMAN, 2000) approach this problem using the
bilinear transform to map between the domains (SMITH, 1997):

s =
2

T

1− z−1

1 + z−1
. (5.4)

This is equivalent to solving the associated differential equation using the trapezoidal
rule (PROAKIS; MANOLAKIS, 2007). This transform preserves stability and produces
good results for several types of filters.

Fesquet and Bidégaray (FESQUET; BIDéGARAY-FESQUET, 2010) review several
numerical integration approaches to solve the s-domain differential equation using vari-
able time-steps. They point out that explicit methods such as the 4th-order Runge-Kutta
scheme have time-efficient implementations but lack the stability of semi-implicit meth-
ods. In some cases, oversampling is needed to ensure stability, which is only possible if
one has control over the sampler. They conclude that the semi-implicit bilinear method
of (POULTON; OKSMAN, 2000) is possibly the best option in terms of complexity and
stability. However, this transform is not defined for systems with poles at z = −1, and
may be ill-conditioned for systems with poles very close to z = −1 (some high pass
filters) (MATLAB, 2014a).
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Figure 5.2: Example of a non-uniformly sampled signal.

5.2 Recursive Filtering of Non-Uniformly Sampled Signals

We introduce an alternative formulation for recursive filtering of non-uniformly sam-
pled signals. For this, we extend Equation 5.1 to work directly in the non-uniform discrete
domain. As a result, we can directly apply an arbitrary discrete-time filter H(z) to any
non-uniform signal. In the upcoming discussions, we focus on properties and applications
relevant to image and video processing. For instance, we discuss different normalization
schemes (Section 5.2.5 and Section 5.2.6) that may lend to better-suited filters for specific
tasks (Section 5.4). We also describe the integration of high-order recursive digital filters
with recent work on edge-aware transforms (Section 5.5.1), enabling, for the first time,
edge-aware evaluation of a variety of filters, such as those illustrated in Figure 5.1.

Our approach takes as input a discrete-time filter defined by its transfer functionH(z),
an input sequence f [k] of length N , and a set of positive values {∆tk} which define the
distance (or time delay) between subsequent samples (Figure 5.2). The distance values
∆tk are commonly obtained from real measurements at the time of sampling (FESQUET;
BIDéGARAY-FESQUET, 2010), or computed in other ways (GASTAL; OLIVEIRA,
2011). From an initial position t0, we compute the exact position tk of the k-th input
sample using the recurrence tk = tk−1 + ∆tk. Our output is a sequence g[k] of length N ,
containing the filtered input values.

5.2.1 The Naive Approach

One might be tempted to directly apply Equation 5.1 to the input sequence f [k], while
ignoring the distance values ∆tk. Certainly, this does not produce the desired output,
since it treats the sequence f [k] as if it were a uniformly-sampled sequence. The un-
derlying problem lies in the filter H(z) (Equation 5.2), which has a hidden dependency
on a constant sampling interval T . One can intuitively see this dependency through its
discrete-time Fourier transform, obtained from H(z) by letting z = ejω: note that the fre-
quency parameter ω ∈ [−π, π] is normalized relative to the sampling interval T . That is,
ω is measured in radians per sample. This means that the sequence being filtered should
have been sampled using the same interval T , otherwise the response of H(z) cannot be
effectively characterized in the frequency domain.

One naive solution for filtering non-uniformly sampled sequences is to perform sample-
rate conversion to bring the sampling rate to a constant value. However, this is impractical
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as it introduces severe overhead to the filtering process: depending on the values of the in-
tervals ∆tk, sample-rate conversion to a constant interval T could require large amounts
of memory and time. Another interesting solution is the non-uniform extension of the
FFT (MARVASTI, 2001). However, its performance is still superlinear O(N logN) in
the number of pixels, and its implementation somewhat complex.

Our approach, described in the following sections, addresses all of these limitations.

5.2.2 Our Approach

The following sections present the main contribution of our work: a mathematical
formulation required to apply an arbitrary recursive filter to non-uniformly sampled sig-
nals. We solve this problem by first decomposing a P -th order filter into a set of 1st-order
ones (Section 5.2.3), then deriving the equations for the individual 1st-order filters in a
non-uniform domain (Section 5.2.4–Section 5.2.8), and finally applying them separately
to the input data (Equation 5.7).

5.2.3 Decomposition into 1st-Order Filters

Let H(z) be a P -th order filter whose P poles b1, b2, . . . , bP are all distinct. Then,
through partial-fraction expansion (PROAKIS; MANOLAKIS, 2007), H(z) can be de-
composed into a sum of P 1st-order filters and one 0th-order FIR filter:

H(z) =
P∑
i=1

ai
1− bi z−1

+

Q−P∑
i=0

ci z
−i, {ai, bi, ci} ∈ C. (5.5)

The i-th 1st-order filter Hi(z) = ai
1−bi z−1 is described in the spatial domain by the differ-

ence equation
gi[k] = ai f [k] + bi gi[k − 1], (5.6)

or equivalently by the convolution of the input sequence f [k] with its (causal) impulse
response hi[k] = a bk:

gi[k] = (hi ∗ f)[k].

Due to the linearity of Equation 5.3, the original filter H(z) can then be computed in
parallel in O(N)-time as the summed response of all gi, plus a convolution with the FIR
filter:

g[k] =
P∑
i=1

gi[k] +

Q−P∑
i=0

ci f [k − i]. (5.7)

If H(z) contains a multiple-order pole of order m > 1 (i.e., bi = bi+1 = . . . =

bi+m−1), its partial-fraction expansion (Equation 5.5) will also contain terms of orders 1

through m:

Hi(z) +Hi+1(z) + · · ·+Hi+m−1(z)

=
ai,1

1− bi z−1
+

ai,2 z
−1

(1− bi z−1)2
+ · · ·+ ai,m z−(m−1)

(1− bi z−1)m
. (5.8)
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However, any term of order l = 1 . . .m can be decomposed into a product (in the z-
domain) of ‘l’ 1st order terms:

ai,l z
−(l−1)

(1− bi z−1)l
=

ai,l
1− bi z−1

l−1∏
1

z−1

1− bi z−1
.

In the spatial domain, this is the application in sequence of ‘l’ 1st order filters, which is
also performed in O(N)-time.

5.2.4 1st-Order Filtering in a Non-Uniform Domain

Let H(z) = a/(1− b z−1) be a 1st-order filter with coefficients {a, b} ∈ C, which
is described in the spatial domain by Equation 5.6. Without loss of generality, from
here on we will assume this filter has been designed for a constant and unitary sampling
interval T = 1. Suppose the input sequence is zero (f [k] = 0) for all k between some
positive integers k0 and k1, where k0 < k1. Then, if we unroll the recurrence relation in
Equation 5.6, the response of the system for g[k1] can be written as

g[k1] = a f [k1] + bk1−k0 g[k0].

Note that k1 − k0 is the spatial distance (or elapsed time) between the k0-th and k1-th
samples, due to the unitary sampling interval. However, if we take into account the non-
uniform distribution of the sequence f [k], the distance k1− k0 is incorrect, and should be
replaced by tk1 − tk0:

g[k1] = a f [k1] + btk1
−tk0 g[k0].

Thus, let k0 = k − 1 and k1 = k; and note that ∆tk = tk − tk−1 (see Figure 5.2).
Equation 5.6 is written in a non-uniform domain as

g[k] = a f [k] + b∆tk g[k − 1]. (5.9)

This equation correctly propagates1 the value of g[k−1] to g[k] according to the sampling
distance ∆tk. However, it fails to preserve the normalization of the filter.

A normalized filter has unit gain at some specified frequency ω∗. For example, a
low-pass filter commonly has unit gain at ω∗ = 0, which is equivalent to saying that
its discrete impulse response should sum to one:

∑
h[k] = 1. Normalizing a filter is

done by scaling its impulse response (in practice, its numerator coefficients {ni} from
Equation 5.2) by an appropriate factor γ. To find γ one uses the discrete-time Fourier
transform2, which assumes a constant sampling interval. Indeed, non-uniform sampling
breaks this assumption, meaning that there does not exist a single scaling factor γ which
makes the filter everywhere normalized.

1Refer to Section 5.4.3 for a discussion on negative real poles and complex-number outputs.
2Let ω∗ ∈ [−π, π] be the normalized frequency parameter. The gain |γ| at frequency ω∗ of a filter U(z)

is |γ| = |U(ej ω∗)| = |û(ω∗)|. Thus, H(z) = U(z)/|γ| is a filter normalized to unit-gain at ω∗.
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Figure 5.3: Piecewise linear unitary resampling between the (k− 1)-th and k-th samples.
In this example, ∆tk = 4.

Assuming the input filter H(z) (originally designed for uniformly-sampled signals)
is normalized, we present two ways of correcting Equation 5.9 to preserve normalization
when filtering non-uniformly sampled signals. The first approach is based on piecewise
resampling (Section 5.2.5), while the second is based on spatially-variant scaling (Sec-
tion 5.2.6). Each approach produces a different response for the filter (see discussion
in Section 5.4), while maintaining its defining characteristics. Section 5.2.9 proves the
stability of our filtering equations.

5.2.5 Normalization-preserving piecewise resampling

Recall that, in the z-domain, a digital filter is designed and normalized assuming a
constant sampling interval T (Section 5.2.1). To work with non-uniform sampling, it is
impractical to perform sample-rate conversion on the full input sequence due to time and
memory costs. In this section, we show how one can perform piecewise resampling in
a very efficient way. In particular, we show that it is possible to express this resampling
process using a closed-form expression (i.e., one does not have to actually create and filter
new samples, nor store them in memory). Thus, we are able to preserve normalization and
maintain the O(N)-time performance of the filter, even when dealing with non-uniformly
sampled signals.

Without loss of generality, assume T = 1. Also assume, for the time being, that the
non-uniform distances between samples are positive integers (i.e., ∆tk ∈ N). This re-
striction will be removed later. To compute the output value g[k], we will use the known
previous output value g[k − 1] and create new samples between f [k − 1] and f [k] to ob-
tain uniform and unitary sampling. This process is illustrated in Figure 5.3, where new
input samples (shown as green outlined circles) are linearly interpolated from the actual
samples (green circles at times tk−1 and tk). While a linear interpolator does not ob-
tain ideal reconstruction of the underlying continuous signal (PROAKIS; MANOLAKIS,
2007), it is computationally efficient and produces good results for image and video pro-
cessing (GASTAL; OLIVEIRA, 2011). Other polynomial interpolators such as Catmull-
Rom (CATMULL; ROM, 1974) can be used at the expense of additional computation.

Since we are working with a causal filter, the newly interpolated samples will con-
tribute to the value of g[k], but not to g[k − 1]. As expected, this contribution is simply
the convolution of the interpolated samples with the filter’s impulse response h[k]. Since
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the convolution result will be added to the value of g[k] (the k-th sample), it is evalu-
ated at position tk of the domain. The end result is an additional summation term Φ in
Equation 5.9:

g[k] = a f [k] + b∆tk g[k − 1] +

∆tk−1∑
i=1

h[∆tk − i] f̃k[i]︸ ︷︷ ︸
Φ

. (5.10)

f̃k[i] is the i-th sample interpolated from f [k − 1] and f [k]:

f̃k[i] =
i

∆tk
(f [k]− f [k − 1]) + f [k − 1]. (5.11)

Closed-form solution One can evaluate the summation Φ into a closed-form expres-
sion by substituting Equation 5.11 and the 1st-order impulse response h[k] = a bk into
it:

Φ =

(
b∆tk − 1

r0 ∆tk
− r1 b

)
f [k]−

(
b∆tk − 1

r0 ∆tk
− r1 b

∆tk

)
f [k − 1], (5.12)

where r0 = (b− 1)2/(a b) and r1 = a/(b− 1). This formula can be evaluated in constant
time regardless of the number of new interpolated samples. Furthermore, despite our ini-
tial assumption, Equation 5.12 works correctly for non-integer values of the non-uniform
distances between samples (i.e., ∆tk ∈ R).

5.2.6 Renormalization by spatially-variant scaling

We can avoid the need for reconstructing the underlying continuous signal through
spatially-variant scaling. By unrolling the recurrence in Equation 5.9, one obtains a rep-
resentation of the filtering process as a brute-force convolution:

g[k] =
k∑

n=−∞

a btk−tnf [n]. (5.13)

Equation 5.13 can be interpreted as a (causal) linear spatially-variant system acting on
a uniform sequence f [k] and producing another uniform sequence g[k]. The frequency
characteristics of this system are spatially-variant since its impulse response is spatially
variant. Therefore, such a system can only be normalized to unit gain using a spatially-
variant scaling factor γk. In this way, the sequence resulting from Equation 5.9 is used to
build a normalized output sequence g′[k] as

g′[k] = g[k]/ |γk| , k = 0 . . . N − 1. (5.14)

The computation of the values {γk} depends on how one interprets the infinite sum in
Equation 5.13, as it references input samples f [k] for negative indices k. Two interpreta-
tions exist:
Interpretation #1: Input samples f [k] do not exist for k < 0 and, thus, it makes no sense
to reference their values. This is common when working with time-varying signals, such
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as videos, and filtering along time. Thus, to reference only valid data, the convolution in
Equation 5.13 should start at zero:

g[k] =
k∑

n=0

a btk−tnf [n]. (5.15)

The gain of this system for frequency ω∗ is measured by its response to a complex sinusoid
oscillating at ω∗. Thus, when processing the k-th sample, the gain |γk| at frequency ω∗ for
the filter in Equation 5.15 is

|γk| =

∣∣∣∣∣
k∑

n=0

a btk−tn e−j ω∗ n

∣∣∣∣∣ . (5.16)

Algorithm detail Computing γk for all k directly from the summation in Equation 5.16
results in quadratic O(N2)-time complexity. Linear O(N)-time performance can be ob-
tained by expressing the value of γk in terms of the previous value γk−1. This results in
the recurrence relation

|γk| =
∣∣a e−j ω∗ k + b∆tk γk−1

∣∣ , k = 1 . . . N − 1, (5.17)

with initial value γ0 = a.
Interpretation #2: Input samples f [k] exist for k < 0 and their values are defined by
application-specific initial (or boundary) conditions. This is common when working with
signals defined in space, such as images and 3D volumes. Section 5.2.7 discusses some
choices of boundary conditions. For this case, we have no option but to work with an
infinite sum to compute the gain:

|γk| =

∣∣∣∣∣
k∑

n=−∞

a btk−tn e−j ω∗ n

∣∣∣∣∣ . (5.18)

Luckily, the recurrence relation in Equation 5.17 is still valid for this infinite sum, but
with a different initial value γ0. To compute this new γ0, one can arbitrarily choose the
sampling positions tk for k < 0 (as part of the definition of the boundary conditions).
The obvious choice is a unitary and uniform sampling, which implies that tk = t0 + k for
k < 0. Given this choice and Equation 5.18, one obtains

γ0 =
0∑

n=−∞

a b−n e−j ω∗ n =
a

1− b ej ω∗
, |b| < 1. (5.19)

The convergence condition |b| < 1 is always true for any stable 1st-order filter since b is
a pole of its transfer function (PROAKIS; MANOLAKIS, 2007).
Note on normalization: When implementing a P -th order filter, its 1st-order com-
ponent filters (obtained through partial-fraction expansion in Section 5.2.3) should be
normalized using the gain of the original P -th order filter (i.e., they should not be normal-
ized separately). Thus, let H(z) be a P -th order filter from Equation 5.5. Its gain (and
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normalization factor) |γk| at frequency ω∗, evaluated at k, is given by combining the gains
|γi,k| (i = 1 . . . P ) of all its composing 1st-order filters:

|γk| =

∣∣∣∣∣
P∑
i=1

γi,k +

Q−P∑
n=0

cn e
−j ω∗ n

∣∣∣∣∣ .
The rightmost summation represents the gain contribution of the 0th-order term in Equa-
tion 5.5. Each γi,k is computed replacing the i-th filter coefficients {ai, bi} into Equa-
tion 5.17, and choosing an initial value γi,0 according to Interpretation #1 or #2.

IfH(z) contains a multiple-order pole bi of orderm, the gain contribution of the terms
of orders 1 through m (Equation 5.8) is given by the sum∣∣∣∣∣

m∑
l=1

ai,l e
−j ω∗ (l−1)

(
γ∗i,k
)l∣∣∣∣∣ .

|γ∗i,k| is the gain for the filter 1
1−bi z−1 , computed by the substitutions a → 1 and b → bi

into Equation 5.17.

5.2.7 Initial Conditions

To compute the value g[0] of the first output sample for the filters in Equation 5.10
and Equation 5.14, one needs to define the values of f [−1] and g[−1]: the initial (or
boundary) conditions of the system. A relaxed initial condition is obtained by setting
both values to zero: f [−1] = g[−1] = 0. However, when filtering images and videos,
one frequently replicates the initial input sample (i.e., f [−1] = f [0]). The corresponding
initial value g[−1] is found by assuming a constant output sequence for k < 0, where
all its samples have a constant value β. This constant is found by solving the system’s
difference equation: defining a uniform and unitary sampling for k < 0, the 1st-order
system’s equation g[−1] = a f [−1] + b g[−2] becomes β = a f [0] + b β. Solving for β
gives

g[−1] = β =
a

1− b
f [0].

5.2.8 Non-Causal and Symmetric Filters

For image and video processing, one is usually interested in filters with non-causal
response. That is, filters for which the output value of a pixel p depends on the values
of pixels to left and pixels to right of p (see Section 5.5.1.2 on how we define 2D fil-
ters). A non-causal symmetric response is usually achieved by applying the filter in two
passes: a causal (left-to-right) pass and an anti-causal (right-to-left) pass. This combina-
tion can be done either in cascade (VAN VLIET; YOUNG; VERBEEK, 1998; GASTAL;
OLIVEIRA, 2011) or in parallel (DERICHE, 1993; HALE, 2006).

Applying causal and anti-causal filters in cascade has one disadvantage: when filter-
ing a sequence of finite length, the output values of samples close to the boundary may
be significantly incorrect (HALE, 2006). This problem can be mitigated by padding the
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Figure 5.4: (Top) Central sample counted by both causal h+ and “mirrored”’anti-causal
h− filters, resulting in an incorrect impulse response h = h+ + h−. (Bottom) Central
sample counted only by the causal h+ filter, resulting in a correct impulse response h =

h+ + h−.

intermediate sequence with additional samples. This solution is very effective for filters
whose kernels quickly approach zero, but otherwise may become a bottleneck. For ex-
ample, a Gaussian kernel with very large standard deviation may require padding with an
excessive number of additional samples (HALE, 2006). In these situations, one should
prefer a parallel composition of causal and anti-causal filters.

In parallel, the outputs of the causal and anti-causal filters are simply summed to
generate the final output. Since image processing filters are commonly symmetric, it is
possible to design the anti-causal filter by “mirroring” the response of the causal one.
However, when performing this procedure, one must be careful not to count the central
sample twice (DERICHE, 1993); otherwise, the resulting impulse response may be incor-
rect (Figure 5.4, top). A simple way to avoid this problem is to include the central sample
only on the causal pass (Figure 5.4, bottom). For a 1st order filter with causal transfer
function given by H+(z) = a

1−b z−1 , the respective “mirrored” anti-causal transfer func-
tion which does not count the central sample is H−(z) = a b z

1−b z , and its corresponding
difference equation is given by:

g−[k] = a b f [k + 1] + b g−[k + 1]. (5.20)

For non-uniform domains, Equation 5.20 should be rewritten as

g−[k] = a b∆tk f [k + 1] + b∆tk g−[k + 1], (5.21)

and it must be normalized as described in Section 5.2.5 and Section 5.2.6.

5.2.9 Proof of Stability

A necessary and sufficient condition for a digital filter to be stable is that all its poles
lie inside the unit circle |z| < 1 in the z domain (PROAKIS; MANOLAKIS, 2007). The
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analytical stability of Eqs. 5.10 and 5.14 is proven below.
Proposition 5.1: For all real ∆tk > 0 and complex a, b 6= 0; if a filter H(z) =
a

1−b z−1
is stable (i.e., |b| < 1), the filter H ′(z) derived from H(z) in the way defined by

Equation 5.10 is also stable.
Proof. Replace the summation in Equation 5.10 by the closed-form formula from Equa-
tion 5.12. The z-domain transfer function of the resulting difference equation has the form

H ′(z) =
(a+R0)−R1 z

−1

1− b∆tk z−1
.

The single pole of this equation is b∆tk . For all ∆tk > 0, we have that |b∆tk | < 1 since
|b| < 1. Thus, b∆tk lies inside the unit circle, and the filter defined by Equation 5.10 is
stable. �

In the same way one can easily show the analytical stability of Equation 5.9 and con-
sequently Equation 5.14, since the value of |γk| is non-zero3 for all k. Numerically, singu-
larities in the sampling rate (∆tk → 0) may lead to instabilities, since the pole b∆tk gets
too close to the unit circle. However, for the applications shown in the paper, we did not
experience any numerical issues. Nonetheless, we recommend using 64-bit floating point
precision for computations.

5.3 Designing Digital Filters

Our method can be used to filter any non-uniformly sampled signal using any recur-
sive digital filter defined by a difference equation. Since our formulation uses the filter
coefficients, it directly works with existing methodologies for IIR digital filter design. For
example, both MATLAB (MATLAB, 2014b) and the open-source SciPy library (JONES
et al., 2001–) provide routines that compute the coefficients of well-known filters such as
Butterworth, Chebyshev, and Cauer. They also implement the partial-fraction expansion
described in Section 5.2.3 through the routine residuez().

It is also easy to create new filters by combining and modifying existing ones. For
example, the high-pass enhancer filter from Figure 5.1(d) was created by combining a
scaled high-pass Butterworth filter with an all-pass filter: 2Hhigh(z) + 1; the filter from
Figure 5.1(c) was similarly created from a band-pass Laplacian of Gaussian (LoG): 1 −
2.5HLoG(z).

Recursive digital filters can also be designed to approximate in linear-time other IIR
filters which are commonly superlinear in time. For example, Deriche (DERICHE, 1993)
and van Vliet et al. (VAN VLIET; YOUNG; VERBEEK, 1998) show how to approximate
a Gaussian filter and its derivatives, and Young et al. (YOUNG; VAN VLIET; GINKEL,
2002) implement recursive Gabor filtering.

3|γk| is the gain of the filter for a chosen frequency ω∗, and it makes no sense to choose any ω∗ where
|γk| = 0; i.e., it makes no sense to normalize a filter to unit gain at a frequency where the gain was originally
zero.
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To illustrate the use of our approach to obtain non-uniform filtering equations, the
next Section shows the derivation of a recursive non-uniform O(N)-time Gaussian filter
with normalization preserved by piecewise resampling.

5.3.1 Derivation of an O(N)-time, non-uniform Gaussian filter with normalization
preserved by piecewise resampling.

5.3.1.1 Uniform Recursive Gaussian Filtering

Deriche (DERICHE, 1993) gives the following approximation to the positive region
(x ≥ 0) of a unit-height Gaussian of standard deviation σ:

u+(x) = Re
{
α0 exp

(
−λ0

σ
x

)
+ α1 exp

(
−λ1

σ
x

)}
, (5.22)

where Re {·} denotes the real part of a complex number, and

α0 = 1.6800 + 3.7350j, λ0 = 1.783 + 0.6318j,

α1 = −0.6803 + 0.2598j, λ1 = 1.723 + 1.9970j.

The symmetric kernel is built by combining the positive half u+ with the negative one
u−(x) = u+(−x), yielding an undistinguishable approximation to a Gaussian (mean
squared error under 2.5× 10−8):

e
−x2

2σ2 ≈ u(x) =

{
u+(x) x ≥ 0,

u−(x) x < 0.

In his work, Deriche implements a filter with kernel u(x) by expanding the complex
exponentials in Equation 5.22 into their composing sines and cosines, and extracting the
real part. This yields a causal 4th-order recursive system for u+ and an anti-causal one
for u−.

Note that this recursive Gaussian filter, as described by Deriche, only works for uni-
formly sampled signals. Next, we use our mathematical formulation to generalize the
filter to work in non-uniform domains.

5.3.1.2 Non-Uniform Recursive Gaussian Filtering

Different from Deriche, we work directly with the complex exponentials in Equa-
tion 5.22, and extract the real part after filtering. The causal and anti-causal (complex)
filter transfer functions are, respectively,

U+(z) =
α0

1− e−λ0/σ z−1
+

α1

1− e−λ1/σ z−1
, and

U−(z) =
α0 e

−λ0/σ z

1− e−λ0/σ z
+

α1 e
−λ1/σ z

1− e−λ1/σ z
;

which are already decomposed into 1st-order filters. Note that U− is designed to ignore
the central sample, as described in Section 5.2.8.
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Since the Gaussian is a low-pass filter, it should be normalized to unit gain at zero-
frequency (ω∗ = 0), which is equivalent to saying its kernel should have unit-area. How-
ever, the kernel defined by Equation 5.22, and implemented by U(z) = U+(z) + U−(z),
is not unit-area. A unit-area filter H(z) is obtained as H(z) = U(z)/|γ| where |γ| is the
gain of filter U(z) at zero frequency, given by:

|γ| = |U(ej ω∗)|
∣∣∣
ω∗=0

= α0
1 + e−λ0/σ

1− e−λ0/σ
+ α1

1 + e−λ1/σ

1− e−λ1/σ
.

Using our methodology described in Section 5.2.2, the difference equation which im-
plements our recursive non-uniform O(N)-time Gaussian filter with normalization pre-
served by piecewise resampling is:

g[k] =
1∑
i=0

Re
{
g+
i [k] + g−i [k]

}
,

where

ai = αi/|γ|,
bi = e−λi/σ,

g+
i [k] = ai f [k] + b∆tk

i g+
i [k − 1] + Φk−1,k (∆tk) ,

g−i [k] = ai b
∆tk+1

i f [k + 1] + b
∆tk+1

i g−i [k + 1] + Φk+1,k (∆tk+1) ,

Φj,k(δ) =

(
bδi − 1

r0 δ
− r1 bi

)
f [k]−

(
bδi − 1

r0 δ
− r1 b

δ
i

)
f [j].

Relaxed boundary condition is obtained by setting out-of-bound values to zero: f [−1] =

f [N ] = g+
i [−1] = g−i [N ] = 0. Alternatively, replicated-boundary condition is given by:

f [−1] = f [0], g+
i [−1] =

ai
1− bi

f [0],

f [N ] = f [N − 1], g−i [N ] =
ai bi

1− bi
f [N − 1].

5.4 Evaluation and Discussion

Appendix C includes an implementation of our method, and our webpage http://
inf.ufrgs.br/~eslgastal/NonUniformFiltering has various examples with
full source code of using it to process synthetic data, as well as several images and video.

5.4.1 Accuracy

Figure 5.5 illustrates the accuracy of our approach when computing the impulse re-
sponse of several IIR filters using non-uniform sampling. The filters are defined by their
coefficients in the z-domain. Each plot shows the corresponding analytical ground-truth
impulse response (solid blue line), together with the output samples (orange dots) ob-
tained by filtering a non-uniformly sampled impulse. The sampling positions (indicated

http://inf.ufrgs.br/~eslgastal/NonUniformFiltering
http://inf.ufrgs.br/~eslgastal/NonUniformFiltering
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(a) Gaussian (4-th order), PSNR 316.0 dB

(b) Gaussian 1st derivative (4-th order), PSNR 250.9 dB

(c) Laplacian of Gaussian (4-th order), PSNR 288.4 dB

(d) Decaying exponential (1-st order), PSNR 302.9 dB

(e) Chebyshev Type I low-pass (8-th order), PSNR 308.9 dB

(f) Butterworth band-pass (8-th order), PSNR 304.4 dB

(g) Cauer high-pass (8-th order), PSNR 320.0 dB

Figure 5.5: Accuracy of our approach when filtering an impulse with several IIR filters
using non-uniform sampling. The solid blue lines are the analytical ground-truth impulse
responses. The small orange dots are the output samples.

by vertical dotted lines) were generated randomly. The impulse was represented by a 1 at
the origin, followed by 0’s at the sampling positions.
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−4

0

4

(a) Noisy non-uniformly sampled input signal

−1

0

1

(b) De-noised non-uniform signal generated by our method

Figure 5.6: A noisy non-uniformly sampled sinusoid in (a) is filtered by the band-pass
Butterworth filter from Figure 5.5(f) using our approach. The filtered samples are shown
in (b), superimposed on the original noiseless signal (in blue).

Figure 5.5 shows that our results are numerically accurate and visually indistinguish-
able from ground-truth, with PSNR consistently above 250 dB (note that a PSNR above
40 dB is already considered indistinguishable visual difference in image processing ap-
plications). Furthermore, since the impulse response uniquely characterizes the filter, this
experiment guarantees the accuracy of our approach in filtering general non-impulse sig-
nals. This conclusion is illustrated in Figure 5.6, where we use the band-pass filter from
Figure 5.5(f) to denoise a non-uniformly sampled signal.

5.4.2 Performance

We implemented our approach in C++. Filtering one million samples using a 1st-order
filter and 128-bit complex floating point precision takes 0.007 seconds on a single core of
an i7 3.6 GHz CPU. This performance scales linearly with the number of samples. It also
scales linearly with the order of the filter, which for common applications is rarely larger
than 10. All the effects shown in Figure 5.1 were generated using 4th-order filters.

Our approach is highly parallelizable. A high-order filter is decomposed as a sum of
independent 1st-order filters which can be computed in parallel (Section 5.2.3). Each 1st-
order filter can also be parallelized internally using the approach described in (NEHAB
et al., 2011).

5.4.3 Implementation Details

The latest CPUs have extremely fast instructions for evaluating the exponentiations
in Eqs. 5.10 and 5.14. Our C++ code calls std::pow(b,∆tk) directly. For older
CPUs, one can use precomputed tables to further improve filtering times. Other constants
dependent on the filter coefficients, such as r0 and r1, should be precomputed outside the
main filtering loop.
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Image and video processing applications use filters that take real inputs and produce
real outputs (i.e., f, g ∈ R). One property of real filters is that any complex coeffi-
cient in its partial-fraction expansion must have a complex-conjugate pair (PROAKIS;
MANOLAKIS, 2007). Thus, in practice, we only have to compute the filter response for
one coefficient in each complex-conjugate pair, multiply the result by two, and drop the
imaginary part.

One important observation is that Equation 5.9 may output a complex number even
when working with only real inputs (more specifically, when working with a real input
sequence and a real filter of odd-order). For example, imagine a simple 1st-order high-
pass filter given by H(z) = 0.1/(1 + 0.9 z−1), evaluated in a non-uniformly sampled
domain where ∆tk = 0.5 for all k. From Equation 5.9, the term b∆tk results in a complex
number since the pole b = −0.9 is negative and the sampling interval ∆tk = 0.5 is not an
integer: b∆tk = (−0.9)0.5 = 0.90.5j. The correct thing to do in such situations is to drop
the imaginary part of the output filtered sequence after the sequence has been filtered.
This is equivalent to adding a complex-conjugate pole to the filter such that its Fourier
transform returns to a conjugate-symmetric form (and thus its impulse response will be
real-valued, as desired):

Re {h[k]} =
1

2

(
H(z) +H∗(z∗)

)
. (5.23)

This procedure is required because expressions of the form H(z) = 1/(1 − b z−1), for
−1 ≤ b < 0, b ∈ R, are actually a simplified form of the filter’s z-transform. Observe
that the corresponding discrete impulse response is the sampling of a cosine oscillating at
the highest possible representable frequency (i.e., π):

h[k] = bk (5.24)

=
1

2

(
bk + bk

)
(5.25)

=
1

2

(
(|b| e−jπ)k + (|b| ejπ)k

)
(5.26)

= |b|k cos(π k). (5.27)

An important property used in this derivation is the fact that ejπ = e−jπ = −1. That
is, ejπ and e−jπ are complex-conjugate numbers which coincide on the complex plane.
Since the continuous form of the filter in Equation 5.27 is real-valued for all k, so should
be its discrete form, even in a non-uniformly sampled domain. From Equation 5.26 one
can easily derive the filter’s non-simplified z-transform, which contains a pair of complex-
conjugate poles, and thus corresponds to a real-valued impulse response:

1

2

(
1

1− |b| e−jπ z−1
+

1

1− |b| ejπ z−1

)
.

One can easily see that this same result can be obtained from Equation 5.23, which ex-
plains the intuition behind it.
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5.4.4 Other Approaches

The continuous-space method described by Poulton and Oksman (POULTON; OKS-
MAN, 2000) may be used for filtering non-uniformly sampled signals. However, their
method requires mapping between discrete and continuous space using the bilinear trans-
form, which can become ill-conditioned for very large or small sampling intervals (BR-
USCHETTA, 2011), especially in high-pass filters (BRUSCHETTA; PICCI; SACCON,
2014). This has a direct impact on the accuracy and quality of the filter. Furthermore,
their approach does not allow control over normalization schemes (Section 5.2.5 and Sec-
tion 5.2.6), and their work does not explore details which become important when filtering
images and videos, such as boundary conditions (Section 5.2.7) and the construction of
symmetric filters (Section 5.2.8).

In Chapter 3 we describe a simple 1st-order decaying-exponential low-pass filter
which works in a non-uniform domain. It can be shown that such a filter is the simplest
special case of our more general method described in the current chapter: the filter from
Equation 3.26 can be obtained from our general equations by (i) using a zero-order-hold
(f zohk [i] = f [k]) instead of the linear interpolator in Equation 5.10; and by (ii) noticing
that the coefficients of a normalized 1st-order low-pass real filter must satisfy a = 1− b.
This results in the filtering equation g[k] = (1− b∆tk) f [k] + b∆tk g[k − 1]. Additionally,
the formulation described in Section 3.4.3 applies causal/anticausal filters in cascade, and
does not lend to a truly symmetric filter in non-uniform domains. Our formulation using
filters in parallel, described in Section 5.2.8, addresses this limitation.

Finally, our IIR normalization schemes are related to the FIR convolution operators
defined in Chapter 3: our spatially-variant scaling provides the same response as normal-
ized convolution (KNUTSSON; WESTIN, 1993), and our piecewise resampling gener-
ates the same response as interpolated convolution. Thus, in edge-aware applications, our
IIR normalization schemes provide control over the filter’s response to the edges (see the
plots in Figure 5.7).

5.5 Applications

This Section demonstrates the usefulness of our formulation to various tasks in image
and video processing. In particular, we show how to integrate high-order recursive filter-
ing with recent work on edge-aware transforms. Thus, we demonstrate the first linear-
time edge-aware implementations of several recursive digital filters, including Gaussian,
Butterworth, and other general low/high/band-pass filters.

5.5.1 General Edge-Aware Filtering

An edge-aware filter transforms the content of an image while taking into account its
structure. For example, an edge-aware smoothing filter can remove low-contrast varia-
tions in the image while preserving the high-contrast edges; and an edge-aware enhance-
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image size in megapixels

image size in megapixels

image size in megapixels

Spatially-variant scaling Piecewise resampling

Figure 5.7: An impulse (upward-pointing arrow) travels from the left to the right of the
domain. This domain contains a simulated discontinuity close to its center, shown as a
vertical gray line (in a real signal, like an image, this could be an edge from an object—see
Section 5.5.1). The impulse is filtered using our approach to deal with the discontinuity,
and a Gaussian kernel. We normalize the filter either by spatially-variant scaling (impulse
response shown in blue), or by piecewise resampling (impulse response shown in orange).
Note how each normalization scheme results in a different response to the discontinuity
and boundary in the domain. Thus, in edge-aware applications we are able to control the
filter’s response to the edges in the signal (GASTAL; OLIVEIRA, 2011).

ment filter can increase local contrast without introducing visual artifacts such as halos
around objects. Due to these properties, edge-aware filters are important components of
several image and video processing applications (DURAND; DORSEY, 2002; LEVIN;
LISCHINSKI; WEISS, 2004; LISCHINSKI et al., 2006; FATTAL, 2009; FARBMAN;
FATTAL; LISCHINSKI, 2010).

In Chapter 3 we showed how any filtering kernel can be made edge-aware by adap-
tively warping the input sequence using a domain transform. Conceptually, we warp
the input image (signal) along orthogonal 1-D manifolds while preserving the distances
among neighboring pixels, as measured in higher-dimensional spaces. In such a warped
domain, pixels (samples) are non-uniformly spaced. Applying a linear filter in this warped
domain and then reversing the warp results in an edge-aware filter of the original samples.
This process is illustrated in Figure 3.4 for a low-pass filter applied to a 1-D signal. In
practice, there is no need to explicitly warp and un-warp the signal, and the entire opera-
tion is performed on-the-fly in a single step.

The domain transform is fast and lends to good results. However, in Chapter 3 we
only demonstrated its solution (in linear time) on two simple filters: an iterated box filter
and a recursive 1st-order decaying-exponential filter (both low-pass filters). Using our
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formulation of non-uniform filtering, we are able to generalize the domain transform to
work on recursive filters of any order, and in linear time, which allows practically unlim-
ited control over the shape of the filtering kernel. In other words, with our generalization
we can transform any recursive linear filter h (described by Equation 5.1) into a recursive
edge-aware filter hEA (described by either Eq. 5.10 or Equation 5.14). The resulting filter
is non-linear, and maintains the characteristics of the original filter. Thus, for instance, if
h is a low-pass filter, hEA will be a low-pass edge-aware filter. Furthermore, since hEA
is also described by a difference equation, it will filter an input sequence of length N in
O(N) time.

Next we review the domain transform and show how it integrates with our method.
Section 5.5 shows various examples of applications that use this integration.

5.5.1.1 Review of the Domain Transform

Assuming a unitary sampling interval along the rows (or columns) of an image, the
imagespace distance between two samples f [k] and f [k + δ] is δ, for δ ∈ N. Us-
ing a domain transform Dt(k), the warped-space distance between the same samples
is Dt(k + δ) − Dt(k). By definition (see Equation 5.28 below), the domain transform is
a monotonically increasing function (i.e., Dt(k + δ)−Dt(k) ≥ δ).

For filtering we chose to use the `2 norm. Approximating the derivatives in the `2

domain transform (Equation 3.15) using backward differences, we obtain a (discrete) do-
main transform given by

Dt(k) =
k∑
i=1

√√√√1 +

(
σs
σr

)2 dR∑
c=1

(
f[c][i]− f[c][i− 1]

)2
. (5.28)

Here, f[c][i] is the i-th element in the sequence of N samples obtained from the c-th
channel of the signal, from a total of ‘dR’ channels (for example, an RGB image has
dR = 3 channels: red, green, and blue). σs and σr are parameters of the edge-aware filter,
as described in Chapter 3. σs controls the imagespace size of the filter kernel, and σr
controls its range size (i.e., how strongly edges affect the resulting filter).

5.5.1.2 Using the Domain Transform with Our Method

Equation 5.28 defines new non-uniform positions for each sample in the spatial do-
main. Consequently, the warped-space distance between adjacent samples f [k − 1] and
f [k] is given by

∆tk =

√√√√1 +

(
σs
σr

)2 d∑
c=1

(
f[c][k]− f[c][k − 1]

)2 (5.29)

The values {∆tk} can be precomputed for all k = 0 . . . N − 1, and then substituted into
the filtering equations (Eqs. 5.10 and/or 5.14) for evaluating the filter. In this way, we
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(a) Low-pass filter (b) 2D DFT, sequence (c) 2D DFT, parallel

(d) High-pass filter (e) 2D DFT, sequence (f) 2D DFT, parallel

Figure 5.8: The 1D low-pass filter with impulse response shown in (a) may be applied to
the rows and columns of an image to obtain a 2D filter. The corresponding horizontal and
vertical passes may be combined either in sequence or in parallel, each option resulting in
a filter with different 2D frequency response. This is illustrated by the 2D discrete Fourier
transforms (DFT) shown in (b) and (c), where white represents a gain of one and black
a gain of zero, and the zero-frequency has been shifted to the center of the images. It
is clear that applying the filter from (a) in sequence removes a greater amount of high-
frequencies from the signal. Thus, this low-pass filter is better applied in sequence, as
in (b). The opposite is true for high-pass filters. The high-pass filter from (d) is better
applied in parallel, as in (f), since a greater amount of high-frequencies are preserved.

obtain an edge-aware implementation of arbitrary recursive filters. For example, using
the non-uniform Gaussian filter derived in Section 5.3.1, we obtain a O(N)-time edge-
aware Gaussian.

Filtering 2D Signals As described in Section 3.3, we filter 2D images by performing a
horizontal pass along each image row, and a vertical pass along each image column. How
the horizontal and vertical passes are combined depend on the desired frequency response
of the filter. Low-pass filters are better applied in sequence: assuming the horizontal pass
is performed first, the vertical pass is applied to the result produced by the horizontal one.
High and band-pass filters are usually better applied in parallel: the horizontal and vertical
passes are performed independently, and their result added at the end. This suggestion is
simply a design choice: each option (sequence/parallel) will result in a filter with different
2D frequency response. In our specific case, we apply low-pass filters in sequence since
a greater amount of high-frequencies are “removed” from the signal, and we apply high-
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(a) Photograph (b) Non-uniform (c) Uniform

Figure 5.9: Detail enhancement using a high-pass filter. Non-uniform sampling (b) avoids
the common halo artifacts (black arrows) in traditional uniform sampling (c).

pass filters in parallel since a greater amount of high-frequencies are preserved in the
signal (see Figure 5.8). This is the strategy we used for filtering the images shown in the
paper. Filtering higher-dimensional signals such as 3D volumes is performed analogously.

5.5.2 Detail Manipulation

Our formulation for non-uniform recursive digital filters enables for the first time the
direct application of general filters in edge-aware applications. For example, one can
perform general frequency-domain manipulations without introducing artifacts such as
halos around objects, as shown in Figure 5.9. This is possible due to the non-uniform
sampling of the image pixels defined by Equation 5.29.

Figure 5.1 shows several examples of high-order IIR filters used to manipulate the
details of the photograph shown in (a). In (b), a low-pass Gaussian smoothes small varia-
tions while preserving large-scale features. For the image shown in (c), we used a modi-
fied band-stop Laplacian of Gaussian to create a stylized look for the image. For the result
shown in (d), we used a high-pass Butterworth to enhance fine details in the tiger’s fur and
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whiskers. The image in (e) was obtained with a band-pass Butterworth to improve local
contrast by enhancing medium-scale details. For (e), an edge-aware low-pass post-filter
was applied to obtain the final result. This is necessary because 2D filtering using the
domain transform sometimes introduces axis-aligned artifacts in the filtered image. Our
webpage shows these filters applied to many other images and video.

While edge-aware detail manipulation has been performed by previous approaches (FAT-
TAL; AGRAWALA; RUSINKIEWICZ, 2007; FARBMAN et al., 2008; PARIS; HASI-
NOFF; KAUTZ, 2011), all of them work by computing differences between the outputs
of a fixed type of low-pass filter. By providing the ability to experiment with the design
and composition of new digital filters, our method has the potential do enable a greater
variety of effects.

5.5.3 Localized Editing

Filtering in non-uniform edge-aware domains can also be used for localized manip-
ulation of pixel colors. In Figure 5.10(a), color scribbles define two regions of interest
in the underlying photograph. For each region, we generate an influence map using our
low-pass non-uniform Gaussian filter (see (LISCHINSKI et al., 2006) for details). The
influence map for the region of interest is then normalized by the sum of influence maps
for all regions, which defines a soft-segmentation mask. This mask is used to restrict
recoloring to certain parts of the image.

5.5.4 Data-aware Interpolation

Propagating sparse data across the imagespace also benefits from an edge-aware op-
erator (LEVIN; LISCHINSKI; WEISS, 2004). For example, in Figure 5.11 our low-pass
non-uniform Gaussian filter is used to propagate the color of a small set of pixels, shown
in (c), to the whole image. This generates the full-color image shown in (d). The non-
uniform domain is defined by the domain transform applied to the lightness image in (b).

5.5.5 Denoising

By grouping pixels based on high-dimensional neighborhoods, we can define a fast
and simple denoising algorithm, as illustrated in Figure 5.12. We cluster pixels from
the noisy photo in (a) based on their proximity on the high dimensional non-local means
space (BUADES; COLL; MOREL, 2005). For this example, we generate 30 disjoint clus-
ters using k-means, which are color-coded in (c) for visualization. The pixels belonging
to the same cluster define a non-uniformly sampled signal in the imagespace. We apply a
non-uniform Gaussian filter only to the pixels belonging to the same clusters, averaging-
out the zero-mean noise. This is followed by a second non-uniform edge-aware Butter-
worth low-pass filter on the hole image (adhering to the edges of (a)), with the goal of
removing quantization borders which originate from the discrete clusters. The resulting
denoised photograph is shown in (b).
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(a) Photograph with scribbles

(b) Edited output

Figure 5.10: Turning bronze into gold using our approach. See the text for details.

Using our formulation, for an image with N pixels, filtering together only pixels be-
longing to the same clusters is done in O(N) time for all clusters. That is, the time
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(a) Photograph

(b) Lightness of (a)

(c) 3% of pixels from (a)

(d) Reconstructed from (b), (c)

Figure 5.11: Example of data-aware interpolation using non-uniform filtering. A full-
color image is reconstructed from the lightness channel and only 3% of the pixels from
the original image, shown in (a). The pixels in (c) were importance-sampled using the
gradient magnitude of the lightness channel. PSNR of (d) vs (a) is 31.17 dB.

complexity is independent of the number of clusters. Without our formulation, for K
clusters, one would have to separate the image into K uniformly-sampled N -pixel im-
ages for filtering, which would result in O(N K) complexity.
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(a) Noisy photograph (b) Denoised

(c) Clustering (d) Detail from (a) (e) Detail from (b)

Figure 5.12: Denoising using non-uniformly sampled pixel groups defined by k-means
clustering. See text for details.

5.5.6 Stylization

The same idea behind the denoising algorithm above can be used for stylization. In
Figure 5.13(a), we cluster pixels based only on their RGB-proximity. Filtering only pixels
(of the input image) belonging to the same clusters with a non-uniform Gaussian, and then
superimposing edges computed using the Canny algorithm applied to the filtered image,
one obtains a soft cartoon-like look (b). This procedure is also illustrated in Figure 5.14
for another photograph.
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(a) Clustering (b) Stylized

Figure 5.13: Stylization using non-uniform filtering.
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(a) Photograph

(b) Clustering

(c) Stylized

Figure 5.14: Another example of stylization using non-uniform filtering.
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6 CONCLUSIONS AND FUTURE WORK

This dissertation described two novel approaches for high-dimensional filtering. The
domain transform was presented in Chapter 3 to efficiently perform high-dimensional
geodesic filtering of images and videos. It is the first filter of such kind that simultaneously
exhibits the following properties: (i) it supports a continuum of scales; (ii) its processing
time is linear in the number of pixels, and is independent of the filter parameters, allowing
for real-time computations; (iii) correctly handles color images; and (iv) offers control
over the kernel’s shape. The adaptive manifolds were presented in Chapter 4 to effi-
ciently perform high-dimensional Euclidean filtering of images and videos. It is the first
filter of such kind with linear cost both in the number of pixels and in the dimensionality
of the space in which the filter operates.

In Chapter 5 we presented a discrete-time mathematical formulation for applying re-
cursive digital filters to non-uniformly sampled signals. Our method is general and works
with any non-uniformly sampled signal and any recursive digital filter defined by a dif-
ference equation. Together with the domain transform, we demonstrated the use of our
non-uniform formulation to achieve general edge-aware filtering for arbitrary digital fil-
ters. By providing the ability to experiment with the design and composition of new
digital filters, our method has the potential do enable a greater variety of image and video
effects.

The filters presented in this dissertation provide the fastest performance (both on CPU
and GPU) for a variety of real-world applications. This efficiency come from their lin-
ear cost in both the number of pixels and the dimensionality of the space in which the
filters operate. We demonstrated the versatility of the domain transform and adaptive
manifolds on several real-time image and video processing tasks including color edge-
aware smoothing, depth-of-field effects, stylization, recoloring, colorization, detail en-
hancement, denoising (using up to 147 dimensions), global illumination smoothing, and
tone mapping. Thus, our filters provide a valuable tool for the image and video process-
ing, computer graphics, computer vision, and computational photography communities.
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6.1 Future Work

Some possible areas for further exploration include extending our filters to non-
structured data, investigating applications of our single-pass Euclidean-geodesic filter,
improving the worst-case complexity of the adaptive-manifold filter, and analysing the
manifold-tree structure for processing videos.

6.1.1 Extension of our filters to non-structured data

Non-structured data, such as 3D meshes and point clouds, could also benefit from
our fast filters. Such an extension could be used to denoise 3D models while preserving
well-defined edges, or enhance the models by increasing the magnitude of small-scale
details. One could even perform efficient, approximate n-body simulations for games:
since the gravitational potential satisfies Poisson’s equation, this potential can be found
by convolving its corresponding Green’s function with a signal defined by impulses at the
masses’ locations in space.

6.1.2 Exploration of our single-pass Euclidean-geodesic filter

In Section 4.7.5, we introduce the first single-pass Euclidean-geodesic filter, which
uses Euclidean distances for some dimensions and geodesic distances for others. We
intend to further explore the properties and applications of single-pass Euclidean-geodesic
filters. For example, in Section 4.7.5, we use such a filter to compute a selection mask
for local tone adjustments in images. However, this operation could be performed in two
passes: an Euclidean filter followed by a geodesic filter. Thus, one of our goals is to find
applications which can be performed using a single-pass Euclidean-geodesic filter, but are
not possible with iterations of independent Euclidean and geodesic filters.

6.1.3 Improvement of the worst-case performance of the adaptive-manifold filter

When the standard deviation of the filter kernel over the space dimensions is large,
the adaptive manifolds become linear almost everywhere, losing their ability to adapt to
the signal. To compensate for this, more manifolds are needed to guarantee a sufficient
sampling of the high-dimensional space, which affects performance. Performance in this
case could be improved by using some kind of Monte Carlo sampling: we do not have
to project every pixel on the manifolds since the diffusion (term φ1

(
BT
Pk
ξkij
)

in Equa-
tion 4.10) will blend almost everyone. Thus, it should suffice to just project a subset of
the samples. Performance could also be improved by building inter-correlated manifolds
that allow sub-linear nearest-neighbor searches to find the closest manifolds to a sample.
If this is possible, the time complexity of our algorithm could potentially be reduced to
O(dN logK).
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6.1.4 Analysis of the adaptive-manifold tree for processing videos

Due to the high correlation between frames in a video sequence, one could obtain
performance improvements when filtering videos by recycling manifolds across frames.
One example would be computing the root manifold (η1) only once every k frames, and
interpolating the value of η1 for all k − 1 frames in-between. This should work since η1

is computed by low-pass filtering, and such low frequencies are expected to vary slowly
across time (in most situations). A better approach could be to dynamically compute the
value of k based on content change across video frames.
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APPENDIX A DOMAIN TRANSFORM SOURCE CODE

The following sections include our MATLAB implementation of the Normalized Con-
volution (NC), Interpolated Convolution (IC) and Recursive Filter (RF) based on the
domain transform. These filters are described in Section 3.4. Please refer to our web-
page at http://inf.ufrgs.br/~eslgastal/DomainTransform for up-to-
date source, examples, and instructions on using this code.

A.1 Normalized Convolution filter
1 % NC Domain transform normalized convolution edge-preserving filter.
2 %
3 % F = NC(img, sigma_s, sigma_r, num_iterations, joint_image)
4 %
5 % Parameters:
6 % img Input image to be filtered.
7 % sigma_s Filter spatial standard deviation.
8 % sigma_r Filter range standard deviation.
9 % num_iterations Number of iterations to perform (default: 3).

10 % joint_image Optional image for joint filtering.
11 %
12 %
13 %
14 % This is the reference implementation of the domain transform NC filter
15 % described in the paper:
16 %
17 % Domain Transform for Edge-Aware Image and Video Processing
18 % Eduardo S. L. Gastal and Manuel M. Oliveira
19 % ACM Transactions on Graphics. Volume 30 (2011), Number 4.
20 % Proceedings of SIGGRAPH 2011, Article 69.
21 %
22 % Please refer to the publication above if you use this software. For an
23 % up-to-date version go to:
24 %
25 % http://inf.ufrgs.br/~eslgastal/DomainTransform/
26 %
27 %
28 % THIS SOFTWARE IS PROVIDED "AS IS" WITHOUT ANY EXPRESSED OR IMPLIED WARRANTIES
29 % OF ANY KIND, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
30 % FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
31 % AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
32 % LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
33 % OUT OF OR IN CONNECTION WITH THIS SOFTWARE OR THE USE OR OTHER DEALINGS IN
34 % THIS SOFTWARE.
35 %
36 % Version 1.0 - August 2011.
37

38 function F = NC(img, sigma_s, sigma_r, num_iterations, joint_image)
39

40 I = double(img);
41

42 if ~exist(’num_iterations’, ’var’)

http://inf.ufrgs.br/~eslgastal/DomainTransform
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43 num_iterations = 3;
44 end
45

46 if exist(’joint_image’, ’var’) && ~isempty(joint_image)
47 J = double(joint_image);
48

49 if (size(I,1) ~= size(J,1)) || (size(I,2) ~= size(J,2))
50 error(’Input and joint images must have equal width and height.’);
51 end
52 else
53 J = I;
54 end
55

56 [h w num_joint_channels] = size(J);
57

58 %% Compute the domain transform
59 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
60

61 % Estimate horizontal and vertical partial derivatives using finite
62 % differences.
63 dIcdx = diff(J, 1, 2);
64 dIcdy = diff(J, 1, 1);
65

66 dIdx = zeros(h,w);
67 dIdy = zeros(h,w);
68

69 % Compute the l1-norm distance of neighbor pixels.
70 for c = 1:num_joint_channels
71 dIdx(:,2:end) = dIdx(:,2:end) + abs( dIcdx(:,:,c) );
72 dIdy(2:end,:) = dIdy(2:end,:) + abs( dIcdy(:,:,c) );
73 end
74

75 % Compute the derivatives of the horizontal and vertical domain transforms.
76 dHdx = (1 + sigma_s/sigma_r * dIdx);
77 dVdy = (1 + sigma_s/sigma_r * dIdy);
78

79 % Integrate the domain transforms.
80 ct_H = cumsum(dHdx, 2);
81 ct_V = cumsum(dVdy, 1);
82

83 % The vertical pass is performed using a transposed image.
84 ct_V = ct_V’;
85

86 %% Perform the filtering.
87 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
88 N = num_iterations;
89 F = I;
90

91 sigma_H = sigma_s;
92

93 for i = 0:num_iterations - 1
94

95 % Compute the sigma value for this iteration
96 sigma_H_i = sigma_H * sqrt(3) * 2^(N - (i + 1)) / sqrt(4^N - 1);
97

98 % Compute the radius of the box filter with the desired variance.
99 box_radius = sqrt(3) * sigma_H_i;

100

101 F = TransformedDomainBoxFilter_Horizontal(F, ct_H, box_radius);
102 F = image_transpose(F);
103

104 F = TransformedDomainBoxFilter_Horizontal(F, ct_V, box_radius);
105 F = image_transpose(F);
106

107 end
108

109 F = cast(F, class(img));
110

111 end
112

113 %% Box filter normalized convolution in the transformed domain.
114 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
115 function F = TransformedDomainBoxFilter_Horizontal(I, xform_domain_position, box_radius)
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116

117 [h w num_channels] = size(I);
118

119 % Compute the lower and upper limits of the box kernel in the transformed domain.
120 l_pos = xform_domain_position - box_radius;
121 u_pos = xform_domain_position + box_radius;
122

123 % Find the indices of the pixels associated with the lower and upper limits
124 % of the box kernel.
125 %
126 % This loop is much faster in a compiled language. If you are using a
127 % MATLAB version which supports the ’parallel for’ construct, you can
128 % improve performance by replacing the following ’for’ by a ’parfor’.
129

130 l_idx = zeros(size(xform_domain_position));
131 u_idx = zeros(size(xform_domain_position));
132

133 for row = 1:h
134 xform_domain_pos_row = [xform_domain_position(row,:) inf];
135

136 l_pos_row = l_pos(row,:);
137 u_pos_row = u_pos(row,:);
138

139 local_l_idx = zeros(1, w);
140 local_u_idx = zeros(1, w);
141

142 local_l_idx(1) = find(xform_domain_pos_row > l_pos_row(1), 1, ’first’);
143 local_u_idx(1) = find(xform_domain_pos_row > u_pos_row(1), 1, ’first’);
144

145 for col = 2:w
146 local_l_idx(col) = local_l_idx(col-1) + ...
147 find(xform_domain_pos_row(local_l_idx(col-1):end) > l_pos_row(col), 1, ’first’) - 1;
148

149 local_u_idx(col) = local_u_idx(col-1) + ...
150 find(xform_domain_pos_row(local_u_idx(col-1):end) > u_pos_row(col), 1, ’first’) - 1;
151 end
152

153 l_idx(row,:) = local_l_idx;
154 u_idx(row,:) = local_u_idx;
155 end
156

157 % Compute the box filter using a summed area table.
158 SAT = zeros([h w+1 num_channels]);
159 SAT(:,2:end,:) = cumsum(I, 2);
160 row_indices = repmat((1:h)’, 1, w);
161 F = zeros(size(I));
162

163 for c = 1:num_channels
164 a = sub2ind(size(SAT), row_indices, l_idx, repmat(c, h, w));
165 b = sub2ind(size(SAT), row_indices, u_idx, repmat(c, h, w));
166 F(:,:,c) = (SAT(b) - SAT(a)) ./ (u_idx - l_idx);
167 end
168

169 end
170

171 %%
172 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
173 function T = image_transpose(I)
174

175 [h w num_channels] = size(I);
176

177 T = zeros([w h num_channels], class(I));
178

179 for c = 1:num_channels
180 T(:,:,c) = I(:,:,c)’;
181 end
182

183 end
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A.2 Interpolated Convolution filter

1 % IC Domain transform interpolated convolution edge-preserving filter.
2 %
3 % F = IC(img, sigma_s, sigma_r, num_iterations, joint_image)
4 %
5 % Parameters:
6 % img Input image to be filtered.
7 % sigma_s Filter spatial standard deviation.
8 % sigma_r Filter range standard deviation.
9 % num_iterations Number of iterations to perform (default: 3).

10 % joint_image Optional image for joint filtering.
11 %
12 %
13 %
14 % This is the reference implementation of the domain transform IC filter
15 % described in the paper:
16 %
17 % Domain Transform for Edge-Aware Image and Video Processing
18 % Eduardo S. L. Gastal and Manuel M. Oliveira
19 % ACM Transactions on Graphics. Volume 30 (2011), Number 4.
20 % Proceedings of SIGGRAPH 2011, Article 69.
21 %
22 % Please refer to the publication above if you use this software. For an
23 % up-to-date version go to:
24 %
25 % http://inf.ufrgs.br/~eslgastal/DomainTransform/
26 %
27 %
28 % THIS SOFTWARE IS PROVIDED "AS IS" WITHOUT ANY EXPRESSED OR IMPLIED WARRANTIES
29 % OF ANY KIND, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
30 % FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
31 % AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
32 % LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
33 % OUT OF OR IN CONNECTION WITH THIS SOFTWARE OR THE USE OR OTHER DEALINGS IN
34 % THIS SOFTWARE.
35 %
36 % Version 1.0 - August 2011.
37

38 function F = IC(img, sigma_s, sigma_r, num_iterations, joint_image)
39

40 I = double(img);
41

42 if ~exist(’num_iterations’, ’var’)
43 num_iterations = 3;
44 end
45

46 if exist(’joint_image’, ’var’) && ~isempty(joint_image)
47 J = double(joint_image);
48

49 if (size(I,1) ~= size(J,1)) || (size(I,2) ~= size(J,2))
50 error(’Input and joint images must have equal width and height.’);
51 end
52 else
53 J = I;
54 end
55

56 [h w num_joint_channels] = size(J);
57

58 %% Compute the domain transform
59 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
60

61 % Estimate horizontal and vertical partial derivatives using finite
62 % differences.
63 dIcdx = diff(J, 1, 2);
64 dIcdy = diff(J, 1, 1);
65

66 dIdx = zeros(h,w);
67 dIdy = zeros(h,w);
68

69 % Compute the l1-norm distance of neighbor pixels.
70 for c = 1:num_joint_channels
71 dIdx(:,2:end) = dIdx(:,2:end) + abs( dIcdx(:,:,c) );
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72 dIdy(2:end,:) = dIdy(2:end,:) + abs( dIcdy(:,:,c) );
73 end
74

75 % Compute the derivatives of the horizontal and vertical domain transforms.
76 dHdx = (1 + sigma_s/sigma_r * dIdx);
77 dVdy = (1 + sigma_s/sigma_r * dIdy);
78

79 % Integrate the domain transforms.
80 ct_H = cumsum(dHdx, 2);
81 ct_V = cumsum(dVdy, 1);
82

83 % The vertical pass is performed using a transposed image.
84 ct_V = ct_V’;
85

86 %% Perform the filtering.
87 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
88 N = num_iterations;
89 F = I;
90

91 sigma_H = sigma_s;
92

93 for i = 0:num_iterations - 1
94

95 % Compute the sigma value for this iteration
96 sigma_H_i = sigma_H * sqrt(3) * 2^(N - (i + 1)) / sqrt(4^N - 1);
97

98 % Compute the radius of the box filter with the desired variance.
99 box_radius = sqrt(3) * sigma_H_i;

100

101 F = TransformedDomainBoxFilter_Horizontal(F, ct_H, box_radius);
102 F = image_transpose(F);
103

104 F = TransformedDomainBoxFilter_Horizontal(F, ct_V, box_radius);
105 F = image_transpose(F);
106

107 end
108

109 F = cast(F, class(img));
110

111 end
112

113 %% Box filter interpolated convolution in the transformed domain.
114 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
115 function F = TransformedDomainBoxFilter_Horizontal(I, xform_domain_position, box_radius)
116

117 [h w num_channels] = size(I);
118

119 % Compute the lower and upper limits of the box kernel in the transformed domain.
120 l_pos = xform_domain_position - box_radius;
121 u_pos = xform_domain_position + box_radius;
122

123 % Find the indices of the pixels associated with the lower and upper limits
124 % of the box kernel.
125 %
126 % This loop is much faster in a compiled language. If you are using a
127 % MATLAB version which supports the ’parallel for’ construct, you can
128 % improve performance by replacing the following ’for’ by a ’parfor’.
129

130 l_idx = zeros(size(xform_domain_position));
131 u_idx = zeros(size(xform_domain_position));
132

133 for row = 1:h
134 xform_domain_pos_row = [xform_domain_position(row,:) inf];
135

136 l_pos_row = l_pos(row,:);
137 u_pos_row = u_pos(row,:);
138

139 local_l_idx = zeros(1, w);
140 local_u_idx = zeros(1, w);
141

142 local_l_idx(1) = find(xform_domain_pos_row > l_pos_row(1), 1, ’first’);
143 local_u_idx(1) = find(xform_domain_pos_row > u_pos_row(1), 1, ’first’);
144
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145 for col = 2:w
146 local_l_idx(col) = local_l_idx(col-1) + ...
147 find(xform_domain_pos_row(local_l_idx(col-1):end) > l_pos_row(col), 1, ’first’) - 1;
148

149 local_u_idx(col) = local_u_idx(col-1) + ...
150 find(xform_domain_pos_row(local_u_idx(col-1):end) > u_pos_row(col), 1, ’first’) - 1;
151 end
152

153 l_idx(row,:) = local_l_idx;
154 u_idx(row,:) = local_u_idx;
155 end
156

157 % Compute the box filter using a summed area table. This SAT is built using
158 % the area under the graph (in the transformed domain) of the interpolated
159 % signal. We use linear interpolation and compute the area using the
160 % trapezoidal rule.
161

162 areas = bsxfun(@times, ...
163 0.5 .* (I(:,2:end,:) + I(:,1:end-1,:)), ...
164 xform_domain_position(:,2:end,:) - xform_domain_position(:,1:end-1,:) ...
165 );
166

167 SAT = zeros([h w num_channels]);
168 SAT(:,2:end,:) = cumsum(areas, 2);
169 row_indices = repmat((1:h)’, 1, w);
170 F = zeros(size(I));
171

172 I = padarray(I, [0 1 0], ’replicate’);
173 SAT = padarray(SAT, [0 1 0]);
174 xform_domain_position = padarray(xform_domain_position, [0 1 0], ’replicate’);
175

176 % Pixel values outside the bounds of the image are assumed to equal the
177 % nearest pixel border value.
178 xform_domain_position(:,1) = xform_domain_position(:,1) - 1.2 * box_radius;
179 xform_domain_position(:,end) = xform_domain_position(:,end) + 1.2 * box_radius;
180

181 l_idx = l_idx + 1;
182

183 for c = 1:num_channels
184

185 l1_c = sub2ind(size(SAT), row_indices, l_idx, repmat(c, h, w));
186 u0_c = sub2ind(size(SAT), row_indices, u_idx, repmat(c, h, w));
187

188 l0_c = sub2ind(size(SAT), row_indices, l_idx - 1, repmat(c, h, w));
189 u1_c = sub2ind(size(SAT), row_indices, u_idx + 1, repmat(c, h, w));
190

191 l1 = sub2ind(size(SAT), row_indices, l_idx);
192 u0 = sub2ind(size(SAT), row_indices, u_idx);
193

194 l0 = sub2ind(size(SAT), row_indices, l_idx - 1);
195 u1 = sub2ind(size(SAT), row_indices, u_idx + 1);
196

197 % Full (center) areas.
198 C = SAT(u0_c) - SAT(l1_c);
199

200 % Left fractional areas.
201 alpha = (l_pos - xform_domain_position(l0)) ...
202 ./ (xform_domain_position(l1) - xform_domain_position(l0));
203 yi = I(l0_c) + alpha .* ( I(l1_c) - I(l0_c) );
204 L = 0.5 .* (yi + I(l1_c)) .* (1-alpha) ...
205 .* (xform_domain_position(l1) - xform_domain_position(l0));
206

207 % Right fractional areas.
208 alpha = (u_pos - xform_domain_position(u0)) ...
209 ./ (xform_domain_position(u1) - xform_domain_position(u0));
210 yi = I(u0_c) + alpha .* ( I(u1_c) - I(u0_c) );
211 R = 0.5 .* (yi + I(u0_c)) .* (alpha) ...
212 .* (xform_domain_position(u1) - xform_domain_position(u0));
213

214 F(:,:,c) = (L + C + R) / (2 * box_radius);
215

216 end
217
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218 end
219

220 %%
221 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
222 function T = image_transpose(I)
223

224 [h w num_channels] = size(I);
225

226 T = zeros([w h num_channels], class(I));
227

228 for c = 1:num_channels
229 T(:,:,c) = I(:,:,c)’;
230 end
231

232 end

A.3 Recursive filter
1 % RF Domain transform recursive edge-preserving filter.
2 %
3 % F = RF(img, sigma_s, sigma_r, num_iterations, joint_image)
4 %
5 % Parameters:
6 % img Input image to be filtered.
7 % sigma_s Filter spatial standard deviation.
8 % sigma_r Filter range standard deviation.
9 % num_iterations Number of iterations to perform (default: 3).

10 % joint_image Optional image for joint filtering.
11 %
12 %
13 %
14 % This is the reference implementation of the domain transform RF filter
15 % described in the paper:
16 %
17 % Domain Transform for Edge-Aware Image and Video Processing
18 % Eduardo S. L. Gastal and Manuel M. Oliveira
19 % ACM Transactions on Graphics. Volume 30 (2011), Number 4.
20 % Proceedings of SIGGRAPH 2011, Article 69.
21 %
22 % Please refer to the publication above if you use this software. For an
23 % up-to-date version go to:
24 %
25 % http://inf.ufrgs.br/~eslgastal/DomainTransform/
26 %
27 %
28 % THIS SOFTWARE IS PROVIDED "AS IS" WITHOUT ANY EXPRESSED OR IMPLIED WARRANTIES
29 % OF ANY KIND, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
30 % FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
31 % AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
32 % LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
33 % OUT OF OR IN CONNECTION WITH THIS SOFTWARE OR THE USE OR OTHER DEALINGS IN
34 % THIS SOFTWARE.
35 %
36 % Version 1.0 - August 2011.
37

38 function F = RF(img, sigma_s, sigma_r, num_iterations, joint_image)
39

40 I = double(img);
41

42 if ~exist(’num_iterations’, ’var’)
43 num_iterations = 3;
44 end
45

46 if exist(’joint_image’, ’var’) && ~isempty(joint_image)
47 J = double(joint_image);
48

49 if (size(I,1) ~= size(J,1)) || (size(I,2) ~= size(J,2))
50 error(’Input and joint images must have equal width and height.’);
51 end
52 else
53 J = I;
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54 end
55

56 [h w num_joint_channels] = size(J);
57

58 %% Compute the domain transform
59 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
60

61 % Estimate horizontal and vertical partial derivatives using finite
62 % differences.
63 dIcdx = diff(J, 1, 2);
64 dIcdy = diff(J, 1, 1);
65

66 dIdx = zeros(h,w);
67 dIdy = zeros(h,w);
68

69 % Compute the l1-norm distance of neighbor pixels.
70 for c = 1:num_joint_channels
71 dIdx(:,2:end) = dIdx(:,2:end) + abs( dIcdx(:,:,c) );
72 dIdy(2:end,:) = dIdy(2:end,:) + abs( dIcdy(:,:,c) );
73 end
74

75 % Compute the derivatives of the horizontal and vertical domain transforms.
76 dHdx = (1 + sigma_s/sigma_r * dIdx);
77 dVdy = (1 + sigma_s/sigma_r * dIdy);
78

79 % We do not integrate the domain transforms since our recursive filter
80 % uses the derivatives directly.
81 %ct_H = cumsum(dHdx, 2);
82 %ct_V = cumsum(dVdy, 1);
83

84 % The vertical pass is performed using a transposed image.
85 dVdy = dVdy’;
86

87 %% Perform the filtering.
88 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
89 N = num_iterations;
90 F = I;
91

92 sigma_H = sigma_s;
93

94 for i = 0:num_iterations - 1
95

96 % Compute the sigma value for this iteration
97 sigma_H_i = sigma_H * sqrt(3) * 2^(N - (i + 1)) / sqrt(4^N - 1);
98

99 F = TransformedDomainRecursiveFilter_Horizontal(F, dHdx, sigma_H_i);
100 F = image_transpose(F);
101

102 F = TransformedDomainRecursiveFilter_Horizontal(F, dVdy, sigma_H_i);
103 F = image_transpose(F);
104

105 end
106

107 F = cast(F, class(img));
108

109 end
110

111 %% Recursive filter.
112 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
113 function F = TransformedDomainRecursiveFilter_Horizontal(I, D, sigma)
114

115 % Feedback coefficient (Appendix of our paper).
116 a = exp(-sqrt(2) / sigma);
117

118 F = I;
119 V = a.^D;
120

121 [h w num_channels] = size(I);
122

123 % Left -> Right filter.
124 for i = 2:w
125 for c = 1:num_channels
126 F(:,i,c) = F(:,i,c) + V(:,i) .* ( F(:,i - 1,c) - F(:,i,c) );
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127 end
128 end
129

130 % Right -> Left filter.
131 for i = w-1:-1:1
132 for c = 1:num_channels
133 F(:,i,c) = F(:,i,c) + V(:,i+1) .* ( F(:,i + 1,c) - F(:,i,c) );
134 end
135 end
136

137 end
138

139 %%
140 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
141 function T = image_transpose(I)
142

143 [h w num_channels] = size(I);
144

145 T = zeros([w h num_channels], class(I));
146

147 for c = 1:num_channels
148 T(:,:,c) = I(:,:,c)’;
149 end
150

151 end

A.4 Example Usage
1 I = imread(’statue.png’);
2 I = im2double(I);
3

4 %% Edge-preserving smoothing example
5 sigma_s = 60;
6 sigma_r = 0.4;
7

8 % Filter using normalized convolution.
9 F_nc = NC(I, sigma_s, sigma_r);

10

11 % Filter using interpolated convolution.
12 F_ic = IC(I, sigma_s, sigma_r);
13

14 % Filter using the recursive filter.
15 F_rf = RF(I, sigma_s, sigma_r);
16

17 % Show results.
18 figure, imshow(I); title(’Input photograph’);
19 figure, imshow(F_nc); title(’Normalized convolution’);
20 figure, imshow(F_ic); title(’Interpolated convolution’);
21 figure, imshow(F_rf); title(’Recursive filter’);
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APPENDIX B ADAPTIVE MANIFOLDS SOURCE CODE

B.1 Main Filtering Loop

This is the main MATLAB implementation of our adaptive-manifold high-dimensional
filter described in Chapter 4. To use this code you must download the keep.m utility
from http://www.mathworks.com/matlabcentral/fileexchange/181-
keep. Please refer to our webpage at http://inf.ufrgs.br/~eslgastal/
AdaptiveManifolds for up-to-date source, examples, and instructions on using this
code.

1 % ADAPTIVE_MANIFOLD_FILTER High-dimensional filtering using adaptive manifolds
2 %
3 % Parameters:
4 % f Input image to be filtered.
5 % sigma_s Filter spatial standard deviation.
6 % sigma_r Filter range standard deviation.
7 %
8 % Optional parameters:
9 % tree_height Height of the manifold tree (default: automatically computed).

10 % f_joint Image for joint filtering.
11 % num_pca_iterations Number of iterations to computed the eigenvector v1 (default: 1)
12 %
13 % Output:
14 % g Adaptive-manifold filter response adjusted for outliers.
15 % tilde_g Adaptive-manifold filter response NOT adjusted for outliers.
16 %
17 %
18 %
19 % This code is part of the reference implementation of the adaptive-manifold
20 % high-dimensional filter described in the paper:
21 %
22 % Adaptive Manifolds for Real-Time High-Dimensional Filtering
23 % Eduardo S. L. Gastal and Manuel M. Oliveira
24 % ACM Transactions on Graphics. Volume 31 (2012), Number 4.
25 % Proceedings of SIGGRAPH 2012, Article 33.
26 %
27 % Please refer to the publication above if you use this software. For an
28 % up-to-date version go to:
29 %
30 % http://inf.ufrgs.br/~eslgastal/AdaptiveManifolds/
31 %
32 %
33 % THIS SOFTWARE IS PROVIDED "AS IS" WITHOUT ANY EXPRESSED OR IMPLIED WARRANTIES
34 % OF ANY KIND, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
35 % FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
36 % AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
37 % LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
38 % OUT OF OR IN CONNECTION WITH THIS SOFTWARE OR THE USE OR OTHER DEALINGS IN
39 % THIS SOFTWARE.
40 %
41 % Version 1.0 - January 2012.
42

43 function [g tilde_g] = adaptive_manifold_filter(f, sigma_s, sigma_r, tree_height,...

http://www.mathworks.com/matlabcentral/fileexchange/181-keep
http://www.mathworks.com/matlabcentral/fileexchange/181-keep
http://inf.ufrgs.br/~eslgastal/AdaptiveManifolds
http://inf.ufrgs.br/~eslgastal/AdaptiveManifolds
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44 f_joint, num_pca_iterations)
45

46 f = im2double(f);
47

48 % Use the center pixel as seed to random number generation.
49 rand(’seed’, f(round(end/2),round(end/2),1) );
50

51 global sum_w_ki_Psi_blur;
52 global sum_w_ki_Psi_blur_0;
53

54 sum_w_ki_Psi_blur = zeros(size(f));
55 sum_w_ki_Psi_blur_0 = zeros(size(f,1),size(f,2));
56

57 global min_pixel_dist_to_manifold_squared;
58

59 min_pixel_dist_to_manifold_squared = inf(size(f,1),size(f,2));
60

61 % If the tree_height was not specified, compute it using the equation of our paper.
62 if ~exist(’tree_height’,’var’) || isempty(tree_height)
63 tree_height = compute_manifold_tree_height(sigma_s, sigma_r);
64 end
65

66 % If no joint signal was specified, use the original signal
67 if ~exist(’f_joint’,’var’)
68 f_joint = f;
69 else
70 f_joint = im2double(f_joint);
71 end
72

73 % By default we use only one iteration to compute the eigenvector v1 (Appendix B)
74 if ~exist(’num_pca_iterations’,’var’)
75 num_pca_iterations = 1;
76 end
77

78 % Display a progress bar
79 global waitbar_handle;
80 global tree_nodes_visited;
81 tree_nodes_visited = 0;
82 waitbar_handle = waitbar(0, [’Filtering with ’ num2str(2^tree_height - 1) ...
83 ’ Adaptive Manifolds in ’ num2str(2 + size(f_joint,3)) ’-D Space...’]);
84

85 % Algorithm 1, Step 1: compute the first manifold by low-pass filtering.
86 eta_1 = h_filter(f_joint, sigma_s);
87 cluster_1 = true(size(f,1),size(f,2));
88

89 current_tree_level = 1;
90

91 build_manifolds_and_perform_filtering(...
92 f ...
93 , f_joint ...
94 , eta_1 ...
95 , cluster_1 ...
96 , sigma_s ...
97 , sigma_r ...
98 , current_tree_level ...
99 , tree_height ...

100 , num_pca_iterations ...
101 );
102

103 % Compute the filter response by normalized convolution
104 tilde_g = bsxfun(@rdivide, sum_w_ki_Psi_blur, sum_w_ki_Psi_blur_0);
105

106 % Adjust the filter response for outlier pixels
107 alpha = exp( -0.5 .* min_pixel_dist_to_manifold_squared ./ sigma_r ./ sigma_r );
108 g = f + bsxfun(@times, alpha, tilde_g - f);
109

110 % Close progressbar
111 delete(waitbar_handle);
112

113 end
114

115 function build_manifolds_and_perform_filtering(...
116 f ...
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117 , f_joint ...
118 , eta_k ...
119 , cluster_k ...
120 , sigma_s ...
121 , sigma_r ...
122 , current_tree_level ...
123 , tree_height ...
124 , num_pca_iterations ...
125 )
126

127 % Dividing the covariance matrix by 2 is equivalent to dividing
128 % the standard deviations by sqrt(2).
129 sigma_r_over_sqrt_2 = sigma_r / sqrt(2);
130

131 %% Compute downsampling factor
132 floor_to_power_of_two = @(r) 2^floor(log2(r));
133 df = min(sigma_s / 4, 256 * sigma_r);
134 df = floor_to_power_of_two(df);
135 df = max(1, df);
136

137 [h_image w_image dR_image] = size(f);
138 [h_joint w_joint dR_joint] = size(f_joint);
139

140 downsample = @(x) imresize(x, 1/df, ’bilinear’);
141 upsample = @(x) imresize(x, [h_image w_image], ’bilinear’);
142

143 %% Splatting: project the pixel values onto the current manifold eta_k
144

145 phi = @(x_squared, sigma) exp( -0.5 .* x_squared ./ sigma / sigma );
146

147 if size(eta_k,1) == size(f_joint,1)
148 X = f_joint - eta_k;
149 eta_k = downsample(eta_k);
150 else
151 X = f_joint - upsample(eta_k);
152 end
153

154 % Project pixel colors onto the manifold
155 pixel_dist_to_manifold_squared = sum( X.^2, 3 );
156 gaussian_distance_weights = phi(pixel_dist_to_manifold_squared, sigma_r_over_sqrt_2);
157 Psi_splat = bsxfun(@times, gaussian_distance_weights, f);
158 Psi_splat_0 = gaussian_distance_weights;
159

160 % Save min distance to later perform adjustment of outliers
161 global min_pixel_dist_to_manifold_squared;
162 min_pixel_dist_to_manifold_squared = min(min_pixel_dist_to_manifold_squared,...
163 pixel_dist_to_manifold_squared);
164

165 %% Blurring: perform filtering over the current manifold eta_k
166

167 blurred_projected_values = RF_filter(...
168 downsample(cat(3, Psi_splat, Psi_splat_0)) ...
169 , eta_k ...
170 , sigma_s / df ...
171 , sigma_r_over_sqrt_2 ...
172 );
173

174 w_ki_Psi_blur = blurred_projected_values(:,:,1:end-1);
175 w_ki_Psi_blur_0 = blurred_projected_values(:,:,end);
176

177 %% Slicing: gather blurred values from the manifold
178

179 global sum_w_ki_Psi_blur;
180 global sum_w_ki_Psi_blur_0;
181

182 % Since we perform splatting and slicing at the same points over the manifolds,
183 % the interpolation weights are equal to the gaussian weights used for splatting.
184 w_ki = gaussian_distance_weights;
185

186 sum_w_ki_Psi_blur = sum_w_ki_Psi_blur + bsxfun(@times, w_ki, upsample(w_ki_Psi_blur ));
187 sum_w_ki_Psi_blur_0 = sum_w_ki_Psi_blur_0 + bsxfun(@times, w_ki, upsample(w_ki_Psi_blur_0));
188

189 %% Compute two new manifolds eta_minus and eta_plus
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190

191 % Update progressbar
192 global waitbar_handle;
193 global tree_nodes_visited;
194 tree_nodes_visited = tree_nodes_visited + 1;
195 waitbar(tree_nodes_visited / (2^tree_height - 1), waitbar_handle);
196

197 % Test stopping criterion
198 if current_tree_level < tree_height
199

200 % Algorithm 1, Step 2: compute the eigenvector v1
201 X = reshape(X, [h_joint*w_joint dR_joint]);
202 rand_vec = rand(1,size(X,2)) - 0.5;
203 v1 = compute_eigenvector(X(cluster_k(:),:), num_pca_iterations, rand_vec);
204

205 % Algorithm 1, Step 3: Segment pixels into two clusters
206 dot = reshape(X * v1’, [h_joint w_joint]);
207 cluster_minus = logical((dot < 0) & cluster_k);
208 cluster_plus = logical((dot >= 0) & cluster_k);
209

210 % Algorithm 1, Step 4: Compute new manifolds by weighted low-pass filtering
211 theta = 1 - w_ki;
212

213 eta_minus = bsxfun(@rdivide ...
214 , h_filter(downsample(bsxfun(@times, cluster_minus .* theta, f_joint)), sigma_s / df) ...
215 , h_filter(downsample( cluster_minus .* theta ), sigma_s / df));
216

217 eta_plus = bsxfun(@rdivide ...
218 , h_filter(downsample(bsxfun(@times, cluster_plus .* theta, f_joint)), sigma_s / df) ...
219 , h_filter(downsample( cluster_plus .* theta ), sigma_s / df));
220

221 % Only keep required data in memory before recursing
222 keep f f_joint eta_minus eta_plus cluster_minus cluster_plus sigma_s sigma_r ...
223 current_tree_level tree_height num_pca_iterations
224

225 % Algorithm 1, Step 5: recursively build more manifolds.
226 build_manifolds_and_perform_filtering(f, f_joint, eta_minus, cluster_minus, sigma_s, ...
227 sigma_r, current_tree_level + 1, tree_height, ...
228 num_pca_iterations);
229

230 keep f f_joint eta_plus cluster_plus sigma_s sigma_r current_tree_level ...
231 tree_height num_pca_iterations
232

233 build_manifolds_and_perform_filtering(f, f_joint, eta_plus, cluster_plus, sigma_s, ...
234 sigma_r, current_tree_level + 1, tree_height, ...
235 num_pca_iterations);
236 end
237

238 end
239

240 % This function implements a O(dR N) algorithm to compute the eigenvector v1
241 % used for segmentation. See Appendix B.
242 function p = compute_eigenvector(X, num_pca_iterations, rand_vec)
243

244 p = rand_vec;
245

246 for i = 1:num_pca_iterations
247

248 dots = sum( bsxfun(@times, p, X), 2 );
249 t = bsxfun(@times, dots, X);
250 t = sum(t, 1);
251 p = t;
252

253 end
254

255 p = p / norm(p);
256

257 end
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B.2 Auxiliary Functions

B.2.1 compute_manifold_tree_height

This code computes the manifold tree height for RGB color image filtering.

1 function [Height K] = compute_manifold_tree_height(sigma_s, sigma_r)
2

3 Hs = floor(log2(sigma_s)) - 1;
4 Lr = 1 - sigma_r;
5

6 Height = max(2, ceil(Hs .* Lr));
7 K = 2.^Height - 1;
8

9 end

B.2.2 h_filter

This is the low-pass filter ’h’ we use for generating the adaptive manifolds.

1 function g = h_filter(f, sigma)
2

3 [h w num_channels] = size(f);
4

5 g = f;
6 g = h_filter_horizontal(g, sigma);
7 g = image_transpose(g);
8 g = h_filter_horizontal(g, sigma);
9 g = image_transpose(g);

10

11 end
12

13 function g = h_filter_horizontal(f, sigma)
14

15 a = exp(-sqrt(2) / sigma);
16

17 g = f;
18 [h w nc] = size(f);
19

20 for i = 2:w
21 for c = 1:nc
22 g(:,i,c) = g(:,i,c) + a .* ( g(:,i - 1,c) - g(:,i,c) );
23 end
24 end
25

26 for i = w-1:-1:1
27 for c = 1:nc
28 g(:,i,c) = g(:,i,c) + a .* ( g(:,i + 1,c) - g(:,i,c) );
29 end
30 end
31

32 end
33

34 function T = image_transpose(I)
35

36 [h w num_channels] = size(I);
37

38 T = zeros([w h num_channels], class(I));
39

40 for c = 1:num_channels
41 T(:,:,c) = I(:,:,c)’;
42 end
43

44 end

B.2.3 RF_filter

This is the implementation of the Domain Transform Recursive Filter of Chapter 3
modified to use an `2-norm when blurring over the adaptive manifolds. See Section 3.2.4.
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1 % This code is part of the reference implementation of the adaptive-manifold
2 % high-dimensional filter described in the paper:
3 %
4 % Adaptive Manifolds for Real-Time High-Dimensional Filtering
5 % Eduardo S. L. Gastal and Manuel M. Oliveira
6 % ACM Transactions on Graphics. Volume 31 (2012), Number 4.
7 % Proceedings of SIGGRAPH 2012, Article 33.
8 %
9 % Please refer to the publication above if you use this software. For an

10 % up-to-date version go to:
11 %
12 % http://inf.ufrgs.br/~eslgastal/AdaptiveManifolds/
13 %
14 %
15 % THIS SOFTWARE IS PROVIDED "AS IS" WITHOUT ANY EXPRESSED OR IMPLIED WARRANTIES
16 % OF ANY KIND, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 % FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18 % AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 % LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 % OUT OF OR IN CONNECTION WITH THIS SOFTWARE OR THE USE OR OTHER DEALINGS IN
21 % THIS SOFTWARE.
22 %
23 % Version 1.0 - January 2012.
24

25 function F = RF_filter(img, joint_image, sigma_s, sigma_r)
26

27 I = double(img);
28

29 if exist(’joint_image’, ’var’) && ~isempty(joint_image)
30 J = double(joint_image);
31

32 if (size(I,1) ~= size(J,1)) || (size(I,2) ~= size(J,2))
33 error(’Input and joint images must have equal width and height.’);
34 end
35 else
36 J = I;
37 end
38

39 [h w num_joint_channels] = size(J);
40

41 dIcdx = diff(J, 1, 2);
42 dIcdy = diff(J, 1, 1);
43

44 dIdx = zeros(h,w);
45 dIdy = zeros(h,w);
46

47 for c = 1:num_joint_channels
48 dIdx(:,2:end) = dIdx(:,2:end) + ( dIcdx(:,:,c) ).^2;
49 dIdy(2:end,:) = dIdy(2:end,:) + ( dIcdy(:,:,c) ).^2;
50 end
51

52 sigma_H = sigma_s;
53

54 dHdx = sqrt((sigma_H/sigma_s).^2 + (sigma_H/sigma_r).^2 * dIdx);
55 dVdy = sqrt((sigma_H/sigma_s).^2 + (sigma_H/sigma_r).^2 * dIdy);
56

57 dVdy = dVdy’;
58

59 N = 1;
60 F = I;
61

62 for i = 0:N - 1
63

64 sigma_H_i = sigma_H * sqrt(3) * 2^(N - (i + 1)) / sqrt(4^N - 1);
65

66 F = TransformedDomainRecursiveFilter_Horizontal(F, dHdx, sigma_H_i);
67 F = image_transpose(F);
68

69 F = TransformedDomainRecursiveFilter_Horizontal(F, dVdy, sigma_H_i);
70 F = image_transpose(F);
71

72 end
73
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74 F = cast(F, class(img));
75

76 end
77

78

79 function F = TransformedDomainRecursiveFilter_Horizontal(I, D, sigma)
80

81 a = exp(-sqrt(2) / sigma);
82

83 F = I;
84 V = a.^D;
85

86 [h w num_channels] = size(I);
87

88 for i = 2:w
89 for c = 1:num_channels
90 F(:,i,c) = F(:,i,c) + V(:,i) .* ( F(:,i - 1,c) - F(:,i,c) );
91 end
92 end
93

94 for i = w-1:-1:1
95 for c = 1:num_channels
96 F(:,i,c) = F(:,i,c) + V(:,i+1) .* ( F(:,i + 1,c) - F(:,i,c) );
97 end
98 end
99

100 end
101

102 function T = image_transpose(I)
103

104 [h w num_channels] = size(I);
105

106 T = zeros([w h num_channels], class(I));
107

108 for c = 1:num_channels
109 T(:,:,c) = I(:,:,c)’;
110 end
111

112 end
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APPENDIX C NON-UNIFORM FILTERING SOURCE CODE

This source code implements the core of our discrete-time formulation for applying
arbitrary recursive digital filters to non-uniformly sampled signals. The language is ju-
lia (BEZANSON et al., 2012). Please refer to our webpage at http://inf.ufrgs.
br/~eslgastal/NonUniformFiltering for full source, examples, and instruc-
tions on using this code.

1 # This function implements our formulation which applies a 1st-order digital
2 # filter to a non-uniformly sampled signal with normalization preserved by
3 # piecewise resampling.
4 #
5 # The applied digital filter depends on the Direction parameter as shown
6 # on the table below:
7 #
8 # Causal | AnticausalInSeries | AnticausalInParallel
9 # | |

10 # a | a | a*b*z
11 # H(z) = ---------- | H(z) = --------- | H(z) = ---------
12 # 1 - b*z^-1 | 1 - b*z | 1 - b*z
13 # | |
14 #
15 ours_1storder!{
16 TData <: Real,
17 TCoef <: Number,
18 Direction <: FilteringDirection,
19 BoundaryCond <: BoundaryCondition
20 }(
21 # Outputs
22 odata :: Ptr{TData}, # Output samples. The result is **added** to the odata
23 # array, so it must be zeroed before calling this
24 # function.
25 # Inputs
26 idata :: Ptr{TData}, # Input samples
27 dt :: Ptr{TData}, # Sampling position deltas
28 a :: TCoef, # Filter numerator coefficient
29 b :: TCoef, # Filter pole, must satisfy abs(b) < 1
30 N :: Int64, # Number of input samples
31 :: Type{Direction}, # One of: Causal, AnticausalInSeries, AnticausalInParallel
32 :: Type{BoundaryCond} # One of: Relaxed, Replicated
33 ) = @inbounds begin
34

35 # Some precomputed values from
36 const one_over_r0 = (one(TCoef) / ( (b - one(TCoef))*(b - one(TCoef)) / (a*b) )) :: TCoef
37 const r1 = (a / (b - one(TCoef))) :: TCoef
38

39 # Compute initial conditions
40 if Direction === Causal || Direction === AnticausalInSeries
41 const beta = (a / (one(TCoef) - b)) :: TCoef;
42 else
43 const beta = (b * a / (one(TCoef) - b)) :: TCoef;
44 end
45

46 if BoundaryCond === Relaxed
47 f_k_minus_1 = zero(TData) :: TData
48 g_k_minus_1 = zero(TCoef) :: TCoef

http://inf.ufrgs.br/~eslgastal/NonUniformFiltering
http://inf.ufrgs.br/~eslgastal/NonUniformFiltering
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49 else
50 f_k_minus_1 = idata[Direction === Causal ? 1 : N] :: TData
51 g_k_minus_1 = beta * convert(TCoef, f_k_minus_1) :: TCoef
52 end
53

54 if Direction === Causal
55 datarange = 1:1:N
56 else
57 datarange = N:-1:1
58 end
59

60 # Main filtering loop
61 for i = datarange
62 if Direction === Causal
63 const dt_k = dt[i] :: TData
64 else
65 if i+1 <= N # Avoid reading out-of-bounds value
66 const dt_k = dt[i+1] :: TData
67 else
68 const dt_k = one(TData) :: TData
69 end
70 end
71

72 const b_exp_dt = (b ^ dt_k) :: TCoef
73 const f_k = idata[i] :: TData
74 # The following two lines implement
75 const Q_k = (b_exp_dt - one(TCoef)) * one_over_r0 * (one(TCoef) / dt_k) :: TCoef
76 const P_k = ((Q_k - r1*b)*f_k - (Q_k - r1*b_exp_dt)*f_k_minus_1) :: TCoef
77

78 if Direction === Causal || Direction === AnticausalInSeries
79 const g_k = a*f_k + b_exp_dt*g_k_minus_1 + P_k :: TCoef
80 else
81 const g_k = a*b_exp_dt*f_k_minus_1 + b_exp_dt*g_k_minus_1 + P_k :: TCoef
82 end
83

84 # Drop the imaginary part and write output sample
85 odata[i] += real(g_k) :: TData
86

87 f_k_minus_1 = f_k :: TData
88 g_k_minus_1 = g_k :: TCoef
89 end
90 end
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