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We study measurable quantities of bosonic and fermionic mixtures on a one-dimensional ring. These few-body 
ensembles consist of majority atoms obeying certain statistics (Fermi or Bose) and an impurity atom in a different 
hyperfine state. The repulsive interactions between majority-impurity and majority-majority are varied from 
weak to strong. We show that the majority-impurity repulsion is mainly responsible for the loss of coherence 
in the strongly interacting regime. The momentum distribution follows the C/p4   universal behavior for the 
high-momentum tail, but the contact C is strongly dependent on the strength of the majority-impurity and in a 
different way on the majority-majority interactions. The static structure factor of the majority atoms exposes a 
low-momentum peak for strong majority-impurity repulsion, which is attributed to an effective attraction not 
expected for purely repulsive forces. 
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I. INTRODUCTION 

 

Nonlocal measurable quantities of cold atom systems play 
a major role in the experimental probe of their properties. 
From the momentum distributions in the first realizations of 
Bose-Einstein condensates [1,2] and the time-of flight images 
of phase transitions in optical lattices [3], to the probing of 
the Tonks-Girardeau (TG) gas (an infinitely repulsive one- 
dimensional (1D) bosonic ensemble with fermionic properties 
[4,5]), experimental techniques have given rise to an unprece- 
dented degree of control, manipulation, and measurement of 
atomic systems [6–8]. For 1D systems, theoretical research 
has developed analytical and numerical methods to study 
properties of those quantities, like the universal C/p4  asymp- 
totic behavior of the momentum distribution [9–11], which 
is governed by the contact C. This is a notion that captures 
all universal properties of such systems even close to phase 
transitions [12] and has been recently measured in ultracold 
gases [13–15]. The structure factor, another important concept 
originated in solid-state physics to probe crystalline lattices, 
has recently been studied [16–18] and observed for 1D Bose 
gases via Bragg spectroscopy [19]. 

More recent advances in experiments deal with mixtures of 
Bose-Bose, Bose-Fermi, and Fermi-Fermi cold gases [20–23]. 
It also became possible to realize few-body ensembles of 
bosons [24,25] and fermions in different hyperfine states [26] 
and measure the effects of an impurity by increasing the 
number of fermions one by one [27]. For composite mixtures 
of bosons and fermions several local quantities have been 
studied and have exhibited various phases not present in pure 
ensembles [28–30], but some advances are still to be done on 
the side of nonlocal correlators [31]. 

In this work we investigate, using a Jastrow-type ansatz, 
some measurable nonlocal quantities for a few-body ensemble 
of bosons or fermions in a 1D ring in the presence of an 
impurity of the same mass but in a different hyperfine state. 

In these systems, repulsive interactions between impurity- 
majority or, for the bosonic case, majority-majority pairs can 
be tuned via Feshbach resonances. For the integrable system 
constituted by an impurity in a Fermi sea, the ground state wave 
functions and energies have been exactly obtained in Ref. [32], 
and results for correlations are discussed in Ref. [33]. For a 
system of bosons, if all interaction strengths are equal, the 
Lieb-Liniger integrable model can be applied [34]. However, 
when the interaction strengths differ and the system becomes 
nonintegrable [35–37], we show that all measurable nonlocal 
correlation quantities exhibit a behavior substantially different 
from that of the integrable one. In particular, the reduced 
one-body density matrix of the majority atoms, a correlation 
function that shows the degree of coherence in its off-diagonal 
terms, is strongly dependent on the impurity-majority coupling 
strength. At the same time, the high-momentum tail of the 
momentum  distribution  obeys  a  C/p4    universal  behavior 
for all cases studied here. The numerical values for the 
contact C depend not only on the impurity-majority and 
majority-majority couplings, but also on the nature of the atom 
being considered. For different interactions, the static structure 
factor deviates from the integrable case, above and below 
the phononic behavior of the TG gas; most surprisingly, a 
pronounced peak arises for strong majority-impurity repulsion, 
which is an indicator of a quasicrystalline structure and of ef- 
fective attractive correlations in a purely repulsively interacting 
ensemble. The results obtained here for the correlations via a 
simple Jastrow ansatz are compared with the exact solutions in 
the corresponding cases where those solutions exist, showing 
in general very good agreement. 
 

 
 

II. SYSTEM HAMILTONIAN AND ANSATZ 
 

We consider a system of three atoms on a 1D ring of length 
L with contact interactions and periodic boundary conditions. 
The Hamiltonian reads 

 
* rafael.barfknecht@ufrgs.br 
† ioannis.brouzos@uni-ulm.de 
‡ angela@if.ufrgs.br 

1
H = ­ 

2 ∂x2  + 
   

3 
∂ 2 

j =1 j 

 

gij δ(xi ­ xj ),  (1) 

i<j 

 

1050-2947/2015/91(4)/043640(8) 043640-1 ©2015 American Physical Society 

http://dx.doi.org/10.1103/PhysRevA.91.043640
mailto:rafael.barfknecht@ufrgs.br
mailto:ioannis.brouzos@uni-ulm.de
mailto:%E2%80%A1angela@if.ufrgs.br
mailto:%E2%80%A1angela@if.ufrgs.br


BARFKNECHT, BROUZOS, AND FOERSTER PHYSICAL REVIEW A 91, 043640 (2015)

043640-2

 

 

2 

⊥

 
 

 
 
 
 
 
 
 
 
 
 
 
 

FIG. 1. (Color online) Schematic depiction of the physical sys- 
tem for representative cases: (a) strongly repulsive integrable case, 
in which the separation between the three atoms is at maximum. 
(b) The interaction between the majority pair is strong, but the 
impurity-majority interaction is weak; therefore the impurity atom 
appears “delocalized” across the ring. (c) The impurity strongly 
repels the majority pair but the majority-majority interaction is weak, 
so these atoms tend to bunch together on the other side of the 
ring. 

 

 
 

where the lengths are in units of L  and energies in units 
of fi2 /mL2 . The interaction strength gij   may be different 
for each pair of atoms i,j and is controllable via Feshbach 
or confinement-induced resonances since g = g1D /(fi2 /mL) 
with  g1D  =  2n a3D (1 ­ |ζ ( |a3D  )­1 ,  where  m  is  the  atom 1/2)√

2a 

in Fig. 1(c) the interaction between the bosonic majority atoms 
gt is vanishing or very weak, and the impurity strongly repels 
both. In this case the majority atoms tend to maximize the 
distance with the impurity, and this leads to an effectively 
“attractive” scenario, where they bunch together (this kind of 
effect has also been verified in harmonically trapped systems 
[39]). We will see that this indirect attraction of the majority 
atoms via the impurity induces various effects in the observable 
properties, the most striking being the peak in low momentum 
for the static structure factor. Let us stress here that at least these 
extreme situations are representative also for ensembles of 
many majority atoms, since the underlying physics are similar 
to those explained above. 
 

 
 

B. Ansatz 

Extreme cases in bosonic systems like the one depicted 
in Fig. 1(a) also allow for exact solutions of the many-body 
Schrö dinger equation that are obtained by means of Bose- 
Fermi mapping [40], which “maps” the infinitely repulsive 
bosons to free fermions. The Jastrow-type ansatz that we 
employ here is based on those solutions and also on the 
two-body integrable Lieb-Liniger case: 
 

ψij = cos [kij (|xi  ­ xj | ­ 1/2)], (2) 

ma2 ⊥ 
mass,  ζ  is  the  Riemann  zeta  function,  a3D   is  the  three- 
dimensional s-wave scattering length, and a⊥ is the length 
of the transversal confinement [38]. The latest is assumed 
to be very small such that the system is effectively 1D. The 
composite system where the only difference between the atoms 
is the coupling strengths gij with respect to each other can be 
realized experimentally by using atoms of the same species in 
different hyperfine states. 

As shown in Fig. 1 we consider three atoms on a ring, 
with two of them being in the same hyperfine state and 
obeying fermionic or bosonic statistics, and the third (which 
we call the impurity) in a different hyperfine state. Therefore 
we  have two important parameters, the  coupling strength 
g between impurity and majority atoms and the gt  for the 
bosonic case for the interaction between the majority atoms. 
In  the  case  where  the  majority  atoms  are  fermions,  the 
s-wave scattering is forbidden due to the statistics, and the 
only parameter that remains is the impurity-majority coupling 
strength g. 

 

 
 

A. Underlying physics 

In Fig. 1 we schematically depict the extreme cases that 
indicate the basic underlying physical scenarios that appear in 
this system. Figure 1(a) represents the integrable case where 
g = gt  and the atoms are strongly repulsive, so they tend to 
maximize the distance between them. In Fig. 1(b) only the 
majority atoms repel strongly each other (or obey the Pauli 
exclusion principle if they are fermions), and therefore they 

where kij (in units of 1/L) is related to the interaction strength 
gij  by kij  = 2 arctan(gij /2kij ), with kij  ∈ [0,π ]. The Jastrow 
ansatz for our system of three bosons reads: 
 

ψ = N cos [k (|xi  ­ xm1 | ­ 1/2)] cos [k (|xi  ­ xm2 | ­ 1/2)] 

× cos [kt (|xm1  ­ xm2 | ­ 1/2)], (3) 
 

 
where N is a normalization constant, xi  denotes the position 
of the impurity atom, xm1 and xm2 the positions of the majority 
atoms, and k,kt are related to g and gt, respectively. Although 
here we conveniently write the ansatz for our particular system 
it is clear that it can be generalized for more atoms and 
different  pairs.  Indeed,  for  fermionic majority  atoms,  we 
modify the last term to sin [π (xm1  ­ xm2 )], which respects 
the fermionic exchange property. Note that, contrary to the 
bosonic case, this term does not correspond to the exact 
ground state wave function for a pair of identical fermions 
(see Ref. [41] for details). However, as we will show next, 
this expression, besides of being simpler to handle, is able to 
reproduce the relative correlations for the cases that we study 
here. 

In  Fig.  2  we  compare  the  results  for  correlations  us- 
ing  the  Jastrow  ansatz  to  the  exact  ones  given  by  the 
Bethe  ansatz  in  the  integrable cases.  We  particularly fo- 
cus on basic quantities such as the one-body correlation 
function, 

  
tend to localize on diametric positions on the ring. The im- 
purity is delocalized all over as a single particle since the 
interaction g with the others is vanishing. On the other hand, 

ρ(x,x t) = dx2 · · · dxN  ψ (x,x2 , . . . ,xN )ψ ∗(x t,x2 , . . . ,xN ), 
 

(4) 
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FIG. 2. (Color online) Comparison of results from Jastrow ansatz 
and exact solutions for different interaction strengths for (a) one- 
body correlation function and (b) pair correlations in the integrable 
bosonic case and (c) one-body correlation function for the impurity 
fermion and (d) pair correlation for a fermionic impurity-majority 
pair. Black dashed lines correspond to the results obtained using the 
corresponding exact wave functions. 

 

 
and the pair correlation function, 

 

g(x1 ,x2 ) = dx3 · · · dxN  |ψ (x1 ,x2 , . . . ,xN )|2 , (5) 
 

where we assume that the N -body wave functions are normal- 
ized to unity. In Fig. 2(a) we present the one-body correlation 
function with respect to the relative distance r = x ­ x t  for 
the bosonic case for several interaction strengths. We find that 
the Jastrow ansatz is in good agreement with the existing exact 
solutions [34]. The same holds for the bosonic pair correlations 
as a  function of the separation r = x1 ­ x2 ,  as shown in 
Fig. 2(b). As expected, in the extreme cases of vanishing and 
infinite repulsion (TG gas) the agreement is at best since the 
Jastrow ansatz coincides with the exact solution [42]. For the 
case of two majority fermions with an impurity, we compare 
the results of the Jastrow ansatz with the exact solution [32,33] 
in Figs. 2(c) and 2(d). Again we find that the agreement is very 
good in the weak and strong interaction limits, with slight 
deviations for intermediate interaction strengths. Here ρ(x,x t) 
refers to the impurity fermion, and the pair correlation function 
is calculated for an impurity-majority pair, so x1  = xi   and 
x2  = xm1 . For the homogeneous cases discussed here where 
an exact solution exists, the Jastrow ansatz provides a simple 
and reliable approximation of this solution. Therefore, we can 
state that even without a variational approach, this ansatz 
captures the basic physics of the systems that we discuss 
here. We mention that an approach to correlations for bosons 
in a harmonic trap has been discussed in Ref. [43], while 
correlations for the two-component trapped fermionic system 
have been studied in Refs. [44,45]. 

III. MEASURABLE QUANTITIES 

A. One-body correlation function 

In our system we can find either the correlation function 
for the impurity or the majority atoms by integrating out the 
coordinates of the other pair of atoms in each case. The one- 
body correlation function, and in particular its off-diagonal 
terms, characterizes the degree of coherence of a given atom 
of the system. As we observe for the integrable case in Fig. 3(a) 
when the interactions are weak or  intermediate (k = π/2 
corresponds to g = π ) there is coherence in the ensemble 
since diagonal and off-diagonal terms are almost equal. This 
behavior resembles that of the Bose-Einstein condensate, 
which is a coherent ensemble of many bosonic atoms. On the 
other hand, when the repulsive interaction becomes very strong 
as in Fig. 3(b) (k = 9π/10 corresponds to g ≈ 35.7) the atoms 
tend to localize and lose coherence. The diagonal x = x t peak 
(and due to the periodic boundary conditions and symmetry 
the peak at distance L) becomes much more pronounced than 
the off-diagonal area around distance L/2.  This is typical 
for few body 1D ensembles at strong interactions which are 
no longer represented by a single coherent wave function 
but are occupying higher single-particle states (orbitals), an 
effect known as depletion of the condensate or fragmentation 
[46–49]. We  have  a  similar effect  for  the  impurity atom 
when the impurity-majority interaction is strong and also 
for the majority atoms when the interaction between them is 
strong. The most interesting nonintegrable case is depicted in 
Figs. 3(c) and 3(d) where we see the loss of coherence for the 
majority atoms solely due to the increase of the strength of the 
interaction with the impurity. Since the direct interaction term 
between the majority atoms is small (k = π/10,g ≈ 0.1) one 
would expect that they remain coherent, but it is shown that if 
the impurity repels them strongly, then they get localized [see 
also schematic Fig. 1(c)]. Since the one-body density matrix 
is always symmetric with respect to the diagonal [as we see 
in Figs. 3(a)–3(d)] we can depict the whole behavior as a 
function of r = x ­ x t (as done in Fig. 2) and of the interaction. 
Therefore we show in Figs. 3(e)–3(i) the whole behavior of the 
correlation function as a function of k. The localization around 
r = 0 again shows that the loss of coherence appears gradually 
for high k. Very similar behavior is obtained for the impurity 
atom as shown in Fig. 3(f) due to the impurity-majority strong 
interaction. In Fig. 3(g) the bosonic majority atom is shown to 
lose coherence at large impurity-majority interactions even 
if majority-majority coupling is rather low. A comparison 
between the fermionic majority atoms and bosonic majority 
atoms with infinite repulsion (kt = π ) shows that the fermionic 
atoms have more pronounced localization. In other words, the 
infinitely repulsive bosonic atoms are resembling fermions in 
their nonlocal correlation also as a function of the repulsive 
strength with the impurity, but they never get as radically 
localised as the majority fermions. 
 

 
B. Momentum distribution and contact 

An observable directly connected to the one-body correla- 
tion function is the momentum distribution: 
 

n(p) = dx dx tρ(x,x t) e­ip(x­x t ) , (6) 



BARFKNECHT, BROUZOS, AND FOERSTER PHYSICAL REVIEW A 91, 043640 (2015)

043640-4

 

 

 

 
 
 

1.0 
 

0.9 
 

0.8 
 

0.7 
 

0.6 

 
 
 
 
 

1.0 
 

0.9 

 
 
1.0 
 

0.8 
 

0.6 
 

0.4 
 

0.2 
 

0 
 

0.8 
 

0.7 
 

0.6 

 

 
FIG. 3. (Color online) One-body correlation function for representative cases interactions in the integrable, majority, and impurity cases. 

Loss of coherence [depletion of the off-diagonal terms of ρ(x,x t)] from (a) weak to (b) strong interaction in the integrable case, and from 
(c) weak to (d) strong repulsion from the impurity for the majority bosonic atoms. Behavior of ρ(r = |x ­ x t|) as a function of the interaction 
parameter k in the cases of (e) integrable system, (f) impurity atom for strong majority interactions, majority atoms for (g) weak and (h) strong 
interactions, and (i) majority fermions. 

 

where p = 2πs and s is an integer. We show in the Appendix 
that this is equivalent to calculating first the many-body wave 
function in momentum space for one atom, 

 

φ(p,x2 , . . . ,xN ) = dx1 e­i px1   ψ (x1 ,x2 , . . . ,xN ), 

 
and then integrating out the rest of the coordinates from its 

also verify that Eq. (8) is capturing the correct behavior of the 
contact for all our data points in the integrable case. For the 
nonintegrable cases where interactions are different, there is no 
explicit formula in the literature for the contact. Therefore we 
write, in analogy to the calculations in Ref. [50], an analytical 
expression for the asymptotics of momentum distribution [52]: 

square modulus. 
It is known that the asymptotic behavior (the large p tail) n(p) 

|p  |→∞
  = 2 N  

 
 
dx ...d x

N  
2/a1j

 
 

e­ipxj

 

  
of the momentum distribution obeys an universal power law 
[11,31]: 

 
j =2   

1D 

    1 2 

× \l (x1  = xj , . . . ,xj , . . . ,xN )
    

p4 
n(p) = C  

,   for   p → ∞.  (7) 
  p4 

, (9) 

 

An expression for C  depending on the two-body correlation 
function is given in Ref. [50]: 

4(N ­ 1)ρ2 (0,0) 

where we identify the prefactor as the contact. The index j is 
inserted to account for different interactions between particle 
x1  and the other particles of the ensemble. For our particular 
case of three particles, the interaction between the impurity 

C = 
a2 , (8) and the remaining pair is the same (so a12  = a13 , and the ) 1D  

difference from the integrable contact 
1D

will be 
 1D

carried only 
where a1D   is  the 1D scattering length, defined as  a1D  = 
­2/mg,  and ρ2 (0,0) is the normalized two-body correlation 
function at vanishing distance between the atoms (an analytical 
expression for  ρ2   in  the  case of  three atoms is  given in 
Ref. [37], while thermodynamic limit formulas for weak and 
strong interactions are found in Ref. [51]). The proportionality 
constant C is called contact and is determined by the strength 
of the interaction. The contact characterizes all the universal 
properties of such systems that are independent of the details 
of the interaction. For a fixed interaction, it is proportional 
to the probability that two atoms can be found at a short 
distance from each other (in this case at zero separation). In 

Fig. 4(a) we verify the C/p4  asymptotic behavior, not only 
for the integrable but also for all cases considered here. We 



CONT .in the wave function. For the contact of the majority atoms, 
the scattering length will be different for each pair (a21  I= 
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1D
a23 ). For all nonintegrable cases this formula predicts very 
well the behavior of the momentum distribution at large large 
momentum for our data points as is shown for exemplary 
cases in Fig. 4(a). By using Eq. (9) we can then calculate the 
contact for all different interaction strengths, for impurity and 
majority atoms; the results for the contact as a function of the 
interaction parameters are presented in Figs. 4(b) and 4(c). In 
general the value of the contact increases with the interaction 
strength, but the main observation here is that the contact for 

1D

the majority atoms is symmetrically dependent on k and kt 
while for the impurity the major change comes, as expected, 
from the increase of the interaction with the majority atoms k. 
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FIG. 4. (Color online) (a) Momentum distribution for different 
interactions, including integrable bosonic, majority, and impurity 
bosons and fermionic cases (p  is in units of 2π ). Dashed black 
lines are the predicted values given by Eqs. (8) (integrable) and (9) 
(nonintegrable). (b) Contact as a function of k and kt, obtained from 
Eq. (9) for the impurity atom. (c) Same as (b), but for a majority atom. 

 
 
 
 

C. Static structure factor 

The structure factor is a property that defines how an 
ensemble of atoms scatters incident radiation. Experimentally, 
it is usually measured by two-photon Bragg scattering, in 
which the atom sample is subject to two detuned laser beams. 
The stimulated emission of light by the atoms gives rise 
to interference patterns that can be measured and contain 
information about the structure of the sample. For different 
wave vectors p and frequencies ω of the beams, it is possible 
to measure the dynamic structure factor S(p,ω) of the system. 
Its integral over all frequencies provides the static structure 

factor, defined for 1D homogeneous systems as [16] 
 

S(p) = 1 + dxj  dxi e­ip(xi ­xj ) [g(xi ,xj ) ­ 1],  (10) 

 
where p  is again quantized as 2πs  and the pair correlation 
g(xi ,xj ) is renormalized to N (N ­ 1)/N 2  for convenience. 
For our system, the pair correlation function can refer to an 
impurity-majority pair (xi  = xi  and xj = xm1 ) or a majority- 
majority pair (xi  = xm1  and xj = xm2 ), and N (N ­ 1)/N 2 = 
6/9. 

In the low-momentum region and infinitely repulsive 
regime, hydrodynamic theory [53] predicts that the static 
structure factor should behave linearly with p. Particularly, for 
the TG limit this behavior is described by S(p) = |p|/2πn, 
where n = N/L is the particle density. This result is char- 
acteristic of phonon excitations in many-body systems, but 
we confirm it also in our few-body system in the integrable 
case as shown in Fig. 5(a). For high momentum the structure 
factor always converges to 1 (a high-speed probe would not 
be scattered by the cold atom ensemble). For low momentum 
the behavior of the nonintegrable cases deviates much from 
that of the integrable, the first peak being below the TG 
phononic behavior or above it. 

Most importantly, for the majority bosons S can also be 
over 1, an effect that indicates a quasicrystalline structure and 
is not present in the integrable case. It results specifically from 
the fact that the repulsion with the impurity is inducing an 
effective attraction between the majority atoms as depicted 
in Fig. 1(c). This is also a characteristic of the so-called 
Super-Tonks gas, which is an excited state on the attractive side 
of the Feshbach resonance that also exhibits a peak above 1 in 
the structure factor at low momentum as shown in Ref. [54]. 
We focus in Figs. 5(b) and 5(c) on the behavior of the structure 
factor at low momentum p = 1. In (c) we observe again this 
peak arising smoothly for the majority atoms and being very 
pronounced at low kt  and high k. For the impurity-majority 
pair, S ::; 1, as is shown in Fig. 5(c), and the main change 
comes from impurity-majority repulsion. An important issue 
regarding the experimental determination of the structure 
factor is the possibility of measuring this quantity separately 
for impurity-majority and majority-majority pairs. This could 
be achieved, for instance, by having the beams polarized, in 
such a way that the photons could couple differently to the spin 
(or pseudospin) components in the system [55]. Another way 
to obtain this difference in the coupling involves a specific 
detuning of the laser beams, leading to separate measures 
in the components of the total structure factor, as argued 
in Ref. [56]. 
 

 
 

IV. CONCLUSIONS AND OUTLOOK 
 

We  have  studied  the  nonlocal  correlation functions  of 
few-body bosonic and fermionic mixtures in a 1D ring in 
the presence of an impurity in a different hyperfine state. 
The interaction strengths between impurity-majority and 
majority-majority pairs may differ, which renders the system 
nonintegrable. The strength of this difference is responsible 
for pronounced effects in observable quantities. Most of the 
effects that we study on the one-body correlation function, 
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agreement with the existing exact solutions for certain cases, 
we are able to provide results for several observable quantities 
in the nonintegrable regime. 

The experimental verification of the quantities we study is 
possible since recent advances in ultracold atoms techniques 
allowed for measurements in few-body systems. Many of our 
results also hold qualitatively for a larger number of majority 
atoms. Our approach can be extended to other cases which are 
relevant for experiments, like differently mixed systems and 
larger ensembles. 
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APPENDIX 
 

The momentum distribution is usually obtained by perform- 
ing the Fourier transform of the one-body correlation function 
ρ(x,x t) (assuming a normalized wave function): 

n(p) = dx dx tρ(x,x t) e­ip(x­x t ) .  (A1) 

We consider now ρ(x,x t) as given in Eq. (4). By replacing it 
in Eq. (A1), we get 

 
 

n(p) =    dx2 dx3 dx dx t ψ (x,x2 ,x3 )ψ ∗(x t,x2 ,x3 ) e­ip(x­x t ) , 
 

(A2) 
 
 

which can be rewritten as 
 
 
 

 
FIG. 5. (Color online) (a) Low momentum region of the static 

structure factor for several integrable and nonintegrable bosonic 
cases, as well the fermionic majority-majority case (p  is in units 
of 2π ). (b) Static structure factor as a function of k and kt, obtained 
by using the majority-majority pair correlation function for bosons, 
with p fixed as 2π . (c) Same as in (b), but for an impurity-majority 
pair. 

 

 
 
 

on the contact and on the static structure factor refer to a 
weakly interacting majority pair which is strongly repelled 
by an impurity atom. In particular, this gives rise to effective 
attractive interactions and a pronounced peak in the structure 
factor. By means of our Jastrow ansatz, which is in very good 

n(p) = dx2 dx3  dx ψ (x,x2 ,x3 )e­ipx
 

 

× dx t ψ ∗(x t,x2 ,x3 ) eipx t 
.  (A3) 

 

From  Eq.  (7),  
f 

dx ψ (x,x2 ,x3 ) e­ipx  = φ(p,x2 ,x3 ),  so 
Eq. (A3) results in 
 
 

n(p) = dx2 dx3 |φ(p,x2 ,x3 )|2 , (A4) 

 

 
which  can  be  calculated  given  that  an  expression  for 
φ(p,x2 ,x3 ) exists. For the momentum space representation 
of  the  wave  function  with  respect  to  the  coordinate  x1 
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in the bosonic case, this expression reads: 

⎜ 2

2 3 2 3  e cos k x  + x ( ­ i(4e(­4k p+p  ) 2 ­ 
1 ⎧ 1 ­ip(1+2x2 +2x3 ) 

r t  1  ip(1+2x2 +x3 ) k2 
2⎜ 

2 

⎜ 
⎜­⎜ 

 4eip
 
(1+x2 +2x3 ) k2 ­ e2ip(x2 +x3 )

 (­4k2
 + p  ) + e ip(1+2x2 +2x3 ) (­4k2

 + p  )) 

⎜ 
⎜×⎜ 

 cos [k(x2 ­ x3 )] + 4ieip
 
(1+x2 +x3 )

e 1

⎜ 2 2 

⎜ 

e 

­ 4e 2 2

⎜ 
 

e 
⎜ 2 2

⎜ 

e (eipx2 
ipx3 ­ )k2 cos [k(1 ­ x2 + x3 )] 

⎜⎜ 
­ 2e ip(1+x2 +x3 ) e

⎜ J ⎨­ ie2ip(x2 +x3 ) p{p cos [k(­1 + x2 + x3 )] ­ 2ik sin [k(­1 + x2 + x3 )]}),    if x2  > x3 , 

(eipx2 
ipx3 + )kp{sin [k(x2 ­ x3 )] + sin [k(1 ­ x2 + x3 )]} 

NB φ(p,x2 ,x3 ) =     1   ⎜ 2⎜ (­4k2 p+p3 ) 
­ip(1+2x2 +2x3 ) 

 

cos 
r
kt 2 ­ 2x2 + 2x3 

1
(­i[4e ip(1+2x2 +x3 ) k2 (A5) 

⎜­ 4e ip(1+x2 +2x3 ) k2 ⎜ 
(1+x2 +x3 ) 

­ e2ip(x2 +x3 )
 (­4k2

 + p  ) + e ip(1+2x2 +2x3 ) (­4k2
 + p  )] 

⎜ ip cos [k(x2 ­ x3 )] ­ 4ie ⎜×⎜ 
(eipx2   ­ e ipx3 )k2 cos [k(1 + x2 ­ x3 )] 

⎜+  2e e⎜⎩
­ ie2ip(x2 +x3 ) p{p cos [k(­1 + x2 + x3 )] ­ 2ik sin [k(­1 + x2 + x3 )]}),    if x2  < x3 , 

ip(1+x2 +x3 ) (eipx2 
ipx3 + )kp{sin [k(x2 ­ x3 )] ­ sin [k(1 + x2 ­ x3 )]} 

where NB  is the normalization for the bosonic wave function [37]. For the fermionic wave function, we obtain 
⎧ 

  1   

⎜ 
⎜ 2(⎜ 

ip(1+x2 +2x3 ) k2 

­4k2 p+p3 ) 

­ip(1+2x2 +2x3 ) sin [π (x2 ­ x3 )]
(
­i[4e 

ip(1+2x2 +x3 ) k2 

⎜ ⎜ 
c 

­ e2ip(x2 +x3 )
 (­4k2

 + p  ) + e ip(1+2x2 +2x3 ) (­4k2
 + p  )] 

os [k(x2  x3 )] + 2ieip(1+x  k[2i(eipx ­ 
 +x )   2       3 2 3 ­ eipx )]k cos [k(1 x2 + x3 )]

 
 ­  ⎜×⎜ ⎜ 

x
 

ip⎜­ (e 
i2  + e px

 
2ip(x )

 
  +x 3 )p{sin [k(x2 ­ x3 )] + sin [k(1 ­ x2 + x3 )]} ­ ie  2       3

 

J ⎨× 1 + eip )p p cos [k(­1 + x2 + x3 )] ­ 2ik sin 
r
k ­1 + x2+x3

 
1 n

,    if x2  > x3 , 
NF φ(p,x2 ,x3 ) =     1   ⎜ 2⎜ (­4k2 p+p3 ) 

­ip(1+2x2 +2x3 ) sin [π (x2 ­ x3 )]
(
­i[­4e ip(1+2x2 +x3 ) k2 (A6) 

⎜+ 4e ip(1+x2 +2x3 ) k2 ⎜ 
(1+x2 +x3 ) 

 
­ e2ip(x2 +x3 )

 (­4k2
 + p  ) + e ip(1+2x2 +2x3 ) (­4k2

 + p  )] 
⎜ ip cos [k(x2 ­ x3 )] ­ 4ie 

  2 ik  cos [k(1 + x2 + x3 )] + 2e 
p(1+x2 +x3 )

 
⎜×⎜ 
⎜×  (e e  

ipx2 

⎜⎜⎩× (­1 + eip )p
 

p cos [k(­1 + x2 + x3 )] ­ 2ik sin 
r
k  ­ 1 + x2 

 

ipx3 + )kp{sin [k(x2 ­ x3 )] ­ sin [k(1 + x2 ­ x3 )]} ­ ie2ip(x2 +x3 )
 

  x < x .+ 3 2 3 

1 n    
if x  

 
The normalization of the wave function for the fermionic system is given by 

 

NF   = .
2k6 ­ 2k2 π 2 ­ 4k4 π 2 + π 4 + 2k2 π 4 + 2k2 π 2 cos (2k) ­ π 4 cos (2k) + 4k5 sin (k) ­ 8k3 π 2 sin (k) + 4kπ 4 sin (k) 

16k2 (­k + π )2 (k + π )2
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[26] F. Serwane, G. Zü rn, T. Lompe, T. B. Ottenstein, A. N. Wenz, 
and S. Jochim, Science 332, 336 (2011). 
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