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Abstract 

The simulation of the damage process in quasi-fragile materials may be classified in two large groups, those based 
on Continuum Mechanics, i.e. the so-called Classical approach and the Statistical Models approach. In the former, 
plasticity theories are extended to study the damage process, leading to procedures that encounter serious difficulties 
when dealing with quasi fragile materials, in which scale effects, anisotropic damage and associative behavior 
among defects are likely to occur. In the present work a version of lattice method is used to simulate the behavior of 
cubic models submitted to uniaxial tension and compression load. Different levels of ductility were considered in 
the models using several setting of material properties in their definition. Over the cubic models thus implemented, 
two source of heterogeneities were considered: Introducing parameters that govern the uniaxial constitutive law of 
the bars as random fields and introducing imperfection in the coordinates of the lattice mesh. Results in terms on the 
global strain and stress, energy balance and final configuration are presented.  
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1 Introduction 

  According to Krajcinovic (1996), the methods proposed to predict the damage process in quasi-fragile materials 
may be classified in two large groups, those based on Continuum Mechanics, i.e. the so-called classical approach 
and the Statistical Models approach. In the former, Plasticity Theories are extended to study the damage process, 
leading to procedures that encounter serious difficulties when dealing with quasi fragile materials, in which scale 
effects, anisotropic damage and associative behavior among defects are likely to occur. 
 Examples of the Continuum Mechanics approach are the classical model due to Ottosen (1975) and the recent 
contribution of Crawford et al. (2012), who proposed a procedure implemented in the commercial finite element 
package LS-Dyna (Hallquist, 2007) to model damage in quasi-fragile materials. 
 On the other hand, in the second group (Statistical Models), the versatility of the finite element approach is lost, but 
in compensation problems without the hard hypotheses to consider that the the microfissuration have a uniform 
spatial distribution and that the stress field in the proximities of a microfissure independ of the position of their 
neighbors. Examples of the second approach are provided by Li and Liu (2002), who review resort to discrete 
models consisting of particles in a mesh free distribution. This method was incorporated to the 2012 version of the 
commercial Finite element program Abaqus (2012) confirming a perceptible tendency of the scientific community to 
resort to so-called statistical methods, as an appealing alternative to solve problems in which discontinuities appear 
during the damage process. Lattice Models, of which the formulation used in the present work, called as truss like 
Discrete Element Method (DEM) is a particular case, belong to this group. Basically, the solid is modeled by means 
of an array of uniaxial elements, which interconnect nodal masses with two or three degrees of freedom. The 
stiffness of these elements can be determined from the mechanical properties of the anisotropic solid to be 
represented by the DEM. Similar approach using other version of truss-like discrete element model could be 
consulted in Krajcinovic (1996) and Rinaldi (2011) among others papers. 
 Finally note that the so-called truss elements simply serve to visualize the direction of forces between two nodal 
masses, and are thus useful, principally for engineers, but do not exist physically (the truss elements are massless). 
Complete “failure” of an element simply implies that there is no force acting between the corresponding 
interconnected nodes and it does not mean that there is “fracture”, unless all truss elements that cross a measurable 
surface are broken. 
 The version of Lattice Models used in the present paper, referred herein as DEM, was proposed by Riera (1984) to 
determine the dynamic response of plates and shells under impact loading when failure occurs primarily by shear or 
tension, which is generally the case in concrete structures. The DEM has been successfully used to solve structural 
dynamics problems, such as shells subjected to impulsive loading ( Riera J.D., Iturrioz I 1998), the study of the scale 
effect in concrete, Rios and Riera 2004, and in rock dowels, Miguel et al 2008,. The computation of fracture 
parameters in static and dynamic problems Kostesky 2012, and recently in to simulate an Acoustical Emission in 
concrete body in Iturrioz et al (2013a.). 
 Notice that the introduction of heterogeneity nature in the model if we like simulate quasi-fragile material is crucial 
to obtain coherent results in the simulation of damage process.  
In the present paper we explore the different ways to introduce this heterogeneity in the model. Two sources to 
include the heterogeneities are showed, that are: Considering the parameters that govern the bilinear constitutive law 
of the element as a random fields with specific probability function and correlation length. And introducing 
imperfection in the coordinates of the mesh lattice. The introduction of these two source of heterogeneities have 
allowed that with the same set of parameters and the simple bilinear constitutive law for the bars, capture the 
behavior up to rupture models with tension and compression solicitation.  
 When this model is used to represent dominant tensile solicitation the results are mainly influenced with the random 
field that govern the bilinear constitutive law. 
If the model is submitted predominately in compression the results are mainly influenced with the level of 
imperfection, this characteristic is make use to facilitate the calibration of the model.   

2 The Discrete Element Method in Fracture Problems 

 The Discrete Element Method employed in the present paper is based on the representation of a solid by means of a 
cubic arrangement of elements able to carry only axial loads. The discrete elements representation of the orthotropic 
continuum was adopted to solve structural dynamics problems by means of explicit direct numerical integration of 
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the equations of motion, assuming the mass lumped at the nodes. Each node has three degrees of freedom, 
corresponding to the nodal displacements in the three orthogonal coordinate directions. In Fig. 1 a and b illustrate 
the basic bar arrange used in this approach. 

     

Figure 1:(a) basic DEM cubic module, (b) generation of a prismatic body,(c) Triangular constitutive law adopted for DEM uni-axial elements.  

The equations that relate the properties of the elements to the elastic constants of an isotropic medium are: 
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in which E and  denote Young’s modulus and Poisson’s ratio, respectively, while An and Ad represent the areas of 
normal and diagonal elements. The resulting equations of motion may be written in the well-known form: 
             ( ) ( ) 0rx x F t P t+ + − =M C  (2)
in which x  represents the vector of generalized nodal displacements, M the diagonal mass matrix, C the damping 
matrix, also assumed diagonal, ( )rF t  the vector of internal forces acting on the nodal masses and ( )P t  the vector 
of external forces. Obviously, if M and C are diagonal, Eq. (2) is not coupled. Then the explicit central finite 
differences scheme may be used to integrate Eq. (2) in the time domain. Since the nodal coordinates are updated at 
every time step, large displacements can be accounted for in a natural and efficient manner.  

2.1 Non-Linear Constitutive Model for Material Damage 

 The softening law for quasi-fragile materials proposed by Hilleborg (1971) was adopted to handle the behavior of 
quasi-fragile materials by means of the triangular elemental constitutive relationship (ECR) for the DEM bars 
presented in Fig. 2, which allows accounting for the irreversible effects of crack nucleation and propagation. The 
area under the force vs. strain curve (the area of the triangle OAB in Fig. 1.c) it is linked with the energy density 
necessary to fracture the influence area of the element. Thus, for a given point P on the force vs. strain curve, the 
area of the triangle OPC is linked with the reversible elastic energy density stored in the element, while the area of 
the triangle OAP is proportional to the energy density dissipated by damage. Once the damage energy density equals 
the fracture energy, the element fails and loses its load carrying capacity. On the other hand, in the case of 
compressive loads the material behavior is assumed linearly elastic. Thus, failure in compression is induced by 
indirect tension. The critical failure strain ( p) is defined as the largest strain attained by the element before the 
damage initiation (point A in Fig. 1.c). The relationship between p and the specific fracture energy Gf is given in 
terms of Linear Elastic Fracture Mechanics as: 
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in which Rf is the so-called failure factor, which may accounts for the presence of an intrinsic defect of size a. Rf
may be expressed in terms of a. In the expression (3), Y is a dimensionless parameter that depends on both the 
specimen and crack geometry. The element loses its load carrying capacity when the limit strain ( r =kr p ) is 
reached (Point B in Fig 1.c). Where kr is a coefficient that link both characteristic strain in the micro constitutive law 
shown in Fig 1.c.  
Could be useful here to define the fragility number s proposed by Carpinteri 1984 expressed as follows,  

s=(GfE)0.5/σp D0.5  or  s= Rf 
-1 D-0.5  if  σp=Eεp       (5)                  

 Where D is the characteristic size of the structure, σp the critical stress. This number have the property to 
characterize the ductility of the body. In the context of DEM if we have two examples with different sizes, that is, 
different D values and different material properties, (Gf , E and εp) but both cases have the same fragility number s,
the both global response will have the same shape. More exhaustive explanation of this version of the lattice model 
could be found in the references indicated in the introduction of the present paper. 
 The influence of the parameters that govern the different sources of heterogeneities are:  
a) The random distribution of constitutive law parameters of DEM: several works were done using this approach , 
see for example Miguel et al (2008) , where the random properties of the material defining the toughness Gf as a 
random field with a Type III (Weibull) extreme value distribution, given by Eq. (6), was used:

     ( ) ( )1 expf fF G G
γ

β= − − (6) 

in this expression  and  are the scale and shape parameters, respectively. In earlier applications of the DEM, taking 
the size of the elements L equal to the correlation length of the random field of the material property of interest, say 
Lc, allowed assuming that simulated values were uncorrelated, thus simplifying the computational scheme. A 
simpler technique was employed by Puglia et al. (2010) to simulate the 3D random field that describes the 
toughness Gf, which is then independent of the discretization adopted in the DEM . That is, in this approach the 
correlation length of the random field Lc it isn’t linked with the level of discretization L .  

b) Perturbation of the DEM mesh coordinates: In the present formulation of the Discrete Element Method, solids 
are represented by means of a cubic arrangement of elements able to carry only axial loads, interconnected at nodal 
masses with three degrees of freedom. The initial elastic stiffness of the interconnecting elements is determined, for 
the cubic and other arrangements, in terms of the local elastic properties of an orthotropic solid, which may thus be 
non-homogeneous, by means of available sets of equations. The introduction of small perturbations, generated by 
small initial displacements of nodal points, should result in also small changes in the stiffness of the elements, which 
will tend to zero as the initial nodal displacements vanish. Hence, it is herein assumed that the stiffness coefficients 
of the DEM model remain unaltered by small perturbations of the mesh. 

3 Analysis of Cubes Subjected to Uniaxial Load State 

 In the present section we present a set cubes of 0.15x0.15m submitted to uniaxial compression and tension test, we 
consider four kind of material that represent cubes with different fragility numbers (s=0.1, 0.2, 0.4 and 0.8). 
 In the Table 1 the four materials properties are shown. The heterogeneity is introduced considering that Gf , the 
parameter that rule the material toughness, is a random field with a Weibull density of probability with mean value 
(μGf), variation coefficient (CGf) and correlation length Lc, defined as input parameters. The other source of 
randomness introduced is the mesh imperfection with a statistical Normal distribution and mean value equal to zero. 
Its effect depend on the level of discretization. In the present case the parameters that characterized the random 
nature of the model, were arbitrated. Similar values were used in previous studied Iturrioz et al (2013b) to simulate 
concrete material. The input parameters used are shown in Table 1. Notice that consider CGf in the simulation it is 
greater than the coefficient of variation that correspond to equivalent solid. Because in each solid cube of size L we 
have 14 bars, simulation studied show that CGf is approximately twice and half greater than a variation coefficient of 
equivalent solid. With this parameters it is possible determine that for s= 0.1, 0.2, 0.4, 0.8; μ(εp)= 0.17x10-4, 0.35x10-

4, 0.7x10-4, 1.4 x10-4 and kr = 256, 640, 160, 40 . The model was discretized with 40x40x40 cubic modules. The 



503 Iturrioz Ignacio  /  Procedia Materials Science   3  ( 2014 )  499 – 504 

discretization time used was Δt=0.5x10-6sec, that is lower than Δtmin given by the expression Lmin/(E/ρ)0.5, where Lmin
is the minimum bar length in all the model. The excitation over the models was applied as prescribed constant 
velocity displacement applied in the up of the cubes, taking into account that the velocity of displacement prescribed 
not produces considerable inertial effect in the simulations. Detail of the boundary conditions applied are presented 
directly over the final configurations in Fig.3 b for the compression test and in Fig. 3 d in the tensile test.  

Table 1: Parameters adopted in the DEM cubes. 

μGf Cp E CGf ρ ν s=0.1 s=0.2 s=0.4 s=0.8 L Lc 

150N/m 2.0% 35Gpa 50% 2400K/m3 0.25 Rfc =0.26 Rfc =0.52 Rfc =1.04 Rfc =2.08 0.0037m L 

3.1 Results Discussion  

 In the Fig. 2a, the response in terms of global stress vs. strain for the uniaxial compression and tension test, are 
presented for four materials tested with fragility number s=0.1 to 0.8 with parameters shown in Table 1. 
Notice that the results were normalized respect the maximum stress (σ* =7.376MPa ) and the correspondent strain 
value (ε* =6.141x10-4) for tensile test over the material characterized by s=0.8 body test.  
Notice that, in the response of the cubes to the tensile test (Fig. 2.a), for s=0.4 and 0.8 the shape of the global 
response is characterized by a abrupt collapse. Nowadays it is possible in laboratory carry out tested with a active 
control of displacement to capture the instability branches of the response Li et al 1993, among others describing 
experimental techniques where these kind of control is carried out. In the simulation presented here, the velocity 
applied in the boundary remain constant in all the simulations. The simulation of test with control of stress with the 
aim to capture the instability branches in tension and compression test will be focus of future work. On the other 
hand in the case of s=0.1. 0.2 a stable behavior happened in all the damaged process.  
 In the results of compression test for the different s values the shape of the curves are similars, only change the max 
stress as shown in Fig 2.b, also notice, in the same Figs, that this curves have physical sense up to the slash limit 
line, after this point a sliding among the fissures happen in the real material and this damage mechanism it isn’t 
account for in our model. This limit happened in general a bit after the maximum stress was reached.  

             
Figure 2: Global response in terms of global stress vs global strain for different s values. (a) In the uniaxial tensile test, (b) In the uniaxial 
compression test. (σ* =7.376MPa), (ε* =6.141x10-4).  

In Fig. 3 b notice two views of the configuration for the case s=0.8 when the maximum strength is reach. It is 
possible appreciate that, in this case, the rupture begin in the lateral surface of the cube model. In Fig. 3.a we present 
a typical final configurations in concrete cubes with s similar to 0.8 where the same pattern of rupture appear. The 
pattern of rupture for other values of s in compression are similars. 
In Fig. 3c we present the final configuration of the DEM simulation for the uniaxial tensile test for the cases s=0.1, 
0.4,and 0.8. In the first case appear two macro fissures, and a high level of damage appears in the front of the main 
cracks. In the other cases (s=0.4 and 0.8), only one main fissure appear, and the final configuration not present 
apparently differences among them.  
The results shown that this simple approach let us simulate with the same set of parameters the behavior during all 
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the damage process for the tension test, and up to reach the maximum stress in the compression test.  

(a) 

           (b)                            (c) 
Figure 3: (a) A typical experimental configuration for quase-fragile material. (a)Typical final configurations for concrete cube specimens 
submitted at compression test. (b) Final configuration obtained with DEM for s=0.8. (c) The final configurations for simple tensile test. For the 
cases s=0.1,s=0.4,s=0.8. In red are shown the bars that exhausted its strength in dark gray the bars with damage, and in light gray the undamaged 
bars.  
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