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Abstrac t 

In the pastfew years, considerable research effort has been spent on data 
models, processing mo deis, and system architectures for supporting 
advanced applications Uke CADICAM, software engineering, image 
processing, and knowledge management. These so-called non-standard 
applications pose new requirements on database systems. Conventional 
database systems (i.e. database systems constructed to support business-
related applications) either cope with the new requirements only in an 
unsatisfactory way or do not cope with them at ali. Examples ofsuch new 
requirements are the need of more powerful data models which enable the 
definition as well as manipulation offairly structured data objects and the 
requirement of new processing models which better support long-time data 
manipulation as well as allow database system users to exchange non-
committed results. 

To better support new data and processing models, new database systems 
have been proposed and developed which realize object-oriented data models 
that in turn support the definition and operation of both complex object 
structures and object behavior. In design environments as the ones 
represented by CAD applications, these so-called non-standard database 
systems are usually distributed over server-workstations computer 
configwations. While actual object versions are kept in the so-called public 
database on server, designers create new objects as well as new object 
versions in their private databases which are maintained by the system at the 
workstations. Besides that, many new design database system prototypes 
realize a hierarchy of system buffers to accelerate data processing at the 
system s application levei. While the storage subsystem implements the 
traditional page/segment buffer to reduce the number of I/O-operations 
between main memory and diste, data objects are processed by application 
programs at the workstatíon at higher leveis ofabstraction and the objects are 
kept there by so-called object-oriented buffer managers in special main 
memory representations. 

The present dissertation reports on the investigation of database recovery 
requirements and database recovery performance in design environments. The 
term design environment is used here to characterize those data processing 
environments which support so-called design applications (e.g. CADICAM, 
software engineering). The dissertation begins by analyzing the conanon 
architectural characteristics of a set of new design database system 
prototypes. After proposing a reference architecture for those systems, we 
investigate the properties of a set ofwell known design processing models 
which can be found in the literature. Relying on both the reference 
architecture and the characteristics of design processing models, the 
dissertation presents a thorough study of recovery requirements in the design 
environment. Then, the possibility ofadapting existing recovery techniques to 
maintain system reliability in design database systems is investigated. Finally, 
the dissertation reports on a recovery performance evaluation involving 
several existing as well as new recovery mechanisms. The simulation model 
used in the performance analysis is described and the simulation results are 
presented. 
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Chapter 1 

Introduction 

1.1 Database Systems for Business-Related Applications 

Database system technology has basically emerged to support computer system 
applications which require data to be shared among different programs. The concept of 
sharing data was first introduced in the mid 1950's through the common-areas provided 
by Fortran to enable communication among different programs. In the past thirty years, 
new concepts have been proposed as well as new mechanisms have been designed and 
implemented to better support data sharing activities. 

The need of shared databases (DBs) has first been felt by the implementors of business-
related applications. This fact can in part explain why database technology evolved 
towards the development of database systems (DBSs) which are mainly concemed with 
the requirements of these types of applications. Since business-oriented database systems 
represem the majority of the existing DBSs, they are usually called conventional or 
standard database systems. These adjectives distinguish business-oriented DBSs from 
other database systems which have been designed to support other types of applications 
(e.g. design applications like CAD/CAM and software engineering). The latter are usually 
referred to as being non-standard (or non-conventional) DBSs. 

The basic idea underlying database systems is to provide a computer system with the 
capacity of both managing large amounts of persistent data in a reliable way and 
permitting these data to be shared among various users. During the last thirty years, 
researchers at both industry and university have developed concepts and implemented 
systems to support this idea. Today's DBSs rely on three basic abstractions: da ta 
i n d e p e n d e n c e , t r an sac t i ons , and location independence [BrMa88]. These 
abstractions form the conceptual basis for the implementation and management of large 
shared databases. 

Data independence represents the capacity of database systems for hiding database 
implementation details from the application developers. Data independence ideally 
guarantees that changes to the database (e.g. the introduction of new data types or the 
deletion of existing access paths) do not affect existing application programs. Similarly, 
modifications on existing applications as well as the addition of new applications to the 
system should not alter the functionality of the database. 

Database systems usually realize the data independence abstraction on the basis of a 
stepwise refinement of the database design, that is, on the basis of a stepwise process of 
capturing and representing the application's characteristics in the database. One can 
subdivide the database design process into three main steps: conceptual design, logical 



design, and physical design. Each database design step further refines the description of 
the application to the DBS made by means of earüer design steps until the details related to 
the physical implementation of the database (e.g. data structures and access paths) can be 
derived from the static (e.g. data types) and dynamic (e.g. transactions) properties of the 
application being designed. By both requiring that the development of the application 
programs rely on early design steps (i.e. those design steps which do not model the 
physical implementation of the database) and realizing the physical representation of the 
database on the basis of later design steps, the database system hides the details of the 
physical implementation of the database from the application. In this way, data 
independence is achieved. 

The conceptual design is the process of representing the main application properties on the 
basis of a conceptual data model (e.g. Entity-Relationship data model). The results of the 
conceptual design is a formal representation of the properties of the application. This 
representation is related to no particular database system, though. It can therefore be 
mapped onto the specific logical model supported by the target machine. 

The logical design translates the results of the conceptual design into a logical one based 
on a specific logical data model such as the relational, hierarchical, or network data 
model. Standard database systems support only one of these logical models. Logical data 
models represent a framework for the description of data entities and relationships among 
data. Besides of that, these models define sets of high-level data definitíon and data 
manipulation operations on the basis of which the application programs are developed. 
Logical data models are not concemed with the physical implementation of the database, 
that is, with the defínition and management of data structures and access paths for both 
storage and manipulation of data. 

Finally, the logical design is translated into the physical database design which describes 
the implementation details of the database on tiie target machine. Through the physical 
design, the database designer specifies the data structures where the database should be 
stored and the access paths through which the data are to be retrieved. 

The transaction paradigm assures the isolation of concunent work on the database as 
well as the recoverability of the database state in case of failures. In this way, the 
transaction concept constitutes the basis fòr the support of data sharing and system 
reliability in database systems. 

The transaction represents a logical unit of work that includes several properties 
[HaRe83]. It is supposed to be always correct. That is, transactions which update the 
database always bring it from one consistent state into another consistem state. The 
transaction is atomic in that either ali its statements are successfully processed or none of 
its effects on the database survives. Moreover, the transaction's work is isolated from 
the work of other transactions which execute in parallel to it. That is, every running 
transaction can perceive only the results of already committed (i.é. successfully 
terminated) transactions. Finally, the results of coimnitted transactions are guaranteed to 
survive system failures (i.e. they are persistent). 

The transaction property of isolation forms the basis for data sharing in database systems. 
Since transactions access only data which have been inserted or updated by committed 
transactions, and committed transactions are, by definitíon, always correct, ti-ansactíons 
access only consistent data even when they execute in parallel to other transactíons. 

Most standard database systems realize transaction isolation on the basis of the 
serializability theory [BeHG87]. The basic idea of this theory is to resolve data access 
conflicts among transactions which execute in parallel by producing serializable 
schedules. A schedule is serializable if and only if the results produced by the transactions 
participating in it are eqüivalem to the results which can be obtained by some serial 
execution of these transactions. Since every transaction is considered to produce a 
consistent database state when it runs alone in the system, a serial schedule of transactions 



always produces a consistent database state. Since each serializable schedule is eqüivalem 
to, at least, one serial schedule, serializable schedules always produce consistent database 
states, too. 

The data reliability property of database systems relies on the transaction's atomicity and 
persistency properties. The atomicity property guarantees that none of the transaction's 
temporary results survives in the database in case of transaction or system failures. The 
survival of results of committed transactíons in case of system failure is enforced by the 
persistency property. 

The third abstraction on which database systems rely, namely location independence, 
permits applications to access data in distributed systems without being concemed with 
the location of the data and data repositories being used. 

1.1.1 Some Important Properties of Business-Related Applications 

In 1969, the CODASYL Database Task Group (DBTG) published the specification of the 
first formal database model for business applications [CODA71]. It is a network data 
model designed to cope with the processing requirements of business applications. From 
the characteristícs of this model, one can identífy the main requirements posed by this 
kind of applications. Network as well as hierarchical data models are mainly designed for 
the iterative processing of lists of data. Their basic constructs are entities and relationships 
(i.e. 1:N by the hierarchical model and N:M by the network data model). These models 
support a record-at-a-time processing mode. Application programs navigate within entities 
from one entity instance to the other. By following relationships among entity instances, 
the programs Cím also access entity instances of oder entities. Entity instances (and some 
times relatíonship instances too) are represented as data records with attributes. 

Although the DBTG's data model has been published in the late 1960's, this group had 
already been working on it for ten years. During this time, many new database systems 
were developed which supported either a network or a hierarchical data model. At the end 
of the same decade, Ted Codd of IBM developed the basis of the relational data model 
which was to become a standard for the database systems of the 1980's [CoddVO]. 

The concept of a relation (i.e. a set of flat data records of the same type) together with set 
theory, and predicate calculus form the basis of Üie relational data model. In this model 
both entities and relationships are represented as relatíons. The relational model supports 
N:M relationships and presents a set-at-a-time processing mode. Nevertheless, most 
applications based on the relational model continue to ptocess data in a record-at-a-tíme 
basis, because their application programs are written in some procedural, general-purpose 
programming language (e.g. COBOL). In this case, the relational queries and update 
statements are embedded in these programs. This induces what François Bancilhon calls 
the impedance mismatch [Banc88]. Although the relational statements produce relations 
(i.e. sets of records) as a result, the application programs must process these relatíons in a 
tuple-at-a-time basis. 

The data processing activity of business-related applications is characterized by short-
duration transactions in batch systems and short-duration dialogue steps in on-line 
systems. Typically, transactions (or dialogue steps) execute in some seconds. While batch 
transactions may have to process large volumes of data, dialogue steps usually manipulate 
only a few data records. Anyhow, only a few short-duratíon operations are applied to 
each data record or tuple processed. Transactions as well as dialogue steps show high 
locality of data access, that is, most of them access practically the same parts of the 
database. 

The number of concurrent transactíons in business-oriented database systems can vary 
depending on the application being supported [Meye86]. While a throughput of less than 
one transactíon per second can be tolerated by many small dialog systems (i.e. DBSs 



connected to five or ten terminais), there exist some applications (e.g. flight reservation 
systems) which require a throughput of more than two hundred transactions per second. 

1.1.2 Some Architectural Characteristics of Standard Database Systems 

Standard database systems are realized as either centralized or distributed computer 
systems. Centralized database systems typically support either multi-user or single-user 
processing modes. Distributed systems mainly realize multiprocessing environments. 

In centralized systems, the whole database resides in one single processing node. In 
distributed systems, the database can be distributed over various nodes, though. 
Moreover, the whole database or parts of it can be replicated in distributed database 
systems. 

In the case of a centralized system, transactions execute at the only processing node. In 
distributed systems, a transaction at one node can spawn (sub)transactions at other nodes 
to access data residing there. In ali cases, though, (sub)transactions executing at one 
processing node directly access only the data residing on that node. Since transactions 
may have to process relatively large volumes of data for short periods of time, it is more 
efficient to start sub-transactions at the nodes where the desired data reside than transfer 
them to the processing node where the original transaction has been started. 

The architecture of database systems can be viewed as a hierarchy of hardware and 
software layers [LoSc88]. Each layer of the architecture accesses data in some pre-defined 
representatíon form at the next-lower layer's interface (the lowest layer direcdy accesses 
data from the stable storage device), realizes a higher data abstraction, and implements 
operatíons on it which will be called by the next-higher system layer. In this way, the 
system realizes relatively complex data models (i.e. specific data abstractions together 
with the operations on them) step-by-step on the basis of very simple data representation 
forms (e.g. bits on disk). 

DBS users (e.g. persons at computer terminais, application programs) cotnmunicate with 
the database system through one or more of its layer interfaces. Figure 1.1 shows a 
general architecture for standard database systems which implement the relational model 
as it is presented in [LoSc88]. Although each layer interface supports a different data 
abstraction (i.e. data model), standard database systems physically store data in main 
memory using only one data representation form, namely data pages or data segments. 
Higher data abstractions are realized on the basis of the data stored on pages every time 
operations which use them are executed by the respective layers (i.e. the layers which 
implement those data abstractions). Thus, although the architecture of standard database 
systems is layered, these systems do not really store different data representatíon forms in 
inain memory. Although most standard DBSs store database operatíon results in form of 
single data records or tuple sets in the application program's work space in main memory, 
this area cannot be considered part of the database system. Its contents can neither be 
protected by the DBS nor used by it in internai activities. 

The implementation of the database buffer (i.e. the main memory repository for the 
database) at only one layer of the system is usually done for effíciency reasons. The time 
to map one data representatíon form into another takes relatively long when compared to 
the time needed by the transaction to process the data whose representation form is being 
changed. 



1.2 Database Systems for Non-Standard Applications 

In the last few years, considerable research effort has been spent on making database 
systems suitable for supporting new, more challenging applications. These so-called non-
standard applications consist in a large set of non-business-oriented applications which 
pose new requirements on database system support [LockSS]. Some examples of non-
standaid applications are artificial intelligence (AI), office automation, and engineering 
applications, as computer aided design (CAD), computer aided manufacturing (CAM), 
and computer aided software engineering (CASE). The actual investigation of non-
standard database systems aims at extending database technology to better support these 
new applications. 

Although standard DBS technology represents a solution for the problem of managing 
large amounts of data in a shared and reliable way for non-standard applications, too, this 
technology cannot cope well with other requirements of those applications. On the one 
hand, applications such as CAD/CAM, office automation, CASE, or knowledge 
representation need more powerful data models which support the definitíon and 
manipulation of new types of data that are not supported by classical data models. 
Examples of such data types are geometric data which are used in engineering design and 
carto^aphy applications, imagery, voice, AI knowledge representation, text, and signals 
of various types. On the other hand, some non-standard applications require new database 
processing models that are not supported by standard database systems. For instance, 
design transactions take typically much longer than (conventional) business transactions 
(e.g. days or weeks). Moreover, they may need to process non-conunitted data, that is, 
data which have been either created or updated by transactions whose execution has not 
yet terminated. 

Set-Oriented Database interface 

Access Independent. Relational Data Model 

Record-Orlented Database Interface 

Record-Oriented Data Model 
(e.g. Network or Hierarchical Data Models) 

internai Record-Oriented interface 

Record/Tupie and Access Path Management 

System Buffer interface 

Page/Segment-Oriented Software Layer 
(system buffer manager) 

Data Files interface 

Stable-Storage Management 
(<yeratlng system's drivers) 

Storage Devíce interface 

Stabie-Storage Devices 

Fig. 1.1: A general architecture for standard database systems 

The data objects to be defined and manipulated by many non-standard applications (e.g. 
AI applications, design applications) present a more complex structure than those 
processed by business-related applications. Most of them are both hierarchically 
structured and composed of a number of (sub)objects which can, in tum, be composite 



objects, too. Moreover, in some applications it is possible to find two or more objects 
that, in tum, have one ore more common (sub)objects. As a consequence of that, the 
database for these applications can be represented by a directed acyclic graph (DÁG). 
Besides, to efficiently support the manipulation of highly simctured data objects, the DBS 
should be able to identify them uniquely and to provide database operations which can 
manipulate them as a whole (i.e. together with their subobjects). Furthermore, these 
operations should be tailored to the needs of the specific application being supported. 
While the hierarchical and the relational data models cannot represent the new types of 
data objects in a natural way, the network data model do not support efficient operations 
on them. Consequently, new data models have been proposed which try to better capture 
the specific properties of non-standard applications (e.g. [DAM86a], [LeRV87], 
[Mits87], [Pist86], [RoSt87]). 

Most of the new data models proposed are object-oriented. This type of data models is 
based on the object concept of object-oriented programming languages. Database systems 
which realize object-oriented data models are called object-oriented database systems 
(OODBSs). This type of DBS should integrate the properties of standard database 
systems (e.g. persistency, concurrency, recovery) with the concepts of object-oriented 
programming languages [OODS89]. For our discussion, the most important of these 
concepts are complex objects, object identity, encapsulation, types or classes, and 
inheritance. Depending on which object-oriented concepts the DBS realizes, OODBSs can 
be subdivided into three categories [Ditt89]. The DBS is said to be structurally object-
oriented if it implements only the structural features of objects-oriented programming 
languages (i.e. complex objects and object identity). On the other hand, the DBS is called 
behaviorally object-oriented if it implements object behavior on the basis of classical data 
models (which do not support structured objects). Concepts related to object behavior are, 
for instance, encapsulation, types or classes, and inheritance. Besides increasing data 
independence, both object encapsulation and types or classes enable the dynamic 
expansion of the data model through the deflnition of new data types and new operations. 
Database designers can accomodate the requirements of new applications to existing 
database systems by deflning data types and data operations which better capture the statíc 
and dynamic properties of those applications. The inheritance property of object-oriented 
systems enables the deflnition of hierarchies of data types (or classes) in the database 
where subtypes can inherit common attributes (i.e. characteristícs) and methods (i.e. 
operations) from their ancestor types. Database systems which implement structural as 
well as behavioral object concepts ate called fuU object-oriented. 

To better support new data and processing models, new DBS architectures have been 
proposed. Some researchers expanded already existing database systems to allow object-
oriented processing activities (e.g. [HaLo81]). Others expanded existing data models and 
implement them on the basis of fairly new system architectures (e.g. [StRo86]). A third 
group works on the basis of kemel database system architectures which shall provide 
basic database support (e.g. data management, concurrency control, recovery) and realize 
a simpler object-oriented data model (e.g. a structurally object-oriented data model). On 
top of this architecture, relying on the kemers interface, the system realizes an additional 
layer (i.e. the application-oriented DBS layer) which copes with the special needs of the 
application being supported (e.g. [DÍKM85], [HMMS87], [KeWa87], [Paul87]). 

Although the term non-standard applications can efficienüy distinguish the group of non-
business-related applications from the group of the business-related ones, this term can 
also lead to the erroneous conclusion that ali non-standard applications have similar 
dynamic and static properties. For instance, opposed to many design applications image 
processing applications do not require new data processing models. Although image 
processing activities may take longer than (conventional) business-oriented transactíons, 
they should not take days or weeks, as design transactions do. In the following, we 
concentrate on the discussion of engineering design applications. We mainly do that 
because most of the object-oriented data models proposed as well as most of the non-



standard DBS prototypes to be investigated in this work were designed to cope with this 
type of applications. 

1.2.1 Some Important Characteristics of Design Applications 

Design applications deal with the planning, development, and relization of technical 
systeins. Hence, these applications are usually related to engineering activities. Examples 
of design applications are the development of software systems, the design of mechanical 
parts, the planning of electronical circuits, etc. Because of the ever growing extension and 
complexity of design activities, computer systems have been developed to support such 
applications. Most of the existing computer aided design systems consist of file servers 
and software tools (e.g. graphic editors, mask compilers) which help the designer by 
projecting, realizing, and testing his design work. 

Conceming the distribution of tasks and personnel, the overall design enteiprise presents 
a hierarchical stnicture [BaKK85]. Normally, larger projects are subdivided into 
subprojects that can, in tum, be further partitioned until the individual design subtasks 
achieye the expected grade of complexity and independence from each other. The 
resulting design subtasks are then executed by groups of designers. In every group, each 
designer executes a part of the group's work. Reflecting the hierarchical partitioning of 
the overall design work, designers of different groups manipulate different design 
objects. In most cases, designers of different groups access common data only for read 
purposes [KeltSS]. The same occurs when a designer of one group needs to access 
private data of another group. 

Designers working on the same ^oup access the same data objects, though. Contrary to 
users in business-related applications that access data concurrently, designers belonging 
to the same group tend to cooperate during their data processing activities. That is, design 
transactions may have to see results of other, not yet committed design transactions to 
continue activities. As a consequence, design database systems should relax the 
transaction property of isolation. The relaxation of concurrency control rules should be 
done in a controlled way, though. Korth [KoKB87], for instance, proposes that 
concurrency control should be exercised on an object basis and not on a transaction basis. 
That is, a transaction should be allowed to release the locks it holds on an object even 
before it commits, as long as the transaction or the user executing it decides that the 
processed object is consistent enough to be seen by other transaction^users. 

Usually, designers telonging to the same group work in physical contiguity (e.g. in the 
saine room or building). Therefore, they can easily get in touch and discuss next steps of 
their common design work. Designers discuss the design work also in meetings and by 
means of electronic mail. The physical distribution of design groups and designers as well 
as the hierarchical structure of the overall design enterprise have influence on the 
confíguration of computer aided design systems and, consequently, on the architecture of 
database systems supporting the design environment. 

1.2.2 The Computer System Supporting the Design Environment 

Usually, the computer system supporting the design environment is organized as a server-
workstation computer network. Figure 1.2 ilustrates this kind of system architecture. The 
processing nodes are connected through a local area network (communications 
subsystem) which allows direct communication among them. 

Seryer processing nodes work as data managers and control the data and software tools 
which are global to the design enterprise. For some processing models, these data 
cónstitute the so-called public database. Server nodes may themselves be distributed 
computer systems but are treated as single entities by other processing nodes. 



Designers process objects at the workstations which are usually located at their offices. 
The workstations are based on relatively efficient CPUs (e.g. 32-bit microprocessors), 
are equipped with main memory of several megabytes and a monitor which, usually, can 
support graphic applications. For the (near) future, it is expected that most workstations 
will be equipped with private disk units. At the workstations, disks are used to store the 
designer's private data, that is, non-committed design data (e.g. non-released design 
object versions). For some processing models, these data constitute the so-called 
designer's private database. 

workstation1 workstatÍonn 

oommunications subsystem 

server node1 server nodem 

Fig. 1.2; Design environment's computer configuration 

1.2.3 Database Systems for the Design Environment 

As already mentioned, many computer-aided design systems have already been 
implemented and put on the market. Most of them are based on file servers, though, 
which do not offer ali the advantages of a database system, namely data independence, 
concurrency control, recovery, etc. Other systems have been reaíized on the basis of 
standard DBSs which support only conventional data models. Since these systems do not 
cope well with some design application requirements on data and processing modes, 
researchers are presently investigating new DBS technologies to better support the design 
environment 

No matter what type of DBS is going to be integrated into the design environment, this 
system will have to be a distributed one. The so-called public database system will be 
implemented at the server node(s). It will manage released data object versions and other 
Information conceming the overall design enterprise. At every workstation, a local DBS 
will manage the designers' work on their private data. Private databases will be managed 
by local DBSs at workstations owning disks. Through the communications subsystem, 
the various DBSs of the overall system will exchange data from one database into the 
other. 

New data models for design applications support the definition and manipulation of 
highly structured data objects (i.e. complex or molecular objects as they are defined in 
[HaLoSl] and [BaBu84]). Database systems supporting the design environment will use 
objects as the unit of data transfer for the communication between computer nodes. 

In contrast to database systems for business-related applications, DBSs for design 
applications will not always process data at the site where they are located. Since the 
designer at the workstation can process data objects for very long periods of time (i.e. 
days, weeks), it is more efficient for the DBS to transfer data from the server to the 
workstation instead of having to spawn sub-transactions at the server node to process 
objects there on behalf of the designer at the workstatíon. Local DBSs will copy data 
objects from the public database into the designer's private database at the workstation by 
executing so-called CHECKOUT operations [HaLoSl], To transfer objects from the 
private database back into the public database, the DBS will execute so-called CHECKIN 
operations. To distinguish CHECKIN operations which really update old object versions 



in the public database from those which only release locks in that database, a so-called 
UNCHECKOUT operation has been intioduced [DAM088a]. 

Through CHECKOUT operations as well as CHECKIN operations and UNCHECKOUT 
operations, the server DBS can control concurrent access to the public data object 
versions. Most of the design processing models proposed differ from each other in when 
exactly these operations may be issued (e.g. [HaLoSl], [LoP183]). 

A number of architectures for non-standard database systems have recently been proposed 
and can be found in the literature (e.g. [HaRe85], [DeppSó], [DÍG187], [HMMS87], 
[Paul87]). Most of these proposals rely on the architectures for standard database systems 
presented in [Senk73] and [HãRe83]. 

Figure 1.3 presents a somewhat modified version of the non-standard DBS architecture 
present^ in [Depp86]. The highest system layer (i.e. the application layer) realizes the 
application-oriented data model which can be thought of as a complex, object-oriented 
data model. This model is implemented on the basis of both objects and operations of the 
next-lower layer's interface. The complex object manager, in tum, realizes a more general 
and less complex object-oriented data model. This so-called internai object model usually 
constitutes the uppermost interface of the DBS kemel in design database systems (e.g. 
[HHMM88]). } y B 

Designer 
(end user) 

Application Program 

Applicalion Layer 

Query Proeessor 

Complex Object Manager 

Bdffar & Segment Manager 

Layer4 

Layer3 

Layer 2 

Layer1 

Opetating System of the Host Machine 

Fig. 1.3: A layered architecture for non-standard database systems 

The complex object manager maps complex objects onto sets of tuples or records at the 
interface of its next-lower layer, namely the record manager. This system module uses the 
page/segment-oriented interface realized by the buffer-and-segment manager to extract 
records from and insert records onto data pages. The buffer-and-segment manager maps 
pages and segments onto files at the operating system's file interface. 

The segment layer can also implement the concept of physical clusters (i.e. segments). A 
segment can te viewed as a set of independent data pages that can be referenced as a 
single entity (i.e. a data cluster). Physical clusters are used to accelerate the transfer of 
complex objects between main memoiy and stable storage. 

Desigti database systems can be either especially desi^ed to support a specific application 
(i.e. tailored design DBS) or developed as kemel design database systems. Since tailored 
DBSs need, respectively, to support only one application (or, at most, a group of similar 
applications), the requirements posed on these systems are then well known to the DBS 
designers. Hence, tailored system architectures can be optimized to guarantee system 
efficiency at run time. For instance, in principie tailored design DBSs need not realize the 
complex object maiiager as it has been explained above. Since only one application-
oriented data model is to be implemented, it could be directly constructed on the basis of 



the record manager. Another possible system design optimization could be achieved by 
letting the application layer directly determine which data should be kept together in the 
same segmenL 

Although tailored design DBSs can be more efficient than kemel design DBSs, they must 
be completely redesigned and reimplemented every time a new application must be 
supported. The concept of a design DBS kemel represents an altemative to tailored 
systems. Kemel design DBSs can be viewed as consistíng of two main parts: the kemel 
subsystem and the application subsystem. The kemel realizes a more general and less 
complex, object-oriented data model (through the complex object layer). On the basis of 
this data model, the application subsystem implements a data model which can better 
capture the specific semantics of the application being supported. If new applications are 
to be supported by the kemel design DBS, only the application subsystem must be 
changed. The kemel part of the system remains the same. Moreover, the same DBS 
kemel can support different application types at the same time. 

As a consequence of providing various externai interfaces (e.g. kemel interface, 
application-oriented interface), kemel design DBSs need to support efficient main 
memory access at different leveis of abstraction (e.g. page/segment levei, object levei). 
Many non-standard DBS projects have already identified this necessity of kemel systems 
and try to solve the problem by realizing what we call hierarchies of system buffers (e.g. 
[StRo84], [Rowe86], [DePS86], [KeWa87], [HHMM88]). As opposed to conventional 
database systems which usually realize only one buffer manager at the system's page 
levei, these new systems implement, at least, two buffer managers at different leveis of 
abstraction (e.g. page levei and application-oriented levei). System buffers at lower leveis 
help improving the performance of the kemel, while the buffers at higher abstraction 
leveis support the access pattems of the application. The concept of a hierarchy of buffers 
can be explained by means of Figure 1.4 which shows a somewhat modified version of 
the design DBS architecture presented in [HHMM88]. 

Figure 1.4 depicts the architecture of a kemel design DBS which is distributed over a 
server-workstation architecture. The kemel at the server node actually works as a data 
object server. It supplies data objects to the local data systems at the workstations and 
integrates updated data objects back into the public database. The kemel consists of two 
main layers: the object/tuple-supporting layer (L2) and the page/cluster-supporting (LI) 
layer. The local data systems at the workstations consist of two layers each: the 
application layer (AL) and the object-supporting layer (OSL). 

The page/segment buffer of the system is located in LI. For every CHECKOUT 
operation, L2 extracts the tuples belonging to the required object from database pages at 
LI 's interface. Instead of sending whole data pages to the workstation, L2 sends to OSL 
only the data which form the required object iTiese data are transferred to the workstation 
as sets of tuples. OSL keeps these sets of tuples together in a so-called object-oriented 
representation at the workstation. To manage the object data in main memory (and control 
the communication with the disk unit), OSL realizes a so-called object-oriented buffer 
manager. At OSL's interface, AL manipulates only data in the object-oriented 
representation. Since all the object data are kept together at the workstation, design tools 
can access them more efficiently. 

Eveiy time a designer at some workstation either checks in an updated object or inserts a 
new object into the public database on a server, L2 maps the object-oriented 
representation forra of this object onto a page-oriented representation which is first kept in 
the page/segment buffer controlled by LI, Later, this page/segment representation of the 
object is saved on stable storage at the server node. 
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Fig. 1.4: A possible architecture for kemel design database systems 

1.3 Main Objectives of the Research Work 

Relying on the characteristics of business-related applications and database systems 
presented in section 1.1 as well as on the description of design applications and design 
DBS environments presented in section 1.2, we can identify several important differences 
between business-oriented and design database systems: 
• While business-oriented data models provide means for the defmition of simple data 

objects (e.g. flat records or tuples) and support relatively simple database operations 
eitiier on single records or on tuple sets, the object-oriented data models proposed to 
support design applications directly support the definition of highly structured data 
objects which can be manipulated either as single entities or on a record-at-a-time 
basis. 

• While business-related applications are usually characterized by a high locality of 
access (i.e. different users access common data frequently), the database tends to be 
partitioned under groups of users in most design applications.Therefore, access 
conflicts are possibly much more frequent in business-oriented database systems than 
in non-standard ones (at least when we consider data processing activities at the server 
node). 

• While in business environments transactions (or dialogue steps) are of short duratíon 
and execute concurrently following strict isolation, transactions in non-standard 
environments can take very long and may have to see non-committed results of other 
running transactions (i.e. they may have to cooperate with each other). 

• In business-oriented systems, data are usually processed at the sites where they are 
stored. This is an efficient strategy for üiese systems, since in most cases the activity 
of transferring data to the user site could take longer than the time to execute the 
transaction. In design applications, though, transactions take much longer than data 
transfer activities. Therefore, it is cheaper for the system to transfer large amounts of 
data to the workstation at once than to spawn sub-transactions at the server node every 
time the public database must be accessed. This strategy creates so-called database 
hierarchies. That is, each processing node of the system owns and controls a database. 
Transactions running at one node process data in the node's own database. If the 
desired objects are located at another node (i.e. in another database), CHECKOUT 
operations are started which copy them into the local database. 
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• While business-oriented DBSs usually realize only one system buffer at a lower 
system levei (e.g. page-oriented levei) to better support locality of access, design 
database systems tend to implement hierarchies of buffers locating them at various 
system leveis. Buffers at higher system leveis are used to both reduce the number of 
operations necessary to map data representation through different system leveis as well 
as explore locality of access at higher leveis. 

The architectural characteristics of the design environment also induce modifications on 
already well understood DBS mechanisms such as the concurrency control subsystem or 
the buffer manager. The former will have to cope with transaction cooperation issues 
while the latter will have to control data in different representations in main memory. 
Buffer hierarchies as well as database hierarchies will certainly create new possibiHties for 
recovery in database systems. As a consequence, new recovery techniques may emerge 
which save and recover data at higher or even muMple leveis of abstraction. On the other 
hand, conventional recovery mechanisms will not be able to cope with processing 
environments where transaction cooperation is allowed. 

The cooperation between server and workstatíon in non-standard systems also represents 
a new research topic in database system technology. Depending on how the database 
system is distributed over the server-workstatíon architecture, data objects can be 
exchanged between processing nodes at various leveis of abstraction (e.g. at the page 
levei or at the object levei). Fuithermore, cooperation between server and workstatíon can 
be controlled on the basis of different distributed transaction mechanisms (e.g. distributed 
nested transactions). 

While a lot of research effort has been spent in the investigation of appropriate 
concurrency control techniques for non-standard database systems (especially for design 
DBSs) (e.g. [KLMP84], [KoKB87], BaRaSS], [DüKe88], [GaKi88]), only some 
investígatíon conceming the cooperation between server and workstation has been carried 
out unfil now (e.g. [DeObS?], [HHMM88]) and even fewer studies have been reported 
on recovery for non-standaid database systems (e.g. [KaWe84], [WeKa84]). 

During the research work which resulted in this dissertation, we analyzed database 
recovery in the design environment. On the basis of the static and dynamic properties of 
design applications as well as of the architecture of various OODBS prototypes, we 
investigated database recovery requirements, recovery correctness, and recovery 
performance in the design environment. In particular, the investigation of database 
recovery in the design environment is directed at the following goals: 
• Identification of the main database recovery requirements posed by the design 

environment. 
• Analysis of the suitability of standard database recovery techniques/mechanisms for 

d e s i ^ database systems. 
• Identification of possible design system properties which can either restrict or even 

forbid the use of standard database recovery techniques in the design environment 
• Identification of possible design system properties on the basis of which new recovery 

techniques/mechanisms can be developed. 
• The comparative performance study of those database recovery techniques which can 

be applied to the design environment. 

1.4 The Structure of the Dissertation 

The remainder ot this dissertation is organized as follows. In chapter 2, we discuss the 
software architecture of design database systems. We do that by first presenting the 
architecture of some design database system prototypes which are described in the 
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literature. Then, relying on the architecture of those systems, we derive a reference 
architecture for database systems in the design environment. In chapter 3, we investigate 
some well known design processing models which have been proposed in the literature. 
On the basis of these models, we identify the main characteristics of different transaction 
management strategies which have been proposed for the design environment. The 
reference DBS architecture to be derived in chapter 2 as well as the general design 
processing models to be derived in chapter 3 are used in the foUowing chapters as a basis 
for our investigation of database recovery in design database systems. 

In chapter 4, we analyze database recovery requirements in the design environment First, 
a failure model for design database systems is derived which distinguishes the failure 
modes that should be c o ^ with by the recoveiy component at the database system levei 
from those which should be treated by other subsystems of the design environment. 
Then, a set of recovery protocols which can guarantee database reliability is piesented and 
explained. At this point of the dissertation, we distinguish recovery activities in design 
DBSs which use transaction serializability as a correctness criterion for concurrency from 
those recovery activities in database systems which allow transactions to cooperate (i.e. 
exchange non-committed results). 

In chapter 5, we investigate the correctness and performance of various existing (and well 
known) recovery techniques in the scope of the design environment. Besides that, we 
comment on some newly proposed recovery algorithms which may improve database 
system performance in that environment. In chapter 6, we report on the performance 
analysis of a set of recovery algorithms in a design environment which is based on a 
server-workstation computer system. We simulated the behavior of some recovery 
techniques (selected from the ones in chapter 5) in a kemel design database system. The 
simulation model is based on the reference system architecture of chapter 2 and on the 
general design processing models of chapter 3. Chapter 7 concludes the dissertation. In 
this chapter, we sumtnarize the work presented in the prior chapters, compare it with the 
work of others, and discuss some open questions and plans for future work. 
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Chapter2 

A Reference Architecture for Design Database 
Systems 

In the present chapter, the architectures of various non-standard database system 
prototyj^s are investigated. Through the study of these architectures, we try to both better 
understand the static properties of design DBSs (i.e. their structure) and identify common 
architectural properties of these systems. Relying on the similarities presented by the 
prototypes studied, we propose a reference model for design DBS architectures at the end 
of this chapter. Finally, we discuss some of the main aspects involved in the distribution 
of design DBSs over server-workstation computer systems and propose a distributed 
architecture for the reference model. In the following chapters, we will rely on the 
reference model derived here to investígate recovery requirements posed on non-standard 
database systems by the design environment as well as to cany out a performance 
analysis of various recovery techniques applied to these systems. 

Verhofstad has been probably the first author to propose an architecture for database 
systems that realizes a buffer hierarchy [Verh79]. His database architecture is a layered 
one where the lowest layer is represented by the hardware systems and each upper layer 
represents an abstract machine that implements one ore more abstract data types on the 
basis of other, less complex abstractions which are, in tum, implemented by lower 
system layers. 

Each software layer of the database architecture consists of a data storage structure, a set 
of operations for creating, destroying, modifying, and examining the structure, and an 
algorithm to map the values of the data structure into values of the abstract type being 
implemented. On the basis of this system architecture, Verhofstad proposes a recovery 
mechanism for database systems that relies on the recoverability of specific data types. 
The recoverability of every type is supported by the respective layer which implements it 
and is to be considered part of the abstract type implementation. 

In the architecture proposed by Verhofstad, the storage structures supported by the 
different system layers form a storage hierarchy where each storage structure stores the 
same data (or parts of it) in a different representation (i.e. in a different levei of 
abstraction). Since all these storage structures are supposed to be kept in main memory, 
they constitute a buffer hierarchy. 

In [ReutSO], Reuter comments on Verhofstad's database system architecture. He argues 
that this architecture can be used in the study of database systems but not as a reference 
architecture for existing systems, since no database system at that time realized a buffer 
hierarchy. Reuter's argument is valid yet. Standard database systems usually realize only 
one system buffer (e.g. page-oriented buffer). When higher data abstractions (e.g. tuples) 
are materialized in main memory, they are kept in temporary storage spaces (e.g. 
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registers, program work spaces) which are not directly controlled by the DBS and, 
consequently, are not related to buffer management or recovery functíons. 

Although standard database systems seem to work efficiently without a buffer hierarchy, 
many non-standard DBS researchers have, at least, felt the necessity of such a 
mechanism. Since the data abstractions to be realized by higher system layers have 
become much more complex, many researchers feel that the system would become too 
inefficient if higher abstractions were to be frequently derived from lower data 
abstractions. 

Performance studies with non-standard DBS prototypes have, at least partly, confirmed 
this hypothesis. For instance, a test with the DAMOKLES database system [DAM86b] on 
top of a SUN 3/60 computer has revealed that some 15.000.000 machine instructions 
must be executed to CHECKOUT an object consistíng of 50 subobjects of 50 bytes each. 
This makes some 300.000 instructions per subobject. Using the same computer, it takes 
only 20 machine instmctions to both access and update a record residing in main memory 
whose address can be found in a hash table (which is also in main memory). 

The CHECKOUT operatíon is expensive, because it involves a number of complex 
suboperations. For instance, for each (sub)object O being checked out, the system must 
check if any other of its ancestors has been checked out before. If this is the case, the 
system should not allow two ancestor objects to be checked out in conflicting access 
modes. Likewise, the system must investigate ali subobjects of O in order to check if any 
of them has already been checked out on behalf of another one of its ancestors. Many of 
these suboperations are realized through transitive closures which consume veiy much 
CPU toe. Besides that, the object and the subobjects being checked out may have to be 
organized in a specific main memory representation in order to be processed at the 
workstation. CHECKIN operations which either insert new objects or bring updated ones 
back into the public database may become very expensive, too. They may have to map the 
main memory representation of complex objects onto database page, update access paths 
for updated (sub)objects, and release CHECKOUT locks which are kept in stable storage. 

In the following, we comment on various database system prototypes which realize buffer 
hierMchies. We compare their system architectures with the non-standard DBS 
architecture shown in Figure 1.3. The dynamical properties of the prototypes being 
presented (i.e. how they implement operatíons on the database) will be explained through 
an example of a design transactíon. 

2.1 Example of a (short) design transaction 

To present our transactíon example (T), we first need to describe the database on which it 
operates. lt consists of two overlapping (i.e. non-disjoint [BaBu84]) data objects of type 
ÜST. This data type is described below. 

LIST = List_Nr NodeList 

Lis tNr = integer 

Node_List = Node / Node NodeJList 

Node = N_Nr N Data N_Next 

N_Nr = integer 

NDate = date 

N_Next = integer 
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The object type LIST represents composed objects. Each list instance consists of an 
attribute which identifies it (List_Nr) and a set of (sub)objects of type Node. Moreover, 
the LIST type allows the existence of overlapping list instances (as well as of circular list 
instances). Figure 2.1 depicts the graphical representation of LI and L2 which are both 
objects of type LIST. LI and L2 have two common subobjects, namely the nodes NI 
and N2. 

N1 N4 N1 N4 

N6 N5 N6 N5 
LI ={N1,N2,N3,N4) 

L2 = (N2,N3,N5,N6} 

Fig. 2.1: Database state before the execution of T 

On the basis of the database described above, we can define the transaction T. We 
suppose the designer interactively works with a graphic editor (GE) at a workstation. On 
his behalf, GE reads a specific list from the database and displays it graphically on the 
screen. The designer browses over the list and, sometimes, executes update operations on 
it. At the end of T, GE must ensure that the updated version of the list is brought back 
into the database. 

Transaction T can be described as foUows: 
OI: Begin_Of_Transaction (BOT) 
02: Get (LI); Access_Mode (browse, update) 
03: Show_In_Detail (N2) 
04: N2.N_Data := 'new-value' 
05: Show_In_Detail (N3) 
06: Remove N3 from ali lists (i.e. delete N3 in the database) 
07: Insert N7 into L I between (N2,N4) 
08: End_Of_Transactíon (EOT) 

Figure 2.2 depicts the state of the database after the execution of T. 

2.2 The POSTGRES Database System 

POSTGRííS is a so-called extensible database management system. It is being developed 
at the University of Califórnia at Berkeley. Its data model is an extension of the relational 
model which can be used to realize some constructs of semantic data models [RoSt87]. 
POSTGRES supports the defínition and operation of abstract data types, the use of user-
defined procedures as tuple attributes, and attribute inheritance among object types. With 
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these extensions to the relational model, it is also possible to represent non-disjoint as 
well as recursive data objects in the database. POSTGRES also supports temporal queries 
against the database. For this purpose, the system realizes a tuple version mechanism 
which enables various versions of a same tuple to coexist in the database. 

L1 ={N1,N2,N4,N71 
L2 = {N2,N5,N6} 

Fig. 2.2: Database state after the execution of T 

The system-defined attribute type POSTQUEL can be applied to relational tuples and 
represents, at the same time, user-defined procedures (which are written either in 
POSTQUEL [HeSW75] or some procedural programming language) as well as the results 
of their execution. Moreover, the POSTGRES user can define new database operations 
(i.e. methods) which are implemented by the system as user-defined procedures. 
POSTGRES stores the compiled code of POSTQUEL attributes and user-defined 
methods in the database. In addition, the system realizes a mechanism which controls 
changes in the definition and in the results of POSTQUEL attributes and methods. 

Figure 2.3 illustrates the software architecture of POSTGRES. It consists of two main 
components: the POSTMASTER and the POSTGRES server [StRo86], [Rowe86]. 
POSTMASTER manages the database in stable storage, implements the page-oriented 
system buffer, and realizes transaction management activities. This layer corresponds to 
the buffer-and-segment manager module of the general system architecture shown in 
Figure 1.3. One POSTMASTER component will be installed at every computer node of a 
POSTGRES database system. 

POSTQUEL Interface 

e 1 
communication between user program and| 
POSTMASTER; realízation of the ob|< 
cache 

andl 

internai tupta-oriented interface 

transaction management; tuple version 
management; alert/trigger mechanism; 
stable storage management 

POSTGRES-
server (one per 
user program) 

POSTMASTER 
(one per computer 
node) 

Fig. 2.3: The software architecture of POSTGRES 
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Many of the functíons realized by POSTMASTER (e.g. lock management, event/trigger 
mechanism) will be executed by so-called demon processes. These are system processes 
which run in parallel to user processes. Demon processes can be suspended and restarted 
later on, depending on the actual system load. 

POSTGRES realizes a three-layer storage hierarchy. Old tuple versions are kept on optical 
disks while current data are stored on magnetic disks. The third layer of the storage 
hierarchy is represented by the main memory of the system, parts of which should also be 
stable. 

The POSTGRES server (which is also called run-time system) forms the higher layer of 
the POSTGRES two-layer architecture and uses the POSTMASTER as a backend. This 
layer corresponds to the four upper layers of the general architecture of Figure 1.3. There 
exists one POSTGRES server associated with every active user program in the system. 
The servers are realized as independem processes which control the execution of database 
operations on behalf of user programs. Although each server supports the execution of 
only one user program, it can process various database operadons in parallel [StRo86]. 

Each running POSTGRES server maintains a so-called object cache [Rowe86]. The 
object cache is an object-oriented buffer which relies on the portal concept [StRo84]. In 
the cache, the server stores temporary transaction results (as sets of tuples) as well as 
frequently accessed results of POSTQUEL attributes and user-defined methods (as sets of 
tuples or multirelations). The object cache has not been completely realized in the actual 
PÒSTGRES implementation. Update operations are not directly executed in the cache. 
Tuples are first updated on pages (at the page-oriented buffer) and then brought into the 
cache again. 

Conceming the classification of recovery strategies in [HaRe83], the recovery mechanism 
of POSTGRES can be deilned as (non-atomic, steal, force, toe). Transaction results are 
forced to the database on disk at transaction commit. 

Since the system maintains demon processes which are continually removing tuple 
versions created by transactions which have been backed out, almost no recovery activity 
is necessary to either abort transactions or restore the database state after system crashes. 
Moreover, POSTGRES will support recovery from media failure on the basis of mirrored 
disks. 

One of the possible ways of modeling our database example in POSTGRES is presented 
below. The description of each list node defined in the database is kept in tiie Nodes 
relation. Each node-next-node relationship is kept as a tuple in the Next_Node relation. 
Each existing List is described by a single tuple in üie Lists relation. Tuples of tíiis 
relation consist of two attributes. One attribute of type char (i.e. string of characters) and 
another one of type POSTQUEL. The latter represents a user-defined procedure and its 
current result at the same time. The list_procedure retums either a list of nodes or the 
empty set. 

Create Nodes (N_Nr=char[2], N_Data=char[]) 
Key (N_Nr) 

Create Next_Node (L_Nr=char[2], N_Nr=char[2], N_Next=char[2]) 
Key (L_Nr> N_Nr) 

Create Lists (L_Nr=char[2], List=list_procedure) 
Key (L_Nr) 
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Define type list_procedure is 
Retrieve (Chain = n.N_Nr, n.N_Data, x.N_Next) 

from n in Nodes, x in Next_Node 
where x.L_Nr = $.L_Nr and x.N_Nr = n.N_Nr. 
(note: $ identifies the current list in Lists) 

The POSTQUEL attribute List of the Lists relation represents for each list tuple the set of 
nodes that compose it. POSTGRES keeps the compiled code of list_procedure in the 
database. Moreover, by means of demon processes the system executes the procedure for 
each tuple in Lists and stores the resulting tuple sets as materialized views in the database. 
When a user program accesses the relation Lists, the POSTGRES server associated to it 
pre-fetches the List subrelations and stores them in the object cache. 

By executing the operation 0 2 of T, the server brings the list L I into the object cache. 
Since the operations 0 3 and 0 5 only read data, they can be directly executed in the object 
cache. The operations 04, 06, and 07, on the other hand, must be processed in the page 
buffer. Their results are then brought into the cache. 

The operation 0 6 (i.e. the deletíon of node N3 in the database) causes the attribute List in 
ali tuples of the Lists relation to be marked invalid. On the basis of a deferred-update 
mechanism, these attributes will be once again calculated either the next time they are 
accessed or at a moment when the system becomes idle. By the end of T, ali data it 
updates must have been copied to stable storage. 

2.3 The Darmstadt Data Base System (DASDBS) 

The DASDBS is a non-standard database system prototype formerly being designed and 
implemented at Darmstadt University. It actually represents a family of database systems 
where a database systern kemel supports various, application-specific system modules. 

The DASDBS's kemel provides an extended relational data model at its interface, namely 
the NF2 data model (where NF2 stands for Non-First fo rma l Form) [ScWe86]. This 
model supports the defínition of relation-valued tuple attributes. Thus, subobjects can be 
expressed as subrelations in the database. For the manipulation of the resulting hierarchies 
.of relations, the model provides a set of recursive relational operations (i.e. the NF2 
relational algebra). The NE;2 data model supports only disjoint complex objects, that is, 
objects which have no common (sub)objects. 

DASDBS has a three-layer software architecture as it is shown in Figure 2.4. The two 
lower system layers (i.e. SMM and CRM) build the kemel of DASDBS The uppermost 
layer (i.e. AOM) supports application-specific data models. Compared with the layers of 
the general architecture in Figure 1.3, SMM corresponds to the buffer-and-segment layer 
while CRM imegrates the functions of the record manager, complex object manager, and 
query proeessor. Finally, AOM realizes the application layer. 

The stable memory manager (SMM) controls the data organization on disk and realizes the 
data transfer between this device and the system on the basis of the block concept 
[DePS86]. That is, sets of pages which are stored at neighboring addresses on disk can 
be transferred to/from disk in only one I/O-operation. The block concept is also known as 
"chained-VO" SMM manages a page/segment-oriented system buffer and supports a set-
oriented page interface. 

Relying on SMM's interface, the complex record manager (CRM) realizes the NF2 data 
model. NF2 tuples are actually represented in the database as sets of flat tuples together 
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with CRM information about their logical connections. Since NF2 objects are always 
disjoint, complex objects can be represented as object trees in the database. CRM takes 
advantage of the relative simplicity of the data model and stores object trees as a whole on 
adjacent database pages. These pages form the so-called object clusters which then can be 
read from disk or written to it in only a few I/O-operations. In this way, the time to 
read/write complete objects is reduced in the system. 

Appiication-spedfíc Objoct Manager: Each 
exemplar of this layer realizes a data model 
which copes with the specific requirements 
of some application. 

Complex Record Manager: system's record-
oríented layer. Realizes the NF2 data model 
and Implements the system's object buffer 

Stable Memory Manager: system'8 page-
oriented layer. Controls the database on 
disk and realizes the page/segment buffer 

appilcation-orlented DBS Interface 

setorienlod 

set-orlented NF2-lnterface 

interface 

AOM 

CRM 

SMM 

Fig. 2.4; The software architecture of DASDBS 

CRM realizes a set-oriented NF2 interface, that is, higher system layers can define and 
manipulate sets of NF2 tuples at CRM's interface. To reduce the impedance mismatch 
between the CRM and AOM programming environments, DASDBS realizes an object 
buffer as part of CRM's interface [Paul87]. The object buffer can store NF2 tuple sets 
which then can be accessed in a tuple-at-a-time manner by the application-specific system 
modules. There exists one object buffer for each user transaction in the system, that is, 
these data repositories are not shared among transactions. Besides retrieve and browsing 
operations, CRM also implements some update operations which directly manipulate data 
in the object buffer. One of the main goals of DASDBS is to implement the whole set of 
CRM operations on the basis of the object buffer. 

By a possible distribution of DASDBS over a server-workstation architecture, the object 
buffer could support the communication between the public database system at the server 
node(s) and the local database systems at the workstations [DePSSó]. 

The application-specific object manager (AOM) realizes the application's view of the data 
and supports user transactions. AOM layers rely on the DASDBS kemel interface (i.e. 
CRM's interface) to realize application-specific data models (e.g. office-filing model 
[PSSW87]). These models should capture the specific semantics of the applications they 
support. Application-oriented data types and operations are reaíized by AOM in the form 
of abstract data types on the basis of NF2 relations. AOM also implements application-
oriented access paths which are not reaíized by lower system layers. On the basis of 
AOM, DASDBS can support behavioral object orientation. 

DASDBS implements a muM-level transaction management strategy [Wei87a]. Multí-level 
transactions represent a special case of nested transactions [MossSl] and rely on the open-
transaction concept which is described in [Trai83] and was implemented in System R 
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[GraySl]. In a multi-level transaction environment, each levei of the nested transaction 
hierarchy is associated with a specific system layer. Therefore, each of these system 
layers realizes a transaction manager which controls the execution of the (sub)transactions 
that are associated with the layer. 

In DASDBS, user transactions are controlled by AOM. These transactions (which will be 
called AOM-transactions from now on) are composed by one ore more operations of the 
AOM interface. AOM operations are implemented by AOM on the basis of CRM 
operatíons. The CRM transaction manager considers each set of its operations that 
implements a specific AOM operatíon to constítute a CRM transaction. Each CRM 
operatíon is, in tum, partly realized by a set of SMM operations. The SMM transactíon 
manager considers sets of SMM operatíons that support CRM operations to be SMM 
transactíons. 

Multí-level transactíon management can improve transactíon parallelism by avoiding so-
called pseudo conflicts. These are access conflicts which can happen in lower system 
layers, although they do not exist in (and could be avoided by) higher layers. A typical 
example of pseudo conflict is the one of two concurrem transactíons (e.g. transactions ta 
and tb) which update different data records that are stored on the same data page. If 
transaction management is realized only at the page levei and ta accesses the page before 
tb, the latter will have to be blocked (or even backed out) during the whole executíon of 
the former (supposing strict two-phase locking). In a multí-level transactíon environment 
(at the record levei and page levei, for instance), tb will be blocked only for the time ta is 
either reading a value ftom or writing a value to the page, because the transaction manager 
at the system's record levei knows that the two transactions are actually processing 
different data objects. 

To cope with multí-level concurrency control, the recovery mechanism of DASDBS must 
also be distributed over different system layers [Wei87b]. SMM saves page updates at the 
commit phase of every SMM-transaction. In this way, this layer guarantees both partial 
and global redo recovery in case of system crash or media failure (see [HãRe83] for 
explanatíons on this terminology). Partial and global undo recovery are supported by the 
recovery managers of higher system layers (i.e. CRM and AOM) which save undo 
Information about their respective transactions. 

When defining our database example in DASDBS, we must have in mind that overlapping 
data objects (e.g. L I and L2) are not supported by this system. One possible way to 
define the list objects using the NF2 data model is presented below. Tuples in Lists 
represent existing objects of type List. For each tuple in Lists, L_Nodes contains ali node-
next-node relatíonships related to the respective list object. Tuples in Nodes describe ali 
existing objects of type Node. For each tuple in Nodes, N_Owners contains ali node-Iist 
relatíonships related to the respective node object 

Crate Lists ( L_Nr=char[2], 
L_Nodes=(Nl_Nr=char[2], N2_Nr=char[2]) 

) 
Create Nodes ( N_Nr=char[2], N_Data=chaTt], 

N_Owners=(NL_Nr=char[2]) 
) 

(note: both L_Nodes and N_Owners are relation-valued tuple attributes and 
represent subobjects of Lists tuples and Nodes tuples, respectively) 

Since the kemel of DASDBS does not realize logical access paths, the relation Nodes will 
be used by AOM as an index. On the basis of this relation, AOM can also control the data 
redundancy introduced in the system. Each tuple in Nodes describes a 1:N relationship 
between a list node and ali the lists to which it belongs. 
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To read the ring list L I into the private object buffer OB, AOM executes 0 2 (which is 
expressed in a SQL-like query language) at CRM's interface: 

02: Select into the Object_Buffer OB Lists.all 
where Lists.L_Nr = X I ' 

The complex record manager, in tum, starts a CRM-transaction which executes the AOM 
operation. It identifies in which cluster the list L I is stored and reads it via the SMM 
interface. The stable memory manager starts an SMM-transaction which identifies the 
cluster address on disk and reads it into the page/segment buffer in one I/O-operation. The 
CRM-transaction, then, reads L I data into OB. 

By analysing the L_Nodes subrelation of L I in OB, AOM can decide which tuples of the 
Nodes relation should be read from disk. After doing that, AOM starts another operation 
to read the required Nodes tuples. To execute this operation, CRM starts a new internai 
transaction which reads one ore more page clusters via SMM. These read operations, in 
tum, cause SMM to start new SMM-transactions. 

The browsing operations 0 3 and 0 5 as well as the simple update operation 0 4 and the 
insertion of node N7 (by 07) can be directly executed in OB. Although 0 6 can be partly 
executed in OB, this operation must be complemented as OB's updates are mapped onto 
database pages at T commit, since 0 6 also implies the change of other data which are not 
stored in OB (e.g. the list L2). At commit time (08), CRM must transfer all data which 
have been updated in OB to SMM. This procedure, in tum, involves the execution of 
new SMM-transactions. 

2.4 The R2D2 Interface of the AIM System 

The Relational Robotics Database System with Extensible Datatypes (R2D2) has been 
developed at the University of Karlsruhe in cooperation with the IBM Heidelberg 
Scientific Center. This system realizes an abstract data type (ADT) facility on the basis of 
the NF2 data model. R2d2 supports the execution of ADT operations which are called 
from inside of Pascal programs [KeWa87]. To accelerate data processing activities at the 
application levei, R2D2 transforms the NF2 representation of database objects into some 
eqüivalem Pascal representation of them. Therefore, application programs can directly 
process dabase objects in the user address space. 

The R2D2 system is being built on top of the AIM-P database system prototype 
[KuDG87] to be used as a specialized object-oriented database system supporting 
engineering applications. The Advanced Information Management Prototype (AIM-P) has 
been developed at the IBM Heidelberg Scientific Center. It is a non-standard DBS which 
realizes the NF2 data model. This system presents a layered system architecture and was 
designed to support server-workstation environments. 

The software architecture of R2D2 is shown in Figure 2.5. Its two lower layers represent 
the AIM-P system. AIM-P's architecture resembles the DASDBS kemel system. Its lower 
software layer manages the database on disk and realizes the page-oriented buffer. The 
next higher layer incorporates a set of system modules which together realize the NF2 
interface. 

In [KÜDG87], an object buffer for AIM-P's higher software layer is described. An object 
buffer instance at the server node stores NF2 data objects during their constmction as well 
as during their reintegration into the database after user processing activities. The user at 
the workstation processes objects in another object buffer instance which is realized at that 
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processing node. The object buffer concept has not been realized in the actual AIM-P 
version, though. 

AIM-P realizes transaction management at the tuple levei which is represented in Figure 
2.5 as part of the NF2 system layer. This layer supports a tuple-oriented locking 
mechanism and a recovery mechanism that relies on the multi differential-file concept 
described in [SeLo76] and [HaKKSl]. A complete description of this mechanism can be 
found in [KHED89]. 

The third and highest layer realizes the user interface of the system. Currently, AIM-P 
supports two distinct user interfaces: the application programming interface (API) and the 
R2D2 interface. API implements an embedded NF2 interface. It embeds both DDL and 
DML statements of the NF2-oriented database language HDBL into the programming 
language Pascal [ErWa86], [ErWa87]. The R2D2 interface realizes an extended HDBL 
which supports the defínition and operation of ADTs 

R2D2 intôrface 

IRealizes an ADT fadllty on the basis of the 
NF2 data model. Supports NF2 and ADT 
operations Imbedded in Pascal programs. 

set<rlented NF2-lnterface 

AIM-P's higher system layer: Realizes the 
following system modules: query proeessor, 
complex object manager, artd record 
manager. Imfiemenis the system's recovery 
mechanism at the server node. 

page-orlented interface 

Controls the database on disk and realizes 
the page/segment buffer 

R2D2 

system layer 

AIM-P's higher 
system iayer 

AIM-P's lower 
system layer 

Fig. 2.5: The software architecture of r2d2 

The whole system realizes a so-called database hierarchy. While the AIM-P modules 
realize a kemel DBS which controls the public database at the server computing node, the 
R2D2 layer itianages the local database at the workstation. There exists one local database 
for every active application program in the system. Figure 2.6 which has been taken form 
[KeWa88] depicts R2D2'S database hierarchy. 

Besides controlling the data transfer between databases as well as the data processing 
activities at the workstation, R2D2 also realizes a locking scheme for CHECKOUT and 
CHECKIN operations and implements a recovery mechanism for nested transactions 
running at that processing node [DüKe88], [Ries89]. 

Engineering transactions execute in R2D2 according to the following processing scheme. 
NF2 data objects are checked out of the public database on the server through the 
execution of ADT operations. AIM-P builds the NF2 representation of the objects being 
checked out and stores them in a fíle (i.e. the result table) on disk, after they have been 
locked in the public database. When the whole set of NF2 objects being checked out have 
already been written to the result table, this file is transferred to the workstation. At the 
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workstation, the resuh table is stored on disk and represents a part of the user's private 
database (i.e. the local database). The second part of the private database is represented by 
the object cache. The cache is an object-oriented system buffer located in the address 
space of the application programm in main memory. Through the execution of fetch and 
pre-fetch operations which are started by the application program, R2D2 reads NF2 
objects in the local database, translates them into Pascal data structures, and brings them 
into the object cache. The application program, then, can process the resultíng Pascal data 
structures in the cache. 

Database objects in Pascal representation are mapped back to their NF2 representation in 
the local database either if this operation is explidtly invoked by the application program 
or when the object cache becomes full (release operation). Depending on the lock mode 
being applied to the CHECKOUT operation, updated NF2 objects can be propagated to 
the public database on the server either during transaction execution or at transaction 
commit [DüKe88]. As with CHECKOUT operations, the system uses the result table to 
transfer updated data objects from the local DB at the workstation into the public DB at the 
server during CHECKIN. 

Our database example can be defined as an abstract data type at the R2D2 interface. The 
contirol of data redundancy cannot be integrated into the definition of the ADT, though, 
since the ADT facility relies upon the NF2 data model. By defining an ADT, the user must 
specify both its data structure and the operations it must support. The user must declare 
the NF2 and the Pascal representations of each ADT. ADT operations may invoke 
operations on other ADTs. A possible altemative of modeling the database example in 
R2D2 is presented below. 

Create ADT Lists 
{ 

Structure is ( 
L_Nr=char[2], 
L_Nodes=(L_NNr=char[2], L_NNext=char[2]) 

) 
Operations are: insert_nodeJn_list (L_Nr, L_NNr, prior, next);...; 

) 

Create ADT Nodes 
{ 

Structure is ( 
N_Nr=char[2], N_Data=char[], 
N_0wners=(N_LNr=char[2]) 

) 
Operations are: insert_owner_in_node (N_Nr, N_LNr);...; 

) 

Operation 0 2 of T is equivalent to a CHECKOUT in R2D2. By the execution of 02, the 
NF2 representation of the list object L I is first built in the server's main memory and 
stored in the result table. After that, the result table is transferred to the workstatíon where 
it is integrated into the local database. If 0 2 is started by the application program and the 
pre-fetch option is set, R2D2 immediately transforms the NF2 representation of L I into its 
Pascal representation and stores it in the application program's private object cache. After 
the completion of 02, ali other operations of T but 0 6 can be executed by the application 
program directly in the cache. Since 0 6 modifies data objects which are neither in the 
object cache nor in the local database (e.g. L2), this operation must also be executed in 
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the public database. From what has been pubiished in the literature, it became not ciear 
whether 0 6 will be executed on the server node even before T terminates or only at T 
commit. 

main memory 

prfvate 

CHECK-OUT CHECK-IN 

public database gtobai PB 

locai PB 

Fig. 2.6: R2D2 'S database hierarchy 

At the end of T at the latest, the system maps the updates back onto the NF2 format, 
stores them in the result table and sends this file to the server node. There, AIM-P 
propagates the results to the database by storing updated NF2 tuples onto pages of the 
public database. 

2.5 The PRIMA Database System Prototype 

The PRIMA project was developed at the University of Kaiserslautem. Its main objective 
is the construction of a DBS prototype to support engineering applications [HMMS87]. 
PRIMA is being realized as a kemel database system supporting the Molecule Atome Data 
Model (MAD) [Mits87]. On the basis of this general purpose object-oriented data tiHxiel, 
application-oriented system layers should be realized to support applicatíon-specific 
requirements. 

MAD supports structural object orientation. It provides means for the definition as well as 
the manipulation of data objects as structured sets of elementary building blocks 
[HüMi88]. The model supports the dynamic defmition of object types as well as the 
derivation of new tj^es from the composition of existing ones. MAD permits the creation 
of non-disjoint object instances and supports N:M object relatíonships. The model 
provides a descriptive SQL-like query language (MQL) which provides set-oriented object 
processing facilities. 

Figure 2.7 illustrates PRIMA's software architecture. It consists of the kemel database 
system and the application-specific layer which realizes the application model interface. 
Conceptually, the kemel system implements three leveis of abstraction which are built on 
top of each other forming a hierarchical architecture. The software layers that implement 
such leveis of abstraction, namely the data, access, and storage systems, map MAD 
objects onto data blocks kept on externai storage. 
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Compared to the system layers of the general architecture presented in Figure 1.3, the data 
system combines the features of both the query processar and the complex object manager 
while the access system is equivalent to the record manager, and the storage system 
realizes the functions of the buffer-and-segment manager. 

application 
iayer 

data 
system 

system 

Translates MQL queries into molacule-at-a-
tíme processing pians, optimize them, and 
executes them at the atem interface. 

ReaJizes a record-oriented data 
model, Controls referentíal integri-
ty in the • • • », and provídes 
tuning mechanisms to improve 
system efficiency. 

Controls the 
the page/segment buffer. Supports different 
page sizes. page sequences, page sets, and 
page contest function. 

on disk and realizes 

Realizes the appiication data model on the 
basis of an ADT fadiity. Implements both the 
object buffer and cursor hierarchies. 

appiication-spedfic data model 

interface 

LDL 

set-oriented moiecule interface (MAD) 

s ^ - o n ^ t e d page interface 

set-oriented atom interface 

storage 
system 

Fig. 2.7: PRIMA's software architecture 

The lowest layer, namely the storage system, realizes a set-oriented page interface and 
implements the system s page/segment-oriented buffer. This layer supports five different 
page sizes: 0.5, 1, 2, 4, or 8 Kbytes. 

The storage system interface offers its users (e.g. the access system) three different page 
set concepts [HMMS87]. The page sequence concept resembles the page cluster 
concept. It treats an arbitrary number of pages as a whole. Page sequences are supported 
by a cluster mechanism of the underlying file system. It guarantees that pages belonging 
to the same page sequence are stored at neighboring addresses on disk and are transferred 
to and from disk in a few VO-operations (i.e. chained-VO). 

The second concept implemented by the storage system is the one of a page set. It may 
be used by higher system layers to FIX/UNFIX a number of pages (or page sequences) 
in the page/segment buffer at the same time. Finally, the storage system supports the 
page contest concept on the basis of which higher layers can implement data 
redimdancy in the database (see below). By receiving a list of some/all pages which store 
copies of a specific record, the storage system calculates the cost of accessing each of the 
pages and decides, on the basis of a cost analysis, which copy of the record should be 
provided to the user. 

Based on the storage system interface, the access system realizes a set-oriented atom 
interface which supports the retrieval and update of single atoms (i.e. typed data records) 
as well as of atom sets. On the basis of so-called reference atom attributes, this system 
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guarantees referential integrity in the database. This type of attribute is used to represent 
relationships between atoms. PRIMA supports back references automatically. 
Relationship information is kept replicated in ali atoms involved. If the user updates this 
information in one atom, the access system actualizes the other atoms which participate of 
the relationship. 

This system also implements tuning mechanisms which enable the physical organization 
of the database on disk to be tailoied to the special needs of the appUcatíon. The database 
administrator has access to these mechanisms through the Load Definition Language 
(LDL). Through the tuning mechanisms the user can, for instance, define database views 
which should be materialized on disk or demand that atom instances of specific types be 
kept duplicated (or replicated) in the database so that they can be accessed together with 
their respective ancestor objects more efficiently. The tuning mechanisms also support the 
definition of application-specific access paths and sort orders. To reduce response time 
the access system realizes a deferred update strategy to update atom copies. New 
references to an updated atom must always yield its most up-to-date copy, though. 

The data system maps the molecule-oriented interface onto the atom-oriented interface of 
the access system. It consists of two main components: the query processor and the 
molecule manager. The former checks user queries for syntatíc and semantíc correctness, 
tries to optimize their execution plan, and translates them into data processing plans which 
rely upon the one-molecule-at-time interface of the molecule manager. This system 
component consists of two parts. The molecule-tyj»-specific optimization tries to create 
an optimal processing plan for the query on the basis of existing access paths, sort orders, 
and data replication. The second part of the molecule manager, namely the molecule 
processing, executes the processing plans which are developed by the optimizer. 

While PRIMA's kemel system supports structural object orientation by means of the 
MAD data model, the application-oriented layer (AL) supports behavioral object 
orientation through the realization of application-specific abstract data types which, in 
tum, rely on the underlying MAD model [HüMi88]. Application data objects are reaíized 
by AL through objects defined at the MAD levei (i.e. at the kemers interface). The 
definition of application-oriented algorithms which describe the behavior of application 
objects is implemented by AL as MQL queries. The encapsulation of application objects 
and the operations associated with them results in a kind of ADT facility which is 
provided to the application at the AL interface. 

The software architecture of the application layer was presented in [HüMi88]. To support 
the definition and efficient operation of ADTs, AL realizes the concepts of object buffer 
and cursor hierarchy. MQL query results (i.e. MAD molecules and atoms) are stored in 
the object buffer in a special main memory representation. In this special format, data 
objects can be processed by further ADT operations more efficiently. Such operations 
navigate through highly structured molecules in the object buffer by means of hierarchies 

. of cursors. Each cursor of a cursor hierarchy can visit only the (sub)objects located at a 
specific levei of the corresponding object hierarchy. When a cursor is moved by an ADT 
operation from one (sub)object onto the other, AL automatically updates the positions of 
aÜ its subordinate cursors at their respective leveis. 

Since the MAD data model supports the definition of non-disjoint objects, we can model 
our database example as a single molecule type. First, the atom types Node and List are 
defined using MQL statements. Then, the materialization of the list L I in the database (on 
the basis of the atom definitions) is achieved through an LDL statemenL 

Define ATOM Type Node 
( N_S 

N_Nr 
N_Data 
N_Next 

identifier, /* surrogate: created and maintained by the system */ 
char[2], 
char[], 

set_of (ref_to (Node.N_Prior)), 
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N_Prior : set_of (ref_to (Node.N_Next))> 

N_Lists : set_of (ref_to (List.L_Nodes)) 
) 
k;eys_are (N_Nr) 

Define ATOM Type List 
( L_S : identifier, /* surrogate: created and maintained by the system */ 

L_Nr : char[2], 
L_Nodes : set_of (ref_to (Node.N_Lists)) 

) 
keys_are (L_Nr) 

Define static molecule type List_Ll 
From List 

Where L_Nr = X I ' 

At the interface of the application layer, the operations of T can be defined as 
parameterized ADT operatíons which access molecules of type List_Ll and the atoms 
related to them. As an example, we define 02 below. 

Interface: 0 2 (List_Name : char[2]) 
Body: Select (into the object buffer) ali 

From List_Name 

After list LI has been brought into the object buffer, ali following operations of T but 06 
can be completely executed there. Since 0 6 manipulates data which are not stored in the 
object buffer (e.g. list L2), this operation must be complemented by the kemel system 
(possibly at T commit). 

2.6 A Reference Model for Database Systems with Buffer 
Hierarchies 

In the previous sections, we have discussed the software architecture of various non-
standard database system prototypes which either suggest to or actually have buffer 
hierarchies to support complex object processing. Buffer hierarchies have also been 
implemented by systems which try to integrate existing object-oriented programming 
environments with database environments. The Object eXchange Service module (OXS) 
described in [PaJF89], for instance, supports the translation of the main memory 
representation of Lisp data objects into a stable storage representation which can be 
managed by the Flavors database system. OXS implements a buffer hierarchy in much the 
same way R2D2 does. 

From the systems discussed above, we can conclude that a reference model for non-
standard DBSs which implement buffer hierarchies should basically consist of a three-
layer software architecture as the one shown in Figure 2.8. The lowest layer (LI) would 
manage the database in stable storage and realize a set-oriented page interface which 
would abstract from details conceming data organization on externai storage devices. To 
provide efficient access to database pages, LI should be able to transfer sets of pages as a 
whole between disk and main memory and support a page/segment-oriented buffer to 
reduce 10 activity. 

The second layer (L2) would rely on the page interface implemented by LI to realize a 
structurally object-oriented data model. In both DASDBS and R2D2, this data model is the 
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NF2 model. In PRIMA, on the other hand, it is represented by the MAD model. Both 
models provide structural but not behavioral object orientation, since they provida means 
for defining and manipulating highly structured data objects as a whole but do not support 
features as encapsulation, user-defined types or classes, or inheritance. L2 should be 
designed to support two complementary functions. First, it should be able to construct the 
main memory representation of complex objects out of their representation on database 
pages and map them back onto pages. On the basis of the main memory representation of 
objects, L2 would implement the operations it provides at its interface. 

application-oriented DBS interface 

Realizes an appitcatíon-spedfic, behavioral 
ob^t-oríented data model on the basis of 
an ADT fadlity. Objects of L2's data model 
are encapsulated together with operations 
describing their behavior. 

set-oriented molecule Interface 

I 
Realizes a structural object-oriented model. 
pbjects are built on the basis of related 
[records stored on database pages. 

set-oriented page Interface 

Controls the data organization on disk and 
realizes the system's page abstraction. 

Fig. 2.8: A reference model for DBSs which realize buffer hierarchies 

The uppermost system layer (L3) would realize the application-oriented data model. Such 
a data model should be able to capture and represent the specific semantics of the 
application. Relying on the structurally object-oriented model implemented by L2, L3 
would support behavioral object orientation. As in R2D2 and PRIMA, this could be done 
through the implementation of an ADT facility which would support user-defined 
operations on data objects of the L2 interface. 

When comparing our reference model with the general non-standard DBS architecture of 
Figure 1.3, it becomes clear that L3 realizes the application layer, L2 implements the 
functions of the query proeessor, complex object manager, and record manager, and LI 
implements the buffer-and-segment manager. We decided to allocate the complex object 
and record managers in the same layer (i.e. L2), because we feel the functions of these 
two software modules can be integrated to improve system peiformance. 

An important decision conceming the buffer hierarchy of the reference model is the one 
related to the location of the object buffer in the system architecture. While some systems 
see the object-oriented buffer as an extension of L2 (e.g. POSTGRES and DASDBS), 
there are others which consider it to be an integral part of L3 (e.g. R2D2 and PRIMA). 

Actually, PRIMA's object buffer also represents an extension of the kemel interface, 
since it is used to represent molecules of the MAD data model. On the other hand, it is 
controlled by the application layer. In [HHMM88], where considerations about the 
distribution of PRIMA over a server-workstation architecture are presented, the object 
buffer together with the cursor hierarchy concept are implemented at the workstation by 
yet another software module (i.e. the object-supporting layer) which supports the 
application-oriented layer, controls the local database at the workstation, and realizes the 
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commumcation between the local data system and the kemel system at the server node 
(see Figurel.4). R2d2's object cache, on the other hand, is really part of the application-
oriented layer. The Pascal representation of database objects is not even known at the NF2 

interface. If the object buffer of AIM-P had been implemented, R2d2 would actually have 
realized a three-level buffer hierarchy. 

We decided to represent the object buffer in our reference model as an extension to the 
interface of L2. As part of the stmcturally object-oriented interface, the object buffer can 
also be used to improve data communication between system modules in case the 
reference model is distributed over a server-workstation computer system. 

2.7 Distribution Aspects of Non-Standard Database Systems 

As already mentioned, database systems supporting the design environment will probably 
be distributed over server-workstation computer configurations. In this section, we 
discuss some important aspects conceming the distribution of database software in the 
design environment. 

The DBS software can be either completely replicated in every processing node of the 
underlying computer system or distributed acconling to the functions which are executed 
at each node. While it is relatively easy to identify intemal interfaces in kemel 
architectures on the basis of which the distribution of the database software could take 
place, the task of distributing the software modules of tailored design DBSs can become a 
tricky one. 

If we imagine a server-workstation system where the server processing node does not 
directíy support application programs and a kernel database system similar to our 
reference model, it would possibly be a good choice to place the DBS kemel at the server 
site and implement the application-oriented system layer at the workstation. In this case, 
the distribution of the DBS software would foUow a functionality criterion. 

Since objects are kept in the local database of the workstation during the design 
transaction, another DBS layer must be provided at this node to control the local database 
and to communicate with the kemel system at the server node. Some real systems solve 
this problem by installing a copy of the kemel system at the workstatíon ([DeOb87], 
[DAMSSb]). Application objects, then, are mapped through the whole DBS architecture 
every time they are read from disk or written to it during the design transaction. A 
possibly more efficient solution could be to implement a simpler software module on the 
bottom of the application layer which can diiectiy save complex objects on disk whithout 
having to change their data representation. That is, objects are written to disk in their main 
memory format. The PRIMA prototype foUows Üiis strategy by the implementation of tiie 
workstation data system [HHMM88]. 

2.7.1 Abstraction Leveis for Cooperation 

The cooperation between server and workstation can be explained as follows. The 
application programs mn at the workstation and are supported by the application layer. 
This layer relies on some DBS software (e.g. DBS kemel or another type of object-
supporting software layer) to access the necessary objects in the local database. Every 
time the application layer requests an (complex) object that is not stored in the local 
database at the workstation, a CHECKOUT operatíon must be started. Before the design 
transaction terminates, updated objects must be copied into the public database at the 
server node. This is done through CHECKIN operations. 
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Server and workstation can exchange data at different abstraction leveis of the DBS 
architecture. In [DeOb87], the altematives for comniunication have been subdivided into 
single-level cooperation and multi-level cooperation. As the name suggests, single-level 
cooperation implies that the whole server-workstation cooperation is realized at only one 
abstraction levei of the database architecture. Multi-level cooperation, on the oüier hand, 
implies that data are transferred at various leveis of abstraction. 

The cooperation between server and workstation in DAMOKLES, for instance, is 
completely implemented at the complex object layer of the system [DAM88b]. That is, for 
CHECKOUT the workstatíon sends its request as a complex object request (i.e. EODM 
statement [DAM86a]) and the server sends the workstatíon the required object in its main 
memory representation. For CHECKIN, the workstation sends the server updated 
EODM-objects. PRIMA, on the other hand, realizes a multi-level cooperation strategy. 
For CHECKOUT, requests are transmitted by the workstation as complex object queries 
and CHECKOUT data are transferred by the server in the form of sets of complex objects 
(i.e. sets of molecules) [HHMM88]. For CHECKIN, the workstation sends the server 
only sets of updated records (i.e. sets of atoms). In [DeOb87], another multi-level 
cooperation strategy has been proposed. For CHECKOUT, requests are sem as complex 
object queries but CHECKOUT data are transferred in form of sets of pages. For 
CHECIGN, the server receives a set of modified pages as well as some meta information. 
The meta information is then used to update higher-level data abstractions (e.g. index 
entries for tuples). This cooperation strategy is suitable for DBS implementations where a 
copy of the kemel system is installed at the workstation. In this case, both server and 
workstation present all layers of the DBS architecture. 

2.7.2 Supported Transaction Classes 

To realize integrated information systems, non-standard DBSs must be capable of 
executing both, design and conventional transactions. In the case of a kemel design DBS, 
we can imagine that the software at the workstation would be developed to support only 
design applications, while the DBS kemel at the server node would execute 
CHECKOUT/IN operations as well as conventional, short transactions (e.g. relational 
queries and short update operations). 

2.7.3 Transaction Management Strategies 

Because of the long duration of design transactions, it would be unacceptable to control 
transaction parallelism in design systems on the basis of optimistic algorithms, since the 
costs of design transaction backout would be very high. Therefore, most systems plan to 
realize some locking method to control parallelism atnong design transactions. 

Usually, standard database systems realize the concurrency control mechanism at a 
specific layer of the DBS architecture. For lock-oriented synchronization techniques, 
concurrency control is often implemented at the page levei of the system. In this way, the 
overhead represented by lock management activities is kept low because the granularity of 
locks is large (in comparison to record locking, for instance) and, consequently, fewer 
locks are necessary. On üie oüier hand, page locking strategies usually force the system to 
lock more data than it actually needs (e.g. by requesting one record, the whole page 
where this record is kept on will be locked for the transaction). As a consequence, 
parallelism can be reduced. 

In design systems which exchange data between server and workstation at the page levei, 
the locking mechanism must te realized at the page levei, anyhow. Page locks are 
acquired during CHECKOUT operations and released only when the objects are checked 
back into the public database. 
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Design database systems which exchange data at higher leveis of abstraction (e.g. record 
levei or complex object levei) can implement multi-level transaction managers ([Lync83], 
[Wei87b]) to improve parallelism at the server node. In this case, locks on pages are kept 
only for the time needed to either build the object representation by CHECKOUT or map 
updated objects back onto database pages by CHECKIN. During the time objects are 
processed at the workstation, only record locks or object locks are kept at the server 
system. It is expected, that multi-level transaction management can significantly improve 
parallelism in database systems [Wei87a]. 

2.7.4 Controiling the Cooperation Between Server and Workstation 

When designing a distributed design database system, it must be decided how the 
cooperation between server and workstation will be controlled. This cooperation is 
materialized by the execution of CHECKOUT and CHECKIN operations as well as by 
remote queries which are started at the workstation and processed by the public system at 
the server node. 

There are, at least, two ways of controiling the cooperation between server and 
workstation [HHMM88]. In the first altemative, the public system is not really aware of 
the existence of the design transaction at the workstation. CHECKOUT and CHECKIN 
operations as well as remote queries are started at the workstation as independent, short 
transactions (i.e. so-called recovery transactions) which spawn sub-transactions at the 
server node. The execution of these distributed transactions is synchronized by means of 
a two-phase commit protocol. Therefore, at the end of a remote operation at the server, ali 
locks it holds in the public database are released (supposing concurrency control at the 
server is reaíized by locking). By this altemative of cooperation control (flat transaction 
management), the design transaction inherits neither locks nor recovery information from 
committing remote operations. In this case, long duraüon locks (e.g. CHECKOUT locks) 
are not controlled by the database system but must be managed by the users themselves 
(for instance, in the form of tuples of some special relatíon as the OBJECTLOCK relation 
proposed in [LoP183]). 

The cooperation between server and workstation can also be reaíized on the basis of a 
dismbuted nested transaction mechanism as , for instance, the one proposed in [HaRo87] 
which follows the nested transaction paradigm of [MossSl]. When the design transaction 
starts its first remote operation at the server node, the public system becomes aware of its 
existence and creates a so-called agent transaction for the design transaction at that node. 
The public system considers ali remote operations started by the design transaction as 
sub-transactions of its agent at the server node. That is, the agent inherits results, locks, 
and recovery information from ali remote operations which commit. If üie design 
transaction aborts, the public system aborts its agent at the server node. Recovery 
information is used to restore the original state of the public database, locks held by tiie 
agent » e released, and the agent is deleted. If, on the other hand, the design transaction 
commits at the workstatíon, the public system comirtíts the agent at the server node and 
releases its locks in the public database. Thus, results of committed CHECKIN 
operations and remote queries are made public at the server node, only if the 
corresponding design transactions commit. 

2.7.5 The Distributed Version of the Reference Architecture 

The decisions about the distribution of our reference DBS architecture over a server-
workstatíon computer system rely on the distribution aspects discussed above and are 
presented below. 

Regarding the distribution of the database software over the various processing nodes, we 
chose the altemative followed by the PRIMA project [HHMM88]. Both kemel layers (i.e. 
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LI and L2) would be realized at the server node, while the application-oriented layer (i.e. 
L3) would be implemented at the workstation. As with PRIMA, we would not realize a 
copy of the kemel system at the workstation to control the local database. A special 
system layer (i.e. the object-supporting layer) would be constracted between L3 and L2, 
instead. This extra layer should support L2's data model at the workstation (for instance, 
by supporting a local version of the object buffer). Moreover, the object-supporting layer 
would also support the communication with the kemel system at the server node. Figure 
1.4 depicts the distribution of the reference DBS architecture over a server-workstation 
network. 

Although multi-level strategies for the cooperation between server and workstation seem 
to be more appropriate in terms of data communication load, we feel that the realization of 
multi-level cooperation strategies could possibly degrade system performance because of 
the mapping activities associated to them. However, we have implemented a simulation 
model on the basis of our reference architecture that permits the analysis of single-level 
and multí-level cooperation strategies. Within the context of this work, we have simulated 
only a single-level cooperation strategy at the complex object levei, though. 

Since the integratíon of Information systems (as shared databases, computer networks, 
etc) is a reality already, we feel that design database systems will have to support the 
coexistence of long-duration and (conventional) short transactions to cope with different 
database applications which will process related data in the same enterprise. 

In the following chapters, we discuss further distribution aspects conceming dynamic 
properties of the reference rtKxiel derived here (e.g. transaction management). 
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Chapter 3 

Transaction Models for Design Applications 

In this part of the dissertation, we review five of the best known design processing 
models which have been proposed in the literature and use them as a basis for the 
classification and generalizatíon of design transaction models. Before describing the 
models, though, we discuss the main reasons why design transactions cannot be realized 
as conventional transactions, that is, why the (conventional) transaction paradigm cannot 
cope weU with ali the processing requirements of design applications. 

A transaction is defined as a unit of work to be carried out by the DBS [Date83] or as an 
execution of a program that accesses a shared database [BeHG87]. In fact, the transaction 
paradigm as described in [Gray78] represents a special unit of work, namely one which 
guarantees that user actíons either bring the database to a consistent state [Gray80] or aie 
not executed at ali. Besides of being atomic and guaranteeing database consistency, the 
conventional transaction represents the unit of work isolation in multiprogramming 
environments, and its results must survive failures if the transaction commits. Therefore, 
the transaction represents, at the same time, the units of atomicity, isolation, consistency, 
and durability of transactíon-oriented processing environments. 

The transactíon model as described above copes well with the characteristics of user work 
in so-called business-related database applications where transactíons are typically of 
short duratíon (i.e. terminate in a few seconds). For short transactions, it is acceptable 
Üiat they are completely backed out in case of failures, or tiiat they are blocked during the 
execution of other transactions which access common data. 

The conventional transaction model is not suitable to represent the design transactíon in 
design applicatíons such as CAD/CAM or software engineering, though. As already 
stated at the beginning, user work in design applications can span longer periods of time. 
Complete rollback would then be unacceptable. Moreover, these applicatíons are 
characterized by cooperative work among users. The isolation property of transactions 
should, therefore, be relaxed in some cases. 

To support the above mentioned and yet other requirements of design applicatíons, new 
processing models have been proposed which respectívely associate the properties of the 
conventional transaction with different units of user work. Since the new processing 
models are partially based on the transaction paraxligm and aim at representing larger units 
of work in design applications, they are conventionally called design or long transaction 
models. 

By the description of the processing models which follows, we will distinguish several 
transaction types. Conventional transactíons which are executed at the server node will 
also be called short transactíons (S-Tr), because they represent relatíve short units of 
work (e.g. single database operatíons) which are executed by the public system on behalf 
of the designer at the workstation. On the other hand, conventional transactíons which are 
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executed at the workstation will also be called recovery transactions (R-Tr) because, in 
most cases, they solely represent a unit of recovery for the processing models. Other 
(sub)transaction types will be introduced during the description of the design transaction 
models which follows. Since most of the processing models to be reviewed here do not 
have a specific name, we will identify them through their main characteristics. 

3.1 Isolated CHECKOUT/IN Operations 

The isolated CHECKOUT/IN transaction model (TMl) has been first proposed in 
[HaLoSl]. This model is perhaps the simplest one and basically relies on the conventional 
transaction paradigm. Figure 3.1 illustrates the dynatnical characteristics of the isolated 
CHECKOUT/IN transaction model. 

The designer processes data objects in his local, private database at the workstation. The 
local database system controls the user work at that processing node. When the user 
wants to process an object which is not present in the private database, he starts a remote 
(sub)transaction at the server node that executes a CHECKOUT operation. Similarly, 
when the user wants to commit his changes on an object (or insert/delete an object), he 
checks it back into the public database (through another remote transaction). 

w 0 f k .B(R-Tr) OUT, 

station 

E(R-Tr) B(R-Tr) UPD E(R-Tr) B(R-Tr) |N1 E(R-Tr) 
1 1 1 1 1 1 1—I i — 

B(S-Tr) I E(S-Tr) 
server 1 j 1 

• 
|o , 
ik • 

B(S-Tr) i E(S-Tr) 
1 1 1 

, isolation interval of object 1 

I 10 I 

• |K » 
B(S-Tr) i E(S-Tr) 

— I — I — I — 
(time) 

S-Tr: short trans.; R-Tr: recovery trans.; B(Tr): begin trans.; E(Tr): end trans.; OUT: checkout; IN; checkln; 
UPD: short update operation. 

Fig. 3.1: Isolated CHECKOUT/IN transaction model (TMl) 

The fact that the designer may sometimes need to manipulate data directly in the public 
database (e.g. queries and short update operations on sets of tuples or records) is not 
directly modeled by TMl. One can easily conclude, though, that the designer must start 
(sub)transactíons in the public system to execute those operations, too. 

In the isolated CHECKOUT/IN model, the notíon of design transaction is known neither 
to the public system nor to the local system. Both systems execute conventional 
transactions. The execution of transactions which spawn sub-transactíons at the public 
system can be controlled either by means of some version of the two-phase commit 
protocol [MoAb86] or through the realization of the nested transaction concept [MossSl]. 
In Figure 3.1 as well as in ali other figures of this chapter which depict dynamic 
properties of design processing models, we suppose that transactions which span 
processing nodes foUow a two-phase commit protocol. That is, for simplicity reasons we 
assume a flat distributed transaction mechanism in the models to be explained. This can be 
clearly depicted from the figures. See, for instance. Figure 3.1. By receiving a "start 
CHECKOUT" message from the workstation (which is part of a recovery transaction 
there), the public system starts a short transaction {B(S-Tr)) at the server node to copy the 
desired data from the public database into the private database at the workstation. By 
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finishing this task, the public system sends the workstation an "ok" message and waits 
for a reply to either abort or commit the short transaction (E(S-Tr)). 

Since conventional transactions release all their locks at transaction end, CHECKOUT 
locks cannot be automatically managed by the public system, They are long-duration 
locks that must be held even after the CHECKOUT sub-transaction commits. The 
designers must maintain a global CHECKOUT lock file in the public database, instead. 
This file must be updated by the CHECKOUT/IN sub-transactions themselves. Thus, the 
designers are responsible for the control of both long-duration locks and the system's 
CHECKOUT lock file. On the one hand, this solution can lead to a better synchronization 
of the design work, since the designers have a better knowledge about who may access 
objects concurrently and when it can be done. On the other hand, the public system 
cannot automatically guarantee any synchronization protocol (e.g. serializability) 
anymore. 

Furthermore, the isolated CHECKOUT/IN model does not relate the actions of the same 
design transaction (i.e. the actions which are started by the same designer) on different 
public objects. Conventional transactions represent the only units of atomicity and 
durability at both the public and the local systems. Thus, it is, for instance, impossible for 
the database system to automatically rollback the whole designer's work. 

If no objects have been checked back into the public database yet and no short update 
transaction has been executed on his behalf at the server node, the designer can back out 
his whole work by simply deleting his local, private database and releasing locks in the 
CHECKOUT lock file of the public database. Otherwise, he must start compensation 
(sub)transactions in the public system to rollback possible CHECKIN and short update 
operations at the server. The task of rolling back committed CHECKIN operations can be 
simplified if the public system treats updated objects as new object versions as it is, for 
instance, proposed in [KSUW85]. In this case, the designer can back out CHECKIN 
operations by deleting the new object versions created in the public database. 

Problems may arise, though, if other users have already copied the new created versions 
into their private databases. TMl does not prevent the occurrence of the so-called 
cascading-abort effect [BeHG87]. This effect can take place when transactions can see 
temporary or incomplete results of other transactions. These results can be considered to 
be consistent only if the transaction which created them commits. In a conventional data 
processing environment (e.g. business environment) which relies on transaction 
serializability, the recovery mechanism would back out all transactions which accessed 
temporary resuks of a transaction being aborted. In the design environment, this could 
represent a huge waste of time and work done. A less drastic solution would be to inform 
the transactíons that the object versions they manipulate have become invalid. The 
designers, then, have a chance to decide whether they can save some of the work done or 
must roU back their entire transactions. Furthermore, if transactíon serializability is to be 
enforced, the system or the designers themselves should avoid that design transactions 
which see temporary results commit before the transactions which generated those results. 

For TMl, the conventional transactíon also represents the unit of isolation for queries and 
short update operations in the public system. By object processing activities, the unit of 
isolation in üie public database is represented by their respective CHECKOUTAN time 
intervals. 

In the literature, no special synchronizatíon mechanism at the workstatíon is presented for 
TMl. For local systems which can process recovery transactions concurrently, it is 
assumed that conventíonal synchronizatíon techniques (e.g. short-duration locking) will 
be implemented. In this case, the unit of isolation at the workstation would also be 
represented by the conventional transaction. 

As with most of the other design transaction models, explanations about how and when to 
check as well as to enforce design consistency by TMl cannot be found in the literature. 
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Since every short transaction at the public system as well as recovery transaction at the 
local system represents only a part of the overall design work, it might be impossible to 
enforce design consistency either in the public database or private database at the end of 
every one of these transactions. In most systems, design consistency will be tested and 
enforced by the application layer through the execution of test procedures (which can, for 
instance, be reaíized through event/trigger mechanisms [Kotz88]). Since the decision of 
how and when to test design consistency is taken in higher system leveis, we do not 
associate the concept of short or recovery transactions with these tasks. Thus, we 
conclude that short and recovery transactions can only guarantee database consistency for 
lower leveis of abstraction (e.g. record-oriented levei [HâRe83]). By the isolated 
CHECKOUT/IN model, design consistency is considered to be responsibility of the 
application and should be enforced, at the latest, at the end of the overall design work. 

On the basis of the description above, we can conclude that TMl does not fully support 
the notion of a design transaction. The public system sees the design work as a set of 
independent processing steps on different objects. Moreover, no features are presented to 
support the hierarchically structured design environment. That is, designers cannot 
exchange non-committed results or commit results only for some group of other 
designers. The next design processing model to be presented can be seen as an extension 
of TMl that captures the notion of design transaction in the public database. 

3.2 Related CHECKOUT/IN Operations 

The related CHECKOUT/IN model (TM2) has been described in [DAM88a] and 
implemented in the DAMOKLES database system. TM2 assumes the same design 
environment as TMl. What distinguishes TM2 from TMl is that the former introduces the 
notion of a design transaction (D-Tr) at the public system. Figure 3.2 depicts the 
dynamical characteristics of TM2. 
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Fig. 3.2; Related CHECKOUT/IN transaction model (TM2) 

The public system starts a D-Tr on behalf of the designer either by lequest or when it 
receivesthe first remote operation from the workstatíon. Objects are processed by the 
designer at the workstatíon. Eveiy tíme the designer needs to process an object which is 
not present in his local, private database, he starts a (sub)transactíon at the public system 
which checks the wanted object out Ali those CHECKOUT/IN operations executed at the 
public system on behalf of the designer are considered part of the his D-Tr. On the other 
hand, queries and short update operatíons in the public database that might be started by 
the designer are not modeled by TM2 at ali. 
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D-Tr can be viewed as the top-level transaction of a two-level nested transaction 
hierarchy. D-Tr holds CHECKOUT locks for objects which are manipulated by recovery 
transactions at the workstation. These locks are released when the associated objects are 
checked back into the public database. The designer terminates his work at the public 
system by executing a COMMIT D-Tr operation. When this occurs, the public system 
verifies if ali objects checked out have already been checked back in. If this test yields 
true, the system commits D-Tr, otherwise, the designer receives a conesponding message 
and D-Tr is kept active. 

Although the public system can use D-Tr to automatically guarantee object isolation even 
after the (sub)transactions which have executed CHECKOUT operations commit, it 
cannot use D-Tr as a unit of atomicity for the design transaction, since the designer may 
check objects back into the public database at any time. Thus, ali those problems related to 
recovery in TMl are also present in TM2, namely the recovery mechanism must cope 
with the cascading-abort effect and cannot provide for automatic design transaction 
backout 

At both the public and the local systems, D-Tr represents the unit of consistency for the 
overall design work. Although this aspect is not discussed in the literature, it is easy to 
understand that database consistency at lower abstraction leveis can already be enforced in 
the public database by CHECKIN. On the other hand, overall design consistency can 
only be tested and guaranteed at the end of D-Tr. 

As by TMl, the conventional transaction represents the unit of atomicity and durability in 
the public system as well as in the private system. It could also be used as the unit of 
isolation for queries and short update operations at the server node. The unit of isolation 
for object processing is represented by the CHECKOUT/IN time interval. 

Since TM2 does not model data processing at the private system in detail, it is not certain 
if a work unit for isolation is needed for that system. It would only be true, if recovery 
transactions could run in parallel at the workstation. As with TMl, cooperative work 
among designers is not modeled by TM2, either. Therefore, design results must first be 
checked into the public database (and made accessible to ali designers), before another 
designer can copy them into his private database. 

3.3 Conversational Design Transactions 

The conversational design transaction model (TM3) has been presented in [LoP183]. It 
assumes the same system confíguration and DBMS architecture as TMl and TM2. TM3 
can also be understood as being an extension of TMl. 

TM3 introduces the notion of a conversational transactíon (C-Tr) in the local, private 
database. C-Tr represents the overall design effort of the designer and is comparable to D-
Tr in TM2. There are some important differences between both design transactíons, 
though. WhUe D-Tr exists in the public system, C-Tr is controlled by the local system at 
the workstatíon. Furthermore, TM3 models the design transaction in such a way that 
updated objects are accessible to other designers only if C-Tr commits. Conversatíonal 
design transactíons follow a strict two-phase CHECKOUT lock protocol. 

Figure 3.3 depicts the dynamical characteristics of C-Tr. The local system treats the user 
work as a (long) design transactíon (i.e. a C-Tr). From inside his C-Tr, the designer may 
stait a set of recovery transactions which process objects in the local database. When the 
designer needs to get an object from the public database, he starts a short (sub)transaction 
in the public system which executes a CHECKOUT operatíon. 
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Since queries and short update operations in the public database are not modeled by TM3 
(as it is the case by TMl and TM2, too), these o^rations are not considered part of C-Tr. 
Moreover, the only way to integrate them into the conversational transaction model is to 
represent them as remote (sub)transactions at the public system. 

B(R-Tr) CU7, 

n-f 1 -
B(C-Tr) I 

I H-

E(R-Tr) 8(R-Ti) OUT. E(R-Tr) savepoint restore B(R-Tr) |N,, E(R-Tr) 
H 1 1 1 1 1 1 1—• 

E(C-Tr) 

B(S-Tr) 
1 

E(S-Tr) 
1 

B(S-Tr) j E(S-Tr) 
1 

Isolation Intefval of obtect 1 
I iaotaflon interval of obtect n 

•H 
BÍS-Tr) 

1 
E(S-Tr) 

1 (-
(Ume) 

Note: C-Tr stands for conversational transaction 

Fig. 3.3: Conversational transaction model (TM3) 

All design objects which are checked out of the public database for update as well as those 
created during the design work are checked back into the public database through a global 
CHECKIN operation which is executed at the end of C-Tr. Thus, at most one CHECKIN 
operation can be executed from inside a conversational transaction. 

In [HHMM88], the conversational design transaction model has been expanded and ideas 
of how to implement it have been presented. Since some of the new properties which 
have been added to the model can influence recovery activity, they will be presented here, 
too. According to the expanded version, designers can issue other commands from inside 
the C-Tr besides starting recovery transactions: SAVEPOINT, RESTORE, SUSPEND, 
and RESUME. The SAVEPOINT command forces the actual state of C-Tr to be saved. 
The RESTORE command rolls back C-Tr to a previously generated savepoint. The 
SUSPEND command creates a savepoint for C-Tr and (temporarily) terminates it. The 
RESUME command restarts C-Tr at the last SUSPEND savepoint issued. 

For TM3, the conventional transaction represents the unit of atomicity and durability in 
the public system. CHECKOUT/IN time intervals, in tum, represent the unit of isolation 
for object processing. C-Tr also represents the unit of design consistency in the public 
database. Since all object updates processed by the designer during his C-Tr are checked 
into the public database at once, all necessary design consistency tests can be executed 
inside the (sub)transaction which executes the CHECKIN operation at the public system. 

The recovery transaction represents the unit of atomicity in the private system. It also 
provides for durability in case of system failures at the workstation. The effects of 
committed recovery transactions do not survive, though, if the designer rolls back his C-
Tr. Results of committed recovery transactions can also be made invalid, if the state of the 
C-Tr is restored to a previously generated savepoint. Besides, C-Tr represents the unit of 
design consistency for the private system. The designer can back out C-Tr completely by 
deleting his private database and releasing associated CHECKOUT locks in the public 
database. 

The conversational transaction model makes design transactions appear atomic at the 
public system. Thus, the recovery mechanism need not support cascading aborts. Since 
TM3 does not take short update operations in the public database into consideration, the 
designer can only invalidate their results by executing the respective compensation 
transactions at the public system. 
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If conversatíonal transactíons are realized as nested transactíons (as it is suggested in 
[HHMM88]), it is possible for the public system to automatícally control long-duratíon 
locks in the public database, since conversatíonal transactíons, then, inherit locks and 
recovery informatíon from committíng sub-transactíons which execute CHECKOUT 
operations on their behalf. On the other hand, if a distributed flat transaction management 
is realized, the public system does not become aware of the existence of the C-Tr at the 
workstation and the designers must manage CHECKOUT locks by themselves, as it is 
the case with TMl. 

Although TM3 represents an evolution towards modeling design transactions when 
compared to TMl and even to TM2, this model does not capture some important 
characteristics of the design woik, namely the cooperation among designers and details of 
the way objects are processed at the workstation. These characteristics are taken into 
consideration by the next two design transaction models to be presented. 

3.4 Engineering Transactions 

The engineering transaction model (TM4) has been proposed in [KLMP84] and refined in 
both [BaKKSS] and [KoKB87]. It relies upon three major concepts; nesteid transactions, 
semi-public databases associated with nested transactíons, and the notion of a design 
transaction consistíng of a set of possibly concurrent, conventional transactíons at the 
workstation. 

TM4 introduces the notions of project transaction (P-Tr), engineering or 
client/subcontractor transaction (E-Tr), and semi-pubUc database. P-Tr characterizes the 
efforts of a group of designers while E-Tr represents the design efforts of a single 
designer. Project transactions run at the public system and logically partitíon the public 
database. Each P-Tr is the root of a hierarchy of nested E-Tr. P-Tr acquires and releases 
locks in the pubUc system for ali its descendants. Project transactions follow a long two-
phase locking protocol. 

Figure 3.4 depicts dynamic properties of TM4. Engineering transactions are started and 
executed by designers at workstations. Each E-Tr is associated with a private database 
(managed by the local, private system) and a semi-public database. It is subdivided into a 
set of recovery transactions. Concurrent R-Trs follow a short two-phase locking protocol. 
By modeling concurrent recovery transactions at the workstation, TM4 tiies to better 
capture the real processing mode of design transactions in the private system. Usually, the 
designer starts design-tool programs at the workstation that may execute in parallel and 
even start other programs or externai subroutines. The execution of each tool-program is 
modeled by TM4 as a recovery transaction. Thus, recovery transactions may run in 
parallel, start (sub)transactions, and access data concurrendy. 

Through E-Tr, the designer processes objects in his private database. To make semi-
committed object updates accessible to a selected group of designers (e.g. designers of his 
own group), he moves the respective updated objects from his private database into his 
semi-public database and grants the selected designers specific access rights. This 
operation is called DOWNWARD COMMIT. The authorized designers, then, may copy 
the semi-committed results into their own private databases through the execution of 
CHECKOUT operations at the system which controls the semi-public database where the 
wanted objects are located. CHECKOUT/IN operations started from the same E-Tr 
follow a long two-phase protocol. That is, the E-Tr (i.e. the designer) may not execute 
CHECKOUT operations anymore after it(he) has already executed some CHECKIN 
operation. 
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Fig. 3.4; Engineering transaction model (TM4) 

Each E-Tr may only have one parent (that is, one immediate ancestor transaction). E-Tr's 
parem may be either another E-Tr or Üie P-Tr itself. Each E-Tr may check out objects of 
the semi-public database of, at most, one other E-Tr. The former tecomes a child of the 
latter. If E-Tr only checks out objects of the public database, it becomes a direct 
descendant of P-Tr (in this case the public database can be viewed as P-Tr's semi-public 
database). Through the semi-public database of its parent, though, E-Tr may indu-ecüy 
check objects out of the semi-public database of any ancestor. 

To commit his E-Tr, the designer must check ali processed objects back into the semi-
public database of E-Tr's parent. The parent inherits ali locks held by E-Tr (i.e. 
CHECKOUT locks as well as other locks). If E-Tr aborts, it releases ali locks it acquired. 
In this case, E-Tr's parent inherits only those locks which it already had owned, before E-
Tr has inherited them. The other locks are direcüy inherited by those ancestors from 
which the locks were inherited. In the literature, no explanation is given about what 
happens with descendant E-Trs when any of their ancestors is backed out. It would be 
reasonable to think that they would, at least, be asked to release those objects which relate 
them to their ancestors. 

If we suppose that ali semi-public databases are located at the server node and managed 
by the public system as it is proposed in [KLMP84], we can derive following 
observatíons about transaction properties in TM4. P-Tr represents the whole work of a 
group of designers and can be seen as the unit of consistency for this work. P-Tr also 
isolates this work from those of other groups of designers. By backing out P-Tr, the 
public system must rollback ali active as well as committed E-Tr which are descendants of 
P-Tr. 

E-Tr models the design transaction. It represents the imit of consistency of the designer's 
woik at the public system as well as at the private system. E-Tr also represents the unit of 
Ísolation for ali data processed by the designer diuing his work. If E-Tr does not follow a 
strict two-phase protocol, the public system should protect the results of each CHECKIN 
operation in case of system failure at the server node. Otherwise, E-Tr is also the unit of 
durability for the public system. 

The only work unit which must be executed atomically at the public system is the 
conventional transaction. This transaction can execute either CHECKOUT/IN operations 
or short update operations in any of the databases controlled by the public system. At the 
private system, the recovery transaction represents the unit of atomicity, Ísolation, and 
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durability against system failures. Committed R-Trs can be backed out, though, if the 
designer decides to rollback his E-Tr. 

TM4 is the only model to be reviewed which takes into consideration that the designer 
may want to process other data besides design objects from inside his E-Tr. For instance, 
the designer may want to update some relation in the public database. TM4 treats ali 
public data in a homogeneous form. Thus, the recovery mechanism can support automatic 
backout of E-Tr and P-Tr even if designers manipulate other data besides objects. 

The action of backing out an engineering transaction can generate the cascading-abort 
effect in two directions. E-Tr's descendants as well as ancestors must, at least, be 
informed about the decision to abort i t Descendants would have to give objects back to E-
Tr (or release the corresponding locks). In the worst case, they would also abort. 
Likewise, Mcestors which have already got objects back from the aborting E-Tr would 
have to decide if they can continue or must abort. 

3.5 Group Transactions 

The group transaction model (TM5) has been proposed in [KSUW85] and relies on the 
concepts of multí-level transactíon management and object version graphs. TM5 assumes 
that objects are versioned and that the public system manages a global version graph for 
each object in the public database. 

TM5 introduces the concepts of group transaction (G-Tr) and user transactíon (U-Tr) 
which can respectívely be compared to the concepts of project and engineering 
transactions. While G-Tr represents the design efforts of a group of designers, U-Tr 
characterizes the efforts of one specific designer (i.e. it represents the design transactíon). 
G-Tr is the top-level of a two levei transactíon hierarchy in which user transactíons appear 
as sub-transactions. Locks acquired by G-Tr can be inherited by its sub-transactíons. As 
opposed to TM4 that associates a semi-public database with every design transactíon, 
TM5 associates a group database with each group transactíon. The user transaction is 
related only to its private databases (the so-called user database). 

Figure 3.5 presents the dynamic characteristics of TM5. Objects are checked out of the 
public database by G-Tr and placed in the group database, where they are integrated into 
local version graphs. U-Tr checks objects out of the group database and places them in its 
private database. Updated objects are first checked back into the group database and, 
when no other U-Tr needs them anymore, into the public database. 

G-Tr acquires locks on objects in the public database while U-Tr locks data objects in the 
group database. While G-Tr follows a two-phase CHECKOUTAN lock protocol in the 
public database, U-Tr is not requested to follow a two-phase protocol in the group 
database. That is, U-Tr may execute CHECKOUTAN operations in any order. 
Unfortunately, no detailed explanatíon about the intemal structure of user transactíons can 
be found in the literature. TM5 does not model the design work at the private system. 

TM5 models cooperative work among design transactions by introducing four commands 
which can be executed from inside U-Tr. There exist two altematíves to exchange semi-
comrmtted results. A designer can lend an object version which he checked out of the 
group database to another designer by executíng the GRANT command. The other 
designer copies the object version into his private database by executing a FETCH 
command. The designer who borrowed the object version gets ali rights over it, except 
the right to check it back into the group database. He must give the object version back to 
its owner. This must occur before he terminates his U-Tr. Designers must execute a 
RETURN command to give the rights over a borrowed object version back to its owner. 
The owner copies the version back into his private database by executing another FETCH 
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command. The designer is not allowed to terminate his U-Tr, before he gets back ali 
object versions he has granted. 

B(U-Tr) B(R-Tr) FEtCH, E(R-Tr) B(R-Tí) RETURN, E(R-Tr) E(U-Tr) 
work- —1— _|— I I 1 1 1 1 -stationl 1 I ' ' ~ I í t 

B(H-Tr) OUT. E(R-Tr) B<R-Tr) QHANT, E(R-Tr) B(R-Tr) FETCH, IN. E(R-Tr) 
work- L(_! 1 ' ' I 1--4—1 1 -1— 1 H — • 
3 1 a C ° n 2 B(U-Tr) I i E ' U T f ' 

I oroupdalabase I 
G-Xr a , «(G-TOOUT, i m , | E(G-Tr) 

server ' j U | i lo i 
• ik T t jk ? 

o u b . ^ s . B<^Tr ) i EíS-Tr) B ' S [ T r ) 1 E ' f 0 

at server i i i ' 
I Isolation Interval ofoblect l — 1 

Q-Tr: group trans.; U-Tr: user trans.; pub.sys.: public system; GRANT: grant another U-Tr an object; FETCH: fetch an object; 
RETURN: retum an object to ttie U-Tr which granted K. 

Fig. 3.5: Group transaction model (TM5) 

To exchange object versions which are not expected to be retumed, designers can use the 
PASS statement. As with the GRANT command, the object being passed is copied into 
the database of the receiver by means of a FETCH command. In contrast to the GRANT 
command, the designer who receives the object can consider it as being his property and 
need not retum it to it's original owner. 

At the public system, G-Tr represents the unit of consistency for the whole work of the 
group of designers it represents. If G-Tr follows a strict two-phase lock protocol, it is 
also the unit of isolation in the public database. Otherwise, this property is associated with 
the CHECKOUT/TN time intervals during which object versions are copied from the 
public database, processed by design transactions of some group transaction, and 
reintegrated into the public database once again. CHECKOUT/IN operations must be 
executed atomically and their results must survive failures at the public system. 

Since U-Tr need not follow a two-phase lock protocol, consistency in the group database 
cannot be based on transaction serializability. Therefore, another correcmess criterion for 
concurrent U-Trs must be applied to the group transaction environment. 

At the private system, the unit of design consistency is the U-Tr. The unit of isolation is 
represented by the design work which is done from the moment the object version is 
checked out of the group database until it is either checked back into it or granted/passed 
to another designer. Since U-Tr is a long-duration transaction, it would be very 
dangerous to use it as the unit of atomicity and durability at the private system. Thus, we 
feel that by any reasonable implementation of TM5, U-Tr would consist of a set of 
recovery transactions. 
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3.6 Generalizing the Design Processing Models 

3.6.1 Main Characteristícs of the Design Processing Models 

All design processing models reviewed above try to capture the characteristics of the 
design environment and represent them in the database system. Basically, diese models 
differ from one another to the extent in which they model the design environment. 

While TMl models only the object processing activity, TM2 and TM3 support the design 
transaction concept which represents the complete activity of the designer and consists of 
a set of related object processing steps. Finally, TM4 and TM5 also model the cooperative 
work of a group of designers through the project and group transaction concept, 
respectively. P-Tr as well as G-Tr consist of a set of related design transactions which 
may exchange non-committed object updates. 

Figure 3.6 relates the processing models to the hierarchy of work units in the design 
environment. These work units represent spheres of control in the database system. 
Therefore, they can be modeled as transactíons. Since these transactions forni a hierarchy, 
they can be represented as nested transactions, too. 

object processing 

TM2, TM3 

design work of one designer 

design work of a group of designers 

TM4, TM5 

Fig. 3.6: Relating the transactíon models to the design work hierarchy 

In the following, we present a list of the main characteristícs of the design environment 
which are captured by the various design processing models. 
• The database is basically subdivided into a public database and a number of private 

databases. The public database stores the released versions of design objects and, 
maybe, other data related to the overall design enterprise. The designers work on 
design object copies (i.e. non-released object versions) which are kept in private 
databases. The designer may only integrate a design object copy into the public 
database (either as a next released version of the object or as its only valid version) 
when this copy is design object consistent. These characteristics of the design 
environment are modeled by all processing models reviewed. 

• The designer copies data from/into the public database on an object basis. That is, 
complex/molecular objects are copied as a whole fronVinto the public database. 
Consequently, the design object represents a possible granularity unit for concurrency 
control (and recovery) purposes at the public system. This characteristic of the design 
environment is modeled through the CHECKOUT/IN operations and supported by all 
processing models reviewed. 

• The set of related work steps executed by the designer constitutes the design 
transaction. This transaction represents a sphere of control in the design environment. 
All models but TMl model the design transaction concept. They do that in different 
ways, though. While TM2 uses the design transaction concept only to support 
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automatic CHECKOUT-lock management in the public database, TM3, TM4 and TM5 
model the design transaction as a unit of work at the private system which can even be 
backed out by 3ie designer. 

• Besides relating object processing steps to each other at the private system, the design 
transaction may also relate them to queries and short update operations which are 
started by the designer at the public system and directly manipulate data in the public 
database. Only TM4 models queries and short update operatíons in the public database 
as part of the design transactíon. 

• Since the design transactíon consists of a set of processing steps and can take long, it 
should be possible to protect parts of it from system failures. TM3 and TM4 model tíiis 
characteristíc of the design environment expliciüy. Both models represent processing 
steps as short-duration transactions which automatically guarantee atomicity and 
durability in case of failures at the private system. Besides that, TM3 also models the 
concept of savepoint which enables the designer to save specific design states which he 
may want to restore some time later (SAVEPOINT/RESTORE statements). 

• Reflecting dynamic characteristics of design tools, the private system should support 
the concurrem execution of related processing steps. Moreover, it should allow 
prc«essing steps to be started by other processing steps (to model, for instance, design 
actívitíes in window-supportíng systems). The design transactíon, then, could consist 
of a set of parallel, possibly concurrent processing steps. From the models reviewed, 
only TM4 represents the design transactíon in this way. 

• Design cooperation is another characteristíc of the design environment. Usually, a 
group of designers cooperate in the same design work. In this case, semi-consistent 
design parts may have to be exchanged among designers of the same group. TM4 and 
TM5 model the concept of group transaction which relates design transactions to a 
higher sphere of control in the DBS. The group transaction can be viewed as the root 
of a nested transactíon hierarchy of design transactíons. TM5 permits only two-level 
transactíon hierarchies. TM4 permits n-level hierarchies where each design transactíon 
can represent the design efforts of more than one designer (i.e. the efforts of the owner 
of the design transaction and those of designers which execute descendant design 
transactíons). 

3.6.2 Generalizing the Processing Models Reviewed 

Based on the design processing models reviewed and the hierarchical structure of the 
design work, we can derive three simplified design processing models which generalize 
thoM found in the literature. Each one of the new models represents a specific class of 
design processing models and will be described on the basis of the properties shown by 
the models reviewed. 

In the first general nxxlel (GMl) the public system views the work of the designer as a set 
of independem object processing steps. These steps are represented by processing 
activities executed during CHECKOUT/IN intervals. The notion of design transaction is 
used at the public system only to enable the reaUzation of long-duration locks. In the 
second model (GM2), the public system views the work of the designer as a (design) 
transactíon which executes at a remote processing node. The design transaction follows a 
strict two-phase CHECKOUT/IN protocol to copy objects from and to the public 
database. l l ie third processing tnodel (GM3) models tíie design cooperation of a group of 
designers. 

Ali three models represent the design work at the private system in the same way. The 
whole activity of the designer is captured in the notion of a design transaction at the 
workstatíon. This transaction is subdivided into a set of possibly concurrent, recovery 
transactions. Moreover, these recovery transactions support what we call an intemal 
savepoint mechanism. Since the recovery transaction can sometimes take longer than 
conventional transactions in business-related applications (e.g. when the designer creates 
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his design using a graphic tool), the designer may want to save some internai state of it 
either to protect it from system failures or to restore this state later on, if he thinks it is 
necessary. We make two restrictions to internai savepoints, though. First, they cannot be 
generated as long as there exist active sub-transactions and/or remote operations which 
were started by the recovery transaction. Secondly, they can only be restored by the user 
from inside of the same recovery transaction where they were generated. These two 
restrictions simplify savepoint restorãtion activities in recovery transaction hierarchies (see 
[HaRo87]). They help defming a clear scope of recoveiy for savepoint restorãtion. 

At the public system, remote operations are modeled as short transactions by ali general 
processing models. Tlius, CHECKOUT/IN operations (in the public or group database) 
as well as queries and short update operations started by the designer at the workstation 
are executed as isolated short transactions at the public system. In GM2 and GM3, these 
transactions are logically related to each other by means of the design transaction. 

3.6.2.1 The Design Transaction in GMl 

At tíie beginning of his work, the designer starts a design transaction at the private 
system. When this transaction executes its first CHECKOUT operation, the public system 
notíces its existence and starts controiling its execution in the public database. The design 
transaction inherits CHECKOUT locks from conventional transactions which execute 
CHECKOUT operations on its behalf at the public system. These locks are released when 
the objects are checked back into the parent database. Short-duration locks acquired by the 
execution of queries and short update operations are released at the end of the respective 
short transactions. Thus, these operations are not associated with the design transaction. 

In GMl, the design transaction may execute CHECKOUT/IN operatíons in any order. 
Moreover, objects which have been checked out must not be checked in atomically (i.e. in 
only one CHECKIN operation). Therefore, the DBS cannot guarantee that the concurrent 
execution of design transactíons is always serializable. Consequenúy, design transaction 
schedules may become non-recoverable [BeHG87]. Furthermore, the designer cannot 
abort his design transaction. He can at most start compensatíon operations for committed 
recovery transactíons. 

When the designer wants to commit his design transactíon, the private system must 
consult the public system. Design transactíons are allowed to commit only if ali objects 
they have checked out of the public database have already been checked back in there. 

3.6.2.2 The Design Transactíon in GM2 

In contrast to GMl, GM2 enforces a strict two-phase CHECKOUT/IN protocol for 
design transactíons. That is, ali objects checked out by the design transaction are checked 
back into the parent database at transactíon commit. Moreover, this operation must be 
atomic. Thus, every design transaction executes, at most, one CHECKIN operation at the 
public system. The design transaction constitutes the unit of ísolation at the public system 
conceming object processing activities. As opposed to GMl, GM2 enforces recoverable 
design transactíon schedules at the public system. Recovery can, therefore, be based on 
serializability to maintain database consistency. 

Besides modeling internai savepoints for recovery transactions, GM2 introduces the 
concept of externai savepoints for design transactíons. This savepoints save particular 
states of the design transactíon. These states can be restored by the designer at any time 
before the design transaction terminates. To simplify savepoint restorãtion, we restrict 
externai savepoint generation to those points in tíme when no recovery transactíon is 
active at the private system. 
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3.6.2.3 Modeling Cooperative Group Work in GM3 

GM3 models the cooperativa work of a group of designers as a group transaction at the 
public system. Similar to the group transaction of TM5, each G-Tr is associated with a 
group database, respectively. As with G-Tr, the group database is also located at the 
server node and controlled by the public system. We could imagine the group database 
being implemented as a subset of the public database that can grow dynamically. G-Tr is 
the paient transaction of all design transactions belonging to designers of a group. 

Design transactions access data in the public database through the group transaction. That 
is, design transactions check objects out of the group database. If the desired objects are 
not there, G-Tr checks them out of the public database. Similarly, design transactions 
check objects back into the group database after having processed them. Furthermore, 
locks acquired by queries and short update transactions in the public system are inherited 
by G-Tr. 

While G-Tr follows a (long) strict two-phase locking protocol and a strict two-phase 
CHECKOUT/IN protocol at üie public system, design transactions follow a predicatewise 
two-phase locking protocol, as it is presented in [KoKB87]. To enable designers to 
exchange results biefore design transaction commit, database consistency cannot te b^ed 
on transactíon serializability. In [KoKBBT], the requirement of transaction serializability 
is relaxed by replacing it with a requirement on preservatíon of the consistency constraint. 
We briefly explain this concept telow. 

Database consistency can te described by a consistency constraint. The consistency 
constraint for the database can te described in the form of a predicate. A transaction is 
said to preserve database consistency if it preserves the consistency constraint when it 
runs alone. The consistency constraint for the database can te expressed as a conjunctíon 
of relatively simple consistency constraints for parts of the database. Since most 
transactions only process parts of the database, they must only preserve some of the 
predicates that form the consistency constraint for the whole databaâs. 

It is possible to represent every consistency constraint in the conjunctíve normal form, 
that is, as a conjunctíon of simpler predicates such that none of them contains any ands. 
Each such a predicate will te called a conjunct. 

We can, then, write the consistency constraint for the whole database as a set of conjuncts 
related by and operators. Moreover, we can subdivide the database itself into a set of 
groups of data where each group is, respectívely, related to only one of the conjuncts of 
Sie consistency constraint. Thus, the invariant of each transaction can te represented by 
the conjunction of the conjuncts related to the data it manipulates. If we divide the 
database in such a way that each group of data corresponds exactiy to one design object, 
each design object wiÜ te related to one of the conjuncts of the consistency constraint for 
the database. 

The relation tetween consistency constraints and groups of data is used in [KoKB87] to 
synchronize concurrent execution of design transactions on an object basis. The 
predicatewise two-phase locking protocol observes two-phase locking only with respect 
to each group of data teing manipulated. That is, data of a group cannot te locked by a 
transaction if it released some lock on other data of the same group, already. On the other 
hand, data objects of different groups can te locked and unlocked independentiy. 

In the following, we assume that the design database can te subdivided into a set of 
design objects, each of which teing related to exactiy one conjunct of the consistency 
constraint for the whole database. Moreover, we further suppose that every conjunct of 
the constraint is related to some design object of the database. 

In GM3, design transactíons exchange object updates by simply checking objects back 
into the group database. They can do that at any time. They are only required not to check 
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out the same object more than once during normal execution. As with GM2, the designer 
can generate externai savepoints for his design transaction. He can, then, roÚ back design 
work by either backing up D-Tr to some previously generated externai savepoint or by 
backing it out completely. 

3.6.3 Properties of tlie General Design Processing Models 

Since the processing models derived above can be considered as being extensions of the 
conventional transaction paradigm, we can identify transaction properties for them, too. 

While the transaction paradigm relates ali its properties (i.e. atomicity, isolation, 
correcmess, and persistency) to the same unit of user work, namely the conventional 
transaction, the design processing models relate these properties to different units of work 
(e.g. recovery transaction, design transaction, group transaction). In this section, we 
relate units of work that are modeled by the general processing models presented above to 
properties that must be guaranteed by the recovery mechanism. Since we are mainly 
interested in investigating database recovery requirements in the design environment, we 
will concentrate our efforts on the study of those properties of the design work that can 
influence recove^ activity. Therefore, we will not further investigate units of consistency 
in the design environment. 

For each one of the general models presented above, we will discuss atomicity, 
persistency in case of failures, and two other properties. The first of them is related to 
either units of work or control informatíon which should survive failures even before the 
design work terminates. Contrary to the conventional transaction paradigm, the new 
processing models enable designers to save internai Q-ansactíon states that must be 
protected against failures and should be restored on user request. Furthermore, the state 
of longer transactíons (i.e. design transactions and group transactíons) must also survive 
failures. In the following, this property will be called temporary persistency (to relate 
it to and differentiate it from the persistency property of conventional transactions). 

The second property to be introduced is related to the set of work units that can be backed 
out by the designer (before their results are committed). In the conventional transaction 
model, this set contains only one element, namely the conventional transaction itself. The 
new models allow designers to roll back other units of design work as well (e.g. design 
transaction and group transaction). Figure 3.7 summarizes what is described below. 

3.6.3.1 Transaction Properties in GMl 

In GMl, (conventional) short transactions represent the unit of atomicity and durability at 
the public database. GMl models the design transaction at that system only to relate it to 
its associated CHECKOUT locks. Thus, D-Tr represents neither a unit of atomicity nor a 
unit of durability at the public system. On the other hand, the design transaction 
represents the unit of temporary persistency at that system. That is, the state of the design 
transaction (e.g. information about its associated CHECKOUT locks) must survive 
system failures at the public system. 

At the private system, only (conventional) recovery transactions for which no internai 
savepoint has been generated must be executed atomically. On the other hand, recovery 
transactíons for which, at least, one internai savepoint has been generated must survive 
system failures at the workstation even if they have not yet committed. In case of failures, 
the recovery manager must restore their youngest internai savepoint. Thus, the design 
work executed between recovery transaction begin and the last internai savepoint 
constimtes a unit of temporary persistency at the workstation. Besides internai savepoints, 
the state of the design transaction also represents a unit of temporary persistency at the 
private system. 

4 9 



At the private system, the designer can roll back work done by either aborting the 
recovery transaction or restoring R-Ws state to a previously generated intemal savepoint. 
On the other hand, the designer cannot directly roll back any unit of work at the public 
system. Since the designer cannot back out his design transaction, recovery transactions 
always represent the unit of durability at the private system. That is, the effects of design 
transactions can only be rolled back in the private database if the designer starts 
compensation transactions for them. 

GMl GM2 GM3 

server workstation server workstatíon server workstatíon 

Atomidty Conv.-Tr Conv.-Tr Conv.-Tr Conv.-Tr Conv.-Tr Conv.-Tr 

Durability 
(after oommlt) Conv.-Tr Conv.-Tr Conv.-Tr Conv.-Tr Conv.-Tr Conv.-Tr 

Temporary 
Persistency 

(before commit) 
D-Tr's stat 

D-Tr's state 
d and Intemal 

savepoints 
D-Tr's state 

D-Tr's state, 
Internai and 

externai 
savepoints 

G-Tr's stat 
D-Tr'8 state, 
Internai ar>d 

externai 
savepoints 

work unHs which 
can be aborted 
by the designer 

none 
Conv.-Tr and 
the work done 
after intem^d 
savepoints 

none 

Conv.-Tr, D-Tr, 
and work done 
after Internai 
or externai 
savepoints 

G-Tr 

Conv.-Tr, D-Tr, 
and work done 
after intemal 
or externai 
savepoints 

Note: Conv.-Tr stands for conventional transaction (e.g. S-Tr, R-Tr), D-Tr for design transaction, and G-Tr for group transaction. •' 

Fig. 3.7: The transaction properties of the general processing models 

3.6.3.2 Transaction Properties in GM2 

As with GMl, conventional transactions in GM2 also represem the units of atomicity and 
durability at both the public and the private systems. While the design transaction is the 
only unit of temporary persistency at the public system, the private system must guarantee 
this projperty for D-Tr as well as for externai and intemal savepoints. 

The designer can completely back out non-committed recovery transactions as well as his 
design transaction at the private system. He can also roll back work done by either 
restoring R-Tr's state to some intemal savepoint or backing up D-Tr to a previously 
generated externai savepoint. As with GMl, the designer cannot directly roll back work 
done at the public system. 

3.6.3.3 Properties of GM3 

As with the other general models, GM3 models the conventional transaction at both public 
and private systems as the unit of atomicity and durability in case of system failures. At 
the public system, the work unit for which temporary persistency must be. guaranteed is 
represented by the group transaction. On the other hand, the private system must 
guarantee temporary persistency for D-Tr, externai savepoints, and intemal savepoints. 

At the public system, the designer can directly back out non-coirimitted group 
transactions. At the private system, he can back out recovery transactions as well as the 
D-Tr. He can also roll back work done by either restoring R-Tr,s state to an intemal 
savepoint or backing up D-Tr to some externai savepoint. 
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Chapter 4 

Database Recovery Requirements in the Design 
Environment 

4.1 Recovery Situations in the Design Environment 

In this sectíon, we discuss possible failures in the design environment and investigate 
how these failures can affect both database consistency and database system operation. 
The reference system architecture derived in chapter 2 as well as the general design 
transaction models presented in chapter 3 constitute the framework on the basis of which 
we conduct the following discussion. 

4.1.1 Undesired Events in the Design Environment 

In [LaSt79], the set of ali events which affect computing systems is divided into two 
mutually exclusive groups: the group of desired events and the group of undesired events. 
Desired events are those which make part of as well as collaborate in the correct 
computing activity (e.g. transactions which produce consistent database states). Failures 
in the computing system are examples of undesired events. The group of undesired events 
has been further subdivided into two categories: undesired but expected events and 
undesired and unexpected events. Examples of undesired but expected events are system 
crashes or failures in the communications network. Earthquake and nuclear war are 
examples of undesired and unexpected events which can damage computing systems. 

1 At least two facts make it impossible to construct systems which cope with ali kinds of 
undesired events. First, it is impossible to conceive ali events which can occur in a system 
(nor ali combinations of them). Secondly, it would be too expensive to protect systems 
against ali t ^ e s of failures. Usually, the number and type of undesired events the system 
can cope with depends on a cost-benefit compromise. 

, Undesired events can affect the computing system in two ways: they can produce an 
inconsistent system state or/and reduce system availability. Systems are more or less 
reliable, depending on how they can tolerate and recover from failures [M0AB86]. 
Mechanisms'which are built to help systems tolerate and recover from failures can be 
installed in ali layers of the computing system. Such mechanisms can be reaíized at the 
hardware, operating system, database system, and application program layers. 

The recovery component of a DBS should guarantee system reliability at the database 
system layer. During its design, the set of failures (i.e. undesired events) it will have to 
cope with must be determined. This occurs on the basis of a set of requirements like the 
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expected reliability of the overall computing system, the reliability of other system layers, 
the DBS architecture, and the processing model to be realized. 

A system is more or less reliable depending on how well it maintains availability and 
correctness by executing its activities. To maintain availability at the database system 
layer, the DBS must guarantee that transactions can continue normal execution even in 
case of failures. This can be achieved only if two preconditions are satisfied. First, the 
DBS must be realized as a distributed database system. That is, its algorithm executes on 
a set of autonomous processing nodes. For this discussion, a processing node consists of 
a processor and a storage hierarchy associated with it. Autonomous processing nodes fml 
independentiy. That is, failures on one node do not necessarily cause other nodes to fail. 
The second precondition which must be satisfied by the DBS so that it guarantees system 
availability is related to the replication of the database in either some or even all processing 
nodes of the computing system. Since transactions must continue normal execution even 
in case of failures, they should be able to access all the data they need when either a 
processing node or the communications network fails. 

Although the characteristics of the design environment lead to the distribution of the DBS 
(e.g. over a server-workstation computer configuration), the necessity and the costs of 
data replication in this environment are not so clear. At least untü now, availability seems 
not to be seen as a serious problem in the design environment. The design activity is by 
no means a real-time application. Design transactions take long and can be suspended 
many times, before they terminate (i.e. usually, they consist of various design sessions). 
On the other hand, we can think of some situations where system availability should be 
preserved. For instance, the design transaction at the private system (i.e. private 
processing node) depends on CHECKOUT operations. Although these operations are 
supposed to be executed seldom, they synchronize the whole design work. Thus, it 
would be nice if the system could guarantee the execution of CHECKOUT operations 
even if the server node fails. A failure at a private node constitutes another situation where 
availability could be important. The designer is not able to resume his work at another 
workstation, if he cannot access his private database from that node. System mechanisms 
should be provided which permit the designer to reconstruct his private database at 
another processing node in case of node failure as well as in the same node in case of 
media failure. 

While the design database system can also be realized wiüiout mechanisms which ass^e 
avaUability in case of system failures, it cannot dispense with the mechanisms which 
guarantee correctness. The correctness aspect is related to the preservatíon of database 
consistency. In standard database systems, the transactíon manager is responsible for 
database consistency during normal processing as well as in case of failures. Since the 
new design processing models are extensions of the conventional transactíon paradigtti 
and, at the same time, introduce more spheres of control in the processing environment, 
we should investigate how these new models may influence database recovery. 

We will only consider the correctness aspect of database system reliability, since this is 
the most important reliability aspect for the design environment (and for other 
environments, too). Besides, the maintenance of correctness in the design environment 
already represents a complex problem for which many questions have not yet been 
answered. These questions are related to the correctness of already existent recovery 
techniques in the design environment (e.g. can they guarantee serializability only on an 
object basis?) and the efficiency of those recovery mechanisms which can guarantee 
correcmess in this environment (e.g. how do they influence response time in certain 
situatíons?). 

To continue our investigation of database recovery requirements in the design 
environment, we must decide which failures of this environment the database system 
should cope with. To be able to investigate recovery requirements in detail, we should 
focus only on the criticai failures which can affect normal database processing. The rest of 
the possible failures will be further subdivided into two categories: the failures which we 
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assume will be handled at other system layers and the ones which will be treated as 
undesired and unexpected events. Before we make our assumptions, though, let us 
enumerate the set of undesired but expected events which will be considered here: 
• Processar Failure: There are, at least, three ways in which the proeessor can fail 

[MoAb86]. It can simply stop working (i.e. it halts). It is also possible that the 
proeessor continues worldng but presents abnormal, intermittent delays. Finally, the 
proeessor can go insane. That is, it continues to work but generates incorrect resiüts. 

• Storage Failures: One can devise two distinct categories of database storage: volatile 
(e.g. main memory) and nonvolatile storage (e.g. storage space on the basis of 
magnetic disks or tapes). When the proeessor fails, the contents of volatile storage are 
losL Since nonvolatile storage is usually implemented as an autonomous device, it fails 
independently from the proeessor. 

• Network Failures: If we consider the communications network to be an autonomous 
hardware and software system which connects processing nodes to one another, we 
can assume that it fails independently from those nodes. When the network fails, 
messages between nodes are not passed properly anymore. 

• Network Partitions: These failures can be caused either by a node or a network failure. 
The distributed database system is partitioned into groups of processing nodes. Inside 
each group, nodes can communicate with one another but no communication between 
nodes of different groups is possible. 

• Transaction Failures: In this failure categoty, we group ali events together which can 
interrupt the normal execution of some specific transaction. Transaction failures can be 
identified either by the transaction itself (e.g. when incorrect input data is detected), by 
the designer, or by the database system (e.g. by the occturence of a deadlock involving 
the transaction). 

4.1.2 A Failure Model for the Design Database System 

Relying on the list of undesired but expected events, we make the following assumptions 
about a failure model for database systems in the design environment: 
• We will use a fail-stop model to represent processing node activity at both the server 

and the workstation nodes. At any time, the node is in one of three possible states: 
perfect, halted, or recovery. In the perfect state, the node functions correctly. That is, 
the node executes its algorithm correcüy and in the expected time interval. Moreover, it 
never stops and responds promptly to messages from other nodes. In the halted state, 
the node halts and does absolutely nothing else. When the node is in the recovery state, 
it executes a set of predefíned algorithms to recover the database to a consistent state. 
As opposed to [MoAb86], we relax the requirement that the node in the recovery state 
may only execute recovery algorithms. Depending on the recovery technique realized, 
the node can start new transactions in parallel to recovery activities [KARD88]. Figure 
4.1 depicts the dynamical characteristics of the fail-stop model. At the beginning of the 
processing activity, the node is in the perfect state. At some point in time, a node 
failure occurs and the node halts. Some time later, the node enters the recovery state. 
At this point, thç database system recovers from the failure. At the end of the recovery 
activities, the node enters the perfect state again. 
By choosing the fail-stop model to represent processing node activity in the distributed 
design database system, we assume that the other two types of proeessor failures 
described above, namely correct processing with abnormal delays and incorrect 
processing, are treated by lower layers of the computing system. 
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Fig. 4.1; A fail-stop model for processing nodes 

We will also represent storage failures in our failure model. The contents of volatile 
memory are lost every time tiie processor fails. On the other hand, volatile memoiy as 
well as processors remain intact when non-volatile storage fails. As with processor 
failures, we also consider non-volatile storage failures to te processing node failures. 
Therefore, we assume that the processing node immediately stops when storage 
failures occur. 
It will further be assumed that the hardware and operating system layer provide the 
database system with a reliable communications network [MoAb86]. The 
communications subsystem is supposed to always deliver messages in the right order 
and in the expected time interval. Furthermore, we assume that this system neither 
duplicates messages nor generates spontaneous messages. Finally, processing nodes 
interpret network failures (e.g. partition, break down, loss of messages) as failures at 
the nodes with which they want to communicate. 
Ali transaction failures are handled by the recovery component of the database system. 
Processing situations which can require recovery activity in the scope of transactions 
are deadlock situations as well as blocking situations involving CHECKOUT 
operations, user-requested transaction backout, and restoring the transactíon state to a 
previously generated savepoint. According to the general processing models of chapter 
3, deadlock simatíons can take place at the public and the private systems. The same 
holds for blocking situations. On the other hand, we assume the designer can only 
abort transactions that run at the workstation. Consequently, transactíons being 
executed at the public system may also have to be aborted. Finally, the generation as 
well as restorãtion of savepoints always occur at the private system (with possible 
consequences at the public system, too). 

4.2 Recovery Protocois for the Design Database System 

In this sectíon, we present a set of integrated recovery and communication protocois 
which cope with the failures derived in the last section. These protocois assume a one-
node failure model. That is, they suppose that processing nodes fali independently and 
not at the same time. Moreover, it is assumed that a node does not fail while another one 
is recoverying from a failure. On the other hand, the protocois support the situation where 
a node fails while recoverying from a previous failure. 

The recovery protocois rely on properties of the general processing models introduced in 
chapter 3. Moreover, they consist of basic recovery and communication actions and 
describe the database recovery activity in a general form. Therefore, this set of protocois 
represents no specific implementation strategy for database recovery in the design 
environment. In principie, any recovery technique intended to guarantee database 
recovery in this environment should be based on these protocois, though. The protocois 
describe recovery actions that cope with different recovery situatíons, respectívely. Since 
these algorithms cover recovery activities for all general processing models of chapter 3, 
we believe that optimizations by specific implementations are possible. 
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4.2.1 Fur ther Assumptions about the Design Database System 

Besides the assumptions made so far, the recovery and communication protocols to be 
presented here have been designed under the following additional suppositions: 
• The DBS controls the execution of (sub)transactíons at remote processing nodes (e.g. 

server node) by enforcing an extended version of the centralized two-phase commit 
protocol discussed in [MoAb86]. 
Recovery transactions running at the workstation can start remote operations at the 
server node asynchronously. That is, the designer or the private system at the 
workstation need not wait for the results of a remote operation before they can start 
another remote operation at the server node. 
To start a remote operation at the server, the private system sends a corresponding 
s t a r t -work message and resumes its own processing work (i.e. the recovery 
transaction at the workstation). By receiving a start-work message, the public system 
begins executing the required task (i.e. it starts a short transaction to execute the 
request). If the work at the server node terminates successfully, the public system 
saves its results (i.e. the short transaction enters the prepared state) and sends the 
private system an ok message. Otherwise, the public system aborts the short 
transaction and sends a nok message to the private system. 
If the recovery transaction terminates successfully, the private system saves its results 
and waits for the messages of the public system. Note that, for each remote operatíon 
started at the server node, the private system waits for one reply (either ok or nok) of 
the public system. 
In case the recovery transactíon must be backed out at the workstatíon, the private 
system sends the public system one abort message for each remote operatíon started at 
the server node. When the public system receives an abort message, it immediately 
rolls back the corresponding short transactíon (no matter the state of it). 
If the private system receives ok messages for ali remote operatíons and the recovery 
transaction terminates successfully, it sends the public system one commit message 
for each remote operatíon started. When the public system receives a commit message 
it commits the corresponding short transactíon, if this transactíon is in the prepared 
state. 
If the recovery transactíon terminates successfully but the private system receives some 
nok messages from the public system, it (or the designer) can decide either to abort the 
recovery transaction and ali successfully terminated short transactions, or to restart 
those remote operatíons which failed, or even to start new (altemative) remote 
operations. In contrast to the centralized two-phase commit protocol discussed in 
[MoAb86], these three altematíves are possible in our extension, because the private 
system always sends the public system one transaction terminatíon reply (either 
commit or abort) for each remote operation started at the server node. 
We explain our extension to the two-phase commit protocol in [MoAbSó] with an 
example which is illustrated in Figure 4.2. Suppose the designer develops his design 
by means of a design tool. The whole execution of such a graphic program (including 
remote operatíons) will be realized as one (possibly long) recovery transactíon at the 
private system. Suppose further that the design being developed relies on objects Oi 
and O2. First, the private system starts a CHECKOUT operatíon at the public system 
to copy Oi into the private database. After Oi is sent to the workstation and the server 
has saved its related CHECKOUT locks in a local log file, the public system sends an 
ok message to the private system and the design tool begins processing Oi at the 
workstatíon. Note that, at this point in tíme, the server has not yet committwl the short 
transactíon which executes the CHECKOUT operatíon related to Oi at the server node. 
Before checking out O2, the design tool generates an intemal savepoint (isvp) for the 
recovery transactíon. If the CHECKOUT (sub)transactíon which should copy O2 fails 
at the public system, the design tool can decide either to back out the recovery 
transactíon completely, or to restore R-Tr's state to the previously generated savepoint 
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and try to copy O2 again (or start another CHECKOUT operation to copy, for 
instance, object O3). The second altemative helps preserving the work already done on 
the basis of Oi. 

private svs temat the 
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start 
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Note: isvp stands for Internai savepoint and msg stands for message . 

Fig. 4,2: Extending the cotimiit protocol to cope with savepoints 

Remote transactions which execute CHECKOUT operations at the public system 
cannot be blocked forever. If the desired object has already been locked by another 
transaction in an incompatible mode, the remote (sub)transaction checking out this 
object is aborted by the public system and a nok message (possibly together with 
some explanatíon) is sent to the private system. The designer, then, must decide what 
to do next. 
CHECKIN operations are executed by special recovery transactions (i.e. CHECKIN 
recovery transactions), These transactions execute no other operations, On the basis of 
this assumption, we can simplify the recovery protocols. This simplification leads to 
no loss of generality by the protocols, though. 
Remote (sub)transactions can be executed asynchronously. That is, remote operations 
which are started by the same recovery transaction can be executed in parallel at the 
server node. 
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• In case the recovery protocols are applied to an environment which realizes the GM3 
design processing model, the public system will always request design transactions to 
abort, if they try to copy objects either from or into the group database of an inexistent 
(e.g. aborted) group transaction. 

• We assume the transaction manager of the database system associates a state record 
with every transaction which is started in the design environment. Moreover, every 
data system related to the execution of a transaction (e.g. the public system) keeps its 
own version of the transaction's state record. Thus, every system involved in the 
transaction execution can keep track of exactly those informations about the transaction 
it needs. 
In systems which realize either GMl or GM2, we assume that the state record kept by 
the public system for a design transaction contains, at least, information about the 
objects the transaction checked out (e.g. object identifier, lock mode, version number, 
if Üie object has already been checked back into the public database). 
At the private system, the state record of the design transaction is assumed to store the 
list of committed short update operations which have been started from inside of it as 
well as information about externai savepoints. We also suppose that the private system 
keeps state records for running recovery transactions, too. These records mainly store 
information about internai savepoints as well as remote operations which have been 
started from inside these transactíons. 
In systems which realizes the GM3 processing model, we suppose the public system 
associates one state record with every running group transaction. Every G-Tr state 
record contains informatíon about the state of the respective design (sub)transactions at 
the public system as well as the objects and locks of the respective group database. 

4.2.2 The Basic Actions of the Recovery Protocols 

In the following, we introduce a set of processing primitives which form the basis of our 
integrated recovery and communication protocols. Later on in this section, a specific 
sequence of processing primitive calls will be associated with every recovery situation. 
The first tiiree primitives to be presented are based on the recovery actions proposed in 
[HãRe83]. 
• Undo (tr): Partíal-UNDO action described in [HâRe83]; it rolls back the work unit tr. 
• Gundo (set): Global-UNDO action; all work units which are elements of set are 

backed out; set imposes a partíal order on its elements. 
• Redo (set): Combines the effects of the Partíal-REDO and Global-REDO actíons. That 

is, the results of all work units which are elements of set will be restored in the 
database. set imposes a partíal order on its elements. 

• Restore (transaction state): Restores the state record of some transaction. At the same 
time, this primitive can use the data kept by this record to restore other system 
informations (e.g. public system's lock table), too. 

• Delete (data structure): Deletes some data structure of the system (e.g. private 
database) and releases storage space related to it 

• Restart (tr): Restarts the execution of the work unit tr. 
• Decide (first option or second option): This primitive represents a decision to be 

taken by the designer. Either the first option or the second option will be executed. 
• Inform (information): Shows some information to the designer (e.g. the list of all 

committed short update operations which have been started from inside the design 
transaction). 

• Msg (receiver,msg,explanation): Sends the processing node identified by receiver the 
message (i.e. character string) represented by msg and, possibly, some explanation 
about the reasons for sending the message (explanation). In the following, we use the 
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character "&" to represent the string concatenation operator inside the message 
processing primitive. Further, we consider all operands of & to be character strings. 

• Receive (msg): Presents the processing node the message msg which has been sent to 
this node by means of a Msg statement 

• Wait (wait-for clame): Represents a waiting time for the recovery mechanism. The 
wait-for clause indicates what the recovery should wait for. 

4.2.3 Some Procedures to Simplify the Description of the Protocois 

Since some specific sequences of processing actions are executed by various of the 
recovery protocois to be presented, we d e c i d i to describe them here as procedures that 
can be called by the protocol programs. These procedures as well as the protocois 
themselves are described by means of a Pascal-like programming language. Note that 
upper-case characters are used to begin new statements. Moreover, comments on the code 
can be written using either the "Comment" statement or inserting them between a "/*" 
string and a "*/" string. 

• PROCEDURE ACnONl (R-Tr): 
Comment: Actionl is executed by the private system at the workstation. If 

R-Tr has previously generated at least one internai savepoint, this 
procedure restores R-Tr's state to its youngest savepoint. 
Otherwise, R-Tr is completely backed out; 

Begin 
If R-Tr has at least one internai savepoint 

then Restore (R-Tr's state to its youngest savepoint) 
else Undo (R-Tr); 

remoteop := Select those R-Tr's remote operations which should be undone; 
For eveiy remote operation OPi in remoteop do 

Msg (server node, 'abort-operation'& OPi's identifier); 
Inform (list of undone operations, cause: abort-or-restore savepoint); 
End; /* actionl */ 

• PROCEDURE ACnON2 (private system's messages): 
Comment: Actíon2 is executed by the public system at the server node. By 

receiving a set of abort messages from the private system at the 
workstation, the public system aborts the corresponding S-Trs. 
Every message received contains two informations. First, it 
indicates which operation should be executed (i.e. the abort 
operation, in this case). Secondly, the message contains the 
identifier of the remote operation associated with the S-Tr which 
should be aborted; 

Begin 
While Receive (msg = 'abort-operation') do 

Undo (the S-Tr associated with OPi's identifier); 
End; /* action2 */ 
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PROCEDURE ACnON3: 
Comment: ActionS is processed by the private system at the workstation to 

back out ali running R-Tr. This procedure is called in three 
situations: by rolling back D-Tr to an externai savepoint, by 
completely aborting D-Tr, and by aborting a group transaction; 

Begin 
For every running R-Tr do 

Begin 
Undo (R-Tr); 
remoteop := Select ali remote operations which have been started by R-Tr; 
For every operation OPj in remoteop do 

Msg (server node, 'abort operation'& OPi's identifier); 
End;/* for*/ 

End; /* actionS */ 

PROCEDURE ACnON4 (ctr, aborting, public-or-group-database): 
Comment: Action4 is executed by the private system to either CHECKIN or 

UNCHECKOUT objects in two possible situations: by backing 
up D-Tr's state to an externai savepoint or by aborting D-Tr. The 
parameters aborting and public-or-group-database are both 
boolean. ctr is a set of committed transactions; 

Begin 
outset := Select ali objects which have been checked out by some R-Tr in ctr; 
For every object Oi in outset do 

If aborting 
then Msg (server node,,UNCHECKOUT& Oi's identifier); 

/* check Oi into the public database without changes -> UNCHECKOUT */ 
else Begin /* restoring D-Tr's state to an externai savepoint */ 

Inform (outset); 
Decide (either check Oi in the public database without changes 

or Maintain Oi in the private database); 
End; /* else */ 

shortupd := Select ali committed remote update operations which have been started by 
some R-Tr in ctr; 

Inform (shortupd); 
For every operation OPi in shortupd do 

Decide (either Start a compensation operation for OPj or Do-Nothing); 
Wait (for ali necessary responses of the server node); 
End; /*actíon4 */ 

PROCEDURE ACTIONS: 
Comment: ActionS is executed by the public system at the server node when 

a D-Tr is either backed up to an externai savepoint or completely 
backed out by the designer at the workstation; 

Begin 
While Receive (msg = 'UNCHECKOUT) do 

Release CHECKOUT locks for object with Oi's identifier in the public database; 
End; /* actionS */ 
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PROCEDURE ACnONó (remote operation's identifier): 
Comment: Actionô may have to be executed by the private system at the 

workstation whenever either a deadlock or a blocking situation 
occurs at the server node; 

Begin 
Identify the R-Tr related to the lemote operation's identifier, 
Inform (long-duration blocking or deadlock at the public system); 
Decide (either Undo (R-Tr) or Restore (R-Tr's state to an internai savepoint)); 
End; /* actionõ */ 

PROCEDURE ACnON7 (inset): 
Comment: ActionT is executed by the public system at the server node when 

a D-Tr is either backed up to an externai savepoint or it is atorted, 
and the DBS realizes the GM3 processing model; inset 
represents a set of data objects which have been checked back 
into the database by some transaction. 

Begin 
For every object Oi in inset do 

Begin 
transset := Select all other design transactions which have checked O; out of the 

group database after D-Tr had updated it; 
For every transaction T^ in transset do 

Case Tk-state of 
Begin 

suspended: Append (msg = 'invalidated object'& Oi's identifier) to Tk's 
state record at the public system; 

aborted: Do-Nothing; 
active: Msg (Tk's node,,invalidated object'& Oi's identifier); 
ready: Begin 

Tk's state := active; 
Inform the design administrator (Tk is active again. Oi has 

been invalidated); 
End; /* ready */ 

End; /* case */ 
End; /* for every Oi */ 

End; /* action? */ 

4.2.4 Recovery Protocois Based on Transaction Serializability 

After describing the main operations to be executed by the recovery protocois as well as 
defining the most frequently executed sequences of these operations in the form of 
procedures, we are ready to present the protocois themselves. In this sectíon, we 
introduce those integrated recovery and communicatíon protocois which are based on and 
support serializable transaction schedules. Algorithms of this group guarantee the 
maintenance of transactíon serializability in case of failures. In the next sectíon, we will 
present those recovery protocois which are based on object-oriented two-phase locking 
protocois. 
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On the basis of our failure model, we can specify for each one of the general processing 
models proposed in chapter 3 the recovery protocols which are necessary and sufficient to 
guarantee database consistency in case of failures. If the DBS realizes GMl, the recovery 
manager must be capable of executing the following tasks: 
• Transaction undo for S-Tr at the server node and R-Tr at the workstation. 
• Restore the state of R-Tr to some previously generated intemal savepoint 
• Transaction redo for D-Tr at the server and at the workstation, S-Tr redo at the server, 

and R-Tr redo at the workstation. 

Since under GM2 D-Tr is atomic at the server node, the recovery manager should also 
support D-Tr backout in this environment besides realizing the recovery actions listed 
above. Moreover, in the GM2 environment the recovery manager must also support the 
generation and restoration of externai savepoints for D-Tr. 

In the GM3 environment, the recoveiy manager must realize ali the activities listed above, 
too. It must take into consideration, though, that the operations to abort D-Tr as well 
restore D-Tr's state to an externai savepoint must be based on object-oriented 
serializability. Besides, the GM3 environment requires that the recovery manager be able 
to restore G-Tr's state in case of a system crash at the server node and abort G-Tr on user 
request. 

In the following, we present a set of ten recovery protocols. They respectively recover the 
state of the database system in the following situations: node failure at the public system, 
node failure at the private system, deadlock situation at the public system, deadlock 
situation at the private system, blocking situation at the public system, backing up R-Tr's 
state to an intemal savepoint, user-requested R-Tr backout, backing up D-Tr's state to an 
extemal savepoint, user-requested D-Tr backout, and user-requested G-Tr backout. 

The protocol to back up D-Tr to some extemal savepoint as well as the one which aborts 
D-Tr are only valid for systems which realize the GM2 processing model. In the next 
subsection, we introduce two equivalent protocols which rely on object-oriented two-
phase locking to respectively restore D-Tr's state to some extemal savepoint and back out 
D-Tr in the scope of the group transaction (i.e. GM3). 

In the following, we will not present algorithms for data saving activities. Depending on 
the recovery technique to be realized, data saving activities can be very different (e.g. 
compare these activities by log techniques and by shadow techniques). We suppose that 
enough information is saved during normal system execution so that the recovery 
protocols can be cotrectly executed in case of failures. 

4.2.4.1 Recovery by Node Failure at the Public System's Site 

• Public system's actions; 
Comment: After node restart, the public system identifies the transactíons 

which were mnning or had already committed before the crash. 
Corresponding messages are sent to the respective private 
systems. Besides that, the public system executes undo as well as 
redo actíons on behalf of those transactíons; 

- ctr := Select the group of committed S-Tr; 
- ptr := Select the group of prepared S-Tr, 

/* non-committed transactíons which already saved results */ 
- utr := Select the group of unsaved S-Tr; 

/* transactíons which are neither in ctr nor in ptr */ 
- Gundo (utr); 
- Redo (ctr U ptr); 
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- Case transactíon model of 
Begin 
GMl: GM2: Restore (the state records of all running D-Tr); 
GM3: Restore (the state records of all running G-Tr); 
end; /* case */ 

- For every S-Tr in utr do 
Msg (user node,'nok,& identífier of the remote operatíon related to S-Tr,failure); 

- For every S-Tr in ptr do 
Msg (user node,,ok'& identifier of the remote operation related to S-Tr,failure). 

• Reaction at the private system: 
- If (msg = 'ok') 

then if the R-Tr related to the corresponding remote operation is committed 
then Msg (server node,'commit operation'& remote operation's identifier) 
else Do nothing 

else if (msg = 'nok') 
then ACnONl (R-Tr related to the corresponding remote operatíon). 

4.2.4.2 Recovery by Node Failure at the Private System's Site 
Comment: When recoverying from a node failure, the private system 

analyzes those transactíons which were running or had already 
terminated by the time the crash occurred. Committed R-Trs are 
redone, while interrupted ones which have a savepoint are backed 
up to the youngest savepoint. Both running transactíons without 
savepoint and aborted transactíons are completely backed ouL 

• Private system's actions; 
- ctr := Select the group of committed R-Tr, 
- str:= Select the group of R-Tr which are not in ctr but have at least one 

internai savepoint; 
- utr := Select the group of R-Tr which are neither in ctr nor in str, 
- For every R-Tr in (str U utr) do 

ACnONl (R-Tr); 
- Redo (ctr); 
- Restore (D-Tr's state record). 

• Reaction at the server node: 
- ACTION2 (ACnONl 's messages). 

4.2.4.3 Deadlock Situation at the Public System 

• Public system's actions; 
-.Select a short transaction to be aborted (victim S-Tr); 
- Undo (victim S-Tr); 
- If only short-duration locks are involved in the deadlock situation 

then Restart (victim S-Tr) 
else Msg (user node,'nok'& remote operatíon's identífier,deadlock). 
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• Reactíon at the private system: 
- ACnONó (the remote operation's identifier sent by the public system). 

4.2.4.4 Deadlock Situation at the Private System 
COmment: Since it is possible that recovery transactions execute concurrendy 

at the private system, deadlocks can take place at the workstation, 
too. In case of a deadlock, the private system simply selects a R-
Tr to be aborted, rolls it back, and inform the public system to 
abort those remote operations started flx)m inside tiie victim R-Tr; 

• Private system's action; 
- Select a victim R-Tr to be aborted; 
- ACTION 1 (victim R-Tr). 

• Reaction at the public system: 
- ACnON2 (ACnONl 's messages). 

4.2.4.5 Blocking Situation at the Public System 

• Public system's actions: 
- If the S-Tr to be blocked waits for short-duration locks /* no CHECKOUT locks */ 

then block (S-Tr) /* independent of the operation it executes */ 
else begin 

Undo (S-Tr); 
Msg (user node,'nok'& identifier of the remote operation related to S-Tr, 

long-duration blocking); 
end. 

• Reaction at the private system: 
- ACTION6 (remote operation's identifier sent by the public system). 

4.2.4.6 Backing Up R-Tr to an Internai Savepoint 

• Private system's actions: 
- Restore (R-Tr's state to a previously defined internai savepoint); 
- For every remote operation OPi which must be undone do 

/* those which have been started from R-Tr after the generation of the savepoint */ 
Msg (server node,,abort-operation'& OPi's identifier). 

• Reactíon at the server node: 
- ACTI0N2 (private system's messages). 

4.2.4.7 User-Requested R-Tr Backout 

• Private system's actíons: 
-Undo (R-Tr); 
- remoteop := Select all remote operations which have been started by R-Tr, 
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- For every operation OPi in remoteop do 
Msg (server node,,abort-operation,& OPi's identifier); 

- Inform (list of undone operations). 

• Reaction at the server node; 
- ACnON2 (private system's messages). 

4.2.4.8 Backing Up D-Tr to an Externai Savepoint (Only valid for GM2) 
Comment: When restoring the state of D-Tr to a previously defined externai 

savepoint, the private system must abort all currently running R-
Trs, roll back the effects of all committed R-Trs which executed 
at the workstation after the generation of the savepoint, and ask 
the server node to abort all non-committed remote operatíons 
which were started after the savepoint generation. Furthermore, 
the private system must inform the designer about those 
committed remote operations which have been started at the 
server node by recovery transactions which must be undone. The 
designer, then, must decide, if compensation operations must be 
started for those remote operations; 

• Private system's actions: 
- ACnON3; 
- ctr := Select all committed R-Tr which have been started after savepoint generation; 
- Gundo (ctr in the private database); 
ACTION4 (ctr, aborting ;= false, public-database); 

• Reaction at the server node: 
- ACnON2 (ACnON3's messages); 
- ACTIONS (ACTI0N4's messages). 

4.2.4.9 User-Requested D-Tr Backout (Only valid for GM2) 

• Private system's actions: 
- ACTION3; 
- ctr := Select all committed R-Tr which have been started from inside of D-Tr 

since D-Tr begin; 
ACnON4 (ctr, aborting := true, public-database); 
- Msg (server node,'D-Tr abort'& D-Tr's identifier); 
- Delete (private database). 

• Reaction at the server node: 
- ACnON2 (ACTION3's messages); 
- ACTIONS (ACnON4's messages); 
- Receive (msg = 'D-Tr abort'); 
- D-Tr (D-Tr's identifier).state := aborted. 
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4.2.4.10 User-Requested G-Tr Backout (Only valid for GM3) 
Comment: When aborting G-Tr, the public system at the server node must 

first request all yet running design transactions which are 
descendam of G-Tr to abort. Then, the public system releases the 
locks held by G-Tr in the public database and deletes the group 
database on server. 

• Public system's actions: 
- For all mnning G-Tr's design (sub)transactions do 

Msg (user node,'abort-D-Tr'& D-Tr's identifier,G-Tr-abort); 
- Release G-Tr's locks in the public database; 
- Delete (group database); 

/* if the group database is realized as a part of the public database, then */ 
/* restore the state this part was in when G-Tr began */ 

- Inform design administrator (G-Tr has been aborted); 
- Receive and Execute all requests made by private systems processing related D-Trs. 

• Reaction at private nodes which mn G-Tr's design (sub)transactions: 
- ACTIONS; 
- shortupd := Select all committed short update operations started from inside D-Tr, 
- Inform (shortupd); 
- For eveiy operation OPi in shortupd do 

Decide (either Start a compensation operatíon for OPi or Do-Nothing); 
- Wait (for all necessary responses of the server node); 
- Delete (private database); 
- Inform (D-Tr aborted). 

4.2.5 Recovery Protocols Based on Object-Oriented Two-Phase Locking 

In our study, database recovery in systems which realize the GM3 processing model must 
support D-Tr backout and externai savepoints in an environment where database 
consistency is preserved on the basis of a object-oriented two-phase lock protocol. The 
recovery mechanism must, therefore, be able to cope with cascading aborts. 

To better understand and follow the design activitíes of the group transactíon in GM3, we 
CM represent its dynamical characteristics using a directed graph G. Every design 
(sub)transaction of G-Tr is represented as a node of G. Design transactions are inserted in 
G when they are created. A D-Tr is removed from G either when it commits or aborts. 

The edges of G respectívely represent sets of object exchange activitíes in G-Tr. Each 
object exchange activity can be expressed as a triple of the form (D-Trx,D-T^,Oiv) where 
D-Trx identifies the transaction which created the new version V of object Oj and D-Try 
identifies one of the transactions which checked Oiv out of the group database, after it had 
been checked back in there by D-Trx-

The edge E(x,y) of G represents the set of all object exchange activities between D-Trx 
and D-Try which have the former transaction as their origin. Therefore, eyeiy edge of G 
can be expressed as a triple of the form (x,y,Sxy) where Sjy is the set of all object versions 
which have been created by D-Trx and checked out by D-Try. Note that the term object 
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version is used here to identify specific object states. Contrary to TM5, GM3 does not 
require that G-Tr be realized on the basis of an object version mechanism. 

We explain the directed graph G with the following example which is illustiated in Figure 
4.3. For this example, we assume that object updates are represented as new object 
versions in the group database. Suppose G-Tr consists of the set D={Ti,T2,T3,T4,T5) of 
design (sub)transactions and the group database GDB. At G-Tr begin, the state of GDB is 
expressed by the object set 0S={0i 1 ,02 1 ,03 1}. Ti checks Oil out of GDB, creates a 
new version of it (i.e. Oi2), and checks it back into GDB. Meanwhile, T2 checks O21 

out, updates it, and checks O22 into GDB. T3 copies Oi2 , O22, and O31 into its private 
database. It creates the new object versions Oi3 and O32 and checks them into GDB, too. 
T4 checks Oi3 out of GDB and processes it. T5 copies O32 into its private database and 
creates the object version O33. After being checked into the group database, O33 is 
checked out by T2. 

As GM3 was derived in chapter 3, we explained that design transaction synchronization 
follows the so-called predicatewise two-phase protocol of [KoKB87] and supposed that 
the relationship between the objects of the database and the conjuncts of the consistency 
constraim associated with it represents a bijective function. A transaction can, therefore, 
check a new version of an object into the group database as soon as this version preserves 
the conjunct related to the object being updated. Since transactions are non-two-phase, 
they can execute CHECKIN operations at any time. 

Fig. 4.3: Representing G-Tr as a directed graph 

There are, at least, two situations where the designer may want to either back out the 
design transaction or back it up to some externai savepoint: he can either realize that his 
design is not logically correct (with respect to the application) or conclude that some new 
object version that he checked in does not really preserve the consistency constraint (it is 
possible that not all predicates can be automatícally tested by the system). 

It is possible that other design transactions get involved in the process of rolling back 
work of a specific design transaction. If, for instance. Ti must be aborted, then T3 and 
possibly T4 will have part of their works rolled back, too. T j backout already represents 
a complex task when d l involved transactíons are active. How can it be done, if some of 
these transactíons have already committed? We solve this problem by introducing a new 
state for design (sub)transactions in G-Tr, namely the ready state. 

A design transaction always is in exactiy one of six states: non-existent (i.e. D-Tr has 
not yet been created), active, suspended (i.e. D-Tr has been temporarily deactivated by 
the designer), ready (i.e. the designer has notified the system of his intention to commit 
D-Tr), aborted, or committed. Figure 4.4 shows the state transition diagram for design 
transactions in GM3. 
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Instead of directly committing his design transaction T, the designer transfers to the 
system the control over it by executing the READY-TO-CÓMMIT statement. The system 
brings the transactíon into the ready state by checking ali its updated objects for which no 
CHECKIN operation have been executed back into the public database. 

committed 

suspended active non-
existent 

ready aborted 

Fig. 4.4; State transition graph for D-Tr in GM3 

T's transition into the committed state depends on the state of other design transactíons. 
We suppose the public system maintains a directed graph G for G-Tr (as part of the state 
record of this transactíon). By analyzing G, the public system can decide the next state 
transitíon of each ready design transaction in G-Tr. If any of the transactions from which 
T saw results aborts, T must be brought back into the active state and the designer must 
be informed that some of the object versions he used in his design are not valid anymore. 
The designer, then, can decide either to continue executíng T on the basis of other object 
versions or to abort it. This same procedure might also have to be executed for T if some 
transaction from which T saw results backs up to a previously generated extemal 
savepoint. While conventíonal recovery techniques must resolve conflicts as the ones 
described above by forcing cascading aborts in the group transaction environment, 
recovery based on the G graph supports partial rollback of involved transactions. By 
allowing ready design transactions to be reactivated, the G graph can prevent significant 
parts of the design work from being backed out in case of failures in the group transaction 
enviroiunent. 

A design transactíon can enter the committed state only when ali its ancestor transactíons 
in G have either committed or are able to do that Let us take the commit process of T3 in 
Figure 4.3 as an example. When the designer terminates his design work, he declares T3 
to be in the ready state. T3 directíy depends on T j and T2 to cominit. Indirectly, T3 
depends on both T5 (and on itself) to commit. 

Let us first consider the case where ali ancestors of T3 enter the ready state. By entering 
the ready state, T j can automatically commit because it has no ancestors. If Ti commits, it 
is removed from G and will not be further considered in the commit process of T3. Since 
T2 saw some updates of T5, it can commit only if T5 commits. The latter depends on T3 
to commit, though. This constitutes a cycle in G. Cycles of ready design transactions in G 
can be broken only when ali ancestors of ali nodes in the cycle achieve the ready state. 

Figure 4.5 shows a possible expansion of the graph shown Figure 4.3. Looking at this 
expansion, it is easy to understand why not only the nodes involved in the cycle but also 
their ancestors must be in the ready state for T3 to commit. If either Tg or T7 aborts or 
backs up to some extemal savepoint, T5 might have to be brought back into the active 
state. This might cause T2 to enter the active state, too. If, as a consequence, T2 decides 
to abort, T3 wiU have to be reactivated (i.e. will not be committed). 

If any ancestor of T3 aborts, the public system must analyze ali paths that connect the 
aborting transaction with T3 to decide if this transaction must be reactivated or not. If T3 
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has checked out any of the objects processed by the aborting transaction, it must 
immediately re-enter the active state. Otherwise, the reactivation of T3 will depend on the 
final state of ancestor transactions that re-entered the active state. 

Fig. 4.5: A possible extension of the graph shown in Figure 4.3 

Now let us go back to Figure 4.3 and discuss the situation where the designer backs up 
T3 to some externai savepoint ESVP. Suppose ESVP has been generated at some time 
between 03 2 ' s CHECKIN and Oi 3 ' s CHECKIN. Thus, by restoring the state of T3 to 
ESVP, Oi 3 must be invalidated and all transactions which have checked it out of the 
group database must roll back the work done on its basis. 

In the directed graph of Figure 4.3, only T4 has checked Oi 3 out of GDB. If T4 is in the 
aborted state, its work has been rolled back already. If it is active, its owner (i.e. the 
designer) must be informed that Oi 3 became an invalid object version. If T4 is suspended, 
the system must somehow wait until the designer reactivates it to inform him of what 
happened. Finally, if T4 is ready to commit, the system must retum it to the active state 
and inform either its owner or the overall d e s i ^ administrator that Oi 3 has been 
invalidated. From what has been explained above, it is easy to understand that T4 could 
not be in the committed state by the time T3 is backed up to ESVP. Since the system 
synchronizes design transaction work on an object basis, descendant transactions which 
have checked out objects which had been released in GDB, before the corresponding 
transaction has issued an externai savepoint, need not be Ix)thered by the respective 
RESTORE operation. Thus, neither T5 nor T2 gets involved in the restorãtion of ESVP. 

There exist some similarities between the prepared state of the two-phase commit 
protocol and the ready state associated with the G graph. Both represent transaction 
states where the transaction has already concluded its work but must wait for externai 
events to really commit it. The ready state differs ftom the prepared state, though, in that 
from the latter the transaction can only commit or abort its work, while from the former 
the transaction can also go back into the active state. 

There are yet other differences between the two-phase cominit protocol for distributed 
transactions and the commit protocol proposed for GM3. The two-phase protocol places 
the decision to commit the whole transaction hierarchy on the coordinator transaction and 
forces all transactions to commit at the "same time" (i.e. when the immediate ancestor 
terminates). Furthermore, this protocol does not permit that transactions have more than 
one immediate ancestor (i.e. transaction hierarchies always build a tree-like dependency 
graph). The commit protocol proposed here for design transactions in GM3 uses no 
coordinator, allows transactions to have more than one immediate ancestor, and permits 
(sub)transactions to commit at different points in time. 

The transaction cooperation concepts proposed for GM3 also differ from the traditional 
nested transaction concept presented in [MossSl]. Similar to normal distributed 
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transactions, nested transactions can build only tree-like hierarchies. That is, every sub-
transaction can have only one parent (immediate ancestor), from which it can see 
temporary results (by inheriting the parent locks). Further, the traditional nested 
transaction concept does not allow ancestor transactions to see temporary results of their 
own sub-transactions. In [HãRo87], nested transaction environments which permit that 
ancestors see temporary results of their children (sub-transactions) have been investigated 
but no complete protocol has been proposed to handle these environments. 

In [PROF85], the architecture of a distributed operating system is presented that integrates 
the nested transaction concept with a modified version of the two-phase commit protocol 
for distributed transactíons. Figure 4.6 shows the state diagram for transactions in 
PROFEMO. In the active state, 3ie (sub)transaction executes its algorithm normally. At 
tiie end of its work, the transaction enters the completed state. In this state, locks can be 
released and inherited to the ancestor transaction which, then, can see the sub-transaction 
results as well as allow other sub-transactions to further process them. 

saved for 
Undo (Tr) 

may release 
locks 1 1 

saved (or 
Redo (T r) 

Undo 
impossible 

active completed 
1 

prepared committed active completed prepared committed 

aborted 

s ta tes o( the commit p rocess 

completely 
un^ne 

Fig. 4.6: PROFEMO's transition state diagram 

In PROFEMO, users can decide which transactions of the nested hierarchy should 
participate in the committing process. Those completed sub-transactions from which 
ancestors have already seen results need not be involved in the expensive commit process. 
By committing an ancestor which has already acquired the locks of its completed sub-
transactions, PROFEMO actually commits those sub-transactions, too. 

The nesting of transactions as well as commit and abort processes in the distributed 
environment are controlled by means of a so-called recovery graph in PROFEMO. This 
graph is based on the ideas presented in [Davi78] and [Rand78]. Although the recovery 
graph keeps d-ack of transaction dependencies much in the same way the G graph 
proposed to represent the group transaction does, the former has always a tree-like 
structure, since every sub-transaction in PROFEMO can acquire locks by only one 
ancestor transaction. The recovery graph does not keep track of the specific objects being 
exchanged by transactions as the G graph does, because sub-transactions in PROFEMO 
must always backout if their ancestor aborts. 

The completed transition state proposed in [PROF85] cannot be compared with the 
ready state proposed for design transactions in GM3. First, although transactions in the 
completed state can already release locks held, their results have not yet been saved by the 
system. Secondly, from the completed state transactions cannot retum to the active state 
anymore. They must enter either the prepared or the aborted state. 

Acmally, the nested transactíon theory cannot cope well with Üie group transactíon 
concept because design transactíons can also be only partíally dependent from each other. 
That is, design transactions may exchange semi-committed results without having to 
establish a parent-child relationship for that. This "partial dependency" of design 
transactions is expressed by the ready state introduced here and the possibility of 
transactions which are in the ready state to reenter the active state. 
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After havitig described how transaction cooperation in GM3 can be realized, we can 
introduce the recovery protocols to restore the state of D-Tr to some externai savepoint 
and to abort D-Tr in GM3. Both protocols are based on object-oriented two-phase locking 
and have been designed for the case transaction cooperation in GM3 is implemented as 
described above. 

4.2.5.1 Backing Up D-Tr to an Externai Savepoint (Only valid for GM3) 
Comment: Although this algorithm pursues the same goals as the one 

presented in paragraph 4.2.4.8, it does it in an environment 
where D-Tr updates which must be rolled back may have been 
seen by other design transactions, already; 

• Private system's actions: 
-ACTIONS; 
- ctr := Select aU R-Tr which have committed after the savepoint generation; 
- Gundo (ctr in the private database); 
- ACTION4 (ctr, aborting := false, group-database); 
- Msg (server node,'esvp'& D-Tr's identifier & esvp's identifier). 
/* esvp stands for externai savepoint */ 

• Reaction at the server node: 
- While receive Msg (receiver,msg,explanation) do 

Case msg of 
Begin 

abort-operation: Undo (corresponding S-Tr); 
UNCHECKOUT(Oi): Release CHECKOUT locks for Oj in the group 

database; 
start-short-update: Start a S-Tr to execute a short update operation; 
esvp(D-Tr-id,esvp-id): Begin /* the term id stands for identifier */ 

inset := Select all objects which have been checked in 
by D-Tr, after the savepoint generation; 

ACnON? (inset); 
End; /* generate externai savepoint */ 

End. /* case msg */ 

• Reactíon at nodes of affected design transactíons: 
- Decide (either Restore (D-Tr's state to some externai savepoint) 

or Decide (either Back-Out D-Tr or Continue D-Tr)). 

4.2.5.2 User-Requested D-Tr Backout (Only valid for GM3) 
Comment; Since D-Tr updates may have been seen by other design 

transactíons belonging to the same G-Tr, this algorithm must rely 
on the group transaction's graph G to abort D-Tr, While the 
private system rolls back D-Tr at the workstation, the public 
system analyzes G to identífy other design transactions which 
should be infotmed that D-Tr is being aborted; 

• Private system's actíons: 
- ACTION3; 
- ctr := Select all committed R-Tr which had been started from inside D-Tr, 
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- ACnON4 (ctr, aborting := true, group-database); 
- Delete (private database); 
- Msg (server node,'D-Tr-backout'& D-Tr's identifier). 

Reaction at the server node: 
- Wliile receive Msg(receiver,msg,explanation) do 

Case msg of 
Begin 

abort-operation: 
UNCHECKOUT(Oi): 

start-shoit-update: 
D-Tr-back;out(D-Tr-id): 

End. /* case msg of */ 

Undo (corresponding S-Tr); 
Release CHECKOUT locks for Oi in the group 
database; 
Start a S-Tr to compensate a short update operation; 
Begin 
inset := Select ali objects already checked in by D-Tr; 
ACTION? (inset); 
End; /* msg = D-Tr-backout */ 

Reaction at nodes of affected design transactions: 
- Decide (either Restore (D-Tr's state to some extemal savepoint) 

or Decide (either Back-Out D-Tr or Continue D-Tr)). 
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Chapter 5 

Analyzing Existing Database Recovery Techniques 
in the Design Environment 

After having investigated the requirements on database recovery posed by the various 
scenarios of the design environment, we can discuss how suitable specific recovery 
techniques are to support design database systems. Database recovery suitability is 
usually analyzed on the basis of two criteria: correctness and performance. According to 
the failure model assumed for design database systems in subsection 4.1.2, a database 
recovery technique is considered to work correctly in the design environment, if it 
restores the database to a consistent state in case of processing node failures, stable 
storage failures, or transaction failures. The basic actions which should be taken by the 
recovery mechanism in each one of these situations have been already described by means 
of the recovery protocols presented in chapter 4. In the present chapter, we first discuss 
the correctness of existing database recovery techniques for the case they are realized in 
design database systems as the ones considered in this work. This discussion will be 
based on our failure model and on the set of recovery protocols of chapter 4. In the 
second part of this chapter, we empirically analyze the performance of existing database 
recovery techniques for the case they are realized either by the private system at the 
workstation or by the public system at the server node. This performance analysis is 
based on the following performance criteria: 

• The oveihead caused by database recovery activities during normal system operation. 
• The cost of recovery in case of failures. 
• The volume of recovery information which must be kept in stable storage. By recovery 

information, we mean the redundant information on the basis of which the recovery 
algorithm restores the database system to a consistent state in case of failures. 

In chapter 6, we present the results of a recovery performance analysis based on 
simulation which also relied on the criteria listed above and measured recovery costs in 
terms of achieved system throughput and transaction response time. 

5.1 Existing Recovery Techniques and Their Correctness in 
Design Database Systems 

5 . 1 . 1 Appiying Existing Recovery Techniques to G M l 

Nowadays, practically ali existing database systems are transactíon-oriented, thatis, rely 
on the transaction paradigm to realize reliable database processing environments. 
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Centralized DBSs implement centralized transaction management while distributed DBSs 
realize distributed transaction strategies. Moreover, transaction systems can support either 
conventional transactions or nested transactions. Finally, the nested transaction paradigm 
can be reaíized at a single levei of the DBS architecture (as it is proposed in [MossSl]) or 
at various leveis of that architecture (as the multi-level transactions in [WeiSVb]). 
Transacdon-oriented recovery techniques were first developed to support conventional 
transactions. Later, they were modified to support extensions to this paradigm. 

The GMl processing model extends the conventional transaction concept to model the 
design transaction. This extension does not correspond to the nested transaction concept, 
though. At the private system, the design transaction can be reaíized as a nested 
transaction but not all sub-transactions which are started by D-Tr at the server node can be 
treated as nested (sub)transactions. If, for instance, CHECKIN operations were to be 
considered part of the nested D-Tr, at commit time their locks would be inherited by D-Tr 
instead of being released in the public database. 

In subsection 5.2.3 where we comment on existing nested transaction-oriented recovery 
techniques, it will become clear that these techniques cannot distinguish "real" nested sub-
transactions (e.g. recovery transactions at the workstation) from sub-transactions which 
should be treated as conventional transactíons at commit time (e.g. CHECKIN operations 
and short update queries in the public database). Conventional transaction-oriented 
recovery techniques, on the other hand, cannot support temporary persistency of D-Tr 
state. Moreover, most of the existing transaction-oriented recovery techniques do not 
support savepoints, because they are designed to save only data updates (and, maybe, 
locks). Without modifications, these techniques are cannot capture the state of the 
computíng system at savepoint generation time. 

To fully support design transactíons in GMl, conventional recovery techniques should be 
extended to support internai savepoints at the workstation and guarantee temporary 
persistency of D-Tr state at least at the public system. Logging techniques can be extended 
through the introduction of new log record types that keep track of the state of the design 
transaction (e.g. Begin-D-Tr, End-D-Tr). Moreover, short transaction log records must 
be extended to also refer to the D-Tr on behalf of which the short transaction was started. 
On the basis of these log extensions, logging and recovery algorithms can be modified to 
restore the state of D-Tr in case of failures at the server node. Nested transaction-oriented 
recovery techniques can be modified to exclude sub-transactions of specific types from 
the nested hierarchie when they commit. 

5 . 1 . 2 Appiying Existing Recovery Techniques to GM2 

The GM2 processing model guarantees the atomicity of D-Tr at the public system. 
Therefore, nested transaction-oriented recovery techniques can cope with this processing 
model without much modification. In [HHMM88], a nested transaction management 
strategy was presented which can be applied to GM2. Nested transactíon-oriented 
recovery mechanisms such as the ones proposed in [Moss87] and [ARI89b] support this 
transaction management strategy without much problems. These mechanisms 
automatically guarantee temporary persistency of D-Tr state. On the oüier hand, these 
mechanisms would have to be extended, though, to cope with internai and externai 
savepoints. Considerations about the realization of savepoint schemes in nested 
transactions have been presented in [HâRoS?]. 

To be applied to GM2, conventional transaction-oriented recovery techniques should be 
modified in much the same way they are extended to be applied to GMl. Moreover, these 
techniques must also be extended to cope with externai savepoints. Since externai 
savepoints are generated in the absence of running recovery transactíons, the state of the 
system at savepoint generation time can be easily captured and saved by the recovery 
mechanism. Recovery mechanisms based on logging can generate externai savepoints by 
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simply recording a savepoint record on the log. During externai savepoint restoration, all 
running R-Trs must be backed out and the effect of aU R-Trs which committed after the 
savepoint generation must be rolled back in the private database. 

5 . 1 . 3 Appiying Existing Recovery Techniques to GM3 

Since GM3 relies on an object-oriented concurrency control strategy, transaction-oriented 
recovery techniques cannot support this processing model without far-reaching 
modifications. Besides the extensions to save and restore the state of D-Tr and G-Tr as 
well as the extensions to support savepoints, existing recovery mechanisms must be 
modified to cope with object-oriented synchronization. While nested transaction-oriented 
recovery techniques support cascading aborts only in a restricted way (i.e. the effects of a 
sub-transaction are rolled back in the database when its ancestor aborts), conventional 
transaction-oriented recovery techniques do not cope with cascading aborts at all. 

GM3 can be viewed as an extension of the GMl processing model. While in GMl D-Tr 
accesses objects in the public database, it checks objects out of the group database in 
GM3. The group transaction surrounds the design transaction environment and realizes 
the group database on the basis of the public database, though. Transaction management 
(and recovery) can be constructed on the basis of this transaction hierarchy. Object-
oriented synchronization must be taken care of only at the group transaction levei. At the 
design transaction levei and lower leveis, the system can realize the recovery component 
as in GMl. At the group transaction levei, the recovery mechanism can be realized on lhe 
basis of the G graph presented in chapter 4. 

5.2 An Empirical Performance Evaluation of Recovery in 
Design Database Systems 

As an introduction to the study of suitable recovery techniques for the design 
environment, we first discuss how transaction management can be realized by the design 
DBS to control and integrate the various transaction types existem in that environment. 
Then, we investigate different recovery properties and select those which should improve 
recovery performance while guaranteeing recovery correctness in the design environment. 

5 . 2 . 1 Some Transaction Management Alternatives for the Design 
Environment 

On the basis of the reference architecture of chapter 2 and the design processing models 
proposed in chapter 3, we now discuss how the database system could realize transaction 
management to support the various transaction types present in the design environment. 
According to the considerations made in subsection 2.7.3, we will suppose in the 
following that concurrency control is realized by the DBS on the basis of a locking 
mechanism. 

As already observed in [HHMM88], a single nested transaction mechanism could control 
the execution of all transactions in the design environment. If we take a server-
workstation system based on our reference architecture for design database systems and 
consider the GM3 processing .model, then G-Tr would be the root of a deep nested 
hierarchy including design transactions, recovery transactions at the workstation, short 
transactions at the server's object/tuple levei, and subtransactions at the server's 
page/segment levei. Nested transaction management in this distributed environment could 
be accompUshed by means of transaction agents (or bookkeepers) as they are described in 
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[Roth85], [HâRo87], [HHMM88], and [ARI89b]. We shortly explain the idea of 
transaction agents below. 

When a (sub)transactíon Ti running in a processing node Ni starts a subtransactíon T2 at 
another node N2, the system automatically creates an agent for Ti at N2. It is said that the 
agent represents Ti at N2. Moreover, the system also creates an agent at N2 for each 
ancestor of Ti (if such agents do not yet exist there). If T2 commits, the locks it holds as 
well as sufficient recovery information for both redoing and undoing it are inherited to 
Ti 's agent, before information about T2 is eliminated at N2. If N2 crashes, T2's recovery 
information kept by T j 's agent is used to redo T2's effects in the database. If Ti aborts at 
Ni, recovery information kept by Ti 's agent is used by N2 to undo T2's updates in the 
database. Then, the locks held by Ti ' s agent are released, and the agent is discarded. If 
Ti commits instead, the locks and recoveiy information kept by Ti 's agent are inherited to 
the agent of Ti 's parent transaction at N2. This step is repeated every time some of Ti 's 
ancestors commits. When the root transaction commits, its agent is discarded at N2 and 
the locks originally held by T2 are released in the database. 

Contrary to the original nested transaction paradigm, the system would have to realize a 
somewhat modified conversational interface (see [HãRo87]) between G-Tr and its D-Trs 
to enable G-Tr to see D-Trs' results as well as inherit D-Trs locks, yet before design 
transactions coirmiit. Only by implementing such a mechanism, the system would be able 
to guarantee design cooperation in a nested transaction environment. As already 
investigated in [HaRo87], conversational interfaces can strongly increase system 
complexity. 

Representing the whole design effort as a single nested transaction can also reduce 
concurrency in the system, since page locks acquired by subtransactions running at the 
server's page levei are held until G-Tr terminates. Even if design ti-ansactions can release 
locks before committing, page locks would be released much later than necessary. Note 
that this comment applies only to systems where the abstraction levei for cooperation 
between server and workstation is higher than the page (e.g. the recotd levei). 

A possibly better solution for controlling concurrent work in a GM3 environment would 
be to represent the design effort as a set of integrated nested and multi-level transactions. 
The hierarchy formed by the group transactíon and its subordinate design transactíons 
could be realized and managed on the basis of the group transactíon graph (G) presented 
in chapter 4. The whole design transactíon at the workstatíon togetiier with its remote 
operations at the server's object/tuple levei (e.g. CHECKOUT, CHECKIN) could be 
realized as a single nested transactíon. Finally, the hierarchies formed by transactions at 
the server's object/tuple levei and those at the server's page/segment levei could be 
implemented as multi-level transactions so that page locks can be released earlier at the 
public system. 

Figi^e 5.1 depicts the integrated transaction management environment proposed above. 
While design cooperation at the group transaction levei would be realized in a more 
flexible way, since the group transaction graph facilitates the control of cooperative work, 
the nested transaction paradigm would guarantee system reliability in the distributed 
environment, and multi-level transactions would allow subtransactions to release page 
locks earlier. 
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Fig. 5.1; Possible transaction management strategy for the design environment 

Multi-level transactions as those investigated in [Wei87a] and [Wei87b] cónstitute a 
special case of the traditional nested transactions presented in [MossSl]. In the multi-level 
transaction scheme, each levei of the nested hierarchy is associated with a specific layer of 
the overall system architecture. Therefore, (sub)transactions of different nesting leveis 
process data at different leveis of abstraction. Subtransactions process and lock data 
abstractions which are realized by their related system layers. As a consequence of this 
architecture orientation, the Fealization of the multi-level transaction paradigm implies 
multi-level transaction management, that is, the implementation of one complete 
transaction manager (consisting of, at least, a concurrency control component and a 
recovery component) for each of the system layers associated with some levei of the 
multi-level transactions. 

DASDBS [Paul87] and MONADS [Frei89] are examples of database systems which 
realize multi-level transaction schemes. As already discussed in chapter 2, DASDBS 
realizes a three-layer multi-transaction management. While SMM-transactions lock and 
process data pages, CRM-transactions work with complex records, and AOM-
transactions botii lock and process application-specific data objects. Since each transaction 
levei of the nested hierarchy is related to a different sphere of control, locks are not 
inherited by parent transactions when subtransactions committ. They are simply released 
to the corresponding transactíon manager (in this way, concurrency can be increased in 
the system). 

Another way to guarantee that page locks are released earlier on a server is to realize an 
open nested transaction mechanism at that node in much the same way it was implemented 
in System R [Gray81]. Open nested transaction environments differ from multi-level 
transaction ones in ihat transactíon management is realized at only one abstractíon levei of 
the system (e.g. at the tuple levei as in System R). At lower leveis, the system realizes 
only some simple synchronizatíon mechanism (e.g. semaphores to control page access). 

It should be clear by now that the cooperatíon between server and workstatíon could also 
be realized on the basis of a flat distributed transactíon mechanism using some version of 
the two-phase commit protocol. This strategy can be applied in combinatíon with any of 
the processing models discussed in chapter 3. In the case cooperation between processing 
nodes is realized by a flat disüibuted transactíon scheme, each processing node of the 
system can implement transaction management almost independently fiom one another. In 
this case, the concept of a design transaction does not even need to be realized at the 
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workstation. The designer's work at that node can be seen as consisting of a set of 
independent recovery transactions running concurrently. Only the public system at the 
server node would have to be aware of the beginning and ending of the overall design 
work. This problem could be solved by simply requesting the designer to inform the 
server every time he either starts or terminates a design work. By appiying flat distributed 
transactions to support cooperation in the design environment, the public system would 
have to keep track of D-Tr's state by logging CHECKOUT and CHECKIN operations in 
stable storage. 

If, instead of GM3, the system realizes the GM2 processing model, no group transaction 
management is necessary. Therefore, the group transaction graph and the algorithms 
associated with it need not to be implemented. If, on the other hand, the design DBS 
implements GMl, D-Tr needs not to appear atomic at the public system anymore. As a 
consequence of this, distributed transaction management can further be simplified in the 
system. 

On the basis of the various alternatives for transaction management in the design 
envirormient discussed above and relying on the transaction management model shown in 
Figure 5.1, we come to the following conclusions; 
• Distributed design database systems will probably realize not only one but a set of 

independent recovepf mechanisms which will cooperate to guarantee database system 
reliability in the design environment 

• Systems realizing GM3 will have to implement recovery mechanisms based on object 
serializability to support design cooperation and mechanisms based on transaction 
serializability to support transaction processing at the workstation as well as at the 
server node. While the latter recover the database state after failures on a transaction 
basis, the former must be able to restore the database state on an object basis. 

• Depending on how transaction management is realized at the workstation and at the 
server node as well as on how cooperation between processing nodes is controlled, the 
DBS will have to implement either flat transaction-oriented recovery, or nested 
transaction-oriented recovery, or even a combination of flat b-ansaction-oriented and 
nested transaction-oriented recovery mechanisms1. 

5.2.2 Evaluating Conventional Transaction-Oriented Recovery Techniques 

In the past ten years, a number of important surveys on database recovery have been 
published (e.g. [Verli78], [KohlSl], [HãRe83]). These studies can be subdivided into 
two categories: The surveys which describe existing file recovery techniques without 
relying on a specific notion of consistency (e.g. [Verh78]) and those works which use the 
conventional transaction paradigm as the consistency criterion for evaluating recovery 
techniques (e.g. [HâRe83]). 

In this study, we analyze only those existing recovery techniques which have been 
developed to support transaction systems. This decision has been taken on the basis of 
two arguments. On one hand, the recovery requirements analysis carried out in the 
previous chapters has shown that database recovery in the design environment should rely 
on various transaction types. On the other hand, it is a fact that practically all sigiüficant 
database systems which were developed in the past twenty years (in research centers of 
the university as well as in the industry) realize transaction-oriented environments. 

^The term flat transaction di.stinguíshcs the conventional transaction paradigm from the nested transaction 
concepL For a thorough discussion on the differences between flat and nested transactions, the interested 
reader is teferred to [MossSl]. 
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The classificatíon of transactíon-oriented recovery techniques presented in [HãRe83] was 
largely accepted by the database community. It is based on four elementary concepts 
related to dynamic properties of database systems and specific characteristícs of the 
recovery mechanisms themselves. We briefly explain these four concepts below. 
• Propagation Strategy: This concept relies on two architectural aspects which are 

present in most database systems. The first one is concemed with the way data is 
transferred from main memoiy to stable storage (i.e. disk). Usually data are written to 
disk in a page(block)-at-a-tíme basis. Since either single DML statements or 
transactíons normally affect more than one database page, it is clear that transaction 
results are not transferred atomically to stable storage. The second architectural aspect 
to be considered here is that, in fact, the DBS maintains a database hierarchy on disk. 
At any point in tíme, the whole set of data stored on disk is considered to form the 
physical database. Not all these data have a logical meaning to the database system at 
all tímes, though. Some of them are, for instance, old versions of updated pages or 
pages of deleted files. The subset of the physical database that have a logical meaning 
to the DBS at a specific point in tíme is caÚed the materialized database. At that tíme, 
the rest of the data with some logical meaning to the system are located in main 
memory. In [HaRe83], the operatíon of simply writing data from main memory to 
stable storage (i.e. write operation) was distínguished from the operatíon of integratíng 
updated data into the materialized database (i.e. propagation operation). 

If the system writes updated pages back to their original addresses on disk (i.e. update-
in-place strategy), transactíon results are integrated into the materialized database step-
by-step. Therefore, if a system crash occurs before all transaction results have been 
written to disk, the materialized database becomes inconsistent. That is, only some of 
the transactíon's updates will be reflected in the materialized database. Systems which 
do update-in-place actually write and propagate updated data at the same tíme. These 
systems are said to realize a non-atontíc propagatíon strategy (-lATOMIC). To prevent 
the materialized database from becoming inconsistent in the case of a system crash, 
other systems follow a so-called ATOMIC propagatíon strategy. In these systems, all 
transactíon updates are first written to a set of addresses in the physical database which 
are not part of the materialized database. At some later point in time, when all resiilts 
are stored on disk, already, the DBS integrates these results at once into the 
materialized database. That is, the system propagates the results atomically. Usually, 
atomic propagation is achieved by creating a new page table for the materialized 
database or for parts of it (i.e. database segments). In the new page table, the 
addresses of old page versions are replaced by the adresses of the corresponding new 
page versions. The act of changing the page table's address on disk (to reflect the 
address of the new page table) can be made atomic (see [Lori77]). To distinguish old 
page versions from their respective new versions, the former are called shadow pages 
in the literature. Moreover, recovery mechanisms which support ATOMIC propagatíon 
are called shadow (page) mechanisms. 
In systems which realize atomic propagation, the state of the materialized database 
always reflects the results of committed transactíons. Since the recovery algorithm 
relies only on the materialized database and on some recovery informatíon to restore 
the database state in case of a system crash, global undo recovery is not needed in 
these systems. This is not true for systems which realize multí-level transactions, 
though. In those systems, crash recovery must realize global undo operations at higher 
leveis of abstraction (e.g. tuple levei) even if propagation is made atomic for lower-
level transactions (e.g. page-oriented transactions). 
Atomic propagatíon can be reaíized in, at least, two different ways. One altematíve is 
to propagate database updates in a transactíon-at-a-time basis. Mechanisms which 
implement this strategy are called transactíon-oriented shadow page mechanisms. On 
the other hand, the system may propagate results on the basis of disk segments (i.e. 
sets of contiguous disk addresses). By associating a page table segment to each disk 
segment on disk, the system may propagate database updates in a segment-at-a-time 
basis. In this way updates of more than one transaction may be propagated at the same 
time. 
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• Page Replacement Strategy: This is a much simpler concept which was also used as a 
basis for the recovery classification in [HaRe83]. If the page-oriented buffer manager 
may substitute so-called dirty pages in the buffer (i.e. flush pages to disk which 
contain updates of yet running transactions), the DBS is said to realize a STEAL policy 
for buffer replacement. On the other hand, if dirty pages may not be replaced in the 
page-oriented buffer, the system is said to implement a -iSTEAL strategy. Similar to 
the ATOMIC propagation, the -iSTEAL policy also guarantees that undo recovery 
operations must be processed only in main memory. 

• EOT Processing: Systems which guarantee that all transaction updates are stored in the 
database on disk at transaction commit are said to follow the FORCE strategy of EOT 
processing. On the other hand, systems which allow transactions to commit, before all 
their respective updates are stored in the database on disk are said to pursue a 
-iFORCE policy. No redo recovery is necessary in database systems which realize the 
FORCE strategy, because the materialized database on disk always reflects the results 
of all committed transactions. 

• Checkpoint Strategy: Checkpointing is the activity of reducing the volume of 
information needed by the recovery algorithm to restore the database state after a 
system crash. Checkpoint activity basically relies on propagation activity. Checkpoint 
mechanisms differ from each other in the time at which the recovery manager must 
force propagation to take place as well as in how checkpointing affects normal system 
operation (normal transaction processing activities). In [HãRe83], checkpoint 
strategies are subdivided into four categories: transaction-oriented (TOC), transaction-
consistent (TCC), action-consistent (ACC), and fuzzy checkpoints. TOC reflects the 
FORCE policy. That is, transactíon updates are forced to disk at commit time. TCC 
implies that checkpointing is not realized in a transaction-at-a-time basis but that all 
those not yet propagated updates of committed transactions are propagated together at 
regular time intervals when no user transactíon is running in the system. ACC is 
similar to TCC but it does not require the system to be totally quiescent during 
checkpoint activity (i.e. user transactíons can execute in parallel to checkpoint activity). 
The system must only prevent update operations from being executed. Fuzzy 
check^int techniques use information about the actual system state to recover it in case 
of crashes. Since these techniques need to propagate less data than the others, they can 
allow more parallelism during normal system operatíon. 

Besides the aspects explained above,the survey in [HâRe83] also considered the system 
levei of abstraction where recovery actívity takes place as well as the type of recovery 
information being collected. In principie, the recovery manager may be realized at any 
abstraction levei implemented by the DBS. Recovery informatíon is always collected at 
the levei where the recovery component is located. Thus recovery informatíon can, for 
instance, be collected at the page levei, record levei, etc. Moreover, no matter what the 
levei where recovery informatíon is collected, this information can be of one of three 
types. It can represent either a specific state of some data object (e.g before-images of data 
pages) or state transitions. Recovery information can represent state transitions either 
physically (e.g. the set of bits which constitute the difference between the before-image 
and the after-image of an updated page) or logically (e.g. the DML statement whose 
execution changed the state of a relational tuple and the index entries associated with it). 

Both the levei of abstraction and the type of the recovery information determine the cost of 
the various recovery activities as well as the space on disk needed by the recovery 
algorithm to a large extent. Let us compare recovery actívity at the page levei and record 
levei. Assuming —lATOMIC propagation with logging, recovery at the page levei will 
usually log more data than recovery at the record levei, since the latter writes only updated 
records to the log file while the former writes the whole pages where these records are 
located. Depending on how accessed records are stored in tiie database (e.g.distributed 
over many pages or concentrated in a few pages), mechanisms which log data at higher 
leveis of abstraction can significantly reduce the log size. Besides that, logging at the page 
levei takes usually longer tiian logging at tiie record levei. The mechanism at tiie record 
levei can, for instance, collect before-images and after-images in a log buffer (i.e. a 
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special buffer page) and write them together to the log file in one I/O-operation. The 
recovery mechanism at the page levei must always log complete data pages. Thus, if the 
transaction updated ten records which are respectively stored in ten different pages and 
each one of these pages can store ten records, the recovery manager at the page levei will 
request ten 1/0-operations to save the transaction's updates while the mechanism at the 
record levei will, under best conditions, require only one I/O-operation to execute the 
same task. When recoverying from failures, though, recovery mechanisms at the page 
levei can perform much better than the ones located at higher system leveis. In the case of 
a system ciash, for instance, the page-oriented recovery mechanism needs only to read the 
before-images and after-images located on the log file and reintegrate them into the 
database (i.e. copy them into the system buffer). The record-oriented mechanism, on the 
other hand, must read both the updated records located on the log file and the database 
pages where they were originally stored. While the log file can be read sequentially, 
database pages must be read with random access. 

Based on the architectural aspects described above, the performance of database recovery 
techniques was analyzed in both [HãRe83] and [Reut84]. While the former work relies on 
the taxonomy proposed only to informally evaluate the relative costs of transaction-
oriented recovery techniques, the latter work uses a set of analytic models to evaluate and 
compare the performance of various existing recovery mechanisms when they are applied 
to a centralized database system which realizes a flat transaction-oriented environment. In 
this experiment, recoVeiy performance was measured on the basis of system throughput 
(i.e. number of committed transactions per unit of time). 

In [AgD85b], the performance of a set of integrated concurrency control and recovery 
mechanisms was investigated. The authors used the extra transaction costs produced by 
recovery and synchronization protocols to compare the various mechanisms. The 
following integrated mechanisms were analytically modeled and compared; log and 
locking; log and optimistic synchronization; shadow pages and locking; shadow pages 
and optimistic synchronization; differential files and locking; and differential files and 
optimistic synchronization. 

Results in [Reut84] and [AgDBSb] show that recovery mechanisms which are based on 
shadow pages (as the ones discussed in [Lori77] and [GraySl]) usually perform worse 
than those mechanisms which realize an update-in-place strategy. This is especially true 
when the page table of the system is too large to be entirely kept in main memory. The 
extra I/O-operations necessary to read missing table pages from disk can represent a 
significant burden during transaction processing. Systems which realize update-in-place 
strategies need not use the indirection represented by page tables to find page addresses 
on disk. They directly calculate disk addresses on the basis of the page numbers (i.e. the 
page number also represents the page's address on disk). 

On the other hand, recovery mechanisms supporting -lATOMIC propagation and either 
STEAL or -iFORCE must follow the WAL protocol to guarantee database correctness in 
case of failures. WAL stands for Write-Ahead Logging. This protocol consists of two 
rules. The first rule guarantees transaction atomicity. It requires that enough information 
to undo an update operation is saved at some other place on stable storage, before the 
results of the update operation are propagated to the (materialized) database. The second 
rule of the WAL protocol guarantees transactíon persistency. It requires that enough 
information to redo the transaction updates is saved on stable storage, before the 
transactíon is committed by the DBS. Therefore, although storage systems supportíng 
update-in-place need not implement page tables, the recovety tnechanisms associated with 
them must maintain redundant informatíon on stable stoiage (on log files) to recover the 
system state after failures. Sequential access to log files usually performs better than 
random access to page table pages, though. 

When analyzed in the scope of the design environment, atomic propagation would 
possibly affect system performance at the workstation and at the server node differentiy. 
Since locality of access in design database systems seems to be lower than in business-
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oriented systems (each small group of designers processes its own data) and the objects 
processed by design transactions can be much larger than the ones manipulated by 
business-related transactions, we believe that the public system's page table can become 
much larger than it is in conventional DBSs. Therefore, we expect shadow techniques to 
perform worse than logging techniques at the server node. In case of an integrated 
information system where both business-related as well as design applications are 
supported, shadow techniques would probably perform even worse. 

At the workstation, on the other hand, the private database stores, at any point in time, 
data of only one designer. Consequently, recovery transactions belonging to the same D-
Tr tend to present a very high locality of access. This high locality together with the fact 
that the private database is usually much smaller than the public database induce the idea 
that the ppvate system will not have to deal with veiy large page tables. Therefore, atomic 
propagation alone would not reduce system performance at the workstation as it would 
possibly do on server. Anyway, logging-oriented recovery mechanisms further remain as 
a good option for the workstation, too. In [HHMM88], for instance, a transaction 
manager for the PRIMA's private system is sketched which uses shadow versions of 
objects to preserve the state they were in by CHECKOUT. Updates to tíie same object 
(i.e. atom) are always stored at the same address on disk where the first update to this 
object was written to. Fiuthermore, to support savepoints, object updates are also written 
to a log file. Finally, to use the same object representation in main memory and on disk, 
the system realizes three indirections (i.e. address tables) to separate logical object 
addresses from physical ones on disk and in main memory. The mechanism outlined 
above is an example of hybrid storage system and recovery algorithms which are based 
on both shadow versions and logging. 

Evaluation results in [Reut84] showed that recovery mechanisms which support the 
STEAL policy perform worse than the ones which support only -iSTEAL in standard 
DBSs. This can be explained by the fact that the latter mechanisms process undo recovery 
only in main memoiy. Consequentiy, they need to execute less I/O-operations during 
crash recovery activities. Moreover, these mechanisms save less redundam data (and, 
consequentiy, perform better during normal system operation, too), because they need 
recovery informatíon only to redo transaction results. It should be clear by now, üiough, 
that systems which support the —iSTEAL policy require much larger system buffers. 

Although main memory prices are continually dropping, it is expected that the size of data 
objects as well as the number of concurrent transactions in the database system (i.e. the 
system's multiprogramming levei) will continually increase as the price of computer 
hardware decreases and database systems evolve to support more complex applications. 
While the goal of constructing database systems which can process up to 1000 (short) 
transactions per second has already been achieved, it is expected that design transactíons 
will process data objects of some megabytes. Especially in integrated information 
systems, it will be difficult to construct main memories large enough to permit the 
realization of -iSTEAL strategies. Consequentiy, we believe that recovery at the server 
node of design database systems will have to support undo operations on disk, too. 
Maybe, the realization of virtual set/object-oriented buffers could represent a solution to 
avoid STEAL in design database servers. Although it would stíll be possible that non-
committed updates be written to stable storage dtuing normal system operatíon, no undo 
recovery would be necessary in the database on disk. On the other hand, -iSTEÁL buffer 
replacement can probably be implemented at the workstation without problems, since 
concurrent recovery transactions usually process the same design objects in main memory 
and the private system normally supports only one D-Tr at a time. As a consequence of 
the high locality of access and the small number of objects in main memory, this device 
must not be so large at the workstation as it must be on server. 
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Another result of the evaluation in [Reut84] is that recoveiy techniques supporting the 
-iFORCE policy perform better than the ones relying on FÕRCE when commonality2 is 
kept high. By high commonality as well as by high locality of access, a subset of the 
database is accessed much more frequently than the rest of it. In this case, data updated by 
one transaction have a great chance of being accessed again by the next running 
transaction. In such an environment, the FORCE policy does not work well because the 
buffer manager repeatedly flushes data to disk that will be accessed again, soon. In 
environments where commonality is low, on the other hand, the I/O costs produced by 
FORCE will probably not represent a heavy burden to the DBS, since the data being 
propagated at EOT will hardly be accessed again by other transactions. 

It is realistic to expect that recovery algorithms suppordng FORCE will perform as well as 
those supporting -iFORCE at the server node of a design DBS. First, as explained above 
sets of design transactions usually present lower locality of access. Consequendy, a lower 
commonality can be expected in the page/segment-oriented buffer. Secondly, tests made 
with the DAMOKLES non-standard database system have demonstrated that data 
representation mapping operatíons dominate the costs of short transactíons which execute 
either CHECKOUT or CHECKIN operatíons at the public system. These (mapping) 
operatíons which are processed in main memory take much longer than the extra VO-
operatíons which can be caused by the realizatíon of the FORCE strategy. Therefore, it 
can be expected that the FORCE strategy will not represent a significam burden for 
database servers executing CHECKOUT and CHECKIN operations. Thirdly, if the 
storage system maintains data belonging to the same object (i.e. the object's subobjects 
and the description of the relationships among them) clustered in the database and realizes 
a chained-VO strategy3, forcing transactíon results to disk at EOT can be acomplished by 
the system in only a few I/O-operations. This would reduce the butden represented by the 
FORCE strategy even further. 

Since recovery transactíons assume the role of recovery points for the design transactíon 
at the workstatíon [HHMM88], forcing R-Tr results at EOT accelerates crash recovery at 
that node. Because of the high locality of access at the workstatíon and the possible 
absence of mapping actívity at the private system, this gain at recovery tíme would pay 
only if the operatíon of propagatíng updates at EOT could be made cheap. Otherwise, the 
FORCE strategy will certainly cause system throughput to decrease and transaction 
response tíme to increase at the workstatíon. In R2D2, for instance, the recovery manager 
at the workstatíon forces updates to disk in parallel with transactíon execution [Ries89]. 
In this way, the system tries to reduce the VO actívity at EOT while realizing FORCE. 
Maybe, a better altematíve in this environment would be to combine paraUel logging with 
normal system operation, since the private system can write updates to the log 
sequentially while forcing updates to the private database would require random access to 
disk (ànd, possibly, some mapping operatíon, too). Although the strategy in [Ries89] 
aims at reducing transactíon response time, it does not help to increase system 
throughput. 

Results of the evaluation in [Reut84] have also shown that checkpointing is a very 
important recovery activity in those environments where system crashes are infrequent. 
Systems not realizing any checkpoint strategy tend to cause very high restart costs, 
because the number of database updates which have to be repeated after each crash is not 
bounded in any way. From the various checkpoint strategies analyzed, fuzzy checkpoint 

^Commonality is defined in [Reut84] as being the probability that a data object will be found in the 
buffer by the first time the Uansaction accesses i t 

3The term chained-I/0 stands for I/O-operations which can transfer more than one database page from 
stable storage to main memoiy and vice-versa. Usually, the pages which are transferred together in one 
chained-I/O operation have ascending addresses on disk. For an example of a chained-I/O driver procedure, 
lhe interested leader is leferred to [WeNP87]. 
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carne out as the one which guarantees best recovery performance. Although algorithms 
which realize fuzzy checkpoint strategies present a higher (software) complexity and 
usually need to collect and to control more information about the database state than 
algorithms which implement simpler checkpoint strategies (e.g. the propagation of 
updated buffer contents), the fact that fuzzy checkpointing can take place in parallel to 
normal system operation overrides the extra costs and helps to increase overall recovery 
performance specially in systems with large buffers. 

Neither the new system architectures of design DBSs nor the new processing models 
which are realized by these systems seem to represent new aspects of the database 
environment that could refute the results of Reuter's analysis conceming checkpointing. 
We believe that fuzzy checkpoints will guarantee best recovery performance at the public 
system at the server as well as at the wcn-kstation. 

Another result in [Reut84] is that recovery mechanisms which log data at higher leveis of 
abstraction usually perform better than those which log data pages. This was observed in 
those processing environments where system crashes occur infrequenüy as well as in 
those which presented high fault rates. V^en interpreting these results, one must have in 
mind, though, that most of the page-oriented recovery mechanisms modeled in [Reut84] 
either realized no checkpoint at all or implemented either a transaction-oriented or an 
action-oriented checkpoint strategy. Page-oriented algorithms which do not realize some 
fuzzy checkpoint strategy may have to force many pages to the database during 
checkpoint or when recoverying ftom failures. Moreover, using normal I/O-operations 
page logging becomes much more expensive than, for instance, blocked record logging. 
Reuter also modeled and evaluated the DB-Cache technique [ElBa84] which is a page-
oriented recovery algorithm that realizes a fuzzy checkpoint strategy and writes pages to 
the log by means of chained-VO operations. The DB-Cache model showed one of the best 
performances of the evaluation, although it logs pages. 

We believe that page-oriented logging techniques will not perform worse than other 
recovery techniques in the design environment. First, the o^rations to map the main 
memcay representation of highly structured data objects as well as tuple sets onto database 
pages in design database systems take much longer than the operations to map isolated 
tuples onto pages in standard DBSs. Consequenüy, crash recovery at the object-oriented 
levei of a des i^ database system might take much longer than crash recovery at the page 
levei. Second, if data related to the same object are always kept clustered on disk and can 
be read from as well as written into the database in only a few VO-operations, the basic 
drawbacks of page-oriented recovery techniques can be overriden. Besides, page logging 
is not so expensive (in terms of log space and VO-operations) if, in most cases, pages 
respectívely contain only data related to the same object. Relying on the observations 
above, we expect page-oriented recovery mechanisms to perform as well as record-
oriented recoveiy techniques on the server. At the workstatíon, though, it is quite possible 
that page-oriented recovery presents a poor performance as it did in Reuter's evaluatíon, 
since the architecture of the private system is similar to reference architecture in [Reut84]. 

The architecture of the public system and the object-oriented buffer make it possible to 
realire the server's recovery manager at the object-oriented levei. Although crash recovery 
at this levei of abstractíon can take long, the recovery mechanism can reduce the burden 
during normal system operatíon by logging sets of object updates as a whole before 
objects are mapped onto database pages. This would also reduce the size of the log file 
even further. Besides, the transactíon manager at the server could explore the fact that 
transactíon results are saved at the object levei to commit transactíons even before their 
updates are mapped onto database pages. A recovery algorithm which realizes this so-
called deferred-mapping strategy was proposed in [KARD88]. The main objectíve of 
deferred mapping is to reduce transactíon response time by committíng the transactíon 
before the representation mapping operatíons related to it are executed. 'fliese operations, 
then, are executed by demon processes in parallel to other transactions. Without a 
thorough investigation, it is difficult to evaluate the performance of recovery mechanisms 
which support deferred mapping, though. It is also possible that deferred mapping 
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operatíons for committed transactíons can affect the response time of the next transactions 
being processed by the public system. In this case, neither response time nor system 
throughput would be improved. 

Although deferred mapping is not of interest for the private system considered in our DBS 
reference architecture, object-oriented recove^ can be considered as an altemative for the 
workstation, too. Especially recovery algorithms which can either force or log entire 
(sub)objects using chained-VO should be investigated in more detail. This algorithms 
could become even more attractive, if logging activity could take place in parallel to the 
execution of the respective recovery transaction. The fact that the recovery mechanism 
logs whole (sub)objects instead of single updated records should not represent a serious 
drawback, because recovery information would be transferred to the log very fast 
(through chained-I/O). Moreover, since every log record would contain more than one 
updated record, the volume of meta informatíon in the log file (e.g. log sequence number, 
log record type, log record size) would probably decrease. 

In [AgD85b] as well as in [Reut84], recovery mechanisms which rely on logging to 
protect the database against failures came out of the respectíve performance analysis as the 
best ones. In [Reut84], these mechanisms have been further specified and investígated in 
four different processing environments: high update rate with low fault rate, high update 
rate with high fault rate, low update rate with high fault rate, and low update rate with low 
fault rate. 

From the ten mechanisms analyzed in [Reut84], three came out as the "winners", that is, 
the ones which guaranteed highest transacüon throughput: 
• The algorithm described in [Lind79] which logs page entries (e.g. tuples) and can be 

d e s c r i ^ on the basis of the classification in [HãRe83] as being (-1ATOMIC, STEAL, 
-.FORCE, FUZZY). 

• The so-called DB-Cache recovery algorithm proposed in [ElBa84] which logs database 
pages and can be defined as being (-^TOMIC, -iSTEAL, -iFORCE, FUZZY). 

• A third recovery mechanism which supports a -lATOMIC, STEAL, and -JFORCE 
database environment, logs page entries, and implements an action consistent 
checkpoint strategy (i.e. checkpoints suspend only system operations for record 
update) at regular time intervals. 

The algorithm in [Lind79] differs from the last one above in that it realizes a fuzzy 
checkpoint strategy. Only updated pages which have not yet been propagated since the 
last checkpoint are written to disk by the actual checkpoint. DB-Cache logs at the page 
levei and realizes an efficient fuzzy checkpoint sti-ategy which is based on a logically 
circular log file. Checkpoint takes place only when the circular file becomes full. In this 
way, checkpoint activity is proportíonal to user update actívity. DB-Cache does not cope 
well with long-duratíon transactions, though, because the -iSTEAL strategy forces data 
updates to be kept in the buffer until transaction commit. If the buffer becomes full with 
non-committed updates, the system must abort the corresponding transactions. In this 
way, system throughput can decrease significantíy. To solve this problem, it is proposed 
in PELBa84] that results of long-duration transactions should be kept in special log files 
which store enough undo and redo informátíon to support the STEAL strategy. DB-Cache 
would possibly work well in a public system which realizes GMl and processes only 
CHECKOUT and CHECKIN operations and short queries. On the other hand, DB-Cache 
will certainly perform very poorly if the cooperatíon between server and workstatíon is 
realized on the basis of the nested transactíon paradigm. In the GMl environment, the 
server processes only isolated short transactíons. In a nested transaction environment, 
short transactíons which execute CHECKOUT and CHECKIN operations have to be kept 
prepared at the server node until the design transaction which started them terminates at 
the workstation. 
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5.2.3 Evaluating Nested Transaction-Oriented Recovery Mechanisms 

Most recovery mechanisms proposed for nested transactions so far rely on the technique 
presented in [Moss82]. This technique is an extension of recovery algorithms which use 
shadow versions of objects to preserve database consistency in flat transaction 
environments. For eveiy running nested transaction, this technique associates one version 
stack with each data object accessed by the transaction. Every time a (sub)transaction 
acquires a write lock on an object, the system makes a copy of the object's actual state and 
inserts the address of this copy into the respective object stack of the nested transaction. 
Besides that, the copy's address is also associated with the (sub)transactíon accessing the 
object. After this operation, the (sub)transaction updates the original object version. That 
is, during normal operation the system follows an update-in-place strategy of 
propagation. The object's version stack represents only the hierarchy of before-images of 
the object inside of the nested transaction. 

When a (sub)transaction aborts, its associated object versions are used to restore the 
original states of those objects for which it holds write locks. Depending on its 
iinplementation, the recovery mechanism either overwrites the objects' original versions 
with their respectiva copies or substitutes addresses of original versions for those of their 
copies. After that, the recovery algorithm removes those copy addresses associated with 
the atorting trMsaction from the respective stacks. When a subtransaction commits, its 
associated versions are offered to its parem. The parem transaction inherits a version, if it 
is iiot yet associated with any other version of the same stack. Versions of objects for 
which the parent already has associated versions are simply discarded. 

On the basis of Figure 5.2, the following example further explains the recovery technique 
proposed in [Moss82]. While (sub)transactions update database objects in tiie system 
buffer, the recovery manager keeps before images for these objects in so-called object-
version copy stacks. In the example of Figure 5.2, the recovery mechanism creates a 
version stack for Oi when Ti acquires a write lock on that object. Before Ti updates Oi 
(i.e. creates a new version of Oi), the recovery mechanism inserts a copy of Oi 's actual 
version (i.e. OiO) into the nested transaction's copy stack related to this object After that. 
Ti is allowed to update Oi ' s original copy in the buffer. When T3 locks Oi for write, a 
copy of Oi ' s new version (i.e. Oi 1 ) is inserted into the stack and related to that 
transaction. After that, T3 is allowed to change Oi in the buffer. If T3 aborts, the recovery 
mechaiiism simply takes Oi ' s before-image related to that transaction from the stack and 
overwrites Oi 's copy in the buffer with it. If T3 commits, on the other hand, the before-
image of Oi related to it in the stack is discarded, since Ti (i.e. T3's ancestor transaction) 
has ah-eady updated Oi before and, consequently, is associated with another before-image 
of Oi which is also stored in the stack. If Ti aborts later on. Oi 's before-image related to 
this transaction is used to restore Oi ' s original state (i.e. Oi0) in the buffer. When T2 
acquires a write lock on O2, the recovery manager notes that there exists no version stack 
for O2 related to the nested transaction hierarchy. Thus the recovery mechanism creates a 
new object-version copy stack in main memory and relates it to both the object O2 and the 
nested transaction to which T2 belongs. Then, a copy of 02's actual version (i.e. O2®) is 
insert^ into that stack and associated with T2. If T2 commits, the before-image of O2 
associated with it in 02's version stack is inherited by Ti. This is done, because although 
the version of O2 that was created by T2 now represents O2 's actual version in the 
database, 02 's original version (i.e. O20) must have to be restored in the database, if Ti 
aborts later on. In the case T2 aborts, the before-image related to it in 02 's version stack is 
used to restore 02's original state in the database. After that, 02's before-image as well as 
0 2 ' s version stack can be discarded by the recovery mechanism, since no other 
transaction of the nested hierarchy holds write locks on that object 

Some implementations of the Moss's version algorithm are described in [Eden82], 
[LCJS87], and [MuMP83]. Most of these implementations save complete data pages as 
shadow versions. Also when only the updated parts of data pages are copied as versions 
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(as it is the case by the mechanism presented in [MuMP83]), this recovery technique can 
become very expensive, since objects can be big and, depending on how deep the nested 
hierarchy is, many versions of the same object will have to be created by the system for 
the same nested transaction. Besides, to prevent version management from increasing the 
volume of I/O-operatíons in the system, most of the implementations of version-based 
recovery techniques support only -iSTEÁL. 

In [ARI89b] where a recovery mechanism for nested transactions based on logging was 
proposed, the authors used the same arguments presented in [ARI89a] to criticize 
recovery mechanisms which rely on shadow techniques; very costly checkpoints, extra 
(volatile and nonvolatile) space overhead for shadow copies, disturbance of the physical 
clustering of data, and extra I/O-operations due to page faults related to page mapping 
structures (i.e. page tables). The authors also comment on the (possibly great) system 
overhead introduced by the algorithms which control object versions inside of transaction 
hierarchies. 
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Fig. 5.2;Data structures for the shadow-version recovery example 

The recovery mechanism for nested transactíons presented in [ARI89b] (i.e. ARDES/NT) 
relies on the one proposed for flat transactions in [ARI89a] (i.e. ARIES) which, in tum, 
is based on the recovery technique described in [Lind79]. From the latter, ARDES/NT 
inherited the log sequence number (LSN) concept which is applied by the system to 
associate database page versions with log records. From ARIES, ARIES/NT inherited the 
concept of compensation log records (CLRs) which enables the system to support 
operation logging (i.e. logical logging of state transitions) and novel lock modes (e.g. 
lock modes based on commutativity as increment/decrement). 

In [Moss87], another logging-oriented recovery technique for nested transactions was 
presented. This algorithm can work only at the system's page levei, though (see 
[ARI89b] for further explanation). Both ARIES/NT and the recovery mechanism 
described in [Moss87] are extensions of WAL (write-ahead logging) algorithms for flat 
transaction environments. They extend those algorithms basically by connecting the log 
record sequences of transactíons pertaining to same nested hierarchies. 

In ARIES/NT, for instance, the commit record of every subtransactíon is integrated into 
the backward chain (BW-chain) formed by the log records belonging to the respectíve 
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parent transactíon (see Figure 5.3). Every subtransactíon commit record (C-Commit) 
belongs, therefore, to two different log record chains at the same time: the 
subtransactíon's BW-chain and the parent's BW-chain. C-Coinmit's field PrevLSN 
points to the previous log record in the parent's chain while the field LastLSN points to 
the previous record in the BW-chain of the subtransactíon. 

By connectíng BW-chains of nested transactíons, the recovery mechanism builds so-
cãlled backward chain trees (BWC-trees) in the log file. Every running nested transactíon 
is represented in the log file by a so-called backward chain forest (BWC-forest) which 
consists of, at least, one BWC-tree. The first BWC-tree of a forest has the BW-chain of 
the nested hierarchy's top-level transactíon (TL-transactíon) as its root. The other possible 
BWC-trees represent intemal portíons of the nested transactíon which have yet running 
subtransactíons as their roots. 

WAL-based algorithms for nested transactíons redo as well as undo nested transactíon 
states in case of failures (e.g. system crash) by traversing the transactions' associated 
BWC-forests in the log file. For each BW-chain visited, these algorithms practícally take 
the same actíons as their counterparts in flat transactíon environments. 

sequential log file 

I Bda) i — T I Tq 's BW-chain 5 upd I a 
J (BWC-tree) 

I BdO I T1 s upd~| 

[ ü í D - T 2 ' S upd 

TI 's BWC-forest 
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» time 
Notes: 1) T| stands for (8ub)tran8act)on 1, B for begin-of-trans action log record, upd 

for object update log record. and C for transaction commit log record. 
2) BW signífíes backward and BWC stands for backward chain. 

Fig. 5.3: Transactíons and data structures for the log-oriented recoveiy example 

In [Wei87a], on the other hand, a special recovery algorithm for multi-level transactíon 
environments was presented. This algorithm relies on multí-level logging to cope with 
transaction backout and system crash. The recovery manager of the lowest system layer 
logs before-images and after-images of updated data pages. Each higher system layer 
keeps only undo informatíon related to running transactíons which execute at that layer. 
This informatíon is logged in the form of inverse operatíons. 

To backout a transaction which executes at the system's page levei, the recovery 
mechanism proposed in [Wei87a] restores the state of updated pages by replacing them 
with their respectíve before-images which can be found in the system's page-oriented log 
file. At higher leveis, the system rolls back transactíons by executing inverse operatíons in 
inverse chronological order. The inverse operations related to a ü-ansactíon can be found 
in the log file of the system levei at which it runs. Inverse operatíons are executed as part 
of the transactíon being aborted. Since inverse operatíons at one system layer are partíally 
realized by operations (i.e. transactions) at lower system leveis, locks at those leveis have 
to be acquired again. As a consequence, transactíon backout in higher layers may involve 
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lower-level transactions in block as well as deadlock situations. Moreover, to resolve 
deadlock situations, the system may have to backout inverse operations (possibly 
indefinitely), too. 

After a system crash, the multi-level recovery mechanism recoveis the database state by 
serially recoverying the state of each system layer (from the lowest to the highest layer). 
First, it brings the database to a lowest-level transaction consistent state by undoing the 
effects of either running or already aborted page-oriented transactíons and redoing the 
updates of committed page-oriented transactions. Then, in each higher system layer 
transactions which were running by the time of the crash are completely backed out 
(through the execution of inverse operatíons). 

Besides presenting the drawbacks related to the execution of inverse operations at higher 
leveis (which actually represent side-effects of the associated multi-level concurrency 
control strategy), the recovery algorithm proposed in [Wei87a] shows a poor performance 
due to logging redundant recovery information at several system leveis. The control and 
synchronization of the different log files surely represent an extra burden to transaction 
processing activities (see [Wei87b] for a thorough discussion on these topics). 

If the design DBS realizes the designer's work (i.e. the design transaction) as a 
distributed nested transaction, recovery at the workstation as well as on server should rely 
on logging. Based on the recovery analysis presented above, we can conclude that nested 
transaction-oriented recovery techniques which rely on shadow copies would require very 
large main memories and stable storage space at both server and workstation, since design 
objects can be very large. Besides, the processing overhead necessary to manage internai 
version hierarchies in nested transactions would certainly represent a significant burden 
diuíng normal system operation. Especially at the workstation where both processing 
capacity and storage space are restricted, internai version management would possibly 
reduce system üiroughput as well as increase transactíon response times. 

As already discussed in section 5.1, the public system can improve concurrency on server 
either by realizing an open nested transaction mechanism or by implementing a multi-level 
transaction scheme at that node. Because of the problems associated with multi-level 
concurrency control as well as multi-level recovery, we believe that the open nested 
transaction altemative should be preferred. In this environment, the recovery mechanism 
can be realized at a single levei of abstraction (e.g. tuple levei). This can significantly 
simplify both the constmction and operation of the recovery mechanism on server. 

Object-oriented recovery mechanisms, too, can rely either on logging (i.e. support 
update-in-place) or on shadow versions (i.e. support atomic propagation). Object-oriented 
techniques based on shadow versions represent a straightforward solution to object-
oriented recovery at the server node as well as at the workstation. On the other hand, 
these techniques cause the drawbacks discussed above for transaction-oriented recovery. 
If, for instance, design transactions are realized as nested transactíons at the workstatíon, 
the shadow version algorithm described in [Moss82] can be modified as to guarantee 
object-oriented recovery at that node. If D-Tr is requested by G-Tr to roll back 
modifications done on a specific object, the private system must proceed as follows. 
First, all running recovery transactíons which have locked the object or are waiting to lock 
it must be aborted. Then, the object's actual version must be deleted in the private 
database. After that, the whole shadow version stack associated to the object must be 
destroyed and its storage space released in the private database. Finally, D-Tr must 
UNCHECKOUT the object in the public database. 
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Fig. 5.4: Example of recoveiy information associated with G-Tr at the server node 

To avoid the drawbacks of shadow version techniques, the DBS can realize object-
oriented recovery on the basis of logging techniques. In tiie following, we propose an 
extension of ARIES/NT which also supports object-oriented recovery. We explain this 
extension by supposing that the group transaction environment is realized by the public 
system on the basis of a nested transaction mechanism implemented at the server's record 
levei. Moreover, we assume that design cooperation is controlled on the basis of the G 
graph presented in chapter 4. Besides maintaining one backward chain on the log for 
every transaction of the nested hierarchy formed by G-Tr as well as by its subordinate D-
Trs and their respective short transactions, the recovery mechanism also keeps special 
backward chains on the log which respectively associate log records for the same object. 
Object-oriented log record chains are not bound to transaction-oriented chains. That is, 
log record chains for updated objects can span log chains for transactions. For every 
running D-Tr (i.e. a D-Tr which has neither committed nor aborted), the transaction 
manager keeps a list of all objects that have been checked out by this transaction in its D-
Tr state record at the server node. Every object entry in this list contains, at least, the 
actual status of the object (i.e. checked-out, unchecked-out, checked-in) and the address 
of the youngest log record for this object which has been written on D-Tr's behalf. 

We explain D-Tr backout in a design cooperation environment using the scenario shown 
in Figure 5.4. Figure 5.4 (a) depicts the state of the graph G at the time D-Tri decides to 
abort. Both D-Tr2 and D-Tr4 have seen non-committed results (i.e. Oi 's version 1) of the 
aborting transaction. While D-Tr2 is already in the ready state, D-Tr4 is running yet. By 
analyzing G, the recovery mechanism concludes that D-Tri's effects can be removed fiom 
the group database, if the original version of Oi is restored therein. To achieve this goal, 
the recovery algorithm takes the following steps. First, it identifies the transactions which 
must be involved in this operatíon. Then, it analyzes the state records of those 
transactions to decide which operations each one of them must execute. D-Tr4 must be 
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requested to check Oi back into the group database without changes. D-Tr2 must be 
brought back into the active state and its owner must be informed that Oi 1 has been 
invalidated. Finally the state Oi was in before D-Tri checked it back into the group 
database must be restored. This last operation is executed by the recovery algorithm itself. 
It first identifíes the last log record associated with Oi. It fínds the address of this record 
in D-Tr4's state record. By following the backward chain for Oi on the log, the recovery 
algorithm keeps on restoring Oi 's older states until the Begin-of-Checkout recoid related 
to both D-Tri and Oi is found on the log file. As with ARIES/NT, corresponding 
compensation log records are written to the log as Oi ' s backward chain is being 
processed. 

Nested transaction-oriented recovery techniques applied to the workstation must also be 
extended to cope with design cooperation. We can explain this on the basis of the example 
given above. Suppose D-Tr4 had already modified Oi at the workstation by means of a 
set of successful recovery transactions as it was requested to uncheckout that object. If the 
workstation crashes after the uncheckout operatíon is completed, the recoveiy mechanism 
will try to redo the effects of those committed recovery transactíons which updated Oi in 
the private database. This mechanism should not do that, though. First, Oi cannot be 
found in the private database anymore. Secondly, the effects of those recovery 
transactions which only updated Oi should not be recovered. This problem can be solved 
by writing a special uncheckout record for Oi to tíie log file at the workstatíon. By 
reading the log file backwards during crash recovery, the recovery manager ílnds this 
record before it reads the respectíve commit records for those recovery transactions which 
processed Oi. Therefore, it can avoid redoing the effects of those transactions when it 
fínds their records on the log. 

5.2.4 Further Recovery Classifícation for the Design Environment 

Besides the architectural properties considered in [HãRe83], recovery in the design 
environment can be analyzed under various other aspects. Relying on our study of 
recovery requirements, we can identify, at least, three other important classification 
criteria for recovety in design database systems. In the following, we both present and 
discuss these criteria on the basis of which recovery can further be analyzed. 
• Node Cooperation: Refiecting tíie kemel architecture of design database systems as 

well as the server-workstation computer configuration of the design environment, the 
DBS can either realize a systemwide integrated recovery mechanism or implement 
isolated recovery managers in each of the system's processing nodes. Integrated 
recovery algorithms as the one proposed in [KaWe84] explore the failure independence 
property of processing nodes to improve overall system reliability. For instance, to 
cope with both small disks and disk crashes at the workstation, the private system's 
recovery manager can send transaction updates to be saved at the server node from 
time to time. On the other hand, in case of disk crashes on server, the public system 
can ask tiie private systems at woikstations to send the CHECKOUT versions of those 
objects actually being processed there. 
While integrated recovery mechanisms can improve reliability in the design 
environment especially in the case of hard failures, they would possibly represent an 
extra burden for the communications subsystem and reduce the server's performance, 
since the public system would have to support recovery at the workstations besides 
executing its own tasks. The extra burden on server would grow with the number of 
workstations in the system. Integrated recovery could altematívely be reaíized only 
among workstations, though, to prevent the extra burden on server. The private 
system at the workstatíon could, for instance, use the designer's think tímes to 
broadcast transactíon updates to other workstatíons. In case of a disk crash, the private 
system would request the data to be sent back. Since possibly more than one other 
workstatíon stored the updates (sent by the broadcast operatíon), the probability that all 
of them be off at the tíme of the crash is not high. 
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Isolated recovery managers can be designed to better cope with special characteristics 
of specific processing nodes. In systems where workstations have enough disk space 
to store the whole private database (with all its versions), the altemative of isolated 
recovery managers for server and workstation would possibly improve overall system 
performance, since less communication between server and workstations would be 
necessary. On tiie other hand, isolated recovery algoritiims, too, can cope with disk 
crashes at the workstation. For instance, from time to time the recovery manager at the 
workstation could write transaction updates to normal data files on server by means of 
remote update queries to the public database. The log files in the public database could 
be created by the designer and associated to his D-Tr at tiie beginning of Üie design 
work. 
Transaction Cooperation: This classification criterion distinguishes recovery techniques 
which are based on transaction serializability from tiiose which permit transaction 
cooperation (e.g. algorithms supporting the predicatewise two-phase protocol). 
Database systems supporting design cooperation as it is defined in GM3 must 
implement a hybrid recovery mechanism which can guarantee transaction serializability 
for short and group transactíons in the public database as well as for recovery 
transactions in the private database, while supporting object serializability for design 
transactions in the group database. Recovery subsystems which support either GM2 or 
GMl can exclusively rely on transaction serializability. 
If the DBS realizes GM3, the workstation's recovery mechanism must be able to roll 
back work on an object basis, too. While a transaction-oriented recovery mechanism 
must be applied at the recovery transaction levei at the workstation, an object-oriented 
recovery mechanism must support design b-ansaction management at tiiat processing 
ncrfe. In the following subsectíon, we propose an altematíve to integrate transaction-
oriented recovery with object-oriented recovery at the workstation. Similar to 
transaction-oriented recovery mechanisms, object-oriented recovery techniques can 
also be classified on the basis of the architectural concepts considered in [HãRe83]. 
Group transactíon tnanagement will probably be realized by the public system at tíie 
server node. In this environment, recovery mechanisms which realize deferred 
mapping will probably perform well. Since design transactions exchange non-
committed object versions by first checking them into the group database, recovery 
based on deferred inapping could help saving mapping operatíons at the server node 
in, at least, two distínct ways. We explain this on the basis of a recovery mechanism 
which logs object versions at the object-oriented levei of the public system. The 
designer executíng the CHECKIN operation could in additíon inform the public system 
that the version being checked in will soon be checked out by another designer (we 
assume that designers telonging to the same group are always acquainted with each 
other's work and intensions). In this case, the system would save the updated object in 
its actual representation (i.e. levei of abstraction) and commit the CHECKIN 
operatíon. When the otiier designer starts his (expected) CHECKOUT operatíon, the 
server would simply read the object from the log file and send it to the workstation 
without changing its representation. In tiiis way, the public system would avoid two 
actually unnecessary (possibly long-duratíon) mapping operatíons. The public system 
can also reduce tíie number of mapping operatíons at the server node by automatically 
waiting to map object versions which have already been checked in untíl the design 
transactíons that created them commit. If any of these objects is checked out and 
checked back in by another design transaction before the transactíon which created it 
commits, only the version checked in later needs to be mapped onto database pages. 
Transaction Paradigm: At various leveis of the design environment, transactíon 
manageinem can be realized in either one of two ways: on the basis of the 
(conventíonal) transactíon p^adigm (and its distributed transactíon extension) or by 
following the nested transactíon concept. The whole transactíon hierarchy forming the 
design transaction, for instance, can be either implemented as a distributed nested 
transaction or partitioned in such a way that it forms a nested transaction at the 
workstation which can start a set of flat transactions on server. While nested 
transaction-oriented recovery techniques can cope with both flat and nested transactíon 
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environments, flat transaction-oriented recovery mechanistns (as the ones investigated 
in [HãRe83], [Reut84], [AgD85a], and [AgD85b]) can only support flat transaction 
systems. 
Nested transaction-oriented recovery mechanisms can further be classified on the basis 
of two orthogonal criteria: recovery strategy and levei of abstraction. Conceming the 
recovery strategy, these mechanisms rely either on shadow versions of data or on 
logging. Shadow version algorithms provide each transaction of the nesting hierarchy 
with the information necessary to recover its state in case of failures independently of 
other transactions in the hierarchy. Logging mechanisms maintain recovery 
informatíon integrated and centralized. 
Recovery algorithms which support (conventíonal) nested transaction environments 
usually operate at only one levei of abstractíon (e.g. page levei). If the system redizes 
a multí-level transactíon scheme, though, the recovery manager must operate in ali 
those system leveis where transactíon management takes place. In the next subsectíon, 
we analyze various existem nested transactíon-oriented recovery techniques in more 
detail. 

5.2.5 Summarizing the Conclusions of the Empirical Recovery Evaluation 

In the present sectíon, we have first analyzed recove^ for design database systems on the 
basis of flat transactíon-oriented recovery mechanisms. For this part of the study, we 
based our considerations about recovery performance on the classificatíon of recovery 
techniques proposed in [HâRe83] as well as on the evaluatíon results of recovery 
performance studies presented in [Reut84] and [AgD85b]. Then, we have extended the 
classiflcatíon of recovery mechanisms for the design environment by introducing three 
other classificatíon criteria, namely how recovery mechanisms located in different 
processing nodes cooperate, if the aJgorithms support transactíon cooperatíon, and the 
transactíon paradigms which are followed by different recovery algorithms. Figure 5.5 
shows the hierarchy formed by the proposed classificatíon criteria. The triangles in this 
figure represent instances of Üie hierarchy of concepts proposed in [HãRe83] which is 
illustrated in Figure 5.6. Recovery mechanisms realized at the system's object-oriented 
levei can further be subdivided into two categories: the mechanisms which support 
deferred update and the ones which do not. 

node 
cooperation: 

transactíon 
cooperation: 

transactíon 
paradigm: 

leveis of 
abstractíon: 

intearated 

-I design design 
cooperatíon cooperation cooperation 

nested nested nested nested 

one multi or>e one multi-
level levei 

one multi-one mula 
el levei 

Notes: 1) Tha triangles represent the recovery dassHleation proposed in [HAReSS] which is depfded in Figure 6.6. 
2) The \eál three dassíltcation oiterta, namely^iansactíon paradigm, leveis of abstraction, and the dassHicaJion in 
[HãPe83] reler to each raoovety subsystefn being implemented in the des^n environmert. 

Fig. 5.5: Classification of recovery mechanisms in the design environment 
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In the following, we summaríze the main results of the empirical recovery evaluation 
carried out in the previous subsections: 
• Conceming the possible cooperation of recovery algorithms in different processing 

nodes, we believe that isolated recovery mechanisms on server and at the workstation 
would perform better than integrated recovery mechanisms. The latter may cause a 
significam extra burden for both the communications subsystem and the public system 
on server. On the other hand, integrated recovery mechanisms involving only 
workstations may be able to improve reliability at the workstation without reducing 
system performance very much. 

• If the DBS supports design cooperation, the recovery mechanism at the server must 
combine object-oriented with transaction-oriented recovery actíons to cope with the 
hybrid recovery environment represented by GM3. Otherwise, only transaction-
oriented recovery techniques must be realized by the public system. Depending on the 
transaction management strate^ selected, either a single-level or a multí-level recovery 
mechanism will have to be realized by the public system. 

• The recovery manager at the woikstation must support transactíon serializability only. 
• Recovery techniques which support defeired mapping should perform well in the GM3 

environment. In the other processing environments (i.e. GMl and GM2), it is not clear 
if the benefits of deferred mapping will override its associated extra cost. 

• Nested transaction-oriented recovery should be realized in the design environment on 
the basis of logging. Nested recovery techniques following the WAL principie are 
expected to perform much better than those which rely on hierarchies of shadow 
versions. 

• Multi-level recovery mechanisms will probably perform worse than single-leVel 
algorithms on server. 

• We believe that both page and tuple logging will perform similarly on server, since 
processing time will be dominated by mapping operations at that node. On the otíier 
hand, recovery mechanisms which support object-oriented logging and deferred 
mapping on server should be investigated in more detail. 

• Techniques which collect recovery informatíon at the object levei can possibly work 
well at the workstation, too, especially in the presence of expensive mapping 
operatíons (as it is the case in R2D2 [KeWa88]). 

• Tuple logging will surely perform better than page logging at the workstatíon when no 
expensive mapping operations take place at the private system. 

• Recoveiy techniques which support atomic propagation will probably perform better at 
the workstation than at the server node. Non-atomic propagation seems to be the best 
choice for the public system. On the other hand, it is not clear if atomic propagation 
performs worse than non-atomic propagation at the workstation when the private 
system realizes a flat transaction environment 

• It seems more realistic to think that the page-oriented buffer manager will realize the 
STEAL strategy at the server node. In this case, recovery at that node will also have to 
cope with undo operations on disk. Some new DBS prototypes supporting buffer 
hierarchies avoid STEAL by realizing high-level virtud system buffers, though (see 
[KARD88]). Although these systems cannot prevent non-committed data from being 
flushed to stable storage, these data are not propagated to the materialized database. 
Consequently, undo recovery takes place only in main memory. 

• -iSTEAL can be realized by the private system at the workstation without much 
problems, since concurrent recovery transactions present high locality of access and 
the system processes only one D-Tr at a time. If -.STEAL is implemented at the 
workstation, recovery activity could become much cheaper at that node. 

• We believe tiiat recovery mechanisms relying either on FORCE or -iFORCE will 
perform alike on server due to the expensive mapping operations which are executed at 
that node. On the other hand, recovery based on —iFORCE will probably perform 
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better at the workstation, especially in combination with parallel logging or parallel 
flushing strategies. 
We expect fuzzy checkpoint techniques to reduce recovery overhead on server as well 
as at the workstation much in the same way they do it in business-oriented database 
systems. 

ATOMIC 
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EOT-
processing: FORCE FORCE 

checkpoint 
scheme: TOC TCC Acc Fuzzv TOC TCC FUZZV TOO TCC ACC TOO 

Note: the missing combínations of parameters are those for which ensted no recovery mechanism et the time of the dassificàtion. 

Fig. 5.6: Classification of transaction-oriented recovery schemes proposed in [HaRe83] 
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Chapter 6 

Simulating Recovery Techniques in a Design 
Database System 

6.1 Establishing the Goals of the Performance Evaluation 

In the previous chapter, we have analyzed database recovery in the design environment on 
the basis of a set of database system concepts. Some of these concepts were already used 
on the classification and evaluation of recovery techniques for centralized business-
oriented database systems. Others were selected because they represent specific 
architectural properties of design database systems. Relying on the results of the analysis 
carried out in the last chapter, we come to the following conclusions: 
• Transaction-oriented recovery techniques as they are known from business-oriented 

environments cannot cope with all types of design processing environments. These 
techniques must be modified to support design transaction cooperation, since 
cooperating transactions also require object-oriented recovery. 

• Compared with their performance in business-oriented database systems, transaction-
oriented recovery mechanisms may perform differently in design database systems. 
This is a consequence of the different architecture and processing models realized by 
design database systems. 

• The same recovery technique may perform differently depending on the DBS's 
processing node at which it is realized. This is a consequence of the different 
architectures and processing models realized by different processing nodes (e.g. server 
and workstation) of the design environment. 

• New architectural properties of design database systems (e.g. more leveis of 
abstraction than conventional DBS architectures, hierarchies of system buffers) make 
the realization of new database recovery mechanisms in the design environment 
possible (e.g. recovery at the object-oriented system levei, recovery supporting 
deferred mapping). 

Probably, the architectural aspects which most affect recovery performance in design 
database systems are the expected long-duration mapping operations at the server node 
and the database hierarchy distributed over the server and the workstation. In the last 
chapter, we empirically evaluated the performance of different recovery mechanisms at the 
workstation and at the server node on the basis of these architectural aspects. From that 
evaluation, it became clear that some evaluation results of former recovery performance 
analysis based on business-oriented database systems will probably not be observed in 
the design environment. On the other hand, we believe that new recovery techniques for 
design database systems should be investigated in more detail. 
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As noted in chapter 5, there already exists a number of independent studies conceming the 
performance of recovery techniques for database systems. Most of these studies have 
investigated recovery performance only for centralized database system architectures 
supporting conventional, business-oriented transaction environments, though (e.g. 
[Reut84], [AgD85b]). In [AgD85a], recovery mechanisms for multiprocessor database 
machines were investigated. Although this investigation relies on a distributed database 
system architecture, recovery has been analyzed in a conventional transaction 
environment. The evaluation reported in [Wei87b], on the other hand, possibly is the only 
one where database recovery performance has been investigated in a multi-level 
transaction environment. Nevertheless, this study considered only conventional 
transactions (i.e. long-duration transactions were not simulated), and modeled the multi-
level environment without a buffer hierarchy. The work in [Wei87b] mainly compared 
muM-ievel transaction management (as a whole) with single-level transaction management 
for centralized database systems. 

In this chapter, we present a simulation analysis of recovery performance in design 
database systems. On the basis of this analysis, we tried to quantify the results of the 
empirical evaluation carried out in the previous chapter. We concentrated our efforts on 
the investigation of both recovery techniques which were expected to perform differently 
when applied to the design environment (e.g. recovery based on FORCE) and those 
recovery mechanisms which can be reaíized at the object-oriented levei of the design 
database system. Moreover, we evaluated recovery performance on the basis of a 
database system which supports business-oriented as well as design transactions, since 
we believe that non-standard database systems will usually have to cope with integrated 
information systems, that is, systems where totally different applications which can 
process common data might have to be supported at the same time. 

We decided to simulate only the public system on server, because the new architectural 
characteristics of design database systems in which we were mostly interested are reaíized 
by that subsystem. The architecture of the private system, on the other hand, is either an 
extension of that of the public system (i.e. when the storage system supporting the 
application-oriented layer at the workstation is either similar or even a copy of the DBS 
kemel software1^) or it is similar to the architecture of a centralized business-oriented DBS 
supporting conventional transactions. In the first case, recovery requirements at the 
workstation can be derived from those posed by the public system at the server node. In 
the second case, recovery at the workstation can be compared with recovery in centralized 
database systems and, for the latter, there already exists a number of performance studies. 
Fi^hermore, we believe that the performance results achieved by the server simulation 
will help us to analyze recovery performance at the workstation in a future work. 

By analyzing the performance of recovery mechanisms at the server node of a design 
database system, we were mainly interested in investigadng the following questions: 
• How well recovery mechanisms can cope with environments where totally different 

transaction classes are supported. 
• To which extent recovery can benefit from the buffer hierarchy reaíized by the system. 
• In which levei of abstraction recovery mechanisms should be reaíized in the system to 

guarantee better performance. 
• How recovery mechanisms can help to improve overall system performance in the 

design environment. 

Most of the simulation study were based on the GMl design processing model. GM3 was 
simulated only to test the performance of deferred mapping in environments supporting 
design cooperation. Since GM2 constimtes a special case of GMl at the server node, we 

4An example of such an architecture can be found in [DeOb87]. 
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believe that most of the resuhs obtained thiougb the simulation study can be extended to 
server nodes which realize GM2. 

Database recovery in the evironment described above was investigated on the basis of 
three performance criteria: the way different algorithms affect system throughput5; how 
transaction response time is affected by recovery activity; and how much stable storage 
space is needed by each mechanism to save recovery information during normal system 
operation. Note that none of the already pubiished recovery performance studies has 
investigated either the effect recovery mechanisms have on transaction response time or 
how much data they need to keep in nonvolatile storage. Although the burden represented 
by recovery activity in the overall transaction cost was investigated in [AgD85b], 
response time during system operation has not been directly modeled6. On the other hand, 
we believe that recovery mechanisms supporting the design environment will need much 
more space on stable storage than recovery mechanisms in conventional DBSs do. 
Therefore, especially for small and médium size design systems recovery algorithms 
which save less data (in terms of number of bytes kept on stable storage) will be of 
greatest interest (see [Hãrd87] for more explanations on this subject). 

To better analyze how different recovery activities affect system performance, database 
recovery was investigated in four different environments. These environments were 
selected on the basis of the various failure modes considered by the failure model derived 
in chapter 4. The simulation of four different system environments simplified the 
evaluation of both the recovety cost associated with each individual failure mode and the 
bürden represented by recovery activities during normal system operation. We present the 
four environments below. 
• Normal System Operation (NRj: In this environment, transactions always execute 

normally. That is, transactions never need to be aborted. Moreover, the system never 
fails (i.e. no crashes occur). Finally, when analyzed in this environment, recovery 
mechanisms generate no checkpoints. By the simulation of this enviroiunent, we could 
evaluate the burden represented by recovery activities during normal system operation 
as well as the volume of recovery information kept on stable storage when no 
checkpoint activity takes place. 

• Abort Environment (AB): As the name suggests, in this environment transactions can 
be both rolled back and restarted until they execute to completion. On the average, 
some 10% of ali transactions executed in this environment abort, at least, once. As 
with the normal environment, neither crashes occur nor checkpoints are generated in 
the abort environment. By the simulation of this environment, we were mainly 
interested in evaluating recovery cost for transaction backout 

• Checkpoint Environment (CH): In this environment transactions always execute to 
completion, no crashes occur, and the recovery mechanisms are allowed to generate 
checkpoints. By the simulation of this environment, we could evaluate the cost 
associated with checkpoint actívity during normal system operatíon. Moreover, we 
could also analyze how checkpoint activity contributes to reduce the volume of 
recovery information kept on stable storage. 

• Crash Environment (CR): This environment produces system crashes regularly (i.e. 
typically, 4 to 5 crashes per execution of 2000 transactíons). Transactions never abort 
and no checkpoints are generated in this environment. By the simulation of this 
environment, we were mainly interested in the evaluation of the cost associated with 
crash recovery activity. 

sSystem throughput was measured on the basis of the number of committed transactions per unit of time. 

6In [AgDSSb], dynamical properties of the operating system supporting the DBS as, for instance, 
multiprogramming levei and how the execution of one transaction affects the executíon of others were not 
taken into consideration by the analytical models. 
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Besides defining different system environments, we generated a set of different 
transaction loads by changing the values of some important load parameters. Different 
load types basically differ from one another in the relation between the number of 
business-oriented and design transactions they contain as well as in the update transaction 
rate they present. Later in tiiis chapter, we present the various simulated transaction loads 
in more details (see section 6.3). Thíough the integratíon of different load types with 
different environments, it was possible to evaluate recovery performance in a set of 
processing scenarios which possibly represent most of the real scenarios in a design 
environment realizing the GMl processing model. 

The selection of recovery mechanisms to be simulated followed the considerations about 
recoveiy techniques made in chapter 5 and reflected the main goals of the performance 
analysis. We evaluated only non-integrated recovery algorithms. These algorithms 
guarantee correctness only for databases at the server node (e.g. the public and fie group 
database). They are not related to recovery activities at the workstation. In most of the 
simulation experiments, the selected recovery algorithms supported non-cooperative 
design environments (e.g. GMl). In some experiments, we simulated design cooperation 
to some extent, though. Since we simulated the GMl processing model most of the time 
and did not model the designer work at the workstation in much detail, we selected only 
flat transaction-oriented recovery techniques for simulation. Although the construction of 
a simulation model for some of the selected techniques has proven to be a complex task, 
the development of models for nested transaction-oriented recovery techniques would 
certainly be much more complex. 

We were most interested in comparing üie performance of recovery mechanisms which 
are implemented at different system leveis. Therefore, we selected two mechanisms which 
work at the page levei, one which logs tuples and data records, and one which works at 
the object-oriented levei of the public system and supports deferred mapping. According 
to the considerations in chapter 5, all recovery algorithms selected support non-atomic 
propagation. To investigate the behavior of FORCE in design database systems, we 
selected one technique which supports this EOT strategy. The other three recovery 
algorithms support -nFORCE. All recovery algorithms selected for simulation realize 
some kind of checkpoint. Finally all selected techniques support the STEAL policy of 
buffer replacement 

We analyzed the algorithm based on deferred mapping in two different operating system 
environments. In the first one (OSEl), the system's multiprogramming levei is kept 
constam conceming deferred mapping operations. That is, the system waits until the 
mapping activity for a committed transaction is completed, before it takes another 
transaction from the ready queue and starts executing i t In the second operating system 
environment considered (OSE2), new transactions are taken from the ready queue and 
processed by the system as soon as old ü-ansactions are committed (i.e. even before 
mapping operations related to already committed transactions terminate). 

Relying on the extended taxonomy of chapter 5, the algorithms chosen for analysis can be 
characterized as follows. 
• RECl : ( - . I N T E G R A T E D , - . C O O P E R A T I O N , F L A T , P A G E - L E V E L , - . A T O M I C , S T E A L , 

- . F O R C E , A C C ) . This algorithm logs before and after images of updated database pages. 
It is based on the undo/redo recovery mechanism described in [BeHG87]. It generates 
checlqioints either at regular time intervals or when the log achieves a previously 
specified length. During checkpoint, updated pages which have not yet been 
propagated since the last checkpoint are written to the database on disk. 

• RECl: ( - . I N T E G R A T E D , - . C O O P E R A T I O N , F L A T , O B J E C T - L E V E L , - . A T O M I C , S T E A L , 
- . F O R C E , F U Z Z Y ) . This algorithm saves updated versions of design objects and tuple 
sets before these abstractions are mapped onto database pages by the public system. It 
implements the log as a ring file and asks the buffer manager to flush pages (in the 
buffer) to disk only when the ring file is full (as with the DB-Cache algorithm in 
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[ElBa84]). REC2 is based on the deferred mapping version of the recovery mechanism 
described in [KARD88]. 

• REC3: ( - . I N T E G R A T E D , - C O O P E R A T I O N , F L A T , T U P L E / R E C O R D - L E V E L , A T O M I C , 
S T E A L , F O R C E , A C C ) . REC3 is a moidified version of the recovery algorithm 
proposed in [Lind79]. It logs before and after images of updated data records (i.e. 
atomic objects) and tuples, after updated objects and tuple sets are mapped onto 
database pages. Opposed to the algorithm in [Lind79], REC3 realizes an action 
consistent checkpoint strategy7. 

• REC4: ( - . I N T E G R A T E D , - I C O O P E R A T I O N , F L A T , P A G E - L E V E L , - . A T O M I C , S T E A L , 
F O R C E , T O C ) . This algorithm works at the page-level, supports FORCE and realizes a 
transaction-oriented checkpoint strategy. Tliat is, transaction updates are always 
integrated into the database on disk at transaction commit. 

• REC5: ( - . I N T E G R A T E D , - C O O P E R A T I O N , F L A T , O B J E C T - L E V E L , - . A T O M I C , S T E A L , 
- T F O R C E , F U Z Z Y ) . Actually, REC5 and REC2 represent the same recovery algorithm. 
They differ ftom each other in that REC2 is evaluated in the OSEl operating system 
environment while REC5 is analyzed in 0SE2. 

Through the simulation of REC2 and REC5 we could evaluate the performance of 
recovery algorithms which execute at the object-oriented levei of the server and support 
deferred mapping. On the basis of these recovery algorithms, we were able to analyze the 
performance of deferred mapping in the GM3 environment, too. Through the simulation 
of RECl, we could evaluate the performance of page-oriented logging mechanisms in a 
processing environment where representation mapping operations dominate transaction 
processing time and the operating system supports chained-VO. Finally, we simulated 
REC4 to analyze the performance of recovery mechanisms which support FORCE in the 
design environment. 

6.2 A Simulation Model for Recovery Performance Evaluation 

In this subsection, we comment on the simulation model on the basis of which the 
performance of the recovery mechanisms presented above have been analyzed. A 
complete description of this model including implementation details can be found in 
[Ioc89a] and [Schm89]. 

As we decided to model lecoveiy activity in the design environment, the question of what 
methodology to follow arose. As already nOted in [Wei87b], to be able to mathematically 
handle analytical models, designers are often forced to make unrealistic assumptions 
about system characteristics. Furthermore, systems which present a relative large number 
of independent variables cannot be evaluated by means of analytical models at all. Pure 
simulation models, on the other hand, usually are simpler to develop and realize, but they 
can also lead to an unrealistic description of the system, in case designers choose incorrect 
values for model parameters. 

The best method for analyzing the performance of computer system çoinponents seems to 
be the evaluation of their functipnality in real systems on the basis of real transactíon 
loads. In some studíès where new system architectures are to be analyzed in an existing 
transaction environment, simulation models were combined with so-called real transaction 
reference strings (e.g. [HâPR85]). These are logs contaiiiíng sequences of write and read 
operations executed by real transactíons running on a reaí computer system. The reference 
strings, then, are used as ínput in computer simulatíon models. As we developed our 
system model, there was neither an existíng design DBS similar to the one we wanted to 

' Tliis algorithm was identified as '2.2'in [Reut841 
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investigate nor a reference string of design transactions. Therefore, we decided to develop 
a simulation model for our design environment and generate transaction loads based on 
some already existing informations about design transactions in centralized, single-user 
design DBSs (e.g. DAMOKLES [DAM86b]). 

The simulation model constructed relies on the reference architecture for design database 
systems presented in chapter 2. It models a server-workstatíon computer system where 
the server and the workstations communicate through a reliable communications network. 
Although our model can simulate cooperation between server and workstation (i.e. 
transfer of data between these nodes) at various leveis of abstraction, we simulated only 
cooperation at the object levei. That is, the server sends the workstatíon complete objects 
by CHECKOUT and receives from that node complete objects by CHECKIN. 

The database system simulated supports two different transactíon classes: conventíonal, 
short-duration batch transactions and long-duration design transactions. Batch 
transactíons execute at the server node completely. Design transactions execute at 
workstatíons and spawn subtransactíons on server to either check out objects of the public 
database or check in updated objects back in there. At the server node, batch transactíons 
as well as CHECKOUT and CHECKIN operations are processed in the object/set-
oriented buffer supported by the system's object/tuple-oriented layer. Batch transactíons 
are processed in tíie same way as in KARDAMOM: transactíon updates are applied to 
selected tuple sets which are mapped back to database pages by transactíon terminatíon. 
CHECKOUT and CHECKIN operations are executed as in DAMOKLES. By 
CHECKOUT, the object's main memory representatíon is constructed in the server's 
object buffer and sent to the workstatíon. By CHECKIN, the object's updated version is 
brought into the server's object buffer and mapped onto database pages later on. 

The server simulatíon model developed supports multí-level transactíon management The 
transactíon managers of both system layers can lock either whole page clusters or single 
pages or subobjects or even complete objects. We used only page locks at both system 
leveis so that page locks were kept on server for objects which were checked out by 
designers at workstatíons. By selectíng the page as the lock granule, we assured correct 
executíon of the algorithms which log at the page levei. To fuÃier simplify the simulatíon 
model, cooperation between server and workstatíons is reaíized by means of a flat 
distributed transactíon mechanism which relies on a two-phase commit protocol. 

6.2.1 G M l ' s Realization in the Simulation Model 

6.2.1.1 Design Transactions at the Workstation 

GMl allows the designer at the workstation to check objects back into the (public) 
database at the server node at any time. Figure 6.1 depicts the dynamical properties of 
GMl in the simulation model. Although the kemel system relates CHECKOUT locks to 
the design transaction, it releases these locks as soon as the respective objects are checked 
back into the public database. 

GMTs design transaction (D-Tr) is started by the designer at the workstation. It consists 
of a sequence of object-oriented composed operations (OCOP) followed by a set of 
relational operations (ROP). The set of ROPs can be empty. In our performance study, 
design transactions executed only object-oriented operations while batch transactions 
processed relational tuples. 

Each OCOP consists of a sequence of three recovery transactions (R-Tr). The first R-Tr 
s t a ^ a CHECKOUT operation at the server node. By this operatíon, a specific complex 
object (Oi) is copied from the public database into the private database at the workstatíon. 
By receiving D-Tr's first CHECKOUT request, the public system creates a state record 
for the design transaction at the server node. After the CHECKOUT R-Tr has committed, 
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the designer starts a PROCESS R-Tr. This recovery transaction processes Oi at the 
workstation's object-oriented buffer. After completely processing Oi, the designer starts a 
so-called CHECKIN R-Tr which is responsible for copying Oi back into the public 
database on server. By receiving a corresponding message from this transaction, the 
public system starts a short transaction (S-Tr) on server to actually check Oi into the 
database. If Oi has not been updated at the workstation, S-Tr only releases its locks; 
otherwise, S-Tr also maps Oi's main memory representation onto database pages. 

After ali design transaction's OCOPs have been executed, the designer starts executing the 
set of relational operatíons. ROPs are also executed serially. Every ROP consists of only 
one recovery transaction. This R-Tr executes either a query or a short update operatíon 
directíy in the public database. Since each query as well as each short update operatíon is 
completely executed in only one server call, there is no need to relate the locks which are 
acquired for these operatíons to the design transactíon. 

G M r s design transaction is considered to be terminated when all its OCOPs and ali its 
ROPs have been executed. The DBS kemel blocks neither CHECKOUT operatíons nor 
ROPs which get involved in lock conflicts. The kemel simply aborts these operatíons and 
sends the respectíve workstatíon a message, instead. 

When the workstatíon receives an abort message, the designer starts either another OCOP 
or another ROP. He tries to restart the aborted operatíon only when all other operatíons 
have already been executed. In the case there are no more operatíons to be executed, the 
designer keeps on restartíng the aborted operation until it can be executed at the server 
node. 

6.2.1.2 Remote Operatíons and Batch Transactions at the Server Node 

Untíl now, we have only explained design transactíon executíon at the workstatíon in 
more details. In the following, we explain data processing activities at the server node. 
Every remote operation is processed by the kemel system as a short transaction (S-Tr). 
Short transactions execute at the server's object/tupe levei and can start subtransactíons 
(SS-Tr) at the server's page/segment levei to read or write database pages. Design 
transactions inherit CHECKOUT locks from those S-Trs which execute CHECKOUT 
operatíons on their behalf. The DBS kemel releases CHECKOUT locks in the public 
database when the respectíve CHECKIN S-Trs commit. 

As already explained in the last section, the kemel does not only execute remote 
operatíons of design transactions. It also processes batch transactions. Batch transactions 
are directíy started at the server node. Everyone of these transactions consists of a 
sequence of (short) relatíonal operatíons. These operatíons are similar to the ROPs of 
design transactions. The kemel executes relatíonal operatíons of batch transactions as 
short transactions (i.e. at its object/tuple levei). At the end of a relational operation, the 
kemel checks if there is a next operation to be executed on behalf of the batch transactíon. 
When all operatíons of the batch transaction have already been executed, the kemel 
commits it. Depending on the commit protocol being used (which, in tum, depends on the 
recovery algorithm being tested), the server can map relational updates which are 
processed in the object buffer onto database pages either after every batch transactíon's 
operation or only at transactíon commit. In any case, thoiigh, relatíonal updates must be 
saved at the end of each relational operation. 

Contrary to object-oriented operations and ROPs of design transactions, batch 
transactions can be blocked by the public system when some of their relational operations 
participates in a lock conflict. Deadlock prevention is realized at the server node by means 
of a timeout mechanism. After being blocked for a previously specified period of time, 
batch transactions are aborted and brought back into the server's ready queue for restart. 
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6.2.2 The Architecture of the Server 's Simulation Network 

The server network was realized in two layers. The lower (physical) layer simulates 
hardware as well as operating system functions. These functions are realized by the host 
machine on top of which the DBS kemel (i.e. the public system) is installed. The higher 
(logical) layer of the simulation model represents the whole design environment (i.e. the 
kemel DBS, the communications network, and the private systems at the workstations). 
In the following, we describe each network layer. Then, we present the run-time 
parameters which control network simulation. 

6.2.2.1 The Network's Logical Layer 

Figure 6.2 shows the logical layer of the simulation network. In this figure, boxes 
represem simulation nodes and arrows model communication between nodes. Simulation 
nodes represent software modules that process transactions. The network's logical layer 
can further be subdivided into three (sub)networks: a network representing the 
workstations, another one for the communications subsystem, and a third network 
representing the kemel software at the server processing node. 

Each simulation node implements a set of operations. These operations form the node<s 
interface. In Figure 6.2, the interface of each simulation node is represented by the 
operations which identify the arrows pointing to the node. Transactíons are passed ftom 
node to node until they are completely processed. Each simulation node processes 
transactions sequentially and maintains an internai queue where incoming transactions are 
kept until they can be processed by the node. 

Each simulation node is identified by a specific mnemonic associated with it. Thus, TG 
stands for transaction generator, User for user node, CS for communications 
subsystem, TM for transaction manager, SCH for scheduler, RM for recovery manager, 
RD for restart delay, BM for buffer manager, and MAP for mapping module. Besides 
simulation nodes and communication arrows, the simulation networks's logical layer 
presents two externai queues: the ready queue (RQ) and the Levell-Queue. 

We suppose the reader is familiar with the functions of most of the software modules 
cited above. Perhaps the only nodes which deserve a more detailed explanatíon are both 
User and MAP. The user node models the work of designers at workstations. This node 
simulates the execution of PROCESS recovery transactions. Moreover, the user node 
determines the next operation to be started on D-Tr's behalf and controls the end of design 
transactions. PROCESS recovery transactions are simulated in the user node by means of 
time delays. 

MAP simulates the operations which build the main memory representation of objects 
and tuple sets out of sets of database records and tuples, respectívely. Moreover, MAP is 
also responsible for mapping transaction results in main memory representation onto 
database pages. Costs of MAP operations are expressed in number of CPU instructions. 

Following the reference architecture of chapter 2, the simulation network representing the 
kemel software can further be subdivided into two (sub)networks, each one of tiiem 
representing one of the server,s software layers (i.e. LI and L2 in Figure 1.4). The 
network which is built by the ready queue and the nodes TM2, SCH2, RD2, and RM2 
models the server's object/tuple-oriented layer (L2). The rest of the nodes which simulate 
kernel software modules together with the Levell-Queue model the server's 
page/segment-oriented layer (LI). 
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Fig. 6.2: The logical layer of the simulation network 
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The box for the recovery algorithm represents no simulation node. Recovery activity 
actually is simulated by both R M l and RM2. We designed the box for the recovery 
algorithm only to make clear that RM2 and R M l can cooperate with each other by the 
implementation of the recovery algorithm. Moreover, depending on the recovery 
technique being simulated, either RMl or RM2 can even become unnecessary. 

Besides being activated by other simulation nodes, recovery nodes can be directly 
activated by the simulation supervisor. By means of the crash delay run-time parameter 
(Dcrash) the time interval between any two consecutive system crashes can be passed to 
the supervisor. The simulation system automatically controls this delay and informs the 
recoveiy nodes when a system crash occurs. Instead of using delays to control checkpoint 
generation, checkpoints were made dependem on the log file's size. That is, the recovery 
nodes generate a new checkpoint every time the log becomes full. The log file's size is 
passed to the simulation system by means of a run-time parameter (Log-Size). 

No object-oriented buffer manager has been modeled in the simulation network. It was 
assumed that object buffer size in both server and workstation is large enough so that no 
virtual memory management for the object buffer is necessary in either of the two 
processing nodes. 

Transaction load is generated off-line. TG only reads transactions from the load file, 
introduces them in the simulation network (begin-transaction operation), and receives 
committed transactions from other nodes. By controiling both the number of committed 
tiansacdons and the end of the load file, TG can identify the end of the simulation. Figure 
6.2 associates TG with an index in parentheses (n). It represents the number of active 
users being simulated. At any time during the simulatíon, each of these n users is 
executing one transaction (of any class). 

Both scheduler nodes (i.e. SCH2 and S C H l ) realize locking mechanisms to 
synchronize concurrent transactions. Transactions can access data in one of three modes: 
read mode (r), write mode (w), and read-intention-to-write mode (riw). The use of the 
riw lock mode depends on the state of a specific simulation parameter (Lock-Upgrade). If 
this parameter is set to TRUE, the data which will be updated later on are first locked in 
riw mode; otherwise, these data are directly locked in write mode. riw locks are upgraded 
to write locks only when the transaction decides to update the data at the server. Figure 
6.3 presents the lock compatíbility matrix for the set of lock modes associated with the 
simulation network. 

" w b riwd r 

rb ok 

••d ok 

rlw ok 

w -

ok* 

Note: r stands for read mode, w for write mode, 
and riw for read-intention-to-write mòde; the 
Índices d and b stand for design transaction and 
batch transactíon, respectívely; the iocks on the 
figure ieft side are being reqüested. 
* only if the corresponding write lock has not 
yet been requested 

Fig. 6.3: Lock compatíbility matrix for both SCH2 and SCHl 
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We complement our description of the kemel network's logical layer witíi an example. By 
üiis example, we make the following assumptions. The kemel software implements a 
multi-level ü-ansactíon manager at both, L2 and LI. In L2, short transactíons (S-Tr) are 
synchronized on the basis of tuple locks. LI 's (sub)transactíon manager realizes a page 
locking mechanism. 

Figure 6.4 shows a design database example as well as the record of a design transaction 
(D-Tr), and the record of a batch transaction (B-Tr). D-Tr checks a complex object (lobi) 
out, processes it at the workstation, and checks it back into the public database later on. 
After that, D-Tr reads one relational tuple (Rell.tups). B-Tr which we suppose begins 
when D-Tr starts reading Rell.tups reads two tuples (Rell.tups and Reli.tupg) and 
updates one of them. 

TG reads D-Tr's record (DR) from the load file, sets its actual state to start-transaction, 
and sends it to the communications subsystem. CS identifies DR's actual destination. It 
must be sent to the server's ready queue. Before doing that, CS stores DR in an intemal 
queue, though. After a simulation time delay which represents the communication delay, 
CS sends DR to RQ. The ready queue controls the multiprogramming levei (mpl) of the 
kemel system. mpl's value is determined by a mn-time paiameter (mpl) at the beginning 
of the simulation mn. DR is kept in RQ until the number of transactions mnning in the 
public system becomes smaller than mpl. At this moment, DR is sent to TM2. 

P r°i i 

lob1 

(Iso^, lsob2) 

(tup1,tup2) (tup3,tup4) 

DBdlsioint 

(tup5. tupg, tup7, tupo) 

du 1 •> iob1 du» -> Rei. 

D-Tr: {out(lob1)> process(lob1), Ín(lob1.lsob1), read(Rel1.tup5)} 

B-Tr:{read(Rel1.tup5, Rel^tupg), write(Rel1.tup5)} 

Fig. 6.4: Data structures and transactions for the simulation example 

TM2 notices that DR just began, identifies its first operation, associates DR wiüi a 
CHECKOUT S-Tr, sets DR's state to read-lock, and sends DR to SCH2. This 
simulation node, then, tries to lock the tuples belonging to the object being checked out by 
D-Tr (i.e..tupi, tup2, tup3, and tup4 in cluster clui). If any of these tuples is already 
locked, SCH2 changes DR's state to restart-op and sends DR back to the transactíon 
manager; otherwise, the scheduler grants CHECKOUT S-Tr the requested tuple locks. 
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sets DR's state to read-locked, and sends DR back to TMl . From this node, DR is sent 
to the server's lower layer. It enters this layer through the Levell-Queue and is analyzed 
by TMl . This node identifies DR's actual state (start-build), envelops DR in an SS-Tr, 
and sends it to SCHl. The scheduler locks pagi and pag2, changes DR's state to read-
locked, and sends DR back to the transaction manager. This node sends DR fiirther to the 
buffer manager. B M l searches for the requested pages in the page/cluster-oriented 
buffer. In case clui is not present in the buffer, BMl starts an VO-operation to copy this 
cluster from disk into the buffer. After making the requested cluster accessible in the 
buffer, B M l sets DR's state to build and sends DR to the mapping simulation node. 
MAP calculates how many CPU instructions are needed to build the object-oriented 
representation of lobl, changes DR's state to object-built and sends DR back to TMl (via 
the CPU simulation node of the network,s physical layer). DR's state, then, is set to 
unlock-pages and the record is given the scheduler. SCHl releases both pagi 's and 
pag2's locks, changes DR's state to unlocked, and sends DR back to T M l . This 
transaction manager sends DR to TM2, after committing the SS-Tr related to it. 

Before being sent back to the user node via communications subsystem, DR is processed 
by RM2. This node associates S-Tr's tuple locks with D-Tr and saves them as 
CHECKOUT locks (possibly in a special log file). lobi is processed in the user node 
further. User calculates the processing time for this object on the basis of the number of 
records belonging to it. DR is kept in the user node during this time interval. At the end of 
the process time, User sets DR's state to start-in and sends DR back to TM2 via CS and 
ready queue. TM2 creates a CHECKIN S-Tr and relates it to DR. After that the 
transaction manager changes DR's state to save-checkin and sends DR to the recovery 
manager. If the recovery technique being simulated saves object updates before they have 
been mapped onto database pages, this action is executed by RM2 at this point in time; 
otherwise, the recovery manager simply sets DR's state to checkin-saved and sends DR 
back to TM2. DR is fiuther sent to the server's page/segment layer where lobl 's updates 
are mapped onto pagi and pag2- At the end of both the data mapping and the possible 
data saving operations at LI, DR is sent back to L2. Then, SCH2 releases D-Tr's tuple 
locks and sends it back to RM2 via the transaction manager. RM2 invalidates D-Tr's 
CHECKOUT locks and sends DR back to TM2. This node commits the CHECKIN S-Tr 
and sends DR to the user node. 

User searches the next operation to be executed on D-Tr's behalf. It is a query. tup5 
must be read in the public database. User sets DR's state to start-short and sends DR 
back to TM2. The transaction manager starts a new S-Tr for DR and sends it to the 
scheduler. SCH2 locks tup5 and sends DR to the server's lower layer via TM2. We can 
imagine that TG introduces B-Tr in the simulation network in parallel to the above 
operations. When SCH2 tries to lock both tup5 and tup6 on behalf of B-Tr, it identifies 
the lock confiict with DR's S-Tr. B-Tr, then, is blocked during the execution of DR's S-
Tr. That is, B-Tr's transaction record (BR) is kept in SCH2's block list until D-Tr's 
tuple locks are released in the public database. 

When the scheduler releases the locks held by DR's S-Tr, it unblocks B-Tr, grants it the 
locks for tup5 and tup6, changes the state of BR to read-locked, and sends it back to the 
transaction manager which, in tum, sends BR to the server's lower layer. TM2 receives 
BR back, after tup5 and tup6 have already been read out of pag3 and copied into a tuple 
set for further processing. TM2 changes BR's state to write-lock and sends BR to the 
scheduler. SCH2 upgrades the lock mode of the locks held by B-Tr and sends BR back 
to the server's page/segment layer via transactíon manager. If the recovery technique 
being simulated saves updated tuples, before they are mapped onto pages, RM2 executes 
this activity before BR is sent to T M l ; otherwise R M l saves data updates, after the 
mapping node has copied tup5's new version onto pag3. After doing that, the recovery 
manager sends BR back to TMl. The transactíon manager notíces that the updated tuples 
have just been saved and sends BR to the scheduler. SCHl releases B-Tr's page lock 
and sends BR back to the server's tuple/object layer via TMl . After B-Tr's tuple locks 
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have been released by SCH2, TM2 commits B-Tr and sends it's BR back to TG via 
CS. 

6.2.2.2 The Physical Layer of the Kemel Network 

To simiilate finite computing resources at Üie server processing node, we mapped Üiose 
simulation nodes representing kemel software modules (e.g. TM2) onto another 
simulation network that models CPU and disk resources. This network represents the 
physical layer of the server processing node. It's layout is sketched in Figure 6.5. 
Besides RD2 and RDl, all simulation nodes modeling kemel software are treated by the 
physical layer as operating system processes which consume services of both CPU and 
disk units. The idea of modeling the server node as a hierarchy of simulation networks is 
based on the simulation models presented in [Care83], [CaSt84], and [AgCL87] for the 
evaluation of concurrency control algorithms in centralized database systems. 

Figure 6.5 shows how process execution is modeled by the kemeKs physical layer. Idle 
logical nodes, that is, simulation nodes of the logical layer which are processing no 
transaction records (TR) at the moment wait in the physical layer's idle node. When a 
simulation node SN receives a TR, it moves into the CPU's input queue. By entering the 
CPU, SN processes TR. This processing activity is simulated through CPU time delays. 
Since each process receives only a finite slice of the CPU time (which is measured in 
number of CPU instructions), it is possible that SN must re-enter the CPU more than 
once until it can completely process TR. If SN concludes that VO-operations must be 
executed on TR's behalf, it first identifies the disk on which the needed data are stored 
and, then, moves into the input queue of the coiresponding disk unit. Every VO-operation 
consists of a data transfer operation and a sequence of operating system operations. Thus, 
SN must come back to the CPU, after the data transfer operation has been executed. After 
completely processing TR, SN tests if there is another transaction record to be processed. 
If no new TR is waiting in SN's input queue at the kemers logical layer, SN moves back 
into the idle node of the physical layer, otherwise, SN moves into the CPU's input queue 
and starts processing the next transactíon record. The simulation supervisor program 
awakes logical nodes waitíng in the idle node of the physical layer when some new TR is 
brought into their input queues. 

Fig. 6.5: The physical layer of the simulatíon network 
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6.2.2.3 Simulation Network's Run-Time Parameters 

As it can be derived from the explanations above, specific characteristics of different 
simulation runs can be established through a set of run-time parameters. This set can be 
subdivided into three different groups of parameters. The first group expresses costs as 
time delays. These parameters are mainly used in modeling I/O-operations, 
communication delays, user processing times, block and timeout delays, etc. The second 
group represents those parameters which express costs in quantities of CPU instructions. 
Most parameters of this type model costs for logical simulation nodes. The third group of 
parameters model the system architecture itself. The parameter establishing the server's 
multiprogramming levei and the one expressing the number of active users 
(terminals/workstations) in the system are examples of parameters belonging to this third 
group. 

Figure 6.6 shows a list of some important run-time parameters of the simulation network 
with possible values associated with them. CPUbuild/map fixes the number of 
instructions per data record necessary to build/map a design object. Similarly, 
CPUread/write establishes the number of instructions per tuple necessary to build/map 
a tople set. CPUrec fixes the costs for processing a data record or tuple in main memory. 
Duser determines how long the designer processes each data record (of a complex 
object) at the workstation. Dio establishes the duration of I/O-operations on database 
disks. Dlogio fixes the time necessary to either read data from or write data to the log file 
(on the log disk). If Chained-I/0 is set to TRUE, every 1/O-operation can transfer up to 
one cluster of data pages from/to disk. If this parameter is set to FALSE, instead, eveiy 
I/O-operation can transfer only one page from/to disk. As the name implies, Buffer-
Size fixes the size of the server's page/segment-oriented buffer. Finally CPU-Speed 
indicates how many CPU instructions are executed per simulated microsecond. 

CPUbuíld/map 300000 instr Dusdr 1800 ms/tu pie Chaíned-IO TRUE 

CPUreadMrítd 25000 instr Dio 30 microseconds Buffer-Size 4 Mbytes 

CPUrec 20 Instr Dlogio 15 microseconds CPU-Speed 10 MIPS 

Fig. 6.6: Possible values of some simulation parameters 

6.3 Describing the Simulation Scenarios 

As already explained in section 6.1, we investigated the cost of different recovery 
activities separately. To do that, four basic simulation scenarios were defined: the normal 
system operation, the transaction abort, the system checkpoint, and the system crash 
environments. Transactíons were forced to back out in the transactíon abort environment 
by reducing the allowed transactíon blocking time. After the blocking tíme had elapsed, 
transactions were forced to abort due to the timeout mechanism realized by the public 
system to prevent the occurrence of deadlocks. Since only business-oriented transactions 
could be blocked at the server node, they were the only ones which aborted by the 
simulation of the transaction abort environment. Checkpoints were forced in the system 
checkpoint environment by limitíng the maximum size of the log file on disk. Depending 
on the recovery mechanism being simulated in that environment, the maximum log size 
was achieved sooner or later. The volume of information kept on stable storage by each of 
the simulated recovery mechanisms was analyzed on the basis of the normal system 
operation environment for which no log size limit was set. The number of system crashes 
which should occur during simulation was set by means of a run-time parameter which 
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expresses the time interval between two consecutive crashes. Since crash recovery took 
longer by some mechanisms and no system crash was allowed to occur during crash 
recovery, the number of crashes was not always the same by every simulation of the 
system crash environment. 

We also wanted to investigate recovery performance under different transaction load 
characteristics. Similar to the performance evaluation in [Reut84], we were interested in 
analyzing recovery performance in processing environments which present either a high 
or a low frequency of update transactions, since recovery activity is closely related to the 
update activity in the database system. Therefore, three load parameters were varied as to 
produce four different transaction load types. These parameters respectívely determine the 
number of design transactions (as well as the number of business-oriented transactions) in 
the load, the number of u^a t e transactions, and how much of the read data is actually 
updated by update transactions. We present the four basic transaction load types below. 
• Loadl: High update transaction rate (80%) and high volume of updated data (80% of 

the transaction's read data) combined with high design transaction rate (33%). 
• Loadl: High update transaction rate and high volume of updated data combined with 

low design transaction rate (about 10%). 
• LoadS: Low update transaction rate (30%) and low volume of updated data (51% of 

the transaction's read data) combined with high design transaction rate. 
• Load4: Low update transaction rate and low volume of updated data combined with 

low design transaction rate. 

load and ain-tlme 
parameter combinations 

transaction 
mix 

process time 
(workstation) 

update trans. 
rate 

high frequency 
of design trans. 

k)w frequency 
of design trans. 

chained-io yes 

simulation 

A A A A A A es no yes no yes no yes no yes no yes no no yes no yes no yes no yes no yes 

scenario 8 0 1 8 0 2 8 0 3 8 0 4 8 0 5 8 0 6 8 0 7 8 0 8 5 0 9 S10 S11 S12 

Fig. 6.7: Classifícation of the basic simulation scenarios 

Although 33% seems not to represent a high design transaction rate in the overall 
transaction load, it should be considered that each design transactíon starts 6 short 
transactíons at the server node (i.e. 3 CHECKOUT and 3 CHECKIN operatíons) while 
each business-oriented (batch) transactíon represents only one S-Tr in the public system. 
Load files of type Loadl, for instance, force the server node to execute 1851 
CHECKOUT S-Trs, 1851 CHECKIN S-Trs, 3(X) read-only batch transactíons, and 1083 
update batch transactíons. Each transaction load file generated for simulatíon relies on one 
of the load types described above and consists of 2000 transactíons. 

To simulate different operatíng system environments as well as different designer 
behaviors, we also varied the values of some run-time simulatíon parameters. By varying 
the processing tíme at the workstation (i.e. the duration of the PROCESS R-Tr) and 
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maintaining the multiprogramining levei at the server node constant, we controlled the 
number of active workstations and terminais which were simulated. This number varied 
between 10 and 87. On the other hand, we simulated operating systems which support 
chained-VO and those which supported only page-oriented VO-operations, because we 
were interested in investigating how chained-l/O affects the performance of page-oriented 
logging mechanisms. By combining the values of different run-time simulation 
parameters, four basic run-time paiameter settings were produced; 
• Setting 1: Long-duration PROCESS R-Tr (i.e. 3 minutes per object at the workstatíon) 

combined with chained-l/O. 
• Setting 2: Long-duration PROCESS R-Tr combined with simple I/O-operations. 
• Setting 3: Short-duration PROCESS R-Tr (i.e. 1 minute per object at the workstation) 

combined with chained-I/O. 
• Setting 4: Short-duration PROCESS R-Tr combined with simple I/O-operations. 

By most of the simulation runs, the values of all other run-time parameters were made 
dependent of the setting type selected. All combinations of run-time as well as load 
parameters were calculated to produce simulation runs where transaction processing 
activities consume some 85% of the system resourçes (i.e. CPU and disks). The 
remainder 15% of computer resources were supposed to be consumed by other operating 
system's activities (e.g. garbage collection). CPU capacity on server was usually kept by 
9 MIPS. By the simulation of some extra scenarios, we increased CPU capacity ( e.g. 15 
as well as 25 MIPS) to change the proportion between DBS CPU time and operating 
system CPU time. In this way CPU idle time was increased and more parallelism between 
user transactions and deferred mapping operations was achieved. 

By combining different load types with the various run-time parameter settings, we 
obtained 12 different simulation scenarios. Figure 6.7 depicts the main characteristics of 
these scenarios. We did not consider the combination of high design transactíon rate with 
short-duration PROCESS R-Tr, because this scenario seemed to be similar to the one 
where low design Q-ansaction rate is combined with long-duration PROCESS R-Tr. By 
combining these twelve scenarios with the four simulation environments presented in 
section 6.1, we produced a set of 48 basic scenarios. 240 simulation runs were necessary 
to investigate the behavior of the five recoveiy algorithms in these 48 different processing 
scenarios. On the basis of the results obtained through these set of simulation runs, we 
decided to investigate the peiformance of the recoveiy mechanisms in a number of extra 
scenarios where tiie values of some other (load as well as run-time) parameters were 
varied independently. AU extra scenarios which were simulated were based on scenario 
S03. We were very interested in analyzing recovery performance for this scenario in more 
detail, because it combines high design transaction rate and high update transactíon rate 
with long-duration PROCESS R-Tr and chained-I/0. We believe that most of the future 
integrated information systems will present these properties, too. The following extra 
scenarios were created to complement our simulation study: 
• SEI: The scenario S03CH was simulated with a transaction load consisting of 2000 

design transactions (i.e. design transaction rate = 1.0). 
• SE2: In this scenario, the locality of access presented by design transactions as well as 

batch transactions was raised fk)m 10% to 30%. 
• SE3: To investigate recovery performance in processing environments where mapping 

operatíons take not so long, we produced a scenario where these operations have a cost 
of 128000 machine instructions per database record instead of the original 384000 
instructions. The original cost of representation mapping operations which was applied 
to all other simulation scenarios is based on the cost of these operations in the 
DAMOKLES database system. 

• SE4: By the simulation of this scenario, the server's CPU capacity was set to 11 
MIPS. As already explained above, we wanted to investigate the performance of 
recovery mechanisms which support deferred mapping in processing environments 
with higher CPU capacity. Actually, because of the high costs associated with 
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CHECKOUT and CHECKIN operations, database systems supporting integrated 
information systems will have to rely on servers with much higher processing 
capacities than the 9 MIPS simulated in the other scenarios. This will not be difficuh 
even for microprocessor-based, centralized server processing nodes, though. The 32-
bits naicroprocessor Motorola M68040, for instance, should be brought to the market 
at the end of 1989 and will be able to process some 24 million instructions per second. 
Through the simulation of scenario SE4, we investigated the behavior of recovery 
mechanisms by a little increase on the CPU capacity (i.e. some 20%). Other scenarios 
were designed for the analysis of recovery performance under higher CPU capacities 
(e.g. SE5 and SE9). 
SE5: In this scenario, the server's processing capacity was set to 25 MIPS. We 
simulated this scenario for the same reasons which led us to simulate SE4. 
SE6: This as well as the next extra scenario to be presented were used to investigate the 
effects of deferred mapping in a design cooperation environment. In this scenario, we 
supposed that 20% of the CHECKIN operations executed at the server node bring 
non-committed design object versions into the group database. These object versions, 
then, are soon checked out by other designers. 
SE7: This scenario is similar to SE6 but CPU capacity is set to 25 MIPS here. 
SE8: In this scenario the maximum log size was set to the half of its normal value. On 
the basis of this scenario, we simulated S03 combined with the system crash 
environment (CR) to investigate how a smaller ring file can affect crash recovery time 
for REC2 and REC5. 
SE9: This scenario is based on S03CH but presents a CPU capacity of 50 MIPS. 
SEIO: This scenario is based on SE6 but presents a CPU capacity of 11 MIPS. 
SEU: This scenario is based on SEI but presents a CPU capacity of 15 MIPS. 

6.4 Main Results of the Recovery Performance Evaluation 

In the present section, we first present some of those evaluation results of the simulation 
analysis of recovery algorithms that can be generalized for all (or almost all) processing 
scenarios simulated. Then, we describe selected simulation lesults which apply either to 
specific recovery techniques or to special simulated scenarios. The whole set of 
simulation results classified by simulation scenario can be found in [Ioc89b]. 

6.4.1 Recovery Cost in the Design Environment 

Recovery has proven not to be the most resource consuming component of the public 
system. This was true for all recovery mechanisms simulated. System components such 
as the buffer manager or the mapping module consumed a lot more CPU time than the 
recovery modules. This observation was confirmed even by the simulation of scenarios 
with a high update transaction rate. For instance, by the simulation of RECl in scenario 
SOICH (i.e. SOI with checkpoint generation) R M l was visited 4918 times by batch 
transactions. On the average, by every visit the transaction waited about I0.5ms to be 
processed by R M l and was processed in some 0.13ms. In the same simulation run, 
transactions waited about 102.8ms in BMl ' s internai queue and were processed by 
MAP in some 512ms. Design operations (CHECKOUT and CHECKIN) waited even 
longer. While each design operation was kept in RMl ' s queue for almost the same time 
as batch transactions were, it waited 149ms in B M1 s queue on average and was 
processed by MAP in about 8.5 seconds. 
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Fig. 6.8: Costs in microseconds for each visit of a transaction to either the recovery, 
buffer manager, or mapping node 

Figure 6.8 shows three curves of costs. They depict the costs of recovery activities, 
buffer management, and mapping operatíons in various simulation scenarios, 
respectively. These costs are related to batch transactions only. They represent the average 
tíme a transactíon spends at the respectíve simulatíon node by each visit to this node. The 
average time includes both the time during which the transaction waits to be served and 
the service time itself It is easy to note that the mapping tíme is almost constant for all 
simulation scenarios. This can be explained by the fact that the objects read as well as 
those written by the transactíons, respectively, have the same size for all simulation 
scenarios. Both BMl and recovery costs depend on the scenario being simulated, though. 
Buffer management costs are higher in scenarios with high read-only batch transaction 
rates. In these scenarios, data is read but not updated. Therefore, the number of accesses 
to the same data in the page-oriented system buffer is reduced and the probability with 
which next data accesses will require I/O-operations increase. Recovery actívitíes reach 
their highest costs by the simulatíon of S03CH. This scenario presents the highest design 
transaction rate combined with high update transaction rate. By the simulation of all 
scenarios shown in Figure 6.8, though, recovery costs were always significantíy lower 
than the costs of other system activities. In principie this can be explained by the high 
costs of mapping operations and buffer management. On the other hand, waiting times 
were very high in the simulation network, because of the relative low CPU capacity of the 
server (i.e. 9 MIPS). 

6.4.2 The Effects of Different Transaction Classes on the Simulation 
Resul t s 

The simulation study has shown that transaction execution can take much longer in 
integrated database system environments which support very different transaction classes. 
Growing response times could be observed especially by the execution of batch 
transactíons. The ones simulated in our study take about 3 seconds when they execute 
alone on server. Simulated together with design transactíons, these batch transactions 
took up to 4 minutes to be completely processed (this occurred, for instance, by the 
simulation of update batch transactions in S03CH). 
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Fig. 6.9: Batch transactions' average and maximum times in the server's ready queue 

Batch transactions spent great part of their execution time waiting in the ready queue of 
the server node. Since the multiprogramming levei at the public system was kept low 
(e.g. up to 10 transactions) and both CHECKOUT as well as CHECKIN operations 
practically consumed all system resources, starting batch transactions were often kept in 
the ready queue for long periods of time, before they were allowed to really enter the 
system. The graphic in Figure 6.9 shows both maximum and average times spent by 
batch transactions in the server's ready queue during the simulation of various scenarios. 
Moreover, the graphic also shows the curve for batch transaction average response time in 
those scenarios. l l ie time spent by batch transactions in the ready queue mostly depended 
on the design transaction rate as well as on the update transaction rate, and the number of 
terminais being simulated. By the simulation of SOICH, for instance, 43% of the 
response time was wasted in the ready queue on average. The maximum time in that 
queue even exceeds the average response time for batch transactions in SOICH. This can 
mainly be explained by the high number of both long-duration CHECKOUT operations 
and active terminais (38) in this scenario. By the simulation of S03CH, the waiting time 
in the ready queue dropped to some 17% of the total response time. This reduction on the 
waiting time was only in part caused by the reduction on the number of simulated 
workstations (25). Another important cause of it is the fact that the number of 
CHECKOUT operations which were aborted by the server increased. Since the update 
transaction rate in S03CH is higher than the one in SOICH, design transactions tend to 
retain acquired CHECKOUT locks for longer periods of time. As a consequence, the 
number of new CHECKOUT operations which are rejected because of access conflicts is 
higher in S03CH (601) than in SOICH (126). Waiting batch transactions are brought into 
the public system faster when running CHECKOUT operations terminate early. Finally, 
in S05CH the average time spent by batch transactions in the ready queue represents 
28.5% of their total response time. Although this time is not shorter for S07CH, it 
represents only 15.4% of the response time in that scenario. This can be explained by the 
high update transaction rate of S07CH's transaction load. That is, since most transactions 
in S07CH update the data they read, they usually take longer than transactions which 
execute in S05CH, since this scenario presents a low update transaction rate. 

6.4.3 Relative Processing Capacity of the Server Node 

In scenarios which presented both high design transaction and high update transaction 
rates, REC2 reduced response time for update batch transactions by 25%. On the other 
hand, it increased response time for CHECKOUT by 15% in these scenarios. Only by 
increasing CPU capacity, it was possible to reduce response time for all transaction 
classes at the same time. By increased processing capacity, the server could execute 
transactions faster. This had two consequences. First, running remote design operations 
(e.g. CHECKOUT) did not consume almost all server resources anymore. Moreover, 
since remote operations were processed faster, batch transactions did not have to wait in 
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the ready queue for so long. On the other hand, by higher CPU capacity, the public 
system could reduce the thrashing effect among batch transactions. That is, the number of 
blocked (and also aborted) transactions was reduced on server, since access conflict times 
became shorter. This last effect of increased CPU capacity is depicted in the graphic of 
figure 6.10. The lower curve shows how the number of blocked (batch) transactions 
decreases as CPU capacity increases. The higher curve in this graphic shows, on the 
other hand, that the number of CHECKOUT operations which fail in the public system 
due to access conflicts practically remains constant while processing capacity increases. 
This can be explained by the fact that access conflicts among design transactions are of 
longer duration and also depend on the time during which design objects are processed at 
the workstation. 

In most of the simulation experiments realized, the server's CPU capacity was set to 9 
MIPS and the transaction load simulated was designed to consume 85% of the server's 
processing capacity with a multiprogramming levei of 10 transactions. Simulation results 
showed that operating system's activity (e.g. queue management) consumed much more 
than the 15% of CPU capacity reserved for them. As a consequence of that, thrashing as 
well as waiting times in the ready queue increased. This characteristic of some simulation 
runs made it difficult to identify small differences in the behavior of the recovery 
mechanisms investígated. Therefore, we decided to simulate some scenarios on the basis 
of more powerful server processing nodes. Later in this sectíon, we compare the results 
obtained by the simulation of the same scenarios using different CPU capacities. 
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Fig. 6.10: Relating the number of blocked and aborted transactions to CPU capacity 

6 . 4 . 4 Recovery Performance on the Basis of Different Simulation 
Scenar ios 

In the foUowing, we rely on the classification of simulation scenarios shown in Figure 
6.7 to present some general results of our recovery evaluation. Mainly as a consequence 
of both the long waiting times spent by transactions in the server's ready queue and the 
long-duration mapping operations executed by the server, recovery activities did not 
influence system throughput very much even when CPU capacity was increased. 
Furthermore, the different recovery mechanisms affected system throughput in a similar 
way. They showed much more differences in what concemed transaction response tiime. 
Figure 6.11 relates system throughput with recovery for various checkpoint-oriented 
scenarios when CPU capacity is kept by 9 MIPS. These scenarios respectively present 
different design transaction rates. It is easy to note that the recovery strategy has 
practícally no influence on the system throughput during normal system operation. By 
scenarios where transactions may be rolled back, different recovery mechanisms can 
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affect system throughput differently, though. Figure 6.12 relates throughput in some 
transaction-alx)rt scenarios with the recovery techniques simulated. While throughput 
almost remains constam for S03CH, it increases by the simulation of REC2 in both 
S07AB and S11AB. By most of the simulated scenarios, REC2 has reduced the response 
time of update batch transactions while increasing the processing time of other 
transactions. Since the former transactions respectívely represent 53.1% and 54.5% of the 
transaction loads associated to S07AB and Sl lAB, REC2 allowed a little increase of 
system throughput in these scenarios. 

It is interesting to note how the processing time at the workstation can affect the 
performance of REC5 by low CPU capacity at the server node. Figure 6.12 shows that 
while REC5's performance is similar to that of REC3 and REC4 in scenario S07AB, it 
relatively decreases in scenario SllAB. By committing design transactions sooner and 
allowing new transactions to start in parallel to mapping operatíons, REC5 increases the 
processing load on server. This load becomes even greater when objects which are 
transferred to the workstation retum to the server sooner. This is exacüy what happens by 
the simulation of Sl lAB. Consequently, the number of access conflicts in the public 
database increases and more transactions must be either blocked or aborted. 

Although recovery mechanisms based on deferred mapping can help to increase system 
throughput in environments with high abort transaction rates, they cannot compete with 
other recovery techniques in environments where system ciashes occur frequentíy. These 
mechanisms recover the system state after a crash by reading updated design objects and 
tuple sets from the log and forcing them to be mapped on database pages. Since much of 
the logged data had already been mapped once before the crash occurred, these new 
mapping operations represent an extra burden to the database system. Figure 6.13 shows 
how transaction throughput is affected by the various recovery algorithms when different 
system-crash scenarios are simulated. An interesting observation related to this figure is 
that REC4's performance does not differ from that of RECl and REC3 very much. 
Although these two other mechanisms execute more complex crash recovery algorithms 
than REC4, these algorithms must be processed relative seldom. On the other hand, most 
of the I/O-operations reaíized by RECl and REC3 during crash-recovery activities are 
executed by REC4 during transaction commit processing. 
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Fig. 6.11: System throughput by different checkpoint-oriented scenarios 

While the system achieves almost the same throughput by the simulation of RECl, 
REC3, Md REC4 in all crash-recovery scenarios, its throughput consideraWy decreases 
by the simulation of REC2 and REC5. Note that this decrease in the system throughput 
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was reduced when REC2 and REC5 were simulated with a smaller log file (i.e. a 400 
pages long ring file instead of a 800 pages long one). By realizing a smaller ring file on 
disk, REC2 and REC5 could reduce the number of objects and tuple sets stored on the log 
at any point in time. Therefore, less data had to be remapped onto database pages in case 
of a system crash. In this way, REC2 and REC5 could lestore the state of the database 
faster, when the system crashed. We believe that REC2 and REC5 would allow even 
better system throughput, if log size had been more carefully chosen. The reduction of the 
log length has also affected transaction response time in S03CR. Figure 6.14 shows how 
the response time of the various transactíon classes decreased when the log length was 
reduced by the simulation of REC2 and REC5. While the execution tíme of batch 
transactíons and CHECKOUT operatíons was reduced by about 9.5%, the response time 
of CHECKIN operations was decreased in about 30 seconds (i.e. 27% of the total 
execution time). 

Let us now analyze how the recovery mechanisms affect transaction response time in the 
different simulation scenarios. In most of the simulation runs, those recovery mechanisms 
which were realized at the server's page or tuple levei showed a similar behavior. They 
affected the response time of the different transaction types almost in the same way. This 
behavior can in part be explained by the fact that these mechanisms require mapping 
operations to be processed as part of the transaction execution. Since mapping operatíons 
take very long, the differences among RECl, REC3, and REC4 affect transaction 
response tíme only marginally. The mechanistns which support deferred mapping, on the 
other hand, have influenced response time very much. Different transaction types were 
influenced differentiy, though. RBC2 usually reduces the response time of update batch 
transactions by the cost of increasing the response tíme of other transactíons (especially 
CHECKOUT operations). REC5, on the other hand, considerably reduces the response 
time of CHECIQN operations but increases the time of both read batch transactions and 
CHECKOUT operations. By allowing update transactions to be committed before their 
associated mapping operatíons take place, REC2 and REC5 force the response time of 
those transactions to be reduced. The deferred mapping operations, then, are executed in 
parallel to other transactions by demon processes. In this way, the server's 
multiprogramming levei is increased, although the server's processing capacity remains 
the same. Consequentiy, the thrashing in the system increases and the execution of other 
Oransactions takes longer. The overload caused on the server by demon processes can be 
reduced only if the server's processing capacity is increased. 
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Fig. 6.12: System throughput by different transaction-abort scenarios 
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Figure 6.15 compares response times obtained by tíie simulatíon of the various recovery 
mechanisms in S03CH. This scenario presents both high design transactíon and update 
transactíon rates and long-duratíon processing activity at the workstation. Simulation 
results are compared on the basis of Uie transaction response times obtained with RECl. 
While REC2 reduces the processing time of update batch transactions by 25.2%, it 
increases the response time of CHECKOUT operations by 14%. Note that in scenario 
S03CH CHECKOUT operations represent 36.4% of the transaction load while update 
batch transactions make only 21.3% of the load. REC3 and REC4 produce similar 
response times. These times are comparable to the ones obtained by the simulation of 
RECl. Although REC3 logs less data than RECl, the former executes a more complex 
algorithm to manage its log buffer. The time RÉC4 saves by not having to generate 
checkpoints is offset by the exti-a VO-operations executed during transaction commit. 
Although REC5 reduces CHECKIN response time by 54% and this operation contributes 
with 36.4% of the total transaction load, this recovery mechanism increases the response 
time of aU other transaction types. 
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Fig. 6.13: System throughput by different crash-oriented scenarios 

Let us now analyze transaction response time in environments which present low design 
transactíon rates. Figure 6.16 shows response time differences which were observed by 
the simulatíon of S07CH. Besides presentíng a low design transactíon rate, this scenario 
shows a high update transactíon rate and long duration processing actívity at the 
workstation. Once again, the results obtained by the simulatíon of RECl do not differ 
very rnuch from those observed by the simulation of REC3 and REC4. Since most of the 
mapping operatíons in S07CH process sets of tuple instead of complex objects, they 
usually take shorter than, for instance, mapping operatíons in S03CH. Consequenüy, 
some differences among RECl, REC3, and REC4 can be better noted. REC3, for 
example, has better times for update batch transactíons (which represent 53.1% of the 
load) and CHECKIN operatíons, because it logs less data than RECl. REC4 produced 
worse response tímes than RECl for almost all transactíon types, because it forces 
updates to disk during U-ansaction commit. While the log file is written sequentíally, 
REC4 uses random access to force udates to the database on disk. Sequential write 
operatíons on disk usually take shorter than random access, since in most cases the write 
head needs not to be moved (i.e. is kept over the same disk track). REC2 reduced the 
response tiine of most transactions by 14.1%. On the other hand, it increased the 
processing time of 38.8% of the transactions by almost 30%. REC5 reduced response 
time of CHECKIN operations by 60% but increased processing time of read batch 
transactions by 44%. 
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Fig. 6.14: REC2's ciash-recovery performance by different log file sizes 

Figure 6.17 depicts response time difference in SllCH. In this scenario, PROCESS R-Tr 
takes only 1 minute at tíie workstation. Therefore, objects are checked back into the public 
database sooner. Since S1ICH presents a high transaction update rate, most of the objects 
checked in at the server node had first been updated by the designer at the workstation. 
Consequently, REC3 reduced the response tíme obtained by RECl for CHECKIN 
operations, because it logs only updated tuples instead of whole pages (i.e. it executes 
less VO-operations than RECl). Tlie same occurred with the response time of update 
batch transactíons. REC2 reduced CHECKIN response tíme in the same proportíon it 
increased CHECKOUT response time. On the other hand, REC2 reduced the time of 
update batch transactíons by 11.1% while increasing the processing time of read batch 
transactions by 42.8%. Finally, REC5 repeated its usual performance by reducing 
CHECKIN response time veiy much and increasing the response time of other transactíon 
types. 
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Fig. 6.15: Response time in a scenario with high design transaction rate (S03CH) 

In scenarios which present both low design transaction and low update transaction rates, 
REC5 had the best performance. Figure 6.18, for instance, shows response time 
differences observed by the simulation of S09CH. Although REC5 increased the 
processing time of read batch transactions by 9.7%, this percentage represents a time 
increase of only three seconds in 30 seconds. On the other hand, REC5 reduced the 
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response tíme of all other transactíon types in S09CH. REC5's behavior can be explained 
by the fact that only a few transactíons updated data in S09CH (i.e. only 36% of the 
executed transactíons). Therefore, fewer demon processes were started in this scenario to 
execute mapping operatíons in parallel to other transactíons. Consequently, the server was 
not so much overloaded. 

Descending the scenario classificatíon tiee further, we now comment on how chained-VO 
facilitíes affected both recovery and overall system performance. In most of the simulated 
scenarios, chained-l/O influenced recovery performance only marginally. As we already 
explained, the processing actívity at the server node is CPU-bounded and not I/O-
bounded. Waiting times and mapping operations dominated most of the transaction's 
executíon tíme. It is possible, though, that chained-VO operations could have exerted a 
greater influence on the system's performance, if we had simulated larger data objects in 
the public database so that the difference between the niunber of chained and normal VO-
operatíons would have increased. The simulated object clusters consisted of four database 
pages and each subobject read was stored onto two of these pages. Therefore, when 
chained-VO was simulated objects were read into the buffer or written to disk in one VO-
operatíon. For the same read/write operatíon, two VO-operatíons were needed when 
normal input/output devices were simulated. That is, chained-VO reduced the number of 
access operatíons to disk by 50%. Nevertheless, the total number of this operatíons was 
always kept relatívely low. On the other hand, chained VO-operations always read two 
extra database pages into the page/segment-oriented buffer, since they always bring a 
whole cluster into main memory (although the objects being read are stored onto only two 
of the four cluster pages). 
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Fig. 6.16: Response tíme in a scenario with low design transaction rate (S07CH) 

The curves for transaction response time in Figure 6.19 show that the difference in the 
number of VO-operations had no much effect on recovery performance in checkpoint-
oriented scenarios. The curves in Figure 6.19 respectívely depict response time in S07CH 
and S08CH by the simulation of RECl which realizes a page-oriented logging algorithm. 
Both scenarios present the same design transaction and update transaction rates, are 
checkpoint-oriented, and model long-duration design processing at the workstatíon. Only 
S07CH models chained VO-operations, though. Chained-VO have reduced the response 
time of read batch transactíons a little. Since the processing time for mapping operatíons 
in these transactíons was relatívely short, the difference on the number of executed VO-
operations could be better noted. On the other hand, chained-VO performed even worse 
than normal VO-operations by the simulation of CHECKIN operations. This result is 
related to the fact that chained VO-operations always brought 50% more data into the 
buffer than it was necessary. Therefore, the buffer manager was forced to flush more data 
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to disk. This, in tum, increased the number of I/O-operations again. We believe that 
chained-l/O perforaiance is closely related to the organization of data objects in clusters. 
To prevent that chained VO-operations read too much unnecessary data into main 
memory, the physical organization of the database on disk must be carefully planned. 

Figure 6.20 shows the effects of chained-VO on recoveiy performance in a crash-oriented 
simulation scenario. By the simulation of crash-recovery activities, chained-I/0 has 
clearly helped to increase recovery performance. The difíerence between chained-VO 
performance in crash-oriented scenarios and in other scenarios can be explained by the 
fact that recovery mechanisms executed more VO-operations by crash-recovery than by 
other recovety activities. It must be noted, though, that the increase of chained-VO 
performance in crash-oriented scenarios showed not the same intensity by the simulation 
of recovery mechanisms which maintain smaller log files on disk as, for instance, REC3. 
Furthermore, chained-VO became even less important by the simulation of recovery 
algorithms for which crash-recovery activities are CPU-bounded (e.g. REC2). Once 
again, we want to emphazise that the performance of chained-VO would probably increase 
further, if we had simulated much larger data objects. 
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Fig. 6.17: Response time in a scenario with short processing times at the workstatíon 
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Hg. 6.18: Response time in a scenario with low update transaction rate (S09CH) 
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Fig. 6.19: Effects of chained-I/O in checkpoint-oriented scenarios (S07/S08CH) 

6 . 4 . 5 Comparing Disk Space Occupancy for the various Recovery 
Mechanisms 

As expected, the simulation results have shown that the page-oriented recovery 
mechanism (RECl) is the one which requires most disk space to store recovery 
information. Besides confirming this empirical expectation, though, the simulation study 
has also quantified the stable storage space consumed by each one of the simulated 
techniques. Figure 6.21 compares maximum and average log lengths for the five recovery 
mechanisms. These log sizes were observed by the simulation of S03NR. Tltís scenario 
models a normal system operation environment which presents high design transaction 
and tipdate transaction rates. By the simulation of this type of scenario, the recovery 
algorithms do not generate checkpoints. Therefore, the log size can only grow during 
system operation. Although the graphic of Figure 6.21 is based on the simulation of 
S03NR, lhe lengths of the different log files maintained this same proportion in almost all 
other simulation runs. 
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Fig. 6.20: Effects of chained-VO in crash-oriented simulation (S07/S08CR) 
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By the simulation of RECl, the log size achieved the mark of 18489 logged data pages. 
The maximum size of the log file by the simulation of both REC2 and REC5 was 8150 
pages. REC3's maximum log size was kept by 7576 pages. Since REC4 simply forces 
transaction updates to disk at commit time, it does not need to maintain extra recovery 
information on a log file. During commit, REC4 first writes the transaction updates to a 
special area on disk. This so-called intention list of updates is used in the case of a system 
crash to guarantee atomicity for the transaction-oriented checkpoint generated by REC4 on 
the basis of the FORCE strategy. The intention list on disk is discarded by REC4 as soon 
as the transactíon commits. Therefore, intentíon lists were not considered to be a log file 
for the purposes of quantifying storage space consumption for the recovery mechanisms. 

The simulation results show that, on the average, REC2 and REC5 consumed only 44% 
of the disk space used by RECl to store recovery informatíon. REC3's average space 
requirement on disk was even more modest (i.e. 41%). It must be noted, though, that 
wlule REC2 and REC5 saved complete data objects on the log, REC3 stored only updated 
records on that file. REC2 and REC5 could keep their log files small because they saved 
whole data objects or tuple sets as single log records. Thus, these algorithms did not write 
so much log control data to disk as REC3 did. The latter recovery mechanism stored 
every updated tuple on the log as a single record. Moreover, REC2 and REC5 could have 
kept the log even smaller, if only the updated parts of objects and tuple sets were to be 
saved on stable storage. 

18000 

15000 

12000 

6000 

REGI REC2 REC5 

Max.Log.Síze (ín pages) Avq.Log.Size (ín pages) 

Fig. 6.21: Average and maximum disk space consumptíons by normal system operation 

6.4.6 Extra Simulation Scenarios with Low CPU Capacity 

Based on the results obtained by the simulatíon of the 12 original scenarios (which are 
described in Figure 6.7), we decided to investígaté recovery perforinance in the design 
environment under sotne other conditíons. Besides anàlyziiig the effects of increased 
server processing capacity on recovery performance, we were also interested in evaluating 
recove^ in environments where only design transactíons are processed. Moreover, 
scenarios where transactions present higher access locality were simulated, too. Finally, 
recovery performance was investigated in database systems which present lower costs for 
mapping operations related with design transactions. ín the following, we report on some 
of the results obtained by the simulation of extra scenarios. 

Figure 6.22 compares recovery performance on the basis of transactíon response time 
when the public system processes only CHECKOUT and CHECKIN operatíons. REC3 
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and REC4 help response tíme of update transactíons to decrease a littíe bit in comparison 
to the response times allowed by RECl (i.e. respectively 0.8% and 0.5%). This can be 
explained for REC3 by the fact tiiat this mechanism logs less data than RECl. Although 
REC4 also writes database pages to disk, it needs not to generate checkpoints as RECl 
does. The reduction on response tíme for CHECKIN operatíons allows the designers at 
workstations to start new CHECKOUT operations earlier. By low CPU capacity on 
server, though, these operatíons are forced to wait longer in the server's ready queue. 
Consequentiy, the response tíme of CHECKOUT operations is a little bit higher by the 
simulation of REC3 and REC4 than it is by the simulation of RECl (i.e. respectively 
0.6% and 0.1%). The phenomenon described above occurs witii much higher intensity by 
the simulatíon of REC5. Besides allowing CHECKIN operations to be committed before 
their respective mapping operations are executed by the public system, this mechanism let 
new remote operations be taken from the ready queue even before those mapping 
operations terminate. As a consequence of that, the number of short transactions being 
processed in parallel by the server strongly increases. New CHECKOUT operations, 
then, wait not in the ready queue but in the CPU queue much longer. The result of 
REC5's strategy in environments with low CPU capacity can be clearly seen in the 
graphic of F ig^e 6.22. While the processing time of CHECKIN operatíons is reduced by 
71% percent (in comparison to RECl), the response time of CHECKOUT operatíons is 
increased by 39%. 
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Fig. 6.22: Response tíme in a scenario where only design transactíons are processed 

By the simulatíon of a scenario where transactions present a higher locality of access (i.e. 
30% instead of the 15% with which the other scenarios where simulated), we wanted to 
investígate if higher locality affects REC4's performance in the same way it does in 
business-oriented database systems. Furthermore, we also wanted to analyze the 
performance of recovery mechanisms which support deferred mapping under higher 
locality. Figure 6.23 relies on different transaction response times to compare recovery 
performance under 30% locality in a scenario which presents high design transactíon and 
high update transaction rates (i.e. SE02CH). Since SE02CH presents low server 
processing capacity (i.e. 9 MIPS), both queue times and mapping operations dominated 
transaction processing time.for all transaction types. Consequentiy, the fact that REC4 
forces the same database pages to disk more often in SE02CH than in other simulation 
scenarios had no much influence on the response time of the transactions processed. This 
can be concluded on the basis of the results showed in Figure 6.23. REC4 increased the 
response time for read batch transactions and CHECKIN operations only marginally in 
comparison to RECl. On the other hand, REC4 even reduced the processing time of 
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update batch transactions by 3.9%. The behavior of all recovery mechanisms simulated in 
SE02CH did not differ very much from the behavior they had by the simulation of other 
scenarios. Maybe, REC2 was the only mechanism which somewhat benefited from the 
increased locality of access. By allowing designers to start CHECKOUT operations 
earlier, REC2 increased the chance which following transactions had of finding the data 
they needed in the buffer. On the other hand, REC2 reduced the number of CHECKOUT 
operations being aborted by the server as well as the number of blocked transactions at 
that processing node. Figure 6.24 shows that while the number of aborted CHECKOUT 
operations was kept by 1500 during the simulation of RECl, REC3, and REC4, this 
number dropped to about 1200 by the simulation of REC2. REC5 produced the highest 
number of aborted and blocked transactions, though. The combination of higher 
multiprogramming levei (which is forced by REC5) with higher access locality naturally 
leads to more access conflicts among concurrent transactions. 

Now, let us comment on the way shorter-duration mapping operations affect recovery 
performance in a simulation scenario which presents high design transaction rate and high 
update transaction rate. By the simulation of SE3CH, we reduced the cost of mapping 
operatíons for CHECKOUT and CHECKIN from 384000 to 128000 machine 
instructions per database record. To maintain 85% of the CPU capacity allocated to 
transaction processing activities, though, we increased the number of terminais in the 
system (i.e. this number was brought to 87). These changes affected the performance of 
recovery mechanisms based on defferred mapping in two ways. First, shorter mapping 
operations reduced the advantage of committing update transactions before mapping 
operations take place. Secondly, the combination of early commit and high number of 
workstatíons and terminais increased the time during which transactions were kept in the 
ready queue of the server node. Figure 6.25 compares transaction response time in 
SE3CH. While the very low CHECKIN response tíme which was achieved by REC5 
when other scenarios were simulated is not shown by this figure, the great differences 
among response tímes for CHECKOUT operatíons which were also observed by the 
simulatíon of other scenarios were reduced during the simulatíon of SE3CH. That is, the 
performances shown by the different recovery mechanisms tend to converge when 
mapping operatíon tímes get shorter in processing environments which present high 
update transactíon rates. 
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Fig. 6.23: Comparing response times when locality of access increased from 10% to 30% 
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Fig. 6,24: Transaction failures in a scenario with high locality of access (30%) 
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Fig. 6.25: Comparing response times when object mapping costs decrease 

6.4.7 Simulating Higher CPU Capacity at the Server Processing Node 

The simulation results presented above showed that recovery algorithms located at lower 
leveis of the server node (e.g. RECl, REC3, and REC4) perform similarly in an 
integrated information system when the server's CPU capacity is relatively low (e.g. 9 
MIPS). Since the system becomes overloaded by the execution of long-duratíon mapping 
operations, different recovery strategies such as FORCE and -TFORCE or page logging 
and tuple/record log^ng exert no strong influence either on the overall system throughput 
or on the response time of the different transactíon types simulated. On the other hand, 
simulatíon results also made clear that recovery algorithms based on deferred mapping 
cannot reduce the res^nse time of all transaction types being simulated when the server's 
processing capacity is kept low. By the simulation of REC2, the processing time of 
update batch transactions decreased considerably but the waiting time for CHECKOUT 
operations in the server's ready queue increased significantly. By the simulation of 
REC5, the waiting time in the ready queue decreased but transactions got stuck waitine 
for the C P U . e s 
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Relying on the evaluation results obtained by the simulation of scenarios which present 
low server processing capacity, we decided to investigate the behavior of recovery 
algorithms when this capacity is increased. In the following, we comment on the results 
obtained by the simulation of S03CH with four different CPU capacities for the server: 9 
MIPS, 11 MIPS, 25 MIPS, and 50 MIPS. As already explained, S03CH combines high 
design transaction rate with high update transaction rate, and long processing times at the 
workstation. Besides that, this scenario models the execution of chained I/O-operations. 
While no signifícant increase on throughput could be observed by the simulation of a 11 
MIPS CPU, system performance was successively improved by the simulation of both a 
25 and a 50 MIPS CPU at the server node. Figure 6.26 compares recovery performance 
on the basis of system throughput by high CPU capacities. By 25 MIPS, REC2 allows 
highest throughput. It is followed by REC5 and RECl. The high server capacity helped 
to reduce waiting times at the server's ready queue as well as at the CPU. The time saved 
by committing update transactions earlier was not completely transferred to read-only 
transactions anymore. By greater CPU capacity, the demon processes which executed 
mapping operations on behalf of committed update transactions did not interfere so much 
with other (concurrent) user transactions. By the simulation of a 50 MIPS CPU at the 
server node, REC5 shows the best performance and is followed by RECl and REC2. By 
not allowing new transactions to be started before mapping operatíons for committed 
transactíons terminate, REC2 prevents the public system from making use of the whole 
server capacity. On the other hand, REC3's lower performance can be explained by the 
fact that it has a more complex logging algorithm than RECl. Besides that, by the 
simulation of REC3 the number of aborted CHECKOUT operations increased. REC4 
performs better by 50 MIPS than by 25 MIPS because the higher CPU capacity 
compensates REC4's longer I/O-operations. 
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Fig. 6.26: System throughput by high CPU capacities at the server node 

Recovety performance by increased CPU capacity can also be analyzed on the basis of 
transactíon response tíme. Figure 6.27 shows how read batch transaction tíme varies 
when CPU capacity is increased at the server node. While the absolute time difference 
between response tíme under REC5 and RECl decreases when CPU capacity is raised 
from 9 to 11 MIPS, the tíme difference between response tíme under REC2 and RECl 
increases. On the one hand, REC5 helps the system to fully exploit the increase in CPU 
capacity by startíng new transactíons at the server in parallel to mapping operations for 
committed transactions. On the other hand, the server capacity is not high enough to 
reduce the extra waiting tíme in the ready queue that is induced by REC2. Consequentíy, 
REC2 cannot profit from the higher CPU capacity as much as RECl does. 
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Fig. 6.27: Response time for read batch transactions by different CPU capacities 

By 25 MIPS, all three recovery algorithms allow almost the same response time for read-
only batch transactions. CPU capacity has become so high that the differences among the 
recovery mechanisms cannot be noted anymore. By this CPU capacity, response time for 
read batch transactions achieves the levei of response tímes in business-oriented database 
systems (i.e. from two to five seconds). When CPU capacity is raised to 50 MIPS, 
transactíon response time drops to about one second. 
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Fig. 6,28: Response time for update batch transactíons by different CPU capacitíes 

Figure 6.28 compares recovery performance on the basis of update batch transactíons 
when the server's processing capacity is increased. While the tíme difference between 
transaction response tíme under REC5 and RECl decreases rapidly (e.g. from 21 seconds 
by 9 MIPS down to 10 seconds by 11 MIPS), the difference between RECl and REC2 is 
reduced slowly (e.g. only five seconds by 11 MIPS). By increased CPU capacity, the 
complex algorithms of REC2 and REC5 are executed faster. Therefore, update 
transactíons can be committed even earlier. Although RECl also benefits from more 
powerful CPUs, it cannot commit update transactíons so fast as REC2 and REC5 do. 
Similar to the process time of read-only transactions, response tímes for update batch 
transactions converge to almost the same value by 25 MIPS independently from the 
recovery algorithm being simulated. 
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Fig. 6.29: CHECKIN response time by different CPU capacities 
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Fig. 6.30: CHECKOUT response time by different CPU capacities 

Although CHECKIN response tíme decreases faster under RECl and RECl than under 
REC5, CHECKIN operatíons are more than 24 seconds shorter under REC5 by 11 MIPS 
anyhow (see Figure 6.29 for a comparison). Even when CPU capacity is raised to 25 
MIPS, RECl stíll performs worse than REC5. Only by 50 MIPS, all three recovery 
mechanisms allow (almost) the same response tíme for CHECKIN operations at the 
server node. 

We now analyze how increased CPU capacity affects CHECKOUT response tíme in the 
various recovery environments simulated. The curves in Figure 6.30 show how response 
time for CHECKOUT operations decreases when the server's processing capacity 
increases. By 9 MIPS, response tíme under REC5 and REC2 is about 15 seconds longer 
than under RECl. By 11 MIPS, this difference drops down to 10 and 13 seconds for 
REC2 and REC5, respectively. On the basis of interpolation, we calculate that the 
difference in CHECKOUT response time by 18 MIPS would be around 6 seconds. By 
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this CPU capacity, CHECKOUT operations under RECl would take about 57 seconds at 
the server node. From the evaluations above, we can conclude that the advantage of 
REC5 conceming CHECKIN response time is kept further when CPU capacity increases, 
while the advantage of RECl conceming CHECKOUT response time decreases in 
importance more rapidly. Although REC2 reduces the response time of update batch 
transactions even when CPU capacity is increased, this algorithm does not permit that the 
server fully utilizes the extra CPU power. Only REC5 reaUy helps to improve parallelism 
at the server node. 

6.4.8 Recovery Performance in a Design Cooperation Environment 

As explained at the beginning of the present chapter, we also investigated recovery 
perfomiance in a system which supports design cooperation on the basis of the GM3 
processing model. Pursuing the goal of analyzing to which extent recoveiy can benefit 
from the buffer hierarchy realized by the design database system, we dec idà to test how 
deferred mapping can affect system performance in database systems which allow 
designers to exchange non-committed results via the group database located at the server 
node. For this purpose, we modified the simulation network so that every object being 
checked back into the group/public database was associated with a message sent ftom the 
workstation. This message was interpreted by TM2 at the server node as the object 
arrived there. The message carried one of two contents. It either informed TM2 that its 
a s soc ia^ object was completely processed by the designer at the workstation or told that 
simulation node that the object being checked in would soon be checked out of the group 
database by another designer to be processed further. The transaction manager interpreted 
the received message and informed the other simulation nodes of the server about its 
meaning. We simulated this version of GM3 with two different CPU capacities for the 
server node: 9 MIPS and IIMIPS. In all simulation runs, 20% of the objects being 
checked into the group database were associated with messages which informed TM2 
that those objects would soon be checked out again. 
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Fig. 6.31: System throughput related to CPU capacity in a design cooperation scenario 

The graphic in Figure 6.31 compares system throughput in the GM3 scenarios simulated. 
The curves in the graphic show that REC2 and REC5 allowed best throughputs in both 
the 9 MIPS and the 11 MIPS environments. These two recovery mechanisms were the 
only ones which could understand the different semantics that CHECKIN operations 
could have. By processing a CHECKIN operation, REC2 and REC5 first saved the 
updated object on the log and then analyzed the message associated with it. If the object 
was to be checked out again soon, these recovery mechanisms sent it back to T M 2 
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instead of directly sending it to the MAP simulation node. By the next time the object was 
checked out, it was read from the log. The other recovery algorithms could not reduce the 
number of mapping operations on the basis of the messages received from the 
workstation. Since RECl, REC3, and REC4 are reaíized at lower system leveis, they 
must force mapping operations to take place in order to save data updates by CHECKIN. 
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Fig. 6.32: Response time in a design cooperation environment with low CPU capacity 

The better performance of REC2 and REC5 in design cooperation environments can also 
be observed by the transaction response times these mechanisms allowed there. Figure 
6.32 depicts response times in the 9 MIPS GM3 scenario. For all transaction types, 
REC2 allowed the lowest response time. Although REC5's performance related to both 
CHECKOUT and update batch transaction response times improved, it could not 
guarantee a better response time for read batch transactíons. By 9 MIPS, REC5 still 
causes the server to become overloaded, even if the number of design mapping operations 
is reduced in the system. On the other hand, REC5 reduced CHECKIN response time 
even further. 
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Fig. 6.33: Response time in a design cooperation environment with higher CPU capacity 

The graphic in Figure 6.33 compares transaction response time for the 11 MIPS GM3 
scenario. Although REC2 still showed the best overall performance, the differences 
among response time for both CHECKOUT and read batch transactions were reduced. 
The former became even shorter under RECl and REC3. As already observed in 
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subsectíon 6.4.7, all other recovery tnechanisms can better benefit from small increases in 
the CPU capacity than REC2 does. While the performance botdeneck of other recovery 
mechanisms is represented by high waitíng tímes in the CPU queue and other internai 
queues of the server node, REC2's performance depends on the reductíon of the waiting 
tíme in the server's ready queue. This waitíng tíme can only be reduced, though, if CPU 
capacity is raised further. ITie performance of REC5, on the other hand, improved a lot as 
CPU capacity reached 11 MIPS. Response tíme for read batch transactíons decreased 
about 34 seconds (i.e. from 83 down to 49 seconds), while update batch transaction time 
became lower under REC5 than under RECl, REC3, or REC4. 

6.4.9 Summarizing the Main 'Results of the Simulation Study 

In this subsection, we recapitulate the main results of the recovety performance evaluation 
presented in the prior subsections. Moreover, we relate these results to the empirical 
recovery performance smdy made in chapter 5 and to the goals of the simulation study 
which were stated at the beginning of the present chapter. 

Through the simulation of five different recovery techniques in an integrated information 
system, we further investigated four of the suppositions inade at the end of chapter 5: 
• Opposed to recovery in business-oriented database systems, recovery algorithms based 

on FORCE and those algorithms based on -iFORCE may perform similarly in design 
database systems. 

• Page-oriented logging mechanisms will probably perform as well as record-oriented 
logging mechanisms at the server node of design database systems. 

• Object-oriented logging mechanisms may perform well in design database systems 
which realize buffer hierarchies. 

• Object-oriented logging mechanisms which support deferred mapping operations at the 
server node will probably perform well in design cooperatíon environments. 

Besides these four suppositions, we were interested in investigating the following more 
general questions; how recovery mechanisms perform in integrated information systems 
which support both business-oriented as well as design transactions; at which levei of 
abstraction the recovery mechanism should be implemented at the server node to 
guarantee best recovery performance; how recovery algorithms can help to improve 
overall system performance in integrated information systems. Botii the suppositions and 
the questions above were investigated in great detail through the recovery simulation 
study described in the prior sections. The main results which were obtained by this study 
are listed below. 
• The burden represented by the recovery activity in the system is not very significant 

when compared with the cost of other system activities (e.g. buffer management, data 
representation mapping operations). Therefore, system performance could not be 
improved very much by simply reducing costs associated with recovery activities (e.g. 
number of VO-operations). Consequentíy, most of the simulated recovery mechanisms 
performed similarly. Only those recovery mechanisms which support deferred 
mapping operations significantíy affected system performance. 

• The response tíme of business-oriented transactíons increase very much in integrated 
informatíon systems which also support design transactíon execution. The time which 
short transactions spend in both the server's ready queue and CPU queue is 
proportional to the number as weU as to the duration of the design operations being 
processed in parallel to the short transaction at the server node. By lower CPU capacity 
on server (e.g. 9 MIPS), up to 43% of the response tíme of batch transactíons was 
waisted at the server's ready queue. 

• Without increasing the server's capacity, the only recovery algorithms which affected 
waitíng tíme in the ready queue and in the CPU were REC2 and REC5. The former 
increased waitíng tíme in the ready queue by allowing new transactíons and remote 
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design operations to be started earlier at terminais and workstations but preventing new 
transactions to be taken from the ready queue untíl mapping operations related to 
committed update transactions terminated. REC5 reduced waiting times in the ready 
queue by permitting new transactíons to execute in parallel to mapping operatíons for 
committed transactíons. By doing that, REC5 increased the waitíng tímes in the CPU 
queue of the server node, though. 
Since mapping operatíons dominated processing time at the server node, the number of 
I/O-operations started by each of the recovery mechanisms being tested did not affect 
system performance significantly. Consequently, recovery mechanisms based on 
FORCE (e.g. REC4) performed similar to those based on -iFORCE (e.g. RECl). 
Moreover, transaction response tíme as well as system throughput were affected by 
page-logging only in especial situatíons (e.g. when processing tíme at the workstatíon 
was kept short and design transactíon rate was kept low in the load). 
In transaction-abort-oriented scenarios, system throughput was usually increased by 
the simulatíon of REC2. In crash-oriented scenarios, on the other hand, both REC2 
and REC5 reduced system throughput. This decrease in system throughput could be in 
part avoided when the log size for REC2 and REC5 was reduced on disk. In 
checkpoint-oriented simulatíon scenarios, all recovery mechanisms presented similar 
performance. 
Especially by low CPU capacity on server, no one of the recovery algorithms 
simulated could present best response tímes for all transactíon types at the same tíme. 
As already explained, RECl, REC3, and REC4 showed very similar performance 
almost always. In scenarios with low update transaction rate, RECl reduced response 
tíme for read batch transactions while REC4 reduced the time of update batch 
transactions and CHECKIN operations. In those scenarios, REC2 reduced 
CHECKOUT response time a littie bit. In scenarios with low design tránsaction rate 
and short processing times at the workstation, REC3 performed better than RECl and 
REC4, because the number of I/O-operations executed in those scenarios became 
important, since the number and the duration of mapping operatíons decreased. 
In almost all simulation scenarios, REC2 significantíy reduced the response time of 
update batch transactions. On the other hand, this mechanism increased response time 
for both read-only batch transactions and CHECKOUT operations. In most of the 
simulation runs, REC5 reduced CHECKIN response time by more than 50% by the 
cost of increasing response tíme for CHECKOUT operations and batch transactions. 
These results show that recovery based on deferred mapping cannot uniformly increase 
overall system performance when CPU capacity is kept low at the server processing 
node. 

The simulatíon study has shown that the chained-VO facility does not always help to 
improve system performance. If the data organization on disk is not carefully planned 
and maintained, chained VO-operations may even reduce system performance by 
forcing the buffer manager to replace more database pages in the buffer than necessary. 
By the simulation of crash-oriented scenarios, though, chained-VO has proven to be a 
good help. Especially by recovery mechanisms which maintain large log files (e.g. 
RECl), chained VO-operations helped transaction response time to be kept shorter. 
Page-oriented logging algorithms require twice as much space on disk than record-
oriented or object-oriented logging algoridims. Object-logging saves space on disk by 
writíng object updates together to the log file as single log records. In this way, less 
log control informatíon (e.g. log record type informatíon) must be stored on the log. 
Opposed to its behavior in business-oriented database systems, recovery based on 
FORCE (i.e. REC4) did not show a worse performance when the access locality of 
transactíons was increased from 10% to 30%. It still performed very similar to 
recovery based on -iFORCE (e.g. RECl). This simulatíon result can be explained by 
the fact tíiat VO-operations did not affect system performance very much by the 
simulatíon of scenarios where a great number of long-duration mapping operations are 
processed. 
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By a higher access locality, REC2 improved system performance. This algorithm 
allowed new transactions to be started earlier in a scenario where transactions have 
more chance of accessing the same data. Therefore, the probability with which data 
being accessed could already be found in the buffer increased. 
REC2 and REC5 Increase system throughput more than the other recovery 
mechanisms simulated when the server's processing capacity is increased. 
As the CPU capacity at the server increases, REC5 becomes more attractive, since it 
increases parallelism at that processing node. Its higher response times for read-only 
transactions decrease faster than its advantage conceming CHECKIN response time. 
Recovery mechanisms which support deferred mapping operations proyed to perform 
much better in design cooperation environments. Since these mechanisms log high-
level data abstractions, they can take advantage of the application semantics and 
identify when transaction updates must be immediately mapped onto database pages 
and when the related mapping operations can be delayed (and even not executed). By 
the simulation of design cooperation scenarios, REC2 uniformly improved response 
time for all transaction types. Besides that, both REC2 and REC5 allowed best system 
throughput. 
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Chapter 7 

Conclusions 

7.1 Suminarizing the Dissertation 

The present work reported on the investigation of recovery requirements in design 
database systems which realize hierarchies of system buffers. This investigation was 
based on the architecture of various existing design database system prototypes as well as 
on a set of well known design processing models. The research work pursued the 
following goals; 
• The Identification of main database recovery requirements posed by the design 

environment. 
• The analysis of the behavior of existing database recovery techniques in the design 

environment. 
• The investigation of possible characteristics of the design environment that either 

prevent existent recovery algorithms from working properly or force them to be 
modified in oíder to be integrated into design database systems. 

• The evaluation of recovery performance in design database systems which realize 
hierarchies of system buffers. 

The first chapter of the dissertation explained how database requirements posed by design 
applications differ from those of business-related applications. While the database of 
business-related applications can be modeled by simpler data models supporting only less 
structured, flat data records (e.g. tuples in the first normal form) and a few types of 
relationships among them, design applications need more powerful data models which 
allow the user to define and manipulate highly structured data objects (e.g. molecules). 
Moreover, in these applications the user can process data for long periods of time (e.g. 
days, weeks). In business-oriented applications, on the other hand, data processing 
activity usually relies on the (conyentional) transaction paradigm. Opposed to data 
processing in design applications, conventíonal transactíons typically execute in a few 
seconds. A third important difference between conventional and design database 
environments is that the latter ones may permit users to exchange results of non-
committed transactíons, while transactíons in conventíonal database systems execute 
under strict isolatíon. 

Chapter 2 reviewed tiie architecture of some existíng non-standard database system 
prototypes and discussed the way they try to cope with novel database requirements 
posed by design applicatíons. Most of the prototypes reviewed realize a multí-level 
database system architecture on the basis of a server-workstatíon computer configuration. 
By introducing the notions of public and private databases, these systems realize a 
database hierarchy which supports the isolation of parts of the database for long periods 
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of tíme. The user copies the desired data objects fiom the public database on server into 
his private database at the workstatíon (issuing CHECKOUT operatíons). While the user 
updates the object copies at the workstatíon, the original object versions remain locked in 
the public database. At the end of his work, the user issues so-called CHECKIN 
operatíons at the server node to integrate updated object copies into the public database 
and to release the locks related to them. 

Most of the prototypes reviewed in chapter 2 also realize what we decided to call buffer 
hierarchies. To accelerate data processing actívitíes at the system's applicatíon levei, these 
prototypes implement so-called object-oriented buffers in higher system layers. By 
storing data in a main memory representation known by the application, the object-
oriented buffers help the database system at the workstation to avoid costiy representation 
mapping operations between the applicatíon work space and the page/segment buffer at 
the storage system layer. At the end of chapter 2, we proposed a reference system 
architecture for design database systems which is based on the architectures of the 
prototypes reviewed. 

The study of design database system characteristícs which was initíated in the first two 
chapters of the dissertatíon, was complemented in chapter 3. There, we analyzed the 
properties of some well known design processing models which were proposed in the 
literature. Relying on some basic properties of each of those models, we identífied three 
different classes of design processing models and generalized them by proposing three 
so-called general design models. The first one of them (GMl) models the user's design 
work at both server and workstatíon as a set of independent work steps, each one of them 
related to a specific data object. The user can check objects out of and into the public 
database at any tíme. GM2 models the user work at the server processing node as an 
atomic transactíon. CHECKOUT and CHECKIN operatíons follow a strict two-phase 
protocol. All objects updated at the workstatíon are checked back into the public database 
atomically. The third general model proposed supports design cooperatíon environments. 
That is, designers belonging to the same group can exchange semi-committed results. 
Together with the reference architecture proposed in chapter 2, the general models 
presented in chapter 3 served as a basis for the investígatíons reported in the next chapters 
of the dissertatíon. 

In chapter 4, a thorough investígatíon of possible failures in the design evironment was 
carried out. We discussed botíi expected and unexpected failures, suggested where in the 
overall design system each specific failure type should be dealt with, and proposed a 
failure model for design database systems. Relying on this failure model as well as on the 
reference architecture and the general design processing models, a set of recovery 
protocois was presented which should serve as a basis for the realizatíon of database 
recovery mechanisms in the design environment. Each recovery protocol presented copes 
with a specific failure type or recovery situation in the design environment. Some 
recovery situatíons supported by the protocois are transactíon backout, deadlock, and 
system crash at the server node as well as savepoint generatíon and design transactíon 
backout at the workstatíon. Besides, we distinguished recovery protocois which both rely 
on and guarantee transactíon serializability from those which are based on objectwise two-
phase lock. The latter ones support design environments which allow designers to 
exchange semi-committed results (i.e. realize GM3). To control the execution and 
recovery of related design transactíons in GM3, we proposed a set of algorithms which 
are based on a directed graph representing transaction relationships in the design 
environnient. On the basis of the so-called group transaction graph, the system can 
manage (i.e. synchronize and recover) transactíons in design cooperatíon environments. 

In chapter 5, we analyzed the correctness of existíng database recovery algorithms in the 
various subsysteins of Üie design environment. Besides that, an empirical performance 
evaluatíon of various recovery algorithms was carried out on the basis of the recovery 
requirements derived in the previous chapters of the dissertation. We extended the 
classification of recovery algorithms proposed in [HaRe83] to better capture specific 
propertíes of recovery in the design environment. Therefore, besides analyzing recovery 
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mechanisins on the basis of the propagation strategy they support, their behavior at 
transactíon cominit time, the kind of buffer management strategy they cope with, and the 
way they produce checkpoints, we also considered recovery properties related to both the 
particular architecture of design database systems and characteristics of design 
applications. We discussed, for instance, whether recovery mechanisms which integrate 
recovery activities at the server node and at the workstation can perform better than 
recovery algorithms which perform their activities at the server and at the workstation 
separately. On the other hand, we distinguished the recovery algorithms which can 
support design cooperation environments from those which are based on transaction 
serializability. Finally we classified the algorithms on the basis of the transaction 
paradigm they follow: the conventional transaction paradigm or the nested transaction 
concept 

Besides empirically analyzing recovery performance in the design environment, we also 
proposed some extensions to existing recovery techniques so that they can support either 
design cooperation environments or recovery in server-workstation networks where data 
objects are exchanged from one processing node to the other via CHECKOUT and 
CHECKIN operations. 

Some of the conclusions (and expectations) to which we came by means of the empirical 
performance evaluation carried out in chapter 5 are listed below. 
• It is expected that integrated recovery algorithms at the server and the workstation will 

perform worse than isolated recovery mechanisms for each processing node. We 
believe that the former algorithms can overload the communications subsystem and the 
server itself. 

• Recovery mechanisms which support deferred mapping operatíons at the server node 
should perform well in design cooperation environments. Since these mechanisms are 
realized at higher system leveis (e.g. object-oriented levei), they can easily capture the 
different semantics of CHECKIN operations. These mechanisms can, for instance, 
distinguish CHECKIN operations which bring committed object versions into the 
public database from those operatíons which only integrate non-committed object 
versions into the ^oup database. In some cases, the mapping operatíons related to a 
CHECKIN operations of the latter type can be, at least temporarily, avoided. 

• Opposed to the performance they present in business-oriented database systems, 
recovety algorithms based on FORCE and Üiose based on -JFORCE should perform 
similarly at the server node of a design database system. The same phenomenon can 
also occur between page-oriented logging algorithms and algcaithms which log higher 
data abstractions (e.g. data records). The expected reductíon on performance 
differences caused by the number of I/O-operations produced by each recovery 
technique can be explained by the fact that mapping operations will probably dominate 
transactíon processing time at the server node. Consequentíy, the server will become 
CPU-bound instead of I/O-bound. Therefore, the influence of I/O-operations on 
system performance tends to diminish. 

The simulation study presented in chapter 6 relied on some of the results of the empirical 
performMce evaluation made in chapter 5. We decided to simulate some specific recovery 
mechanisms in order to prove the results of that performance evaluation. For this 
purpose, we designed and implemented a simulation networic which models an integrated 
information system supported by a design database system. This database system is 
distributed over a server-workstation computer system. The database system supports 
both business-oriented (batch) transactions as well as design transactions. In this 
processing environment, we executed a great number of simulation experiments to 
compare the performance of different recovery algorithms in the desing environment. We 
were mainly interested in comparing FORCE and -iFORCE as well as page-oriented 
logging and record-oriented logging at the server node. Moreover, we also wanted to 
investigate the performance of object-oriented recovery mechanisms which support 
deferred mapping operations and, consequently, allow update transactions to commit at 
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the server even before the (costly) mapping operations related to them are processed. We 
simulated recovery activities only at the server node of the system. On the other hand, we 
investigated recovery performance in GMl as well as in GM3. Some of the results 
obtained by the simulatíon study are listed below. 
• Recovery activities represent no significant burden to the system when CPU capacity is 

relative low (e.g. 10 MIPS). This simulation result can be explained by the fact tiiat 
mapping operations 'are very expensive and represent the greatest burden in the design 
environment. 

• Transaction response time can strongly increase in integrated information systems 
when very different transaction types are supported. Unless CPU capacity is relatively 
high (e.g. 25 MIPS in our simulation study), batch transactions must have to wait for 
design operations (e.g. CHECKOUT) to be processed on üie server. 

• In most of the simulation runs, the recovery algorithm which followed the FORCE 
strategy (REC4) achieved a performance which is comparable with the performance 
shown by algorithms which are based on -iFORCE. Opposed to results obtained for 
conventional database environments, forcing updates to disk at transactíon commit 
does not significantiy reduce system throughput or increase response time in the design 
environment. Since mapping operations take much longer than VO-operations, the 
operatíon of forcing results to disk at commit tíme represents only a small fractíon of 
the overall transactíon processing tíme. 

• Recovery mechanisms which allow transactions to commit before their updates (in 
main memoty representation) are mapped onto database pages reduce response time for 
all transaction types only in processing environments which present high CPU 
capacity. Otherwise (i.e. by low CPU power), these mechanisms reduce response time 
for updatíng transactions but increase the time of read-only transactions when 
compared with recovery mechanisms which save transactíon updates only after the 
corresponding mapping operatíons have taken place. By low CPU capacity, much of 
the time saved for update transactíons through deferred mapping operations is 
transferred to other transactions executing in parallel. 

• Besides the recovery algorithm based on FORCE (REC4) which maintains no log file 
at all, algorithms which save data records (REC3) or complete updated objects (REC2, 
REC5) needed significantly less space in stable storage than algorithms which save 
updated pages (RECl). 

• By low CPU capacity, the choice of a recovery mechanism for the server node of a 
design database system which supports an integrated information system will depend 
on the specific nêeds of Üie applications being supported and on the Q-ansactíon load 
being processed. While recovery mechanisms based on defeired mapping can 
significantly reduce the response tíme of update transactíons (e.g. REC2 reduces the 
processing tíme of update batch transactions in most cases and REC5 reduces 
CHECKIN response tíme), the more conventional recovery mechanisms (e.g. those 
which execute at the page levei) usually guarantee better response times for read-only 
transactíons. 

• By higher CPU capacity (e.g. 11 or 15 MIPS in our simulatíon study), recovery 
mechanisms based on deferred mapping performed somewhat better ilian the otiier 
ones at the server node. When CPU achieved a certain levei of extra capacity (25 MIPS 
in our simulation study), all recovery algorithms showed similar performance. 

• In design cooperation environments, recovery algorithms based on defeired mapping 
always performed better than the other algorithms. The former could beneflt from the 
semantics of CffliCKIN operations to avoid the execution of unnecessaiy (and cosüy) 
mapping operatíons. On the basis of the simulatíon results, we believe that transactíon 
management in design cooperation environments can be efflcienüy realized on the basis 
of the group transaction graph (G) presented in chapter 4 and of an object-oriented 
recovery mechanism based on deferred mapping. 
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7.2 Comparison with other Works 

Although there exists a number of published works which report on recovery algorithms 
for design database systems, most of them analyzed recovery requirements and describe 
recovery mechanisms only for specific database systems (e.g. [KaWe84], [KLMP84], 
[WeKa84], [KoKB87], [GaKi88], [Ries89]). Other works treated recovery in design 
database systems in a more general way but analyzed recovery requirements only for 
simpler design processing models (e.g. [KeltSS]). The present work has investigated 
recovery requirements in the design environment on the basis of various general design 
processing models as well as relying on a system architecture derived from the study of 
various representative design database system prototypes. Furthermore, we investigated 
the behavior of both existing and newly proposed recovery techniques in the design 
environment. 

Also a number of articles reportíng on various recovery performance evaluations can be 
found in the literature. Most of them investigated recovery performance in centralized, 
business-oriented database systems, though (e.g. [Reut84], [AgD85b]). Recovery in 
multiprocessor database machines was investigated in [AgD85a]. In this study, only 
processing environments supporting short-duration transactions were considered, though. 
In [Wei87a] and [Wei87b], the peiformance of multí-level transaction management was 
compared with the performance of single-level transaction management. Although this 
research work compared recovery mechanisms in a multi-level system architecture, 
neither buffer hierarchies nor long-duration transactions were considered in the 
investigation. 

We are not aware of other works which have evaluated recovery performance in an 
integrated database environment supporting conventional as well as long-duration, design 
transactions on the basis of a multi-level system architecture which realizes a hierarchy of 
buffers and is distributed over a server-workstation computer system. Moreover, this 
research woric seems to be the first one which evaluates database recovery performance 
on the basis of three different criteria, namely, transaction response time, system 
Üu-oughput, and log size. 

Although recovery mechanisms which save data at higher leveis of abstraction (e.g. 
[Lind79], [ARI89a]) as well as multi-level recovety algorithms (e.g. [Verh79], [Wei89a]) 
have already been proposed in the literature, this work is the first one to analyze the 
behavior of recovery mechanisms which save recovery information before mapping 
operations take place. On the other hand, the deferred update techniques for database 
systems which have been proposed in the literature (e.g. [CammSl], lt)LPS85]) do not 
consider the possible existence of buffer hierarchies. 

The idea of controlling transactíon cooperation on the basis of a directed graph has already 
been proposed in [PROF85]. Transactíon management in [PROF85] differs from the 
approach presented here in, at least, two ways, though. First, concurrency control in 
PROFEMO is based on transactíon serializability while our approach relies on object-
oriented two-phase lock. Secondly, transactions waitíng to commit in PROFEMO can 
either commit or abort. To better support cooperatíve design environments, the approach 
proposed here allows transactíons in the ready state to be brought back into the actíve state 
so tíiat the designer can decide what to do next. 

7.3 Some Open Questions and Plans for Future Work 

This work reports on a performance evaluatíon of recovery techniques in the design 
environment. We mainly investígated recovery performance only in environments which 
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realize the GMl processing model, though. Following investigations should also consider 
both GM2 and GM3 environments in more detail. Especially for the GM3 environment 
where transaction cooperation is allowed, the performance of recovery mechanisms 
relying on the group transaction graph presented in chapter 4 should be investigated more 
thoroughly. 

The simulation results already showed that recovery mechanisms which are reaíized at 
higher leveis of abstraction can benefit from the semantics of the application. Although we 
could quantify this benefit for some design cooperation scenarios, the investigation of 
how recovery mechanisms can both get and process information conceming the 
application behavior also constitutes a very important and interesting topic of research 
which was not covered by this work. 

For all design processing models, recovery performance in environments with high CPU 
capacity should be analyzed in more details. Besides that, recovery performance in 
distributed server systems should be modeled and evaluated. 

By simulating design environments which realize the GM2 processing model, recovery 
techniques for nested transactíons should be investigated, too. The coordínation of 
recovery actions at the server and at the workstatíon costitutes a very important area of 
study which has not deserved much attentíon until now. 

Finally, this work has not investigated recovery performance at the workstatíon at all. The 
performance of new recovery techniques (as, for instance, the one in [Ries89l) should be 
compared with that of already existing recovery algorithms in this environment. Besides, 
new recovery techniques for workstations that consider the existence of other 
workstatíons ín the system should be investigated. These techniques could allevíate 
transaction load at server node in systems where not all workstations have own disk 
units. 
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