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Resumo

Neste trabalho estudamos condi¢oes necessarias e suficientes para que o
produto cruzado parcial R 2 G seja um anel totalmente fracamente primo, e
estudamos uma descricao do radical primo do produto cruzado parcial quando
o anel base R é um anel totalmente fracamente primo.

Também estudamos condigoes necessarias e suficientes para a comutativi-
dade e a simplicidade de R ¥ G. Quando R = C(X) é a algebra das funcdes
continuas definidas sobre um espaco topologico X com valores nos nameros
complexos e C(X) %, G é o skew anel de grupo parcial associado a uma agao
parcial & de um grupo topolégico G sobre C'(X), estudamos a simplicidade de
C(X) *, G usando propriedades topoldgicas de X e os resultados obtidos sobre
a simplicidade de R *¥ G.
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Abstract

In this work we study necessary and sufficient conditions for the partial
crossed product R * GG to be a fully weakly prime ring, and we give a descrip-
tion of the prime radical of the partial crossed product when the base ring R
is a fully weakly prime ring.

Also, we study necessary and sufficient conditions for the commutativity
and simplicity of R % G. When R = C(X) is algebra of continuous functions
defined on a topological space X with values in the complex numbers and
C(X) % G is the associated partial skew group ring of a partial action « of
a topological group G on C(X), we study the simplicity of C(X) %, G using

topological properties of X and the results about the simplicity of R *% G.



Contents

1 Preliminaries
1.1 Crossed product . . . . ... ... ...
1.2 Twisted partial actions . . . .. ... ... .. ... ...,
1.3 FPR,AFPRand FWPR . . . . . . ... ... ... .. .......

1.4 Topological notions . . . .. ... ....... ... .......

2 Partial Crossed Products and Fully Weakly Prime Rings
2.1 Generalresults . . . . ... ... o oo o oo
2.2 Prime radicals of partial crossed products . . .. ... ... ...

2.3 Partial crossed products, FWPRand AFPR . . ... ... .....

3 Simplicity of Partial Crossed Products
3.1 Commutativity and simplicity of partial crossed products . . . .
3.2 Applications . . . .. ... L o
3.2.1 Some properties of partial dynamical systems . . . . . . .
3.2.2 Simplicity of C(X) %, G . . . . . . ..
33 Examples . . . .. ...

Bibliography
Notations

Index

17
17
25
28

42
43
57
57
60
66

69

73

74



Introducao

Acoes parciais de grupos foram introduzidas na teoria das algebras de opera-
dores como uma abordagem geral para estudar C*-algebras geradas por isome-
trias parciais (ver, em particular, [20] e [21]), e produtos cruzados, ver [15],
estao no centro de uma rica interagao entre sistemas dinamicos e algebras de
operadores (ver, por exemplo, [28] e [33]). A nogao geral de acao parcial (con-
tinua) torcida de um grupo localmente compacto sobre uma C*-algebra e pro-
dutos cruzados correspondentes foram introduzidos em [20]. Os correspon-
dentes algébricos para algumas das nog¢des acima mencionadas foram intro-
duzidos e estudados em [14], estimulando novas investigacdes, por exemplo,
em [7], [17], [22] e suas referéncias.

Dada uma acao parcial é natural perguntar se esta é restricao de uma agao
global. Tal agao global é denominada uma agao envolvente (ou uma globa-
lizacao) da acao parcial, e seu estudo foi iniciado na tese de doutorado de F.
Abadie [2] (ver também [1]) e independentemente por J. Kellendonk e M. Law-
son em [26]. Em [14], entre outros resultados, Dokuchaev e Exel provam que
existem agoOes parciais sem agao envolvente e apresentam um critério para a
existéncia de uma agao envolvente. A existéncia de uma agao envolvente para
uma agao parcial tem um papel importante quando queremos generalizar re-
sultados ja conhecidos de a¢oes globais (ver por exemplo [17], [10], [12] e [22]).
Em algum momento, ao longo do segundo capitulo, assumiremos que a agao

parcial possui uma agao envolvente.



No que segue, apresentamos uma breve descri¢ao dos capitulos que com-
poem esta tese.

No primeiro capitulo, apresentamos as principais defini¢coes e resultados
necessarios para o desenvolvimento dos demais capitulos.

No segundo capitulo, descrevemos o radical primo do produto cruzado par-
cial quando o anel base é um anel totalmente fracamente primo e estudamos
condigoes necessarias e suficientes para que o produto cruzado parcial seja um
anel totalmente fracamente primo. Além disso, como consequéncia de nos-
sas técnicas, estudamos condigoes necessarias e suficientes para que o produto
cruzado parcial seja um anel quase totalmente primo, e isto generaliza resul-
tados apresentados em [25]. Este capitulo é parte do artigo intitulado “Partial
crossed products and fully weak prime rings”, que foi submetido a publicacao.

No terceiro capitulo, descrevemos completamente o centro e estudamos a
comutatividade do produto cruzado parcial. Também estudamos condigoes
necessarias e suficientes para a simplicidade do produto cruzado parcial, e
isto generaliza resultados apresentados em [31] e [32]. Além disso, quando
R = C(X), a algebra das fung¢oes continuas definida sobre um espago topolo-
gico X com valores nos nimeros complexos, consideramos uma a¢ao parcial de
um grupo topoldgico G em X e sua extensao para C'(X). Estudamos algumas
propriedades topoldgicas da agao parcial de G sobre X que implicam algumas
propriedades algébricas de C'(X). Também aplicamos os resultados sobre a
simplicidade de R *2 (G para estudar a simplicidade do produto cruzado par-
cial sobre C'(X). Concluimos este capitulo com alguns exemplos onde sao apli-
cam os resultados e mostramos que algumas das nossas hipoteses para obter a
simplicidade C(X) %, G nao sao supérfluas. Este capitulo é parte do artigo in-
titulado “Simplicity of partial crossed product”, que foi submetido a publicacao

em conjunto com Wagner Cortes e Alexandre T. Baraviera.



Introduction

Partial actions of groups have been introduced in the theory of operator al-
gebras as a general approach to study C*-algebras generated by partial isome-
tries (see, in particular, [20] and [21]), and crossed products classically, as well-
pointed out in [15], are the center of the rich interplay between dynamical
systems and operator algebras (see, for instance, [28] and [33]). The general
notion of (continuous) twisted partial action of a locally compact group on a
C*-algebra and the corresponding crossed product were introduced in [20].
Algebraic counterparts for some of the above mentioned notions were intro-
duced and studied in [14], stimulating further investigations, for instance, in
[17], [22], [7] and references therein.

Given a partial action it is natural to ask if this is a restriction of a global
action. Such global action is called an enveloping action (or a globalization)
of partial action, and its study was initiated in the PhD Thesis of F. Abadie [2]
(see also [1]) and independently by J. Kellendonk and M. Lawson in [26]. In
[14], among other results, Dokuchaev and Exel proved that there exist partial
actions without an enveloping action and give a criteria for the existence of an
enveloping action. The existence of an enveloping action for a partial action
has an important role when we want to generalize well known results of global
actions (see, for example, [17], [10], [12] and [22]). At some point, throughout
the second chapter, we assume that the partial action has an enveloping action.

In what follows, we present a brief description of the chapters of this thesis.



In the first chapter we present the main definitions and results that are
necessary for the development in the remaining chapters.

In the second chapter we describe the prime radical of partial crossed prod-
ucts when the base ring is a fully weakly prime ring, and we study necessary
and sufficient conditions for the partial crossed product to be fully weakly
prime. Moreover, as consequence of our techniques, we study necessary and
sufficient conditions for the partial crossed product to be an almost fully prime
ring, and this generalize results presented in [25]. This chapter is part of the
article entitled “Partial crossed products and fully weak prime rings” that was
submitted for publication.

In the third chapter we completely describe the center and we study the
commutativity of the partial crossed product. We also study necessary and
sufficient conditions for the simplicity of the partial crossed product, and this
generalizes results presented in [31] and [32]. Moreover, when R = C(X),
the algebra of the continuous functions defined on a topological space X with
values in the complex numbers, we consider a partial action of a topological
group G on X and its extension to C'(X). We study some topological properties
of the partial action of G on X that will imply some algebraic properties on
C(X). We also apply the results about the simplicity of R ¥ G to study the
simplicity of the partial crossed product over C'(X). We conclude this chapter
with some examples where we apply the results and we show that some of our
assumptions to obtain the simplicity of C'(X) %, G are not superfluous. This
chapter is part of the article entitled “Simplicity of partial crossed product” that
was submitted for publication and it was a joint article with Wagner Cortes

and Alexandre T. Baraviera.



Chapter 1

Preliminaries

In this chapter we present the main definitions and properties that are im-
portant for the development of the subsequent chapters. The definitions and
results presented here are well known, we will expose them in order to fix

notation and for the reader’s convenience.

1.1 Crossed product

Let T be a ring with identity, Aut(7) the group of automorphisms of the
ring T" and G a group. We assume that G acts by automorphisms on 7, i.e.
there is a group homomorphism 3 : G — Aut(T) such that for each g € G we
associate an automorphism [, of 7.

Suppose that there is an application u : G x G — U(T) (twisting) which for
each pair (g, h) € G x G associates the invertible element u,j of 7', where U(T)
denotes the group of units of 7. The (global) crossed product T xj3 G of G on T
is the set of all finite sums }_ . {,0,, where d,’s are symbols, with the usual

addition and multiplication determined by rule

(5959)(th5h) = 8454 (th)ug,h(sgh'

forall s,,t, € Tand g, h € G.



The associativity of 7" xj; G is equivalent to the assertions, for all g, 1,1 € G:

(Z> Bg © ﬁh(t) = ug,hﬁgh(t)u;’,ll, forallt € T;
(”) Bg<uh,l>ug,hl = Ug hUgh,l-

Let 3 be a twisted global action of a group G'on 7. An ideal I of T is said to
be f-invariant if 5,(I) = I, for all g € G. An ideal P of T is said to be [-prime
if for any f-invariant ideals I and J of 7" with IJ C P we have either / C P or

J C P. The ring T is said to be 3-prime if the zero ideal is 5-prime.

In what follows, we will see some results that will be needed during the
text. The first is known as Incomparability Theorem and will be generalized

in Corollary 2.1.13.

Lemma 1.1.1. ([35], Theorem 16.6(iii)) Let T *} G be a crossed product with G
a finite group. If Py and P, are prime ideals of T x5 G such that PLNT = P, NT,
then P1 = PQ.

Lemma 1.1.2. ([35], Theorem 16.2(i)) Let T x}; G be a crossed product with G a
finite group and T' a B-prime ring. Then a prime ideal P of T x} G is minimal if
and only if PNT = 0.

Lemma 1.1.3. ([35], Lemma 1.3) Let T x}; G be a crossed product and H a normal
subgroup of G. Then T x G = (T *§ H) x (G/H ) where the latter is some crossed
product of the group G /H over the ring T xj; H.

1.2 Twisted partial actions

Let A be an associative non-necessarily unital ring, we remind that the ring

of multipliers M(A) is the set

M(A) = {(R,L) € End(4A) x End(Ay4) : (aR)b = a(Lb),Ya,b € A}



with the following operations:
(1) (R,L)+ (R,L')=(R+R,L+L");
(7)) (R,L)(R',L')=(R' oR,LolL').

Here we use the right hand side notation for homomorphisms of left A-
modules, while for homomorphisms of right modules the usual notation shall
be used. In particular, we write ¢ — aR and a — La for R : 1A — A,
L: Ay — Ajwith a € A. For the multiplier w = (R, L) € M(A) and a € A we
set aw = aR and wa = La. Thus one always has (aw)b = a(wb), for all a,b € A.
The first (resp. second) components of the elements of M(A) are called right
(resp. left) multipliers of A. It is convenient to point out that if A is a unital
ring, then we have that A ~ M(A), see ([14], Proposition 2.3). So, in this case,
each invertible multiplier may be considered as an invertible element of A.

The following definition appears in ([16], Definition 2.1).
Definition 1.2.1. A twisted partial action of a group G on a ring R is a triple

= ({Dg}geGa {aglgea; {wg,h}(g,h)ecxa),

where for each g € G, D, is a two-sided ideal in R, oy : Dy-1 — D, is an

g

isomorphism of rings and for each (g, h) € G x G, w,, is an invertible element

from M(D,D,,), satisfying the following postulates, for all g, h,t € G-
(i) Dz = Dyand DyD), = D, Dy;
(74) D, = R and «, is the identity map of R;
(177) ag(Dy-1Dp) = DgDgp;
(iv) agyoap(a) = wgﬁagh(a)w;,ll, for all @ € Dy-1Dp-14-1;
(V) Wge=1Wey=1;

(vi) ag(awp)wgn = ag(a)wgpwgn,, for all a € Dy—1 Dy Dyy.



Note that if wy;, = 14144, Vg, h € G, then we have the partial action defined
by Dokuchaev and Exel in ([14], Definition 1.1) and when D, = R, Vg € G, we

have that « is a twisted global action.

Remark 1.2.2. If each ideal D, of R is generated by a central idempotent 1,
then D, = 1,R and, for all g,h € G, we have that D,D;, = D, N Dy, is a
unital ring with identity 1,1,. Consequently, for all g,h € G, we have that
M(DyDyp) ~ DyDygy, and so each invertible multiplier w, , may be considered

as an invertible element of D,Dgj.

Let 5 = (T, {By}gea, {ug,h}(gﬁ)eGXG) be a twisted global action of a group G
on a (non-necessarily unital) ring 7" and R an ideal of T" generated by a central
idempotent 1. We can restrict § for R as follows. Put D, = RN 3,(R) = R -
By(R) we have that each D, has identity 1z05,(1z). Then defining oy = Gy|p, .,
g € G, the items (i), (¢¢) and (i2) of Definition 1.2.1 are satisfied. Furthermore,
defining w, , = uy11rBy(1r)Ben(1r), g,h € G, we have that (iv), (v) e (vi) are

also satisfied. So we indeed have obtained a twisted partial action of G on R.

The following definition appears in ([16], Definition 2.2).

Definition 1.2.3. A twisted global action (7, {8, }4cc, {tgn}(gnecxa) of a group
G on an associative (non-necessarily unital) ring 7" is said to be an enveloping
action (or a globalization) for a twisted partial action o of G on a ring R if there

exists a monomorphism ¢ : R — T such that, for all g and h in G:
(1) ¢(R)is an ideal of T;
(i) T =2 geq Bo(@(R));
(ii1) p(Dy) = @(R) N By(p(R));
(iv) poay(a) = fy0p(a), forall a € Dy-1;

(v) plawyn) = p(a)ugy and p(wy pa) = ugpp(a), for all a € DyDy,.



In ([16], Theorem 4.1), the authors studied necessary and sufficient condi-
tions for a twisted partial action a of a group G on a ring R has an enveloping

action. Moreover, they studied which rings satisfy such conditions.

Suppose that (R, o, w) has an enveloping action (7', 8, ). In this case, we
may assume that R is an ideal of 7" and we can rewrite the conditions of the
Definition 1.2.3 as follows:

(7) Risanideal of T}

We recall from ([18], p. 345) that a ring S is left (right) s-unital if for any
r € S we have that » € Sr (r € rS). A ring S is said to be s-unital if it is right
and left s-unital. We clearly have that every unital ring is s-unital. Note that if
each ideal D, of R is generated by a central idempotent 1, and if (R, o, w) has
an enveloping action (7, 3, u), then T' is s-unital. In this case, for each g € G
we have that 71, = R1, = D, = RN By(R) = T1rNTH,(1g) = T1pbB,(1r) and
it follows that 1, = 1z3,(1r).

Given a twisted partial action « of a group G on a ring R, we recall from

([15], Definition 2.2) that the partial crossed product R ¥ G is the direct sum

GBgEG Dgég'

where J,’s are symbols, with the usual addition and multiplication defined by
(agdy)(bron) = ag(agl(ag)bh)wg,h(sgh'

By ([15], Theorem 2.4) we have that R % G is an associative ring whose
identity is 1zd;. Moreover, we have the injective morphism ¢ : R = R %Y G,

defined by r +— 7, and we can consider R *2 GG an extension of R.

10



1.3

FPR, AFPR and FWPR

Now, we review some definitions and results on rings with “many” prime

ideals. The following definition appears in ([5], Definition 1.1) and ([25], p.

86).

Definition 1.3.1. Let S be a ring.

(4)
(i)

S is said to be a fully prime ring (FPR) if every ideal of S is prime.

S is said to be an almost fully prime ring (AFPR) if every proper ideal of S

is prime and S is not a prime ring.

The following result appears in ([5], Theorem 1.2).

Proposition 1.3.2. A ring S is a FPR if and only if the set of all the ideals of S is

linearly ordered by inclusion and all the ideals of S are idempotent.

Example 1.3.3.

(4)

Let V be a right vector space over a division ring D and Endp (V) the
endomorphisms ring of V. By fact that Endp(V) is a von Neumann
regular ring, if J is any ideal of Endp(V) and z € J, then there exists
y € Endp(V) such that z = zyz. Thus z = zyz = (zy)z € J* and so every
ideal of End (V') is idempotent. Moreover, by ([38], Theorem I11.14), the
ideals of Endp(V) are of the form I. = {f € Endp(V) : dimf(V) < ¢}
where c is any infinite cardinal number such that ¢ < dim (V). Note that,
if ¢ < d < dim(V) are infinite cardinal numbers, then I, C [, and so the
ideals of End (V') are linearly ordered by inclusion. Hence, by Proposi-

tion 1.3.2, Endp(V) is a FPR.

Let R be a FPR with exactly one proper ideal P. For p;,ps € Pand ry,7rs €
R,let S = P @& R with the usual addiction and multiplication defined by

11



(p1,71)(p2,m2) = (p172 + r1P2, 7172). Then S has exactly two proper ideals,

namely: Q; = {(p,p’) cp,p € P} and )y = {(p, 0):pe P}. We easily
see that S is an AFPR.

At this point it is convenient to point out that any FPR only have one max-
imal ideal. The following two results were proved in ([41], Theorems 2.1 and

2.2).

Lemma 1.3.4. Let S be a ring whose set of ideals is not linearly ordered by inclu-

sion. Then S is an AFPR if and only if
(1) all ideal of S is idempotent and it has exactly two minimal ideals;

(13) each minimal ideal of S is contained in all nonzero ideal of S that is not

minimal ideal;
(i13) the set of ideals of S that are not minimal is linearly ordered by inclusion.

Lemma 1.3.5. Let S be a ring whose set of ideals is linearly ordered by inclusion.
Then S is an AFPR if and only if S has only one minimal ideal and every ideal of S

except the minimal one is idempotent.

In what follows, we denote by Nil.(S) the prime radical of a ring S, i.e. the
intersection of all prime ideals of S, and in an abuse of notation we denote the
zero ideal simply by 0. The proof of the next result follows directly from the
Lemmas 1.3.4 and 1.3.5.

Lemma 1.3.6. The following statements hold:

(¢) If S is an AFPR whose set of ideals is not linearly ordered by inclusion, then
Nil.(S) = Py N Py, =0, where P, and P, are the minimal ideals of S.

(t3) If S is an AFPR whose set of ideals is linearly ordered by inclusion, then
Nil(S) = Py, where P, is the minimal prime ideal of S that is nilpotent.

12



The following definitions appear in ([24], p. 1078).

Definition 1.3.7. Let S be a ring.

(4)

(i)

A proper ideal I of S is said to be weakly prime ideal if for any ideals J
and K of Rwith 0 # JK C I we have either / C I or K C [.

S is said to be a fully weakly prime ring (FWPR) if every proper ideal of S

is weakly prime.

Example 1.3.8.

(4)

(i)

(iid)

Obviously, all proper prime ideal of a ring S is weakly prime. Now, we
shall see the converse is not true. Let R be a ring and M an R-bimodule.
Define R« M = {(r,m) : r € Randm € M} with component-wise
addition and multiplication defined by (r,m)(s,n) = (rs,rn + ms). Then
R % M is a ring whose ideals are precisely of the form I x IV, where [ is
an ideal of R and N is a submodule (a bimodule) of M containing I M
and M. Let R be a prime ring with exactly one proper ideal P (e.g., the
ring of linear transformations of a vector space V over a field F' where
dimgpV = Nj). Let Sy = R+ P and P, = 0 % P the nonzero minimal
ideal of S;. Now, let S; = S; « P;. Then all ideal of S, is weakly prime
and ); = P, x P, and Q2 = P, % 0 are nonzero nilpotent ideals of Ss.
Hence, D, is weakly prime, but is not prime, because 0 = (Q;)? C @ and

Q1 € Qo, see ([24], Example 5).

Let R be a ring such that R?> =0and K afield. Then S = K ® R® R,
with component-wise addition and multiplication, is not a FWPR, since
the ideal I = K ©0&® R is not weakly prime, because 0 # (K ® R®0)* C T
and K®R®0 L I

Let S = Ke; @ Key, where e; and e, are orthogonal central idempotents

and K is a field. Then S is a FWPR.

13



Let S be a ring. Recall that S is said to be a right noetherian if every non-
empty set of ideals of S contains a maximal element. In what follows, we
denote the sum of all ideals of S whose square is zero by N(S) and the Jacobson

radical of S, i.e. the intersection of all the maximal right ideals of S, by J(.5).

Lemma 1.3.9. ([24], Theorem 1) Suppose that S is a FWPR and S? = S. Then
Nil.(S) = N(S) and (Nil.(S))? = (N(S))* = 0.

Lemma 1.3.10. ([24], Corollary 2) Suppose that S is a right noetherian FWPR
with identity. Then Nil,(S) = N(S) = J(S) and (J(S))* = 0.

Lemma 1.3.11. ([24], Proposition 1) If an ideal I of a ring S is a weakly prime

ideal that is not prime, then I* = 0.

1.4 Topological notions

In this subsection, we review some definitions and results on topological
spaces that will be used in the Chapter 3. We begin with the definition of
partial actions of topological groups on topological spaces, see [1]. We refer to

[6] and [37], for the basic concepts of Topology.

Definition 1.4.1. Let G be a topological group and X a topological space. A
partial action « of G on X is a family of open subsets { X}/ of X and home-
omorphisms a;: X;-1 — X; such that the following properties hold, for all

s,t € G:
(1) X, = X and a, = idx;
(11) (X1 N X)) = Xy N Xyg;
(171) ay(as(x)) = ays(x), for all z € -1 (X5 N Xp-1);
(iv) Thesety = {(t,2) € G x X :t € G,z € X;-1} is open in G x X and the

function ¢: I'y, — X defined by ¢(¢,z) = a4(x) is continuous.

14



We denote it by the triple (X, a, G) and it is called a partial dynamical sys-
tem, see [21].
Next, we give a well known non-trivial example of partial dynamical sys-

tem.

Example 1.4.2. (non complete flows) Consider a smooth vector field X: X —
T'X on a manifold X, and for any p € X let ¢, be the flow of X through p, i.e.
the solution of the differential equation

S oult) = 2(6,(0)

with initial condition ¢,(0) = p, defined on its maximal interval (a,,b,). For
any t € R, set X_; = {p cX:te (ap,bp)}, a;: Xy — X, such that o (p) =
¢p(t), and & = ({X;}ier, {1 }rer ). Now (X, o, R) is a partial dynamical system

(and, if the manifold is compact, it is in fact a global action, and so, a usual

dynamical system), see ([1], Example 1.2).

From ([1], Theorem 1.1) we have that any partial action of a topological
group G on a topological space X has an enveloping action (X¢, 3,G). For
convenience we briefly recall the construction of ([1], Theorem 1.1): First, de-
fine the action 7: G x G x X — G x X as 74(t,x) = (st,z) and introduce the

equivalence relation on G x X defined as follows:
(t,x) ~ (s,y) © x € X4-15 and a,-1, () = v.

Then we have the topological space X¢ = G x X/ ~ and denote the equivalence
class of (g,2) € G x X, as usual, by [¢g,x] € X The global action £ is just
the restriction of the action 7 to the equivalence classes. The quotient map
q: G x X — X¢is defined by ¢(g,z) = [g, z]; it is also possible to introduce
the injective morphism i: X — X¢ given by i(z) = ¢(e, x), that is an injective

continuous morphism. Moreover, for each z € X -1, we have that

(ag(z)) = qle, ay(z)) = q(g.7) = q(vy(e, ) = By(ale, 2)) = By (i())
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and X is open in X°¢ The triple (X¢, 3,G) is called the enveloping action of
(X, a,G).

Let (X, a, G) be a partial dynamical system and consider the algebra of con-
tinuous functions defined on topological space X with values in the complex
numbers

C(X)={f: X — C continuous},

with the usual addition of functions and multiplication defined by

(ff)(z) = f(x)f'(x), forany f, [ € C(X).

Following [21] we can extend the partial action a of G on X to the algebra
C(X) with ideals C(X;) and isomorphisms «a; : C(X;-1) — C(X}) defined by
ai(f)(x) = f(ap-1(z)) for each t € G and the following properties are easily

verified:
(a) C(Xe) = C(X) and a. = ido(x);
() au(C(Xi-1))NC(Xy)) = C(Xy) NC(Xys);

() aulas(f)) = ar(f), forall f € a,+(C(X,) N1 C(X,)).

We denote this partial action by « again. Following [14] the partial skew group

ring C'(X)*, G is the set of all finite formal sums ) __. a,d,, where a, € C(X)),

geG

with the usual addition and multiplication defined by rule
(agdg)(andn) = aglag-1(ag)an)dgn.

Note that, C'(X) %, G is associative, because (X, a, G) has an enveloping action
(X¢, B,G) and in this case C'(X)x*,G is a subring of the skew group ring C'(X°)x
G, see [14].
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Chapter 2

Partial Crossed Products and Fully
Weakly Prime Rings

In this chapter we describe the prime radical of partial crossed products
when the base ring is a fully weakly prime ring. We describe necessary and
sufficient conditions for the partial crossed product to be fully weakly prime.
As consequence of our techniques, we study necessary and sufficient condi-
tions for the partial crossed product to be an almost fully prime ring and this
generalize some results of [25].

Throughout this chapter o = ({Dy}geq, {0y }gec, {Won} g necxc) is a twisted
partial action of a group G on aring R such that all the ideals D, are generated

by central idempotents 1,, unless otherwise stated.

2.1 General results

In this section we look at some general results about twisted partial action,

which will be used to develop the third section of this chapter.

Definition 2.1.1. Let o be a twisted partial action of a group G on a ring R.

An ideal I of R is said to be a-invariant if ay(I N Dy-1) C I N Dy, forall g € G.
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Note that the definition above is equivalent to ay(/ N Dy-1) = I N D,, for all
g € G. If I is an a-invariant ideal of R we define I ! GG as the set of all finite

sums Y a,0, such that a, € I N Dy, for all g € G, with the usual addition and
geG
multiplication determined by rule

(agdy)(bnon) = agog(bply—1)wy pdgn.
Lemma 2.1.2. Let a be a twisted partial action of a group G on R.

(1) If J is an ideal of R *¥ G, then J N R is an a-invariant ideal of R such that
(JOR)+* G C J.

(13) If I is an a-invariant ideal of R, then I x¥ G is an ideal of R x* G such that
(I+*G)NR=L.

Proof. (i) Clearly J N Ris anideal of R and (JN R) «¥ G C J. Moreover, J N R
is a-invariant, because if z € J N RN Dy-1, we have that
ag(r) = Lgag(r) = (19‘)‘9(517)“)979*1)“);;71 = (19551)(3759*1)70;;71 € J
(i7) Clearly I ¥ G is a subring of R ¥ G and (/ *¥ G) N R = I. Moreover,
I x¥ G is an ideal of R * G, because if b,0, € I *% G and a,0, € R x G,

we have that (thSh)(ag(Sg) = bhah(aglhﬂ)wwéhg el * G and (agég)(bhéh) =

agag(bply—1)wg pégn € I %% G, since I is an a-invariant ideal of R. O
Definition 2.1.3. Let o be a twisted partial action of a group G on R.

(1) An a-invariant ideal P of R is said to be a-prime if for any a-invariant

ideals I and J of R with I.J C P we have either I C Por J C P.

(77) The a-prime radical of R is the intersection of all a-prime ideals of R and

we denote it by Nil,(R).
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Lemma 2.1.4. Let « be a twisted partial action of a group G on R.
(1) If Q is a prime ideal of R ¥ G, then QQ N R is an a-prime ideal of R.

(17) If P is an a-prime ideal of R, then there exists a prime ideal () of R*% G such
that QN R = P.

Proof. (i) Let ) be a prime ideal of R+¥ G and I, J a-invariant ideals of R such
that IJ C @ N R. Then (I ¥ G)(J x* G) C Q. By the fact that () is prime we
have that either /+* G C Q or J*¥ G C Q). Thus either I CQNRor J C QNR.
Hence, () N R is an a-prime ideal of R.

(17) Let P be an a-prime ideal of R. Then by Lema 2.1.2(¢7), we have that
(Px¥G)N R = P. By Zorn’s Lemma there exists an ideal @) in R ¥ G, maximal
with the property Q N R = P. Now, it is easy to see that () is a prime ideal of
R«Y Gsuchthat QN R = P. O

Throughout the rest of section we assume that the twisted partial action «
of G on R has an enveloping action (7', 5, u), unless otherwise stated.
Lemma 2.1.5. Let « be a twisted partial action of a group G on R and (T, B,u) its
enveloping action. If M = { Y agly ta, € R} and N = { D agdy tay € BQ(R)}

geG geG
then the following conditions hold:

(i) M(T 4 G) € M;
(i) (T %4 G)N C N;
(iii) (R+y G)M S M;
(iv) N(R*y G) € N;

() MN = R =" G;

(vi) NM =T x5 G;
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(vii) M(R+* G) C R«" G;
(viii) (R*Y G)N C R+Y G.

Proof. The proofs of the first six items are similar the proofs of the ([14], Propo-
sitions 5.1, 5.2 and 5.3).

(vii) Item (i) implies that MM N C MN. Since, by item (v), MN = R«* G
it follows that M (R «¥ G) C R« G.

(viii) Item (4¢) implies that M NN C MN. Since, by item (v), MN = R+ G
it follows that (R ¥ G)N C R x* G. O

Note that if R is s-unital and (7', 8, u) is the enveloping action of (R, a, w),
then by ([18], Remark 2.5) we have that 7" is s-unital. Using this fact we obtain

the next lemma that appears in the proof of ([16], Theorem 3.1).

Lemma 2.1.6. Let R be a s-unital ring and o a twisted partial action of a group G

on R with enveloping action (T, 3,u). Then T x}; G is s-unital.
The proof of the next lemma is standard.
Lemma 2.1.7. Let P'be an ideal of T'x3GG. Then P'N(Rxy G) is an ideal of R+, G.

Lemma 2.1.8. There exists a bijective correspondence, via contraction, between the

set of ideals of R ;) G and the set of ideals of T x5 G.

Proof. Let P be an ideal of R xy G. Clearly NPM is a subring of T % G. Since
M(T x4 G) € M and (T G)N C N it follows that NPM (T x5 G) € NPM and
(T3 G)YNPM C NPM. Thus, NPM is an ideal of T'*} G.

Since P = 1zgP1g, 1g € Nand 1z € M then P C NPM N (R«" G). Now, for
eachz € NPMN(RxYG) we have that x = 1gzlr € 1gNPM1pg. By the fact that
MN = R« G,wehave that x = 1gxlp € IRNPM1r C (R+YG)P(RxYG) C P.
Thus, NPM N (R *¥ G) C P and it follows that NPM N (R«¥ G) = P.

Next, let P’ be an ideal of T' %3 G. Since M (T %3 G)C Mand MN = Rx¥ G,
we obtain that M P'N C R «¥ (G, and we easily see that M P'N is a subring of
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R« G. By the fact that (R +* G)M C M and N(R *¥ G) C N it follows that
(R+«Y G)YMP'N C MP'N and MP'N(R ¥ G) C MP'N. Thus, MP'N is an
ideal of R ¥ G.

By the fact that MP'N C R %% G and P’ is an ideal of T * G, we have
that MP'N C P' N (R %Y G). Now, for each z € P' N (R *¥ G), we have
x = lgxlp € 1gP'1g € MP'N. Thus, PN (R %Y G) C MP'N and its fol-
lows that P"N (R «¥ G) = MP'N. O

The following result is a direct consequence of proof of lemma above.

Corollary 2.1.9. Let P’ be an ideal of T x}; G and P an ideal of R *;] G such that
P=PN(R«YQG). Then P= MP'N and P' = NPM.

We recall that given two rings R and S, bimodules zpUs and sV and maps
0:U®sV — Rand ¢ : V ®@g U — S the collection (R, S,U,V,0,) is said to

be a Morita context if the array

R U
Vs

with the usual formal operations of 2 x 2 matrices, is a ring. As in the Lemma
2.1.5, consider M = { 3~ tag € R} and N = {dec tag € By(R)}.
Using the Lemma 2.1.5 and similar arguments of ([16], Theorem 3.1), we have

the Morita context (R +% G,T x4 G, M, N,0,1), where 0 and ¢ are the obvious

gGG

maps.
The next result appear in ([39], Proposition 2.3.2). We will show that it can

be obtained as a consequence of Lemma 2.1.8 and Corollary 2.1.9.

Lemma 2.1.10. There exists a bijective correspondence, via contraction, between

the set of prime ideals of R xy) G and the set of prime ideals of T x5 G

Proof. Let P’ be a prime ideal of T xj; G and assume that [ and J are ideals
of R +¥ G such that IJ C PN (R %Y G) = P. Since IJ C P it follows that
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I')) = (NIM)(NJM) C NIJM C NPM = P’ and so either I’ C P'or J' C P'.
Thus either ] = MI'N C MP'N = PorJ = MJ' N C MP'N = P. Hence,
P =P'N(Rx*YG)is aprime ideal of R 2 G. It can be seen by analogous way
that if P is a prime ideal of R x; GG, then is prime the ideal P’ of T" xj G such
that P = P' N (R ¥ G). O

In what follows we will see some consequences of last result and they will

be useful throughout this chapter.

Corollary 2.1.11. There exists a bijective correspondence, via contraction, between
the set of prime ideals P' of T' } G such that P'N'T = 0 and the set of prime ideals
P of R*¥ G such that PN R = 0.

Proof. Let P’ be a prime ideal of T} G such that P"NT" = 0. Then by Lemma
2.1.10, there exists a prime ideal P of R*¥ G such that P = P'N(R*Y G). Thus
PNR=(PNR+LGE))NR=PN(R*x¥G)NR)=PNRCP NT=0.
Now, let P be a prime ideal of R " GG such that PN R = 0. Then by Lemma
2.1.10, there exists a prime ideal P’ of T'xj; G such that P = P'N(Rxy G). Thus,
PNR=PN(R+xG)NR)=(PN(R+YG))NR=PNR=0and it follows
that (P'NT")1z = 0. Since P'NT is f-invariant we have that (P'NT")3,(1z) =0,
for all g € G. By the fact that T = > _., 5,(R) we obtain that (P'NT)T = 0
and, since T is s-unital, it follows that P’ NT C (P'NT)T = 0. O

Let o be a twisted partial action of a group G on R and I an a-invariant

ideal of R. We define I* = {t € T : B,(t)1g € I,Vg € G}.

The proof of the following lemma is analogous to the proof of ([7], Lemma

2.3), and will be omitted.

Lemma 2.1.12. Suppose that (R, «a,w) has an enveloping action (T, 5,u). If I is
an a-invariant ideal of R, then I* is a B-invariant ideal of T, with I* N R = 1.
Moreover, for any [B-invariant ideal J of T with J N R = I we have J C I*. In
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addition, if I is a-prime, then I* is S-prime and conversely if J is a S-prime ideal

of T', then there exists an a-prime ideal I of R such that I* = J.

Let I be an a-invariant ideal of R. Then we can extend the twisted partial
action o of G on R to a twisted partial action @ of G on R/ as follows: for each
g€ G,wedefinea, : (D1 +1)/I — (Dy+1)/Ibya,(a+I)=a,(a)+ I and,
for each (g,h) € G x G, we extend each w, , to R/I by Wy}, = wy + 1.

The next corollary generalizes ([35], Lemma 16.6(iii)).

Corollary 2.1.13. Suppose that G is a finite group. If P, and P, are prime ideals
of R «¥ G such that P, N R = P, N R, then P, = P,.

Proof. Let Q = PPN R = P, N R. By Lemma 2.1.12, we have that the set
Q*={teT:p,(t)1gr € Q,Vg € G}isa [-prime ideal of T'such that Q*NR = Q.
By similar arguments of ([22], Proposition 2.10), (R/Q, @, w) has an enveloping
action (T/Q*, B,u). Thus we may assume that Q = PPN R = P,N R =0, that R
is a-prime, and that 7" is 8-prime. By Corollary 2.1.11, there exist prime ideals
P and P, of T j; G such that P/ NT = P,NT = 0. Hence, by Lemma 1.1.1 we
have that P/ = P, and it follows that P, = P,. O

Corollary 2.1.14. Suppose that R is a-prime and G is a finite group. A prime ideal
P of R« G is minimal if and only if PN R = 0.

Proof. Let P be a minimal prime ideal of R+¥ G. Then, by Lemma 2.1.10, there
exists a prime ideal P’ of T'x; G such that P'N(Rx*; G) = P. We claim that P’ is
minimal. In fact, let )’ be a prime ideal of T'*} G such that 0 # Q" C P'. Thus,
0#4Q=Q N(R*Y(G) C P and by assumption () = P. Hence, )’ = P’. Since
R is a-prime, by Lemma 2.1.12 we have that 7" is S-prime. By Lemma 1.1.2 we
have that P’ NT = 0 and by Corollary 2.1.11, we obtain that PN R = 0.
Conversely, let P be a prime ideal of R 2 G suchthat PN R =0and Q a
prime ideal of R % G such that 0 # @ C P. Then QN R C PN R = 0. Thus,
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QN R = PNRand by Corollary 2.1.13, we have that () = P. So, P is a minimal
prime ideal in R *¥ G. O

Lemma 2.1.15. If I is a nonzero B-invariant ideal of T then I N R # 0.

Proof. Suppose that I N R = 0. Then /1 = I N R = 0. By the fact that [ is
f-invariant we have that /5,(1z) = 0, for all g € G, and it follows that /7" = 0.

Since T is s-unital we have that I C IT = 0, which is a contradiction. O

We finish this section with some results that have independent interest.
By ([27], Theorem 3.1) there is a bijective correspondence between the ide-
als of S and the ideals of the ring of matrices M,,(.5). In the next result we use

this fact without further mention.
Proposition 2.1.16. S is a FWPR if and only if M,,(S) is a FWPR.

Proof. Suppose that S isa FWPR. Let .J be a proper ideal of M,,(S) and assume
that A and B are ideals of M,,,(S) such that 0 # AB C J. Then there exist ideals
I, K and L of S such that J = M,,(I), A =M, (K), B=M,(L)and0# KL C .
By the fact that S is a FWPR we have that either X' C I or L C I. Thus either
AC Jor B C J.So, M,(S)isa FWPR.

Conversely, suppose that M, (S) is a FWPR. Let K be a proper ideal of
M,,(S) and assume that / and J are ideals of S such that 0 # [J C K. Then
0 # M, (I)M,(J) € M, (K). By assumption on M, (5), either M,,(J) C M, (K)
or M, (I) € M,,(K). Thus either I/ C K or J C K. So, S is a FWPR. O

By similar reasoning of the proposition above we have the following result,

which completes ([5], Theorem 2.1).
Proposition 2.1.17. The following statements hold:
(i) Sisa FPRif and only if ML, (S) is a FPR.

(17) Sis an AFPR if and only if ML,,(S) is an AFPR.
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2.2 Prime radicals of partial crossed products

In this section, we describe the prime radical of partial crossed products
when the base ring is a fully weakly prime ring.

Now, we need the following definition.

Definition 2.2.1. Let o be a twisted partial action of a group G on R. We say
that a proper a-invariant ideal @) of R is weakly a-prime if for any a-invariant

ideals A and B of R with 0 # AB C () we have either A C QQ or B C Q).

The proof of the following lemma is analogous to the proof of ([24], Propo-

sition 1) and we give it here for the reader’s convenience.

Lemma 2.2.2. Let P be a weakly a-prime ideal of R that is not a-prime. Then
P?=0.

Proof. By assumption there exist a-invariant ideals I and J of R such that

I¢P,Jg€Pand0=1JC P.If P?+#0,then0+# P>C (I+ P)(J+ P)C P,

which implies that either / C P or J C P, this is a contradiction. O

Given a nonzero element a = ) __~a,0, of R ¥ G, the support of a is de-

geG

fined by supp(a) = {g € G : a4 # 0}. The following result generalize ([39],
Proposition 2.3.4).

Lemma 2.2.3. If R is semiprime, then R x¥ G is semiprime.

Proof. Let a = ) _,a,0, € R *¥ G such that a(R *¥ G)a = 0. Suppose that

geG

a # 0, then there exists s € supp(a) and note that
lg-105-1a(R +% G)14-164-1a C 14-10,-1a(R +% G)a = 0.
Hence, 1,-16,-1aR1,-10,-1a = 0 and it follows that
as-1(as)ws—1 sRag-1(as)ws-1 5 = 0.

Consequently, a,-1(as)ws-1 s = 0, since R is semiprime. Hence a, = 0, a con-

tradiction, because s € supp(a). So, R %2 G is semiprime. O
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Since Nil,(R) is a a-invariant ideal of R, the twisted partial action « of G
on R induce a twisted partial action of G on R/Nil,(R). We denote this partial

action by o again.

Proposition 2.2.4. For any twisted partial action o of a group G on R we have

Nily(R) ** G C Nil (R G) C Nil,(R) * G.

Proof. For any prime ideal P of R x (G, by Lemma 2.1.4(i), Q = PN Ris an
a-prime ideal of R. Since Nil,(R) C @, then by Lemma 2.1.2(i), we have that
Nil,(R)*xYG C Q+“G = (PNR)*YG C P. Hence, Nil,(R)**G C Nil,(RxYG).

Moreover, it is well known that Nil.(R) is a semiprime ideal of R and thus
R/Nil,(R)is a semiprime ring. By Lemma 2.2.3, we have that (R/Nil.(R))*~G
is semiprime. Since (R/Nil.(R))*% G = (R*¥ G)/(Nil.(R) ¥ G) it follows that
Nil,(R*¥ G) C Nil,(R) ¥ G. O

Proposition 2.2.5. For any twisted partial action o of a group G on R we have

Nil,(R** G) N R = Nil,(R).

Proof. By Lemma 2.1.4(7%), for any a-prime ideal () of R there exists a prime
ideal P of R *¥ G such that PN R = ) and so Nil,(R+* G)NRC PN R = Q.
Hence, Nil.(R ¥ G) N R C Nil,(R).

By Proposition 2.2.4, we have that Nil,(R) ** G C Nil.(R *¥ G) and so
(Nilo(R) *¥ G)N R C Nil,(R*¥ G) N R. So, by Lemma 2.1.2(i7) we have that
Nil,(R) = (Nily(R) ¥ G) N R C Nil,(R** G) N R. O

Lemma 2.2.6. If R is a FWPR, then Nil,(R) = Nil,(R).

Proof. By Proposition 2.2.4, we have that Nil,(R) *¥ G C Nil.(R) *%¥ G. Thus,
Nil,(R) = Nil,(R)**GNR C Nil,(R)** GNR = Nil,(R). By Lemma 1.3.9 we
have that Nil,(R) is nilpotent. Then, since Nil,(R) is a-invariant and Nil,(R)
is a-semiprime, it follows that Nil,(R) C Nil,(R). So, Nil.(R) = Nil,(R). O
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From now on for any ring S, we denote by Nil(S) the sum of all nilpotent
ideals of S and by J(.5) the Jacobson radical of S. Next, we give a description

of the prime radical of partial crossed when the base ring is a FWPR.
Theorem 2.2.7. If R is a FWPR, then
Nil,(R*¥ G) = Nil(R) x¥ G = Nil,(R) *¥ G = Nil,(R) ¥ G.

Proof. By Lemmas 1.3.9 and 2.2.6 we have that Nil.(R) = Nil(R) = Nil,(R).
Since, by Proposition 2.2.4, Nil,(R) ¥ G C Nil.(R «¥ G) C Nil,(R) *¥ G it
follows that Nil,(R *¥ G) = Nil(R) * G = Nil,(R) ** G = Nil.(R)*¥ G. O

Using Corollary 1.3.10 and the theorem above we have the following result.
Corollary 2.2.8. If R is a noetherian FWPR, then Nil,(R x* G) = J(R) ¥ G.
Corollary 2.2.9. Suppose that R ¥ G is a FWPR and R is a noetherian FWPR.
Then Nil (R*2 G) = J(R+Y G) = J(R) ¥ G.
Proof. By analogous reasoning of ([7], Corollary 3.4), R %2 G is noetherian.
Now, using Lemma 1.3.10 and Theorem 2.2.7 we have the result. OJ
Lemma 2.2.10. If R ¥ G is a FWPR, then (Nil,(R))? = 0.

Proof. By Proposition 2.2.5, we have that Nil.(R x* G) " R = Nil,(R), and
since R*¥ G is a FWPR, by Lemma 1.3.9, we have that (Nil,(R** G))? = 0. So,
(Nil,(R))? = (Nil.(R+¥ G) N R)? C (Nil.(R+¥ G))* = 0. O

Let o be a twisted partial action of an infinite cyclic group G on R and
(T, B,u) its enveloping action. By similar arguments of ([9], Lemma 1.13), we
can show that if L is an a-prime ideal of R, then L x% G is a prime ideal of

R «¥ . Now, using the Proposition 2.2.4 we have the following result.
Proposition 2.2.11. Let « be a twisted partial action of Z on R. Then

Nil,(R %® Z) = Nilo(R) « Z.
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2.3 Partial crossed products, FWPR and AFPR

In this section we study necessary and sufficient conditions for the partial
crossed products to be a fully weakly prime ring. As a consequence of our
techniques we obtain the results for the partial crossed products to be a FPR
and we obtain necessary and sufficient conditions for the partial crossed prod-
ucts to be an AFPR. Moreover, we give some examples to show that our results

are not an easy generalization of the global case.

Throughout this section we assume that the twisted partial action a of G

on R has an enveloping action (7', 3, u), unless otherwise stated.

In ([25], Definition 1) a ring 7" is said to be a §-FPR if every [-invariant
ideal of 7" is S-prime and in ([25], p. 86) a ring T is said to be a 5-AFPR if
every proper [-invariant ideal of 7" is f-prime and 7 is not -prime. Now, we

need the following definitions.
Definition 2.3.1. Let o be a twisted partial action of a group G on a ring R.
(1) We say that R is an a-FPR if every a-invariant ideal of R is a-prime.

(17) We say that R is an a-AFPR if every proper a-invariant ideal of R is

a-prime and R is not a a-prime ring.
(17i) We say that R is an a-FWPR if every proper a-invariant ideal of R is

weakly a-prime.

Definition 2.3.2. Let 3 be a twisted global action of a group G on a ring 7.
We say that 7" is a S-FWPR if every proper (-invariant ideal of 7" is weakly

B-prime.

The proof of the following result is similar of Proposition 1.3.2, and will be

omitted.
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Proposition 2.3.3. A ring S is an a-FPR if and only if the set of all the a-invariant
ideals of S is linearly ordered by inclusion and all a-invariant ideal of S is idempo-

tent.

We recall that given an a-invariant ideal I of R, we have that
I"={teT:B,(t)lgel,Vge G}

is a f-invariant ideal of 7" such that /* N R = I, see Lemma 2.1.12. In the next

result we use this fact without further mention.
Lemma 2.3.4. R is an a-FWPR if and only if T is a f-FWPR.

Proof. Let P be a proper -invariant ideal of 7" and assume that A and B are
nonzero f(-invariant ideals of 7" such that 0 # AB C P. Thus, by similar
arguments of the Lemma 2.1.15, we have 0 # (AN R)(BN R) C PN R, with
0#ANR=Algand 0 # BN R = Blg. Hence, by assumption we have that
either Al C PNR C Por Blr C PNR C P. Since A, B and P are [3-invariant
ideals of T', it follows that Af5,(1gz) C P or BB,(1g) C P, for all g € G. So, we
have that either AT C P or BT C P and since T is s-unital, it follows that
ACAT C Por BC BT C P. Thus P is weakly S-prime and we have that T is
a f-FWPR.

Conversely, let () be a proper a-invariant ideal of R and assume that / and
J are a-invariant ideals of R such that 0 # IJ C (. Since I*N R = [ and
J*N R = J we have that 0 # [*J* C Q*. By assumption we have that either
I* C Q*or J* C Q" and it follows that either I C ) or J C (). Thus @) is weakly
a-prime and we have that R is an a-FWPR. O

The proof of the following result is analogous to the proof of lemma above.
Proposition 2.3.5. (i) Risan a-FPR if and only T is a 5-FPR.

(1) Risan a-AFPR if and only if T is a 3-AFPR.
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Suppose that G is an infinite cyclic group generated by o. In this case, note
that T *j G is the twisted skew Laurent polynomial ring T(x; 0, u) whose set
of elements consists of finite sums Z’Ln a;x', where m,n € Z, with the usual

addition of polynomials and multiplication determined by rule

(a;iz")(aj2?) = a;o"(a;)ugi gix"™.

For each i,j € Z we denote u,i,; simply by w;;. As a subring of T'(z;0,u)
we have T'[z; 0, u], the twisted skew polynomial ring whose elements are the
polynomials " a;z* with the usual addition and multiplication defined as
before and we denote by lc¢(f) = a, the leading coefficient of f = Y a2’
We define T,, as the set of f € T'[x; 0, u] such that 7(f) < m, where 7(f) denote
the degree of the polynomial f. Now, let .J be a nonzero ideal of T'(x; o, u). We
define J NT,, as the set f € JNT(x;0,u) such that 7(f) < m. Moreover, for an

element >_" a;x' € T{(x;0,u) we define

n n n
O'j ( Z aia:i) = Z aj(ai)xi = Jj‘j ( Z aix")afj
i=m i=m i=m

and an ideal I of T'(z;0,u) is said to be T-disjoint if / N T = 0. Now, using
these facts and with minor adaptations from ([36], Lemma 2.11) we have the

following result.

Lemma 2.3.6. Let [ be a nonzero T-disjoint ideal of T(x; 0, u) and f € I a nonzero
polynomial of minimal degree n such that lc(f) = a. Suppose that m > n and
g € INT,. Ifa; € T and i; is a non-negative integer for each j € {1,2,...,m —n},

then there exists h € T,,_,, such that

forall ay € T and iy € Z.

Now we are ready to prove the next proposition that partially generalizes

([8], Lemma 2.7).
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Proposition 2.3.7. Suppose that T' is o-prime and P is a nonzero T-disjoint ideal

of T(x;0,u). If P is a prime ideal, then P is maximal in the set of T-disjoint ideals.

Proof. Let I be a T-disjoint ideal of T'(x; o, u) such that P C I. Let f € [ be a
polynomial of minimal degree n in I such that l¢(f) = a and g € P a nonzero
polynomial of minimal degree m in P such that lc(g) = b. Suppose that m > n.

Foreach g € PNT,, C INT,, by Lemma 2.3.6, there exists h € T},,_,, such that
haoo (f) =g [[ 07" (am-n_jo'™ "= (a)),
j=0

for all ay € T and iy € Z. Since g € P we obtain that hT'o(f) C P, for all
io € Z. Then, for each tz* € T'(x; 0, u), we have that hto*(f)o*(c)z* € P, where

c € T is such that fc = c. By the fact that
htx® fa=Fok(c)z® = htak fu_

we have that htz* fu_;, 7 C P. In the proof of ([16], Theorem 4.1) we have
that u_; 11" = Tu_i, = T and it follows that htz* fT C P, which implies that
htz* f € P. Consequently, hT(z;0,u)f C P and since P is prime we have that
either h € Por f € P. Thus, either f = 0 or h = 0, which contradicts the fact
that 2 and f are nonzero polynomials and it follows that m = n.

Next, let f € I and g € P such that 7(f) = n+ 1 and 7(¢g) = n. Then for
| = azta'gex™ — fo~ " (o (to (b)u; ntinti—i)u1,n), where le(g) = b, le(f) = a
and t € T, we easily have that 7(I) = n. Hence, l € INT, = PN7T, and it
follows that fT'c""™(b) C P, for all i € Z. By similar arguments as before we
obtain that f € P and consequently I N 7,11 = PN 7T,;1. Now, proceeding by
induction we have that /N 7T,, = PN1T,,, forall m > 0. So, [ = P. O

We recall that, given a twisted partial action o of G on a ring R, an ideal
J of R ¥ GG is said to be R-disjoint if J N R = 0. The next lemma partially
generalizes ([10], Corollary 2.12).
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Lemma 2.3.8. Suppose that G is an infinite cyclic group. If Py and P, are prime
ideals of R 2 G such that PN R = P, N R, then P, = P,.

Proof. Since L = PN R = P, N Ris an a-invariant ideal of R, we consider the
partial crossed product Z = (R/L)**G. Note that the images of P, and P, in Z
are R/L-disjoint prime ideals. Thus, we may assume that P, N R = P,N R = 0.
Since P; is prime, for ¢ = 1, 2, it follows that R is a-prime and we hav that 7" is
p-prime. Again by the fact that P, N R = 0, we have that the prime ideal P/ of
Tx3G, such that P; = P/NR+;G, satisfies P/NT = 0. Then, by Proposition 2.3.7,
we have that P/ is maximal in the set of T-disjoint ideals of 7" x; G and, since
P, = P/ N R =¥ G, is not difficult see that P, is maximal in the set of R-disjoint
ideals of R ¥ G. Suppose, without loss of generality, that P, ¢ P,. Thus
P, ; P, + P, and since, by Proposition 2.3.7, P, is maximal in the set of R-
disjoint ideals, it follows that (P, + P») N R # 0. Hence, there exists an nonzero
element r = f + g € P, + P, which implies that 0 # ag + by € P, + P,, where
ap € Py and by € P». By the fact that r # 0 we have that either ay # 0 or by # 0
and we obtain that either P, N R # 0 or P, N R # 0, which is a contradiction.
Therefore P, = Ps. O

In the next lemma we study partial crossed products by infinite cyclic

groups that are FWPR.

Lemma 2.3.9. Suppose that G is an infinite cyclic group. If R« G is a FWPR,
then R is an a-FWPR and there exists a bijective correspondence between the set
L, of ideals of R . G that contains the prime radical of R ! G and the set L, of

a-invariant ideals of R that contains the a-prime radical of R.

Proof. Let A be a proper a-invariant ideal of R and assume that / and J are
a-invariant ideals of R such that 0 # [J C A. By Lemma 2.1.2(:7), we have
that 0 # (I «¥ G)(J *¥ G) C A %Y G and by assumption we have that either
I« G CAxYGor Jx G C AxYG. Consequently, either I C Aor J C A.
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Note that, by Lemma 2.2.10 the intersection of all a-prime ideals of R is
a nilpotent ideal. Now, we define ¥ : £; — Lo by V(L) = LNR. If L € L4
and L contains properly Nil.(R ¥ G), then L is a prime ideal, otherwise, by
Lemma 1.3.11, we would have L? = 0, and hence L = Nil,(R x¥ G). Since L
is a prime ideal, by Lemma 2.1.4(¢) we have that L N R is an a-prime ideal of
R that contain the a-prime radical. By Lemma 2.3.8, we see easily that ¥ is
injective. We show that W is surjective. In fact, let K be an a-invariant ideal of
R that contains properly Nil,(R). If K was nilpotent, then we would have that
K C Nil,(R), this contradicts the assumption on K. Hence, K* = K and, by
Lemma 2.2.2, K is a-prime. Using the same techniques of ([9], Lemma 1.13),
we obtain that K * G is a prime ideal of R 2 G that the contains the prime

radical of R x¥ G. O

From now on we denote the set of ideals of R by £(R), the set of a-invariant

ideals of R by a — L(R) and the set of non-minimal ideals of R by L(R). The

next lemma is a partial converse of the lemma above.

Lemma 2.3.10. Suppose that G is an infinite cyclic group. If R is an a-FWPR and
the map ¢ : L(R *¥ G) — a — L(R), defined by p(J) = J N R, is bijective, then
R« G is a FWPR.

Proof. Let P be a proper ideal of R % G and assume that A and B are ide-
als of R ¥ G such that 0 # AB C P. Since ¢ is bijective, it follows that
0# (ANR)(BNR) C (PN R) and by the fact that R is an a-FWPR we have
that either AN R C PN Ror BN R C PN R. Again by the bijectivity of ¢ we
have that either A C P or B C P. Thus P is weakly prime and so R ¥ G is a
FWPR. U

Lemma 2.3.11. Rxy G isa FWPR if and only if T x5 G is a FWPR.

Proof. Suppose that R x; G is a FWPR. Let P’ be a proper ideal of 7"+ G and
assume that I’ and J’ are ideals of T *j G such that 0 # I'J" C P'. Then by
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Lemma 2.1.8 there exist ideals I, J and P of R*? G such that [ = I'N(R«** G),
J=JN(R+¥YG)and P =P N(R*Y G)with0# IJ C P. Since P is weakly
prime, then either / C P or J C P. Hence, either I’ C P’ or J' C P'. Thus P’
is weakly prime and so T" % G is a FWPR.

Using the Lemma 2.1.8 we show the converse with a similar reasoning. [

Using the Lemma 2.1.10, analogously to the lemma above, we obtain the

following result.
Proposition 2.3.12. (i) Rx; G isa FPRif and only if T x5 G is a FPR.
(i4) R*y G is an AFPR if and only if T' xj; G is an AFPR.

Following the same arguments of Lemma 2.3.9 and the Corollary 2.1.13 we

obtain the following result.

Proposition 2.3.13. Suppose that G is a finite group. If R G is a FWPR, then R
is an a-FWPR and there is a bijective correspondence between the set L4 of ideals of
RxY G that contains the prime radical of Rx}y G and the set L of all the a-invariant

ideals of R that contains the a-prime radical of R.
The next proposition is a partial converse of the proposition above.

Proposition 2.3.14. Suppose that G is finite. If R is an a-FWPR and the map
¢: L(IR+Y G) — o — L(R), defined by p(J) = J N R, is bijective, then R G is a
FWPR.

Proof. By similar arguments of Lemma 2.3.10 we have the result. O

Definition 2.3.15. A group G is said to be polycyclic-by-finite if there exists a
series {1} = Gy < G; <9 Gy < --+ <1 G, = G such that G; is normal in G;;; and
Gi+1/G; is either an infinite cyclic group or a finite group for all i > 1 and G,

is an infinite cyclic group.
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Let a be a twisted partial action of a group G on a ring R with an envelop-
ing action (7, 5, u). For any subgroup G; of G we consider the twisted partial
action «; as the restriction of partial action « to G, the twisted global action
B; as the restriction of global action 3 to G; and ;1 ; the twisted global action
induce of G;41/G;.

Now we are ready to prove the first principal result of this section.

Theorem 2.3.16. Suppose that G is a polycyclic-by-finite group, R is an o;-FWPR
and that exists a bijective correspondence between the set of «,-invariant ideals of
R and the set of (i-invariant ideals of T by map I — I* = {t € T: B,(t)1g € I,
VgeG1}. If R is an a-FWPR and the map ¢ : L(R «¥ G) = a — L(R), defined by
©(P) = PN R, is bijective, then R % G is a FWPR.

Proof. First, note that ¥ : L(T xj G) — B8 — L(T), defined by ¥(J) = JNT,
is bijective. In fact, clearly U is surjective. Moreover, if I’ and J’ are ideals
of T' xj G such that I'N"R = J N R, by Lemma 2.1.8, there exist ideals I
and J of R*¥ G suchthat ] = I'N(R*¥Y G)and J = J N (R %Y G). So
INR=I'NR=JNR=JNR. Since ] "R =JN Ris a-invariant and ¢
is bijective, we have that / = J and, by Lemma 2.1.8, it follows that I’ = J'.
Hence, V¥ is injective.

Now, considering f; the restriction of 5 to G, we easily obtain that
Wy L(T'*p, Gr) — 1 — L(T') defined by ¥, (J) = JNT is bijective. By assump-
tion and the same arguments of Lemma 2.3.4 we have that 7" is a $,-FWPR.
Thus, by Lemma 2.3.10 we have that T}, G, is a FWPR. Using the bijectivity of
¥ and U we easily obtain that Wy : L((T'+}, G1)*(G2/G1)) — Bog—L(T 4, G1)
is bijective. By the fact that 7"« G4 is a FWPR we have in particular that
T>x<15‘1 G is a 321-FWPR. Now, using either Lemma 2.3.10 or Proposition 2.3.14,
if G5/G1 is either infinite cyclic or finite we have that T’ 5, G4y is a FWPR. So,
using induction and either Lemma 2.3.10 or Proposition 2.3.14 we obtain that

T« G is a FWPR. Hence, by Lemma 2.3.11 we have that Ry G'isa FWPR. [
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The next result generalizes ([25], Theorem 2) and the proof follows by the

same arguments used in Theorem 2.3.16 and in Proposition 2.3.13.

Proposition 2.3.17. Suppose that G is a finite group. Then R 2 G is a FPR if
and only if R is an o-FPR and the map ¢ : L(R x¥ G) — o — L(R), defined by
o(I) = I N R, is bijective.

Lemma 2.3.18. Let « be a twisted partial action of a finite group G on R.

(i) Suppose that R is an AFPR whose set of ideals is not linearly ordered by
inclusion and let ()1 and )y be the minimal ideals of R. Then R is not

a-prime if and only if ()1 and Q2 are a-invariant.

(17) Suppose that R« G is an AFPR whose set of ideals is not linearly ordered by
inclusion and let P, and P, be the minimal ideals of R+% G. Then PPN R =0
if and only if P, N R = 0.
Proof. (i) Suppose that R is not a-prime. Then, there exist nonzero a-invariant
ideals A and B of R such that AB = 0. Since R is an AFPR, () is prime and by
the fact that AB = 0 C @)y, it follows that 0 # A C @, or 0 # B C ();. Thus
either A = Q; or B = ()1, and it follows that (); is a-invariant. By analogous
reasoning we obtain that (), is a-invariant.
Conversely, suppose that (); and () are a-invariant. Since (); and (), are
minimal ideals, we have that Q1Q2 C ()1 N Q2 = 0 and so R is not a-prime.
(27) If P N R =0, since P, is a prime ideal of R *% GG, by Lemma 2.1.4(¢) we
have that 0 = P, N R is an a-prime ideal of R. Thus, R is a-prime and since P
is minimal, by Corollary 2.1.14 we have that 2, N R = 0.

By similar arguments we have the converse. O

Lemma 2.3.19. Suppose that « is a twisted partial action of a group G on a ring R
which is an AFPR. If the map ¢ : L(R x¥ G) — L(R), defined by P — PN R, is

bijective, then all proper ideals of R« G are prime.

Proof. Using the same arguments of Lemma 2.3.10 we obtain the result. O
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The next result partially generalizes ([25], Theorems 4 and 5) and we study
sufficient conditions for the partial crossed product to be an AFPR when the

base ring is an AFPR.

Theorem 2.3.20. Suppose that « is a twisted partial action of a finite group G on
R which is an AFPR. If one of the following conditions is satisfied

(1) The map ¢ : L(R*¥ G) — L(R), defined by P — P N R, is bijective;

(77) (a) R=*¥ G has exactly two minimal ideals, P, and P,, which are prime;

(b) the map ¢o : L(R ¥ G) — L(R), defined by P — P N R, is bijective.

(i73) (a) R %Y G has only one minimal ideal Py which is prime and nilpotent;

(b) the map ¢s : L(R ¥ G) — L(R), defined by P — P N R, is bijective.
then R 2 G is an AFPR.

Proof. Suppose that (i) holds. We have two cases to be considered:

(Case 1 - L(R) is linearly ordered by inclusion)

By Lemma 1.3.5, R has a unique minimal nilpotent ideal )y and we easily
obtain that Py = () *¥ G is a nilpotent minimal ideal of R %" G. Hence, R x2 G
is not prime and, by similar techniques of Lemma 2.3.10, we obtain that all
proper ideals of R x G are prime. So, R * G is an AFPR.

(Case 2 - L(R) is not linearly ordered by inclusion)

By Lemma 1.3.4, R has two minimal ideals, (); and ). Since ¢ is bijective,
there exist nonzero ideals P, and P of R %2 G such that P, N R = (); and
P,N R = @». Itis not difficult to show that P, and P, are minimal prime ideals
of R*Y . Thus P, P, = 0 and it follows that R *Y G is not prime. Moreover, by
Lemma 2.3.19 all proper ideals of R *Y G’ are prime. So, R * GG is an AFPR.

Suppose that (i7) holds. Let P be a proper ideal of R % G. If P is minimal
then P is prime, by item (a). If P is not minimal, then P € £L(R *¥ G) and by

the fact that ¢, is bijective, by similar arguments of Lemma 2.3.10, we obtain
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that P is prime. So any proper ideal of R GG is prime. Moreover, since P, and
P, are minimal ideals of R ¥ GG, we have P, P, = 0 and it follows that R «¥ G is
not prime. Hence, R * GG is an AFPR.

Suppose that (ii7) holds. By analogous reasoning of item (i) we obtain that
any proper ideal of R x (G is prime. Since, by item (a), the minimal ideal F is

nilpotent it follows that R =2 G is not prime. So, R 2 G is an AFPR. O
The next theorem generalizes ([25], Theorems 6 and 7).

Theorem 2.3.21. Let a be a twisted partial action of a finite group G on R. Then
R % G is an AFPR if and only if either

(1) (a) Risan a-AFPR;

(b) the map ¢y : L(R*Y G) — a— L(R), defined by P — PN R, is bijective;

or (i1) (a) Risan a-FPR;
(b) the minimal ideals of R x G are prime;

(c) the map ¢o : L(R*Y G) — a — L(R), defined by P — P N R, is

bijective.

Proof. Suppose that R % GG is an AFPR. We have two cases to be considered:

(Case 1 - L(R *¥ ) is not linearly ordered by inclusion)

By Lemma 1.3.4(:), R *2 G has two minimal ideals, P, and P,, which are
prime because R * GG is an AFPR. Now, we have the following subcases:

(Subcase 1.1 - PPN R # 0)

By analogous reasoning of Proposition 2.3.17 we have that all nonzero a-
invariant ideals of R are a-prime. Since P, N R # 0, by Lemma 2.3.18(¢7), we
have that P, N R # 0. Thus (P, N R)(P, N R) C P, P, = 0 and therefore R is not
a-prime. Hence, R is an a-AFPR.

Using the Corollary 2.1.13 and the Lemma 2.1.2(¢7), we easily obtain that

¢1 is bijective.
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(Subcase 1.2 - PPN R = 0)

By the same arguments of Subcase 1.1 we have that all nonzero a-invariant
ideals of R are a-prime. Since, by Lemma 2.1.4(:), P, N R = 0 is a-prime it
follows that R is a-prime and so R is an a-FPR.

Note that for each P € L(R ¥ G)\{0} we have that ¢5(P) = PN R # 0,
otherwise P would be minimal by Corollary 2.1.14 since R is a-prime. By the
fact that Nil,(R) = 0 and Nil,(R*¥ G) = P, N P, = 0, by similar reasoning of
Proposition 2.3.13 we have that ¢ is bijective.

(Case 2 - L(R *¥ G) is linearly ordered by inclusion)

By Lemma 1.3.5, R *% G has a unique minimal nilpotent ideal F, which is
prime because R * GG is an AFPR. Now, we have the following subcases:

(Subcase 2.1 - PyN R # 0)

By analogous arguments of Proposition 2.3.17 we have that all nonzero
a-invariant ideals of R are a-prime. By the fact that (7)? = 0 we have that
(P,NR)(PyNR) C (Py)* =0,with ByN R # 0. Hence, R is not a-prime and it
follows that R is an a-AFPR. Moreover, analogously to Subcase 1.1, we obtain
that ¢; is bijective.

(Subcase 2.2 - PN R = 0)

By similar arguments of Subcase 1.2, we obtain that R is an a-FPR and ¢
is bijective.

Conversely, suppose that (i) holds. Since ¢, is bijective, by analogous rea-
soning of Proposition 2.3.17, we show that all proper ideal of R * G is prime.
Since R is an a-AFPR, there exists nonzero «a-invariant ideals A and B of R
such that AB = 0. Hence, (A % G)(B x¥ G) = 0 and we have that R ¥ G is not
prime. So, R ¥ G is an AFPR.

Suppose that (i7) holds. Let P be a proper ideal of R ¥ G. If P is minimal
then, by item (), P is prime. If P is not minimal, let / and .J be ideals of R*Y G
such that IJ C P. Then (I N R)(JN R) C PN R. Since R is an a-FPR we have
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that PN R is a-prime and it follows that either /"R C PNRor JNR C PNR.
By the fact that ¢, is bijective, we have that I = (/N R)«¥ G, J = (JNR) ¥ G
and P = (PN R)*YG. Consequently either I = (INR)«YG C (PNR)*YG =P
orJ=(JNR)*x¥YG C (PN R)*YG = P. Hence, all proper ideals of R G are
prime. Now, if L(R*Y () is not linearly ordered by inclusion, then there exists
nonzero ideals I and J of R+ G such that I ¢ Jand J ¢ I. Note that INJ =0,
otherwise / N J would be prime and we would obtain that / C I'NJ C J or
J C IndJ C I, which is a contradiction. Consequently, /J C I NJ = 0 and
we have that R ¥ G is not a prime ring. If L(R x¥ G) is linearly ordered by
inclusion, since R *% G has a minimal ideal P and P N R is an a-invariant
ideal of R, there exists an ideal P € L(R*¥ G) such that PN R = P, N R.
Note that P = 0, otherwise we would have that P is prime and by Corollary
2.1.13 that P = Fy. Thus F, N R = 0. Note that R % G is not a prime ring,
because if 0 was prime, by Corollary 2.1.13 we would have that ;) = 0, which

is a contradiction. So, R ¥ GG is an AFPR. OJ

It is natural to ask if R is either FWPR or AFPR or FPR or the set of ideals
is linearly ordered by inclusion, then 7" would be either FWPR or AFPR or
FPR or the set of ideals of 7" is linearly ordered by inclusion. The examples
below show that this is not the case and show that our results are not an easy

generalization of the global case.
Example 2.3.22.

(1) Let K be a field, {e; : i € Z} a set of orthogonal central idempotents and
T = ®iezKe;. We defined a global action of the infinite cyclic group G
generated by o on 7' by o(e;) = e;41, for all i € Z. If R = Key, then clearly
we have a partial action of the group GG on R. Note that Ris a FPR, but T’
is not a FPR. Moreover, all ideals of R are linearly ordered by inclusion,
but the set of ideals of 7" is not linearly ordered by inclusion. In turn, if

R = Keg® Ke;p, then Ris an AFPR, but T is not an AFPR.
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(17) Let K be a field, {e1, e2, e3,e4} a set of orthogonal central idempotents
and T' = @}, Ke;. We define a global action of the finite cyclic group of
order 4 generated by o on T by o(e;) = ey, o(e2) = e3, o(e3) = e4 and
o(ey) = e1. If R = Kej, then clearly we have a partial action of G on
R. Note that R is a FPR, but T is not a FPR. Moreover, all ideals of R
are linearly ordered by inclusion, but the set of ideals of T is not linearly

ordered by inclusion.

(77i) Let T and o as in the item (i7). If R = Ke; @ Key, then we clearly have
a partial action of G on R. Note that R is an AFPR, but T is not an
AFPR. Moreover, note that R is a FWPR, but T is not a FWPR because
let I = Ke; ® Kezand J = Ke; @ Key. Then 0 # IJ C Ke; @ Keyq but
I'¢ Ke; ® Kegand J € Kep @ Key.

Remark. Let 3 be a twisted global action of a group G on a ring 7T'. If the set of
all the ideals of 7" are linearly ordered by inclusion, then all the ideals of 7" are
B-invariant. If it is possible to generalize this fact to twisted partial actions,

then it is possible to prove the converse of Theorem 2.3.20.
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Chapter 3

Simplicity of Partial Crossed

Products

In this chapter, we study necessary and sufficient conditions for the com-
mutativity and simplicity of R % GG. Furthermore, considering R = C'(X) the
algebra of continuous functions defined on a topological space X with values
in the complex numbers and C(X) %, G the partial skew group ring, where «
is a partial action of a topological group G on C(X), we study some topolog-
ical properties of G on X to obtain some results on the algebra C'(X). Also,
we study the simplicity of C'(X) %, G using topological properties of X and
the results about the simplicity of partial crossed product obtained for R %Y G.
Moreover, we give some examples to apply our results about the simplicity
and to show that our assumptions are necessary to obtain the simplicity of

C(X) #, G.
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3.1 Commutativity and simplicity of partial crossed

products

Let R be a ring and X a non-empty subset of R. The centralizer of X in R
is the set Cr(X) = {r € R:rz = ar,Va € X }. Itis easy to see that Cx(X) is a
subring of R. Note that if X = R, then the centralizer Cr(X) is the center of R
and it is denoted by Z(R).

From now on, we assume that R is a ring with identity 15 and

= ({Dg}ger {agtgea {wg,h}(gﬁ)GGXG)

is a twisted partial action of G on R such that all the ideals D, g € G, are gen-
erated by central idempotents 1,. Note that this is not sufficient for a twisted
partial action of a group G on a ring R to have an enveloping action, see ([16],
Theorem 4.1).

The next result was proved in ([34], Lemma 2.1).

Lemma 3.1.1. Let « be a twisted partial action of a group G on R. Then

Crewg(R) = {2%59 € R«Y G :agoy(rly—1) =ray,,Vr € Rand Vg € G}.
geG
Let R be a commutative ring. We denote the annihilator of an element

a € Rby ann(a). When R is commutative we have the following consequence.

Corollary 3.1.2. Let a be a twisted partial action of a group G on a commutative
ring R. Then
Crina(R) = { Zagég € RxyG : ay(rly-1)—rl, € ann(ay),Vr € Rand Vg € G}.
geG
Proof. By assumption and by Lemma 3.1.1, for all € R and g € G, we have
2%59 € Crwa(R) & agoy(rly-1)=ray & agay(rl-—1) = agrl,

geG
& aglag(rly-1) —rly)=04 a4(rl,-1) —rlyeann(ay). O
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We say that R is maximal commutative in R} G if R = Cg,wq(R). Note that
if R is commutative, then R C Cr,ug(R). Using Corollary 3.1.2 we obtain the

following result.

Corollary 3.1.3. Let a be a twisted partial action of a group G on a commutative
ring R. Then R is maximal commutative in R ¥ G if and only if for all g € G\{e}

and a, € D,\{0}, there exists r € R such that az(rl,-1) —rl, ¢ ann(ay).
Using Corollary 3.1.3 we have the following.

Corollary 3.1.4. Let « be a twisted partial action of a group G on a commutative
ring R and suppose that for each g € G\{e} there exists r € R such that ay(rl,-1)—

rlg is not a zero divisor in D,. Then R is maximal commutative in R x G.

Proposition 3.1.5. Let o be a twisted partial action of a group G on R which is
maximal commutative in R «¥ G. Then for each g € G\{e} such that D, # 0 we

have oy # idp,.

Proof. Suppose that there exists h € G\{e} such that D, # {0} with o}, = idp, .
Thus, D, = Dj,-1 and we have that 1, = 1,-1. Let a,d, # 0. Then for each

r e R,
(ahéh)(rée) = ahah(rlhfl)whﬁéhe = ahrlhfl 1h5h = ahréh = (T(Se)(athh).

Hence, a;d), € Crawe(R) which contradicts the fact that R is maximal commu-

tative in R x¥ G. O

The following example shows that the assumption in Proposition 3.1.5 is

not superfluous.

Example 3.1.6. Let R be a commutative ring and G any group. We define the
following partial action: D, = R, D, = 0, for all g € G\{e}, . = idg and
a, =0, for all g € G\{e}. We easily obtain that R is maximal commutative in

R xy G and a4 = idp,, for all g € G'\{e}.
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Definition 3.1.7. Let o« = ({Dy}4ec, {g}gec, {wgn}gnec) be a twisted partial

action of G'on R. We say that w is symmetric if w,, = w4, for all g,h € G.

Corollary 3.1.8. Let o be a twisted partial action of a group G on R. If R is

commutative, G is abelian and w is symmetric, then CR*gG(R) is commutative.

Proof. Let z,y € Cruwa(R)such thatz = )~ az0,and y = ) byd,. By Lemma
9eG heG

3.1.1, we have that aga,(by1,-1) = brag and byoy,(agly-1) = agby, forall g, h € G.

By the fact that R is commutative, we have that a,a,(by1,-1) = bran(agly-—1),

for all g,h € G. Since G is abelian and w is symmetric, we have that

( Z ag5g) ( Z bhdh) = Z agag(bhlgq )w%h(ggh
heG

9eG g9,heC
= Z bhah(aglhfl)whvchhg
g,heG
_ (Z bhdh) (Z 5)
heG gea
So, Crswe(R) is commutative. O

We recall that, given a nonzero elementa = >, _, a,0, € R+% G, the support

geG

of a is defined by supp(a) = {g € G : a, # 0}. Moreover, we denote |supp(a)|

as the cardinality of the support of the element a.

Lemma 3.1.9. Let « be a twisted partial action of a group G on R. If R is commu-

tative, then I N Cruwc(R) # 0, for all nonzero ideal I of R xY G.

Proof. For each g € G, we define T, : R+ G — R * G by

T, ( hEZG ah(sh) = ( ];G ahéh) (1,6,).

It is easy to verify that 7, is an homomorphism of left R *; G-modules such
that 7,(/) C I, for each ideal I of R*? GG and for each g € G. Note that for each
0#a=>,.can0n with a. = 0, there exists p € supp(a) such that
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c= > o = Tpﬂ( > ahéh) = > apap(ly-11p-1)wp p-10p,-1

I hea hea
satisfies ¢, = a,w, ,~1 # 0 and 1 < |supp(c)| < |supp(a)|.

For each r € R we define K, : R+¥ G — R« G by
Kr ( Z ahéh) = (Tée) < Z ahéh) — < Z CLh(Sh) (T(Se) .
heG heG heG
It is easy to see that [, is an homomorphism of additive abelian groups such
that K,.(I) C I, for each ideal I of R x* GG and for each » € R. Since R is

commutative and 71, — a.(rl.-1) = 0, we have

K, < > ah5h> = (o) < > ah5h> - ( > ah5h> (ro.)

heG heG heG
= < Z Qe (CLh 16_1)we7h56h> — ( Z app (Tlh—l )wh,65h6>
heG heG
= <Zrah1h5h) - <Zahah(rlh1)5h)
heG heG
= <Zahr1h5h) - <Zahah(rlh1)5h)
hed heG
= Zah(rlh—ah('r’lh_l))éh
heG
— Z ah(’r’lh — Ozh<7“1h—1))5h.
heG\{e}

Consequently, for each r € R, the map K, always annihilates the coefficient

of 0. and it follows that [supp (K, (3>, andn))| < |supp(Xeq andn)|, for each
0 7& ZheG’ ahéh with Qe 7& 0.
By assumption on R and Corollary 3.1.2 we have Cr.uq(R) = [, ker(K,.).

For each element ), . an0, € R *y G\Crwwae(R), we choose r € R such that
> heq @ndn ¢ ker(K.). Thus, for each z = 3 2,0, € R x; G\Criwg(R) with
ze # 0, we choose r € Rsuch that 1 < |K,(z)| < |supp(z)].

Finally, we are able to show that I N CR*gUG(R) # 0, for each nonzero ideal 1
of R+2G. Infact, let ] be anonzeroideal of R+ Gand 0 # 2z =), . andp € I.
If 2 € Crwwc(R) the proof is complete. Now, suppose that z ¢ Cr.wc(R). Then,
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applying 7,,'s and K, 's in a suitable way we obtain the nonzero element b, € 1

such that 0 # bd. € I N Crewq(R), since Ty(I) C I and K, (1) C 1. O
Using Lemma 3.1.9 we immediately obtain the following result.

Corollary 3.1.10. Let « be a twisted partial action of a group G on R. If R is

maximal commutative in R 2 G, then I N R # 0, for all nonzero ideal I of R x G.

We recall that a ring S with a twisted partial action v of G is said to be

~-simple if the unique ~y-invariant ideals of S are the trivial ideals.

Corollary 3.1.11. Let « be a twisted partial action of a group G on R. If R is

a-simple and maximal commutative in R x2 G, then R x% G is simple.

Proof. Let I be a nonzero ideal of R % G. Then I N R is an a-invariant ideal of
R. By assumption and by Corollary 3.1.10, we have that / N R # 0. Since R is
a-simple, then I N R = R. So, R x% G is simple. O

The proof of the following lemma is standard.

Lemma 3.1.12. Let « be a twisted partial action of a group G on R. If R *2 G is

simple, then R is a-simple.

Using Corollary 3.1.11 and Lemma 3.1.12, we obtain the first principal

result of this section, which generalizes ([31], Theorem 6.13).

Theorem 3.1.13. Let « be a twisted partial action of a group G on R. Suppose that
R is maximal commutative in R 2 . Then R x¥ G is simple if and only if R is

a-simple.
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Lemma 3.1.14. Let « be a twisted partial action of a group G on R. The center of
R %Y G is

Z(R+2 G) = { Z Tglg © Trs—1Wis—1 s = Qs(Tg—1414-1) W5 514,

geG

rsas(alg-—1) = arg,Va € Rand Vs, t € G}.

Proof. Let )  ;740, € Z(R* G). For any a € R, we have

(ng‘sg) (ade) = ngag(alg’l)wg,eége

geG geG

= Z reag(aly-1)140,

gelG

= Z retg(aly—1)d,

geG

and

@) (X)) = Laaulryle v

geG geqG

= Z arglyd,

gelG

= Z argdy.

geG

Then, replacing g by s, we have that r;as(als-1) = ars, forall a € Rand s € G.

Moreover, for all s € GG, we have

(Z'r’gég) (1353) = Z'r’gag(lslg_l)wg,ségs

gelG gelG

= Z Tglglgstg,sgs

geG

= E TglgsWg,s0gs

geG

= E Ttsflltwtsfl,sé‘t

teG

= E Ttsflwtsfl,sét

teG
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and

(lsés)<2rgég) = > ay(rgli1)wsgds

geG geqG

- Z s (Ts—ltls_l)w&s_ltét'

teG
Hence, 7ys-1wps-1 5 = o5(r5-1¢15-1)w;s 514, Vs, t € G, and we have

Z(R+2G) C { Z Tglg 1 Tys—1Wis—1 g = Qs(Ts—1,15-1)Ws 514,

geG

rsas(aly—1) = arg,Va € R and Vs, t € G}.

On the other hand, let EgeG re6y € R x¥ G such that rya,(als—1) = arg and
Tis—1Wis—1 s = Os(Ts-1.15-1)ws s-14, for all @ € R and s,t € G. Then, for any

Y sec @s0s € R xy G we have that

<Z Tg(;g) (Z asés) = > ryog(asly)wy by

geG seG s,9€G

= g AT Wy s0gs
$,9€G

= § as'rtsflwtsfl,sét
t,seG

= E as0rs(rs-1415-1)ws 51,6
t,seG

= g as0s(1gls-1)ws 40sg
g,s€G

= ( E asés) ( E rgég).

seG geG
3 w
50, 3 yeq "9y commutes with any element of R x; G. O

In the next three corollaries we obtain a description of the center of partial
crossed product when we assume some other assumptions either on R or on

the twisted partial action a.
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Corollary 3.1.15. Let o be a twisted partial action of a group G on R. If oy = idp,,
Vg € G, then

Z(R+2G) = { Z"’g g Ts € Z(R), Ts-1Ws—1 s = Ts-14Ws 514, V5, L € G}'
geG

Proof. Let ) _. 740, be an element of Z(R *¥ GG). By assumption, we have that

geG

ay(ry) =rg forallry € Dy, and 1,-1 = 1,, for all g € G. Thus,

as(rs—1ls-1)ws s—1; = T5-1,1 w5 s-14, forall s,¢ € G, (3.1)

as(alg-1) = als,VYa € Rand forall s € G. (3.2)

Since w, s-1; € DsDys-1y = DDy C Dg, we have 1w -1p = ws -1, Using

Lemma 3.1.14 and equality (3.1), we obtain that
Tis—1Wis—1 s = T's—14Ws s-1¢, for all s, ¢ € G.

By the fact that rsa € Dg, Va € R, we have r;als = r a. Hence, by Lemma 3.1.14
and equality (3.2), we obtain that r;a = arg, for all a € R, i.e. 73 € Z(R). O

Corollary 3.1.16. Let o be a twisted partial action of a group G on R and suppose
that G' is abelian and w is symmetric. Then
Z(RxY Q) = { ngch Doag(re—1glgm1) = ey, reag(alg—1) = arsg,
geG

Va € Rand Vs, t € G}.

Proof. By assumption we have that w15 = w1, = ws -1, for all s,¢t € G.
Since w; s-14 € DyDgs-1y = DyDy C Dy, we have w, -1, = 1,w; -14. Thus, by
Lemma 3.1.14, it follows that as(7s-1415-1)ws -1 = rs-1,1;w, 514, forall s, ¢ € G.

Hence, ag(ry-1;14-1) = ry—141y, for all s, ¢t € G. O

Corollary 3.1.17. Let « be a twisted partial action of a group G on R and suppose

that G' is abelian and w is symmetric. If one of the following conditions is satisfied
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(1) R is commutative;
(it) ay =1idp,, forall g € G,

then
Z(R*2G) = { ngch Do (T lg-r) = re-ngly, (ozs(als—l)—a) € ann(ry),
geG

Va € Rand Vs, t € G}.

Proof. Note that, since G is abelian and w is symmetric, by Corollary 3.1.16,
we obtain the first equality.

Suppose that (i) holds. By Lemma 3.1.14 and assumption we have that
reas(als-1) = ary = rya. Thus we obtain that (a,(aly-1) — a) € ann(r), for all
a € Rand s € G.

Suppose that (i) holds. Since ay = idp,, for all g € G, by Corollary 3.1.15
we have that r, € Z(R), Vs € G. Thus arg = rga, for all a € R, and by similar

argument as before, we obtain that (a(als—1) —a) € ann(r,), for all « € R and

s e (. O

We need the following result to show when R *; G is commutative.

Lemma 3.1.18. Let a be a twisted partial action of a group G on R. If R*Y G is

commutative, then wy ;-1 = wy-1 4, forall g € G.

Proof. By the factthat w, ,—» € DyDyy-1 = DyD, = Dyand wy-1 , € Dy-1Dy-1, =
Dy-1D, = Dy, for all g € G, we have that 1,w, ;-1 = wy 1 and 1,-1wy-1 4, =

Wy-1,4. Since (1404)(15-104-1) = (14-164-1)(1,49,), for all g € G, it follows that

wwflée = 1g’wg797158 = Oég(lg—l)wgy—l(sgg—l
= (1959)(19*159*1) = (19*159*1)(1959)
= O{g—1<1g)wg—l,g(sg—1g = 1g_1wg_17g<56
= wg_ggée.

So, wy 41 = wy-1,4, forall g € G. O
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The next result provides necessary and sufficient conditions for the com-
mutativity of the partial crossed product which generalizes ([31], Corollary 4)

and generalizes partially ([11], Proposition 2).

Theorem 3.1.19. Let « be a twisted partial action of G on R. The partial crossed
product R x2 G is commutative if and only if R is commutative, G is abelian, w is

symmetric and oy = idp,, for all g € G.

Proof. Suppose that R =2 GG is commutative. Then, in particular, R is commu-
tative.

We show that D, = D, -1, for all g € G. In fact, since wg ;1 is invertible in
DyDyg-1 = DyD, = D,, there exists w,, , € D, such that wyg-1-w_ ., =1,. By
Lemma 3.1.18, w, ;-1 = w,-1 , and since w,-1 , € Dy-1 it follows that 1, € D 1.
Thus, D, € D,-1 and analogously we obtain the other inclusion. Consequently,
1, = 1,-1, for all g € G. By the fact that 1,0, € Z(R + GG) and using Lemma
3.1.14, we have that 1 a4(al,-1) = aly, forall a € R. So, foranya € D, = D,-1,
we have o,(a) = a. Hence, o, = idp,, for all g € G.

Since (1464)(1405) = (1464)(149,), for all g, h € G, it follows that

wg7h5gh = 1h1g_1wg7h5gh = ag(lhlg_l)wgﬁégh
= (1959)(1h5h) = (1h5h)(1959)

= ah(lglhfl)wwéhg = 191h71wh,95h9 = wh795hg.

From equality above, we obtain that gh = hg, for all g,h € G, and also that

Wy p = Whq, for all g, h € G. Therefore, G is abelian and w is symmetric.
Conversely, suppose that R is commutative, oy = idp,, for all g € G, G

is abelian and w is symmetric. Let > ., a,0, and >, . bndy be elements of

R« G. Then, we have
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(Za959> <Z bhdh) = Z agag(bhlg_l)w%hégh = Z agbhlg—lwgﬁcsgh

geG heG g,heG g,heG

= E agbhlgw%hégh = E agbhw%hdgh
9,h€CG g,heG

= E agbhwhyégh = E agbhwhyéhg
g,heG g,heG

= E bhaglhwh géhg E bhaglh 1Wh, géhg
g,heG g,heG

= E bhah aglh wh géhg ( E bhéh) ( E agég)
g,heG heG geG

and it follows that R ¥ GG is commutative. O

Lemma 3.1.20. Let « be a twisted partial action of a group G on R. Then for every
nonzero ideal I of R % G we have that I N Cruwe(Z(R)) # 0.

Proof. 1t is enough to show that if I N Cruwg(Z(R)) = 0, then I = 0. Let
=3 peq@ndn € I. If # € Cruwe(Z(R)), then z = 0 by assumption. Thus, we
assume that there exists z € I\Cg.u(Z(R)) and we choose = € I\Cr.wa(Z(R))
among the elements of /\Cr.vc(Z(R)) such that |supp(z)| is minimal. Note
that, for any p € supp(z), @’ = 21,-10,-1 € I\Crwg(Z(R)). In fact, note
that (a,6,) (L 16,1) = (L1 )iy 1651 = a0y 10, 127 € Croga(Z(R)),
by the fact that I N Crewe (Z(R)) = 0, we would have 2/ = 0. Thus, a,w,,-1 =0
and we have that a, = 0, which contradicts the fact that p € supp(z). Since
(ay0p)(1p-10,-1) = apw,,-10., with ayw,,-1 # 0, we have that e € supp(z’).
Moreover, since ' # 0, it follows that [supp(z’)| = |supp(z)|. Hence, we may
assume that e € supp(x).

Foreachr € Z(R),let 2" = rz—xr. Sincer € Z(R) and rl, — a.(rl.-1) =0,

we have that
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" = (rd,) (Zah(sh) —~ (Zahéh) (ro.)

heG heG

= ( rae(aple—1)we, héeh) - (Zahozh(rlhl)wh,e%e)
heG heG
= <Z7’CLh1h5h) — <Zah04h(7’1h—l)(5h)
heG heG
= <Zah7’1h5h) — <Zah04h(7’1h—l)(5h)
heG heG
= Z ah(rlh — O[h(T]_hfl))CSh
heG
= Z ah(rlh_ah(rlhﬁl))éh-
heG\{e}

Consequently, e ¢ supp(z”) and it follows that |[supp(z”)| < |supp(z)|. Since
2" € I, by the minimality of |supp(x)|, we obtain that rz = ar, for all r € Z(R).
So, € Crywa(Z(R)) which contradicts the choose of x. Therefore, I = 0.

The proof is complete. O
We are in conditions to prove the second principal result of this section.

Theorem 3.1.21. Suppose that Cr.wc(Z(R)) is a simple ring. Then R «¥ G is
simple if and only if R is c-simple.

Proof. If R x¥ GG is simple, by Lemma 3.1.12, R is a-simple.

Conversely, suppose that R is a-simple and let / be a nonzero ideal of
R« @. Note that, if /N R = 0, by Lemma 3.1.20, we have INCruq(Z(R)) #0
and, since CR*gG(Z(R)) is simple, we obtain that 1z € I, a contradiction be-

cause we are considering /N R = 0. Hence /N R # 0 and the result follows. [
In the next lemma, we denote J, by g and we consider e = g;.

Lemma 3.1.22. If R is a-simple and G is abelian, then I N Crwa(R) # 0, for all
nonzero ideal I of R x¥ G.
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Proof. Let 0 # x = >, a;9; € I such that [supp(z)| is minimal. By similar
arguments of Lemma 3.1.20, we may assume that e = ¢; € supp(z). Since R
is a-simple and a; # 0, the set {ag (allgfl) 1 g € G} generates R as an ideal.

Hence 1 =} > 7y, (allgj—l)Skj, for some 7, sp; € Rand g; € G. Let
K

J

y= E : E :Tkjlgjgjxlgflgj Wy g5k
ik

Then we have that

Yy = erkjagj (allgja)skj +
7 k
n
—1
+ Z Z Tkj < Z Qg; (ailgj_l)wgpginggi,gj_lagi (ng,gfl 1gi_1>gi) Skj
ik i=2
n
= 1+erkj<zag.(ai1 ,_1)w g W g —1Q .(w’l .1 ,_1>g-)5k»
ki 9gj 95,9i 2 959i,9;5 gi 95,95 i ? J
J k 1=2
n
= 1+Z (ZZrkjag.(ail vfl)w R T o .(wil _1Skql .1>)g~.
' 9j 95:9i 72 9591:9;—1"9i 95,95 J~9gi 1
i=2 ik

Thus, y € I is such that [supp(y)| is minimal and we may assume that

1=2

For each r € R, the element 2/ = rax — xr satisfies |supp(z’)| < [supp(z)].
By the fact that |supp(z)| is minimal and 2’ € I, we have that rz = xr, for all

r € R,and so x € Crwa(R). Hence, I N Cruwa(R) # 0. O

Theorem 3.1.23. Suppose that G is abelian and Cr.wc(R) is simple. Then R x) G
is simple if and only if R is a-simple.

Proof. If R ¥ GG is simple then, by Lemma 3.1.12, R is a-simple.

Conversely, suppose that R is a-simple and let I be a nonzero ideal of
R +¥ G. Note that by Lemma 3.1.20, we have that / N Cr.ug(Z(R)) # 0. Since
Crwwa(Z(R)) is simple, then we have that 1 € 1. So, I = R*¥ G. O
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Lemma 3.1.24. If R is a-simple and G is abelian, then I N Z(R x¥ G) # 0, for all

nonzero ideal I of R * G.

Proof. Let I be a nonzero ideal of R+¥ G and x a nonzero element of / such that
|supp(z)| is minimal. By proof of Lemma 3.1.22, we have z = 15, + >, a,40,
and zr = rz, for all » € R. By the fact that (1,d,)(16.) = (16.)(1,46,), it follows
that |supp((1,0,)z — 2(1,6,))| < |supp(z)| and, since (1,6,)x — z(1,8,) € I,
we obtain that (1,0,)x = z(1,0,), for all ¢ € G. Hence, z € Z(R %% G) and
consequently z € I N Z(R *¥ G). O

Now, we are ready to prove the last result of this section which generalizes

partially ([32], Theorem 1.2).

Theorem 3.1.25. Suppose that G is an abelian group. Then Rx¥ G is simple if and
only if Z(R x¥ G) is a field and R is a-simple.

Proof. Suppose that R ¥ G is simple. Thus, for each 0 # = € Z(R x* G), we
have that (R «¥ G)z = (R *¥ G) = R %Y G and it follows that there exists

r7! € R«Y G such that zz—' = z7!'z = 1. Note that for any a € R ** G we

-1 -1

obtain that z(z7'a) = (za7')a = a(zz™!) = (ax)z™' = (za)z™' = z(ax™!), ie.
z(z7'a) = z(ax™'). Hence, z7'a = az™?, for any a € R ¥ GG, and we have that
r7! € Z(R+¥ Q). Thus z is invertible in Z(R ¥ () and so Z(R ** G) is a field.
Moreover, by Lemma 3.1.12, R is a-simple.

Conversely, suppose that Z(R «“ () is a field and R is a-simple. Let I be a
nonzero ideal of R *¥ G. By Lemma 3.1.24 we have that I N Z(R ¥ G) # 0. So,

I = R +¥ GG and it follows that R ¥ G is simple. O

Now, we finish with the following example where we apply the results of
this section to conclude that the partial crossed product is not simple. More-

over, it shows that the assumptions on Theorem 3.1.25 are not superfluous.

Example 3.1.26. Let T' = Ke; @ Key @ Kes, where K is a field and {ey, €5, €3}

are central orthogonal idempotents, and R = Ke;. We define the action of Z
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on T as follows: o(e;) = e, 0(e2) = e3 and o(e3) = e;. We have the following
induced partial action of Z on R: D; = R, for j = 0(mod3), and Dy, = 0, for
k = 1(mod3) and k = 2(mod 3), with isomorphisms «; = idg, for j = 0(mod 3),
and oy, = 0, for k£ = 1(mod 3) and k = 2(mod 3). By Theorem 3.1.19, R %, G is
commutative. Since R *x, G = Z(R %, G) is not field and, by Theorem 3.1.25,

R x, G is not simple.

3.2 Applications

In this section, we study some topological properties and applications of

the last section to the C*-algebra of type C'(X), where X is a topological space.

3.2.1 Some properties of partial dynamical systems

Given a partial dynamical system (X, «, G) the partial orbit of a point z € X
is the set O%(z) = {(x) : v € X4, t € G}.

A partial dynamical system is said to be tramsitive if there exists some
2o € X such that O%(z) is dense in X, i.e. O%(zy) = X. If for every z € X,
O%(z) is dense in X, we say that the partial dynamical system is minimal.

We remind that a topological space X is compact if, for every collection
{Ui}ier of open sets in X whose union is X, there exists a finite sub-collection
{Us, }j—, whose union is also X.

In the next result we assume that X is a compact metric space and we can

state a condition that implies transitivity.

Theorem 3.2.1. Let (X, a, G) be a partial dynamical system such that X is a com-

pact metric space. Then the following conditions are equivalent:
(1) (X, a,G) is transitive.

(17) Given any two non-empty open sets U and V' in X, there exists some g € G

such that a,(U N X,-1) NV #£ 0.
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Proof. Since (i) = (ii) is clear from the definition, then we concentrate on
the proof of the other implication. We want to show that for any real number
w > 0, there exists an orbit that is w—dense, i.e. such that any point of X is at
a distance smaller than w from the orbit. For this purpose, take a covering of
X by open balls of radius w. Thus, by compacity, we extract a finite subcov-
ering By,..., By such that X C By U---U By. Hence, by assumption, there
exists some t; € G such that «, (81 N th—l) N By # () and this implies that
- (82 N th) N By =: Bz # 0, which is an open set. Note that by assumption,
this set has some image intersecting the open set Bs, because of this we have
some ty € G such that ay, (Blz N thl) N Bs # (). Now we have the open set
o (83 N XtQ) N Bi2 =: Biaz # (. Repeating this procedure N times we get
an open set Bya..y # () such that any point in it has images in By, By, ..., By,
being w—dense, as desired.

Since we have w-dense orbits for any w > 0 then we have in fact dense orbits

for this partial dynamical system. O
Now, we have the following result.

Proposition 3.2.2. Let (X, «, G) be a partial dynamical system, with X compact,
(X¢, B, Q) its enveloping action and xo € X. The following statements hold:

(i) If O*(xo) = X then By([e, O*(x0)]) = By(le, X]), forall g € G.
(17) If (X, a, G) is transitive then (X€, 5, G) is transitive.

Proof. (i) We clearly have 3, ([e, 0%(z0)]) C B,(le, X]). We claim that 3, ([e, X])
is closed. In fact, we have
By(le. X]) = [9, X] = | J [g. 2.
zeX

If [g,z,] — [g,z] then we have z, — x and since X is closed, we have that

z € X. Hence, [g, 2] € [9, X] = B,([e, X]) and so B, ([e, 0%(z0)]) = By ([e, X]).
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(1) If (X, o, G) is transitive then, given x € X, there exists 7o € X and a
sequence {g,}nen C G such that o, (z9) — z. Now, take a point [g,z] € X°.

Then we have

ﬁggn([e,l‘o]) = 59([971,1‘0]) = 69([67a9n(x0)]) - [g,ozgn(xo)] — [g,x].

So, (X¢, 8, @) is also transitive. O

Remark 3.2.3. As a particular case of the proposition above we have that if

O%(z) = X then O%(z) := {By(z) : g € G} = X°.
The following definitions appear in [21]

Definition 3.2.4. Let (X, «, G) be a partial dynamical system.

(i) We say that aset Y C X is a-invariant if oy (Y N X,-1) = Y N X, for all

g € G.

(it) Anideal I of C(X) is said to be a-invariant if a, (INC(X,-1)) = INC(Xy),
for all g € G. Moreover, C'(X) is a-simple if the unique a-invariant ideals

are 0 and C(X).

Proposition 3.2.5. Let (X, «, G) be a minimal partial dynamical system. Then,

the unique a-invariant open subsets of X are () and X.

Proof. Suppose that X contains a proper a-invariant open subset U. Then
there exists some z, € X\U. Since O%(zy) = X and U is open, U contains
some point of O%(z(). Once that U is a a-invariant set, it must contain all the

orbit, a contradiction because we are considering x, € X\U. OJ

Remark 3.2.6. It is easy to see that for any a-invariant ideal I of C(X) there

exists an open a-invariant subset Y C X such that / = C(Y).
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Lemma 3.2.7. Let (X, a, G) be a partial dynamical system. The following condi-

tions are equivalent:

(1) C(X) is a-simple.

(13) X does not have proper a-invariant closed subsets.
(1ii) (X, a,G) is minimal.

Proof. (i) = (i7)

Suppose that X contains a proper a-invariant closed subset S. We easily
see that X\S is a proper a-invariant open subset of X. Hence, C'(X\S) is a
proper a-invariant ideal of C'(X'), which is a contradiction.

(id) = (iii)

Let = be arbitrary element of X. Then we clearly have that O%(z) is an
a-invariant subset of X. It is not difficult to show that O%(z) is a closed
a-invariant subset of X. By assumption, we have that O¢(z) = X. So (X, o, G)
is minimal.

Let / be an a-invariant ideal of C(X). By Remark 3.2.6, I = C(U) for some

a-invariant open subset U C X. By Proposition 3.2.5, we have that either

U=0orU=Xandsol=0or=C(X). O

3.2.2 Simplicity of C(X) %, G

Throughout this subsection (X, o, G) is a partial dynamical system, C'(X) is
the algebra of continuous functions defined on topological space X with values
in the complex numbers, a will denote the extended partial action of G on X to
C(X), and C(X)x*,G will be the partial skew group ring. Moreover, we denote
the centralizer of C(X) in C'(X) %, G by A and we will call it the commutant of
C(X)in C(X) #, G ie. A={a € C(X)oxG: af = fa, forall f € C(X)}.
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Definition 3.2.8. For any g € G\{e}, we set:
(1) Per%(X)(X) ={z € X,: f(z) = f(az-1(z)), forall f € C(X)};

(1) Sepx)(X) = {z € X,: f(x) # flag-1(x)), for some f € C(X)}.

A topological space X is said to be Hausdorff if for any distinct points
a,b € X, there exist open subsets A and B contained in X such that ANB =),
witha € Aand b € B.

Let us define, for each f € C(X), the set Supp(f) = {z € X : f(z) # 0}.

Definition 3.2.9. A partial dynamical system (X, «, G) is said to be topologi-
cally free if for each g € G\{e}, the set 6, = {a € X1 : ay(a) = a} has empty

interior.
The following remark has independent interest.

Remark 3.2.10. Let Gr(a) = {(t,z,y) € G x X x X : 2 € X4, 4(2) = y} and
suppose that Gr(«) is closed. Then by ([1], Proposition 1.2) the enveloping
space X° is a Hausdorff space and we easily have that X is Hausdorff. We
claim that for each g € G\{e}, 0, is a closed set. In fact, for each sequence
{zn}nen C 60, such that z,, — = we have, by the continuity of 7 : X — X° and
By, that B, (i(x,)) — By(i(z)). By the fact that 8, (i(z,)) = i(ay(zn)) = i(zn),
we obtain that i(z,) — B4 (i(z)) and i(z,) — i(z). Thus, B, (i(x)) = i(z). Since
i(ay(z)) = [e, 2] = [9,2] = B, (i(x)) = i(), it follows that a,(z) = .

We have the following result, where item (ii) generalizes ([40], Theorem

3.3).

Theorem 3.2.11. Let (X, o, G) be a partial dynamical system. The following state-

ments hold:
(1) The commutant of C'(X) in C(X) %, G is

A= {2%59 € C(X) *q G : aay = ay(oy-1(ag)a), Va € C’(X)}.

geG
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Moreover, C(X) C A.

(17) The subalgebra A of C'(X) . G is

A= {Zagég € C(X)*, G : ag’Sepgc ) 0}.
poere ()
(13i) If X is a Hausdorff space, then

A= { > " ay0, € C(X) % G : Supp(ag) C eg}.

geG

(iv) Suppose that G is abelian. Then A is the maximal commutative subalgebra of

C(X) *4 G that contains C(X).

Proof. (i) The proof follows from Lemma 3.1.1.
(i1) Let ) e ay0, € A. Then by item (i),

Qg (O‘sf1 (ag)f) = fay,

for any f € C(X). Note that for each b € Sep%(x
such that h(b) # h(ay-1(b)). Thus,

0ty (a)) (6) = () 1) < (01 (a,)1) (01 () = hi(B)a, ()
ag-1(ag) (g1 (b)) h(ag-1(b)) = h(b)ay(b) < ay(b)h(ay-1(b)) = ay(b)h(b) <
ag(b) (h(ag-1(b)) — h(b)) = 0.

Hence, a,(b) = 0. So, ag‘sep%(x)(X) =0.

(111) Let 3 ag0, be an element of A. Then by item (i), for any f € C(X)

)(X) there exists h € C(X)

and =z € X,, we have that

ag(ag-1(ag) f) () = (fag)(z) & ag(x)(f(ag-1(x)) — f(2)) = 0.
Thus, for each z € X, such that ay(z) # 0, we have that f(ay-1(2)) = f().

Since X is Hausdorff, we obtain «,-1(z) = z, which implies that « € 6,-1. By

the fact that ,-1 = 6,, we have that « € §, and so Supp(a,) C 0,.
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(¢v) This proof is similar to the proof of ([40], Proposition 2.1) and we give it
here for reader’s convenience. We start by observing that every commutative
subalgebra of C'(X) %, G is contained in A. So it remains to show that A is

commutative, which is a consequence of Corollary 3.1.8. O

The next definition appears in ([40]).

Definition 3.2.12. Let B be a topological space and () # A C B. Then A is said
to be a domain of uniqueness for B if for any continuous function f : B — C we

have that f|4, =0= f =0.

Now we are in position to state the next result, where item (ii) generalizes

([31], Lemma 8.2).

Theorem 3.2.13. Let (X, o, G) be a partial dynamical system. The following state-

ments hold:

(1) C(X) = Aif and only if for any g € G\{e}, Sep¢,x\(X) is a domain of

uniqueness for X,.

(17) Suppose that X is Hausdorff. Then C(X) = A if and only if (X, «,G) is
topologically free.

Proof. (i) Suppose that C(X)=A. Let a, € X, g # e, such that ag‘s g =0.

epC(X)(X)
Then, by Theorem 3.2.11(:7), azd, € A. Hence, by assumption, a, = 0 and so
Sep%(X) (X) is a domain of uniqueness for X,, with g # e.

Conversely, suppose that for each g € G\{e}, Sep{, ,(X) is a domain of
uniqueness for X,. Let >, . axd, € A. Then, by Theorem 3.2.11(7i), we have
that ah]S h =0, for each h € G\{e}. Hence, a;, = 0, for all h € G\{e}. So,

epg(x)(X)
A C C(X) and we have that C'(X) = A.
(1) Suppose that (X, a, G) is not topologically free. So, for some g € G\{e},

there exists a non-empty open subset V' contained in 6,, and it follows that
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C(V) is a nonzero subalgebra of C'(X). Hence, there exists 0 # f € C(V'). Note
that Supp(f) C 6,. Thus, by Theorem 3.2.11(iii), fé, € A, which contradicts
the assumption.

Conversely, suppose that C'(X) # A. Then, there exists >

j=10g;0g; € A

with g; # e and a4, # 0, for some 1 < i < n. Let x € X, such that a,,(z) # 0.
We claim that Supp(a,,) contains an open set. In fact, suppose that for any
open set V' C X, we have that V' ¢ Supp(a,,). Hence, there exists z; € X,
such that a4, (x1) = 0. Since X is Hausdorff, there exists open subsets A; and
Ay of X, such that A} N Ay = ) with z € A; and x; € A,. By the assumption
on a,, there exists zo € A; such that ay(z2) = 0. Proceeding by this way
we can find a sequence {z,},en C X, such that z, — z and a,(z,) = 0.
Since ay, is continuous, then a,,(z,) — a4, (x), which implies ay, (z) = 0, this
is a contradiction. Thus, there exists an open set A C Supp(ay,) C 6,,, which

contradicts the fact that (X, a, G) is topologically free. So, C'(X) = A. O

Definition 3.2.14. Let (X, a,G) be a partial dynamical system. We say that
a point z € X is periodic if there exists ¢ € G\{e} such that z € X ;-1 and

ay(z) = 2.

Lemma 3.2.15. Suppose that X is infinite and the cardinality of the partial orbits
of periodic points is finite. If (X, a, G) is minimal, then (X, «, G) is topologically
free.

Proof. Suppose that there exists g € G'\{e} such that 6, # (. Then any point

x € 0, has a finite partial orbit. Since (X, a, () is minimal, we have O(z) = X,

which contradicts the fact that X is infinite. O

Now we are ready to prove the main result of this section that generalizes

([31], Theorem 8.6).
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Theorem 3.2.16. Let (X, a, G) be partial dynamical system such that X is an in-
finite Hausdorff space and the cardinality of the partial orbits of periodic points of

X is finite. The following conditions are equivalent:

(1) (X, a,G) is a minimal dynamical system.

(17) C(X) is maximal commutative in C(X) x, G and C(X) is a-simple.
(i13) C'(X) *q G is simple.

Proof. (i) = (i7)

By the Lemma 3.2.15 we have that (X, «, G) is topologically free and by
Theorem 3.2.13(ii) we have that C'(X) is maximal commutative. Since (X, a, )
is minimal, by Lemma 3.2.7 we get that C'(X) is a-simple.

(id) = (iii)

The proof follows from Theorem 3.1.13.

For each z € X, we have that O%(z) is an a-invariant closed subset of X.

Thus X\O%(z) is an a-invariant open subset of X. Suppose that O%(z) & X.

Then C'(X\O*(z)) is a proper a-invariant ideal of C'(X), which contradicts
the Lemma 3.1.12. So, (X, a, G) is minimal. O

Remark 3.2.17. It is convenient to point out if G = Z", n > 1, in Lemma 3.2.15
we obtain that the cardinality of the partial orbits is finite. Thus, in this case,
we do need to assume the assumption that cardinality of the partial orbits of

periodic points of X is finite in Theorem 3.2.16.
Next, we give an example to show that the assumption of the finiteness of

the cardinality of the partial periodic points in Theorem 3.2.16 is not super-

fluous.
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Example 3.2.18. Let X = (Zs)" be the topological space with the discrete
topology and the additive topological group H = (Zg)" x (Zg)" with prod-
uct topology. We define the global (hence, partial) action g : H x X — X by

Biwiemwoien) (20)ien) = (@)ien + (Yi)ien + (2i)ien = (Ti + ¥i + 2i)ien.

We clearly have that this action is well defined. Note that the element (w;);en
with w; = 3, for all i € N, is periodic, because for (;);en and (¥;)ien such that

x; = y; = 3, for all i € N, we have that

6(($i)ieN,(yi)ieN) ((wi)iEN) = (xi>z'eN + (yi)iEN + (wi)iEN = (xz +y; + wz’)z’eN = (wi)ieN-

It is not difficult to see that the cardinality of the orbit (w;);ey is infinite, X is
Hausdorff and the unique S-invariant open sets are the trivial open sets, that
is, ) and X. Hence, X is minimal, but X is not topologically free because the
set 0, g € G, has non-empty interior since the topology is discrete. So, by
Theorem 3.2.13, C'(X) & A. Therefore, the equivalent conditions on Theorem
3.2.16 does not hold in this case.

3.3 Examples

In this section, we present some examples which we apply some the prin-
cipal results of this article. All the examples of this section are build on metric

spaces, and so they are also Hausdorff spaces.

Example 3.3.1. (the horseshoe) The horseshoe is a well known model in dy-
namical systems theory; it appears naturally in systems presenting homoclinic
points and is the paradigm of the hyperbolic dynamical systems, see, for ex-
ample, [39]. The dynamics is a diffeomorphism F' defined on the sphere S2.
Typically one is interested on the restriction of this dynamics to the subset

Q C S? that is homeomorphic to the unitary square Q = [0, 1] x [0,1]. Since
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this set is closed, we just relax the condition of X; being open sets on the defi-
nition of a partial dynamical system to include also closed sets in what follows.

In order to keep the presentation clear, we only describe the dynamics in-
duced by F over the closed square () and we call it f, assuming that this last
one is affine at some part of its domain. The diffeomorphism f maps bijec-
tively the horizontal strips [0, 1] x [0,1/3] and [0, 1] x [2/3, 1], respectively, to
the vertical strips [0, 1/3] x [0, 1] and [2/3, 1] x [0, 1], the horizontal strips being
the domain where f is affine.

We can now see the horseshoe as a partial action of Z defined as follows:
take

X, =QnN f"(Q) and ay,(x) := f*(x) forn € Z,x € X_,,.

Then ((Xn)n627 (n)nez, Z) is a partial dynamical system on the square ) = X,.
Since a, is always affine on its domain, it is not hard to see that each «,, has
at most a finite number of fixed points for any n # 0; hence, for each n # 0 the
set of the fixed points of a has empty interior.
It is also possible to define a limit set A = [, ., f™(Q) that is homeomorphic
to ¥y = {0,1}%. Over ¥, we can define an homeomorphism known as shift,

defined as follows:
x € Yo, x = (2;)iez, then ((7(:1:))Z = Ti1.

This map is conjugate to f restricted to A, i.e. there exists an homeomorphism
h: A — X, such that hf = oh. Hence, the restriction (A, «|s,Z) is in fact
a global action. By means of the conjugation we get that fixed points of «|s
correspond to the fixed points of the shift over X5, showing that they are finite
for any a,, n € Z.

Note that the dynamics of the horseshoe is topologically free (since the
sets of fixed points have empty interior) but it is not transitive: just take the

open balls B,((1/2,0.2)) and B,((1/2,0.8)), for some positive r < 1/10; calling
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one by U and the other by V' its is easy to see that they violate the criterium
established in Theorem 3.2.1.

Since (Xy, a, Z) it is not transitive, it is not minimal and, by Lemma 3.2.7,
C(Xy) is not a-simple. Hence, by Theorem 3.2.16 we have that C'(Xj) %, Z is

not simple.

Example 3.3.2. We can use two dynamics f and ¢ defined on the closed in-
terval [0, 1] and such that f o g = go f, defined as follows: f has an interval
of fixed points, fix 0 and 1, 0 is an attractor on the first interval and 1 is an
attractor on the third interval (see the picture); for g just take the identity.
Now we can consider a global (hence, partial) action of G = Z? on [0, 1] where
A(mn)(x) = f™og"(x). For t = (0,1), the interior of the 6, is not empty and
so the system is not topologically free. And the dynamics in fact is the dy-
namics of f, that is not transitive, since any open subset of the middle interval
can not contain points belonging to a dense orbit. In fact, it does not satisfy
the criterium for transitivity of Theorem 3.2.1, since given two open and dis-
joint subsets of the medium interval, U and V/, there exists no g € G such that

a,(U)NV #£0

So, by Theorem 3.2.13 and Theorem 3.2.16 the algebra C'(X) %, Z? is not

simple.
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Example 3.3.3. Consider the map R, : [0, 1] — [0, 1] defined by
R, () = (z + w)mod(1).

It is well known that R, has dense orbits if and only if w is irrational. We use
now [ = R,, w irrational, ¢ the identity, and the set is [0, 1] with 0 identified
with 1. Now we can consider, as in Example 3.3.2 above, the global action
of G = Z? defined in the same way. Restricting this global action to the set
(1/3,2/3) we get a partial action, that is not topologically free, has dense orbits,
being transitive. So, by Theorems 3.2.13 and 3.2.16 we have that the algebra
C(X) %4 Z* is not simple.

We finish with the following example that gives an easy application of The-
orems 3.2.13 and 3.2.16 to show the simplicity.

Example 3.3.4. Let G = R* be the multiplicative group and X = R with usual
topology. We consider the global (hence, partial) action o : G x X — X by
a(z,y) = xy. It is easy to see that the unique periodic element is z = 0 and
we clearly have that X is topologically free. Moreover, the unique a-invariant
open subsets are the trivial ones. So, by Theorems 3.2.13 and 3.2.16 we have

that C'(R) %, R* is simple.
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Some frequently used notations

AFPR
FPR
FWPR

almost fully prime ring

fully prime ring

fully weakly prime ring

field of complex numbers

field of real numbers

ring of integers

Jacobson radical of S

ring of n X n matrices with entries from S
sum of all ideals of S whose square is zero
sum of all nilpotent ideals of S

a-prime radical of S

prime radical of S
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11
13
16
15
28
14
24
14
27
18
12
60
60
60
60
25
30
28
28
28
28
28
28
60



Index

almost fully prime ring, 11

centralizer, 43

commutant, 60
domain of uniqueness, 63
enveloping action, 9

fully prime ring, 11
fully weakly prime ring, 13

group
polycyclic-by-finite, 34

ideal
R-disjoint, 31
T-disjoint, 30
«-invariant, 17
o-prime, 18
[-invariant, 7
pB-prime, 7
weakly a-prime, 25

weakly prime, 13

partial action

on topological space, 14

partial crossed product, 10

partial dynamical system, 15
minimal, 57
topologically free, 61
transitive, 57

partial orbit, 57

periodic point, 64

radical
o-prime, 18
Jacobson, 14
prime, 12

ring
«a-AFPR, 28
«a-FPR, 28
a-FWPR, 28
B-FWPR, 28
B-AFPR, 28
B-FPR, 28
B-prime, 7
s-unital, 10
AFPR, 11
almost fully prime, 11

FPR, 11
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fully prime, 11
fully weakly prime, 13
FWPR, 13

support, 25

symmetric, 45

topological space
compact, 57
Hausdorff, 61

twisted partial action, 8

weakly prime ideal, 13
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