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ABSTRACT

The plasma emission is the radiation mechanism responsible for solar type II and type III radio bursts. The first
theory of plasma emission was put forth in the 1950s, but the rigorous demonstration of the process based upon
first principles had been lacking. The present Letter reports the first complete numerical solution of electromagnetic
weak turbulence equations. It is shown that the fundamental emission is dominant and unless the beam speed is
substantially higher than the electron thermal speed, the harmonic emission is not likely to be generated. The present
findings may be useful for validating reduced models and for interpreting particle-in-cell simulations.
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1. INTRODUCTION

Partial conversion of electrostatic wave energy to transverse
electromagnetic (EM) wave energy during the late nonlinear
stage of the bump-on-tail instability is called the plasma emis-
sion process, and the resultant radiation emission occurs at the
plasma frequency and/or its harmonic(s). It is believed that
the plasma emission is responsible for the solar type II and
type III radio bursts (McLean & Labrum 1985; Goldman 1983;
Melrose 1986). According to the standard theoretical paradigm,
based upon the first theory proposed in the 1950s (Ginzburg
& Zheleznyakov 1958), an electron beam interacting with the
background plasma excites Langmuir (L) waves via the bump-
on-tail instability, followed by nonlinear processes of wave de-
cay and scattering, eventually leading to the generation of EM
radiation.

Such an elaborate process can, in principle, be demonstrated
on the basis of EM weak turbulence theory—the fundamen-
tal equations thereof and their derivation can be found, e.g., in
(Yoon 2006; Yoon et al. 2012; Ziebell et al. 2014b). Indeed,
over the past several decades, the physics of plasma emission
was discussed within the framework of reduced or partial EM
weak turbulence theory (McLean & Labrum 1985; Goldman
1983; Melrose 1986; Robinson & Cairns 1998a, 1998b, 1998c;
Li et al. 2008a, 2008b, 2009). However, the complete numeri-
cal solution of the entire set of EM weak turbulence equations
has not been done hitherto. Instead, various approximations
and simplifications have been made, which include the assump-
tion of saturated wave amplitudes, predetermination of certain
nonlinear processes being the most important, reduction of the
equations to one-dimensional (1D) models, etc.

The above comments are not meant to diminish the value of
reduced theories, however, as some of these theories, especially
those of Li et al. (2008a, 2008b, 2009) and Schmidt & Cairns
(2014), have advanced to the point where simple, yet reliable,
plasma emission models are incorporated into macroscopic
models so as to yield global-kinetic models with predictive
capabilities. Nevertheless, since reduced models are based upon
various assumptions, it is difficult to quantify the validity of
such approaches unless there exists a benchmark full numerical
solution. The present Letter reports the first ever complete

numerical solutions of the EM weak turbulence equations in
the presence of a beam, and the ensuing plasma emission. On
the basis of the present results, detailed verification of various
approximate theories can be done, but such a task is not the
immediate focus of the present work.

One of the outstanding problems in the theory of plasma
emission is whether the radiation is at the plasma frequency
(fundamental emission) or at the first harmonic of the plasma
frequency (harmonic emission). Reduced theories cannot deter-
mine the relative importance of the two emission bands.

Before we proceed, it should be mentioned that a handful of
authors carried out direct EM particle-in-cell (PIC) simulations
in order to characterize the nonlinear behavior of the plasma
emission process (Kasaba et al. 2001; Rhee et al. 2009a, 2009b).
The present full solution of EM weak turbulence equations is
complementary to PIC simulation efforts.

2. THEORETICAL FORMULATION

The wave intensities for plasma normal modes are defined by
their electric field energy. For longitudinal modes, the intensities
I σα

k for α = L, S, where L and S stand for Langmuir and ion
sound, respectively, are defined by

〈
δE2

‖
〉
k,ω

=
∑

σ=±1

∑
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k δ

(
ω − σωα

k

)
.

The transverse mode T has both electric and magnetic fields, but
it is sufficient to define the spectral wave intensity in terms of
electric field,

〈
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,

as the magnetic field intensity is trivially given by 〈δB2〉kω =
|ck/ω|2〈δE2

⊥〉kω. The linear dispersion relations for electrostatic
(Langmuir L and ion-sound S) and transverse EM (T) modes are
given by
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where ωpe = (4πnee
2/me)1/2 is the plasma frequency, ne, e, and

me being the electron number density, unit electric charge, and
electron mass, respectively, λD = [Te/(4πnee

2)]1/2 is the Debye
length, Te and Ti are electron and ion temperatures, respectively,
and cS = (Te/mi)1/2 represents the ion-sound speed, mi being
the ion (proton) mass. The L mode wave kinetic equation is
given by
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k
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where
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The first velocity integral term on the right-hand side of
Equation (1) that contains the resonance factor δ(σωL

k − k · v)
(i.e., linear wave-particle interaction) represents the sponta-
neous and induced emissions of L waves, which are essentially
quasilinear processes; the second k′-integral term dictated by the
three-wave resonance condition δ(σωL

k −σ ′ωL
k′ −σ ′′ωS

k−k′) (non-
linear three-wave interaction) represents the decay/coalescence
involving L mode with another L mode and an S mode; the
double integral term

∫
dv

∫
dk′ · · · dictated by the nonlinear

wave-particle resonance condition δ[σωL
k −σ ′ωL

k′ − (k−k′) ·v]
represents the spontaneous and induced scattering processes in-
volving two Langmuir waves and the particles.

For the ion-sound mode, α = S, the wave kinetic equation is
given by
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where
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k
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The first velocity integral term on the right-hand side of
Equation (3) that contains the resonance factor δ(σωS

k − k · v)
represents the spontaneous and induced emissions of S waves.
The k′-integral term dictated by the three-wave resonance
condition δ(σωS

k − σ ′ωL
k′ − σ ′′ωS

k−k′) corresponds to the decay/
coalescence involving S mode with two L modes.

For the transverse mode T, the wave kinetic equation is
given by
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where the elements of the interaction matrix are
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The first k′-integral terms in Equation (5) dictated by the
three-wave resonance condition δ(σωT

k − σ ′ωL
k′ − σ ′′ωL

k−k′ )
represents the coalescence of two L modes into a T mode
at the second harmonic plasma frequency. This process is
responsible for the harmonic emission (T ↔ L+L). The next k′
integrals associated with the factor δ(σωT

k − σ ′ωL
k′ − σ ′′ωS

k−k′ )
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describe the merging of L and S modes into a T mode at the
fundamental plasma frequency. This is one of the processes
responsible for the fundamental emission (T ↔ L + S). The
third k′ integrals with δ(σωT

k − σ ′ωT
k′ − σ ′′ωL

k−k′) depict the
merging of a T mode and an L mode into the next higher
harmonic T mode. This process, known as the incoherent Raman
scattering, is responsible for generating higher-harmonic plasma
emission (T ↔ T + L). The double integral term

∫
dv

∫
dk′ · · ·

dictated by the nonlinear wave-particle resonance condition
δ[σωT

k −σ ′ωL
k′ −(k−k′)·v] represents spontaneous and induced

scattering processes involving T and L modes and the particles,
largely dominated by thermal protons (T ↔ p + L), but also
electrons (T ↔ e + L). This process represents an alternative
mechanism for the fundamental emission.

Finally, the formal particle kinetic equation is given by
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)
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where a = i, e stands for ions and electrons, respectively, and
μL

k = 1 and μS
k = μk.

3. NUMERICAL ANALYSIS

We developed a sophisticated numerical routine termed the
EM weak turbulence simulation code to solve the complete
set of Equations (1)–(7) in a self-consistent manner. It adopts
the normalized time, ωpet , dimensionless wave frequency and
wave vector, ω/ωpe and kvth/ωpe, where vth corresponds to the
thermal speed associated with the background electrons, and
dimensionless velocity vector, v/vth. The spectral wave intensity
is defined by

(2π )2g

mev
2
th

I σα
k

μα
k

, (8)

where μL
k = 1, μS

k = μk, as noted before, μT
k = 1, and

g = 1/[23/2(4π )2neλ
3
D] is related to the customary plasma

parameter, 1/(neλ
3
D), which is taken to be 5 × 10−3. Of course,

in the actual heliospheric environment, this number should be
much smaller, on the order of 10−8 or so, but we adopted an
unrealistically high value of the plasma parameter in order to
facilitate the numerical procedure, since a realistically small
number would bring the initial wave level to a tiny value,
delaying the linear growth, and therefore the overall evolution.

We solved the complete set of equations for initial configura-
tion in which the ions are considered stationary and distributed
according to the thermal equilibrium model with temperature
Ti, and the electrons are composed of an isotropic thermal back-
ground plus a Gaussian distribution of a streaming component.
The initial drift speed of the beam is denoted by Vb, and the
temperature of the background electrons are designated by Te.
The ratio of the beam electron density nb and the background
electron density n0 is assumed to be nb/n0 = 10−3, and the
beam is assumed to propagate in the z direction. The Gaussian
thermal spread associated with the beam is taken to be the same
as that of the background electron thermal speed, and we as-
sume that the ion-to-electron temperature ratio is Ti/Te = 1/7.
The discretized time step for numerical computation is cho-
sen as Δt = 0.1ω−1

pe , and we use two-dimensional (2D) ve-
locity and wave number space, −12 < (vx/vth, vz/vth) < 12,

where vth = (2T/me)1/2 is the electron thermal speed, and
0 < (kxvth/ωpe, kzvth/ωpe) < 0.6. We carried out a 2D nu-
merical analysis since the plasma emission cannot take place
in a 1D system. It should be noted that the present 2D ap-
proach captures all the necessary physics, and may be largely
equivalent to a fully three-dimensional situation with a cylin-
drical symmetry. Finally, in the present EM weak turbulence
theory, the ratio of electron thermal speed to the speed of light
in vacuo must be prescribed. For the present purpose, we con-
sider v2

th/c
2 = 4.0 × 10−3. In the low corona of the Sun, the

typical electron thermal energy is ∼102 eV; thus, the present
choice is approximately equal to the coronal value.

In Figure 1, we showcase a typical numerical result. For this
case, we considered the initial beam speed Vb/vth = 6, and
have numerically integrated the complete equations up to the
normalized time step ωpet = 2 × 103. The description can be
found in the figure caption. The electron distribution function
shown in Figure 1(a) features a broad range of velocity-space
plateau in the velocity space initially occupied by a beam,
which is a result of quasilinear diffusion. The Langmuir tur-
bulence spectrum in Figure 1(b) shows an enhanced forward-
propagating component (the primary L), which is the result of
initial bump-on-tail instability, and the backscattered compo-
nent, which is the result of combined three-wave decay and
nonlinear wave-particle interaction. Note that the morphology
of the 2D L mode spectrum compares favorably with the sim-
ulated spectrum—see, e.g., Figure 2 of Rhee et al. (2009b).
Nonlinear decay processes generate the ion-sound mode by de-
cay instability, as indicated in Figure 1(c) by the “enhanced”
and “weakly enhanced” range of 2D k space. Panel (d) of
Figure 1 is the transverse EM mode spectrum. We plot the elec-
tric field intensity associated with the radiation, IT (k). The small
k (or long wavelength) regime corresponds to the fundamental
(F) emission near ωpe, while the outer ring corresponds to the
harmonic (H) emission with frequency in the vicinity of 2ωpe. In
short, the present Letter reports the first ever theoretical demon-
stration of F/H pair emission starting from the beam-plasma
instability, by allowing all the relevant nonlinear processes to
operate. This is in contrast to other related works, e.g., (Li et al.
2008a, 2008b, 2009), where simplified approaches are taken at
the outset. Our rigorous numerical solutions are comparable to
the full PIC simulations (Kasaba et al. 2001; Rhee et al. 2009a,
2009b), and indeed we find that the comparison with simulation
results is favorable. For instance, the present Figure 1(d) can be
compared against the simulated radiation spectral pattern, e.g.,
Figures 3 and 4 of Rhee et al. (2009b). Upon visual inspection
of the present Figure 1(d) and the simulated radiation pattern, it
is quite obvious that the agreement is excellent. This shows that
the present weak turbulence simulation is a reliable research tool
for quantitative investigations of plasma emission phenomena,
yet it is computationally much more efficient when compared
with the full PIC code scheme.

We have repeated the self-consistent calculations for other
parameters, but in Figure 2, we choose to show the angle-
averaged electric field spectrum (in normalized form) versus
the frequency ω/ωpe, for four different initial beam speeds,
while other input parameters are held constant as in Figure 1.
For Vb/vth = 5, Figure 2 shows that the F emission completely
dominates over H emission, but as the normalized beam speed
increases to Vb/vth = 6 we observe that the H component
becomes more apparent. Proceeding to higher beam velocities,
one can discern that the H component becomes progressively
more intense, but it never becomes higher than the F component.
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Figure 1. Panel (a) depicts the electron distribution function Fe vs. vx/vth and vz/vth; panel (b) shows the Langmuir wave spectral intensity IL(k) vs. kxvth/ωpe and
kzvth/ωpe; panel (c) plots the wave spectral intensity corresponding to the ion-sound mode, IS (k); and panel (d) is the transverse mode electric field spectrum IT (k).
The above results are at normalized time ωpet = 2 × 103, with the initial condition Vb/vth = 6. Other input parameters are described in the text.

(A color version of this figure is available in the online journal.)

Note that for the case of Vb/vth = 8, there is a small, barely
visible, enhancement at the third harmonic, ω 
 3ωpe. This
is the result of the incoherent Raman process, T ↔ T + L,
that generates higher harmonics. However, as one can see, the
third-harmonic peak is extremely low so that, in general, higher
harmonic plasma emission is not expected to be a common
feature, which is consistent with observations. Also note that
the transverse EM radiation at the plasma frequency and its
harmonic takes place over a background level, as indicated in
Figure 2. The theory of the background radiation for isotropic
plasma in the absence of the beam was recently put forth by
the present authors (Ziebell et al. 2014a), and it is supported
by results obtained from PIC simulations (Ziebell et al. 2014b).
It is this background level of radiation that partially hides the
harmonic emission peak in the case of Vb/vth = 5. The theory
of background radiation (Ziebell et al. 2014b) is based upon
the nonlinear wave-particle interaction, which some reduced
theories have ignored at the outset (Li et al. 2008a, 2008b, 2009).
Judging from Figure 2(a), under certain conditions, one might
obtain false H emission if one does not take the background
radiation into account.

4. FINAL REMARKS

To summarize, despite many decades of theoretical research
on the plasma emission, the actual numerical solution of the
equations of EM weak turbulence theory that forms the basis
of the plasma emission had not been available in the literature.
In the absence of exact numerical solution, it is difficult to
quantitatively verify the validity of various approximate models.
The present Letter reports the first ever complete numerical
solution of electromagnetic weak turbulence equations with
which, the validity of various approximate theories (Li et al.
2008a, 2008b, 2009; Schmidt & Cairns 2014) can be tested,
and it may also be employed to interpret the PIC simulations
(Kasaba et al. 2001; Rhee et al. 2009a, 2009b). However, such
a task is beyond the scope of the present work. One of the
most interesting findings according to our complete numerical
solutions is that the plasma emission must be dominated by
the fundamental emission, and that the presence of harmonic
emission may imply high average beam velocities. In fact, weak
harmonic emission may be obscured by the background EM
emission, which implies that if our numerical example is the
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Figure 2. Panel (a) shows the normalized electric field intensity 〈δE2(k)〉 vs. normalized frequency ω/ωpe for initial beam speed Vb/vth = 5; panel (b) corresponds to
Vb/vth = 6; panel (c) corresponds to Vb/vth = 7; and panel (d) is the case of high beam speed, Vb/vth = 8. The above results are for normalized time ωpet = 2 × 103.

(A color version of this figure is available in the online journal.)

norm, then most of the plasma emission has to take place
at the fundamental plasma frequency. We should caution that
this conclusion is based upon the weak turbulence paradigm.
Alternative models of plasma emission, e.g., one that is based
upon the concept of strong turbulence (Robinson, 1997), are not
the focus of the present Letter.
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