

EFEITO DA ADIÇÃO DE COMPOSTOS ORGÂNICOS SOBRE AS PROPRIEDADES DE CATALISADORES CO/SIO,

JULIANA SCHENHEL ZOTTI ^a; NILSON ROMEU MARCILIO ^{a,*};

^a Departamento de Engenharia Química, Universidade Federal do Rio Grande do Sul (UFRGS) - R. Eng. Luiz Englert s/n, 90040-040 Porto Alegre - RS, Brasil E-mail para contato: *nilson@enq.ufrgs.br;

Introdução

A adição de compostos orgânicos durante a síntese de catalisadores suportados de Co, derivados de nitrato de cobalto, mostrou aumentar a quantidade de sítios ativos de Co⁰. Essa modificação conduziu a maiores atividades em trabalhos anteriores^{1,2}. Entretanto, ainda falta uma investigação mais completa para entender a influência dos diferentes compostos orgânicos sobre as propriedades destes catalisadores, de forma a otimizar essa estratégia.

Objetivos

Verificar a influência da adição de diferentes compostos orgânicos (sorbitol, ácido cítrico e D-glucose) sobre as propriedades estruturais e catalíticas de catalisadores suportados Co/SiO₂.

Experimental

Preparação das amostras:

- → Avaliação da quantidade de Co sobre os catalisadores Co/SiO₂ (0, 5 e 10 wt.%);
- →Síntese dos catalisadores 5Co/SiO₂ com diferentes compostos orgânicos, com razão molar Co/C.O.=5;

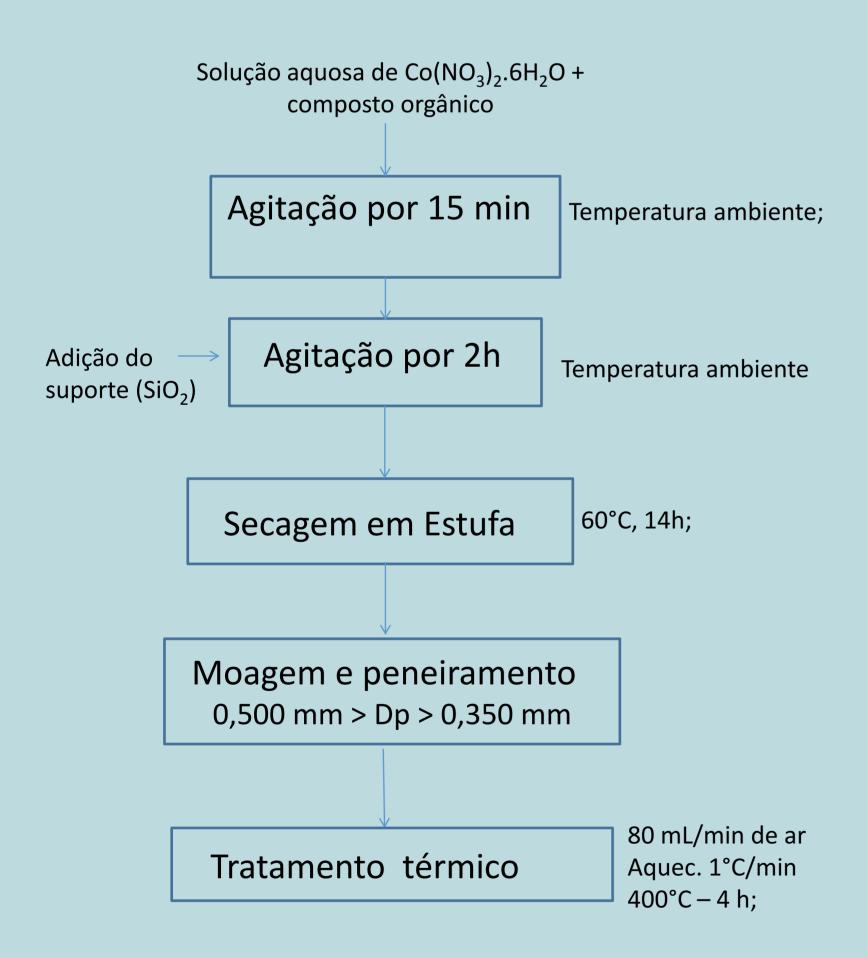


Figura 1. Fluxograma do processo de preparação dos catalisadores .

Tabela 1. Amostras de catalisador preparadas (composição nominal).

Amostra	Quantidade de Co (wt.%)	Composto Orgânico	
5Co	5	-	
10 Co	10	-	
5Co5Glu	5	D-Glucose	
5Co5Sor	5	Sorbitol	
5Co5Cit	5	Ácido Cítrico	

Reação de decomposição do etanol:

Figura 2. Sistema utilizado nos ensaios catalíticos.

Condições de reação:

- →0,1 g de catalisador;
- → Reator de vidro tubular de leito fixo;
- \rightarrow Vazões: 0,4 mL/h de EtOH e 100 mL/min de N₂;
 - → Temperaturas de reação: de 250°C a 450°C, avaliação a cada 50°C;

Caracterização:

sob fluxo de ar = 100 mL/min

sob fluxo de ar = 100 mL/min

→ XRD (amostras calcinadas)

→ TGA/DTA (amostra não-calcinada) – 10°C/min até 800 °C

 \rightarrow H_2 -TPR (amostra calcinada) – 10°C/min até 850 °C

sob fluxo de $N_2 = 27$ mL/min e $H_2 = 3$ mL/min

→ TPO (amostras após reação) – 10°C/min até 800°C

→Análise por GC, com 4 injeções para cada temperatura de reação;

Resultados

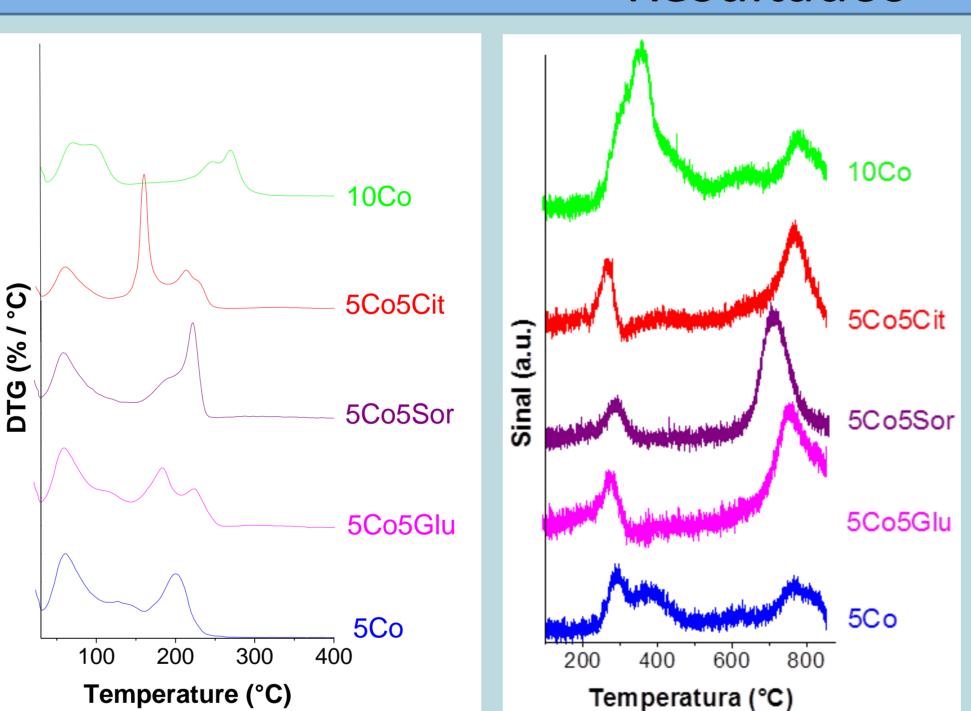


Figura 3. Curvas TGA/DTG das amostras não Figura 4. Perfis de H_2 -TPR dos catalisadores. calcinadas.

Tabela 2. Seletividade da reação para conversões similares

Tabela 2. Seletividade da reação para conversões similares.					
%/Amostra	5Co	5Co5Glu	5Co5Sor	5Co5Cit	
Conversão	93,3	94,8	86,5	94,0	
CH ₄	0,9	1,8	1,7	1,4	
C ₂	30,3	19,2	21,4	21,5	
C ₃	1,0	2,3	1,8	1,8	
C ₄	12,7	15,7	12,6	13,7	
Acetaldeído	55,1	55,7	62 <i>,</i> 5	58,7	
Acetona	0,0	5,3	0,0	2,9	
C _s (Coque)*	3,3	5,1	5,4	5,5	

^{*} Análise por TPO. Medida da diferença entre massa inicial e final.

Figura 5. Espectros *XRD* dos catalisadores (a) 5Co e (b) 5Co5Cit calcinados.

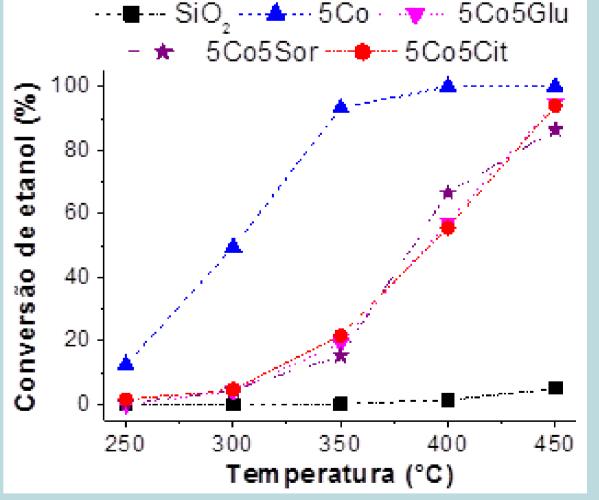


Figura 6. Conversão do etanol vs. temperaturas de reação.

Conclusões

A adição de diferentes compostos orgânicos em catalisadores Co/SiO₂ teve como efeitos:

- → Modificação do mecanismo de decomposição dos nitratos, nucleação e crescimento dos cristais dos óxidos do metal ativo.
- → Comportamento de redução diferente, com óxidos de cobalto de mais difícil redução, sugerindo a formação de maior número de cristalitos de Co⁰ com menor tamanho;
- →Conversões mais baixas de etanol;
- → Maior a seletividade para oxigenados;
- → Maior formação de coque;

Agradecimentos

Referências

1. Hong, J.; Marceau, E.; Khodakov, A. Y.; Griboval-Constant, A.; La Fontaine, C.; Villain, F.; Briois, V.; Chernavskii, P. A.; *Catal. Today* **2011**, *175*, 528.

2. Jean-Marie, A.; Griboval-Constant, A.; Khodakov, A. Y.; Monflier, E.; Diehl, F.; *Chem. Commun.* **2011**, *47*, 10767.