

FEDERAL UNIVERSITY OF RIO GRANDE DO SUL

INSTITUTE OF INFORMATICS

COMPUTER ENGINEERING

JOÃO FELIPE LEIDENS

Development of a Polygraph Graphical User Interface for Acquisition

of Physiological Signals

Computer Engineering Graduation Work.

Prof. Dr. Renata Galante

Advisor

Porto Alegre

2014

2

FEDERAL UNIVERSITY OF RIO GRANDE DO SUL

Rector: Prof. Carlos Alexandre Netto

Vice-Rector: Prof. Rui Vicente Oppermann

Dean’s office Coordinator: Prof. Sérgio Roberto Kieling Franco

Institute of Informatics Director: Prof. Luís da Cunha Lamb

Computer Engineering Coordinator: Prof. Marcelo Götz

Librarian of the Institute of Informatics: Beatriz Regina Bastos Haro

3

RESUMO ESTENDIDO

1 INTRODUÇÃO

O objetivo desta seção é apresentar um resumo estendido em português do

trabalho originalmente escrito em inglês. Esta seção fornece todas as noções básicas

necessárias para a compreensão simples do do contexto do trabalho, seus objetivos e,

finalmente, seu desenvolvimento.

1.1 Contexto

Este trabalho faz parte de um projeto com vários parceiros chamado INTENSE.

Este projeto é dirigido principalmente pelo laboratório LE2S (pertencente ao CEA, onde

o trabalho aqui apresentado foi desenvolvido) e pela sociedade SORIM C.R.M. O

principal objetivo deste projeto consiste em desenvolver um dispositivo médico capaz

de tratar certas patologias cardíacas via estimulação da atividade elétrica do nervo vago

em nível cervical. A atividade gerada pelo nervo vago é registrada como o

eletroneurograma, que consiste em um sinal capturado por um grupo de sensores

colocados na superfície de um eletrodo cilíndrico (chamado eletrodo cuff).

Este eletrodo é cirurgicamente inserido em volta do nervo vago do paciente a

nível cervical; os dados recuperados são então submetidos a análises matemáticas a fim

de descobrir alguma informação cardíaca. Uma vez que tratamentos farmacológicos não

surtem efeito em alguns pacientes, uma solução possível para tratar algumas destas

patologias é através da estimulação do nervo vago. Uma outra aplicação, por exemplo, é

substituir o uso de marca passos por um eletrodo cuff, gerando o processo de

estimulação. Para alcançar esse objetivo, o sistema chamado NeuroPXI foi

desenvolvido no laboratório LE2S. Este sistema pode aplicar diversos padrões de

estimulação no paciente e também registrar diversos sinais conectando equipamentos

médicos e sensores a seus canais, processo esse que se chama modo de aquisição.

Durante alguns experimentos prévios, esses eletrodos foram cirurgicamente implantados

em porcos, uma vez que a estrutura do nervo vago deste animal é muito similar a dos

humanos. Esses experimentos mostraram ótimos resultados em relação ao

funcionamento do sistema NeuroPXI para coletar os sinais fisiológicos. Assim, uma

maneira adequada de visualizar esse sinais é necessária

4

1.2 Motivação

O maior problema consiste no grande volume de dados a serem trabalhados que

são capturados pelo sistema NeuroPXI. Considerando que ele funciona com uma

frequência de aquisição de 20KHz, cada ponto de medida é armazenado ocupando 2

bytes e que o sistema é previsto para ter até 1024 canais, isso resulta em um taxa de

dados de até 40Mbytes por segundo a ser tratada. Embora esse fluxo seja perfeitamente

tolerável para o barramento PXI, que suporta até 100Mbytes/s, o software responsável

pelo registro deve conseguir lidar com esse volume de dados. Um problema adicional é

que, mesmo que um baixo número de canais esteja sendo usado, NeuroPXI envia

páginas de dados de todos os canais mesmo assim. Isso significa que os dados úteis

devem ser minerados dos dispensáveis e a exibição e o registro dos sinais deve ser mais

rápida do que o intervalo em que cada página é recebida do barramento via DMA.

Sistemas e software similares podem ser encontrados no mercado; mas eles apresentam

dois problemas que os impossibilitam de serem utilizados no projeto INTENSE: o

sistema de aquisição não trabalha com uma frequência tão alta e portanto é considerado

lento para o projeto; o software disponível obviamente não é compátivel com o sistema

NeuroPXI e nem é open source. Portanto, tornam-se dispensáveis para o projeto.

1.3 Objetivo

O desenvolvimento de um software para esse sistema é então proposto.

Chamado de Intense, ele é o foco deste trabalho (o software leva o nome em letras

minúsculas enquanto que o projeto no qual está inserido leva o nome em letras

maiúsculas). Intense tem o objetivo de fornecer uma maneira própria e fácil de

visualizar os sinais capturados pelo sistema NeuroPXI e armazená-los no disco usando

um formato apropriado para serem submetidos a análises matemáticas posteriores. Para

suportar a crescente demanda de informação que precisa ser registrada, o software

Intense necessita ser expandível, permitindo que novos sinais sejam adicionados

futuramente e que possíveis mudanças no hardware possam ser levadas em conta.

5

2 TRABALHO

Nesta seção são mostradas caracterísitcas referentes ao desenvolvimento do

software, entre elas as tecnologias e ferramentas incorporadas e as abordagens

utilizadas.

2.1 Proposta

A proposta do software chamado Intense é portanto elaborar uma interface

gráfica do usuário que possibilite a configuração do sistema NeuroPXI, a aquisição das

páginas de dados oriundas do sistema via barramento PXI utilizando DMA, a criação

dos chamados experimentos e dos sinais conforme o usuário desejar, a plotagem em

tempo real dos gráficos dos sinais e, finalmente, o armazenamento dos dados adquiridos

(sinais) em formato SMR (formato utilizado pelo software Spike2). Comparando a

exibição dos gráficos referentes aos sinais em tempo real com o armazenamento dos

mesmos, a prioridade deve sempre ser dada para o armazenamento, uma vez que são os

dados armazenados que serão submetidos a análises. A exibição é uma ferramenta

utilizada na hora do experimento para certificar que a suíte de aquisição está

funcionando propriamente e todos os dados desejados estão sendo coletados.

As principais características de um experimento são: nome do experimento,

junto com a opção de concatenar a hora e a data ao nome nos arquivos gerados; a

duração do experimento; opção de particionar os arquivos gerados (arquivos SMR) em

segmentos menores com uma duração definida em minutos; diretório onde os arquivos

devem ser salvos; opção de usar o filtro DC implementado na FPGA; opção de utilizar

uma sub frequência para exibição dos sinais em tempo real; opção de quais dos sinais

criados utilizar no experimento; opção de utilizar e configurar a função trigger;

Um experimento pode ter até 256 sinais. O usuário deve poder criar e gerenciar

sinais facilmente. As principais características de um sinal são: nome do sinal e

comentário; opção de armazenar o sinal (arquivo SMR); opção de plotar o gráfico do

sinal em tempo real; configurar o ganho ASIC proporcionado pelo sistema;

configuração do ganho externo conectado ao sinal; opção de utilizar a função trigger

para esse sinal; unidade do sinal; cor do sinal; canal associado ao sinal. Uma vez criado

um experimento e seus devidos sinais os mesmos devem ser salvos automaticamente

utilizando um formato de arquivo adequado, possibilitando modificações

posteriormente.

6

2.1 Desenvolvimento

O desenvolvimento do software contou com o uso de diversas ferramentas e

tecnologias: a linguagem de programção C++, graças ao seu grande uso nesse tipo de

software devido a sua rapidez e flexibilidade, considerando também sua

compatibilidade com a linguagem C, uma vez que o acesso ao sistema NeuroPXI foi

projetado usando C; biblioteca Qt, devido a sua facilidade de criar interfaces gráficas de

alta qualidade e fácil reaproveitamento de classes e Widgets; biblioteca Boost, graças ao

seu enorme número de implementações e containers prontos para uso, além de ser uma

biblioteca de alta qualidade sendo usada inclusive na normalização das versões do C++;

biblioteca TinyXML, uma vez que proporciona uma fácil manipulação de arquivos

XML e um tamanho extremamente reduzido comparado a outras bibliotecas que

manipulam XML.

O ambiente de trabalho consiste em uma SDE criada no próprio laboratório onde

o trabalho foi desenvolvido; para realizar o versionamento, a ferramenta TortoiseSVN

foi utilizada. A partir da SDE é possível gerar projetos para o Microsoft Visual Studio

2010, que é o ambiente de programação utilizado, além do QtDesigner para criar alguns

dos widgets usados no software.

Para dar prioridade para o armazenamento dos dados (considerada mais

importante) sobre a exibição em tempo real dos mesmos, a função de callback chamada

cada vez que uma página de dados esta disponível via DMA insere esses dados em um

container implementado como fila destinado aos dados para o armazenamento. Essa

implementação de fila faz uso de semáforos para sincronização. Assim, somente após os

dados da fila de armazenamento serem consumidos esse mesmos dados se tornam

disponíveis e inseridos na fila de exibição, onde a thread que trata da exibição dos

gráficos em tempo real consome os dados dessa fila. Para a criação dessas threads e

implementações de buffers foi usada a biblioteca Boost.

A criação de experimentos e sinais exigia um formato adequado para serem

salvos. Por isso foi utilizado o formato XML, que além de prover as funções necessárias

também é legível, o que significa que um experimento pode ser facilmente modificado a

mão e aberto com o software Intense. Com o uso da biblioteca TinyXML, um parser

completo foi criado; os arquivos XML com os experimentos e sinais são gerados e

podem ser modificados facilmente. Ao editar ou abrir um experimento usando Intense,

o parser realiza a checagem para verificar se os dados contidos no arquivos XML estão

7

corretos; no caso que uma modificação a mão considerada errada tenha sido feita, é

informado no console do Intense o problema encontrado e a linha correspondente no

arquivo para o usuário realizar a correção.

A divisão do software foi feita em várias bibliotecas que posteriormente geram

um arquivo DLL na versão compilada. A principal divisão para o software Intense foi

em: classes implementadas para a aquisição de páginas via DMA, configuração do

sistema NeuroPXI, parser XML e implementação de fila para inserção das páginas; e

outra para as classes que implementam a interface gráfica, contendo todas as janelas e

widgets criados. Essa modularidade permite a separação do núcleo que contém toda a

parte funcional padrão relacionada ao sistema NeuroPXI dos detalhes peculiares que

fazem parte somente da interface gráfica criada. Assim, caso seja desejado criar uma

nova interface gráfica, toda a implementação base não precisará ser modificada. Isso

permite a elaboração de um software modular, de maior qualidade e entendimento.

3 ESTUDO DE CASO

Uma vez que o software encontrava-se praticamente pronto, foi realizado um

experimento utilizando uma minhoca da terra como espécime. A minhoca é um bom

modelo in vivo para testar os eletrodos cuff e o registro dos sinais de eletroneurograma.

Nesse experimento a minhoca é anestesiada e colocada em uma gaiola de Faraday,

evitando assim interferência de sinais externos. O amplificador é configurado com um

ganho de mil vezes e, juntamente com o ganho do pré-amplificador, resulta em um

ganho de dez mil vezes.

Para esse experimento, havia o interesse particular de estimular a minhoca e

observar as respostas geradas. Sinais externos foram conectados ao sistema NeuroPXI

para verificar o funcionamento correto da suíte de aquisição. A tensão RMS ao redor do

eletrodo cuff é então medida, bem como a corrente RMS em um resistor colocado em

série com o eletrodo cuff.

Depois de todas as medidas e calibragens serem feitas, o experimento está

pronto para começar. Um novo experimento foi criado usando Intense, onde foram

criados dois sinais de eletroneurograma e um sinal para marcar o momento da

estimulação. A cada vez que uma estimulação é feita, os sinais de eletroneurograma são

atualizados. O experimento foi bem sucedido e as respostas puderam ser claramente

vistas na janela de exibição dos sinais em tempo real do Intense. Após o experimento,

8

os arquivos SMR gerados foram coletados para serem submetidos a análises pelos

biólogos e engenheiros usando Spike2 e MATLAB.

4 CONCLUSÕES

Um ponto peculiar do projeto ao qual o software Intense está inserido é o fato de

que muitos domínios de conhecimento diferentes convergem. Pode-se verificar que a

tecnologia emcompassa diferentes maneiras de identificar a natureza de certas

condições, permitindo intervenções com o objetivo de aumentar a expectativa e a

qualidade de vida; sendo pelo uso de novos dispositivos, métodos farmacológicos ou

biológicos. O estudo de caso mostra que o software Intense está pronto para ser usado e

é estável para exercer as tarefas a ele designadas. Mesmo ele estando inserido em um

projeto de longo termo, as chances de o conjunto todo vir a ser uma versão comercial ou

colaborar com algum avanço na área médica é promissora.

Obviamente há espaço para melhorias. O tempo curto para o desenvolvimento

do software permitiu criar uma versão totalmente funcional, mas sempre há a

possibilidade de adicionar novas funções. Futuras modificações foram previstas e

provavelmente ocorrerão onforme o andamento do projeto como um todo.

Embora Intense tenha sido concebido especificamente para trabalhar com o

sistema NeuroPXI, seus conceitos núcleo e ideias devem ser facilmente transferidos

para qualquer aplicação que tenha que lidar com quantidades de dados com

características similares aos usados aqui e seu sistema de plotagem pode ser usado para

qualquer aplicação que necessite traçar gráficos em tempo real. Sua divisão modular

permite futuras extensões e reusos; o que significa que as classes responsáveis por

exibir e registrar os dados podem ser aplicadas em qualquer outro problema que faça as

mesmas exigências.

9

ABSTRACT

The focus of this work lies on the development of software designed to interface

with a medical device that captures physiological signals. Thus, the software must be

capable of handling high data rates, providing a real time display of all the information

on the screen and storing this information using a suitable format for later analysis. This

work was performed at CEA (Commissariat à l'énergie atomique et aux énergies

alternatives, France) during a time period of six months. The project in which this work

is inserted is driven by SORIN C.R.M. and it has as its main goal the development of

new implantable electronic devices destined to apply the use of neurostimulation in

pathologies related to the cardiac insufficiency.

The laboratory LE2S, where the medical device and the software here presented

were developed, is concerned with demonstrating that it is possible to find cardiac

information in signals that are captured on the periphery of the vagus nerve (the name

electroneurogram is attributed to this specific signal). To take advantage of the

information that this signal carries, which has very weak amplitude (some microvolts),

it is necessary to combine other signals along with the electroneurogram (e.g.

electrocardiogram, electromyogram and arterial pressure).

Therefore, the laboratory needed software capable of configuring the device

responsible for collecting these signals (this device is often referred as NeuroPXI

system, or sometimes BioMEA, which is the previous version of the device), storing all

the information acquired during an experiment and displaying it on the screen.

Keywords: acquisition, signals, storage, display, NeuroPXI, medical.

10

LIST OF FIGURES

Figure 2.1 - The BioMEA system .. 17

Figure 2.2 - BioMEA's architecture .. 18

Figure 2.3 - PXIS2506 chassis and PCI-PXI Bridges. PXI-8565 (left) and PCle-8560

(right) .. 19

Figure 2.4 - NeuroPXI's architeture .. 19

Figure 2.5 - Architecture of SPB-PXI3U ... 20

Figure 2.6 - Data storage .. 20

Figure 2.7 – Placement of the cuff electrode around the left vagus nerve 22

Figure 2.8 - Amplification of the ENG signal .. 22

Figure 2.9 - Pre amplifier MCS uPA32 and amplifier PGA 64 23

Figure 2.10 - An illustration of a vagus nerve .. 23

Figure 2.11 - ECG of a pig. Waveform captured with NeuroPXI 24

Figure 3.1 - NeuroPXI v1.12.5.11, the first software created for NeuroPXI 26

Figure 3.2 - Biopac MP150 System ... 27

Figure 3.3 - Acknowledge's main window during acquisition 27

Figure 4.1 - Language, assembly of libraries and framework used 28

Figure 4.2 - Project hierarchy ... 29

Figure 4.3 - Use case diagram .. 31

Figure 5.1 – Simplified class diagram .. 34

Figure 5.2 - Illustration of the queue strategy used for storing data pages..................... 38

Figure 5.3 - Samples from a data page being organized for an experiment with two

signals connected to channels number 0 and 192 to be stored on disk 39

Figure 5.4 - Samples from a data page being organized for an experiment with two

signals connected to channels number 0 and 192 to be displayed on GUI 41

Figure 5.5 - Sub sampling methods for a sub sampling frequency of 4 KHz 42

Figure 5.6 - ME/W-SG signal generator from MultiChannel Systems 44

Figure 5.7 - Acquisition chain used for testing the Intense GUI 44

Figure 5.8 – Test of signal display with ME/W-SG and a button using Intense 45

Figure 5.9 - Activity diagram for trigger function and an illustration of a ring buffer

used to store data pages .. 46

Figure 5.10- Main window of Intense .. 47

11

Figure 5.11 – Three of the four pages that the wizard contains, displaying general

configurations, sub sampling methods, decimation option, the DC filter (performed by

the FPGA) and the trigger configuration .. 48

Figure 5.12- Signal manager and the edition of an existing signal 49

Figure 6.1 - Modular architecture for generating the stimulation 51

Figure 6.2 - Placement of the cuff and the stimulation electrodes on the worm 52

Figure 6.3 - Subject ready for the experiment. The red circle shows the stimulation cuff

electrode placed around the worm. The other electrode in the left is responsible for

registering the ENG signals .. 52

Figure 6.4 - Stimulation chain for the experiment with the worm 53

Figure 6.5 - Stimulation being applied and its action potentials for two ENG signals

using Intense GUI’s trigger function. The first oscillation is the stimulation artifact,

followed by two action potentials ... 53

Figure 7.1 - Intense GUI's logo .. 55

12

LIST OF TABLES

Table 2.1 – Bit to volt conversion table ... 21

Table 2.2 - Main characteristics of the signals presented ... 25

Table 5.1 - SDE available features ... 32

13

LIST OF ABBREVIATIONS AND ACRONYMS

API Application Programming Interface

ASIC Application-Specific Integrated Circuit

AGNES Asic for General Neurons Electrical Study

CEA Commissariat à l’Énergie Atomique et aux Énergies Alternatives

DMA Direct memory access

GUI Graphical User Interface

INCIA Institut de Neurosciences Cognitives et Intégratives d’Aquitaine

MEA Multielectrode arrays

PCI Peripheral Component Interconnect

PXI PCI eXtensions for Instrumentation

SDE Integrated Development Environment

SPB Signal Processing Board

UML Unified Modeling Language

USB Universal Serial Bus

XML Extensible Markup Language

14

SUMMARY

1 INTRODUCTION ...15

2 BASIC CONCEPTS ..17

2.1 The BioMEA system ..17

2.2 The NeuroPXI system ..18

2.3 Signals to acquire ...21

3 RELATED WORKS ..26

3.1 NeuroPXI v1.12.5.11 ...26

3.2 Biopac Acknowledge ...26

4 WORK PROPOSAL ..28

4.1 General view ..28

4.2 Requirement definition...29

4.3 Specification ...31

5 CONCEPTION ..32

5.1 Software development environment ..32

5.2 Retrieving data pages ...32

5.3 Class diagram ...33

5.4 Characteristics of the main classes ...35

5.5 The file format..36

5.6 Used approach ..37

5.7 Data storage ..39

5.8 Plotting graphs ...40

5.9 Display improvements and sub sampling methods ..41

5.10 Value conversion ..42

5.11 Testing signal display ...43

5.12 Trigger function ...45

5.13 Main window ...46

5.14 Experiment wizard ...47

5.15 Managing signals ...48

5.16 Verification and validation ...50

6 STUDY CASE ...51

7 CONCLUSION ..55

REFERENCES ..56

15

1 INTRODUCTION

The goal of INTENSE, a multi-partner project developed mainly by LE2S and

SORIN C.R.M., consists of developing a medical device capable of treating some

certain cardiac pathologies by stimulating and recording the vagus nerve at the cervical

level. The activity generated in the vagus nerve is registered as the electroneurogram,

which is a signal captured by a set of sensors placed on the surface of a cuff electrode.

This electrode is surgically inserted around the subject’s vagus nerve at the

cervical level; the retrieved data is then submitted to mathematical analysis in order to

find some cardiac information. Since some pharmacological treatments are

unresponsive for some certain patients, one possible solution for treating some cardiac

problems is through the stimulation of the vagus nerve. One application, for example, is

replacing the use of a pacemaker for one cuff electrodes, generating the necessary

stimulation. To achieve this goal, the NeuroPXI system (former BioMEA) developed at

LE2S has been improved. This system can apply a number of stimulation patterns to the

subject and it can also capture many signals by connecting medical devices and sensors

to its channels, which consists of what we call an acquisition mode. During previous

experiments, these electrodes were surgically implanted in pigs since the structure of the

vagus nerve of this animal is incredibly similar to the human’s one, having almost the

same thickness. These experiments showed great results concerning the functioning of

the NeuroPXI system when gathering signals. Thus, an adequate way of visualizing

them must be provided.

The main problem consists of the great amount of data that is captured per

second by the NeuroPXI system. Consider that it works at a frequency of 20KHz, each

point of measurement is stored using a short variable (which consists of 2 bytes) and

that the system is designed to have up to 1024 channels; this results in a data rate of

40Mbytes/s. Although this flux is perfectly handled by the PXI bus, the software must

be able to deal with all this data properly. The problem, however, is that even if only a

small number of channels are being used; NeuroPXI will send data pages containing

information concerning all channels nonetheless. Since the software captures one data

page each 25.55ms, the algorithms to separate the desired data from the useless one and

to display and store this data must be faster than this rate. Similar software and systems

can be found; but they present two main problems: the systems that exist and can be

purchased are not fast enough for this project, which means that their acquisition

16

frequency is lower than NeuroPXI’s. This implies the second problem which is the

software. The software available on the market was not conceived using the same

format as NeuroPXI’s and they are not open source; therefore, it becomes useless for

this project.

The software called Intense (which takes the same name as the project) is the

focus of this work. It intends to deliver a proper and easy-to-use way to visualize and

store these signals using the libraries that have already been created in order to have

access to the lower layers of the hardware program. The software must store all data

obtained in a suitable file format, in order to allow this data to be accessed later on. To

support the increasing demand of information that needs to be registered, the Intense

GUI must also be expandable, allowing new signals to be added and future hardware

modifications to be taken into account. Although Intense was developed specifically to

work with NeuroPXI, its core concepts and ideas can be easily transferred to any

application that must deal with great amount and similar data. Its division in many

libraries makes it modular enough for future extensions and reuse; which mean that the

classes responsible for displaying data and storing it could be easily applied to any other

application that must deal with the same challenges.

The division of this work in chapters is such that aims for a clear explanation of

the project. The Chapter 2 involves the basic concepts that are necessary to understand

the project context as a whole and it tries to be as brief as possible and demystify the

main properties of the NeuroPXI system. Since it concerns the hardware part of the

project, some information about the system had to be concealed due to industrial

property. In this part the main signals that the system should be able to acquire are

presented and the page structure used to transfer data via the PXI bus. Then an analysis

of similar system and software is presented to justify the development of a whole new

one. The work proposal is presented next, which contains the information about the

functionalities that the software needs to have and some strategies to achieve them. The

concept part shows how the software was designed, its core ideas and mechanisms and

its validation. With the software ready it is presented a study case involving a living

being attached to the NeuroPXI system to test the software. Finally some conclusions

concerning the development of such software are sketched in Chapter 7.

17

2 BASIC CONCEPTS

In this chapter the basic concepts that allow a fully understanding of the

project’s context are presented. First, the BioMEA and NeuroPXI systems’ architecture

and characteristics are showed, followed by some of the most common signals that it is

able to acquire. The mechanism that the device uses to transfer data through the PXI bus

is also presented, as well as a conversion table inherited from the system that will be

used later on the development of the software.

2.1 The BioMEA system

BioMEA was the first in vitro device developed at CEA to measure and

stimulate a neural network applied to a MEA. This system allows the acquisition and

stimulation of a nervous tissue; by doing that, the scientists could better understand how

the activation of physiological signals is generated and how these tissues respond to

different electrical stimulations.

Figure 2.1 - The BioMEA system

The functioning of BioMEA relies on four AGNES with a MEA attached to

them. The nervous tissue that is being studied is placed on the surface of this matrix that

will capture all data required. BioMEA used an USB interface to communicate with the

PC. The diagram presented below shows a glance at the system architecture.

18

Figure 2.2 - BioMEA's architecture

The project was developed in partnership with INCIA, located in Bordeaux and

the technology was later transferred to them. Two papers were published about

BioMEA; they can be found in the references section.

2.2 The NeuroPXI system

NeuroPXI is the new system developed at CEA and its main objective presented

here is to register the neurobiological signals captured with aid of some other medical

devices and electrodes that are connected to this system. The NeuroPXI system allows

the implementation of functions for performing real time signal treatment and an

increased number of channels for both the stimulation and acquisition of signals (up to

1024 channels are available for future modifications and new functionalities). Here the

main details concerning the acquisition of signals performed by this system are

presented, as well as an overall of its architecture.

The system is built using four AGNES (a ASIC developed at CEA) and its

communication is based on the PXI bus architecture. PXI is an industrial standard

which presents as main advantage its high speed data transfer capabilities, which might

be up to 120Mb/s. The NeuroPXI is conceived to address 1024 channels using a

sampling frequency of 20 KHz, corresponding to a data flux of 40Mbytes/s, which is

perfectly manageable using the PXI standard. The NeuroPXI system is built using a

commercial chassis which also provides the system’s power alimentation. The

published paper that describes the NeuroPXI system more in detail can be found in the

references section.

19

Figure 2.3 - PXIS2506 chassis and PCI-PXI Bridges. PXI-8565 (left) and PCle-8560

(right)

The current system’s configuration has 256 channels and contains the four

AGNES implemented on the AFE256 board. This board contains all analogical

components required, including the analog/digital and digital/analog converters. A 64-

channel control module is built around each AGNES and implemented on the FPGA.

Figure 2.4 - NeuroPXI's architeture

The NeuroPXI is composed by a number of boards developed at CEA being the

SPB-PXI3U board at the core of the NeuroPXI system. Its architecture is presented

below. The FPGAs shown in grey are responsible for decoding the signals of the local

bus and generating the test interface. The FPGA (name omitted due to industrial

interests) shown in green integrates the NeuroPXI’s registers; the hardware control

modules and the real time signal treatment modules as well.

20

Figure 2.5 - Architecture of SPB-PXI3U

The data transfer is performed through data pages. In the NeuroPXI system, the

registers might be accessed in DMA mode, which provides high speed transfers in

blocks. The data transfer may be in both ways:

Data reading for acquisition (SPB-PXI3U → PC)

Patterns’ transfer for stimulation (PC → SPB-PXI3U)

For the Intense GUI we will be concerned with the data pages retrieved via

DMA. The image below shows a simplified scheme of the process used for generating

data pages and gathering them.

Figure 2.6 - Data storage

21

The interval time between each page to be received is 25.55ms, where each page

contains 511 samples for each channel (511 25.55ms = 20KHz⁄). Each one of these

samples consists of a short data type (2 bytes, 16 bits). Concerning the GUI, after

receiving a data page, these samples must be converted to their corresponding value in

voltage, according to the table shown below:

Vin Bits Sign bit ADC Bits

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

2.5V 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

2.5V-1LSB 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0

+1 LSB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-1 LSB 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

-2.5V+1LSB 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1

-2,5V 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 2.1 – Bit to volt conversion table

2.3 Signals to acquire

The list of signals that can be acquired using the NeuroPXI system is vast and

customizable. Therefore, here are presented the most important signals to be acquired

taking into account the INTENSE project.

 Electroneurogram (ENG and ENGi)

The electroneurogram is the most important signal to acquire. In order to

measure this signal, a cuff electrode is placed around the vagus nerve. The currently

used electrodes contain four contact surfaces. This means that up to four ENG signals

may be acquired. A pointed mono fiber electrode might also be used for this purpose;

however, in this case the procedure is invasive and not used in humans. This type of

signal receives the more specific name ENGi.

22

Figure 2.7 – Placement of the cuff electrode around the left vagus nerve

Differently from other signals, the ENG signals are not directly connected to the

NeuroPXI system. Firstly, they are connected to a pre amplifier (MCS uPA32) with a

gain of 10X. Then, the output of this pre amplifier is connected to an amplifier (PGA

64) with a usual gain of 1000X (programmable device, this value may vary). This signal

must be amplified because the surface of the captors placed on the cuff electrode is

relatively far from the electrical activity of the nerve. In addition, this activity is isolated

by a thin small layer of fat. This leads to a really weak and noisy signal when captured.

Figure 2.8 - Amplification of the ENG signal

23

Figure 2.9 - Pre amplifier MCS uPA32 and amplifier PGA 64

For this reason we also capture a list of other signals to be analyzed along with

the ENG signals in order to find cardiac information using signal treatment. The two

other signals that are mainly used for this purpose is the ECG and the PA, which will be

explained later.

Figure 2.10 - An illustration of a vagus nerve

 Electrocardiogram (ECG)

The electrocardiogram is a graphical representation of the electric potential that

commands the muscular activity of the heart. This potential is captured using electrodes

disposed on the surface of the patient’s skin. The image below shows an ECG captured

with the NeuroPXI system of an experiment with a pig.

24

Figure 2.11 - ECG of a pig. Waveform captured with NeuroPXI

 Electromyogram (EMG)

The electromyogram is basically the analysis the electrical activity of the

muscles during a period of relaxation and activation. This activity is gathered using

electrodes located on a thin needle that is placed in the desired muscle. The activity of

the superficial muscles, for instance, can be gathered using electrodes placed on the

skin.

 Arterial blood pressure (PA)

The arterial blood pressure is an invasive technique to monitor the intra-vascular

arterial pressure. A carotid catheter is used to measure the arterial pressure for each

bloody stream.

 Capnogram ([CO2])

The measurement of the amount of carbon dioxide in the expired air gives

information about the elimination of this same molecule by the lungs, eventual changes

in the dioxide carbon’s production by the tissues and its transport through the

circulatory system.

21.5 22.0 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0 26.5 27.0
s

25

20

15

10

5

0

-5

-10

-15

-20

-25

µ
V

E
C

G

4

25

 Other signals

Some other signals can be acquired, among them are:

o Modulation of the stomach’s volume (PINS)

o Electrical modulation (iStim)

A manual button (MAN) will also be registered and used as a flag to indicate

modifications in the respiratory modulation and the cardiovascular modulation. Since

these events are triggered by external factor (for example, the cardiovascular

modulation may be triggered by the injection of adrenaline in the patient) the button

will be used to flag that some event just occurred.

The table shown below shows the main characteristics of the signals presented.

These are just the mains signals used; however, it’s possible to connect up to 256

signals to the current configuration of the NeuroPXI system.

Signal Symbol Sensor Amplitude

Peripheral electroneurogram ENG Cuff electrodes Some uV

Mono fiber electroneurogram ENGi Invasive electrodes Some uV

Electrocardiogram ECG Cutaneous electrodes mV

Arterial pressure PA Carotid catheter mV

Capnogram [CO2] Capnometer mV

Electromyogram EMG Cutaneous electrodes mV

Respiratory modulation MAN Respirator [0:2.5V]

Stomach’s volume modulation PINS Stomach balloon [-2.5V:+2.5V]

Cardiovascular modulation MAN Drug injection [0:2.5V]

Electrical modulation IStim Electric stimulator -

Table 2.2 - Main characteristics of the signals presented

26

3 RELATED WORKS

Although NeuroPXI is a peculiar system, there are some related systems on the

market currently. Here similar software that has some common goals as Intense is

presented.

3.1 NeuroPXI v1.12.5.11

This was the first software created for testing BioMEA and then NeuroPXI. This

software was created by INCIA, and, when the technology of BioMEA was transferred

to them, the source code was no longer available at CEA. In addition, its development

was still not complete and therefore many features were missing. These were the two

main reasons to start creating a new GUI from the scratch.

Figure 3.1 - NeuroPXI v1.12.5.11, the first software created for NeuroPXI

3.2 Biopac Acknowledge

Biopac has a similar system called MP150 that is also able to acquire signals.

The main reason that the Biopac’s system wasn’t used by the biologists at CEA was

27

that, at least at the time that this document was written, the acquiring frequency of this

system was not high enough; therefore, it would not serve their needs. NeuroPXI’s high

frequency of 20KHz, on the other hand, was considered fast enough to find a

pathological information by analysing the signals captured.

Figure 3.2 - Biopac MP150 System

Acknowledge is the name of the software that comes with Biopac’s system.

Since its code is not open source and its structure and data transfer is not the same as

NeuroPXI’s, the use of this software became useless. The software here presented

developed has all the main functions presented in Acknowledge. Some other features

that would also have been welcome in Intense are not present due to the tight schedule

to develop it. Among these functionalities lies a better way to analyze data and import

SMR files to Intense; however, since the biologists will use Spike2 and MATLAB to

perform this analysis, this feature should not be missed.

Figure 3.3 - Acknowledge's main window during acquisition

28

4 WORK PROPOSAL

Here are presented the main characteristics that the software must present and its

main goals. The language, framework and assembly of libraries used are also shown

here; as well as the diagrams that depict each main function of Intense.

4.1 General view

In order to perform the signal acquisition in an easy way, a proper GUI that

allows access to the low level components is necessary. The scope of the work

presented here is to develop software capable of capturing the data pages from the

NeuroPXI system, displaying them on the screen giving the user an impression o a real

time application and storing them on disk using the Son32 file format. The data that is

stored will then be submitted to analysis and treatments using MATLAB and Spike2 by

engineers and biologists. So it is possible to divide the functions that the software will

present as following:

Store data retrieved on the hard disk using the Son32 file format. This is the

format used by the software named Spike2. All signals will be acquired by the system

with a frequency of 20 KHz. These signals must always be stored using this very same

frequency of 20 KHz. This is considered the main task of the GUI, apart from

configuring and controlling the NeuroPXI system.

Plot the graphs for each signal that the user desires. All signals are acquired by

the system with a frequency of 20 KHz. However, this frequency may be lower than 20

KHz for some signals when plotting the graphs (for performance reasons).

The software was developed using C++ and Qt. This approach allowed a fast

performance and access to the libraries that have already been developed (compatibility

with C language) by using the C++ language, as well as the conception of a robust and

high quality interface by using Qt. Some Boost resources are also used like

multithreading and a ring buffer implementation.

Figure 4.1 - Language, assembly of libraries and framework used

29

Notice that the GUI is destined to the acquisition only; it does not consider the

stimulation mode. It’s also possible to notice in the image showed below that many

APIs have already been developed. By using them, further knowledge of the electronic

components is abstracted, since the basic functions implemented in the board can be

performed by the use of API calls.

Figure 4.2 - Project hierarchy

4.2 Requirement definition

The first task to develop the software consisted of filling a document with all

functionalities that the software needed to have. In order to do that, discussions with

engineers involved in the project and tests with other similar software such as

AcqKnowledge, by Biopac were of great aid. After gathering all the information it was

possible to identify some key elements listed below.

 Experiment

It is necessary to model an experiment format. The experiment must contain

every parameter regarding the system’s general options and its list of signals. The user

must also be able to load and modify previous experiments.

30

 Setting up signals

A great variety of signals may be used; ranging from different units, gains

provided by the AGNES and natures as a whole. Therefore, a generic way of creating

signals must be provided. The user must be able to create up to 256 signals for one

experiment (maximum number of channels available at the moment, but it should be

expanded in future versions) and manage them as necessary.

 File manager

The Son32 files that are generated must be managed automatically by the

software, giving them a proper name and creating folders and subfolders as necessary to

store them; the system hour and date will be used when creating folders and can be used

when naming the Son32 files. The user must be able to select the signals that he wants

to store and pause/resume the storage.

 Plotting graphs

A real time plotting system must be used in order to display signals on screen in

real time. Since plotting these graphs with a frequency of 20KHz can be slow when

using too many signals (which implies too many points of measurement on the screen),

a sub sampling method can be applied to solve this. The user must also be able to

“rewind” the visualization without stop plotting the graphs; this means that a buffer

system must be used to store these points.

 Trigger function

Very often, the scientists are interested in stimulating an organism using an

electrical current in order to observe its responses due to the stimulation. In this context,

a trigger function similar to those presented in oscilloscopes can be of great help when

observing these responses if the stimulation signal is synchronized and used as the

trigger. The trigger function consists of a window for plotting graphs with a fixed

duration. This view is reset and re-plotted every time the trigger activation criteria are

met. Therefore, the user informs the signal that will activate the trigger, the

corresponding level for activating it (for example, when a value greater than 1V is

detected), how much time is shown before the trigger activation and how much time is

31

shown after the trigger activation. When creating a signal, the user must also be able to

choose whether he wants to display it on the trigger window or not.

4.3 Specification

Figure 4.3 - Use case diagram

The use case diagram presented above was made after analyzing all the

requirements. This diagram went through several modifications during the specification

part of the project and contains all main functionalities that the software needs to

present. The detailed description of each use case was omitted. Here only the main

functionalities are shown.

32

5 CONCEPTION

In this chapter the main solutions and approaches used during the software

development are presented. This also includes: the work environment; how to retrieve

data pages; the characteristics of the main classes, their hierarchy and how they are

organized; the file format used to save experiments; key concepts during the software

development.

5.1 Software development environment

A SDE created at CEA was proposed in order to develop the software here

presented. The main benefit that one may get from using such approach is the

standardization of all library and framework versions for all of its users, which avoids

compilation problems from machine to machine. Also, since other employees at CEA

use this same SDE, a lot of algorithms and entire components are already implemented

and ready to be used. A TortoiseSVN keeps the versioning and every file up to date.

The list showed below presents the main tools that are available in the SDE.

 Tool cmake

2.8.8

boost

1.5.1

cppunit

1.12.1

fieldtrip 3231 qt

4.7.4

qwt

6.0.1

6;0;1

son

7

tcl

8.6.0

tinyxml Plxapi

6.2

 Keyword BOOST CPPUNIT FT_BUFFER QT QWT SO

N

TCL XML PLX

WIN32 MSVS 2008
 MSVS 2010

WIN64
LIN32 G++ 4.6.1

Table 5.1 - SDE available features

The API named BIOMEART_SYS that was briefly presented before is an older

implementation and was not part of the SDE. So a new library was created based on this

API, inserted in the SDE and renamed as intensesys. Since the beginning, the idea was

to create a library named intenseacq that would contain all classes that doesn’t belong to

the GUI and are intended to be reused (classes to model an experiment, signals and

access the NeuroPXI system) and a top-level program named intensegui that would

contain all GUI classes and bind every other library necessary.

5.2 Retrieving data pages

The library intensesys is a low level implementation. Through some of this

library’s functions it’s possible to access and modify the configurations of the

33

NeuroPXI system and control the acquisition of signals. It presents one function that

allows the developer to indicate a function or static method as the callback procedure

that will be invoked every time that a data page is ready to be retrieved via DMA. In

order to do that, a pointer to a function as the one showed below must be indicated as a

parameter.

int notificationProc(void* data, int size, int type); /* or */

static int MyClass::notificationProc(void* data, int size, int type);

Every time this function is called the parameter type will inform which kind of

data it contains (raw data ready to plot, error, warning or end of the acquisition

notification). All data samples are received as a pointer to void, which needs then to be

casted into a suitable type.

int BIOMEART_SYS_SetNotificationProcedure(

 int (*notificationProc)(void* data, int size, int type),

 char* error);

5.3 Class diagram

Here is a simplified class diagram of the solution proposed. Notice that the

functions used to access the NeuroPXI system are C functions and not methods;

however, this group of functions was represented here as a class named

“BIOMEART_SYS C Functions” in the intensesys library because the goal of the class

BiomeartHandler is to encapsulate all these functions. Many other classes and

dependencies were omitted (as well as some third-party libraries, Boost, SON, some Qt

dependencies and TinyXML).

34

Figure 5.1 – Simplified class diagram

35

5.4 Characteristics of the main classes

Experiment: This class will contain every parameter of an experiment

(ExperimentOptions and a list of ExperimentSignals). Its parameters can be initialized

by either using its constructor, or loading a XML file. The attribute validExperiment

will inform whether all parameters are valid or not after loading a XML file.

DataHandler: this class will be responsive for organizing data contained in a

page into the format that the graph plotter will use. It will also perform the sub sampling

when necessary and the value conversion (following the conversion table shown before)

to display the values using their corresponding units (uV, mV or V). To make this

conversion properly, it is necessary to take into account the signal’s unit, the internal

gain (gain configured by the user and provided by the AGNES) and the external gain

(gain externally branched to the signal, provided by MCS uPA32m PGA 64 or any other

amplifier). Since it is desired to see the value at the entrance of the system, we must

divide the values received in the data page by the internal and external gains. Then, it is

necessary to multiply this value by its unit (106 for µV, 103 for mV and 100 for V) in

order to display the correct final value. The TriggerWatcher will contain information

concerning the trigger activation; every time a new page is received we test the trigger

activation criteria within the page to know whether we must activate the trigger or not

(if the user chooses to use the trigger function).

DataStore: this class will be responsive for storing all data. Every time a new

data page is received the proper method must be called to store all data in the Son32

file. The time stamp contained within each page will help informing where to record

this page in the file. The possibility of splitting the experiment in several files must be

present; to do this, all we have to do is create a new DataStore object and re-start storing

data from where we stopped (using the page’s time stamp).

PageQueue: a multithread queue implementation using semaphores for handling

data pages.

BiomeartHandler: as mentioned before, this class will encapsulate all

information concerning the BIOMEART_SYS C functions necessary to access the

NeuroPXI system. To configure the system, this class uses a SystemConfiguration

object that is generated based on an ExperimentOptions and a list of ExperimentSignal

objects.

36

Chunck Widget: class responsible for plotting graphs on the screen. It is an

assembly of QwtPlots instantiations along with a set of commands for controlling zoom,

scale and other display properties. It also allows the display to be paused/rewinded to

analysis without stopping the acquisition. This is done through a binary file that

contains two pointers. One pointer is responsible for writing new incoming data into the

file and the other for reading data previous written.

Intense: this is the main application that binds every component necessary, it

will communicate with the user interface classes and start all main necessary threads.

5.5 The file format

To save every experiment after its creation, a XML file is used. The format of

this file was defined in the beginning of the conception, containing every parameter

regarding one ExperimentOptions and a list with every parameter regarding one or more

ExperimentSignal. The parameters of an Experiment object can then be initialized using

the read values. Here is an example of the format used by Intense to save/load an

experiment.

<?xml version="1.0" ?>

<experiment>

 <options name="MANIP_VER">

 <acquisitionfrequency>20000</acquisitionfrequency>

 <subfrequency>5000</subfrequency>

 <subfrequencytype>average</subfrequencytype>

 <embeddeddcfilter>yes</embeddeddcfilter>

 <duration>300</duration>

 <usesystemdate>yes</usesystemdate>

 <usesystemhour>yes</usesystemhour>

 <usedecimation>yes</usedecimation>

 <filespath>X:/</filespath>

 <durationperfile>0</durationperfile>

 <activatetrigger>no</activatetrigger>

 <triggerpagesbefore>10</triggerpagesbefore>

 <triggerpagesafter>20</triggerpagesafter>

 <triggerchannel>23</triggerchannel>

<triggerdetectiontype>greaterthan</triggerdetectiontype>

 <triggerdetectionvalue>1</triggerdetectionvalue>

 <comment>Performed at CEA LETI 01/08/2013</comment>

 </options>

 <signalslist>

 <signal name="ENG1">

 <channel>192</channel>

 <unit>uV</unit>

37

 <togui>yes</togui>

 <todisk>yes</todisk>

 <color>green</color>

 <internalgain>1X</internalgain>

 <externalgain>10000</externalgain>

 <totrigger>no</totrigger>

 <usefilter>no</usefilter>

 <autoscale>yes</autoscale>

 <minyrange>0</minyrange>

 <maxyrange>2.5</maxyrange>

 <comment>Electroneurogram number 1</comment>

 <used>yes</used>

 </signal>

 <signal name="iStim">

 <channel>27</channel>

 <unit>uV</unit>

 <togui>yes</togui>

 <todisk>yes</todisk>

 <color>blue</color>

 <internalgain>10X</internalgain>

 <externalgain>0.125</externalgain>

 <totrigger>no</totrigger>

 <usefilter>no</usefilter>

 <autoscale>yes</autoscale>

 <minyrange>-5</minyrange>

 <maxyrange>5</maxyrange>

 <comment>No comment for this signal</comment>

 <used>yes</used>

 </signal>

 <signal name="MAN">

 ...

 </signal>

 ...

 </signalslist>

</experiment>

If the user chooses to edit an experiment all data contained in the XML file is

read in order to create the respective classes instances. All information contained in the

file is checked and if there is any error in the file format the user is informed that the file

could not be open and the reason for so.

5.6 Used approach

Since the data flow is fast (one data page is received every 25.55ms) it is

necessary to avoid data loss. So, after the callback function defined is invoked, it must

be available again as soon as possible. In conclusion, this function cannot be too

38

complex. The strategy is to store all data received in a FIFO queue inside the callback

function since this process is fast. Then, two threads are created using Boost: one for

storing data on disk and another one for plotting graphs in real time. The idea is to give

priority to the storage thread, so two queue objects are used. The storage thread is the

consumer of the main queue; after this, in this same thread, the same data page received

is stored in the second queue, which will be used to plot the graphs. Notice that

semaphores must be used to synchronize the queue (the problem known as single

producer/single consumer is presented in this case).

Figure 5.2 - Illustration of the queue strategy used for storing data pages

There is an important detail that one might ask: if the consumer is slower than

the producer and since experiments can last of hours, then, at some time, the buffer

stored using the queue will certainly overflow. But this is not why the queue

implementation is used. The problem that the queue solves is that the operating system

might make a context switch at any moment. When the software loses the context, the

queue is used to absorb the incoming pages while waiting to regain its context. The

methods themselves are fast enough to avoid a buffer overflow.

Every page that is received contains a fixed size. This means that every channel

data will be received whether the channel is activated or not (it might contain some

useless data). The pages contain a header, the data samples part, and the end of page

indicator. Among the information that the header will contain is the time stamp and the

page number; this is important to keep track of the pages that are being received and to

be sure that there was no data loss.

39

5.7 Data storage

Son32 is a complete library for storing data using the Son32 file format. The

software Spike2, is used for reading this type of file. Since this library provides every

function necessary, storing data becomes easier. A DataStore object instantiated in the

storage thread creates a new file and concatenates data to it as new pages are received.

In the constructor it is indicated the frequency used, all channels are created and the

necessary buffer space is allocated. Then, every time a new page is received, the

samples contained within the page are re-organized in order to retrieve only the values

of the channels that are being used and concatenated to the file with the function

SONWriteADCBlock for each channel. All necessary functions of the Son library are

encapsulated in the DataStore class. A fast access hard disk that spins at 15,000 RPM is

generally used for the experiments, since the callback function can be blocked if we use

a slow hardware.

As mentioned before, before storing the data received in the Son32 file, the

samples must be re-organized, since the page format and the format used by

SONWriteADCBlock function are different. When storing these samples, we must

organize the array in such a way that all samples of the first channel are placed in the

first positions of the array. The group of samples of the next channel will be placed in

the following positions of the array and so on.

Figure 5.3 - Samples from a data page being organized for an experiment with two

signals connected to channels number 0 and 192 to be stored on disk

40

When plotting graphs, the samples must be organized in the same way as the

data page format, in which we present the first sample of all channels in the first

positions of the array; then the second sample of all channels in the following positions

of the array and so on. This method will be explained later.

5.8 Plotting graphs

The Qwt library (provided by Qt) was used for plotting graphs. The class named

Qtplot::ChunkWidget provides a plotting system that works by declaring several

QwtPlots and binding them together in a single view, displaying also the controls for

zooming in and out, hiding channels, modifying scales and adding/deleting markers, as

well as a buffer system that allows rewinding the visualization.

However, since plotting graphs smoothly during each interruption is hard due to

the high frequency that is used and blocking the main application is not an option, a

separated process is created and embedded into the main one. In order to do this, it is

declared a DataBuffer::Server object and a DataBufferDisplay::Client object, passing

the same channels’ information as parameter for both of them.

These two objects are bound together, since it is informed the server’s name to

the client object as well. The client object will then create a XML file to save all

channels’ information in a temporary folder, and create a new process named

databufferdisplayclient.exe. This process will contain a Qtplot::ChunkWidget object for

plotting graphs. However, the main application won’t communicate with the new

process created (no commands can be sent via GUI); the only data that this process can

receive is data chunks to be plotted using a shared memory zone. Every time that new

data to plot is received, it is copied to the shared memory by using the server’s method

called SendChunk. The process previously created will then be able to retrieve and plot

this data. This avoids the main application from being blocked. To embed the

databufferdisplayclient.exe process in the main window, it is used a

Qtplot::DataBufferWidgetContainer object, informing the client’s pointer as a

parameter.

The data page format is the same as the one used by Qtplot::ChunkWidget for

plotting graphs. However, all data page received contains samples of every channel. So

we need to iterate through every page and retrieve only the samples of the channels that

41

are activated in the GUI. The image below shows an example of a simple experience

that uses only two signals.

Figure 5.4 - Samples from a data page being organized for an experiment with two

signals connected to channels number 0 and 192 to be displayed on GUI

5.9 Display improvements and sub sampling methods

The components used for plotting graphs offer a great precision and,

theoretically, an unlimited number of channels can be created. However, when plotting

these graphs using a frequency of 20KHz, the display can suffer from slowdowns due to

the huge number of points of measurement sent each time (511 points per 25.55ms for

each channel). To avoid this problem, two solutions were created.

The first one is named decimation and it calculates how many points of

measurements will be shown based on the screen’s size. If the user has a tiny screen,

fewer points are shown. Nonetheless, this doesn’t affect the buffer system, which means

that every point of measurement is buffered; so every point is loaded and displayed

when the user rewinds the visualization. This function can be activated or not by the

user using the parameter usedecimation.

The second one is used when the user is more interested in observing the wave

form only, absent need of checking every single point with maximum precision. In this

case, to make the signal display more fluid, three sub sampling algorithms were

implemented in the DataHandler class. The user must inform the sub sampling

frequency desired that can be either 20KHz (no sub sampling used, every point of

42

measurement is displayed), 10KHz, 5KHz, 4KHz, 2KHz, 1KHz or 500Hz. Then, based

on the user’s choice, the sub sampling factor is calculated. The user can also choose

between three different sub sampling methods. The most important of these three

algorithms is the one called “average”, in which a number of samples is gathered and

only their arithmetic mean is displayed. The figure shown below demonstrates these

three sub sampling methods when using a sub sampling frequency of 4KHz.

𝑠𝑢𝑏 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟 = 20𝐾𝐻𝑧 4𝐾𝐻𝑧⁄ = 5 (𝑛 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑠ℎ𝑜𝑤𝑛 𝑏𝑒𝑙𝑜𝑤)

Figure 5.5 - Sub sampling methods for a sub sampling frequency of 4 KHz

5.10 Value conversion

Before being displayed, every point of measurement must be converted to its

corresponding value in volts according to the table shown before (bit conversion table).

This conversion is performed just before displaying these points, as shown in the figure

above (the box “Convert value to voltage”). A simple yet powerful algorithm that uses

the same type of conversion that the Son32 library proposes was developed in order to

do this. It’s also at this moment that the internal gain, external gain and unit must be

taken into account.

43

/* 2 is the scale format correction. 65536 is the maximum range for a

short variable. 10/65536 is the same conversion used by Son32*/

const float DataHandler::bitToVoltFactor = 2.0F*(10.0F/65536.0F);

float DataHandler::convertValueToVoltage(short valueToConvert, int channel)

{

 float gainFactor = (m_chanInfo.unitMultiplier[channel] /

 (m_chanInfo.internalGain[channel] *

 m_chanInfo.externalGain[channel]));

 return (valueToConvert*gainFactor*bitToVoltFactor);

}

For example, if we receive the first value of the bit conversion table, without any

gain (internal and external gain equals one) and using the Volt unit:

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

2.5V 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

𝑣𝑎𝑙𝑢𝑒𝑇𝑜𝐶𝑜𝑛𝑣𝑒𝑟𝑡 = 0001111111111111𝑏 = 8191

𝑔𝑎𝑖𝑛𝐹𝑎𝑐𝑡𝑜𝑟 =
𝑢𝑛𝑖𝑡𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟

(𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝐺𝑎𝑖𝑛 ∗ 𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙𝐺𝑎𝑖𝑛)
= 1

bitToVoltFactor = 2 ∗ (
10

65536
) = 0.00030517578125

𝑟𝑒𝑡𝑢𝑟𝑛𝑉𝑎𝑙𝑢𝑒 = 𝑣𝑎𝑙𝑢𝑒𝑇𝑜𝐶𝑜𝑛𝑣𝑒𝑟𝑡 ∗ 𝑔𝑎𝑖𝑛𝐹𝑎𝑐𝑡𝑜𝑟 ∗ bitToVoltFactor =

= 8191 ∗ 1 ∗ 0.00030517578125 = 𝟐, 𝟒𝟗𝟗𝟔𝟗𝟒𝟖𝟐𝟒𝟐𝟏𝟖𝟕𝟓

Here is a glance at the code responsible for organizing data, sub sampling it and

converting the values. This is the algorithm that calculates the average when sub

sampling.

5.11 Testing signal display

After finishing all these steps, the chain of functions presented and the widget

used to display all the signals could finally be tested. In order to perform all tests, it was

used several signals with well-known frequencies and ranges with a function generator

and a signal generator named ME/W-SG from MultiChannel Systems. This generator

can simulate spikes, sinus waves, atrium ECG, ventricular ECG, as well as other wave

forms.

44

Figure 5.6 - ME/W-SG signal generator from MultiChannel Systems

Different gains configured and applied by the AGNES (internal gain) and the

gain provided by external amplifiers (external gain) were also applied to be sure that the

correct values that were injected at the entrance of the system were being observed. A

chronometer was used in multiple tests to check if the time visualization was really

accurate and the markers provided by the widget were used to see if the frequencies of

the signals were correct. After being sure that the signal display worked properly, some

other small improvements were made such as adding different colors (chosen by user)

and allowing the user to register the scales in the file, avoiding the need of reconfiguring

them each time the software is launched.

Figure 5.7 - Acquisition chain used for testing the Intense GUI

45

In the tests shown below some hippocampal neuron spikes were simulated with

the ME/W-SG (shown in green) and a manual button with a battery was also usedto

generate some pulses (shown in red).

Figure 5.8 – Test of signal display with ME/W-SG and a button using Intense

5.12 Trigger function

The trigger function is a simpler implementation, since it uses only a

Qtplot::ChunkWidget object for plotting graphs because is not activated every 25.55ms

like the graph display and it usually presents less channels. Every time a new page is

received, a DataHandler’s method will verify the trigger activation criteria. If the trigger

should be activated, the trigger display is reset and it re-plots the window with n1 pages

received before the trigger activation and the following n2 pages after the trigger

activation (informed by the user).

 In order to do this, is necessary to keep the n1 pages that are received in a

buffer. In this case, the best solution is to use a ring buffer (also called circular buffer)

with a size of n1. If this buffer is full, the first page that was allocated will be replaced

with the new one received. Once the trigger is activated, all this pages are sent to the

trigger display and the buffer is empty. The following n2 pages are then sent to the

trigger display normally as they are received. The trigger function will always use a plot

frequency of 20 KHz, which means that every single point of measurement received is

used.

46

Figure 5.9 - Activity diagram for trigger function and an illustration of a ring buffer

used to store data pages

5.13 Main window

The main window can be divided in:

Menu bar: located at the uppermost part of the window, it contains all possible

commands that the user can send to the main application. The commands are available

according to the program’s flow. For example, at the beginning of the execution, the

“Edit experiment”, “Start acquisition” and “Stop acquisition” are blocked. After an

experiment is created or loaded it’s possible to edit it and start the acquisition. When the

user starts the acquisition these commands previously mentioned are blocked and the

command “Stop acquisition” becomes available, and so on. This was made in order to

help the user using the software, since only valid commands will be accessible.

Toolbar: located just beneath the menu bar, it contains the shortcuts for the most

important commands of the menu bar. These shortcuts are: “Create new experiment”,

“Load experiment”, “Edit current experiment”, “Pause/resume storage” (applied for all

signals, activating/deactivating the method in the DataStore object that stores data),

“Start acquisition” and “Stop acquisition”.

Signal tree view: Located at the left part of the window, contains information of

all signals being used in the current experiment.

Mdi area (multiple document interface): Contains the embedded process

responsible for plotting graphs and the trigger display.

Log widget: located at the bottom of the window, it consists of widget with three

tabs. The first one is a log that contains information about every operation performed by

47

the software. It contains four different levels of message: “success” in green,

“information” in blue, “warning” in orange and “error” in red. The second tab generates

a list view of every Son32 file generated, with the hour and the status. The user can

open the respective folder by double clicking the list item. The third tab is also a list

view, but it contains information about possible data losses. If for some reason the

callback function couldn’t be invoked at a desired time and it couldn’t retrieve the data

page, this tab informs the hour that this happened, the expected page that was to be

received and the page that was actually received last time.

Status bar: located at the bottommost part of the window, the status bar informs

the current Son32 file that is being written (path and file name). It also has a LED that

blinks every 0.5s to inform if data is being stored (Son32 file being written), a timer that

informs how much time is left until the end of the experiment and a progress bar.

Figure 5.10- Main window of Intense

5.14 Experiment wizard

To make it easier for the user to create a new experiment, a wizard assistant was

developed using Qt; which is basically a step-by-step guide.

48

Figure 5.11 – Three of the four pages that the wizard contains, displaying general

configurations, sub sampling methods, decimation option, the DC filter (performed by

the FPGA) and the trigger configuration

5.15 Managing signals

One of the most important aspects of this project was the signal creation. The

goal here was to make a complete configurable signal creation method and manageable

system. A SignalsListWidget object is responsible for managing the signals, allowing

the user to create new signals, edit existing signals, delete signals, as well as load a list

of signals from an XML file of an older experiment. To create/edit signals a

NewSignalDialog object is used, which allows the user to configure every parameter

that a signal contains.

49

For all components, every kind of verification is performed. For example, in the

NewSignalDialog only the available channels are shown. The SignalsListWidget is

embedded in the third experiment wizard’s page. The user can create up to 256 signals,

but he doesn’t need to use all of them, which means that only the signals in the list of

used signals will be taken into account for the experiment.

Figure 5.12- Signal manager and the edition of an existing signal

50

5.16 Verification and validation

Throughout the whole process of conceiving the software, discussions took part

with everyone involved in the project that would use this software and knew exactly

what functionalities it should have (from a user point of view). The engineers involved

in the project helped giving a proper guidance for developing software that attended to

their needs. Weekly reunions were scheduled in order to keep track of the work and also

to refresh the focus of the main goals, keeping them up-to-date.

During the whole work the goal was to create an extensible code, trying to

abstract the maximum possible from all classes that I created (mainly intenseacq’s

classes). This way, if someone needs to extend and modify the code, this won’t present

any problem. This goal was achieved by creating a reusable code mainly due to the

conception of separate libraries and a program dedicated only for the GUI that could be

easily tested separately. This means that intenseacq is totally independent from the GUI

and it contains everything to model an experiment, its signals and access the NeuroPXI

system. , It will be easier if anyone wants to modify or create a new GUI by using the

intenseacq library since the program intensegui only contains Qt classes that give the

GUI its format with its windows, dialogs and wizard that will construct intenseacq’s

objects and use them.

Most part of the approach was based on unit testing, which means that every

single component was tested as soon as it was ready. Another practice adopted was

redoing every test as soon as more pieces of code and functionalities were added. Other

engineers also checked the software constantly and pointed out the modifications that

were desired.

51

6 STUDY CASE

When the software was practically finished, three engineers used it to provide

feedback of what they thought. The experiment was performed using a worm as the test

subject. A worm is a good in vivo model to test the cuff electrodes that register the ENG

signals and the chain of acquisition using NeuroPXI with a living being. The worm is

anaesthetized and placed in a Faraday’s cage along with the preamplifier. The main

goals of this experiment are to register unitary activities generated around the animal’s

body with the cuff electrodes and to register the spontaneous unitary activities in

response.

The worm is completely clean and soaked in an ethanol 10% solution from five

to ten minutes, making sure that is completely motionless and kept in a moist place. The

anesthesia should last about thirty minutes. The amplifier is configured with a gain of

1,000X, resulting in a final gain of 10,000X (10X from the pre-amplifier) for the ENG

signals (internal gain equals 1x, external gain equals 10,000X).

For this experiment the interest lied particularly in stimulating the subject and

observing the responses generated. A simple diagram of the architecture conceived for

generating the stimulation is shown below. It makes use of commercial equipment and

some other devices developed at CEA. A trigger signal marks every time that the

stimulation is applied; this signal is called SyncStim, and it has a gain of 0.125x

(internal gain equals 1x and external gain equals 0.125x), since we use a voltage divider

with a factor of 8 instead of an amplifier. The stimulation frequency equals 0.5Hz.

Figure 6.1 - Modular architecture for generating the stimulation

Several external signals are connected to the NeuroPXI system in order to verify

that the acquisition chain works properly. The cuff electrode is then placed in

phosphate-buffered saline solution and the RMS tension around the cuff is measured, as

well as the RMS current in a resistance in series with the cuff.

52

Figure 6.2 - Placement of the cuff and the stimulation electrodes on the worm

After all measurements and calibrations are performed by the engineers, the

experiment is ready to begin. In this context, the engineers were interested in testing the

trigger function present in the GUI. A new experiment was created using the software,

all signals that we needed and configured the trigger window to display two ENG

signals that we were interested in and the SyncStim signal, which was the signal chosen

to activate the trigger. The trigger activation value was set to values greater than +1V.

Figure 6.3 - Subject ready for the experiment. The red circle shows the stimulation cuff

electrode placed around the worm. The other electrode in the left is responsible for

registering the ENG signals

The trigger window is refreshed every time a high event that surpasses +1V is

detected by observing the SyncStim signal. When using the trigger function, the notion

of time is not important for the engineers; what they want to see is the responses after

the stimulation. The whole experiment can be viewed using the Son32 files afterwards.

53

Figure 6.4 - Stimulation chain for the experiment with the worm

This experiment was successfully performed and they could clearly see the

stimulation being applied to the animal and the responses in the ENG signals due to this

stimulation. In this case, two ENG signals were used; no filter was used for the second

signal, but a high pass 400Hz filter was applied to the first ENG to remove traces of

ECG (the user can activate or not the filtering for each signal, the high pass filter is

performed by the BIOMEART_SYS API, its coefficients were calculated using

MATLAB and are located in a TXT file). The DC remove filter was not used (the DC

filter is applied by the FPGA).

Figure 6.5 - Stimulation being applied and its action potentials for two ENG signals

using Intense GUI’s trigger function. The first oscillation is the stimulation artifact,

followed by two action potentials

54

After seeing the responses they wanted, the engineers retrieved the Son32 files

generated containing every data at 20KHz. These files are then submitted to posterior

analysis using MATLAB and Spike2 with the goal of trying to understand the

interaction between the stimulation and the action potentials generated.

The two action potentials that can be seen are due to the fact that the worm

possesses two large fibers along its body that respond to the stimulation. This

experiment is much simpler than the one with pigs, which offers a closer environment

and results in comparison with a human organism. However, the test with worms as

subjects allows a fast set up and easier achievable results for testing purposes.

55

7 CONCLUSION

The whole project in which the software here presented is inserted is interesting,

taking into account that many fields of knowledge converge in order to achieve a

common goal. Technologies nowadays encompass many different means of identifying

the nature of conditions to allow interventions to increase the life span or the quality of

life, either by the use of new technological devices, pharmacological methods or

biological methods.

The experiment previously presented shows that the software is ready to be used

and stable to perform the necessary tasks. The trigger function demonstrated itself

useful when looking for particular events among the signals. Even if this is a long-term

project that still has some implementation parts to be finished, the chances of the whole

hardware and its software to become a commercial version of a medical device are

favorable.

Surely, software like this one always provides room for improvements. Many

sketches were planned to be included in the GUI; however, they had to be postponed

due to the little time available for all implementation. A visual display of the cuff

electrodes that would communicate with its corresponding channel was desired. The

possibility of providing a user interface for adding wave marks to the Son32 files is also

absent. However, the current GUI provides every function previewed at the beginning

of the project and a proper source code that is easy to modify and add new

functionalities in the future.

Figure 7.1 - Intense GUI's logo

56

REFERENCES

[STROUSTROUP 2000] B. Stroustroup. The C++ Programming Language: Special

Edition. 3
rd

 edition. Addison-Wesley. 2000.

[BLANCHETTE 2008] J. Blanchette, M. Summerfield. C++ GUI Programming with

Qt 4. 2
nd

 edition. Prentice Hall. 2008.

[CAMBRIDGE 2012] Spike2 for Windows Version 7 <available at

http://www.ced.co.uk/img/Spike7.pdf>: last access: June 2013.

[MULTICHANNEL 2013] Multichannel Systems ME/W-SG <available at

http://www.multichannelsystems.com/sites/multichannelsystems.com/files/documents/d

ata_sheets/ME_W-SG.pdf>: last access: July 2013.

[MULTICHANNEL 2011] Multichannel Systems PGA 64 Manual <available at

http://www.multichannelsystems.com/sites/multichannelsystems.com/files/documents/

manuals/PGA_Manual.pdf>: last access: July 2013.

[MULTICHANNEL 2012] Multichannel Systems uPA32 Datasheet <available at

http://www.multichannelsystems.com/sites/multichannelsystems.com/files/documents/d

ata_sheets/%C2%B5PA32_Datasheet.pdf>: last acces: July 2013.

[BOOST 2013] Boost 1.5.1 <available at http://www.boost.org/doc/libs/1_51_0/>: last

access: August 2013.

[QT 2013] Qt 4.7 Documentation <available at http://qt-project.org/doc/qt-4.7/>: last

access: August 2013.

[BIOMEA 2007] G. Charvet, O. Billoint, L. Rousseau, B. Yvert. BioMEA
TM

: A 256-

channel MEA system with integrated electronics <available at http://www.incia.u-

bordeaux1.fr/IMG/pdf/2007charvetembsconf.pdf>: last access: December 2014

[BIOMEA 2010] G. Charvet, O. Billoint, S. Gharbi, M. Heuschkel, C. Georges, T.

Kauffmann, A. Pellissier, B. Yvert, R. Guillemaud. A modular 256-channel Micro

Electrode Array platform for in vitro and in vivo neural stimulation and recording

<available at www.incia.u-bordeaux1.fr/IMG/pdf/2010charvetembsconf.pdf>: last

access: December 2014

[NEUROPXI 2012] S. Bonnet, J.-F. Bêche, S. Gharbi, O. Abdoun, F. Bocquelet, S.

Joucla, V. Agache, F. Sauter, P. Pham, F. Dupont, F. Matonti, L. Hoffart, S. Roux, M.

Djilas, B. Kolomiets, R. Caplette, F. Chavane, S. Picaud, B. Yvert, R. Guillemaud.

NeuroPXI: A real-time multi-electrode array system for recording, processing and

stimulation of neural networks and the control of high-resolution neural implants

for rehabilitation <available at:

http://www.sciencedirect.com/science/article/pii/S1959031812000140#>: last access:

December 2014

http://www.ced.co.uk/img/Spike7.pdf
http://www.multichannelsystems.com/sites/multichannelsystems.com/files/documents/data_sheets/ME_W-SG.pdf
http://www.multichannelsystems.com/sites/multichannelsystems.com/files/documents/data_sheets/ME_W-SG.pdf
http://www.multichannelsystems.com/sites/multichannelsystems.com/files/documents/manuals/PGA_Manual.pdf
http://www.multichannelsystems.com/sites/multichannelsystems.com/files/documents/manuals/PGA_Manual.pdf
http://www.multichannelsystems.com/sites/multichannelsystems.com/files/documents/data_sheets/%C2%B5PA32_Datasheet.pdf
http://www.multichannelsystems.com/sites/multichannelsystems.com/files/documents/data_sheets/%C2%B5PA32_Datasheet.pdf
http://www.boost.org/doc/libs/1_51_0/
http://qt-project.org/doc/qt-4.7/
http://www.incia.u-bordeaux1.fr/IMG/pdf/2007charvetembsconf.pdf
http://www.incia.u-bordeaux1.fr/IMG/pdf/2007charvetembsconf.pdf
http://www.incia.u-bordeaux1.fr/IMG/pdf/2010charvetembsconf.pdf
http://www.sciencedirect.com/science/article/pii/S1959031812000140

