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RESUMO 

 
Arquiteturas reconfiguráveis são uma alternativa às clássicas organizações 

superescalares para explorar o paralelismo em nível de instruções em aplicações (ILP, do inglês 

Instruction Level Parallelism), enquanto que as organizações multinúcleos são a estratégia 

normalmente adotada para tirar proveito do paralelismo no nível de threads (TLP, do inglês 

Thread Level Parallelism). Este trabalho é baseado no CReAMS, um sistema reconfigurável 

que explora os benefícios de ambos o ILP – através de um array reconfigurável – e TLP – por 

multinúcleos. Contudo, o CReAMS foi inicialmente projetado como um sistema homogêneo, 

cujos núcleos são exatamente iguais, o que é uma estratégia ineficiente quando considerado que 

aplicações atuais possuem grande variação de carga entre suas threads. O objetivo deste 

trabalho é introduzir o conceito de CReAMS heterogêneo, uma versão cujos núcleos possuem 

recursos distintos. Mostraremos as motivações para usar um sistema heterogêneo ao invés de 

um homogêneo, especialmente no aspecto das aplicações atualmente executadas nos sistemas 

embarcados. Este trabalho propõe encontrar algumas configurações heterogêneas de CReAMS 

que ganhem, em desempenho, de versões homogêneas de mesma área. Mostraremos a 

metodologia usada para criar tais configurações, o processo de simulação e os resultados, os 

quais sugerem que sistemas heterogêneos baseados em CReAMS tem melhor performance que 

versões homogêneas quando as aplicações executadas possuem baixa distribuição de carga 

entre as threads ou alto potencial para exploração de ILP.  
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ABSTRACT 

 

Reconfigurable architectures are an alternative for classic superscalar organizations to 

the exploitation of instruction level parallelism (ILP) on applications, while the multicore 

organizations are the most commonly used strategy to exploit thread level parallelism (TLP). 

This work is based on CReAMS, a multicore reconfigurable system that explores the 

advantages of both ILP – through a reconfigurable array – and TLP – through multicores. 

However, CReAMS was conceived as a homogeneous system, in which cores are exactly the 

same. This is an inefficient strategy when we consider current applications that have great 

variability through its threads. The main goal of this work is to introduce the concepts of 

heterogeneous CReAMS, a version in which cores have distinct resources. We will show the 

motivations for using a heterogeneous system over a homogeneous one, especially in the aspect 

of the current applications executed in the embedded systems. This work proposes to find some 

heterogeneous configurations of CReAMS that outperform a homogeneous configuration of 

same area. We will show the methodology for creating such configurations, the simulation 

processes and the results, which suggest that heterogeneous systems based on CReAMS have 

better performance than homogeneous versions when the executed applications have poor load 

balance between threads or have high potential for exploiting ILP.  

 
 
Keywords: Reconfigurable architectures. Multicore systems. Heterogeneous systems. 

Homogeneous systems.  
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1.  INTRODUCTION 

 

For many years, the majority of embedded systems was designed to execute tasks that 

were specific to the device it was built in. For instance, the system inside an MP3 player was 

designed to decode digital music files and little else. However, the advance of industry 

technology pushed by the constant market competition has brought the project of embedded 

processors to a completely new level of complexity. Nowadays, these systems execute many 

tasks and comprise as many features as possible in just one device. Current smartphones are a 

clear example of these devices. Smartphones running Google’s Android, Apple’s iOS or 

Microsoft’s Windows Mobile OS are capable of executing applications that can not only make 

calls and send SMS, but also play music, browse the web, monitor user activity and location, 

take pictures and movies, suggest activities for the user and much more. However, all these 

embodied features require significant amounts of energy and chip area. The latter is an 

important issue, considering that the user wants to charge the device only once a day. Thus, 

each new generation of embedded hardware is expected to not only provide more functionalities 

and be faster, but also to be more energetically and area efficient. 

A processor’s performance can be improved in many ways: from its manufacturing 

process to its organization. This work focuses on optimizing the organization, by exploiting the 

parallel execution of a program’s instructions, as it is a common strategy used to increase 

performance and efficiently use the resources of a processor. If a sequence of independent 

instructions (that do not operate over the same data set in a read-after-write fashion) is 

dispatched, the processor can allocate them to different functional units and process them 

concurrently. This provides performance gains due to the exploitation of the instruction level 

parallelism (ILP). The superscalar approach is widely used to exploit ILP in both general 

purpose – as the Intel x86 architectures – and embedded processors – like the ARM architecture.  

However, it is expensive in terms of power consumption, since for each incoming instruction 

block, the superscalar processor has to evaluate repeatedly the data dependencies for the 

dependence analysis. If the same block is processed multiple times – as in a loop – the 

superscalar processor needs to evaluate the data dependencies at each execution, because it does 

not keep any sort of history of these dependencies.  

Another possible strategy to exploit ILP is dynamic reconfigurable architectures. They 

are projected to adapt themselves according to the application at hand, reconfiguring their 

datapath so that the stream of data through a large set of functional units is optimized. The great 

advantage of these architectures is that they can also optimize data dependent instructions, 
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besides executing the non-dependent ones concurrently. Another advantage is that some of 

these organizations are able to store sequences of instructions with their dependencies already 

resolved. Thus, differently from the superscalar, the processor does not need to analyze the 

dependencies each time a block is executed. 

Moreover, it is also possible to exploit the parallel execution of program threads. The 

employment of multicore organizations coupled with the support of the scheduler from the 

operating system, enables the simultaneous execution of application threads through many 

processor cores. This is defined as thread level parallelism (TLP) and can be used in any 

organization, as long as precautions with data consistency in cache and synchronization 

between cores are taken, which involve hardware support. Therefore, it is also possible to 

increase performance on reconfigurable organizations through the exploitation of TLP, by the 

replication of cores that have their own reconfigurable datapath each. CReAMS (Custom 

Reconfigurable Arrays for Multiprocessor Systems) is an example of such a system.  

CReAMS is a reconfigurable system that exploits ILP through an array of functional 

units capable of adapting itself to execute many instructions concurrently. CReAMS also 

exploits TLP by replicating its basic core (composed of the processor, the array and additional 

circuitry to control them), called DAP. Additionally, CReAMS is homogeneous: all cores are 

the same, which means that the reconfigurable array is also identical on every core.  

However, as already mentioned, current applications on embedded processors are quite 

heterogeneous. Running them on homogeneous multicore systems leads to inefficient usage of 

the aforementioned architecture. When the cores are not under full usage, many of the 

functional units on the reconfigurable array are not used, wasting resources and power. 

1.1 Contributions 

 

Considering the motivations discussed above, this work will study the potential of using 

a heterogeneous configuration of CReAMS. A heterogeneous CReAMS differs from the 

homogeneous by the size of the reconfigurable array in each DAP that composes the system. 

Although CReAMS was originally created to be homogeneous, two different configurations 

heterogeneous CReAMS were already studied in [1]. This work will further explore the 

variation of performance on heterogeneous CReAMS by creating many other versions. 

In the first step, we have created many heterogeneous versions of CReAMS considering 

an area parity with a few fixed homogeneous configurations. We have varied the number of 

functional units, the input context size and the reconfiguration memory to achieve a good 
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diversification of configurations. Our goal was to verify the potential of heterogeneous 

CReAMS by identifying points of performance improvements. Then, we have selected a few 

of these proposed configurations and simulate them on a variety of benchmarks – chosen to 

cover a wide range of applications. We show that one can find heterogeneous configurations 

that have better performance on some applications, but worst in others.  

This work is organized as following: in section 2 we discuss about the reconfigurable 

architectures and their main classifications; section 3 has a collection of related works both in 

multithreaded reconfigurable systems and heterogeneous architectures; section 4 introduces 

CReAMS and its organization; section 5 discusses about the heterogeneous version of 

CReAMS; section 6 shows the methodology used in this work including the simulation 

environment and the tools used to reach the results; section 7 discusses and shows some of the 

most interesting results; and, finally, section 8 gives conclusions and the expected future work 

for this project. 

 

 

2. RECONFIGURABLE ARCHITECTURES 

 

The architectures that can adapt themselves to provide a hardware expertise for a 

specific application are known as reconfigurable systems. Because of this specialization, these 

architectures are expected to provide performance and energy saving improvements. However, 

these systems are still built aiming flexibility to execute many kinds of tasks, which means that 

they have smaller gains if compared to dedicated circuits, like Application-Specific Instruction 

Set Processors (ASIPs) and Application-Specific Integrated Circuits (ASICs) [2]. 

 

2.1 Basic Principles 

 

Reconfigurable systems are usually composed of a reconfigurable logic, a controller – 

to control the logic and the communications – and a context memory – to store the 

configurations – that are usually coupled to a General Propose Processor (GPP). Pieces of code 

are executed in the reconfigurable logic while others are executed in the GPP. The more code 

is executed in the reconfigurable logic, the better, as this will be processed in a more efficient 
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way. However, this could lead to higher costs for the circuitry: there is need for bigger area and 

memory to implement the reconfigurable logic. 

Reconfigurable systems usually implement the following six steps: 

 
1) Code Analysis: The identification of the parts of code that can be transformed to 

execute in the reconfigurable logic. Usually, these are the pieces of code that are 

most used, like loops, and are named as hot spots or kernels. 

2) Code transformation: The kernels are replaced by reconfigurable instructions, 

which are handled by the control unit in the reconfigurable logic.  

3) Reconfiguration: The reconfigurable logic is then reorganized to perform the 

function that the current reconfiguration instruction was designed for. The 

configuration of the logic is stored in a special memory, called configuration 

context. The time needed to configure the whole system is called reconfiguration 

time, while the memory required for storing the reconfiguration data is called context 

memory. Both these parameters constitute the reconfiguration overhead. 

4) Input Context Loading: The input operands are fetched. These could come from the 

register file, a shared memory or transmitted by message passing. 

5) Execution: The actual execution of the reconfiguration instruction. 

6) Write Back: The results from the reconfiguration logic execution are written back in 

the register file or shared memory, or transmitted by message to the reconfigurable 

control unit or the GPP. 

Steps 3 – 6 are repeated while reconfigurable instructions are found in the code. 

 

2.2 Classification 

 

A reconfigurable system can have many classifications, as shown in [2]. Here we will 

discuss the ones that are most important for our work. 

1) Code Analysis: The code analysis can be done directly in the binary/source code or 

in the trace generated by the execution of the program on the GPP. The trace method 

has the advantage of keeping dynamic information. For instance, the system 

designer cannot know if loops with non-fixed bounds are the most used ones by only 

analyzing the static source code. However, the designer can use tools that 
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dynamically analyze the trace and indicate which are the kernels of the application 

that are being most executed. 

2) Coupling: This determines how the reconfigurable unit (RU) is coupled to the GPP. 

The way the coupling is applied determines how the data transmission and 

synchronization are done. There are three main places where the RU can be placed 

relative to the main processor: 

• Attached to the processor: The reconfigurable logic communicates with the 

processor by an I/O bus, having to pass through the main memory, which 

generates high overhead. 

• Coprocessor: The RU is placed next to the GPP. The communication is usually 

done using a protocol similar to those used by coprocessors. 

• Functional Unit: The logic is placed inside the main processor. This way, the RU 

has full access to the register file of the processor, greatly reducing the 

communication overhead, but increasing the chip area. 

3) Granularity: This defines the level of data manipulation of the RU. For fine-grained 

logic, the smallest blocks that can be configured are usually gates (like on LUTs of 

FPGAs, they are efficient for bit level operations). On the other hand, coarse-grained 

RUs have larger blocks (e.g.: ALUs), better suited for bit parallel operations (like 

bytes, or words). 

 

3. RELATED WORK 

  

In this section, we will show some of the works that were developed and are considered 

the state of the art in reconfigurable systems with multi core processors. However, as by our 

knowledge, there are no currently solidified systems that combine reconfigurable architectures 

and heterogeneous cores. Thus, we present current works on thread scheduling and power 

consumption on heterogeneous systems. 

 

3.1 Multithreaded Reconfigurable Systems 

 

One can find different single- and multi- processing environments which apply some 

kind of adaptability to improve the performance of applications [3] [2] [4]. They can be 
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homogeneous or heterogeneous, considering their architecture (i.e. what ISA is implemented) 

and organization (i.e. if the processors that comprise the system are the same or not). 

Watkins [5] presents a procedure for mapping functions in the ReMAPP system, which 

is composed of a pair of coarse-grained reconfigurable arrays that is shared among several 

cores. As an example of a system with homogeneous architecture and heterogeneous 

organization, one can find Thread Warping [6]. It extends the Warp Processing [7] system to 

support multiple-thread execution. In this case, one processor is totally dedicated to execute the 

operating system tasks needed to synchronize threads and to schedule their kernels in the 

accelerators. ARM’s big-LITTLE [8] also implements a heterogeneous organization and 

homogeneous architecture by grouping a Cortex A7 and a Cortex A15 within the same chip. 

This strategy aims to provide high performance as well as power efficiency by selecting at run-

time the right processor to execute the task at hand according to its requirements. 

KAHRISMA [9] is another example of a totally heterogeneous architecture. It supports 

multiple instruction sets (RISC, 2- 4- and 6-issue VLIW, and EPIC) and fine and coarse-grained 

reconfigurable arrays. Software compilation, ISA partitioning, custom instructions selection 

and thread scheduling are made by a design time tool that decides, for each part of the 

application code, which assembly code will be generated, considering its dominant type of 

parallelism and resources availability. A run time system is responsible for code binding and 

for avoiding execution collisions in the available resources. 

Both ReMAPP and KAHRISMA are able to optimize multiple threads, but they break 

the binary compatibility. 

CReAMS have the following advantages: 

• Unlike KAHRISMA, Thread Warping and big-LITTLE ARM’s strategy, this 

proposal is physically homogeneous in both architecture and organization. 

Heterogeneity is achieved on the fly, without any human intervention, by 

employing a binary translation mechanism that will be explained later. It eases 

the software development process since a well-known tool chain (i.e. gcc) is 

used for any of its versions. Neither source code modifications nor additional 

libraries are necessary if new processing elements are inserted. 

• KAHRISMA, Thread Warping and ReMAPP rely in special and particular tool 

chains to extract thread-level parallelism and to prepare the platform for 

execution. CReAMS approach does not change the current development flow, 

so well known application programming interfaces (e.g. OpenMP) can be used. 

This way, the programmer can extract TLP in a friendly interface, since such 
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APIs are already coupled to a great number of compilers (e.g. gcc and icc), which 

makes the software development and the binary generation process easier than 

the aforementioned approaches. 

• In contrast to ReMAPP and Thread Warping, CReAMS employs a coarse-

grained reconfigurable fabric instead of a fine-grained one. Fine-grained 

architectures provide higher acceleration levels, but their scope is narrowed to 

applications that have few kernels responsible for a large part of the execution 

time. Coarse-grained reconfigurable architectures reduce the reconfiguration 

time and memory footprint due to the small context size, which increases its field 

of applications, because they are capable of accelerating the entire application. 

• In contrast to ARM´s big.LITTLE strategy, CReAMS does not waste energy 

rediscovering parallelism like a superscalar does, but rather redefine the data 

path on the fly for ILP exploitation with minimum energy dissipation. 

 

3.2 Heterogeneous Systems 

 

Most of the works on heterogeneous systems focus on efficient thread schedule, as the 

real gains in performance and power that these systems present are directly related to the correct 

assignment of jobs to the cores – as discussed later in section 5. Thus, we show the current work 

being made on scheduling in heterogeneous systems. 

An early work on heterogeneous systems [10] shows that by simply applying the 

heterogeneity, one can reach significant energy savings with small overhead in performance 

and area. In this work, the authors have replicated a number of different Alpha processors and 

the threads are reallocated (by OS decision) accordingly to their necessities. This is a very 

simple approach and used only as a proof of concept, as only one core is active, so no TLP is 

exploited. 

In [11] the authors propose an algorithm that is implemented directly in the scheduler 

of the OS. The algorithm uses some metrics to make dynamic scheduling decisions, biasing 

each thread to be allocated in the most compatible core. However, this approach needs to 

modify the OS kernel. Moreover, the OS needs to be aware of the resources of each core so it 

can correctly allocate the threads. 

Metrics to decide which core a thread must be allocated to can also be applied in 

hardware, as in [12]. On that work, the authors use hardware counters to create a profile based 
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on ILP, MLP and the CPI stack for each thread. This profile is then used to determine whether 

a thread should be swapped to another core, a decision that is constantly made at small periods 

of time.  

Heterogeneity can be exploited, also, in runtime, as proposed in [13]. On this work, the 

authors create an out-of-order multicore superscalar processor in which cores are able to 

polymorph themselves into in-order cores whenever determined to be performance/Watt 

efficient. Using this approach, many units in a core can be switched off (such as the reorder 

buffer, load/store queue, etc) at runtime, creating heterogeneity inside the core, which avoids 

the performance overhead created by thread swapping and reduces energy consumption. 

Nonetheless, this comes at the cost of leaving many resources of the processor turned off, 

wasting chip area.  

None of these approaches, however, addresses heterogeneity using a reconfigurable 

organization. The heterogeneous CReAMS brings together all the advantages of the 

homogeneous version – which includes simultaneous TLP and ILP exploitation, binary 

compatibility and OS transparency – with the power and area efficiency provided by 

heterogeneity. 

 

 

 
4. CUSTOM RECONFIGURABLE ARRAYS FOR MULTIPROCESSOR 

SYSTEMS 

 

4.1 CReAMS 

 

The Custom Reconfigurable Arrays for Multiprocessor Systems (CReAMS) is an 

architecture based on the DAP and was presented in [14]. It is, actually, an extension of the 

later created to exploit TLP through the replication of the number of DAPs in a system. In this 

way, the reconfigurable system can now support (and take advantage of) multithreaded 

applications.  
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The communication among the DAPs is done through a 2D-mesh Network on Chip 

(NoC) using a XY routing strategy. CReAMS also includes an on-chip unified L2 shared 

memory, illustrated as SM in the Figure 1. As in any multithreaded system, the communication 

between the cores produces an extra timing overhead. When a core needs to exchange 

information with another one or with the SM, the data must travel through the hops of the 

network, which can be just one (if the destination core/SM is just next to the origin) or many. 

The mean number of hops the data need to go through to reach the destination increases with 

the total number of cores the system has (as the network becomes bigger), so the higher the 

number of cores in a configuration, the higher the communication overhead will be. Thus, a 

communication model must be considered as well during the simulation of CReAMS. 

The CReAMS system was originally created to be homogeneous between its cores, 

which means that all the DAPs on the configuration are exactly the same. They all have the 

same size in area, the same memory size (L1 cache size, reconfiguration memory table size, 

number of input and output context...) and the same functional units. This configuration 

represents the traditional approach to multicore systems – where the DAPs would be the generic 

cores – and it is simple to implement, as no special scheduling is necessary (a thread is simply 

allocated to the next free DAP). However, this is not the most efficient approach, whereas a 

low-duty thread will execute on the same environment as a heavy-duty one. 

 

 

DAP DAP 

DAP SM 

DAP DAP 

DAP 

DAP 

DAP 

Figure 1 CReAMS of 8 cores (DAPs) and a L2 

shared memory (SM) 
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4.2 DAP - Dynamic Adaptive Processors 

 

The DAP is a reconfigurable architecture tightly coupled to the processor and was 

presented in [15]. It is a transparent coarse-grained architecture – it is a reconfigurable datapath 

composed of functional units for word-level operations. To better explain the DAP, we divided 

it into four blocks, as shown in Figure 1(a). 

 

4.2.1 Block 1 – Reconfigurable data path 

 

Block 1 shows the structure for the reconfigurable data path. It is coarse-grained and 

tightly coupled to the processor's pipeline (there is no shared bus between them), which removes 

the necessity of external access to the memory and, consequently, saves power and reduces the 

reconfiguration time. As we can see in Figure 2(a), the data path is organized in a matrix 

structure, where the number of rows is the maximum number of instructions that can be 

executed in parallel. Independent instructions can be allocated on the same column. Therefore, 

the number of columns limits the ILP exploitation. Additionally, the number of columns 

dictates the maximum number of dependent instructions that can be executed in sequence in a 

configuration – the columns in one level are executed in sequence as a big combinational block. 

For example, the configuration in Figure 2 performs up to four arithmetic and logic operations, 

two memory accesses on cache and one multiplication at the same time, if all the data 

instructions are independent. As the critical path (the piece of combinational circuit that takes 

longer to produce a correct result) is the multiplier, it is possible to have other faster units in the 

Figure 2 (a) DAP blocks (b) Assembly of a loop (c) Allocation inside of reconfigurable datapath 
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same level. In the above example, three arithmetic and logic units (ALUs) compose a level, 

while the multiplier and the memory access take the equivalent to one cycle of the processor. 

In other words, this configuration can execute twelve arithmetic and logic operations, two 

memory accesses and one multiplication on each level (within one clock cycle) at the very best 

case. 

The entire structure of the reconfigurable data path is combinational, meaning that there 

is no temporal barrier (registers) between the functional units. The only registers present are at 

the entry point – the input context – and at the exit point – as temporary storage of the results. 

The feeding of the input context with the necessary data is the first step to configure the data 

path before starting the execution. The results are sent to the processor's register file on demand. 

It means that if any value is produced at any data path level (a cycle of the processor) and if it 

will not be changed in the next levels, this value can be written back on the next cycle. If the 

number of writes produced by the array is greater than the number of available write ports in 

the register file, than the excess instructions are forwarded to the next level.  In the example 

shown in Figure 2(a), the maximum number of ports available is two. 

Figure 2 shows a simplified overview of the interconnection structure of the 

reconfigurable data path. Bus lines connect the input context with the functional units and the 

output context, while multiplexers are responsible for choosing the path this data will run. The 

input multiplexers – two for each functional unit – will decide which are going to be the input 

registers for a specific functional unit (in the Figure 3, an ALU). The output multiplexers, on 

the other hand, will select if the output will be provided directly from the input context registers 

or from a previous functional unit. The control signals for these multiplexers are stored on the 

reconfiguration cache. 

 

Figure 3 Interconnection mechanism 
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4.2.2 Block 2 – Processor pipeline 

 

Block 2 is the basic processor coupled to the array. It is also the reference for 

comparisons on the simulation performance. In this work, the baseline processor is a SparcV8-

based architecture. Its five stage pipeline reflects a traditional RISC design (instruction fetch, 

decode, execution, data fetch and write back) and is similar to other RISC processors used in 

well-known embedded platforms (e.g. MIPS, ARM). 

 

4.2.3 Block 3 – Storage components 

 

There are two memory units specialized for the reconfiguration system: the address 

cache and the reconfiguration memory. The first holds the memory address of the first 

instruction of every configuration built by the dynamic detection hardware (explained later). 

This cache is implemented as a 4-way set associative table containing 64 entries (which means 

that the system can hold up to 64 configurations). An address cache hit indicates that a 

configuration was found, therefore this cache is used to verify the existence of a configuration 

and to point where it is stored on the reconfiguration memory. 

The reconfiguration memory holds the bits for each configuration saved. Each bit is a 

control bit for the output and input multiplexers. They indicate which functional unit will be 

active and which register will be read as operators.  

 

4.2.4 Block 4 – Dynamic detection hardware 

 

The DDH is a binary translation mechanism that turns the instructions from SparcV8 

ISA to reconfigurable array configurations. This block is responsible for instruction detection 

and allocation in the data path and it is implemented as a 4-stage pipelined circuit. The stages 

of the circuit are divided in Instruction Decode (ID), Dependence Verification (DP), Resource 

Allocation (RA) and Update Tables (UT). The translation process is performed as the processor 

executes the instruction (at the same time and independently), so there is no extra performance 

overhead, which means that it does not increase the processors critical path, leaving operating 

frequency unchanged. 

For each column of the reconfiguration data path (Figure 2(a)), there is a bitmap 

responsible for storing in the target operands of the already allocated instructions in the 
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respective column, named as Write Bitmap (Figure 2(c)). Thus, for each incoming instruction, 

its source operands will be compared to the target operands in this bitmap to decide in which 

column this instruction will be allocated, according to data dependencies. 

Figure 2(b) has an assembly code as an example. On Figure 2(c), the allocation of this 

code on the reconfigurable data path is shown. The first incoming instruction, a memory access, 

is allocated on the highest functional unit of the leftmost data path column. However, as in this 

case this type of operation takes an entire level (a processor cycle), the fourth bit of the write 

bitmap (representing the r4 register) of the columns 1, 2 and 3 are set to maintain the allocation 

consistency. 

The dependency detection starts from the second instruction. In the example, the 

instruction number two reads the r4 register. As it is written by the previous instruction, a read 

after write (RAW) dependence is found. The DDH detects it (through the write bitmap) and 

allocates the instruction number two at the later column of instruction number one. The second 

bit of the fourth column of the write bitmap is set since this instruction has the register r2 as the 

target operand. The dependency analysis keeps these steps until instruction number five, where 

a loop is found. 

The DDH supports speculation, so when the branch instruction is found, a speculation 

flag is set and the configuration continues the allocation of the following iterations. In other 

words, it is possible (if there is enough space on the array) to keep multiple iterations of a basic 

block on the same configuration. The instructions in black on Figure 2(c) represents the 

instructions allocated for the second iteration of the loop code of Figure 2(b). 

This hardware is capable of performing register renaming, resolving false dependencies. 

In instruction number ten, the register r1 could be read by the incoming instruction in the second 

column, but could not write in this same register at this column. This is detected by the DDH 

and the register is renamed to r5 (the next empty register of the input context). All subsequent 

instructions that contain a reference to r1 are modified accordingly. 

 

  



 

 

 

 

24 

 

 

 

  

5. HETEROGENEOUS CREAMS 

 

A heterogeneous version of CReAMS is a configuration where each DAP has a different 

number of functional units, input and output context length and memory size. This allows for 

some DAPs to be bigger than others (i.e.: some will be more efficient to execute threads that 

can exploit higher levels of instruction parallelism). Similarly, the smallest DAPs would be 

allocated to run jobs with low ILP.  

For instance, in Figure 4(a) we illustrate two heterogeneous threads. The one in the left 

is bigger, meaning that it has larger basic blocks and has more potential for ILP exploitation. 

The one in the right is smaller, so its kernels are composed of groups of fewer instructions. On 

this case, both threads are being scheduled on cores that have large arrays. The processor will 

be able to execute both threads; however, the core that is receiving the smaller thread will not 

use most of its functional units on the reconfigurable datapath – as illustrated on Figure 4(b) – 

simply because the configurations this thread generates do not require all the resources 

available. This waste of resources also generates power leakage. Similarly, on Figure 5(a) we 

show an example where the same heterogeneous threads are executed in small cores. Again, 

the CReAMS processor will be able to run both threads, however – as illustrated in Figure 5(b) 

Figure 4 (a) Heterogeneous threads running on big cores. (b) Parts of the array are wasted. 
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–, the DDH will have to split the kernels of the larger thread. As this thread has larger basic 

blocks, it will generate bigger configurations. The reconfigurable array, however, does not have 

enough resources to execute the configuration in one cycle, so they have to be split to fit the 

smaller array. This thread will need more cycles to finish, which means that it will take more 

time to execute and, consequently, will consume more power. 

We aim to achieve a configuration like the one illustrated on Figure 6, where the larger 

threads are scheduled to bigger cores and smaller threads to smaller cores. This will lead to 

increased efficiency in processing heterogeneous applications. 

 
Figure 5 (a) Heterogeneous threads running on small cores. (b) Bigger threads have to be split . 

Figure 6 Heterogeneous threads running on heterogeneous cores 
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Figure 7 shows an example comparing an eight-core homogeneous CReAMS of 

medium cores with a quad-core heterogeneous CReAMS composed of two big cores, one 

medium and one small. On this illustration, both processors have the same area, as the large 

cores on the heterogeneous configuration compensate the area occupied by the extra medium 

cores on the homogeneous. 

 

This configuration, however, leads to some problems that need to be addressed 

carefully. For instance, how to determine the best sizes of DAPs to be used and the best 

combination – should we have many small sized DAPs or more big sized ones – that leads to 

better performance if compared to the homogeneous configuration. 

 

6. METHODOLOGY 

 

The first step of this work was to create many heterogeneous configurations and then 

choose the most suitable for testing. As the CReAMS simulator is already very generic when it 

comes to the resources configurations, no changes on it were necessary. The simulator works 

by emulating each DAP, using configurations that are passed as parameters. Then, it compiles 

the information (e.g. cycles taken, cache access) of each core and outputs a result file. 

Therefore, at first, to simulate heterogeneous configurations we only needed to create them and 

forward them to the simulator accordingly. Later on, a modification was made to simulate a 

dynamic scheduler as well. This scheduler is important to allocate the threads accordingly to 

their ILP requirements.  

To create the configurations, a spreadsheet was used. This spreadsheet is part of the 

CReAMS project and it contains the area occupied for each of the CReAMS components. It 
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Figure 7 An eight-core homogeneous version of CReAMS and a quad-core 

heterogeneous version 
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allows the user to vary the number of functional units on the datapath, the dimensions of the 

array and the input context length and receive the expected area occupied by this configuration 

– considering the number of cores as well. This spreadsheet was also modified to be able to 

vary the size of the reconfiguration cache – giving how many configurations the cache can hold 

–, a resource needed to create finer area parity combinations, as we will discuss later.   

The latter tools discussed were already developed and from now on we show what was 

added on the process through this work. The next step was to create many scripts to run 

automatically the simulations. Each configuration needs a script for each application and 

number of cores. Thus, if there is a combination of five applications with five number of cores, 

each configuration needs a total of 25 scripts. Furthermore, to run all these jobs automatically, 

another script was created to iterate over the number of cores and call all the necessary 

simulations. 

The second phase of tests was focused on two points: to compare versions of 

heterogeneous CReAMS that would be smaller than the homogeneous configurations; and to 

insert a dynamic scheduler, so we could analyze the impact of intelligent allocation on 

performance 

The former is easily achieved by creating new heterogeneous and homogeneous 

configurations. The CReAMS simulator, also, already supported dynamic scheduling, so the 

only need was to create new simulation scripts with the correct parameters.  

Figure 8 shows the steps from the creation of each configuration to the analysis of the 

results. On step (A), we use the spreadsheet that calculates the area of a CReAMS system to 

create the many configurations of same area. Step (B) uses each of these configurations to create 

many scripts for the selected applications, which are then simulated on step (C). The results of 

all the simulations are then compiled in a single file in step (D). Finally, we compare the 

configurations that have same area and format this data in a chart, for analysis. 
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Figure 8 Methodology in steps. (A) Configurations creation thought area spreadsheet. (B) Scripts for 

simulation of each configuration. (C) Simulation of scripts. (D) Compilation of results. (E) 

Comparison and chart anylisis. 
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6.1 Simulation environment 

 

This work has used the Simics simulator [16], an instruction level simulator. Simics uses 

an environment, which is a set of configurations to specify the characteristics of the hardware 

and the software of the simulated system, to extract the instructions executed by a specific 

processor. For this work, we have used an environment with a Linux Ubuntu operating system 

running over a single SparcV8 processor. The benchmarks used were created using OpenMP 

and Pthreads, thus the number of threads spawned at run-time are user arbitrary, even if the 

system uses a single processor. 

Simics produces a sequencial trace of instructions and data accesses for all threads. As 

they are all mixed by the simulator, special instructions marks were added to indicate where 

each thread trace starts and ends. The trace generated by Simics is then sent to a python script, 

named as Splitter. This script recognizes the instruction marks and splits the trace file, 

generating many new files, one for each running thread of the application. 

Mkfifo is a UNIX process that manages automatically a first-in-first-out (FIFO) 

behavior. The Simics simulator and the Splitter communicate in a producer-consumer way, so 

this FIFO process was inserted to control such communication. The split files created by the 

Splitter are also mkfifo processes, as they communicate with the DAPs in a producer-consumer 

behavior as well. 

For each thread that was created, an instance of a DAP simulator is used (in this case, a  

CReAMS simulator). Each DAP consumes the instructions sent by the Splitter and produces a 

file with results for performance, communication among threads and energy consumption. The 

Backward process is activated at the end of the simulation. It compiles the results that are 

generated for each thread in a single file, providing the results of the whole application 

simulation. 

As the simulations are usually made for many core variations (from 4 to 64 cores) and 

each of them outputs results for the best and worst case of communication, a final python script 

is executed to merge all the results. It receives the name of the application and a code to identify 

the simulation batch as parameters. With this information, the script recursively searches for all 

the results of this batch and compiles a single, CSV formatted, file that can be easily imported 

to a spreadsheet software. 
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6.2 Benchmarks 

 

In order to measure the performance of CReAMS, benchmarks from different suites 

were selected to cover a wide range of behaviors in terms of type (i.e. TLP and ILP) and degree 

of existing parallelism. The five benchmarks chosen were lu and fft from parallel suites [17] 

[18], equake from the SPEC OMPM2001 [19] package and susan edges and susan corners from 

the MiBench suite [20]. In [1] a study was made to characterize the potential of these 

applications on obtaining performance improvements when TLP or ILP exploitation is applied. 

The mean basic block size gives us some clues about the limits of ILP that the selected 

application may provide. In addition, the percentage of the entire application code that is 

executed in parallel, when multithreaded application environment is considered, is an important 

metric to obtain the upper bound for TLP exploitation in the applications. This metric is also 

called load balancing and it gives the TLP potential for the application: the more an application 

can distribute its work through its threads, the more it will be able to take advantage of a 

multicore system. Table 1 shows the results of this study. 

FFT is not shown on the table study, however, as will be discussed later, the results 

suggests that it has good load balancing, as for the homogeneous simulations, it has gradually 

improved performance with the increase of cores.  

 

 

 

 

 

 

Table 1 shows that equake is a benchmark with small basic blocks, meaning that ILP is 

poorly exploited on this application. Moreover, it has also a very poor load balancing between 

threads, which worsens each time the number of cores is increased. That also suggests that 

equake is not a TLP oriented application. Overall, poor or none advantages are expected when 

running equake on a system that focus on ILP and TLP exploitation. 

Similarly, lu has small basic blocks but good load balancing when the number of cores 

is small. Susan edges and susan corners have both big basic blocks, however susan corners has 

a better load balancing, meaning that we should see it performing better on configurations that 

have more cores. Susan edges, however, should perform better on systems with more resources 

on the arrays – consequently, which have less cores, as we work with area parity. 

equake 4,80

susan_e 16,60

susan_c 17,36

lu 8,32

67,58 49,18 34,94 12,50

82,20 56,77 29,35 7,03

18,49 10,32 5,10 0,92

39,80 24,90 4,80 0,90

Benchmark
Mean BB 

Size(#instr)

Load Balancing (%) in threads

4 8 16 64

Table 1 Load balancing and mean basic block size of selected applications 
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6.3 Communication overhead 

 

As any multicore system, the cores of CReAMS must communicate between themselves 

to perform synchronization. In section 4.1 we have discussed that the communication between 

the DAPs are done through a NoC using the XY strategy, which introduces an overhead each 

time the cores have to change information. This overhead depends on the size of the mesh 

(which is directly dependent on the number of cores) and the distance between cores, i.e., the 

number of router the information must go through between origin and destination. 

In [1] a model for the corner cases of communication in CReAMS is proposed. It 

consider the best and worst cases of communication overhead, being the best case when the 

traffic of data is uniformly distributed among the NoC nodes and the worst when data is 

concentrated in a specific node. This is the average number of hops and the model calculates it 

as follows: 

Distributed																	� ������	 = ��
 , ℎ	����������	 = 2 ��
 − �
�� , ℎ	���	  

Centralized              ������	 = ����� 
where ℎ = 	√� 

Table 2 shows the number of hops for a single communications process considering the 

formulas presented above. 

Table 2 Average number of hops for cores 
 4 Cores 8 Cores 16 Cores 32 Cores 64 Cores 

Distributed 1.33 1.88 2.66 3.77 5.33 

Centralized 1.33 2.09 3.20 4.81 7.11 

 

 

6.4 Dynamic Scheduler 

 

On the first extracted results, the simulator used a static scheduler for the DAPs, 

meaning that once a thread starts running in a core, it will end its execution on the same core. 

Dynamically scheduling threads to work on the most efficient cores have been proved to be one 
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of the main advantages of heterogeneous systems [21]. Thus, for the second phase of 

simulations, a dynamic thread scheduler (proposed on [1]) was applied.  

This scheduler keeps instruction counters for each thread on the reconfiguration memory 

and based on this data, it changes the threads to the cores that most suits their needs. Thus, 

threads that contain more instructions on their configurations will be allocated to cores that 

have more resources, while threads that have small load will be sent to cores with small arrays. 

The main goal of this algorithm is not to employ the best scheduling possible, but to verify if 

performance losses provided by the heterogeneous CReAMS in some applications are due to 

wrong thread scheduling. 

 

7. RESULTS 

 

In this section, we will present the results obtained by this work. We start with all the 

heterogeneous and homogeneous configurations that were created. Then, we show the ones that 

were chosen to be simulated. Finally, we present the results of the simulations, both with and 

without a scheduling mechanism.  

7.1 The configurations created 

 

 To create new configurations of CReAMS, one can change the resources on the array, 

the input context size or the length of the reconfiguration memory. However, these 

characteristics are also connected. If the array is greatly expanded, but the input context stays 

short, just a few registers will be able to be addressed by the array at each cycle, so the system 

will take many cycles to fill the context. Moreover, if the reconfigurable cache is not expanded 

as well, the system will not be able to hold big configurations, in other words, the array will not 

be fully used during a reconfiguration process. Thus, to select the best configurations, we had 

to consider a good balance between these characteristics of the system, as we will discuss later. 

A great number of configurations were created considering area parity. We started 

creating configurations that would have parity with a certain number of SparcV8 processors 

(the basic processor of CReAMS) and then combine these cores to compare them with 

homogenous versions of CReAMS. This strategy lead to 15 configurations of small cores 

arrays, 22 configurations of medium cores and other 22 of large cores, shown in tables 3, 4 and 

5. Combined over, we could use 15x44 variations to create configurations using to sizes of core 

and 15x22x22 to create configurations with the three sizes. This would lead to almost 8000 
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configurations to simulate. Furthermore, ours simulations were made on five benchmarks 

(discussed later) from with five different core sizes, so for each configuration, a total of 25 

simulations were needed. As some of the benchmarks can take several hours to execute, the 

simulation of all the configurations created was not practicable and just a few of them were 

selected. 

  

Small Core SC1 SC2 SC3 SC4 SC5 SC6 SC7 SC8 SC9 SC10 SC11 SC12 SC13 SC14 SC15

Lines 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
ALU 4 2 1 2 3 8 3 2 4 6 10 4 2 5 8
Load/Store 1 7 2 2 2 4 12 5 3 4 4 16 6 5 6
Multiplier 1 1 6 2 1 1 3 9 3 2 2 4 12 5 4
Input Context 4 6 4 10 8 8 12 12 20 12 16 16 16 24 16
Sparcs (Parity) 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4

Table 3 Configurations of small cores 

Medium Cores MC1 MC2 MC3 MC4 MC5 MC6 MC7 MC8 MC9 MC10 MC11

Lines 15 15 15 15 15 15 15 15 15 15 15
ALU 2 1 4 3 1 2 4 7 3 1 3
Load/Store 1 2 2 8 3 2 3 3 10 4 2
Multiplier 1 2 1 1 6 2 1 1 3 10 2
Input Context 15 15 15 15 15 28 15 15 15 15 28
Parity 2 2 3 3 3 3 3 4 4 4 4

MC12 MC13 MC14 MC15 MC16 MC17 MC18 MC19 MC20 MC21 MC22

15 15 15 15 15 15 15 15 15 15 15
6 12 6 2 4 8 12 5 2 5 10
4 6 18 8 4 6 8 20 10 5 8
2 4 2 15 4 4 2 5 16 5 4

15 15 15 15 38 20 22 22 22 46 24
4 6 6 6 6 6 8 8 8 8 8

Table 4 Configurations of medium cores 
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We have analyzed and selected the best configurations on the three tables to create a 

few heterogeneous versions of CReAMS. To select these configurations, we have considered 

those which had a good balance between the functional units. For instance, SC3 in Table 1 has 

many multipliers and just a few ALUs and memory access units. It is well known that most 

programs use more ALU operations than multiplications, furthermore, the lack of load/store 

units can highly compromise the performance of an application, as each time those units fully 

occupied, the reconfiguration datapath will need to wait for the next cycle to execute them. On 

the other hand, SC7 has too many load/store units, which will probably be wasted and just 

occupy a great amount of area, as most of the applications do not need to access memory so 

often [20]. 

The final heterogeneous configurations tested were based on a small core version (SC6), 

a medium core (MC7), and a big core (BC7). Those configurations have a good balance 

between their functional units and input context length. From these, we have created other three 

version of heterogeneous cores. One of them with 50% of big cores, 25% of medium cores and 

25% of small cores (called Hetero1), another with 25% of big cores, 50% of medium cores and 

25% of small cores (the Hetero2) and the last one with 25% of big cores, 25% of medium cores 

and 50% of small cores (the Hetero3). For instance, a 4-core version of Hetero1 would have 

two big cores, one medium core and one small core, while the Hetero2 would have one big, two 

medium and one small. Those three configuration allowed us to analyze the impact of the sizes 

of the cores over the applications. 

Homogeneous versions of CReAMS were also simulated, so we could compare the 

results. However, these results were already done on the first part of this project (see 

Table 5 Configurations of big cores 

Big Cores BC1 BC2 BC3 BC4 BC5 BC6 BC7 BC8 BC9 BC10 BC11

Lines 24 24 24 24 24 24 24 24 24 24 24
ALU 2 1 5 2 1 2 4 8 2 2 3
Load/Store 1 2 1 6 3 2 3 2 12 4 3
Multiplier 1 2 1 2 6 2 1 1 2 8 3
Input Context 24 24 24 24 24 42 24 24 24 24 42
Parity 4 4 6 6 6 6 6 8 8 8 8

BC12 BC13 BC14 BC15 BC16 BC17 BC18 BC19 BC20 BC21 BC22

24 24 24 24 24 24 24 24 24 24 24
6 10 3 1 4 8 16 4 1 5 11
4 4 16 4 4 6 4 20 8 5 9
2 1 2 14 4 3 1 4 18 5 4

24 32 32 32 54 32 32 32 32 62 32
8 12 12 12 12 12 16 16 16 16 16
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APPENDIX A), hence they were reused. Nonetheless, for convenience, we show these 

configurations on Table 7. Homo1 is a small version of CReAMS – if compared with the size 

of the cores on the heterogeneous versions, it would be classified as small – while the Homo2 

is a medium version. 

 
For the second phase, which we inserted the scheduler in the simulations, we have 

created three new homogeneous configurations of CReAMS focusing on having more size 

variation on the cores. These configurations are listed on Table 6. 

Similarly, we have created five new heterogeneous (Hetero 4, 5, 6, 7 and 8) 

configurations and re simulated the same heterogeneous versions from the first phase (Hetero 

9, 10 and 11), but now with the scheduler. We wanted to analyze the behavior of these 

configurations and what changed when the scheduler was inserted. These versions are shown 

in Table 8 and Table 9. These were fine adjusted to have similar area if compared with the 

homogeneous versions of Table 6. On the bigger cores, we have increased and decreased the 

size of the reconfiguration cache, because theses cores already have enough functional units to 

exploit ILP and increasing them even further would not result in great performance increase (as 

shown on the first part of this work, in APPENDIX A). However, medium and smaller cores 

still have room for ILP exploitation, so we have fine adjusted their functional units. 

In Table 6 the line “Total Sparcs” represents the number of SparcV8 processors that 

would fit (that have the same area as) one core of the homogeneous configuration. In Table 8 

and Table 9 the line “Total 4Core Configuration Sparc” represents the number of SparcV8 

processors that would fit a 4-Core version of the heterogeneous configuration. These numbers 

are used as basis for our area parity. 

Configuration Lines ALU Load/Store Multipliers Input Context

Homo1 9 3 1 2 8
Homo2 15 4 4 2 16

Table 7 Homogeneous configurations 

Table 6 New homogeneous configurations 

Name Homo3 Name Homo4 Name Homo5

Total Sparcs 2 Total Sparcs 4 Total Sparcs 8

Lines 6 Lines 15 Lines 21

ALUs 4 ALUs 5 ALUs 6

Load/Stores 3 Load/Stores 4 Load/Stores 5

Muls 2 Muls 2 Muls 4

Input C. 8 Input C. 16 Input C. 24

Cache Rec 32conf Cache Rec 64conf Cache Rec 128conf

Homogeneous
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Table 8 New heterogeneous configurations (4-7) 

Subname BigCores Subname MedCores Subname SmallCores

Proportion 50% Proportion 25% Proportion 25%

Total Sparcs 12 Total Sparcs 6 Total Sparcs 2

Lines 27 Lines 15 Lines 6

ALUs 7 ALUs 8 ALUs 3

Load/Stores 5 Load/Stores 5 Load/Stores 2

Muls 4 Muls 4 Muls 1

Input C. 28 Input C. 16 Input C. 8

Cache Rec 128conf Cache Rec 64conf Cache Rec 32conf

32

Subname BigCores Subname MedCores Subname SmallCores

Proportion 25% Proportion 50% Proportion 25%

Total Sparcs 6 Total Sparcs 4 Total Sparcs 2

Lines 21 Lines 15 Lines 6

ALUs 5 ALUs 5 ALUs 4

Load/Stores 4 Load/Stores 4 Load/Stores 3

Muls 2 Muls 2 Muls 2

Input C. 24 Input C. 16 Input C. 8

Cache Rec 64conf Cache Rec 64conf Cache Rec 32conf

16

Subname BigCores Subname MedCores Subname SmallCores

Proportion 25% Proportion 25% Proportion 50%

Total Sparcs 8 Total Sparcs 4 Total Sparcs 2

Lines 21 Lines 15 Lines 6

ALUs 6 ALUs 5 ALUs 4

Load/Stores 5 Load/Stores 4 Load/Stores 3

Muls 4 Muls 2 Muls 2

Input C. 24 Input C. 16 Input C. 8

Cache Rec 128conf Cache Rec 64conf Cache Rec 32conf

16

Subname BigCores Subname MedCores Subname SmallCores

Proportion 25% Proportion 50% Proportion 25%

Total Sparcs 14 Total Sparcs 7 Total Sparcs 4

Lines 21 Lines 15 Lines 6

ALUs 9 ALUs 9 ALUs 10

Load/Stores 7 Load/Stores 7 Load/Stores 8

Muls 5 Muls 4 Muls 5

Input C. 32 Input C. 20 Input C. 16

Cache Rec 128conf Cache Rec 64conf Cache Rec 32conf

32

Hetero4

Total 4Core Configuration Sparcs:

Hetero5

Total 4Core Configuration Sparcs:

Hetero6

Total 4Core Configuration Sparcs:

Hetero7

Total 4Core Configuration Sparcs:
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Table 9 New heterogeneous configurations (8-11) 
 

  

Subname BigCores Subname MedCores Subname SmallCores

Proportion 25% Proportion 25% Proportion 50%

Total Sparcs 16 Total Sparcs 8 Total Sparcs 4

Lines 21 Lines 15 Lines 6

ALUs 10 ALUs 10 ALUs 10

Load/Stores 8 Load/Stores 8 Load/Stores 8

Muls 6 Muls 5 Muls 5

Input C. 32 Input C. 20 Input C. 16

Cache Rec 128conf Cache Rec 64conf Cache Rec 32conf

32

Subname BigCores Subname MedCores Subname SmallCores

Proportion 50% Proportion 25% Proportion 25%

Total Sparcs 6 Total Sparcs 3 Total Sparcs 2

Lines 24 Lines 15 Lines 9

ALUs 4 ALUs 4 ALUs 3

Load/Stores 3 Load/Stores 3 Load/Stores 2

Muls 1 Muls 1 Muls 1

Input C. 24 Input C. 12 Input C. 8

Cache Rec 128conf Cache Rec 64conf Cache Rec 32conf

17

Subname BigCores Subname MedCores Subname SmallCores

Proportion 25% Proportion 50% Proportion 25%

Total Sparcs 6 Total Sparcs 3 Total Sparcs 2

Lines 24 Lines 15 Lines 9

ALUs 4 ALUs 4 ALUs 3

Load/Stores 3 Load/Stores 3 Load/Stores 2

Muls 1 Muls 1 Muls 1

Input C. 24 Input C. 12 Input C. 8

Cache Rec 128conf Cache Rec 64conf Cache Rec 32conf

14

Subname BigCores Subname MedCores Subname SmallCores

Proportion 25% Proportion 25% Proportion 50%

Total Sparcs 6 Total Sparcs 3 Total Sparcs 2

Lines 24 Lines 15 Lines 9

ALUs 4 ALUs 4 ALUs 3

Load/Stores 3 Load/Stores 3 Load/Stores 2

Muls 1 Muls 1 Muls 1

Input C. 24 Input C. 12 Input C. 8

Cache Rec 128conf Cache Rec 64conf Cache Rec 32conf

13

Hetero10

Total 4Core Configuration Sparcs:

Hetero11

Total 4Core Configuration Sparcs:

Hetero8

Total 4Core Configuration Sparcs:

Hetero9

Total 4Core Configuration Sparcs:
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7.2 Simulations Results 

 

7.2.1 Simulations without scheduler 

 

On the first part of this work, we have simulated the homogeneous versions Homo1 and 

Homo2 and the heterogeneous versions Hetero1, Hetero2 and Hetero3. The main goal was to 

analyze the potential of having heterogeneous cores of CReAMS without worrying about the 

thread scheduling. The simulations are presented with best and worst case of communication 

and are compared with the percentage of speedup a configuration has achieved over another. 

Positive speedups means that the heterogeneous configuration was faster, while negative 

percentages means that the homogeneous version was faster. We have selected the most 

interesting cases to discuss and those that do not have similar behaviors. The complete list of 

results can be found on APPENDIX B. 

Figure 9 shows the results for the worst and best cases of communication between the 

Hetero1 and Homo1 configurations. It can be seen that the communication overhead negatively 

affects the performance of the configuration with more cores (in this case, the homogeneous), 

so the difference between the cases are a small increase in performance of the heterogeneous 

version on the worst scenario.  

While the communication overhead is directly dependent on the number of cores, the 

overall performance of the configurations varies accordingly to the characteristics of the 

application being executed. We can clearly see that the application that have high levels of TLP 

– previously discussed in section 7.2 – are faster on the versions of CReAMS with more cores, 

the homogeneous in this case. On the other hand, applications that are more heterogeneous 

(have low load balancing) or that have high ILP levels are benefited by the assorted 

environment provided by the heterogeneous CReAMS. On this case, where no scheduler is 

assigned, these applications can take advantage of the bigger cores that are available on 

heterogeneous configurations and, as they have four times less cores, they do not suffer with 

the communication overhead as the homogeneous versions do. 
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Figure 10 shows the results comparing the Hetero1 with the Homo2 configurations. On 

this scenario, the effects of the worst case in communication are more evident. This scenario 

shows the same behavior we have observed on Figure 9 for the applications. However, as the 

Homo2 configurations are bigger than the Homo1, we see worst results on the high TLP 

benchmarks and better on the high ILP ones. Furthermore, in both figures, we can observe a 

tendency of getting better results when the number of cores is increased. In some applications 

that have high TLP levels, we switch from a scenario where the heterogeneous was slower to 

one that it becomes faster. For instance, in the worst case of Figure 10, both susan_c, susan_e 

and fft switch from losing in 4Hetero1 to winning in 32Hetero1. This suggests that the TLP 

gains provided by these applications reach a threshold point where they are smaller than the 

communication overhead added by the extra number of cores. 
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Figure 9 Hetero1 vs Homo1: Best and worst cases 
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7.2.2 Simulations with scheduler 

 

On the second phase of simulations, we have added a simple scheduler to the CReAMS 

system in order to select the proper core for each thread based on its levels of ILP. We have 

also taken care to create new configurations that would represent three area scenarios: one in 

which the heterogeneous version would be smaller than the homogeneous, one in which they 

would have the same area and one in which the heterogeneous would be bigger than the 

homogeneous. However, area parity is still kept by the multiplication of the cores. 

As in the section 8.2.1, we will only discuss the most significant results. All the 

comparisons can be found on the APPENDIX B. 
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Figure 10 Hetero1 vs Homo2: Best and worst cases 
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7.2.2.1 Heterogeneous configuration smaller than the homogeneous 

 

Figure 11 shows the Hetero10 configuration compared with the Homo5. Accordingly to 

Table 6, the Homo5 configuration is composed of big arrays (if compared with the other 

homogeneous versions), while the Hetero10 configuration has 25% of large cores, 50% of 

medium and 25% of small, as shown in Table 9. This produces a heterogeneous version of 

CReAMS that is smaller than the homogeneous.  

The results show that the heterogeneous version is superior on the applications susan_c, 

susan_e and lu. Susan_c has good load balance even when the number of cores highly increases, 

and for up to eight cores the TLP exploitation benefits the heterogeneous version that has more 

cores. However, from sixteen cores the communication overhead starts to harm the 

heterogeneous performance. Load balancing in lu decreases in a higher rate from eight cores. 

This, combined with the overhead of the extra cores, produces the decline in performance 

observed in the Figure 11. Equake has very low load balancing, so it is natural to observe better 

performance on the homogeneous version, that has less cores (consequently, less overhead on 

communication) and bigger arrays to exploit ILP.  

FFT shows high declines in performance when the number of cores is increased. And, 

as we will discuss later, this behavior is observed in all the simulations that were run with the 

scheduler. However, this was not the behavior that the application has shown in the Figure 9 

and Figure 10 (when the simulation was run without scheduler), which suggests that the 

scheduler algorithm actually harms the performance on the FFT. 

This performance loss might be explained due to changes in load of a thread during 

execution. If a thread is allocated to a small core, but it has big load (it could use much more 

resources if the array could provide), it will be reallocated on a bigger core. However, this 

allocation only occurs on synchronization points of the threads and all the other cores will be 

stalled while waiting for this particular thread to reach this point. If a thread is then allocated to 

a more suitable core, but then changes its load, it will need to be, again, reallocated. The process 

of changing context between cores might be to sparse and that might be causing such losses. 
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7.2.2.2 Heterogeneous and homogeneous configurations with same area 

 

In the Figure 12 we present the results for the comparation of configurations Hetero8 

and Homo5. Although Homo5 is considered to have large cores, we can observe in the Table 9 

that the medium cores of Hetero8 are actualy the same size of the Homo5 ones and the large 

cores of Hetero8 are twice the size as the medium. However, this heterogeneous configuration 

has mostly small cores (50% of them), thus we achieve a version that has the same area as the 

homogeneous. 

These results should provide an insight on the performance given exclusively by the 

diverse environment of the heterogeneous DAPs combined with the scheduler algorithm, as the 

number of cores are the same and, thus, the communication overhead on both configurations 

are equivalent. 
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Figure 11 Hetero10 vs Homo5: Heterogenous version is smaller than the homogeneous 
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As we can see, susan_e, susan_c and lu that have bigger basic blocks take advantage of 

the bigger cores of the heterogeneous version. In addition, the scheduler is work on their favor 

by allocating the haviest threads on the cores that have more resources. 

  

7.2.2.3 Heterogeneous configuration bigger than the homogeneous 

 

Figure 13 shows the scenario where the Hetero8 version is bigger than the Homo4, so 

we have to compare the homogeneous version with more cores than the heterogeneous to reach 

area parity. This situation is similar to the one on the first phase of the work, when we have 

simulated the applications without scheduler, and is good to reach conclusions about the 

scheduler performance.  

As can be seen, the applications that are more heterogeneous (with low load balancing 

or high ILP) like susan_e and lu shows better performance when executed on the heterogeneous 

CReAMS. In addition, the homogeneous version is harmed by the communication overhead as 
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Figure 12 Hetero8 vs Homo5: Both configurations have the same area 
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it has more cores, which increases the performance gains in those applications. Susan_c, 

however, has advantages of the exploitation of TLP, so the homogeneous version is more 

suitable for this benchmark. 

 

  

We can also make additional observations over the results, regarding all the studied 

scenarios. For instance, on any of the simulations done with the scheduler we were able to see 

the same behavior that we have observed on the simulations without scheduler. The steady 

increase on performance of the heterogeneous version when the number of cores is also 

increased and the heterogeneous has less cores than the homogeneous is theoretically expected. 

This is because the TLP exploitation has a limit for all applications (even the ones with good 

load balancing) and the communication overhead is a significant issue for performance. The 

results suggests that the scheduler not only harms the FFT benchmark, but all other applications. 

This is especially observed when the number of cores increases and there is no common 

behavior between the applications and the compared configurations as we have seen in the 

Figure 9 and Figure 10, which shows that the scheduler does not escalate well. 
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Figure 13 Hetero8 vs Homo4: Heterogenous version is bigger than the homogeneous 
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8. CONCLUSION AND FUTURE WORK 

 

This work shows how simple are the steps to create heterogeneous reconfigurable 

processors using the CReAMS organization. The system array of resources is easily 

customizable and – as the ISA is always the same, independently of the array – no special 

hardware is necessary to mix different DAPs inside a processor. However, this simplicity does 

not mean that finding the best combination of resources is a trivial process. Results shows that 

small variations of the array resources can change the performance of applications appreciably. 

The simulations also demonstrate that the heterogeneous CReAMS can reach better 

performance than the homogeneous when the application has varied load balance. Our best 

results suggests that having less cores, but with more resources, are especially more efficient 

for such applications.  

Although a dynamic scheduler is essential for heterogeneous systems to reach their full 

efficiency, this work also shows that if this scheduler is not well designed, it can actually be 

harmful to the performance of applications. On our results with scheduling of threads, the 

benchmarks have shown mostly expected results, but without a predictable behavior.  

Thus, as future work for this project, we propose a better version of the scheduling 

algorithm. We will track the points of performance overhead introduced by the current version 

and improve them in order to reach results that are more consistent for the heterogeneous 

CReAMS. 

Another important metric for any embedded system is the power consumption. Todays 

embedded system are usually mobile, or have very strict power constrains. CReAMS, as a 

homogeneous system, already introduced power analysis, so we propose to add this metric on 

the heterogeneous version as well. In some scenarios, the ideal configuration may not be the 

one with best performance, but the one with best energy efficiency, or even a combination of 

both.  
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APPENDIX A 

 

Heterogeneous CReAMS: A study on performance gain from a 

heterogeneous multicore system over a homogeneous system 
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Abstract. Reconfigurable architectures are an alternative for classic superscalar 

organizations to the exploration of instruction level parallelism, while the multicore 

organizations are the most communly used strategy to exploit thread level parallelism. 

This work is based on CReAMS, a multicore reconfigurable system that explores both 

TLP and ILP. Moreover, we present the concept of the heterogeneous CReAMS, which 

cores have distinct resources. We will be introducing the basics of this organization 

and results of simulations made to explore it. Also, we will show the motivations for 

using a heterogeneous system over a homogeneous one. This work proposes to find a 

heterogeneous configuration of CReAMS that out performs a homogeneous 

configuration of same area. The first simulations were executed on homogeneous 

cores and they illustrate the potential of the system on exploring both TLP and ILP.  

 

1. INTRODUCTION 
For many years, the majority of embedded systems were designed to execute specific and 

specialized tasks. However, with the advancement of both transistor technologies and integrated 
circuit design,, embedded processors are now able to perform many kinds of operations. 
Moreover, users now demand to be able to execute their daily routine tasks using as few devices 
as possible. Thus, each new generation of embedded hardware is expected to do even more. 

On program execution, it is usual for some instructions to be independent of each other, so 
they can be executed at the same time, but on different functional units inside the processor. 
This is known as exploiting parallelism on instruction level and is commonly explored by 
superscalar processors. On the other hand, modern operating systems can distribute threads 
through many processors, so they can be executed simultaneously. This is known as exploiting 
the parallelism at thread level and is largely explored by multicore organizations. 

Until the beginning of the 2000's, the performance gains were all concentrated on ILP 
exploitation and this led to die size problems, as the strategies used greatly raised the complexity 
of circuitry. The tradeoff between area and performance was not positive and became an issue. 
Thus, it was clear that a new strategy to create faster processors was necessary, and designers 
started to explore the TLP by replicating the cores. 

The superscalar strategy is the most common approach to explore ILP and it is used on both 
general purpose – as the Intel x86 architectures – and embedded processors – like the ARM 
architecture.  However, this is expensive, as for each word of instructions read, the superscalar 
processor has to evaluate the data dependencies for exploiting the parallelism. Hence, another 
possible strategy to explore ILP are the reconfigurable architectures. 

This work suggests the use of Custom Reconfigurable Arrays for Multiprocessor Systems 
(CReAMS), which is a proposed organization capable of exploiting both Instruction Level 
Parallelism (ILP) – using a dynamic adaptable array of processing units on each core – and 
Thread Level Parallelism (TLP) – through the use of many processing cores. This organization 
has already shown to have better performance if compared to a standalone processor when all 
the cores are homogeneous – have the same size and resources. 

A study to compare the effects of ILP and TLP in CReAMS over a base processor will be 
made. We will be using four different benchmarks – chosen to cover a wide range of 
applications – to measure their performance. CReAMS is currently available as a homogeneous 
systems. Therefore, this work proposes to find a set of heterogeneous organization CReAMS – 
containing cores of different processing capabilities – on which their performance is superior 
to a homogeneous configuration of same area. The main goal is to exploit the diversity in 



 

2 

 

processing to achieve this better performance. We will be simulating a variety of different 
combinations of reconfigurable arrays sizes and comparing them to an equivalent area 
homogeneous CReAMS.  

It is expected for a well explored heterogeneous system to be more efficient than a 
homogeneous because of the smarter use of chip area and energy resources. However, a 
heterogeneous configuration must have a good thread scheduling and distribution over the 
different cores to fully exploit this efficiency. 

 

2. RECONFIGURABLE SYSTEMS 
The architectures that can adapt themselves to provide a hardware expertize for a specific 

application are known as reconfigurable systems. Because of this specialization, these 
architectures are expected to provide performance and energy saving improvements. However, 
these systems are still built aiming flexibility to execute many kinds of tasks, which means that 
they have smaller gains if compared to dedicated circuits, like Application-Specific Instruction 
Set Processors (ASIPs) and Application-Specific Integrated Circuits (ASICs) [1]. 

One can find different proposed works on reconfigurable systems on the literature, like the 
ReMAPP system [9] which is composed of a pair of coarse grained (it implements word-level 
operations on the functional units) reconfigurable arrays that is shared among several cores. 
There is also the KAHRISMA [10] which supports multiple instructions sets (it is a 
heterogeneous architecture) and has fine-(it implements bit-level operations) and coarse-
grained reconfigurable arrays. This system is, however, heavily dependent on software 
compilation. 

This work will be based on CReAMS, which is a reconfigurable multiprocessing system 
created by our group of research and still has room for improvements. Furthermore, we have 
access to all the source code and tools for this system, making it suitable to adapt its 
configuration to our needs. Moreover, the DAP (discussed later) has an easily modifiable binary 
translator for different architectures (instruction sets), which is independent to the variation of 
the functional units on the reconfigurable array. 

2.1. DAP  - Dynamic Adaptive Processors 
The DAP is a reconfigurable architecture coupled to the processor and was presented in [2]. 

It is a transparent coarse grained architecture – the processor is not aware of the array and, also, 
the latter's functional units implement word-level operations. The DAP is used by the CReAMS  
– in fact, it is the basic core of CReAMS –, thus we will give more details about this architecture. 
To better explain the DAP, we divided it in four blocks, as shown in Figure 1(a). 
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Figure 1. (a) DAP blocks (b) Assembly of a loop (c) Allocation inside of reconfigurable data path 

2.1.1 Block 1 – Reconfigurable data path 
Block 1 shows the structure for the reconfigurable data path. It is coarse-grained and tightly 

coupled to the processor's pipeline (there is no shared bus between them), which avoids external 
access to the memory and, consequently, saves power and reduces the reconfiguration time. As 
we can see in Figure 1(a), the data path is organized in a matrix structure, where the number of 
rows is the maximum number of instructions that can be executed in parallel – independent 
instructions can be allocated on the same column, in other words, the number of columns limits 
the ILP exploitation –, while the number of columns dictates the maximum number of 
dependent instructions that can be executed in sequence in a configuration – the columns in one 
level are executed in sequence as a big combinational block. For example, the configuration on 
Figure 1 is able to perform four arithmetic and logic operation, two memory accesses on cache 
and one multiplication at the same time if all the data instructions are independent. As the 
critical path (the piece of combinational circuit that takes longer to produce a correct result) is 
the multiplier, it is possible to have other faster units on the same level. On the example, three 
arithmetic and logic units (ALUs) compose a level, while the multiplier and the memory access 
take the equivalent to one cycle on the processor. In other words, this configuration can execute 
twelve arithmetic and logic operations, two memory accesses and one multiplication on each 
level at the very best case of data dependency. 

The entire structure of the reconfigurable data path is combinational, meaning that no 
temporal barrier (registers) are added between the functional units. The only registers are 
present on the entry point – the input context – and the exit point – the storage of the results. 
The feeding of the input context with the necessary data is the first step to configure the data 
path before starting the execution. The results are sent to the processor's register file on demand. 
It means that if any value is produced at any data path level (a cycle of the processor) and if it 
will not be changed in the next levels, this value can be written back on the next cycle. If the 
number of writes produced be the array is greater than the number of available write ports in 
the register file, than the excess instructions are forwarded to the next level – on the example 
shown in Figure 1(a), the maximum number of ports available is two. 

Figure 2 shows a simplified overview of the interconnection structure of the reconfigurable 
data path. Bus lines connect the input context with the functional units and the output context, 
while multiplexers are responsible for choosing the path this data will run. The input 
multiplexers – two for each functional unit – will dictate if a value will be used by a determined 
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functional unit (on the Figure 2, a ALU), while the output multiplexers – one for each output – 
select if the output (next column) will come directly from an input or from a functional unit. 

The input and output sizes are important parameters of the systems as they may limit the 
number of instructions allocated in a single data path configuration. If the input context is full, 
a new configuration will be created, so a small input context size might reduce performance, as 
a new configuration will start even if there are still functional units available. However, a large 
input context could lead to a huge overhead in the data path,  as the size of the input multiplexers 
and the number of output multiplexers are directly dependent of the input context length. 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 2. Interconnection mechanism 

 

 

 2.1.2 Block 2 – Processor pipeline 
Block 2 is the basic processor to be used coupled with the array. It is also the reference for 

comparisons on the simulation performance. In this work, the baseline processor is a SparcV8-
based architecture. Its five stage pipeline reflects a traditional RISC design (instruction fetch, 
decode, execution, data fetch and write back) and is similar to other RISC processors used in 
well-known embedded platforms (e.g. MIPS, ARM). 

2.1.3 Block 3 – Storage components 

There are two memory units specialized for the reconfiguration system: the address cache 
and the reconfiguration memory. The first holds the memory address of the first instruction of 
every configuration built by the dynamic detection hardware (explained later). This cache is 
implemented as a 4-way set associative table containing 64 entries (which means that the system 
can hold up to 64 configurations). An address cache hit indicates that a configuration was found, 
therefore this cache is used the verify the existence of a configuration on the reconfiguration 
memory – where the configuration bits are kept.  

2.1.4 Block 4 – Dynamic detection hardware 

This block is responsible for instruction detection and allocation in the data path and is 
implemented as a 4-stage pipelined circuit. The Dynamic Detection Hardware (DDH) does not 
increase the critical path of the processor and it is a binary translation mechanism that translates 
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the instructions from SparcV8 ISA to data path configurations. The stages of the circuit are 
divided in Instruction Decode (ID), Dependence Verification (DP), Resource Allocation (RA) 
and Update Tables (UT). The translation process is performed as the processor executes the 
instruction (at the same time and independently), so there is no extra performance overhead. 

For each column on the reconfiguration data path (Figure 1(a)), there is a bitmap responsible 
for storing in the target operands of the already allocated instructions in the respective column, 
named as Write Bitmap (Figure 1(c)). Thus, for each incoming instruction, its source operands 
will be compared to the target operands in this bitmap to decide in which column this instruction 
will be allocated, according to data dependencies. 

Figure 1(b) has an assembly code as an example. On Figure 1(c), the allocation of this code 
on the reconfigurable data path is shown. The first incoming instruction, a memory access, is 
allocated on the highest functional unit of the leftmost data path column. However, as on this 
process this type of operation takes an entire level (a processor cycle), the fourth bit of the write 
bitmap (representing the r4 register) of the columns 1, 2 and 3 are set to maintain the allocation 
consistency. 

The dependency detection starts from the second instruction. In the example, the instruction 
number two reads the r4 register. As it is written by the previous instruction, a read after write 
(RAW) dependence is found. The DDH detects it (through the write bitmap) and allocates the 
instruction number two at the later column of instruction number one. The second bit of the 
fourth column of the write bitmap is set since this instruction has the register r2 as the target 
operand. The dependency analysis keeps these steps until instruction number five, where a loop 
is found. 

The DDH supports speculation, so when the branch instruction is found, a speculation flag 
is set and the configuration continues the allocation of the following iterations. In other words, 
it is possible (if there is enough space on the array) to keep multiple iterations of a basic block 
on the same configuration. The instructions in black on Figure 1(c) represents the instructions 
allocated for the second iteration of the loop code of Figure 1(b). 

This hardware is capable of performing register renaming – for false dependency treatment 
– as well. In instruction number ten, the register r1 could be read by the incoming instruction 
in the second column, but could not write in this same register at this column. This is detected 
by the DDH and the register is renamed to r5 (the next empty register of the input context). All 
subsequent instructions that contain a reference to r1 are modified accordingly. 

 3. CREAMS  
The Custom Reconfigurable Arrays for Multiprocessor Systems (CReAMS) is an 

architecture based on the DAP and was presented in [3]. It is, actually, an extension of the later 
created to exploit TLP through the replication of the number of DAPs in a system. In this way, 
the reconfigurable system can now support (and take advantage of) multithreaded applications. 
The communication among the DAPs is done through a 2D-mesh Network on Chip (NoC) using 
a XY routing strategy. CReAMS also includes an on-chip unified L2 shared memory, illustrated 
as SM in the Figure 3.  
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1.1  

1.2  

1.3  

1.4  

1.5  

1.6  

1.7 Figure 3. 
CReAMS of 8 cores (DAPs) and a L2 shared memory (SM) 

3.1. Homogeneous CReAMS 
The homogeneous version of CReAMS is a configuration where all the DAPs are exactly 

the same. They all have the same size in area, the same memory size (L1 cache size, 
reconfiguration memory table size, number of input and output context...) and the same 
functional units. This configuration represents the traditional approach to multicore systems – 
where the DAPs would be generic cores – and it is simple to implement, as no special 
scheduling is necessary (a thread is simply allocated to the next free DAP). However, this is not 
the most efficient approach, whereas a low duty thread will execute on the same environment 
as a heavy duty one. 

3.2. Heterogeneous CReAMS 
A heterogeneous version of CReAMS is a configuration where each DAP has a different 

number of functional units, input and output context length and memory size. This allow for 
some cores to be bigger than others, or in other words, more efficient to execute threads that 
can explore higher levels of instruction parallelism. Similarly, smaller DAPs would be allocated 
to run jobs with low ILP.  

Scheduling threads accordingly to their necessities leads to a greater energy efficiency. If a 
DAP is too big and is scheduled to execute a thread with low ILP, many functional units would 
be wasted for not being used. On the other hand, if a DAP is too small and is allocated for a 
thread with high ILP, the system would need many more cycles to execute the thread as no 
sufficient functional units would be available – wasting time and energy. 

It is also expected for a heterogeneous system to have a smaller communication overhead. 
Considering the same chip area a CReAMS composed of only small DAPs could have much 
more cores than a CReAMS with small, medium and big sized DAP. Therefore, if the 
heterogeneous configuration performs better than the homogeneous, it will do so using fewer 
cores with less communication between them. 

This configuration, however, leads to some problems that need to be addressed carefully. 
For instance, how to determine the best sizes of DAPs to be used and the best combination – 
should we have many small sized DAPs or more big sized ones – that leads to better 
performance if compared to the homogeneous configuration. 

4. BENCHMARK AND SIMULATION ENVIRONMENT 
This work will be using the Simics simulator[7] to generate the instruction trace from a 

series of applications. This instructions will then be split according to their threads and each of 
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these threads will be allocated to a DAP simulator. A series of tests were run to configure and 
validate the tools for the simulation environment. 

Moreover, in order to measure the performance of CReAMS, benchmarks from different 
suites were selected to cover a wide range of behaviors in terms of type (i.e. TLP and ILP) and 
degree of existing parallelism. The four benchmarks chosen were jacobi and lu from parallel 
suites [4][11][12] and susan edges and susan smoothing from the MiBench suite [5]. In [6] a 
study was made to characterize the potential of these applications on obtaining performance 
improvement when TLP or ILP exploration is applied. The mean basic block size gives us some 
clues about the limits of ILP that the selected application provide. In addition, the percentage 
of the entire application code that is executed in parallel, when multithreaded application 
environment is considered, is an important metric to obtain the actual TLP available in the 
applications. This metric is also called load balancing. Table 1 shows the results of this study. 
jacobi is an application with almost perfect load balancing, which means it is great for TLP 
exploitation. However, its small basic blocks should leave few space for ILP improvements. 
susan_e, on the other hand, has big basic blocks and little load balancing, meaning great ILP, 
but poor TLP and susan_s should have good results coming from both TLP and ILP as it has a 
good load balancing and big basic blocks. lu has an exotic behavior, as it has a medium size 
mean basic block and good load balancing on few threads, but poor load balancing on many. 

Wrapping this information: 

• jacobi: wide TLP, but small ILP. 

• susan_e: small TLP, but wide ILP. 

• susan_s: wide TLP and ILP. 

• lu: wide TLP for up to eight threads, than small TLP. Medium ILP. 

 

 
Table 1. Load balancing and mean basic block size of selected applications 

 

 

 

 

 

 

5. HOMOGENEOUS SIMULATIONS 
Our first simulations were based on homogeneous configurations of CReAMS. Our biggest 

motivations here were to try to push the systems to its limits on both ILP and TLP exploitation. 
In order to reach that limit, we have simulated CReAMS on different reconfiguration data path 
sizes, from 1 to 128 cores. These simulations are not taking in account the overhead caused by 
communication between the cores, this will be added on future simulations of this work. The 
three different configurations used are described in table 2. 

4 8 16 64

6,94 97,02 97,02 92,07 93,12

16,60 39,80 24,90 4,80 0,90

12,10 88,20 77,13 83,16 74,52

lu 8,32 82,20 56,77 29,35 7,03

Benchmark Mean BB Size(#instr)
Load Balancing (%) in threads

jacobi

susan_e

susan_s
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Table 2: The three different configurations used. 

Configuration 
(Number) 

Lines Columns ULA Memory 
access 

Multiplication Cache 
(KB) 

Input 
context 

Small (1) 9 9 3 1 2 32 8 

Big (2) 15 15 4 4 2 128 32 

Huge (3) 200 200 10 10 20 128 32 
 

The small and big configurations can be used to compare the performance of CReAMS in 
real world situations, as their size represents approximately the area of 2 and 4 SparcV8 
processors, respectively. The huge configuration, however, has the area of, about, 200 SparcV8 
processors, thus it is not legible for comparison and was used only to stretch CReAMS to its 
limits of ILP exploitation. Figure 4 shows the results for the simulations of susan smoothing, 

jacobi, susan edges and lu. To better observe the small speedups on few cores of jacobi and 
susan smoothing (which have linear grow due to their high load balance), their charts are shown 
in log10 scale. We have also included two constant lines which illustrate the monocore speedup 
over the base processor. These lines represents the “ILP-only” gains and show us the points 
where the added TLP exploitation overcomes the “ILP-only”. The motivation of these lines is 
to demonstrate that even if the ILP exploitation is high, it is still valuable to explore the TLP.  

In Figure 4(a) and (b), we can see that jacobi and susan soothing are greatly enhanced by 
the number of cores. Configuration 2 single core has slower performance even when compared 
with a two core standalone SparcV8 (which has half the area). We can also see that even the 
huge (3) single core configuration does not have a much better speedup than a dual core 
processor. However, every many core configuration that use CReAMS have better performance 
than the standalone SparcV8, showing that both these applications can still provide gains by 
exploiting ILP. On the other hand, if area parity is added, we have to consider that every 
configuration 1 has twice the size of a SparcV8 processor and every configuration 2 has 4 times 
more area. Thus, on this two applications where TLP is highly appreciated, the SparcV8 out 
performs the CReAMS configurations in about 1.5x for configuration 1 and 2.5x for 
configuration 2. 

Figure 4(c) shows that susan edges' speedup is not so affected by TLP, but is greatly 
improved by ILP. The configuration 3 with just one core is only out performed by configuration 
2 when the latter has eight cores and configuration 1 has better performance just at sixteen 
cores. The huge configuration (3) out performs the standalone SparcV8 processor at all 
simulated scenarios, even with 128 cores. Though 3 is not a feasible configuration, it 
demonstrates the potential of ILP exploitation on high data flow applications – which have big 
basic blocks – using CReAMS. When comparing configuration 2 with configuration 1, we have 
to keep in mind that the first has about as twice the size as the latter. Therefore, we need to 
compare the speedups of the big configuration with half the number of cores of the small one. 
The small configuration has better performance than the big one starting from two to eight 
cores. When 1 has sixteen cores and 2 has eight cores, the roles are switched and the big 
configuration out performs the small one. This happens because at few number of cores, the 
TLP still has a good influence over the performance gains, so as 1 has more cores, it is faster. 
However, at sixteen cores the speedup curve slope starts to decrease and ILP becomes the major 
factor for the increase of performance. When compared with the standalone SparcV8, 
configuration 1 starts performs better at 8 cores when it is 1.16x faster than the 16 cores 



 

9 

 

SparcV8. Configuration 2 performs better at 4 cores, when it is 1.09x faster than the 16 cores 
SparcV8. 

lu has an interesting behavior, as up to eight cores the TLP increases the overall performance 
of the configurations. However, from this point on, the number of cores starts to decrease the 
speedup to the point that on 64 cores the performance is almost the same (actually smaller in 
some configurations) as it is with only one core. The further increase in numbers of cores is so 
harmful to the system that we could not even test an environment with 128 cores, because the 
simulator ran out of resources. The results are as expected from Table 1, where we can see the 
load balancing of the applications. Up to eight cores, lu has good to medium TLP exploitation, 
but after that it widely decreases because the load balancing between the threads is greatly 
reduced. This performance loss is compensated, nonetheless, by the ILP and that is why 
configurations 1, 2 and 3 still have better performance than the standalone SparcV8 processor. 

 

 

 Figure 4: Speedup for the configurations simulated for each benchmark. (a) Susan smoothing. (b) Jacobi. 
(c) Susan edges. (d) lu.  
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6. FUTURE WORK 
The next steps of this work will be the simulation of a variety of heterogeneous 

configurations of CReAMS. We will be comparing these results with homogeneous 
configurations – previously simulated and shown in section 5 – that have the same area. 

After that, we will include on the simulation environment the communication overhead 
created by the exchange of information between the many cores of the system. A heterogeneous 
system tend to have less cores than a homogeneous of same size, so it is expected that the 
communication overhead will be more harmful to performance on homogeneous systems than 
on heterogeneous ones. We will be evaluating this assumption. 

The ultimate objective of this work will be to find a heterogeneous configuration of 
CReAMS that has better performance than a homogeneous one of same area. This might be a 
big challenge, as the combinations of different sized DAP's are infinite. Moreover, some of the 
applications may take several hours to simulate, so time also becomes a constraint for this work. 
In order to reduce the simulation stage, we will try to find a small set of benchmarks which can 
represent the mean behavior of the whole set.  

We believe that the factors presented on this report – lower communication overhead, 
efficient exploitation of ILP – will be the keys to achieve the foresaw results. 

7. CHRONOGRAM 
A chronogram of the activitivities that will be developed on this work is shown on table 3. 

Table 3. Chronogram of activities 

 Jul Ago Sep Oct Nov Dec 

Heterogeneous simulations X      

Add communication overhead + simulations X X     

Write paper for conference  X X    

Find better heterogeneous configuration   X X X  

Conclude work and write report     X X 
 

8. CONCLUSION 
On section 5 we have showed that the homogeneous CReAMS is able to perform better than 

a standalone SparcV8 processor on most of the tested scenarios. It is observable that all 
applications are enhanced by the ILP exploitation given by the dynamic array processors. 
Moreover, CReAMS is also more energy efficient than the standalone SparcV8 processor when 
a power budget is considered[8].  

Furthermore, on section 3.2 we have discussed why it is expected for a well scheduled 
heterogeneous system to perform better than a homogeneous one. The better area and power 
efficiency and smaller communication overhead are examples that support this assumption. On 
the next steps of this work, we will try to find configurations of heterogeneous CReAMS that 
confirms this performance improvement. 
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APPENDIX B 

 

Results of heterogeneous configurations with smaller area than the homogeneous 
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  Results of heterogeneous configurations with same area than the homogeneous 
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Results of heterogeneous configurations without scheduler 
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