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ABSTRACT

The problem of electron-beam propagation in inhomogeneous solar wind is intimately related to the solar type II
and/or type III radio bursts. Many scientists have addressed this issue in the past by means of quasi-linear theory, but
in order to fully characterize the nonlinear dynamics, one must employ weak-turbulence theory. Available numerical
solutions of the weak-turbulence theory either rely on only one nonlinear process (either decay or scattering), or
when both nonlinear terms are included, the inhomogeneity effect is generally ignored. The present paper reports
the full solution of weak-turbulence theory that includes both decay and scattering processes, and also incorporating
the effects of density gradient. It is found that the quasi-linear effect sufficiently accounts for the primary Langmuir
waves, but to properly characterize the back-scattered Langmuir wave, which is important for eventual radiation
generation, it is found that both nonlinear decay and scattering processes make comparable contributions. Such a
finding may be important in the quantitative analysis of the plasma emission process with application to solar type
II and/or type III radio bursts.
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1. INTRODUCTION

The beam–plasma interaction is a fundamental problem in
space and solar physics. It is well known that it is intimately re-
lated to the solar type II and type III radio bursts (Goldman 1983;
Melrose 1985; Robinson & Cairns 1998a, 1998b, 1998c). The
radio emission mechanism involves the excitation of Langmuir
(L) waves by the beam–plasma instability and partial conversion
of electrostatic wave energy associated with the Langmuir tur-
bulence to electromagnetic wave energy of the radio bursts. The
physics of the plasma emission is a complicated one, but it first
involves nonlinear interactions between the electrons, Langmuir
(L) and ion-sound (S) waves, as well as with the transverse elec-
tromagnetic waves.

The electron beam that excites Langmuir waves propagates
in an inhomogeneous medium. In one of the earliest works,
Vedenov et al. (1967) discussed the dynamical evolution of
electron beams in spatially inhomogeneous plasmas. Classic
papers by Takakura & Shibahashi (1976) and by Magelssen
& Smith (1977) also discussed the problem of electron-beam
propagation in inhomogeneous media. Later works by Grognard
(1985) also addressed the same problem. More recent works by
Kontar (2001), Li et al. (2002), and Khalilpour et al. (2009)
solved similar problems. All the above-referenced discussions,
however, included only quasi-linear physics.

Quasi-linear theory of beam–plasma instability in a uniform
medium is a well-known problem. The numerical solutions of
one-dimensional quasi-linear beam problem can be obtained
routinely, and even higher-dimensional solutions are available
in the literature (Appert et al. 1976; Ishihara & Hirose 1981,
1983a, 1983b; Muschietti et al. 1997). The presence of density
inhomogeneity makes the problem a bit more complicated.
Nevertheless, the essential physics of the velocity space plateau
formation and saturation of Langmuir waves are all well-
understood features. In order to fully characterize the nonlinear

dynamics of the beam–plasma interaction, one must go beyond
quasi-linear theory and include other nonlinear processes.

One of the most useful theoretical tools that can be employed
to investigate nonlinear evolution of the beam–plasma system is
weak-turbulence theory. The essential theory was formulated
by pioneers of modern plasma physics in the 1970s—for a
recent reformulation of the problem, see Yoon (2006). Even
though the basic theory was available in the literature, numerical
solutions of the basic equations did not become available
until quite recently. The first numerical solutions of the weak-
turbulence equation for beam–plasma instability was discussed
by Muschietti & Dum (1991). However, their discussion only
included nonlinear scattering, but left out the decay term. The
paper by Li et al. (2003), on the other hand, included only
the decay process in their numerical solution but ignored the
scattering process.

The numerical solution of the entire weak-turbulence equa-
tion including both decay and scattering processes was first ob-
tained by Ziebell et al. (2001). Their one-dimensional numerical
analysis was later extended to two dimensions in velocity space
by Ziebell et al. (2008a, 2008b) and by Pavan et al. (2009). How-
ever, the numerical solutions obtained by these authors were ap-
plicable only to uniform plasmas. As noted, however, for solar
and interplanetary applications, the spatial inhomogeneity can-
not be ignored. In this regard, Kontar & Pécseli (2002) presented
a numerical analysis in one-dimensional velocity space, includ-
ing a simplified treatment of a density inhomogeneity character-
ized by a scale length L, taking into account three-wave decay
and scattering effects. Li et al. (2003, 2006a, 2006b) also pro-
vided solution to the weak-turbulence problem including spatial
inhomogeneity, but they included only the decay term.

In the present paper, we study the time evolution of the
beam–plasma instability in an inhomogeneous medium, taking
into account both nonlinear processes, i.e., decay and scatter-
ing. The present paper is, therefore, complementary to existing
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works in the literature. However, the novelty and importance of
the present investigation is that we solve the complete weak-
turbulence equation including both nonlinear wave–wave (de-
cay) as well as nonlinear wave–particle (scattering) processes,
in the context of inhomogeneous plasma, using a formulation
which is quite rigorous regarding derivation from first princi-
ples, including the spontaneous emission process, and incorpo-
rating self-consistency features in form more complete than in
previous analyses. As we shall discuss, we find that both non-
linear processes have comparable contributions so that it is not
justifiable to ignore one process over the other.

The structure of the paper is as follows: In Section 2 we briefly
describe the theoretical formulation. In Section 3 we present and
discuss the results of the numerical analysis. Finally, in Section 4
we conclude the paper and comment on the results obtained.

2. THEORETICAL FORMULATION

The equations of weak-turbulence theory that form the basis
of the present numerical study are available in the literature, and
recent reformulation of the same problem has been published
before (see, e.g., Yoon 2006; Ziebell et al. 2008a, 2008b). For
the sake of completeness, we reproduce here the basic equations
using one-dimensional approximation in velocity space. We
consider an electron beam propagating along the z-axis, where
the density gradient is supposed to exist too. We allow the waves
to propagate along the z-axis as well, so that we may write the
wave vector by k = k ez.

The wave kinetic equations for Langmuir (L) and ion-acoustic
(S) waves are given in terms of the spectral wave energy density,

I σL
k = 〈

Eσ2
L (k)

〉
, and I σS

k = 〈
Eσ2

S (k)
〉
,

where Eσ
L(k) and Eσ

S (k) represent the spectral-wave electric field
component associated with L and S waves, respectively, and
where σ = ±1 represents the sign of the wave phase velocity,
σ = +1 denoting the direction parallel to the beam and σ = −1
denoting the anti-parallel direction.

We define a dimensionless coordinate s, that stands for the
distance normalized to the solar radius,

s = z

R�
.

Let us define the electron plasma frequency and electron thermal
velocity at a given position s∗ by

ω∗ = ωpe(s∗) and v∗ = ve(s∗),

and use these variables to define non-dimensional quantities,

τ = ω∗t, u = v

v∗
, z = ω

ω∗
, and q = kv∗

ω∗
.

The above quantities represent dimensionless time, velocity,
wave frequency, and dimensionless wave number, respectively.
Here, v is the velocity component along the z-axis, v = v ez.

We also define the normalized wave intensity of mode α and
electron distribution normalized with respect to u as follows:

Wσ
α (q) = (2π )2 g∗

I σα
k

mev2∗
, Φe(u) = v∗ Fe(v),

where g∗ is proportional to the plasma parameter,

g∗ = 1

23/2 (4π )2 n∗ λ3∗
,

and λ∗ is the Debye length at position s∗, λ∗ = v∗/(
√

2 ω∗).
In terms of these non-dimensional variables, the wave kinetic

equations for L and S modes are given by

∂Wσ
L (q)

∂τ
+ σ u

g

L(q)

√
2λ∗

R�

∂Wσ
L (q)

∂s
− σ

√
2λ∗

R�

∂Wσ
L (q)

∂q

∂zL(q)

∂s

= π

q2

ne

n∗

∫
du δ[σzL(q) − qu]

(
ne

n∗
g∗ Φe(u)

+ σzL(q) Wσ
L (q) q

∂Φe(u)

∂u

)
+ 2

n∗
ne

(
n∗
ne

T∗
Te

)1/2

×
∑

σ ′,σ ′′=±1

σzL(q)
∫

dq ′ μ(q − q ′)
|q − q ′|2 δ[σzL(q)

− σ ′zL(q ′) − σ ′′zS(q − q ′)] [σzL(q) Wσ ′
L (q ′) Wσ ′′

S

× (q − q ′) − σ ′zL(q ′) Wσ ′′
L (q − q ′) Wσ

L (q) − σ ′′zL

× (q − q ′) Wσ ′
L (q ′) Wσ

L (q)] − n∗
ne

∑
σ ′=±1

∫
dq ′

∫
du δ

× [σzL(q) − σ ′zL(q ′) − (q − q ′) u]

[
g∗ σzL(q)

× [
σ ′zL(q ′) Wσ

L (q) − σzL(q) Wσ ′
L (q ′)

]
[Φe(u) + Φi(u)]

+ Wσ ′
L (q ′) Wσ

L (q) (q − q ′)
∂

∂u

(
[σzL(q) − σ ′zL(q ′)]

× Φe(u) − me

mi

σzL(q) Φi(u)

)]
, (1)

∂Wσ
S (q)

∂τ
+ σ u

g

S(q)

√
2λ∗

R�

∂Wσ
S (q)

∂s
− σ

√
2λ∗

R�

∂Wσ
S (q)

∂q

∂zS(q)

∂s

= πμq

q2

(
Te

T∗

)2 (
n∗
ne

T∗
Te

)1/2 ∫
du δ[σzS(q) − qu]

×
[

ne

n∗
g∗ [Φe(u) + Φi(u)] + σzL(q) Wσ

S (q) q
∂

∂u

×
(
Φe(u) +

me

mi

Φi(u)

)]
+

n∗
ne

(
n∗
ne

T∗
Te

)1/2

×
∑

σ ′,σ ′′=±1

σzL(q)
μ(q)

q2

∫
dq ′δ[σzS(q) − σ ′zL(q ′)

− σ ′′zL(q − q ′)]
[
σzL(q) Wσ ′

L (q ′) Wσ ′′
L (q − q ′)

− σ ′zL(q ′) Wσ ′′
L (q − q ′) Wσ

S (q) − σ ′′zL(q − q ′)

× Wσ ′
L (q ′) Wσ

S (q)
]
, (2)

where

μ(q) = q3

23/2

√
me

mi

(
1 +

3Ti

Te

)1/2

,

u
g

L,S(q) = v
g

L,S(q)

v∗
,

v
g

L,S(q) = ∂ωL,S(k)

∂k
.
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In the above, ug

L,S(q) represents the magnitude of the normalized
group velocities for L and S waves, vg

L,S(q) being the group speed
in original definition.

The dispersion relations for L and S modes also appear
in Equations (1) and (2). They are given by well-known
expressions, which in normalized form appear as follows:

zL(q) = ωpe

ω∗

(
1 +

3

2

v2
e

v2∗

ω2
∗

ω2
pe

q2

)1/2

,

zS(q) = q A (Te/T∗)1/2

[1 + (q2/2)(Te/T∗)(n∗/ne)]1/2
, (3)

where

A = 1√
2

(
me

mi

)1/2 (
1 + 3

Ti

Te

)1/2

.

The normalized group velocities for L and S waves are given
by

u
g

L(q) = 3q

2

(
1 +

3

2

Te

T∗

n∗
ne

q2

)−1/2 (
n∗
ne

)1/2 (
Te

T∗

)
,

u
g

S(q) = A

(
1 +

1

2

Te

T∗

n∗
ne

q2

)−3/2 (
Te

T∗

)1/2

. (4)

We also need the space derivative of the dispersion relation. For
L and S waves we have, respectively,

∂zL(q)

∂s
� 1

2

(
ne

n∗

)−1/2
∂

∂s

(
ne

n∗

)
,

∂zS(q)

∂s
� q3

4
A

(
Te

T∗

)3/2 (
ne

n∗

)−2
∂

∂s

(
ne

n∗

)
.

The first terms on the right-hand sides of Equations (1)
and (2) describe the spontaneous and induced emissions. The
induced emission term is equivalent to quasi-linear effects.
The second terms contain the wave energy and momentum
conservation condition, δ(σωL

k − σ ′ωL
k′ − σ ′′ωS

k−k′) for L mode
and a similar three-wave resonance condition for S mode. These
terms describe the three-wave decay process. The papers by Li
et al. (2003, 2006a, 2006b) retain only these terms in the wave
kinetic equations.

The third term on the right-hand side of Equation (1) con-
tains the nonlinear wave–particle resonance condition δ[σωL

k −
σ ′ωL

k′ − (k − k′) v]. The term dictated by this resonance con-
dition describes the spontaneous and induced scattering of
L waves mediated by thermal ions. In the early work by
Muschietti & Dum (1991) only this term is retained in the non-
linear term.

The complete numerical analysis, containing both decay and
scattering term, was first performed by Ziebell et al. (2001)
for one-dimensional uniform plasmas and by Kontar & Pécseli
(2002) incorporating inhomogeneity effects. Extension to two
dimensions in uniform plasmas was done by Ziebell et al.
(2008a, 2008b) and Pavan et al. (2009). Equations (1) and (2)
extend the work by Ziebell et al. (2001) in a different way
in that we now include inhomogeneous effects. As already
noted, the present work complements the papers by Kontar &
Pécseli (2002) and by Li et al. (2003, 2006a, 2006b), who also
undertook the analysis of beam–plasma instability taking into

account spatial inhomogeneity, including only the decay terms
as nonlinear effects, as in Li et al. (2003, 2006a, 2006b), and
decay and scattering terms, as in Kontar & Pécseli (2002).

The term corresponding to scattering effects in Equation (2)
has been neglected, since the scattering processes involving S
waves are extremely slow processes. In our earlier paper (Ziebell
et al. 2001) as well as in a series of unpublished tests, we have
exhaustively verified that for a wide range of input physical
parameters of practical interests, the intensity of ion-sound
turbulence is much lower than that of Langmuir turbulence.
Since the ion-sound scattering process is proportional to the
square of the ion-sound turbulence, it is therefore very inefficient
and not expected to be effective in the timescale of our analysis.
The same argument has also been used in Equation (2) to
ignore the contribution of three-wave decay processes involving
three ion-sound waves. Although decay processes involving
three acoustic waves can be important in some contexts, such
as in the analysis of acoustic turbulence (L’vov et al. 1997),
they become irrelevant in comparison with other types of terms
included in Equation (2), owing to the low intensity of the ion-
sound turbulence. On the left-hand side of Equations (1) and
(2), the second term is the so-called convective term, while the
third term is associated with the effects of spatial dispersion of
the waves.

The evolution of the electron distribution function is given by
the following Fokker–Planck equation:

∂Φe(u)

∂τ
+ uz

√
2λ∗

R�

∂Φe(u)

∂s

= ∂

∂u

(
Ae(u) Φe(u) + De(u)

∂Φe(u)

∂u

)
,

Ae(u) = g∗
∫

dq
1

q

∑
σ=±1

σzL(q) δ[σzL(q) − qu],

De(u) =
∫

dq
∑

σ=±1

δ[σzL(q) − qu] Wσ
L (q), (5)

where the term associated with coefficient Ae describes the
effects of spontaneous fluctuations, and the term with coefficient
De governs the velocity–space diffusion process. The ions are
treated as quasi-stationary.

For a detailed derivation of the above equations for uniform
plasmas, the reader is referred to Yoon (2006). These equations
can be regarded as an updated version of the standard equations
of the weak-turbulence theory, whose foundations can be traced
back to the 1960s and 1970s. For more references, see the stan-
dard monographs (Kadomtsev 1965; Vedenov 1968; Sagdeev
& Galeev 1969; Tsytovich 1970; Davidson 1972; Thornhill &
Ter Haar 1978; Melrose 1980; Sitenko 1982). The papers Yoon
(2000, 2005 and references therein) and Cairns (1987).

The initial electron distribution function at each position s is
assumed to be made of Maxwellian background and tenuous
beam distributions. In earlier similar studies by Li et al. (2003,
2006a, 2006b), the authors investigated the time-of-flight effects
of initially spatially confined electron beam moving through
either uniform background plasma or through density gradient.
In the present discussion, we are interested in a different initial
configuration. Instead of investigating the dynamical evolution
of initially spatially confined beam, we are interested in a
situation where a length of flux tube (or one-dimensional density
structure) is filled with electron stream. This configuration might
be relevant to a quasi-steady state situation instead of a highly
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bursty situation. In one dimension, the initial velocity space
distribution is given as follows:

Φe(s, 0) =
(

1 − nb

ne

)
1√
π

(
T∗
Te

)1/2

exp

(
−T∗

Te

(u − u0)2

)

+
nb

ne

1√
π

(
T∗
Tb

)1/2

exp

(
−T∗

Tb

(u − ub)2

)
. (6)

Here, Te and Tb are temperatures for the background and the
beam components, respectively, u0 and ub are the drift speeds
associated with each component, and ne and nb define the
number densities for each species. The background drift velocity
u0 is introduced in our model, although it is small, so that a zero
net drift velocity for the entire electron distribution as a whole
is guaranteed. That is, we allow the background species to have
a slight backward drift given by

u0 = −nbub

ne

.

Time-stationary ion distribution in one dimension is simply
given by

Φi(s) = 1√
π

(
mi

me

T∗
Ti

)1/2

exp

(
−mi

me

T∗
Ti

u2

)
, (7)

where Ti and mi are the ion temperature and the proton mass,
respectively. In our model, the spatial dependence is introduced
through inhomogeneous densities ne(s) and nb(s). We assume
exponential dependence of the density ratio ne/n∗,

ne

n∗
= exp

(
− s − s∗

Ls

)
, (8)

where Ls is the scale length of the spatial inhomogeneity. The
temperatures are assumed to be uniform along the density
structure.

The wave intensities at each position s are initialized by
balancing the spontaneous and induced emissions, taking into
account the background population:

Wσ
L (q, s, 0) = g∗

ne

n∗

Te

T∗

1

2 [zL(q)]2
,

Wσ
S (q, s, 0) = g∗

2 zL(q) zS(q)

ne

n∗

Te

T∗

×
exp

(
− T∗

Te

(zS
q )2

q2

)
+

(
mi

me

Te

Ti

)1/2
exp

(
− mi

me

T∗
Ti

(zS
q )2

q2

)
exp

(
− T∗

Te

(zS
q )2

q2

)
+ Te

Ti

(
mi

me

Te

Ti

)1/2
exp

(
− mi

me

T∗
Ti

(zS
q )2

q2

) . (9)

3. NUMERICAL ANALYSIS

The set of Equations (1)–(5) has been solved with the use
of the “splitting method” both for the particle and for the
wave equation. For the particle equation, we used as boundary
conditions in the velocity space the initial value of the derivative.
At the extremes of the space coordinate, we used null derivative
for the distribution function. For the wave equations, we used
linear projection of the spectrum at the extremes of q, and wrote
equations for all points of the space intervals, using forward
and backward approximations for the space derivatives at the
extremes of the space coordinate.

We employed a grid with 61 points for q in the range
0 < q < 0.6. For the velocity, we used 101 points for u, covering

the velocity range −12 < u < 12. We assume the beam-to-
thermal number density nb/ne = 1.0 × 10−3 throughout the
entire length of s, normalized beam speed ub = 5.0, equal
beam-to-background temperature Tb/Te = 1.0, electron-to-
ion temperature ratio Te/Ti = 7.0, and the plasma parameter
(n0λ

3
D)−1 � 5.0×10−3. For the present set of input parameters,

the solar radius is approximately 1.0 × 108 times the Debye
length. We assume the space inhomogeneity, whose scale length
is given by Ls = 30.

To begin with, let us first ignore nonlinear terms in the
wave kinetic equations and retain only quasi-linear effects (the
spontaneous and induced emission terms). Figure 1 displays
the normalized L-wave intensity in vertical logarithm scale, as
a function of q and s. Of course, we have simultaneously solved
for the ion-sound wave intensity and the electron distribution,
but Figure 1 only shows the L-mode intensity. When nonlinear
effects are ignored, the S-mode wave intensity does not evolve
in time. We have plotted the solution at several normalized
time intervals: τ = 200, 500, 1000, and 2000. Note that the
peak L-mode intensity is located near s = 1, centered at wave
number q � 0.25, which corresponds to the resonant wave
number when the beam speed is ub = 5.0. As time progresses,
the wave intensity keeps increasing and also spreading out in q
space until around τ = 1000. Beyond this point, the L waves
near s = 1 evolves very slowly as the system reached quasi-
saturation stage. It is interesting to note that the maximum
wave intensity shifts to longer and longer wavelengths as s
increases, and that the wave intensity monotonically decreases
for increasing s. It is also important to note that the waves
propagating in the negative direction (q < 0) are not generated
at all in the present quasi-linear approximation. However, once
we reinstate the full nonlinear interaction terms, the primary L
mode with q > 0 will be seen to get back scattered by combined
decay and nonlinear scattering processes so that q < 0 modes
will be generated.

In Figure 2 we show the normalized L-wave intensity in
the same format as Figure 1, except that now we reinstate the
nonlinear terms in the wave kinetic equation. As one can see,
Figure 2 shows that the forward (i.e., q > 0) component of
the L-mode intensity appears largely similar to the quasi-linear
approximation, but we now see that backward-propagating
L-mode waves are generated as a result of combined de-
cay and scattering processes. The generation of backward
L modes is important since the merging of forward and backward
L modes leads to the (harmonic) plasma emission, although the
emission of transverse electromagnetic radiation is not the focus
of the present paper. From Figure 2, it is clear that the nonlinear
processes are central to properly account for the beam–plasma
interaction physics. It is interesting to note that the backward
L-mode generation process is effective for small s, while for
increasing s, for which the forward L mode decreases in inten-
sity and shifts to longer wavelengths, the backward L modes are
suppressed.

One of the aims of the present paper is to compare the relative
importance of the decay versus scattering as the dominant non-
linear process. In the early work by Muschietti & Dum (1991),
the authors ignored the decay process, while the papers from
the University of Sydney group usually ignore the scattering
term (Li et al. 2003, 2006a, 2006b). In the paper by Ziebell
et al. (2001), in which the authors considered uniform plas-
mas, they demonstrated, by artificially turning one term versus
the other in their numerical solution and comparing the out-
come, that the decay and scattering processes make comparable

4



The Astrophysical Journal, 727:16 (8pp), 2011 January 20 Ziebell et al.

 q

 s
 W

L( 
q)

 q

 s

 W
L( 

q )

 q

 s

 W
L( 

q )

 q

 s
 W

L( 
q )

τ = 200 τ = 500

τ = 1000 τ = 2000

Figure 1. Normalized L-wave intensity, in vertical logarithm scale, as a function of q and s, when only quasi-linear processes (spontaneous and induced emission
terms) are taken into account.

(A color version of this figure is available in the online journal.)
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Figure 2. Normalized L-wave intensity, in vertical logarithm scale, as a function of q and s, when nonlinear (decay and scattering) terms are considered in addition to
quasi-linear terms.

(A color version of this figure is available in the online journal.)

contributions to the back scattering of primary Langmuir waves.
Here we repeat the same analysis, except that now we are deal-
ing with an inhomogeneous medium. In Figure 3, we thus show

the normalized L-wave intensity in the same format as before,
computed at normalized time τ = 2000, when only quasi-
linear processes are considered (top left), when only the decay
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Figure 3. Comparison of various approximations: normalized L-mode intensity at τ = 2000 when only quasi-linear processes are considered (top left), when only
the decay process is added (top right), when only the scattering term is added (bottom left), and when fully nonlinear (decay and scattering) terms are considered in
addition to quasi-linear terms (bottom right).

(A color version of this figure is available in the online journal.)

q

s

 W
S
( 

q)

 q

s

 W
S
(  

q)

 q

 s

 W
S
( 

q)

 q

 s

 W
S
(  

q)

τ = 200 τ = 500

τ = 1000 τ = 2000

Figure 4. Normalized S-wave intensity, in vertical logarithm scale, as a function of q and s.

(A color version of this figure is available in the online journal.)

process is added to the quasi-linear terms (top right), when only
the scattering term is added to quasi-linear terms while artifi-

cially turning the decay terms off (bottom left), and when both
decay and scattering terms (fully nonlinear result) are consid-
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Figure 5. Normalized electron velocity distribution function, in vertical logarithm scale, as a function of q and s.

(A color version of this figure is available in the online journal.)

ered in addition to quasi-linear terms (bottom right). As one can
see, the forward-propagating (primary) Langmuir waves are ad-
equately described by quasi-linear theory alone. However, it
takes both the decay and scattering terms to completely account
for the back scattered L mode with q < 0. As a matter of
fact, if anything, the scattering term seems to produce slightly
higher back scattered L-mode intensity when compared with
the decay only solution. From this, we conclude that, at least for
the present set of input parameters, the three-wave decay and
nonlinear wave–particle (scattering) processes are equally im-
portant for the generation of backward-propagating Langmuir
waves during the beam–plasma interaction process.

In obtaining the numerical solution for L-mode intensity,
we have also concomitantly solved for the ion-sound wave
intensity and the electron velocity distribution function. In
Figure 4, we display the normalized S-wave intensity, in vertical
logarithm scale, as a function of q and s. Here, of course, we
have considered the full nonlinear terms in the wave kinetic
equations. The ion-sound mode intensity does not show much
appreciable change above and beyond the initially imposed level
of spontaneous emission. Nevertheless, this does not mean that
the ion-sound mode is unimportant. Without the S mode, the
three-wave decay process is not possible in the first place.
This means that, although the ion-acoustic waves may not be
prominent, they nevertheless play an important intermediary
role in the dynamical sense. Often, the level of observed ion-
sound wave signature is used as evidence for decay processes
in the literature. However, the present result shows that caution
must be exercised in that regard. The lack of observable ion-
sound mode signature does not necessary mean that the three-
wave decay processes are absent.

In Figure 5 we show the normalized electron distribution
function, in vertical logarithm scale, as a function of u and s.
At τ = 200, it can be seen that the region of positive derivative
associated with the beam component is still present. At τ = 500,

a significant plateau appears in small-s region. At τ = 1000 and
2000, one can observe that the plateau formation that took place
for small s at early times, gradually spreads out to large-s region.

4. CONCLUSION

The problem of an electron beam propagating in inhomo-
geneous solar wind plasma is important in view of the solar
type II and type III radio bursts. Many scientists in the past
addressed this issue by means of quasi-linear analysis (Vedenov
et al. 1967; Takakura & Shibahashi 1976; Magelssen & Smith
1977; Grognard 1985; Kontar 2001; Li et al. 2002; Khalilpour
et al. 2009). However, in order to fully characterize the nonlin-
ear dynamics, one must go beyond quasi-linear approximation
and employ weak-turbulence theory.

The numerical solution of the weak-turbulence equation by
Muschietti & Dum (1991) included only the induced scattering
process, while Li et al. (2003, 2006a, 2006b) relied only on the
decay process. The works by Ziebell et al. (2001) as well as
more general later works by Ziebell et al. (2008a, 2008b) and
by Pavan et al. (2009) do include both decay and scattering
processes but ignored the spatial inhomogeneity. Kontar &
Pécseli introduced inhomogeneity effects including both decay
and scattering processes, but the description of quasi-linear and
nonlinear effects was more approximate and less self-consistent
than in Ziebell et al. (2001, 2008a, 2008b) and in Pavan et al.
(2009).

In the present paper, we have solved a self-consistent system
of weak-turbulence equations, including both decay and scat-
tering processes, in an inhomogeneous medium. On the basis of
detailed comparisons of the influence of each term in the non-
linear wave kinetic equation (see Figure 3), we concluded that
quasi-linear effect is sufficient to characterize the generation
of forward-propagating primary Langmuir waves. However, as
far as the backward-propagating Langmuir wave is concerned,
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which is important for eventual radiation generation, we found
that nonlinear decay and scattering processes make comparable
contributions. This finding may be important in the quantitative
analysis of plasma emission process with application to solar
type II and/or type III radio bursts.

In the future, we intend to make specific application of
the present finding in investigating the actual radio emis-
sion process. In order to carry out such a purpose, one
must first generalize the present analysis to two dimen-
sions, and include electromagnetic effects. Such a task is,
of course, very demanding in terms of both theoretical and
numerical efforts, but it shall be the subject of our future
research.
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