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ABSTRACT

Neutrinos emitted during the collapse, bounce, and subsequent explosion provide information about supernova
dynamics. The neutrino spectra are determined by weak interactions with nuclei and nucleons in the inner regions
of the star, and thus the neutrino spectra are determined by the composition of matter. The composition of stellar
matter at temperature ranging from T = 1–3 MeV and densities ranging from 10−5 to 0.1 times the saturation
density is explored. We examine the single-nucleus approximation commonly used in describing dense matter in
supernova simulations and show that while the approximation is accurate for predicting the energy and pressure at
most densities, the predicted compositions are less accurate, varying by 50% or more at the largest densities. We
find that as the temperature and density increase, the single nucleus approximation systematically overpredicts the
mass number of nuclei that are actually present and underestimates the contribution from lighter nuclei which are
present in significant amounts.
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1. INTRODUCTION

Stars with masses larger than about 10 M� end their lives in
core-collapse supernovae. The initial collapse is initiated by the
disappearance of the pressure support driven by (1) dissociation
of nuclei and (2) electron capture on nuclei which make matter
increasingly neutron rich. The electron captures emit neutrinos,
which initially escape, but are later trapped by the increasing
density in the core. The collapse is halted by the strong repulsion
from high density matter and the core “bounces,” driving an
outward shock wave. The standard view is that this shock loses
energy through continuing dissociation of nuclei and neutrinos
from the core finally restore energy to the shock driving an
explosion.

The evolution of the supernova is determined by the equation
of state (EOS) and composition of matter at densities up to
the nuclear saturation density, ρ0 ∼ 2.7 × 1014 g cm−3 and
at temperatures between 1 and 3 MeV. The collapse is driven
by the tendency of matter to have a low entropy per baryon
(Bethe et al. 1979), the extent of electron captures during
collapse is determined by the composition (Hix et al. 2003), and
the neutrino spectrum (Sumiyoshi et al. 2005) is determined by
the nature of matter at the “neutrinosphere,” the surface of the
last neutrino scattering, which is typically at 1011 g cm−3.

At densities below ρ ∼ 8 × 1013 g cm−3, most matter
resides in nuclei with A � 10 arranged in a Coulomb lattice,
surrounded by a nucleon gas and embedded in a degenerate
electron gas. Masses of isolated nuclei in coexistence with
the gas may exceed those of stable nuclei but are limited to
A < 1000 by the interplay of the Coulomb and symmetry
contributions to their binding energies. Both nucleons and nuclei
together compose a nuclear (Fermi) liquid–gas phase mixture,
whose EOS contributes significantly to the EOS for supernova
simulations.

A principal approach to computing the EOS for supernovae
used in the past three decades has been the “single-nucleus ap-
proximation” (SNA) where low-temperature matter is assumed
to be composed of neutrons, protons, alpha particles, and a sin-
gle, representative, heavy nucleus (Lattimer et al. 1985; Lattimer
& Swesty 1991; Shen et al. 1998). The nuclei vaporize at temper-
atures that depend sensitively on density. Burrows & Lattimer
(1984) and Lattimer et al. (1985) first assessed the error made in
using the SNA and found that the SNA accurately predicted the
thermodynamic functions for matter. The composition agreed
to within tens of percent, except at the highest densities and
entropies where larger deviations were present. Microscopic
calculations for the EOS have been performed in the SNA for
densities ranging from 0 to saturation density (Lattimer et al.
1985; Lattimer & Swesty 1991; Shen et al. 1998). However, it
was not clear whether the linearization performed in Burrows
& Lattimer (1984) still suffices to describe the matter at tem-
peratures and densities where light nuclei are non-negligible, as
they create significant asymmetries in the nuclear distribution.
Contributions from light nuclei have been examined by several
authors. Horowitz & Schwenk (2006) evaluated the equation of
state and weak interactions of a system containing alpha parti-
cles and nucleons using the virial expansion. O’Connor et al.
(2007) extended this work to 3H and 3He and studied the accom-
panying weak interaction cross sections. Botvina & Mishustin
(2005) calculated light nuclei within the context of the Grand
Canonical Approximation (GCA). Our work below also treats a
much larger distribution of nuclei also with the GCA, which we
are able to do because we do not include interactions between
nuclei as can be done for large enough temperatures in the virial
expansion.

In early work without neutrino transport, Cooperstein &
Wambach (1984) found that the electron fraction reduction due
to electron captures was well predicted in the SNA. However,
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Hix et al. (2003) found that calculating electron captures on a
distribution of nuclei in nuclear statistical equilibrium, in place
of a single representative nucleus, increased the potential for
an explosion. Sumiyoshi & Röpke (2008) connected the virial
expansion to a quasiparticle approach (Röpke et al. 1982) and
showed that light clusters can modify neutrino emission and
absorption. Also, Arcones et al. (2008) found that the presence
of light nuclei is important for describing the neutrino spectra
in the early post-explosion phase.

A more realistic description of supernovae EOS would model
the composition of matter by an ensemble of nuclei in near
nuclear statistical equilibrium. In this work, we refer to this
approach as the GCA. The GCA permits a general investigation
of the shapes, widths, and non-Gaussian asymmetries of the
nuclear mass and charge distributions and the population of
nuclear excited states. In situations where the Wigner–Seitz
approximation for a unit cell is valid and the widths of the
heavy nuclear distributions can be neglected, GCA and SNA
models should make similar predictions. In a recent paper,
Botvina & Mishustin (2005) report on GCA calculations for
supernovae and suggest that differences between their GCA and
previous SNA calculations should be important, particularly at
high density. This suggested that the role of light nuclei and
the non-Gaussian asymmetries in the nuclear distributions may
be more significant than predicted by the work of Burrows &
Lattimer (1984). However, they did not directly compare SNA
and GCA approximations to quantify the differences.

To address this question, we adopt a GCA model that is
formally equivalent to that of Botvina & Mishustin (2005), and
construct an analogous SNA model for comparisons to the GCA
model. This corresponding SNA model employs the same mass
formula and level densities that are used in a corresponding
GCA model. We compare predictions of the GCA model and its
companion SNA model for two different mass formulae, which
differ by their treatment of the nuclear surface symmetry energy.
Then, we construct another SNA model (ISNA) that is more
similar to the modern tabulated EOS constructed in Lattimer
& Swesty (1991) and is frequently employed in supernovae
simulations. The ISNA model includes interactions and the
quantum statistics of the nucleons in the gas, a more complete
description of the Coulomb energy, a surface energy term which
vanishes in the small proton number limit, a critical temperature
which depends on the electron fraction, and effects associated
with the presence of a neutron skin for nuclei with N > Z.

From comparisons between the GCA and SNA models, we
find that the traditional SNA approach succeeds at most densities
in describing the basic properties of the equation of state.
However, we also find that the composition is not described
with the same accuracy, and we find deviations of 50% or larger
between the GCA and the SNA. In many respects, we find that
the differences between the predictions of GCA models and
SNA models exceeds the differences between the predictions of
the various SNA models. More specifically, we find that average
quantities, such as the mass fractions for neutrons, α particles
and heavy nuclei, energy/baryon, and entropy, are similar at
ρ � 0.01 and Ye = 0.4 in the GCA and SNA approaches. The
agreement is slightly worse for Ye = 0.2, and the agreement
between GCA and SNA deteriorates even more for calculations
that neglect the surface symmetry energy.

We find generally that the SNA and ISNA models agree quite
well over most of the densities and temperatures considered;
the largest differences are a few tenths of an MeV in the energy
per baryon at higher densities and comparable differences in the

entropy. The SNA and ISNA calculations, however, neglect (by
assumption) the considerable widths of the mass and charge
distributions predicted by the GCA calculations. At higher
temperatures and densities, the SNA calculations systematically
overpredict the size of the representative nucleus and do not treat
the light nuclei that become more abundant in some regimes of
density and temperature, an effect that was also predicted by
Burrows & Lattimer (1984). While it has been earlier noted
that light nuclei can be important, this effect has not yet been
performed with a full nuclear distribution as we do below. These
differences can have an impact on the electron capture and weak
interaction rates that prevail in a supernova.

In the following, we begin our comparisons by adopting iden-
tical formula for the masses, level densities, and electron screen-
ing approximations for pairs of GCA and SNA calculations. We
perform this comparison for two liquid drop models, LDM1,
which has a surface symmetry energy term, and LDM2, which
does not. Section 2 describes these model assumptions. As these
two calculations neglect the interactions and quantum statistics
of particles in the gas, the ISNA model that contains these ef-
fects is described in Section 2 as well. Section 3 describes and
compares results obtained for the various GCA and SNA mod-
els. Section 4 summarizes this work and provides an outlook for
future studies.

2. THE MODELS

Sections 2.1– 2.3 describe the SNA and GCA models without
the inclusion of the interactions and quantum statistics of
particles in the gas. These two calculations can be compared
to isolate the differences between the SNA and GCA models.
Section 2.4 describes an improved SNA model (the ISNA
model) that includes the interactions and quantum statistics
of particles in the gas. This model allows tests of the relative
importance of some simplifying assumptions used in the models
described in Sections 2.1– 2.3.

2.1. Ground State Properties of Nuclei

The binding energies of nuclei strongly influence the charge
and mass distributions of nuclei within hot extended nuclear
systems (Souza et al. 2003; Tan et al. 2003). In this work, we
use a form for the liquid drop mass formula from Preston &
Bhaduri (1975):

BA,Z = CvA − CsA
2/3 − Cc

Z2

A1/3
+ δA,ZA−1/2 + Cd

Z2

A
, (1)

where A and Z denote, respectively, the mass and atomic
numbers, and

Ci = ai

[
1 − ki

(
A − 2Z

A

)2
]

, (2)

and i = v, s corresponds to volume and surface, respectively.
In Souza et al. (2003), its parameters have been fitted to
the available experimental data (Audi & Wapstra 1995). The
corresponding values are listed in Table 1, and are labeled LDM1
(Liquid Drop Model). For completeness, the pairing term is also
included in the expression above, although it is neglected in the
calculations presented in this paper. It reads

δA,Z =
{

+Cp, N and Z even
0, A odd
−Cp, N and Z odd,

(3)
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Figure 1. Difference between the total binding energy predicted by the mass
formula and the empirical values. For details, see the text.

(A color version of this figure is available in the online journal.)

Table 1
Parameters of the Liquid Drop Mass Formulas Used in This Work

Label av as Cc Cd Cp avkv asks

LDM1 15.6658 18.9952 0.72053 1.74859 10.857 27.7976 33.7053
LDM2 15.2692 16.038 0.68698 0.0 11.277 22.3918 0.0

ns nd C ζ σ b

LDM3 0.1764 −0.2832 0.8990 0.9467 1.179 9.130

Note. All the values are given in MeV.

where N = A − Z stands for the number of neutrons.
Besides the standard terms, this parameterization includes a
correction to the Coulomb energy due to the diffuseness of
the surface, CdZ

2/A, as well as a surface contribution to the
symmetry energy. Both corrections are usually neglected in
simple parameterizations. While the latter contribution is most
important for light nuclei, it also influences the masses of very
heavy nuclei, as discussed below.

The accuracy of this formula can be inferred from
Figure 1, which shows the difference ΔB between the predic-
tions of Equation (1) and the empirical (measured) values. It
is important to stress that ΔB corresponds to the difference be-
tween the total binding energies, i.e., it is not divided by the mass
number. Since the above formula has no corrections associated
with shell effects, pronounced discrepancies are observed near
closed shells. Shell effects for nuclei with A > 5 are neglected
since they do not strongly modify the qualitative shape of the
nuclear distributions which we calculate.

In order to investigate the influence of the Coulomb diffuse-
ness correction and the surface symmetry energy, we have re-
fitted the data while keeping the parameters Cd and kS equal
to zero. In this limit, this mass formula has no surface sym-
metry energy or diffuseness correction to the Coulomb in-
teraction, which makes it have the same form that is used
in many statistical calculations (Botvina & Mishustin 2005,
2004; Aguiar et al. 2006; Bhattacharyya & Mekjian 1999;
Bondorf et al. 1995). The best-fit parameters are listed in
Table 1 and labeled LDM2. The corresponding deviations ΔB
from the empirical values are shown in the middle panel of
Figure 1. One can clearly see tendencies for LDM2 to overpre-
dict the empirical values for heavy masses and even stronger
tendencies to under predict the empirical values for light
masses.

To aid in the discussion we define the nuclear symmetry
energy, Bsym:

Bsym = −
(

avkv − asks

A1/3

)
(A − 2Z)2

A

≡ −asym
(A − 2Z)2

A
(for LDM2). (4)

The second line shows the simplification that occurs by setting
ks = 0 in the LMD2 parameterization.

The difference between the LDM1 and LDM2 reflects the
reduction of the symmetry energy in the nuclear surface and in
the effective symmetry energy coefficient asym in the LMD1
parameterization, which causes its masses to increase as a
function of A, better following the trends of the measured
masses. In the simpler LDM2 parameterization, this coefficient
is constant, which does not accurately follow the experimental
trends and leads to the systematic deviations in both the light and
heavy mass regions displayed in the figure. We have checked
that the influence of the Cd coefficient does not account for the
increase in ΔB observed in the heavy mass region.

Experimental values are used for the very light nuclei (A <
5), whenever known, since both parameter sets give a very
poor description of the binding energies of light nuclei. This
procedure is not adopted for heavier nuclei as one has to consider
nuclei far from the known mass region. In this case, a careful
extrapolation scheme should be devised so as not to introduce
spurious effects in the calculated yields for mass regions in
which no experimental information is available (Souza et al.
2003; Tan et al. 2003). Since the major thrust of this paper
concerns the comparison of two approximations for calculating
equilibrium distributions of nuclei, the use of a mass formula
for all nuclei with A > 4 is sufficient and will ensure a smooth
behavior for the predicted yields throughout the mass range
considered below.

A similar procedure is also adopted for the spin degeneracy
factors of nuclei. Empirical values are used only for A < 5.
For heavier nuclei, we set the spin degeneracy factors to
unity (vanishing nuclear spin). This approximation is not that
important because errors introduced by neglecting ground state
spin degeneracies are much smaller than the uncertainties in
the nuclear level densities at finite temperatures. These level
densities are described below.

2.2. The Grand Canonical Approximation (GCA)

For a system composed of {k1, k2, . . . , kM} different species
in thermal equilibrium at temperature T, the grand-partition
function is given by

ZG =
∞∑

k1=0

· · ·
∞∑

kM=0

ZC(T , V, k1, k2, . . . , kM )

× eβ(μ1k1+μ2k2+···+μMkM ), (5)

where β ≡ 1/T , and the canonical partition function ZC is given
by

ZC =
[
g1Vf A

3/2
1

/
λ3

T

]k1

k1!
· · ·

[
gMVf A

3/2
M /λ3

T

]kM

kM !

× e−βF (T ,V,k1,...,kM ). (6)

In the above expression, λT =
√

2πh̄2/mT , we approximate the
nucleus translational effective mass by mA,Z = Am following
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Tan et al. (2003). We further approximate m by the free nucleon
mass m = 939 MeV/c2. The function F (T , V, k1, . . . , kM )
denotes the Helmholtz free energy of the system, excluding
contributions associated with the translational motion, and gi
denotes the spin degeneracy factor. The free volume Vf takes
finite size effects into account and is calculated as in Botvina &
Mishustin (2004), i.e., Ω ≡ Vf /V = 1 −ρB/ρ0, where V is the
total volume, ρB denotes the baryon density, and ρ0 represents
normal (saturation) nuclear density. If F (T , V, k1, . . . , kM ) can
be written as

F = k1f1(T , V ) + k2f2(T , V ) + · · · + kMfM (T , V ), (7)

the canonical partition function becomes

ZC(T , V, k1, . . . , kM ) =
M∏
i=1

[
giVf A

3/2
i

/
λ3

T

]ki

ki!
e−βfiki , (8)

which leads to

ZG(T , V, {μi}) =
M∏
i=1

eqi , (9)

where

qi = giVf A
3/2
i

λ3
T

eβ(μi−fi ). (10)

In this case, the average number of nuclei of species i in the
volume V, Yi, can be easily evaluated

Yi = 1

ZG

∞∑
k1=0

q
k1
i

k1!
· · ·

∞∑
ki=0

ki

q
ki

i

ki!
· · ·

∞∑
kM=0

q
kM

M

kM !
= qi. (11)

By assuming chemical equilibrium, the chemical potentials
may be written as

μA,Z = μBA + μQZ, (12)

so that the number density of a given species (A,Z) becomes

nA,Z = qA,Z

V
= giΩA3/2

λ3
T

e(μBA+μQZ−fA,Z )/T . (13)

Thus, μB and μQ are determined upon fixing the average number
of baryons and by imposing charge neutrality, respectively:

nB =
∑
A,Z

AnA,Z, (14)

ne =
∑
A,Z

Z nA,Z, (15)

where ne denotes the electron density. As in Botvina &
Mishustin (2004), the sums include all nuclei with Z � A.
We have checked that, for the temperatures and densities con-
sidered below, A = 1000 is a safe upper cut in the sums above.
We impose that the relative errors in Equations (14) and (15)
are smaller than 10−7.

In order to determine the chemical potentials, and sub-
sequently, other relevant thermodynamical quantities, the
Helmholtz free energy fA,Z must be specified. We include con-
tributions to the internal excitation of nuclei associated with

surface and bulk, besides the binding energy of the nuclei and
the Coulomb interaction among the particles:

fA,Z = β(T )A2/3 − T 2

ε0
A − BA,Z

+ CC

Z2

A1/3

[
−3

2

(
nB

n0

)1/3

+
1

2

(
nB

n0

)]
, (16)

where

β(T ) = β0

[(
T 2

c − T 2

T 2
c + T 2

)5/4

− 1

]
. (17)

The values of the parameters β0 = 18.0 MeV, Tc =
18.0 MeV, and ε0 = 16.0 MeV correspond to those usually
adopted in statistical calculations (Aguiar et al. 2006; Botvina
& Mishustin 2004; Souza et al. 2003; Tan et al. 2003; Bondorf
et al. 1995). The Coulomb energy, in the last term in Equation
(16), is calculated through the Wigner–Seitz approximation
(Wigner & Seitz 1934). It should be noted that Equation (16)
differs from the usual expressions employed in statistical models
because it takes into account the presence of the electron gas
surrounding the nuclei (Baym et al. 1971). In this respect, an
important comment is in order. In principle, the baryon density
in Equation (16) should be the average particle density in the
Wigner–Seitz cell (Baym et al. 1971). However, if this is done,
the Helmholtz free energy cannot be cast in the form of Equation
(7) and then the simple formulae above would no longer be
valid. Thus, as in Botvina & Mishustin (2004), we approximate
the average density by nB in order to keep the simple relations
above. Since we want to keep the GCA and the SNA as close
as possible, we adopt this approximation in the SNA model
as well.

Finally, nuclei with A < 4 are treated as point particles,
with no internal degrees of freedom. The large gap between the
first excited state and the ground state of the alpha particle is,
to some extent, taken into account by setting β0 = 0 for this
species Tan et al. (2003). Finite temperature effects can also
be determined by minimizing the energy of the nucleus as a
function of its internal density as done in Lattimer et al. (1985),
but this procedure is known to lead to an underestimation, and is
then additionally corrected by a phenomenological term which
is of comparable magnitude to the Fermi gas effect. Our choice
in Equation (17), as also utilized by Bondorf et al. (1995), is
simpler but not significantly less accurate.

2.3. The Single Nucleus Approximation (SNA)

Since the determination of the chemical potentials above and
the subsequent computation of the relevant thermodynamical
quantities is too time consuming to be used in many practi-
cal astrophysical calculations, the GCA has been simplified
(Epstein & Arnett 1975; Burrows & Lattimer 1984; Lattimer
et al. 1985; Lattimer & Swesty 1991). More specifically, in-
stead of considering all possible species, only a few types are
allowed: neutrons, protons, alpha particles, and a single species
of heavy nucleus. The latter should, to some extent, represent
the nucleus distribution at the heavy mass region. The other
three nuclei are intended to consider the main contribution to
the nucleus distribution in the light mass region.

The constraints associated with baryon number and charge
neutrality simplify to

nB = nn + np + 4nα + Ahnh (18)
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and
ne = np + 2nα + Zhnh, (19)

where nn, np, nα , and nh, respectively denote the number density
of neutrons, protons, alpha particles, and the heavy nucleus of
mass and atomic numbers Ah and Zh. In this way, the most
probable configuration is found by minimizing the total free
energy of the system F , subject to the above constraints

∂

∂xi

{F − V λ1[nB − nn − np − 4nα − Ahnh]

− V λ2[ne − np − 2nα − Zhnh]} = 0. (20)

In this expression, λi stands for the Lagrange-multipliers and
xi denotes Ah, Zh, nn, np, nα , and nh. The total Helmholtz free
energy possesses the same ingredients used in the GCA:

F = V
[(

fn + f trans
n

)
nn +

(
fp + f trans

p

)
np

+
(
fα + f trans

α

)
nα +

(
fh + f trans

h

)
nh

]
. (21)

The contribution due to the translational motion is given by

f trans
i = −T

[
log

(
giVf

λ3
T

A3/2

)
− log(ki!)

ki

]
(22)

and, for large values of ki, one may write

f trans
i = −T

[
log

(
giΩ
λ3

T ni

A3/2

)
+ 1

]
, (23)

since log(ki!) ≈ ki log(ki) − ki .
The derivatives associated with nn and np allow one to easily

eliminate the Lagrange multipliers:

λ1 = T log

(
gnΩ
λ3

T nn

)
(24)

λ2 = T log

(
nn

np

)
− Cc

[
−3

2

(
nB

n0

)1/3

+
1

2

(
nB

n0

)]
. (25)

The remaining derivatives, with respect to Ah, Zh, nα , and nh,
lead to nonlinear equations, which must be solved numerically.
Due to the logarithmic factors entering in the formulae, it is
convenient to use

ni = giΩ
λ3

T

A
3/2
i e−(fi−μi )/T , (26)

so that the equations are solved for the chemical potentials of
each species. We require the same precision on the constraints
given by Equations (18) and (19) as in the grand canonical
calculations.

2.4. A Single Nucleus Approximation with Interactions (ISNA)

This ISNA uses the mass formula from Steiner (2008),
adapted slightly to include finite temperature, alpha particles,
and the effects of the neutron skin. In this model, the binding
energy of a nucleus at temperature T, with proton number Z and
mass number A, in the presence of an external proton gas of
density np,out, is given by

B(Z,A, nn, np, np,out, T ) = Bbulk(nn, np, T )

+ σB(nn, np, T )

(
36πA2

n2

)1/3

+ CεCoulomb(Z,A, np,out)/(An).

(27)

Here, nn, np, and n= nn + np denote the average internal neutron,
proton, and baryon number densities, respectively.

The binding free energy of bulk matter, Bbulk is given by

Bbulk = A − Nskin

n
[ε(nn, np, T ) − nnmn − npmp

− T s(nn, np, T )] +
Nskin

n
[ε(nn, 0, T ) − nnmn

− T s(nn, 0, T )], (28)

where mn and mp are the neutron and proton masses, ε(nn, np, T )
is the energy density of homogeneous matter evaluated at
the given neutron and proton density and temperature, and
s(nn, np, T ) is the entropy density. The energy density of homo-
geneous matter is described using the Akmal, Pandharipande,
and Ravenhall EOS (Akmal et al. 1998, APR). Finite tempera-
ture corrections to the APR EOS are computed assuming that
there are no finite temperature corrections to the potential en-
ergy contributions similar to the approach used in Prakash et al.
(1997). The part proportional to Nskin is a correction to the bulk
energy density for the neutron skin.

The average baryon density in Equation (28) is determined
from

n = nn + np = ns + ndI
2 (29)

where I = 1 − 2Z/A. The parameter ns is analogous to the
saturation density of nuclear matter and is expected to be near
0.16 fm−3. The parameter nd (which is typically negative)
subsumes the decrease in the saturation density with the isospin
asymmetry.

The individual average neutron and proton number densities
are given by

nn = n(1 + δ)/2

and
np = n(1 − δ)/2, (30)

and the density asymmetry δ = 1 − 2np/(nn + np) is given by
δ = ζ I , where ζ is a constant parameter determined by the fit
to the experimental nuclear masses.

The parameter Nskin is chosen so that

A − Nskin = 4π

3
R3

p(nn + np). (31)

The neutron and proton radii, Rn and Rp, are fixed by

A − Z = 4π

3
R3

nnn,

Z = 4π

3
R3

pnp. (32)

In summary, for the bulk part of the nuclear mass formula,
using Z and A one can compute the average neutron and
proton densities using the relations above, and the radii from
Equations (32), then compute Nskin from Equation (31), and use
the equation of state for homogeneous matter to compute the
bulk part in Equation (28) above. Note that the symmetry energy
contribution to the nuclear mass is automatically counted above
as part of the bulk contribution.

The surface energy density as a function of the “surface
tension,” σ is

εsurface = 3σ

R
. (33)
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For the mass formula, we need the surface energy per baryon,
which for T = 0 and I = 0 is given by

B(T = 0, I = 0)surface/A = dσ

nR
, (34)

where the radius, R is determined from

4πR3

3
n = A (35)

so that

B(T = 0, I = 0)surface/A = 3σ

n

(
4πn

3A

)1/3

. (36)

In general, the surface energy should be modified to ensure that
it vanishes in the limit δ → 1 as it must. To address this issue,
we follow Lattimer et al. (1985) and approximate B(nn, np, T )
by

B(nn, np, T ) = η(nn, np, T )
16 + b

[1/x3 + b + 1/(1 − x)3]
× B(T = 0, I = 0)surface, (37)

where x = np/n and b is a free parameter.
For T > 0, one must consider the reduction in the surface ten-

sion of the nucleus due to the interactions with the surrounding
gas. For the finite temperature correction, we follow (Lattimer
et al. 1985) and approximate η(nn, np, T ) by

η(nn, np, T ) =
[ (

1 − T 2
/
T 2

C

)
(
1 + aT 2

/
T 2

C

)
]5/4

. (38)

This expression is essentially identical to the SNA model ex-
cept for the presence of the factor a = 0.935 − 5.1(0.5 −
x)2 − 1.1(0.5 − x)4, which is obtained from a fit to the re-
sults of Ravenhall et al. (1972) that allows extrapolations
to neutron rich systems. The critical temperature is also
isospin dependent. Following Lattimer et al. (1985), we ex-
trapolate TC to neutron rich matter using TC = TC(x =
1/2)

√
1 − 3.313(0.5 − x)2 − 7.362(0.5 − x)4. We also take

Tc(x = 1/2) = 20.085 MeV as was done by Lattimer et al.
(1985).

The Coulomb energy density (Ravenhall et al. 1983) is

εCoulomb = 2

5
π

(
np − np,out

)2
e2R2

p

× [
2 − χ1/3

p + χp

]
(39)

where e2 is the usual Coulomb coupling ∼ h̄c/137 and χp =
R3

p/R3
n is the volume fraction of matter occupied by the proton

sphere. The Coulomb contribution is multiplied in Equation (27)
by a final parameter, C, which takes into account the fact that the
proton density distribution has its own surface. The parameter
values are given in Table 1 and labeled LDM3.

In order to determine the composition and properties of matter
in the supernova, we minimize the free energy at a fixed density
as a function of the proton number and atomic number of nuclei,
and the number density of dripped neutrons, nn,drip. The free
energy of this matter is given by

f (Z,A, nn,out, np,out, nα,out, T ) = nB(Z,A, nn,out, np,out, T )/A

+ (1 − χ )[f (nn,out, np,out, T ) + f (nα,out, T )]

+ fClassical(nNuclei, T ) + fel(ne, T ), (40)

where nNuclei = χn/A, χ is the volume fraction of matter
occupied by nuclei, fClassical(nNuclei, T ) is the classical free
energy from the ideal gas of nuclei, and fel(ne) is the free
energy of the electrons. For the purposes of comparisons with
the SNA and GCA models, we do not include the free energy of
the electrons in the ISNA calculations presented in this paper.
The free energy of the dripped nucleons, f (nn,out, np,out, T ),
is computed with the APR EOS in the same way as the bulk
contribution to the nuclear mass formula referred to above.

The constraints of baryon and charge conservation are imple-
mented with

nB = χnn + χpnp + (1 − χ )nn,out + (1 − χp)np,out

+ 4(1 − χ )nα

YenB = χpnp + (1 − χp)np,out + 2(1 − χ )nα. (41)

One of the two constraints is used to fix χ , and the other can be
used to constrain one of the parameters to the free energy, e.g.,
np,out.

3. RESULTS AND DISCUSSION

We utilize the models described above to compute the
composition and thermodynamic functions for matter for the
densities 10−5 < nB/n0 < 10−1, temperatures 1 MeV < T <
3 MeV, and electron fractions, 0.2 < Ye < 0.4 relevant for
core-collapse supernovae; see, e.g., Janka et al. (2007).

The isobar number density

nA =
∑
Z

nA,Z (42)

is calculated through Equation (13) using the LDM1, and the
results are displayed in Figure 2 for different baryon densities at
T = 1.0 MeV and for two representative values of the electron
fraction used throughout this work. The lines correspond to
the distribution predicted by the GCA, whereas the arrows
indicate the value of Ah in SNA. The results reveal that Ah
is systematically larger than the mass number Amax at which
the maximum of the isobar number density occurs, in the heavy
mass region. This may be explained by noticing that heavy
nuclei, many of them heavier than Amax, contribute significantly
to the sums in Equations (14) and (15) due to the smooth
behavior of nA,Z . These contributions also include lighter nuclei
such as the hydrogen isotopes (d, t), helium isotopes (3He,
6He), and intermediate mass nuclei with 3 � Z � 20. These
other contributions, combined with the overall mass and charge
conservation constraints, lead to Amax values that are lower
than Ah.

It may also be noticed that nA shows a broad distribution for
all baryon densities displayed in the figure. The width becomes
narrower as nB decreases, but it remains finite, for the reasons
discussed above. The position of the peak of the distribution also
shifts to lower values since dilute configurations favor partitions
with higher numbers of free nucleons and light particles, which
compete for the available charge and mass (Equations (14)
and (15)) against heavy nuclei.

This competition is illustrated in Figure 3, which shows the
mass fraction associated with different particles. These results
clearly reveal that more mass is contained in neutrons and alpha
particles as one goes towards lower densities. The contribution
from Z = 1 is not presented since it is relatively small for the
neutron rich systems we consider (even though it is included
in our models). Consistent with the conclusions of earlier work
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(Epstein & Arnett 1975; Burrows & Lattimer 1984; Lattimer
& Swesty 1991), the mass fractions of alpha particles, heavy
nuclei, and neutrons predicted by the GCA and SNA calculations
are very similar, despite the non-negligible widths of the mass
and charge distributions for the CGA calculations.

Similarly, the interactions between the gas particles and be-
tween the gas and the heavy nucleus included in the ISNA model
make comparatively small differences to the mass fractions in
Figure 3. The main differences appear to be that the ISNA
model predicts somewhat smaller values for alpha particle and
larger values for the neutron mass fractions compared to the
SNA model. This partly reflects small differences between the
mass formulae used in the SNA and ISNA models. In general,
both models predict similar values for the the mass of the heavy
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models, using the LDM1, are shown by the solid, dashed, and dotted lines,
respectively. The dashed-dotted lines show the average Z/A values for lighter
nuclei with 3 � Z � 20 that lie below the heavy nucleus charge distribution.

(A color version of this figure is available in the online journal.)

nucleus at Ye = 0.4, but the heavy nucleus is somewhat lighter
for the ISNA model at Ye = 0.2.

The qualitative dependence of Amax and Ah on the electron
fraction may be understood in terms of the symmetry energy.
At small values of Ye, neutrons are more abundant than pro-
tons and consequently, the neutron chemical potential exceeds
the proton chemical potential. As a consequence, the number
of free neutrons and the neutron mass fraction increase, as can
be noticed from Figure 3, and nuclei also tend to have more
neutrons than usual. Owing to the symmetry energy, an increase
in the neutron number increases the binding energy of protons
within a nucleus, the tendency for nuclei to have larger neutron
number N is accompanied by the distribution of heavy nuclei
shifting to larger A and Z values. The increased neutron mass
fraction at Ye = 0.2 can only be achieved if the heavy mass
fraction correspondingly decreases. For this reason, the
mass fraction associated with heavy nuclei is smaller for
Ye = 0.2 compared with those obtained at Ye = 0.4.

At higher densities, the decrease in the free volume and
corresponding increase in heavy nucleus mass means that the
additional neutrons at Ye = 0.2 will be largely contained in
the heavy nucleus. Thus the isotope composition of the heavy
nucleus should be more sensitive to the baryon density when
the matter is appreciably asymmetric. This aspect is illustrated
in Figure 4, which shows the average value of Z/A obtained
with both models. As expected, it is fairly independent of nB
for nearly symmetric matter, whereas it is quite sensitive to
it at small values of Ye. The predictions of the SNA model
follow those made by the GCA fairly closely, at least at low
densities. The SNA model tends to give more neutron rich
heavy nuclei, partly because Ah is systematically larger than
Amax and the isobar with the highest binding energy in nuclear
mass formulae is increasingly shifted towards the neutron rich
side with increasing nuclear mass. Some of the extra neutrons in
the GCA calculations are also contained in lighter intermediate
mass nuclei with 3 � Z � 20 that lie below the heavy nucleus
charge distribution.

The collapse of a supernova is accompanied by large changes
in many properties of the system, such as the entropy, pressure,
temperature, density, and energy (Bethe 1990), some of which
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have an impact on the supernova dynamics. We therefore have
evaluated the entropies and energies predicted by the GCA,
SNA, and ISNA models. The entropy may be obtained from
these approaches through the standard thermodynamic relation

S = log ZG + T

[
∂

∂T
log ZG

]
μ,V

. (43)

Applying the relationships in the preceding section, S be-
comes

S = V
∑
A,Z

nA,Z

[
5

2
+

1

T
(fA,Z − μA,Z) − ∂fA,Z

∂T

]
, (44)

where

∂fA,Z

∂T
= −5β0A

2/3 T T 2
c(

T 2
C + T 2

)2

(
T 2

c − T 2

T 2
c + T 2

)1/4

− 2A

ε0
T . (45)

The total energy of the system is given by

E = V
∑
A,Z

nA,ZμA,Z + T S − PV. (46)

The pressure P may be obtained from

P = T

[
∂

∂V
log ZG

]
T ,μ

= T

Ω

∑
A,Z

nA,Z

[
1 +

1

2

Ω
T

Z2

A1/3
Ccu

]
, (47)

where
u = − (nB/n0)1/3 + (nB/n0) . (48)

The second term in Equation (47) is due to the Coulomb inter-
action between the electron gas and the nuclei and, therefore, is
always negative for nB < n0.

The entropy and energy predicted by the GCA and SNA
models are depicted by the solid and dashed lines in Figure 5
for the same baryon densities and temperature used above. We
do not show the nuclear pressure since, at these densities, it
is much smaller than that of the electron gas (Bethe 1990;
Cooperstein 1985) and, therefore, does not play a significant
role. Although a fairly reasonable agreement is found for low
densities nB < 10−3, differences between GCA and SNA
models can be found at higher densities where the GCA mass
distributions become rather broad. The deviations between the
SNA and ISNA results for the energy and entropy are relatively
small, only a few tenths of an MeV for Ye = 0.4. However, there
are larger deviations at Ye = 0.2 where the nuclei are extremely
neutron rich.

The differences at higher densities and low Ye are not
surprising: this is the region where one expects the results
to depend sensitively on the details of the mass formula and
information about the nuclear symmetry energy (Steiner 2008).
However, the differences at low density have a different origin:
near Ye = 0.2 and nB/n0 = 10−5, the free energy is very flat
in the direction of the parameter space which determines the
number of nuclei relative to the number of alpha particles. The
reason for this is that the free energy can be minimized in one
of two ways: (1) the system can choose to create more entropy
(and thus decrease the free energy) by making a lot of alpha
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particles from nuclei, or (2) the system can choose to create
nuclei from alpha particles because the extra binding created
by nuclei will also decrease the free energy. Within the ISNA
model one can vary the number density of nuclei by 70%, and
this modification only changes the free energy by 0.1%, while
changing the entropy by 10%. Because the free energy is so
flat, the entropy in this region is quite sensitive to the nuclear
mass formula. Fortunately this low-density, low-Ye region is not
actually probed frequently in actual supernova simulations.

In order to verify the extent to which our conclusions depend
on the treatment of the nuclear symmetry energy in the liquid
drop formula used in these statistical approaches, we have also
carried out GCA and SNA calculations using the LDM2 formula
presented in Section 2.1. The corresponding isobar number
densities are shown in Figure 6. Qualitatively, the calculations in
Figure 6 resemble those in Figure 2 obtained using the LDM1
formula. Quantitatively, there are differences, however. Most
notably, the discrepancies between the GCA and SNA model
predictions are now much larger for LDM2 than for LDM1,
particularly for Ye = 0.2, at nB/n0 = 0.1. This is due to the lack
of a surface symmetry energy term in the LDM2 mass model.
The resulting under prediction of the binding energies for light
masses in the LDM2 formulae shifts mass of the maximum
Amax for the GCA distribution towards larger values, where the
difference between Amax and Ah values is typically much larger.
Nevertheless, the mass fractions predicted using the LDM2 mass
model (not shown) are similar to those shown in Figure 3, except
that intermediate mass nuclei (3 � Z � 20) give a somewhat
larger contribution for the LDM2 to the mass fraction at the
lowest density.

The discrepancies between the predictions of the treatments
are more pronounced at the highest baryon density. To illustrate
the dependence on temperature there, we compare the two cal-
culations at nB/n0 = 0.1 for temperatures ranging from 1 to
3 MeV, values that are in the range relevant to supernova stud-
ies. The isobar number densities, obtained using the LDM1, are
shown in Figure 7. Reflecting the larger phase-space accessible
to the system at higher temperatures, the GCA isobar distribu-
tions become broader, the value of Amax decreases, and a larger
fraction of the mass is in the form of nucleons or light nuclei
at higher temperatures. The trend of increasing nucleon yields
with temperature is also exhibited by the SNA model, but the
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discrepancies between the GCA and SNA approaches become
larger as T and the widths of the mass distributions increase.
In spite of the larger width of the isobar distributions, however,
the mass fractions obtained with GCA and the SNA model (not
shown) agree to within 15% for Ye = 0.4 and to within about
25% for Ye = 0.2. The intermediate mass nuclei have a slightly
larger mass fraction, but not enough to significantly change the
mass fraction associated with heavy nuclei.

Figure 8 shows the complementary comparison between the
GCA and SNA calculations using the LDM1 as a function of
density at T = 3 MeV. We do not compare the two calculations
below n/n0 = 4 × 10−3 because at this temperature the mass
Ah of the most probable heavy nucleus drops to zero below this
density. The inset in the figure shows the detailed dependence
of Ah predicted by the SNA model. Even though some heavy
nuclei are predicted by the GCA model at n/n0 < 4 × 10−3,
the mass fraction of Z > 20/A > 50 at such densities is
small and of the order of 3–6 × 10−2. Figure 7 shows that
the discrepancies between the GCA and SNA calculations
increase with increasing temperature of the range of densities
investigated in this work. The trend of Figure 6 is reversed in
Figure 8; the deviation between the GCA and SNA increases as
the density is increased. This reversal is related to the transition
to nuclear matter which is near this region of phase space.
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In general, the agreement between the GCA and SNA
approaches is somewhat better at Ye = 0.4 than at Ye = 0.2
where the mass distributions are wider. This conclusion also
holds for the thermodynamic variables. The dependence of the
entropy and energy per baryon on the temperature is shown at
a fixed density of n = 0.1n0 in Figure 9. Clear differences
between the GCA and SNA calculations are predicted for
Ye = 0.2. There the entropy difference (ΔS/A ≈ 0.2) remains
roughly constant as a function of temperature. The larger mass
in the SNA leads to lower energy per baryon in the SNA than in
the GCA calculation. The energy difference reaches its largest
value (ΔE/A ≈ 0.15 MeV) at T = 1 MeV. This difference
decreases with temperature to a negligible value at T = 3 MeV.
In contrast, the differences between GCA and SNA calculations
are comparatively small for Ye = 0.4, reflecting the smaller
widths of the heavy mass distributions at Ye = 0.4.

The complementary density dependencies of the entropies
and energies for GCA and SNA calculations at T = 3 MeV
are shown in Figure 10. For both Ye = 0.2 and Ye = 0.4, the
largest differences between the energies of SNA and are actually
observed at n/n0 ≈ 0.01. The entropy differences generally
increase with density for both Ye = 0.2 and Ye = 0.4. Both
entropy and energy differences are larger for Ye = 0.2 than for
Ye = 0.4, reflecting the larger widths of the heavy nucleus mass
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distributions at Ye = 0.2. Both Figures 9 and 10 demonstrate
that the wide mass distributions of the GCA calculations at
densities of n/n0 ∼ 0.01–0.1 lead to non-negligible differences
between the entropies and energies predicted by the GCA and
SNA approaches. The ISNA results are similar, again showing
larger deviations from SNA calculations in the neutron rich case
at Ye = 0.2. Note that the entropy is higher in the ISNA model
than the GCA results, but this is because of the difference in
the mass models. We expect that a comparable analog of the
GCA model constructed with the ISNA mass formula would
indeed give a larger entropy than the ISNA results shown here.
The density range over which results are available is slightly
smaller because the disappearance of the heavy nucleus occurs
at a higher density in the ISNA model. The transition from
heterogeneous to homogeneous matter, especially in neutron-
rich matter, is very model dependent.

Finally, to provide one more example of the importance of
the mass formula, we show, in Figure 11, the mass distributions
predicted by the GCA for the LMD2 mass formula in compar-
ison to the corresponding SNA predictions. We find that there
are larger discrepancies between the GCA and SNA predicted
for the LDM2 parameterization than for the LMD1 parameteri-
zation. As the mass fractions and the thermodynamic variables
obtained in this case are very similar to those obtained for the
LDM1 parameterization, we do not show them in the interest
of brevity. Comparing the predictions in two different parame-
terizations of the nuclear symmetry in Figure 11, we find that
the changes in the mass distributions due to inclusion of the
surface symmetry energy correction are less significant than the
predicted differences between the GCA and SNA calculations
that use the same liquid drop mass model (and same symmetry
energy).

In principle, nuclei must have a surface symmetry energy
term. The magnitude of the surface symmetry energy coefficient,
however, is not well constrained by the measured nuclear masses
(Danielewicz 2003). Even though the differences between the
GCA and SNA calculations exceed the differences between
the LDM1 and LDM2 calculations, parameterizations for the
density dependence of the symmetry energy may be chosen that
predict much larger effects (Botvina & Mishustin 2005). Ideally,
a general investigation of the role of the symmetry energy
in the supernovae EOS should include both an assessment of
the sensitivity of the mass distributions to the choice of the
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symmetry energy as well as an assessment of whether the chosen
form is consistent with known experimental information (Souza
et al. 2008). A systematic investigation of the effect of the
symmetry energy in relationship to the current experimental
information is in preparation.

4. CONCLUDING REMARKS

In this work, we compared the standard SNA to a model which
includes all of the nuclei which might be present at any specified
density, temperature, and electron fraction (GCA). These two
models utilized the same underlying mass formula. Consistent
with the earlier work in Burrows & Lattimer (1984), we find
that the thermodynamic functions are relatively well described
by the SNA at densities below 0.01ρ0. At higher densities,
differences emerge in the composition that can be traced to
the large widths of the GCA mass distributions. The single
nucleus approximations tends to predict much larger heavy
nucleus masses than does the GCA. The difference between
the peak of the GCA mass distribution and the mass predicted
by the single nucleus by 50% or more at the largest densities
and temperatures. We also find a significant contribution to the
composition from light nuclei; at high enough temperatures
and densities the abundance of light nuclei is larger than the
abundance of larger nuclei near the mass predicted by the SNA.

We have also compared the simple SNA model to a more elab-
orate ISNA model that considers effects that become relevant
at higher densities, such as the interactions between gas parti-
cles. We find differences between the SNA and ISNA models
of these average quantities that are comparable to the differ-
ences between the GCA and SNA calculations. This indicates
the importance of taking such effects into account accurately.
Comparisons of the GCA, SNA, and ISNA models suggest that
the error made by assuming a single nucleus in the energies and
entropies per baryon may be comparable to the uncertainties in
the nuclear mass formulas, the effects of quantum statistics, and
the interactions between gas particles.

Our work suggests that first explorations of the consequences
of a full nuclear distribution in supernova simulations may
be helpful and should be performed. Because the deviations
between the SNA and the GCA are comparable to other
uncertainties, models with full nuclear distributions ought to
be further explored in addition to work delineating the effects
of interactions between nuclei and uncertainties in the nuclear
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mass formulas. Our work also confirms that going beyond the
SNA model is required for the consistent description of light
nuclei, the importance of which was emphasized in Arcones
et al. (2008). We are exploring such issues with the aim of
determining their impact on the weak interaction rates (Janka
et al. 2007) in supernova simulations.
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